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Abstract

There exist two commonly used approaches to cross-sectional asset pricing, each with pros and

cons. One consists of collecting stocks into portfolios and subsequently estimate risk exposures.

The other consists of estimating cross-sectional risk premia using the entire universe of stocks.

Applying a novel test, we identify the factor space common between individual stocks and sorted

portfolios - neither affected by time-varying betas nor by the sorting characteristics. We find three

factors - which can only partially be explained by Fama-French five factors with(out) momentum.

Our three factors also feature superior out-of-sample pricing performance compared to standard

pricing models.
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*We would like to thank Andrei Gonçalves, Cam Harvey, Abraham Lioui, Daniele Massacci, Filippos Papakonstantinou

and Raman Uppal for insightful comments, as well as seminar participants at EDHEC Business School, Nice,
Kenan-Flagler Finance and UNC Economics seminars, LUISS Business School and King’s College London, and
participants to the 2021 Annual SoFiE Conference at UCSD Rady School of Business, San Diego and the 2021 Annual
Conference of the IAAE at Erasmus School of Economics, Rotterdam. The first author would like to acknowledge
that this work was funded by the Republic of Cyprus through the Research and Innovation Foundation (Project:
INTERNATIONAL/USA/0118/0043). The authors are extremely grateful to Andrew Chen from the Board of Governors
of the Federal Reserve for providing us with his extensive factor zoo data set.

†University of Cyprus and CEPR, e-mail: elena.andreou@ucy.ac.cy.
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1 Introduction

The dominant research theme in empirical asset pricing is the low dimensional factor representation

of a large set of asset returns. Ideally any high dimensional set of asset returns should contain

the information necessary to recover the factors. In practice, the literature has taken two different

approaches. Jensen, Black, and Scholes (1972) and Fama and MacBeth (1973), among many others,

have advocated to collect stocks into portfolios and subsequently run cross-sectional regressions using

portfolios as test assets. An alternative approach is to estimate cross-sectional risk premia using the

entire universe of stocks as advocated by Litzenberger and Ramaswamy (1979), among others.

One might think that the choice between individual stocks versus sorted portfolios should only be

a matter of practical implementation and ultimately should uncover the same low dimensional factor

space. Unfortunately this is not the case. Extracting factors from individual stocks using static models

is believed to overstate the “true” set because time-varying loadings may add spurious factors (see

e.g. Breitung and Eickmeier (2011), among others). The main advantage of using portfolios is that

their risk exposures are more stable across time. This being said, it is also known that portfolios

might diversify away and therefore mask relevant risk- or return-related features of individual assets.

Moreover, as Lewellen, Nagel, and Shanken (2010) point out, sorting on characteristics also results

in a strong factor structure across test portfolios and indeed even factors that are weakly correlated

with the sorting characteristics would explain the differences in average returns across test portfolios

regardless of the economic theories underlying the factors.

It seems that we want to find the low dimensional factor representation able to price the cross-

section of sorted portfolios and that of individual stocks. To put it differently, when we extract factors

from stocks we want them to also correctly price sorted portfolios and vice versa. Using terminology

from the factor model literature, we want to find the factor space that is common between panels of

individual stocks and panels of sorted portfolio returns as it provides a path toward extracting the true

set of factors neither affected by sorting characteristics nor by varying risk exposures and recalcitrant

features of individual stocks. In the remainder of the paper we will call these the common factors.

The task of finding common factors is not trivial and requires theoretical insights so far not explored

in the empirical asset pricing literature. The approach we use in this paper was first alluded to in the
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last section of the Roll and Ross (1980) paper on the empirical testing of the APT and remained largely

unresolved since then. Numerous attempts have been made to address the problem, including recently

by Pukthuanthong, Roll, and Subrahmanyam (2019). To achieve the task set forth we need to expand

the theory underpinning a procedure recently proposed by Andreou, Gagliardini, Ghysels, and Rubin

(2019) (henceforth AGGR). They study a situation where (latent) factors h1,τ and h2,τ , are estimated

from two separate panels of data, and one is interested in testing how many factors are common

between them. AGGR show that the common factor space is identified by examining how many linear

combinations of respectively h1,τ and h2,τ are perfectly correlated. Equivalently, they introduce a test

for the number of canonical correlations between h1,τ and h2,τ equal to one and derive its asymptotic

distribution.1 Their analysis does not directly translate into a procedure suitable for asset pricing

applications. One of the contributions of our paper is to provide the theory for such applications.

It should parenthetically be noted that when we refer to latent factors, we do not necessarily mean

principal component analysis (PCA). Indeed, our analysis also covers recently proposed procedures

such as for example those advocated by Lettau and Pelger (2020a and 2020b).

The novel testing procedure identifies 3 factors at the intersection of individual stock returns and

sorted portfolios. Surprisingly, we find that neither the Fama and French 3 (FF3) nor 5 (FF5) factor

models, both with or without a momentum factor (hence up to 6 factors), span the factor space common

between individual stocks and sorted portfolios. In fact out of the 6 factors considered, only the excess

market returns factor seems to be the most related to the common factors, while all the other 5 factors

are only partially spanned by the common factors, and a large part of their variability are specific to

portfolio sorting. For convenience we will call the 3 common factors 3CF.

The search for factors has been on steroids with literally hundreds of potential additional candidate

factors beyond FF3 suggested in the literature. The endeavor has been dubbed the factor zoo by

Cochrane (2011) and terms such as p-hacking (meaning data-snooping or data-mining) have been

used to describe the hunt for factors.2 The literature started of with the pretty tame single factor

model, i.e. the CAPM. It is perhaps more appropriate to say that we moved from a petting zoo to

1To sort out genuine risk factors Pukthuanthong et al. (2019) also rely on canonical correlations, but do not present a
formal statistical procedure.

2See Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016), Chorida, Goyal, and Saretto (2020) Hou, Xue, and
Zhang (2020), Feng, Giglio, and Xiu (2020), Chen (2019) among others.
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a jungle. For example, Harvey and Liu (2019) have documented over 400 factors published in top

journals. In our empirical application we use a data set of over a thousand portfolios associated with

205 characteristics. It takes up to 10 PCs from this factor zoo to span the space of 3CF.

We perform a comprehensive in- and out-of-sample (OOS) analysis of the pricing performance

of 3CF compared to a wide range of standard models as well as the factor zoo. Using multiple in-

sample performance evaluation measures we find that the three common factors perform better than a

large collection of observable and latent factor models in pricing individual stock and sorted portfolios

assets. Turning to the out-of-sample analysis the results yield several interesting empirical findings.

The three common factors yield again the highest total, pricing and predictive OOSR2s with respect to

the same benchmark models. For the individual stocks as well as sorted portfolios the OOS predictive

R2s gains using 3CF can be 80% and 50% vis-à-vis for example the Fama-French factors.

We regress factors from the zoo onto 3CF and document which ones yield the best fit. We find two

of the three Fama and French factors (CAPM Beta and Size) along with portfolios based on market

beta put forward by Frazzini and Pedersen (2014), and different measures of idiosyncratic risk and

liquidity or uncertainty, such as Bid-ask Spread, Cash-flow to price variance, Volume to market equity,

EPS Forecast Dispersion, Days with zero trades, Volume Variance, and Price delay R-square.

The rest of the paper is organized as follows. Section 2 introduces the spanning test and details

the data on the various cross-sections of asset returns used to estimate common latent factor spaces.

Section 3 covers the empirical implementation of the testing procedure, followed by Section 4 where

we report the results of an extensive empirical study comparing the asset pricing performance of the

common factors with widely used factors in the asset pricing literature. Section 5 revisits the topic of

the factor zoo. Conclusions appear in Section 6.

2 Factor Space Spanning Test

We consider a situation where we have a panel of individual stocks as well as a panel of portfolios

returns combining those individual stocks. In a first subsection we present a formal framework for the

characterization of the factor model representation for both panels. A second subsection provides the

details regarding the testing procedure to identify and estimate the factors common between the two
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panels. A final subsection described data sources.

2.1 Sorting and time-varying loadings

We assume that individual stock excess returns have the following factor structure:

ri,τ = b′i,τ−1f
c
τ + ei,τ i = 1, . . . , N1 τ = 1, . . . , t, (2.1)

with bi,τ−1 is the vector of conditional betas and f cτ a set of kc factors, where the superscript c will be

clarified later. The conditional betas are driven by common (Zτ−1) as well as stock-specific (Z̃i,τ−1)

variables (see e.g. Gagliardini, Ossola, and Scaillet (2016), namely: bi,τ−1 = b0
i +BiZτ−1 +CiZ̃i,τ−1,

and therefore:

ri,τ = [b0
i +BiZτ−1 + CiZ̃i,τ−1]′f cτ + ei,τ . (2.2)

Moreover, we can write the time-varying loadings in equation (2.2) as follows:

[
BiZτ−1 + CiZ̃i,τ−1

]′
f cτ = M c′

i f
c
τ +M s′

i f
s
1,τ + δi,τ (2.3)

with f cτ ⊥ f s1,τ and both factor vectors orthogonal to the errors δi,τ (an illustration of the above equation

appears in Appendix Section A.1).3 In the above equation the (sort of scaled) factors f s1,τ emerge from

the product of factors f cτ times the common component driving the loadings. The remainder term δi,τ

is assumed idiosyncratic, or (at most) weakly cross-sectionally correlated among the individual stocks.

Then:

ri,τ = [b0
i +M c

i ]
′f cτ + [M s

i ]′f s1,τ + ẽi,τ , (2.4)

which means that the constant loadings representation of individual stocks features the genuine factors

f cτ augmented by f s1,τ , which are spurious factors present because of the time-varying betas (with

super/subscripts s and 1 referring to factors specific to the first panel).

Let us now examine the creation of spurious factors generated by characteristic-sorted portfolios

which is the more popular approach in empirical asset pricing in part because the easy availability of

3It should parenthetically be noted that stock-specific variables Z̃i,τ−1 typically represent characteristics but also could
represent interactions of characteristics. Moreover, in addition to single sorting, our analysis also covers portfolios built on
double, triple etc. characteristic sorting. See in particular Appendix Section A.2 for further details.
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test asset portfolios from websites such as the one maintained by Kenneth French. The usual argument

in favor of test asset portfolios is that they dramatically reduces the noise stemming from idiosyncratic

risk, see e.g. the discussion in the recent work of Harvey and Liu (2021). We start with sorting along

a single characteristic and consider more complex sorting schemes later. Namely, suppose we create

j = 1, . . . , N2 portfolios with weight for stock i in portfolio j : αj,i,τ−1/N1 = gj(z̃i,τ−1)/N1, with N1

the number of individual stocks (as specified in equation (2.1)) and z̃i,τ−1 ∈ Z̃i,τ−1 is a single asset i

characteristic. Then the portfolio excess returns are:

rpj,τ =

[
1

N1

N1∑
i=1

αj,i,τ−1bi,τ−1

]′
f cτ + uj,τ j = 1, . . . , N2 τ = 1, . . . , t, (2.5)

where uj,t = 1
N1

∑N1

i=1 αj,i,τ−1ei,τ . Note that without loss of generality the portfolios involve the entire

cross-section of stocks, with the obvious implication that only a subset of weights might be non-zero.

Moreover, suppose that the betas for portfolio j are such that:

1

N1

N1∑
i=1

αj,i,τ−1bi,τ−1 =
1

N1

N1∑
i=1

gj(z̃i,τ−1)
[
b0
i +BiZτ−1 + CiZ̃i,τ−1

]
' b̃0

j +WjZ
∗
τ−1 as N1 →∞, j = 1, . . . , N2 τ = 1, . . . , t, (2.6)

for some b̃0
j , Z

∗
τ−1 and Wj . Therefore, we have portfolio returns:

rpj,τ =
[
b̃0
j +WjZ

∗
τ−1

]′
f cτ + uj,τ , j = 1, . . . , N2 τ = 1, . . . , t. (2.7)

Let us define the linear projection (with super/subscripts s and 2 referring to factors specific to the

second panel):

[
WjZ

∗
τ−1

]′
f cτ = Kc′

j f
c
τ +Kp′

j f
s
2,τ + ηj,τ j = 1, . . . , N2 τ = 1, . . . , t,

with f cτ ⊥ f s2,τ ⊥ ηj,τ for all j and ηj,τ weakly cross-sectionally correlated. This yields the following

constant loading factor representation of sorted portfolio returns:

rpj,τ =
[
b̃0
j +Kc

j

]′
f cτ +Kp′

j f
s
2,τ + ũj,τ , (2.8)
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which means that the constant loadings representation of sorted portfolios features the genuine factors

f cτ augmented by spurious factors f s2,τ to account for characteristics-based portfolio sorts and time-

varying betas.

Under some mild regularity conditions appearing in the Appendix Section A.3 pertaining to

masking of factors in portfolio sorts and convergence of portfolio betas, we have two panels - one

consisting of individual stock excess returns and the other of sorted portfolios with returns described

by equations (2.4) and (2.8), respectively. It is worth describing here some of the regularity conditions

which are detailed in Appendix Section A.3. Assumption A.1 allows for some individual stocks and

some portfolios to mask some factors, but not a significant collection of stocks or portfolios is allowed

to block out any specific factor. In addition, Assumption A.2 guarantees that the common factors

between the two panels to be f cτ only, instead of f cτ and/or Z ′τ−1f
c
τ . In the Appendix we discuss various

scenarios, showing that overall the regularity conditions are mild. They imply that:

E [f cτ ] = µc , E
[
f s1,τ
]

= µs1 , E
[
f s2,τ
]

= µs2 ,

E
[
(f cτ − µc)(f s1,τ − µs1)′

]
= 0 by construction,

E
[
(f s1,τ − µs1)(f s2,τ − µs2)′

]
= Φ ,

E
[
(f cτ − µc)(f s2,τ − µs2)′

]
= 0 by construction.

(2.9)

The equations in (2.9) imply that factors appearing in panels of individual stock or portfolio excess

returns due to time-varying betas and factors appearing in portfolios due to characteristic-based sorting

and time-varying betas may be mutually dependent via the covariance matrix Φ. What is important,

however, is the orthogonality of f cτ with respect to both f s1,τ and f s2,τ , by the linear projection arguments.

Summarizing, we have shown that if individual stocks were used, a researcher would conclude

that f cτ and f s1,τ are risk factors. Conversely, a researcher starting from sorted portfolio returns would

conclude that the risk factors are instead f cτ and f s2,τ . Whilst to the best of our knowledge, other

methods cannot address this, our testing procedure allows us to identify f cτ , namely the factors which

are the drivers of both individual stock and sorted portfolios excess returns.
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2.2 Estimation and testing

Since the testing approach applies to different settings beyond panels of individual stock and sorted

portfolio returns we use the generic notation yj,τ = [yj,1τ , ..., yj,Njτ ]
′ collects Nj observations in panel

(group) j = 1, 2. It will be convenient to use the terms of group factor models, and interchangeably

refer to groups and panels 1 and 2. To formulate the various hypotheses of interest we borrow the

notation from AGGR, for the (two) group factor model setting:

 y1,τ

y2,τ

 =

 Λc
1 Λs

1 0

Λc
2 0 Λs

2



f cτ

f s1,τ

f s2,τ

+

 ε1,τ

ε2,τ

 , τ = 1, . . . , t (2.10)

where Λc
j = [λcj,1, ..., λ

c
j,Nj

]′ and Λs
j = [λsj,1, ..., λ

s
j,Nj

]′ are the matrices of factor loadings and

εj,τ = [εj,1τ , ..., εj,Njτ ]
′ the error terms, with τ = 1, . . . , t. The dimensions of the common factor f cτ and

the group-specific factors f s1,τ , f s2,τ are respectively kc, ks1 and ks2. In the remainder of this subsection

we go through the four steps of the procedure, the technical details and formal definitions appear in

Appendix A.5.

Step 1: We start with extracting factors from each panel separately. For the application in the paper,

this means extracting factors from individual stock returns and doing the same for sorted portfolios.

As is typically done (see e.g. Lehmann and Modest (1988) and recently Kim and Korajczyk (2021),

among many others), we will study non-overlapping sample blocks of generic length w of the panels

covering data from t−w+ 1 to t.4 We focus here on one sample and resort to either PCA or a version

of principal component analysis with a penalty term accounting for the cross-sectional pricing error

in expected returns recently suggested by Lettau and Pelger (2020a and 2020b), and summarized in

Appendix A.4. In particular, their estimator searches for factors that can explain both the expected

return and covariance structure.

Step 2: Let kj = kc + ksj , for j = 1, 2, be the dimensions of the factor spaces for the two panels,

4We use a block sampling scheme to avoid look ahead biases in full sample factor extraction as well as survivorship
biases for individual firms (see section OA.1 in the Online Appendix for further discussion). Our theory is based on
asymptotic expansions, but as Andreou et al. (2019) show via simulation, it is also suitable to describe finite sample
behavior in settings corresponding to the empirical application of the paper.
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and define k = min(k1, k2). We collect the factors of each group in the kj-dimensional vectors hj,τ

then h1,τ = H1

[
f c′τ , f

s′
1,τ

]′ and h2,τ = H2

[
f c′τ , f

s′
2,τ

]′, meaning that the factors we extract from each

group are some linear transformation Hj of the underlying factors, with Hj being a kj × kj full rank

matrix, for j = 1, 2. This means that some linear combinations of h1,τ - namely those corresponding to

f cτ - are perfectly correlated with linear combinations of h2,τ and vice versa. Let us recall at this point

the purpose of canonical correlation analysis. In general canonical correlation applies to a setting

where we have two random vectors, in our application h1,τ and h2,τ , and finds linear combinations

of respectively h1,τ and h2,τ which have maximum correlation with each other. Therefore we are

interested in finding how many of these linear combinations, also known as canonical variables, are

perfectly correlated, i.e. have canonical correlation equal to one.

Step 3: Proposition A.1 in the Appendix tells us that the dimension kc is the number of unitary

canonical correlations between h1,τ and h2,τ . The largest possible number of common factors is

k = min(k1, k2). We develop a test for kc : H0(r) : kc = r against H1(r) : kc < r, for any given

r = k, k − 1, . . . , 1. More precisely, we sort the canonical correlations from high to low and let ρ̂` be

the `-th sorted sample canonical correlation between the factors ĥ1,τ and ĥ2,τ estimated on a sample of

length w, and let:

ξ̂(r) =
r∑
`=1

ρ̂`, (2.11)

be the sum of the r largest sample canonical correlations. We reject the null for r = kc common factors

H0 = H(kc) when ξ̂(kc) − kc is negative and large - namely the sum of the largest kc estimated

canonical correlations is substantially less than kc.5 The test statistic is:

ξ̃(kc) := N
√
w

(
1

2
tr{Σ̂2

U}
)−1/2 [

ξ̂(kc)− kc +
1

2N
tr
{

Σ̂U

}]
, (2.12)

with N = min{N1, N2} and the term Σ̂U is defined in the technical appendix. In the generic case,

under the null hypothesis H0(r) : kc = r we have: ξ̃(r) d−→ N (0, 1) , and under the alternative

hypothesis H1(r) : kc < r, ξ̃(r)
p−→ −∞ as N and T grow large.6

5When we reject the null H(k) we look at the null hypothesis: H(k − 1) =
{
ρ1 = ... = ρk−1 = 1

}
, and so forth until

we identify the dimension of the common factor space. Sequential testing issues are addressed in Andreou et al. (2019).
6See Theorem 2 of AGGR, and its extension Theorem A.2 in Appendix Section A.5.2. The asymptotic distribution and

rate of convergence of the test statistic ξ̃(kc) in Theorem A.2 are unchanged when the true numbers of factors k1 and k2
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Step 4: Once the dimension kc is identified, we can recover the common factors f cτ via the canonical

directions - i.e. the weights of the linear combinations yielding unitary canonical correlations - applied

to the factors estimated from each of the separate panels.

It is worth highlighting a number of theoretical contributions of the paper. The theory in AGGR

only covers panel data centered at zero. Appendix A.5 extends the estimators and theoretical results of

Andreou et al. (2019) to the case where factors are allowed to have any finite mean, compatible with

model (2.9). This general set-up is more relevant for asset pricing applications. Moreover, the current

paper shows that the testing and estimation procedures for common factors across different panels

based on canonical correlation and directions can be applied (a) to “classical” PCA estimators of the

factors, and more importantly for asset pricing (b) to the more recent variations of PCA as proposed by

Lettau and Pelger (2020a). Appendix A.4 shows the formal relationship between the different PC-type

estimators for factors.

2.3 Data

To conclude a few words about the data. In Online Appendix, henceforth OA, Section OA.1 we

provide a detailed description of the data. Broadly speaking we can summarize the data as follows.

We consider three panels of monthly returns in our analysis, namely (i) individual US stock returns

from CRSP, (ii) the panel of test asset portfolios from the April 2021 release of the database “Open

Source Cross-Sectional Asset Pricing” created by Chen and Zimmermann (2021), CZ21 hereafter, and

(iii) the panel of factors from the zoo considered by CZ21. For all three panels from Jan. 1966 to

Dec. 2020 we split the 660 months into B = 11 non-overlapping blocks of 60 months, denoted as

b = 1, ..., B. The first block is from Jan. 1966 to Dec. 1970 and the last block is from Jan. 2016

to Dec. 2020. Within each block, we consider only a balanced sample of individual stocks and test

asset portfolios, that is we only include assets with returns available for all the 60 months. We work

with 5-year non-overlapping samples, analogous to the empirical application of Lehmann and Modest

(1988), to address the concern of survivorship bias if we were to use the full sample of individual

stocks. Similar to the arguments in Kim and Korajczyk (2021), one can view the 5-year span as a

compromise between a sample large enough for our test procedure to have desirable small sample

are unknown, and are estimated by some consistent empirical selection method.
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properties and the concern of capturing new and disappearing stocks.

3 Testing Test Assets

In order to identify the factor space neither affected by portfolio sorting characteristics nor by varying

risk exposures and other specific features of individual stocks, we implement the four-steps procedure

described in Section 2.2 for each of non-overlapping sample blocks from end of 1970 until end of 2020

with 5-years increments. These are 5-years samples y1,τ of balanced panels of individual stock returns

and y2,τ balanced panels of test asset portfolios.7 Similar to Pukthuanthong et al. (2019) we decide to

fix a priori the maximum number of pervasive factors in each panel k1 and k2 to 10.

The pervasive factors in each balanced panel of assets are computed using Lettau and Pelger’s

Risk-premium PCs, or RP-PCs , fixing γLP = −1, and we simply refer to them as PCs. The number

kct of common factors between the first 10 PCs of individual stocks and the first 10 PCs of portfolio

test assets is 3 for all 5-years blocks except for the blocks ending in 2000, 2005, 2015, 2020 where it

is 4. While there is some variation we will proceed with the number of factors being equal to 3 across

the entire sample. Henceforth we will refer to these three factors as the “common” factors and use the

acronym 3CF. A first subsection is devoted to the testing of the common factor space and the second

subsection covers the economic interpretation of the common factors.

Figure 1 displays the sum of the canonical correlations of the three factors common to the CRSP

and CZ21 test assets with the 3 Fama and French factors (FF3): Market, SMB and HML factors, and

the sum of the canonical correlations of the common factors with the 5 Fama and French factors (FF5):

FF3 plus RMW-operating profitability, CMA-investment style. The figure also displays the sum of

canonical correlations between common factors and FF3/FF5 factors augmented with the momentum

factor. The red line across the plot marks the 3-factor benchmark common factor space.

The results in the figure convey a surprisingly simple and clear message. We observe that over the

entire sample the canonical correlations between FF3 and common factors (blue circles, thick dotted

line) are well below 3. This implies that over this sample period FF3 does not span the common

factor space. What happens if we move from FF3 to FF5, i.e. we add RMW-operating profitability

7More precisely, we have 11 panels ending at t = Dec. 1970, Dec. 1975, ..., Dec. 2020 with observations y1,τ and y2,τ

for τ = t− 59, t− 58, . . . , t.
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Figure 1: Sum of canonical correlations of three factors common between Chen and Zimmermann
(2021) test asset portfolios and CRSP stocks with Fama and French 3, 5 factors and momentum.

The figure displays the sum of the canonical correlations of the three factors common across CRSP and CZ21 test assets
with the 3 Fama and French factors (FF3): Market, SMB and HML factors (blue circles, thick dotted line), and the sum of
the canonical correlations of the three common factors with the 5 Fama and French factors (FF5) - adding RMW-operating
profitability, CMA-investment style (black stars, thick dashed line). In addition, it also displays FF3/FF5 augmented with
the momentum factor (FF3+Mom - blue circles, thin dotted line, FF5+Mom - black stars, thin dashed line). The red line
across the plot marks the 3-factor benchmark common factor space. All quantities are computed on non-overlapping blocks
of 5 years of monthly data, that is for each year y we report results computed on the block starting in year y−4 and ending
in year y, for each y = 1970, ..., 2020.

and CMA-investment style? In the same figure, using the same approach, the black thick dashed line

with stars shows that adding two FF factors falls again short of spanning the common factor space. In

fact, in most years the improvements of the two additional factors appears to only be minor. The same

analysis is repeated with as observable factors FF3 and FF5 plus momentum (FF3+Mom - blue circles,

thin dotted line, FF5+Mom - black stars, thin dashed line). While the higher number of observable

factors increases mechanically the value of the sum of non-zero canonical correlations, it remains

the case that adding the momentum factor is not enough to span the common factors. This means

that the popular models fall short of capturing the three common factors.8 In addition, we examine

formally whether the differences between the FF5+momentum factors versus the common factors are

statistically significant. Andreou, Gagliardini, Ghysels, and Rubin (2021) derive a formal test between

latent and observed factors similar in spirit to the test of AGGR explained in the previous section.

Applying such a test, we reject the null that the FF5 and momentum factors span the kc = 3 common

factors - put differently all the lines in Figure 1 are significantly below 3. Finally, this also begs the

8In Online Appendix Section OA.3 we provide details about the composition of the three common factors in terms of
their rescaled factor loadings.

11



question whether members of the zoo might help us out in recovering the common factor space, a topic

addressed in Section 5.

So far we established the existence of common factors between individual stocks and sorted

portfolios, and shown that they are only partially spanned by FF5 and momentum. We now study how

each of the FF5 and momentum observable factors taken one-by-one are related to (a) the common

factors and (b) the factors which are specific respectively to the sorted portfolios or to the CRSP

individual stocks. This analysis allows us to check (a) whether the common factors span at least one of

the observable factors, and (b) to understand the nature of the panel-specific factors: portfolio-specific

and individual stock-specific.

To achieve the task at hand, we regress each of the 6 observable factors on (i) the 3CF factors and

(ii) all the panel-specific factors, and report the R2s of these regression for FF3 in Figure 2.9 For each

of the three FF3 factors the figure displays the fraction of variance (R2) explained by the common

factors (blue bars which are the same in both panels), the CZ21 group-specific factors (orange bars,

left panels), the CRSP group-specific factors (orange bars, right panels), and unexplained by common

and group-specific factors (yellow bars).

Not surprisingly, on average (across the different rolling windows) 85% of the variability of the

market factor is explained by the common factors, and specific factors of portfolio test assets tend to

explain almost all the remaining part of its variability, with their R2 ranging between 2% and 20%,

depending on the time period. In the right panel of Figure 2 we observe that the factors specific to

individual stocks are not able to capture the same amount of the variability unexplained by the common

factors, as their R2s are below 10%. The fact that CRSP stock-specific factors explain much less of the

variability of observable factors compared to the CZ21 group-specific factors is an empirical regularity

that we observe across all the FF5 and momentum factors. For instance, CZ21 group-specific factors

explain between 10% and 60% of SMB while, CRSP stock-specific factors explain only 1% to 40%.

Moreover, on average 50% of the variability of SMB is explained by the 3CF, and for the remaining

50% we note that between 4 and 20 % (resp. 20 to 45%) is not explained by portfolio sort specific

factors (resp. individual stock specific factors). Analogous conclusions can be drawn for HML, as

well as the other three factors reported in the Online Appendix.

9Figure OA.3 in the Online Appendix covers the other three considered so far - RMW, CMA and momentum.
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Figure 2: Variability of FF3 factors explained by common and specific factors in Chen and
Zimmermann (2021) test assets and CRSP individual stocks.

(a) Market - Rf : CZ21 test assets (b) Market - Rf : CRSP stocks

(c) SMB : CZ21 test assets (d) SMB : CRSP stocks

(e) HML : CZ21 test assets (f) HML : CRSP stocks

For each of the FF factors the figure displays the fraction of variance (R2) explained by 3CF (blue bars which are the same
in both panels), CZ21’s group-specific factors (orange bars, left panels), CRSP group-specific factors (orange bars, right
panels), and unexplained by common and group-specific factors (yellow bars). For each year y we report results based on
the block starting in year y-4 and ending in year y, for each y = 1970, ..., 2020.

The finding implies that out of the 6 factors considered, only the market seems to be the one which

is the most related to the common factors, while all the other FF and momentum factors identified in

the literature based on sorting stocks on characteristics are only partially spanned by common factors,

and a large part of their variability is due to a risk dimension which is specific to portfolio sorting.

We can examine the same question from a different angle, similar to what appears in Figure 1,

by replacing the common factors by the group-specific factors. Recall that we started with 10 PCs in

each panel and found three common factors. Therefore, we have 7 remaining group-specific factors

in each panel. Figure 3 displays the sum of the canonical correlations of the 7 group-specific factors

(Panel (a) the CZ21- and Panel (b) CRSP-specific) with FF3 (blue circles, thick dotted line), FF5

(black stars, thick dashed line), FF3 factors and momentum (blue circles, thin dotted line), and FF5

factors and momentum (black stars, thin dashed line). Recall that the group-specific factors reflect (1)
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Figure 3: Sum of canonical correlations of three group-specific factors in Chen and Zimmermann
(2021) test assets and CRSP stocks with Fama and French 3, 5 factors and momentum.

(a) CZ21 test assets

(b) CRSP individual stocks

Panel (a) displays the sum of the canonical correlations of the seven specific factors in CZ21 test asset portfolios with: (i)
FF3 (blue circles, thick dotted line): (ii) FF5 (black stars, thick dashed line); (iii) the FF3 factors and momentum (blue
circles, thin dotted line); (iv) the FF5 factors and momentum (black stars, thin dashed line). Panel (b) displays the sum
of the canonical correlations of the seven specific factors in CRSP individual stocks with the same four sets of observable
factors. For each year y we report results computed on the rolling window starting in year y − 4 and ending in year y, for
each y = 1970, ..., 2020.

spurious factors due to time variation in betas and (2) spurious factors due to characteristic-sorting.

Panel (a) shows that FF factors with or without momentum relate to the CZ21-specific factors. This

finding is perhaps not surprising, since the FF factors are constructed by sorting. The sum of canonical

correlations is equal to one for FF3, two for FF3 plus momentum and FF5 and finally the sum equals

three for FF5 plus momentum. If we combine the findings in Figures 1 and 3 it appears that one linear

combination of FF3 (putting most of the weight on the market) is perfectly correlate with one common

factor and another linear combination of FF3 perfectly correlates with a sorting-specific factor (Panels

(c) through (f) in Figure 3 suggest this is a combination of SMB and HML). Similar arguments can be

made for the others FF and momentum configurations.
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The finding in Panel (b) may appear a bit as more surprising, showing that there is also some

correlation – although not as strong as in Panel (a) – with factors specific to individual stocks pertaining

to time-varying betas. It is worth recalling, however, that the beta dynamics are often instrumented via

characteristics also used for sorting (see the many papers on the topic starting with Ferson and Harvey

(1991) up to the recent applications of Instrumented Principal Component Analysis of Kelly, Pruitt,

and Su (2019)), and the fact that in our model group-specific factors are also allowed to be mutually,

although not perfectly, correlated (through the covariance matrix Φ in equation (2.9)).

4 Asset Pricing Performance of Common Factors

How do the common factors perform as predictors? How does their performance compare with the

widely used factors in the asset pricing literature? These are questions we address in this section. In

a first subsection we characterize the empirical models used in the forecasting evaluation, followed by

subsections covering in-sample and out-of-sample empirical results.

4.1 Empirical models

We model the excess returns of CRSP individual stocks and test asset sorted portfolios as linear

functions of different sets of K factors. In particular, we consider the following sets of factors:

(i) FF + mom: Under this header we have a set of models starting with the market factor only,

defined as the value-weighted index of all CRSP stocks minus the risk-free (K = 1); FF3 and

FF5 only (K = 3, 5); FF3 + Momentum, FF5 + Momentum, (K = 4, 6);

(ii) 3CF: K = kc = 3 common factors;

(iii) 3CF + CRSP-spec.: kc = 3 common factors and ks1 = 1, 2, 3 group-specific factors from the

panel of CRSP stocks (K = 4, 5, 6);

(iv) 3CF + CZ21-spec.: kc = 3 common factors and ks2 = 1, 2, 3 group-specific factors from the

panel of CZ21 test assets portfolios (K = 4, 5, 6);

(v) PCA on CRSP: factors estimated as the first K = 1, 3, 4, 5, 6 PCs on CRSP individual stocks;

(vi) PCA on CZ21: factors estimated as the firstK = 1, 3, 4, 5, 6 PCs on CZ21 test assets portfolios.10

10Note that are our CZ21 test-asset portfolios are a special type (i.e. long-only) of “managed portfolios” using the
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All the models, factors and betas/loadings are estimated in each 5-years block b using the data available

in that block only. Therefore, loadings/betas are constant for all the dates τ in each block b, but are

allowed to change in the B different blocks. Let yj,i,τ be the excess return in month τ belonging to

block b of the i-th asset in group j, with j = 1 corresponding to individual stocks, and j = 2 to CZ21

test asset portfolios. Each model m for yj,i,τ can be expressed as

yj,i,τ = βm ′j,i,b f
m
j,τ + εmj,i,τ , with τ ∈ b , j = 1, 2 (4.13)

where fmj,τ = [fm,c′τ , f j,m,s′τ ]′, βmj,i,b = [λm,c′j,i,b , λ
m,s′
j,i,b ]′, while fm,cτ and λm,c′j,i,b (resp. fm,sj,τ and λm,s′j,i,b ) are

the common (resp. group-specific) factors and betas/loadings. For all models in (i), the factors are

observable, while for all the remaining models (ii) - (vi) the factors are latent and need to be estimated

either using the procedure for group-factor models described in Section 2.2 and detailed in Appendix

A.5 (models (ii) - (iv)), or by performing PCA performed in only one panel of excess returns (models

(v) - (vi)). In models (i), (ii), (v) and (vi) we have λm,sj,i,b = 0 and K = kc, as all the factors are assumed

to be common across the two groups of assets.

4.2 Performance evaluation measures

We describe the in-sample and out-of-sample performance evaluation measures. The technical details

appear in Online Appendix Section OA.4.

In-sample performance evaluation

We compute the following performance measures across the entire sample, that is across all B blocks:

• Total R2 of Kelly et al. (2019) which represents the fraction of return variance for all the

assets explained by both the dynamic behavior of the loadings and the contemporaneous factor

realizations across different blocks, aggregated over all assets and all time periods.

• Predictive R2 from Kelly et al. (2019) which represents the fraction of realized return variation

terminology of Kelly et al. (2019), and to the extent that PCs computed on our test-asset portfolios are similar to PCs
computed on manged portfolios constructed in their way, the factors computed for our model (vi) are similar to the first
step estimation of their (Instrumented) Principal Components.
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explained by the model’s description of conditional expected returns, and summarizes the

model’s ability to describe risk compensation only through exposure to systematic risk.

• Pricing error R2 of Kelly, Palhares, and Pruitt (2020) which pertains to the fraction of the

squared unconditional mean excess returns that is described by factors and betas.

In the Online Appendix we also report results using Average RMSα, an alternative to the Pricing

error R2, which is computed as the average over different blocks of the RMSα measure considered

by Lettau and Pelger (2020a) and computed block by block.11

Out-of-sample performance evaluation

We implement the out-of-sample version of the Total R2, Pricing R2 and Predictive R2 with betas

and factor loadings computed using information from block b − 1 to price date τ assets in block

b. Analogously to Lettau and Pelger (2020b) we also compute the annualized Sharpe Ratio of the

“Maximum Sharpe-ratio portfolio” that can be obtained by an optimal (in a mean-variance sense) linear

combination of the factors, which are ultimately portfolios of individual stocks. The out-of-sample

performance measures are defined as: (a) OOS Total R2, (b) OOS Pricing R2, (c) OOS Predictive R2,

and (d) Maximum Sharpe-ratio, Max. SR.

4.3 Empirical results

The goal is to compare the role of the factor model specifications in explaining the variation of returns

for individual CRSP stocks as well as CZ21 test assets, both in- and out-of-sample, during the period

1966-2020. Panels A - C in Table 1 present respectively the Total, Pricing and PredictiveR2 evaluation

measures. The first two rows in each panel pertain to the Total/Pricing/PredictiveR2s of the benchmark

models which consist of the FF and momentum factors, starting with the one-factor market (CAPM),

then FF3, FF3 with momentum, FF5 and finally FF5 and momentum. The columns are therefore

labeled 1, 3, 4, 5 and 6 corresponding to the number of factors K in each model. For comparison,

the next two rows refer to the corresponding R2s of the three common factors (Comm). These are

followed by the models which consider both the three common factors as well as the panel-specific
11Table OA.1 in the Online Appendix covers Average RMSα and an alternative version of Total R2 computed from

regressions with constant similar to Lettau and Pelger (2020b).
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Table 1: In- and Out-of-sample performamce evaluation factor models

In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 1 3 4 5 6

Panel A: Total R2

r: CRSP, f : FF + mom 14.3 22.8 25.2 26.4 28.6 8.5 7.3 4.0 1.5 < 0
r: CZ21, f : FF + mom 73.9 89.8 91.5 90.7 92.3 70.8 83.6 84.7 83.6 84.8
r: CRSP, f : 3CF 27.0 13.7
r: CZ21, f : 3CF 92.8 86.8
r: CRSP, f : 3CF + CRSP spec. 30.1 32.9 35.4 14.0 14.3 14.4
r: CZ21, f : 3CF + CZ21 spec. 94.3 95.2 95.8 89.3 90.8 91.4
r: CRSP, f : PCA on CZ21 18.0 25.4 27.7 29.8 32.2 12.0 10.6 9.8 8.8 8.2
r: CZ21, f : PCA on CZ21 89.3 94.5 95.3 95.8 96.2 87.3 91.9 92.5 92.9 93.1
r: CRSP, f : PCA on CRSP 17.3 27.0 30.1 32.9 35.4 12.5 13.8 14.1 14.4 14.6
r: CZ21, f : PCA on CRSP 86.5 92.3 92.8 93.5 93.9 83.7 86.0 86.4 86.5 86.6

Panel B: Pricing R2

r: CRSP, f : FF + mom 33.7 50.9 54.2 52.7 55.5 4.0 9.3 11.1 11.5 11.6
r: CZ21, f : FF + mom 75.2 89.0 88.4 90.0 89.7 78.8 85.5 84.4 86.7 86.4
r: CRSP, f : 3CF 45.4 19.5
r: CZ21, f : 3CF 91.8 91.4
r: CRSP, f : 3CF + CRSP spec. 45.8 46.0 46.2 18.7 19.5 21.8
r: CZ21, f : 3CF + CZ21 spec. 93.3 93.6 95.9 92.3 92.5 94.0
r: CRSP, f : PCA on CZ21 51.6 59.1 61.3 62.7 64.3 15.7 11.5 11.1 11.3 11.5
r: CZ21, f : PCA on CZ21 89.7 94.9 96.1 97.3 97.9 90.9 93.5 94.6 95.4 95.8
r: CRSP, f : PCA on CRSP 50.0 55.4 56.3 57.9 58.8 15.2 18.6 19.4 21.9 18.8
r: CZ21, f : PCA on CRSP 91.0 92.3 92.4 92.6 92.7 91.3 91.8 92.1 92.0 92.0

Panel C: Predictive R2

r: CRSP, f : FF + mom 0.66 1.09 1.20 1.17 1.26 0.02 0.03 < 0 < 0 < 0
r: CZ21, f : FF + mom 2.60 4.00 4.03 4.07 4.12 0.05 0.96 1.05 0.97 1.05
r: CRSP, f : 3CF 0.99 0.24
r: CZ21, f : 3CF 4.17 2.02
r: CRSP, f : 3CF + CRSP spec. 1.02 1.02 1.03 0.21 0.20 0.19
r: CZ21, f : 3CF + CZ21 spec. 4.28 4.30 4.40 1.84 1.73 1.76
r: CRSP, f : PCA on CZ21 1.10 1.31 1.37 1.42 1.46 0.19 0.10 0.02 < 0 < 0
r: CZ21, f : PCA on CZ21 4.03 4.37 4.43 4.50 4.54 1.52 1.63 1.65 1.67 1.69
r: CRSP, f : PCA on CRSP 1.06 1.21 1.25 1.29 1.31 0.31 0.28 0.25 0.23 0.22
r: CZ21, f : PCA on CRSP 4.07 4.19 4.20 4.23 4.23 2.07 2.13 2.12 2.12 2.11

Panels A - C of the table report Total/Pricing and Predictive R2s in percent for observable factor models (lines 1-2 in each panel), 3CF a latent factor

model with 3 factors common between individual stocks and CZ21 portfolios (lines 3-4 in each panel), the same 3 common factors together with 1, 2, or 3

CRSP-specific factors (line 5 in each panel), again the same 3 common factors together with 1, 2, or 3 CZ21-specific factors (line 6 in each panel), a latent

factor model where the factors are K PCs extracted from the CZ21 portfolios only (lines 7-8 in each panel), and a latent factor model where the factors

areK PCs extracted from the CRSP individual stocks only (lines 9-10). Observable factor model specifications are CAPM, FF3, FF3 + Momentum, FF5,

and FF5 + Momentum in the K = 1 ,3 ,4 ,5 ,6 columns, respectively. The models are estimated on the rolling window starting in year y − 4 and ending

in year y, for each y = 1970, ..., 2020. Total R2’s in-sample (left table) and out-of sample (right table) are computed either for the excess returns of

individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in Section 4.2.
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factors (individual CRSP stocks and CZ21 test assets) in order to evaluate whether the latter have

additional explanatory power for the variation of returns beyond the three common factors. Finally,

the last four rows in each panel of Table 1 pertain to the R2s for models with factors based on the PCs

from each of the two panels as well as the PCs across the two panels (namely PCs from CRSP are used

to price CZ21 assets and vice versa). Last but not least, Table 2 displays the maximum Sharpe ratio

portfolios.

From the in-sample analysis reported in Table 1 we can draw the following two important

observations. First, the three common factors typically yield better or comparable in-sample Total,

Pricing and Predictive R2s vis-à-vis the benchmark models (i.e. CAPM K =1, FF3 K = 3, FF3 plus

momentum, K = 4, FF5 K = 5 and FF5 plus momentum K = 6). There are number of cases where the

traditional models with K > 3 do better in-sample. Second, adding the corresponding group-specific

factors from the two panels (of individual stock and test assets) leads only to marginal improvements

compared to models with the three common factors.

Of greater interest are the out-of-sample results in Table 1. They yield the following key empirical

findings:

• the three common factors yield the highest OOS Total, Pricing and Predictive R2s compared to

any FF (plus momentum) benchmark model (with up to K = 6). The relative gains of the OOS

Total, Pricing and Predictive R2s are the largest for individual stocks

• adding to 3CF the corresponding panel-specific factors (from individual stock and CZ21 assets)

leads sometimes to only marginal improvements

• PCA on CZ21 yields better results than 3CF for OOS Total and Pricing (but not Predictive)

R2s for CZ21 returns. However, those factors poorly predict individual stocks out-of-sample

according to the three types of R2s considered

• PCA on CRSP is comparable to 3CF, both for CZ21 and CRSP returns, but under-perform when

panel-specific factors are added to the common ones (with the exception of OOS PredictiveR2s)

Last but not least, Table 2 presents the out-of-sample annualized maximum Sharpe Ratio (SR) for

the different factor model specifications. Interestingly, we find that the three common factors perform
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Table 2: Out-of-sample factor portfolio Sharpe ratios

N. of factors, K 1 3 4 5 6
FF + mom 0.39 0.30 0.62 0.63 0.81

3CF 0.58

3CF + CZ21 spec. 0.47 0.40 0.67

3CF + CRSP spec. 0.50 0.51 0.47

PCA on CZ21 0.49 0.54 0.81 0.98 0.84

PCA on CRSP 0.61 0.49 0.51 0.47 0.43

The table reports out-of-sample annualized Sharpe ratios for the mean-variance efficient portfolio of factors in each model - see caption Table 1 for details.

relatively better producing a SR of 0.58, vis-à-vis the CAPM and FF3 models which have SRs of

0.30 and 0.39, respectively. Nevertheless, the FF5 factor model plus momentum (K = 6) produces the

highest SR of 0.81 among the traditional benchmark models. If we limit ourselves to K = 3, then the

common factor model outperforms all other specifications in Table 2. Adding factors beyond K = 3

does increase SR, however, and the best model is PCA on CZ21. Moreover, PCA on CRSP, which

according the performance measures reported in Table 1 is similar to common factors in pricing both

panels of excess returns, features among the smallest maximum Sharpe Ratios. Overall, it is worth

highlighting that the 3CF model does better than the strongest competitors appearing in Table 1.

5 Revisiting the Factor Zoo

The factor zoo is represented by all the factors collected by CZ21. As detailed in Online Appendix

Section OA.1, when we refer to the factor zoo we use a data set of over a thousand portfolios associated

with 205 characteristics. In this section we investigate the ability of PCs extracted form the factor zoo,

which we call zoo PCs, to price and explain the variability of the panels of individual stocks and the

CZ21 portfolios. In addition, we study the relationship between factors in the zoo and (a) the 3CF

factors and (b) the CZ21-specific factors. Finally, we address the question whether the new factors

entering in the zoo in a certain year provide additional information relative to the set of previously

published factors.
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Figure 4: Number of common factors between Chen and Zimmermann (2021)’s test assets and CRSP
stocks, and sum of common factors canonical correlations with 3, 5, 10 and 15 PCs from the zoo.

The figure displays the sum of the canonical correlations of 3CF factors with the first 15 PCs (magenta circles, dashed
line), 10 PCs (blue circles, dotted thin line), 5 PCs (black stars, dashed thin line), and finally the first 3 PCs form the factor
zoo (green diamonds, dotted thin line). For each year y we report results computed on the block starting in year y − 4, for
each y = 1970, 1975, ..., 2020.

5.1 Common Factors and the Zoo

Figure 4 shows the sum of the canonical correlations of the three common factors with the first 3,

5, 10 and 15 zoo PCs. As before, all PCs and common factors are estimated from non-overlapping

5-year balanced panels of monthly data over the period 1966-2020. The figure allows us to understand

whether the PCs from the zoo panel span the space of the common factors. The first observation

emerging from Figure 4 is that 3 zoo PCs yield a sum of canonical correlations roughly equal to 2 as

if there is constantly a missing factor. Going to 5 zoo PCs gets us to 2.5 and it takes up to 10 PCs from

the factor zoo to approximately span the set of 3 common factors.

Table 3 documents which factors from the zoo are the most related (a) to 3CF, and (b) to 3CF

augmented with the first three group-specific factors of the CZ21 portfolios. Panel A reports the twenty

factors with the largest average R2s - across all our 5 non-overlapping windows - when regressed on

the 3CF factors. Among them, we find two of the three Fama-French factors (CAPM Beta and Size)

along with portfolios based on market beta put forward by Frazzini and Pedersen (2014), and different

measures of idiosyncratic risk and liquidity or uncertainty, such as Bid-ask Spread, Cash-flow to price

variance, Volume to market equity, EPS Forecast Dispersion, Days with zero trades, Volume Variance,

and Price delay R-square. Turning to Panel B, we report the factors in the zoo showing the highest

increase in the R2 - averaged across all non-overlapping 5 years windows - when the first 3 CZ21-
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Table 3: Variability of the factors in the zoo explained by the 3 common factors, and 3 first three
group-specific factors from Chen and Zimmermann (2021)

Panel A: 3 Common factors only Panel B: 3 CZ21-specif. added to 3 common factors

Factor R2 Factor ∆R2

CAPM beta (1973) 92.8 Cash Productivity (2009) 39.2
Frazzini-Pedersen Beta (2014) 87.8 Intangible return using BM (2006) 38.0
Bid-ask spread (1986) 83.6 Book to market using most recent ME (1985) 37.3
Cash-flow to price variance (1996) 80.7 Total assets to market (1992) 36.5
Volume to market equity (1996) 79.9 Market leverage (1988) 35.2
Price (1972) 79.9 Off season long-term reversal (2008) 34.7
Idiosyncratic risk (AHT) (2003) 78.0 Intangible return using CFtoP (2006) 34.6
Idiosyncratic risk (3 factor) (2006) 72.9 Sales-to-price (1996) 32.8
EPS Forecast Dispersion (2002) 71.8 Option to stock volume (2012) 32.7
Tail risk beta (2014) 71.8 Book to market using December ME (1992) 32.0
Days with zero trades (2006) 71.7 Efficient frontier index (2009) 31.3
Idiosyncratic risk (2006) 71.3 Momentum without the seasonal part (2008) 31.1
52 week high (2004) 70.9 Past trading volume (1998) 30.5
Days with zero trades (2006) 69.1 Initial Public Offerings (1991) 29.9
Size (1981) 68.7 Change in current operating liabilities (2005) 29.6
Days with zero trades (2006) 67.7 Change in equity to assets (2005) 29.5
Maximum return over month (2010) 67.1 Momentum (12 month) (1993) 29.0
Volume Variance (2001) 66.7 Intangible return using Sale2P (2006) 29.0
Analyst earnings per share (2006) 65.1 Employment growth (2014) 28.9
Price delay R-square (2005) 64.5 Intangible return using EP (2006) 28.8

We regress each of the factors in the zoo present in the 5-years rolling window ending in y on (a) the 3CF factors, and (b) 3CF + first 3 group-specific

factors in CZ21 test assets. Factors names correspond to those in the Online Appendix of CZ21. For each factor, we compute the average across all years

of the R2 of these regressions. Panel A reports the 20 factors with the largest average R2 for regression (a), i.e. the most related to the three common

factors. Panel B reports the sorted 20 factors with the highest average increase inR2 for regression (b) when added to the 3 common factors in regression

(a), that is the factors which are most related to the first three CZ21-specific factors. Factor names correspond to those in the Online Appendix of CZ21.

We consider years y = 1970, 1975, ..., 2020.

specific factors are added as regressors to 3CF. Interestingly, the majority of the factors which are the

most related to the three CZ21 group-specific factors are associated with Book-to-Market (i.e. Total

assets to market, and alternative ways to compute this ratio) or other valuation factors (i.e. Sales-to-

Price), Momentum (i.e. Momentum 12 months, and without seasonal part), Long-Term reversal (i.e.

Off-season long term reversal, and Intangibles using BM, or CFtoP, or EP) and investment (i.e. Change

in Equity-to-assets, and Employment growth)

These findings complement the results of Figure 2 (and Figure OA.3) confirming the market and

size are the factors most correlated with 3CF (for Size this is especially true for the first half of our

sample), while the majority of the variability of book-to-market and momentum is mostly explained

by CZ21-specific factors (i.e. are due to sorting).

Table 4 reports the performance evaluation measures for the zoo PCs (compared to Table 1 we

added a column for K = 10 using the insights gained from Figure 4). For convenience of comparison
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Table 4: Total, Pricing and Predictive R2s - Common factors versus zoo PCs

In-Sample Out-of-Sample

N. of factors, K 1 3 4 5 6 10 1 3 4 5 6 10

Panel A: Total R2

r: CRSP, f : 3CF 27.0 13.7
r: CZ21, f : 3CF 92.8 86.8
r: CRSP, f : PCA on Zoo 12.7 21.8 24.7 27.1 29.6 37.2 3.6 2.6 2.8 2.3 1.8 < 0
r: CZ21, f : PCA on Zoo 42.2 68.6 72.6 75.6 77.7 83.0 29.4 49.0 53.5 56.0 59.0 57.7

Panel B: Pricing R2

r: CRSP, f : 3CF 45.4 19.5
r: CZ21, f : 3CF 91.8 91.4
r: CRSP, f : PCA on Zoo < 0 < 0 12.6 23.9 24.9 38.5 3.2 3.9 4.4 < 0 < 0 < 0
r: CZ21, f : PCA on Zoo < 0 < 0 < 0 9.2 7.7 28.6 < 0 < 0 < 0 < 0 < 0 < 0

Panel c: Predictive R2

r: CRSP, f : 3CF 0.99 0.24
r: CZ21, f : 3CF 4.17 2.02
r: CRSP, f : PCA on Zoo < 0 0.13 0.36 0.60 0.63 0.95 < 0 < 0 < 0 < 0 < 0 < 0
r: CZ21, f : PCA on Zoo < 0 < 0 0.07 0.85 1.04 1.99 < 0 < 0 < 0 < 0 < 0 < 0

The table reports Total, Pricing and PredictiveR2s in percent for a latent factor model with only 3 common factors (lines 1-2 in each of the three panels) -

a repeat of lines 3-4 in Panels A - C of Table 1, and a latent factor model where the factors areK PCs extracted from the factors in the zoo only (lines 3-4).

The models are estimated on the rolling window starting in year y − 4 and ending in year y, for each y = 1970, ..., 2020. R2’s in-sample (left table)

and out-of sample (right table) are computed either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in

Section 4.2.

we repeat the results for 3CF from Panels A - C in Table 1. The zoo PCs have positive in- and out-of

sample Total R2s for individual stocks better than the observable factors, but worse than all the other

latent factor models (comparing with results in Table 1). Moreover, they perform worse than the other

set of factors in explaining CZ21 portfolio returns. The pricing performance of the zoo PCs is also the

worst, as evident from their low or negative Pricing R2 appearing in Table 4.

5.2 Old and New Factors

We can also address the question whether the new factors entering the zoo in a certain year provide

additional information relative to the previously published factors. So far we used a “chronological

time” sample which include all data available in each data set from Jan. 1966 to Dec. 2020. Here

we consider a “publication time” sample which goes from Jan. 1996 to Dec. 2020, where the CZ21
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Figure 5: Total R2 from old factors

For each 5-years rolling window ending in year y we compute the percentage TotalR2 generated by a linear factor model with 3CF only (model (i)),
with 3CF + three CZ21-specific factors (model (ii)), and by linear factor model where the factors are the first six PCs from the old factor zoo (model(iii)).
TotalR2 is computed using as test assets either the individual stocks or the CZ21 portfolios available in year y for both model (i) and model (ii). When
test assets are individual stocks we report the TotalR2 for model (i) as red squares, for model (ii) as red circles and for model (iii) as blue downward
triangles. When test assets are CZ21 test assets we report the TotalR2 for model (i) as black upward triangles, for model (ii) as black diamonds and
for model (iii) as blue stars. The models are estimated on the rolling window starting in year y − 4 and ending in year y, for each y = 2001, ..., 2020.
Total R2’s are computed as described in Section 4.2, but taking into account only the 5-year window ending in year y.

test assets portfolios and factors enter with their publication date in the database. So far we used

non-overlapping block samples. To do the analysis here we proceed on an annual basis instead and

use a 5-years rolling sample scheme which allows us to examine the so called “new” factors being

introduced every year versus the pre-existing factors, called the “old” factors.

For each 5-years rolling window ending in year y, we define the old CZ21 portfolios as the those

corresponding to the factors in the zoo available in the 5-years rolling window ending in year y − 1 to

distinguish them from the new CZ21 portfolios, that is those corresponding to the new factors entering

in the database in year y according to their publication date. In every 5-years window, we can compute

common and panel-specific factors as we did in the prior sections. Then, we regress each of the new

factors on the old three common factors and first three old CZ21-specific factors.

In Figure 5 we report the TotalR2 generated by linear factor models involving the factors only

form the old zoo. In particular, we consider a model with 3CF only (model (i)), another model with

3CF augmented with three CZ21-specific factors (model (ii)), and a final linear factor model where

the factors are the first 6 PCs from the old factor zoo (model(iii)). As before, the models are estimated
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on 5-years rolling windows starting in year y − 4 and ending in year y, for each y = 2001, ..., 2020.

We note that although there is some time variation, the TotalR2 of models (i) and (ii) for both set

of test assets remained relatively stable in our sample, indicating that the old factors tend to explain

a relatively constant fraction of the time series variation of test assets excess returns. Interestingly

though, all the TotalR2s tend to be higher during rolling windows including one of the three stress

periods in our sample, namely: the 2001 dot-com bubble, the 2008 financial crisis and the 2020 COVID

pandemic.

As expected, the models explain a much larger fraction of the variability of CZ21 portfolios, as

measured by TotalR2, than of individual stocks. Finally, we note that for CZ21 portfolios the 6 PCs

from the old zoo (model (iii)) always produce a lower TotalR2 compared to models (i) and (ii). For

individual stocks the 6 PCs form the old zoo always produce a lower TotalR2 than the 3CF plus the

3 CZ21-specific factors, but comparable to a model with 3CF only. Similar conclusions can be drawn

when looking at the pricing performance of the same sets of factors for the panels of individual stocks

and sorted portfolios, as can be seen from Figure OA.8 in the OA, where we plot the Root Mean

Squared α” (RMSα), which is an alternative way to assess the pricing performance for each model

(see also the Pricing R2s defined in Appendix OA.4).

Next we turn to Figure 6 where for each 5-years rolling window ending in year y we regress each of

the new factors (entering the database in year y) on old 3CF (i.e. year y− 1) plus first three old CZ21-

specific factors. Figure 6 (a) displays theR2’s for each of these regressions, while Figure 6 (b) displays

the absolute value of the intercepts (|α|). The new factors with low R2s and those with high |α| and/or

significant t-stat provide additional information to the space already spanned by the ’old’ factors. The

detailed results are reported in Online Appendix Tables OA.2 and OA.3 respectively. We find that 4

factors have R2s smaller or equal than 10%, and 7 R2s ≤ 15%. Most are related to seasonality (2

of the 4 at 10% and 4 out of 7 at 15%).12 Next, looking at the alphas we consider three cases: (a)

|α| > 1.5%, (b) estimates with t-stats above 2, and (c) a combination of both (a) and (b). The exercise

is somewhat similar to Kozak, Nagel, and Santosh (2018) in their Section II, where they check whether

factors have significant alphas with respect to PCs computed from the factors themselves. There are 7

12According to the results appearing in Online Appendix Table OA.2 the factors with R2s below 10% in chronological
order are: Up Forecast (2002), Off season reversal years 16 to 20 (2008), Return seasonality years 6 to 10 (2008), and
R&D ability (2013). In addition for the higher threshold of 15% to following are included: Return seasonality years 16 to
20 (2008), Put volatility minus call volatility (2011), and Dividend seasonality (2013).
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Figure 6: Regressions of new factors entering the zoo on 3CF and 3 first three CZ21-specific factors

(a) R2
i (b) |αi|

For each 5-years rolling window ending in year y we regress each of the new factors (entering the database in year y) on
old 3CF (i.e. year y−1) plus first three old CZ21-specific factors. Figure (a) displays theR2’s for each of these regressions,
while Figure (b) displays the absolute value of the intercepts. We consider years y = 2001, 2002, ..., 2020.

factors with |α| > 1.5%. Several among them have insignificant estimates. Counting the alphas that

have t-stats above 2 regardless of the magnitude, we count 11.13 There are only a handful of factors

with high alphas and significant t-stats: Consensus Recommendation (2002), Net Operating Assets

(2004), Analyst earnings per share (2006), Net external financing (2006), Industry return of big firms

(2007) and Frazzini-Pedersen Beta (2014).

Our analysis is different from the previous literature as we use the factors common between CZ21

and CRSP as the reference model. Section OA.5 reports extensive additional results showing that the

increments in TotalR2 and RMSα generated by the addition of new factors with respect to the 6 old

common and CZ21-specific factors is relatively small. So the conclusion one can draw is that new

factors in the zoo seem only to improve marginally the ability of a model including the 6 old factors

in pricing, and explaining the time series variability, of the two large sets of test assets we consider.

Moreover, no factor seems to both generate an incremental contribution to the 6 old factors in pricing

13According to the results in Online Appendix Table OA.3 the factors with |α| > 1.5% are in chronological order:
Consensus Recommendation (2002), Firm Age - Momentum (2004), Net Operating Assets (2004), Institutional ownership
among high short interest (2005), Analyst earnings per share (2006), Industry return of big firms (2007) and finally:
Frazzini-Pedersen Beta (2014) and those with t-stats above 2 are: Consensus Recommendation (2002), Probability of
Informed Trading (2002), Pastor-Stambaugh liquidity beta (2003), Net Operating Assets (2004), Mohanram G-score
(2005), Analyst earnings per share (2006), Net equity financing (2006), Net external financing (2006), Industry return
of big firms (2007), Efficient frontier index (2009), Intermediate Momentum (2012), and Frazzini-Pedersen Beta (2014).
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of both sets of test assets, and in explaining their time series variation.14 These findings are compatible

with the idea that newly proposed factors might help to price and explain the time series variability

of few portfolios built on the same characteristics of the factors themselves, but might not be relevant

in explaining the returns of many other portfolios sorted on different characteristics, or all individual

stocks.

It is worth comparing our findings with those in Table 2 of Feng et al. (2020). Although similar

in spirit to the analysis considered here, their approach is based on a different approach. Namely,

their procedure combines the double-selection LASSO method of Belloni, Chernozhukov, and Hansen

(2014) with the Fama and MacBeth (1973) two-pass regressions to evaluate the pricing contribution

of a factor in a high-dimensional setting and identifies a selection of factors which contains factors

with incremental value. By contain we mean that their procedure potentially identifies a selection of

factors that is larger than the set with genuine pricing contributions. The results in their Table 2 show

that while most of the new factors are redundant relative to the existing factors, a few have statistically

significant explanatory power beyond the hundreds of factors proposed in the past. In this respect our

results agree with their findings, but the specifics are somewhat different. They have a total of twelve

out of roughly one hundred factors (a smaller set than what we considered here) over the sample

2000 until 2015 which appear significant according to their testing procedure. There is one factor in

common identified by our approach and theirs: betting against beta from Frazzini and Pedersen (2014).

No other factors identified by the Feng et al. (2020) procedure have an R2 lower than 50%.

6 Conclusions

The projection arguments put forward in Hansen and Jagannathan (1991) imply, as noted by Kozak

et al. (2018), that there exists a factor representation of the stochastic discount factor (SDF). Moreover,

there is practically no disagreement that the space of factors spanning the SDF is low-dimensional. In

this paper we found 3 factors which were selected via a novel procedure addressing a longstanding

14A closer inspection of Table OA.5 shows that Frazzini-Pedersen Beta (2014), Change in net financial assets (2005),
Equity Duration (2004), Operating Cash flows to price (2004), and 52 week high (2004) are among the top improves of both
TotalR2 and RSMα for the panel of of CZ21 portfolios when added to the old factors, nevertheless none of them appears
a a top 10 contributor for the same two measures computed for the panel of individual stocks. Actually, Frazzini-Pedersen
Beta (2014) seems to be detrimental to the pricing of individual stock returns when added to the old factors.
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debate in the empirical asset pricing literature.

We started from the idea that equity risk factors reside at the intersection of two panels: (a)

individual stock returns and (b) sorted portfolio returns. We extract factors from both panels and find

the common factor space between the two panels, yielding factors which price both individual stocks

and sorted portfolios. We labeled these three common factors 3CF. We show that this provides a path

toward extracting factors neither affected by sorting characteristics nor by varying risk exposures and

recalcitrant features of individual stocks.

We also find that at any point during our sample neither FF3 nor FF5, both with or without a

momentum factor, span the 3CF factor space. In fact we also find that out of the 6 factors considered,

only the market seems to be the one which is the most related to the common factors, while all the

other 5 factors, are only partially spanned by common factors, and a large part of their variability is

specific to portfolio sorting.

Regarding the factor zoo we find that over the sample period 1996-2020 it takes 10 PCs from the

factor zoo panel to span the set of common factors. Moreover, we also address the question whether the

new factors entering in the zoo in a given year provide additional information relative to the previously

published factors. We find that new factors being added to the zoo seem only to improve marginally

the empirical performance compared to existing factors.

Last but not least, it should be noted that the testing procedure introduced in our paper can be

applied in many other asset pricing settings. A few examples are: comparing panels of private equity

and publicly traded companies, international asset pricing comparing stock in different countries, etc.
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Appendix
Section A.1 provides an illustrative example for equation (2.3) whereas Section A.2 extends our
analysis to multiple sorting and interaction terms. A discussion of regularity conditions appears in
Section A.3. Section A.4 summarizes variations of Principal Components Analysis (PCA) discussed
by Lettau and Pelger (2020a and 2020b) and Zaffaroni (2019), among others, allowing to estimate non-
zero mean factors from a panel of excess returns. Section A.5 extend Theorems 1 and 2 in AGGR to the
case in which the latent factors are estimated by the variations of PCA described in Section A.4. As the
factors are not zero-mean, the estimators of the canonical correlations among the factors from the two
groups and the test statistics in Theorems 1 and 2 of AGGR need to be adjusted accordingly. Proofs of
propositions and theorems, together with the assumptions, are provided in the Online Appendix. We
will denote the sample mean a generic sequence zt, t = 1, ..., T as z̄ = 1

T

∑T
t=1 zt, the T -dimensional

vector of ones as 1T = [1, ..., 1]′, and the identity matrix of order T as IT .

A.1 Illustrative example for equation (2.3)

It might be worth providing a simple illustrative example of the result appearing in equation (2.3).
Assume there are two mutually independent factors with Gaussian marginal distributions fj ∼N(mj ,1)
where mj > 0, j = 1,2 are the expected values (risk premia) of the factors. Both factors also
feature order one autocovariance parameterized by ρi 6= 0 and volatility prediction E(fi,τ−1f

2
i,τ ) =

ρvi 6= 0 for i = 1, 2. Assume that f1 is the “true/common” factor in f c, and the time-varying
betas bi,τ−1 are driven by Zτ−1 = f1,τ−1f2,τ−1 so that f2 only affects the loadings. According
to equation (2.3) we need to regress Zτ−1f1,τ onto f1,τ and show that also f2,τ appears in that
projection. We do so sequentially, first projecting on f1 and then regress the residual onto f2 since
both regressors are mutually independent (cfr. Frisch-Waugh-Lovell theorem). Denote by β1 the slope
coefficient of the projection onto f1, i.e. β1 = cov(Zτ−1f1,τ , f1,τ )/ var(f1,τ ) = cov(Zτ−1f1,τ , f1,τ ) =
cov(f1,τ−1f2,τ−1f1,τ , f1,τ ) = (ρv1 −m1ρ1−m3

1)m2. The residuals projected onto f2,τ yield a slope β2 =
cov(Zτ−1f1,τ − (ρv1 −m1ρ1 −m3

1)m2f1,τ , f2,τ )/ var(f2,τ ) = cov(f1,τ−1f2,τ−1f1,τ , f2,τ ) = (ρ1 + m2
1)ρ2.

Hence, the time-invariant factor representation of model (2.1) features the “true” factor f1,τ with
loading proportional to the slope β1 = (ρv1 −m1ρ1 −m3

1)m2 6= 0 and a factor driving the time-varying
betas which has loading proportional to the slope β2 = (ρ1 +m2

1)ρ2 6= 0: this is an illustration of what
happens in equation (2.3). Furthermore, our assumption implies that the residuals after projection on
f1,τ and f2,τ , i.e. δi,τ in equation (2.3), feature weak cross-sectional dependence.
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A.2 Multiple sorting and interaction terms

In this section we show that our analysis also covers portfolios built on double, triple etc. characteristic
sorting, as long as Assumptions A.1 and A.2 are satisfied for the entire set of portfolios considered.
To see this, note that we referred to wi,τ−1 as the vector collecting the Nw characteristics of each
asset i, that is wi,τ−1 = [wi,τ−1,1, ..., wi,τ−1,Nw ]′. Portfolio weights gj(wi,τ−1) are defined as generic
functions allowing to construct for example the j-th portfolio by sorting stocks on one characteristic,
say gj(wi,τ−1) = c · 1 {qα−1[w·,τ−1,h] < wi,τ−1,h ≤ qα[w·,τ−1,h]} where qα[w·,τ−1,h] is the α-decile
of the cross-sectional distribution at date τ − 1 of the characteristic wi,τ−1,h, and 1 {·} denotes the
indicator function. Moreover, our generic function gj(wi,τ−1) allows also for portfolios built by double-
sorting stocks on two characteristics of stock i, say size (wi,τ−1,1) and book-to-market (wi,τ−1,2):
gj(wi,τ−1) = c · 1 {qα−1[w·,τ−1,1] < wi,τ−1,1 ≤ qα[w·,τ−1,1] , qβ−1[w·,τ−1,2] < wi,τ−1,2 ≤ qβ[w·,τ−1,2]},
where qβ[w·,τ−1,2] is the β-decile of the cross-sectional distribution at date τ − 1 of the characteristic
wi,τ−1,2.

We also noted in the main body of the paper that our analysis can handle interactions of
characteristics. To see this, consider another generic set Nz individual characteristics zi,τ,1, ..., zi,τ,Nz ,
not necessarily overlapping with wi,τ . Then, each element Z̃i,τ−1,h of the vector of specific variables
Z̃i,τ−1 appearing in betas of individual stocks could simply be some (transformations of) a specific
characteristic, say Z̃i,τ−1,h = zi,τ−1,1, but can also be a function of multiple characteristic, say
Z̃i,τ−1,h = zi,τ−1,1 · zi,τ−1,2.

A.3 Regularity conditions

In this section we digress on two technical regularity conditions which result in the constant loading
factor representation for the two panels - one of individual stock excess returns and the other of sorted
portfolios with returns described by equations (2.4) and (2.8).

We start with an assumption which tells us that some masking of factors may occur, but only for
an asymptotically vanishing fraction of the individual stocks and portfolios. Put differently, some
stocks/portfolios may mask some factors, but not a significant collection of portfolios is allowed to
block out any specific factor.

ASSUMPTION A.1 (No Masking). Consider matrix Λc
2 ≡

[
b̃0
j +Kc

j

]′
appearing in equation (2.8).

For any element k ∈ {1, . . . , kc}, the fraction N2,k out of N2 portfolios with non-zero Λc
2,k for factor k

is such that N2,k/N2 is bounded away from zero. Similarly, for Λc
1 ≡ [b0

i +M c
i ]
′ the fraction N1,k out of

N1 individual stocks with non-zero Λc
1,k for factor k is such that N1,k/N1 is bounded away from zero.

35



In addition, we also need the following assumption for the common factors between the two panels of
respectively individual stocks and sorted portfolios to be f cτ only, instead of f cτ and/or Z ′τ−1f

c
τ .

ASSUMPTION A.2 (Convergence of portfolio betas). Consider the term WjZ
∗
τ−1 appearing in the

vector of portfolio j’s betas
[
b̃0
j +WjZ

∗
τ−1

]
in equation (2.7). The fraction N∗2 out of N2 portfolios for

which WjZ
∗
τ−1 = AjZτ−1, is such that N∗2/N2 converges to zero as N1, N2, N

∗
2 →∞, for Aj 6= 0.

Assumption A.2 holds if 1
N1

∑N1

i=1 gj(wi,τ−1)CiZ̃i,τ−1 6→ W̆Zτ−1, and 1
N1

∑N1

i=1 gj(wi,τ−1)Bi

converges to a time dependent limit N1 → ∞, say W̆jZ̆τ−1, for a sufficiently large number of
portfolios. This implies 1

N1

∑N1

i=1 gj(wi,τ−1)BiZτ−1 → W̆jZ̆τ−1Zτ−1, which is not linear in Zτ−1. To
illustrate the condition that 1

N1

∑
i g(wi,τ )Bi converges to a time-dependent limit, consider a situation

where the portfolio weights for portfolio j load on stocks with characteristic wi,τ in a given interval
Ij (think of size, book-to-market etc.). Then, the large sample limit of 1

N1

∑
i g(wi,τ )Bi for portfolio

j is: E[Bi|wi,τ ∈ Ij]. The time dependent limit in Assumption A.2 holds for example when the
group of stocks having characteristics in a certain range, varies over time, and there is sufficient cross-
sectional heterogeneity in the coefficients in Bi. As an illustrative example, we can consider size
sorted portfolios. Assumption A.2 implies that the mix of firms in a particular decile size portfolio
varies through time in terms of characteristics other than size. Finally, of less interest but worth noting
is the fact that a sufficient condition for Assumption A.2 to hold is that Wj = 0 for a fraction of N∗∗2

out of N2 portfolios such that 1 − N∗∗2 /N2 converges to zero, i.e. the betas with respect the common
factors f cτ are time invariant for the majority of the portfolios: 1

N1

∑N1

i=1 αj,i,τ−1bi,τ−1 → b̃0
j .

A.4 Factor estimation: PCA and its recent extensions

To simplify the exposition we will use a generic notation here for the discussion of various estimators
which can be applied to different panel data settings. Let yt be N -dimensional vector of returns, and
assume that the data generating process of yt is a linear factor model as the APT of Ross (1976), that
is:

yt = Λht + εt, t = 1, ..., T, (A.1)

where ht is the (k, 1) vector of (unobservable) factors with expected value µh ≡ E[ht], possibly
different from zero, Λ = [λ1 , ..., λN ]′ is the (N, k) full column-rank matrix of unknown loadings, and
the idiosyncratic innovations E[εt] = 0. These assumptions imply E[yt] = Λµh, possibly different
from zero. Model (A.1) can be written as:

Y = HΛ′ + ε, (A.2)
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where Y = [y1, ..., yT ]′ is the (T,N)-dimensional matrix of observed excess returns, and H =

[h1, ..., hT ]′ is the (T, k)-dimensional matrix of factor values.
Lettau and Pelger (2020a, 2020b) and Zaffaroni (2019) suggest that estimating model (A.2)

by performing PCA on the demeaned returns ỹt = yt − ȳ, as typically done in the finance and
macroeconomics literature, is restrictive as the mean of the factors and the returns should contain
information on the factor structure. Let h̃t = ht − h̄ be the demeaned factors, and ȳi = 1

T

∑T
t=1 yi,t

be the time series mean of the returns of the i-th asset, with i = 1, ..., N . Lettau and Pelger (2020a)
address the estimation of the non-demeaned factors in model (A.1) with their RP-PCA procedure,
which consists in solving the following minimization problem:

min
λ1, ..., λN ,

h1, ..., hT ,

1

NT

N∑
i=1

T∑
t=1

(ỹi,t − h̃′tλi)2 + (1 + γRP )
1

N

N∑
i=1

(ȳi − h̄′λi)2 . (A.3)

The first double summation in (A.3) corresponds to the average unexplained (time-series) variation
of the data, the second summation correspond to the (cross-sectional) average of the squared “pricing
errors” across all N assets, and γRP ∈ [−1,+∞) is a constant which can be interpreted as a tuning
parameter: as it increases more weight is given to the pricing errors in the factor estimation. They
show that the solution to (A.3) can be obtained by performing the following two steps:

(i) Estimate the loading matrix Λj is as
√
Nj times the (N, k) matrix of the eigenvectors associated

to the largest k eigenvalues of matrix

MRP (γRP ) :=
1

T

T∑
t=1

yty
′
t + γRP

(
1

T

T∑
t=1

yt

)(
1

T

T∑
t=1

yt

)′
. (A.4)

The estimated loadings, that we denote as Λ̂RP , are such that Λ̂′RP Λ̂RP/N = Ik. 15

(ii) Estimate the latent factors in model (A.1) at each date t by a cross-sectional regression of the
returns yt on the estimated loadings Λ̂RP :

ĥt,RP :=
(

Λ̂′RP Λ̂RP

)−1

Λ̂′RP yt . (A.5)

We denote as ĤRP = [ĥ1,RP , ..., ĥT,RP ]′ the (T, k) matrix of estimated factors.

15Lettau and Pelger (2020a), in their online appendix, show that Λ̂j,RP can be obtained as the conventional PCA
estimator of the loadings applied to the “projected” model: Y̌j = ȞjΛj + ε̌j where Y̌ := W (γRP )Y , Ȟ := W (γRP )H ,
ε̌ := W (γRP )ε, and W (γRP ) = IT +

(√
γRP + 1− 1

) 1T 1
′
T

T . That is, the loading matrix Λj,RP can be estimated as
√
N

times the (N, k) matrix of the eigenvectors associated to the largest k eigenvalues of MRP (γRP ) = 1
T Y̌
′Y̌ .
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As linear latent factor models are identified up to an invertible transformation, an equivalent estimator
Ĥ∗RP of the factors is obtained by rescaling ĤRP such that the (uncentered) second moment of the

estimated factors is Ĥ∗′RP Ĥ
∗
RP/T = Ik, that is Ĥ∗RP := ĤRP

(
Ĥ ′RP ĤRP/T

)−1/2

. Following Lettau

and Pelger (2020a), we refer to ĤRP and Ĥ∗RP as “RP-PCA estimators”. Importantly, the factors
estimated by RP-PCA have a mean ˆ̄h = 1

T

∑T
t=1 ĥt which is not necessarily equal to zero. In

fact, equation (A.5) shows that ĥt,RP is a linear combination of the original returns which are not-
demeaned.16

Special case of the RP-PCA: γRP = 0

When γRP = 0, the matrix MRP (γRP ) characterizing the RP-PCA estimator (A.5) coincides with the
conventional PCA estimator but with loadings estimated from the uncentered second moment matrix
of the returns MRP (γRP = 0) = 1

T

∑T
t=1 yty

′
t. The RP-PCA estimators of the factors and the loadings

with γRP = 0 coincides with those proposed by Zaffaroni (2019).

Special cases of the RP-PCA: γRP = −1

When γRP = −1 the RP-PCA estimator of the loadings, denoted by Λ̂PCA, is computed as
√
N times

the eigenvectors of the sample variance-covariance matrix of the returns V̂ (yt) = MRP (γRP = −1) =
1
T

∑T
t=1 ỹtỹ

′
t. We denote the RP-PCA factor estimator in this special case as ĥt,PCA:

ĥt,PCA :=
(

Λ̂′PCAΛ̂PCA

)−1

Λ̂′PCA yt, (A.6)

and name Λ̂PCA and ĥt,PCA as the “conventional PCA” estimators of the loadings and factors,
respectively, as they are used by most of the financial literature. For instance, the factor estimators
used in Connor and Korajczyk (1988), Lehmann and Modest (2005), Kozak et al. (2018), Kozak,
Nagel, and Santosh (2020), Giglio and Xiu (2021), and Pukthuanthong et al. (2019), among others
all coincide with ĥt,PCA. Another frequently used estimator, denoted by ˆ̃ht,PCA, is obtained by a
cross-sectional regression of the demeaned returns ỹt on Λ̂PCA:

ˆ̃ht,PCA :=
(

Λ̂′PCAΛ̂PCA

)−1

Λ̂′PCA ỹt . (A.7)

16Zaffaroni (2019), in his Section 3, notices the estimated factors ĥt,RP are portfolio (excess-) returns, and correspond
to “the feasible PCA-estimators” of the infeasible “mimicking portfolios” (of the true the latent factors) proposed by
Huberman, Kandel, and Stambaugh (1987) and Breeden, Gibbons, and Litzenberger (1989). See Lehmann and Modest
(2005) for a discussion of factor-mimicking portfolio estimators.
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Differently from ĥt,PCA and ĥt,RP , factors ˆ̃ht,PCA have zero-mean as they are linear combinations of
the demeaned data ỹt.17

Let Ỹ = [ỹ1, ..., ỹT ]′ be (T,N) matrix collecting the demeaned returns. AGGR consider the
estimator ˆ̃H∗PCA = [ˆ̃h∗1,PCA, ...,

ˆ̃h∗T,PCA]′ of the k factors which is defined as
√
T times the eigenvectors

associated to the k largest eigenvalues of the matrix 1
NT
Ỹ Ỹ ′. By construction the estimated factors

are zero mean, and their (sample) variance-covariance matrix is ˆ̃H∗′PCA
ˆ̃H∗PCA/T = Ik. Using the

arguments in Bai and Ng (2002), it can be shown that ˆ̃H∗′PCA is equal to the PCA estimator in (A.7)

rescaled to have unit variance: ˆ̃H∗PCA = ˆ̃HPCA

(
ˆ̃H ′PCA

ˆ̃HPCA/T
)−1/2

.

Importantly, ˆ̃ht,PCA and ˆ̃h∗t,PCA are consistent estimators of the latent factors only when these are
assumed to have zero expected value, as in Assumption A.2 of AGGR. In the next Section A.5 we show
that relaxing this assumption does not change the main results of their paper, but requires modifications
to their canonical correlations estimator as well as other statistics.

A.5 Identification, estimation and test for common and group-
specific factors with generic mean

Consider the group-factor model appearing in equation (2.10). As in AGGR we assume, without loss
of generality, that the group-specific factors f s1,t and f s2,t are orthogonal to the common factor f ct . Since
the unobservable factors can be standardized, we have:

E

 f ct

f s1,t

f s2,t

 =

 µc

µs1

µs2

 , and ΣF := V

 f ct

f s1,t

f s2,t

 =

 Ikc 0 0

0 Iks1 Φ

0 Φ′ Iks2

 , (A.8)

where the expected values of the factors are finite, and matrix ΣF is positive-definite. We allow for
a non-zero covariance Φ between group-specific factors, but differently from AGGR, we allow the
factors to have expected value different from zero. We refer to (A.8) as Assumption B.2 in the list of
regularity conditions in Appendix B.1. Model (2.10) together with Assumption B.2 is identified by the
same arguments used by AGGR.

Let hj,t = [f c′t , f
s′
j,t]
′, with j = 1, 2, and Vj` = Cov(hj,t, h`,t), with j, ` = 1, 2. The k = min(k1, k2)

largest eigenvalues of the matrices R = V −1
11 V12V

−1
22 V21 and R∗ = V −1

22 V21V
−1

11 V12 are the same,
and are equal to the squared canonical correlations ρ2

` , ` = 1, ..., k, between h1,t and h2,t. The

17As discussed Section 2 of Zaffaroni (2019), ˆ̃
ht,PCA is the estimator of the (demeaned) latent factors h̃t := ht − h̄ of

model (A.1) for the the demeaned data ỹt. This can be easily seen by noting that the model for the demeaned data can be
written as: ỹt = Λj(ht − h̄) + (εt − ε̄).
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associated eigenvectors w1,` (resp. w2,`), with ` = 1, ..., k, of matrix R (resp. R∗) standardized such
that w′1,`V11w1,` = 1 (resp. w′2,`V22w2,` = 1) are the canonical directions which yield the canonical
variables w′1,`h1,t (resp. w′2,`h2,t). The next Proposition A.1 deals with determining kc, the number of
common factors, using canonical correlations between the vectors h1,t and h2,t, which are unobserved
and estimated by PCA or its variations described in Section A.4. It corresponds to Proposition 1 in
AGGR where the zero mean assumption of the factors is replaced with our new Assumption B.2.

PROPOSITION A.1. Under Assumption B.2, the following hold:

(i) If kc > 0, the largest kc canonical correlations between h1,t and h2,t are equal to 1, and the

remaining k − kc canonical correlations are strictly less than 1.

(ii) LetWj be the (kj, k
c) matrix whose columns are the canonical directions for hj,t associated with

the kc canonical correlations equal to 1, for j = 1, 2. Then, f ct = W ′
jhj,t (up to an orthogonal

matrix), for j = 1, 2.

(iii) If kc = 0, all canonical correlations between h1,t and h2,t are strictly less than 1.

(iv) Let W s
1 (resp. W s

2 ) be the (k1, k
s
1) (resp. (k2, k

s
2)) matrix whose columns are the eigenvectors of

matrix R (resp. R∗) associated with the smallest ks1 (resp. ks2) eigenvalues.

Then f sj,t = W s′
j hj,t (up to an orthogonal matrix) for j = 1, 2.

Proposition A.1 shows that the number of common factors kc, the common factor space spanned by
f ct , and the spaces spanned by group-specific factors, can be identified from the canonical correlations
and canonical variables of h1,t and h2,t. Therefore, the factor space dimensions kc, ksj , and factors f ct
and f sj,t, j = 1, 2, are identifiable (up to a rotation) from information that can be inferred by disjoint
PCA, or its variations described in Section A.4, on the two subgroups.

A.5.1 Estimators

When the true number of factors kj > 0 in each subgroup j = 1, 2 and kc > 0 are known, Proposition
A.1 suggests the following estimation procedure. Let h1,t and h2,t be estimated by extracting the first
kj PCs (or its variations) from each sub-panel j, and denote by ĥj,t these PC estimates of the factors,
j = 1, 2. Let V̂j` denote the empirical covariance matrix between ĥj,t and ĥ`,t, i.e.:

V̂j` =
1

T

T∑
t=1

ĥj,tĥ
′
`,t −

(
1

T

T∑
t=1

ĥj,t

)(
1

T

T∑
t=1

ĥ′`,t

)
, j, ` = 1, 2, (A.9)
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and let:

R̂ := V̂ −1
11 V̂12V̂

−1
22 V̂21, and R̂∗ := V̂ −1

22 V̂21V̂
−1

11 V̂12. (A.10)

be the estimators of matrices matrices R and R∗, respectively. Differently from AGGR, the estimators
of the variance-covariance matrices V̂j` take into account that the estimated factors might have non-zero
mean, compatible with the RP-PCA estimators described above. Matrices R̂ and R̂∗ have the same
non-zero eigenvalues. The kc largest eigenvalues of R̂ (resp. R̂∗), denoted by ρ̂2

` , ` = 1, ..., kc, are
the first kc squared sample canonical correlation between ĥ1,t and ĥ2,t. The associated kc canonical
directions, collected in the (k1, k

c) matrix Ŵ1 (resp. (k2, k
c) matrix Ŵ2), are the eigenvectors

associated with the kc largest eigenvalues of matrix R̂ (resp. R̂∗), normalized to have length 1 with
respect to V̂11 (resp. V̂22). It also holds that:

Ŵ ′
1V̂11Ŵ1 = Ikc , and Ŵ ′

2V̂22Ŵ2 = Ikc . (A.11)

DEFINITION 1. Two estimators of the common factors vector are f̂ ct = Ŵ ′
1ĥ1,t and f̂ c∗t = Ŵ ′

2ĥ2,t.

Definition 1 and equation (A.11) imply that the estimated common factors have identity sample
variance-covariance matrix:

V̂ (f̂ ct ) :=
1

T

T∑
t=1

f̂ ct f̂
c′
t −

(
1

T

T∑
t=1

f̂ ct

)(
1

T

T∑
t=1

f̂ c′t

)
= Ikc , (A.12)

and analogously V̂ (f̂ c∗t ) = 1
T

∑T
t=1 f̂

c∗
t f̂

c∗′
t −

(
1
T

∑T
t=1 f̂

c∗
t

)(
1
T

∑T
t=1 f̂

c∗′
t

)
= Ikc , i.e. the estimated

common factor values match in-sample the normalization condition of identity variance-covariance
matrix in (A.8). An estimator for the group-specific factors f s1,t (resp. f s2,t) is obtained by computing
the first ks1 (resp. ks2) principal components of the variance-covariance matrix of the residuals of the
regression of y1,t (resp. y2,t) on the estimated common factors.

Let F̆ c = [f̆ c ′1 , ..., f̆ c ′T ]′ be the (T, kc) matrix of estimated demeaned common factors, and
Λ̂c
j = [λ̂cj,1, ..., λ̂

c
j,Nj

]′ the (Nj, k
c) matrix collecting the estimated loadings, and let Y̆j be the (T,Nj)

matrix of (time-series) demeaned observations for group j:

Λ̂c
j = Y̆ ′j F̆

c(F̆ c ′F̆ c)−1 =
1

T
Y̆ ′j F̆

c, j = 1, 2. (A.13)

As shown in the OA, this estimator is unbiased for Λc when group-specific factors F̂ s
t have expected

value different from zero. In this case, indeed, regressing the non-demeaned original data Yj on the
non-demeaned estimated factors F̂ c would produce a biased estimator for Λc as the residuals of this
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regression model would be a linear function of F̂ s
t which, in general, are not zero-mean, as allowed by

the first of the two conditions in (A.8).
Define the residual (Nj, 1) vector ξj,t = yj,t − Λ̂c

j f̂
c
t and the (T,Nj) matrix of the regression

residuals Ξj = [ξj,1, ..., ξj,T ]′ for j = 1, 2.

DEFINITION 2. Estimators of the specific factors f̂ s1,t (resp. f̂ s2,t) are defined as the first ks1 (resp. ks2)

Risk Premium Principal Components of sub-panel Ξ1 (resp. Ξ2).

Note that f̆ ct := f̂ ct −
¯̂
f c, the demeaned estimated common factor, is orthogonal in-sample both to

f̆ st,1 := f̂ st,1 −
¯̂
f s1 and to f̆ st,2 := f̂ st,2 −

¯̂
f s2 , that is the demeaned group-specific factors, matching

the population orthogonality assumption in (A.8). Let us define Ξ̆j as the (T,Nj) matrix of (time-
series) demeaned estimated residuals for group j. Then, the (Nj, k

s
j ) matrix of the loadings estimators

Λ̂s
j = [λ̂sj,1, ..., λ̂

s
j,Nj

]′ is:

Λ̂s
j = Ξ̆′jF̆

s
j (F̆ s ′

j F̆ s
j )−1 =

1

T
Ξ̆′jF̆

s
j , j = 1, 2 . (A.14)

In a follow-up paper, Andreou, Gagliardini, Ghysels, and Rubin (2020) explore the idea that linear
combinations of the two estimators f̂ ct and f̂ c∗t also yield valid estimators when they are estimated by
PCA on demeaned data as in AGGR. Following their arguments, we can consider the generic estimator

f̂ c?t = S(ω)(f̂ ct + ωf̂ c∗t ), (A.15)

obtained as the linear combination of f̂ ct and f̂ c∗t estimated by RP-PCs as in our Definition 1 and where
the scalar parameter ω is the weight. The transformation by matrix S(ω) = [(1 + ω2)Ikc + 2ωD̂]−1/2,
with D̂ = diag(ρ̂1, ..., ρ̂kc), ensures that the new estimator has identity sample covariance matrix, that
is:

V̂ (f̂ c?t ) :=
1

T

T∑
t=1

f̂ c?t f̂
c?′
t −

(
1

T

T∑
t=1

f̂ c?t

)(
1

T

T∑
t=1

f̂ c?′t

)
= Ikc . (A.16)

The parametric family (A.15) encompasses the estimators f̂ ct and f̂ c∗t in our Definition 1, which
correspond to choices ω = 0 and ω = +∞, respectively. By using arguments analogous to those
in Andreou et al. (2020), it can be shown that choosing ω = 1, the common factor estimator f̂ c?t is
an equally-weighted linear combination of the two basis estimators f̂ ct and f̂ c∗t . This new estimator
extends the one proposed by Goyal, Pérignon, and Villa (2008), which was originally derived for zero
mean data and factors, by allowing factors with possibly non-zero mean.18

18Andreou et al. (2020) also show that an alternative choice for ω is provided by the optimal weight which minimizes
the Asymptotic Mean Square Error (AMSE) of the factor estimator. In a simplified setting kc = 1, under the same set
of assumptions of Theorem A.2 and the additional assumption N1/T

2 = o(1), they show that the average AMSE is
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For a given choice of the weight ω, let F̂ c? = [f̂ c? ′1 , ..., f̂ c? ′T ]′ be the (T, kc) matrix of estimated
common factors, the estimators of the common factor loadings, group-specific factors and loadings are
the same as in equation (A.13), Definition 2, and equation (A.14), respectively, where the estimator
F̂ c is replaced by F̂ c?. In unreported Monte Carlo experiments we find that the estimator f̂ c?t with
weight ω = 1, has better small sample properties than the estimators f̂ ct and f̂ c∗t . For this reason in the
empirical application we use f̂ c?t as the estimator of the common factors with weight ω = 1.

A.5.2 Inference on the number of common factors via canonical correlations

In order to infer the dimension kc of the common factor space, we consider the case where the number
of pervasive factors k1 and k2 in each sub-panel is known, hence k = min(k1, k2) is also known. As
explained in AGGR, all the results remain unchanged when the numbers of pervasive factors k1 and
k2 are estimated consistently. From Proposition A.1, dimension kc is the number of unit canonical
correlations between h1,t and h2,t.

We consider the hypotheses:

H(0) = {1 > ρ1 ≥ . . . ≥ ρk} , H(1) = {ρ1 = 1 > ρ2 ≥ . . . ≥ ρk} , . . . ,
H(kc) = {ρ1 = . . . = ρkc = 1 > ρkc+1 ≥ . . . ≥ ρk} , . . . ,

and finally H(k) = {ρ1 = ... = ρk = 1} ,

where ρ1, ..., ρk are the ordered canonical correlations of h1,t and h2,t. Generically, H(kc) corresponds
to the case of kc common factors and k1 − kc and k2 − kc group-specific factors in each group, and
H(0) corresponds to the absence of common factors. In order to select the number of common factors,
let us consider the following sequence of tests: H0 = H(kc) against H1 =

⋃
0≤r<kc H(r), for each

kc = k, k − 1, ..., 1. To test H0 against H1, for any given kc = k, k − 1, ..., 1 we consider the test
statics ξ̂(kc) defined in equation (2.11). The null hypothesis H0 = H(kc) is rejected when ξ̂(kc)− kc

is negative and large. The critical value is obtained from the large sample distribution of the statistic
when N1, N2, T →∞, provided below. The number of common factors is estimated by sequentially
applying the tests starting from kc = k, the maximum number of common factors.

Let us denote N = min{N1, N2} and µN =
√
N2/N1. Without loss of generality, we set N = N2,

which implies µN ≤ 1. We assume that:

√
T/N = o(1), N/T 2 = o(1) and µN → µ, with µ ∈ [0, 1]. (A.17)

Note that the assumption N/T 2 = o(1) is made by Lettau and Pelger (2020a), and is more restrictive
than the assumption N/T 5/2 = o(1) made by AGGR in their equation (4.1).

minimized for ω = [N2Σ
(cc)
u,11]/[N1Σ

(cc)
u,22]. This result also holds when the factors have possibly non-zero mean as in the

set-up of this paper.
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The large sample distribution of the test statistic for the number of common factors is derived
following the same arguments as in AGGR. In Proposition B.2 of the Online Appendix we show that,
for t = 1, . . . , T and j = 1, 2, the estimator ĥj,t is asymptotically equivalent, up to negligible terms, to
Ĥj(hj,t + uj,t/

√
Nj + b̆j,t/T ) where

uj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
Nj

Nj∑
i=1

λj,iεj,i,t,

b̆j,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1(
1

T

T∑
t=1

h̆j,th̆
′
j,t

)−1

η2
j,th̆j,t

and η2
j,t = plim

Nj→∞

1
Nj

∑Nj
i=1E[ε2

j,i,t|Ft] is the limit average error variance conditional on the sigma

field Ft = σ(Fs, s ≤ t) generated by current and past factor values Ft = (f c′t , f
s′
1,t, f

s′
2,t)
′, and λj,i

= (λc′j,i, λ
s′
j,i)
′. The zero-mean term uj,t drives the randomness in group factor estimates conditional

on factor path. Vector bj,t is measurable with respect to the factor path and induces a bias term at
order T−1 in principal components estimates. Vectors uj,t and bj,t depend on sample sizes but, for
convenience, we omit the indices Nj , T . and Ĥj is a nonsingular stochastic factor rotation matrix.
This expansion extends the results in Lettau and Pelger (2020a).

Let Σ̃u,jk,t(h) = Cov(uj,t, uk,t−h|Ft) be the conditional covariance between uj,t and uk,t−h, i.e.

Σ̃u,jk,t(h) =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
NjNk

Nj∑
i=1

Nk∑
`=1

λj,iλ
′
k,`Cov(εj,i,t, εk,`,t−h|Ft)

(
1

Nk

Nk∑
i=1

λk,iλ
′
k,i

)−1

,

and Σ̃u,jk,t(−h) = Σ̃u,kj,t(h)′, for j, k = 1, 2 and h= 0, 1, . . .. We define Σ̃u,jj,t ≡ Σ̃u,jj,t(0), and set
Σu,jk,t(h) = plim

Nj ,Nk→∞
Σ̃u,jk,t(h) and Σλ,j = lim

Nj→∞
1
Nj

∑Nj
i=1 λj,iλ

′
j,i, and let

˘̄bj,t := Σ−1
λ,jη

2
j,th̆j,t (A.18)

be the large sample counterpart of bj,t, from Assumptions B.2 - B.4. The following Theorem A.1
provides the asymptotic distribution of the infeasible test statistic ξ̂(kc).

THEOREM A.1. Under Assumptions B.1 - B.7, and the null hypothesis H0 = H(kc) of kc common
factors, we have:

N
√
T · Ω

−1/2
U,1 ·

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+

1

2T
tr
{

Σ̃−1
cc Σ̃B

}]
d−→ N (0, 1) , (A.19)
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where Σ̃cc = 1
T

∑T
t=1 f̆

c
t f̆

c′
t . Moreover Σ̃B = 1

T

∑T
t=1 ∆̃b
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,
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[
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ΣU,t(h) = µ2Σ
(cc)
u,11,t(h) + Σ
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u,22,t(h)− µΣ

(cc)
u,12,t(h)− µΣ

(cc)
u,21,t(h), h = ...,−1, 0, 1, ...,

where the upper index (c) denotes the upper (kc, 1) block of a vector, the upper index (c, c) denotes the

upper-left (kc, kc) block of a matrix, and F̆t = [f̆ c′t , f̆
s′
1,t, f̆

s′
2,t]
′ = [(f ct − f̄ c)′, (f s1,t − f̄ s1 )′, (f s2,t − f̄ s2 )′]′,

with f̄ c =
∑T

t=1 f
c
t /T , and f̄ sj =

∑T
t=1 f

s
j,t/T , for j = 1, 2.

Theorem A.1 corresponds to Theorem 1 in AGGR, where estimator of the canonical correlations of
the estimated factors (used to compute ξ̂(kc)), and the sample covariance matrix of the true factors Σ̃cc

have been modified to take into account that under our new Assumption B.2 the factors are allowed to
have a non-zero mean.

To get a feasible distributional result for the statistic ξ̂(kc), we need consistent estimators for the
unknown scalar tr

{
Σ̃−1
cc Σ̃U

}
and tr

{
Σ̃−1
cc Σ̃B

}
, and matrix ΩU,1 in Theorem A.1. To simplify the

analysis, we make the simplifying assumptions that the errors εj,i,t are (i) uncorrelated across sub-
panels j and individuals i, at all leads and lags, and (ii) a conditionally homoscedastic martingale
difference sequence for each individual i, conditional on the factor path, that is,

Cov(εj,i,t, εk,`,t−h|Ft) = 0, if either j 6= k, or i 6= `,

E[εj,i,t|{εj,i,t−h}h≥1,Ft] = 0, E[ε2
j,i,t|{εj,i,t−h}h≥1,Ft] = γj,ii (say), (A.20)

for all j, i, t, h, see Assumption B.9 in the Online Appendix for more details.19 Then, we have

Σ̃U = µ2
N Σ̃

(cc)
u,11 + Σ̃

(cc)
u,22, ΣU(0) ≡ ΣU = µ2Σ

(cc)
u,11 + Σ

(cc)
u,22, ΩU,1 =

1

2
tr
{

Σ2
U

}
. (A.21)

Matrices Σ̃u,jj and Σu,jj ≡ Σu,jj(0) do not depend on time. In Theorem A.2 we show that, by
replacing Σ̃cc with its large sample limit Ikc , and matrix Σ̃U by a consistent estimator Σ̂U (defined
in the Thoerem), the asymptotic distribution of the feasible statistic is unchanged with respect to that
of Theorem A.1.

19Our simplifying Assumption B.9 is the same as Assumption A.9 in AGGR.
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THEOREM A.2. Let Σ̂U = (N2/N1)Σ̂
(cc)
u,11 + Σ̂

(cc)
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Nj

Λ̂′jΛ̂j

)−1 (
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)(
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)−1

where Λ̂j = [Λ̂c
j

... Λ̂s
j ], Λ̂c

j and Λ̂s
j are the loadings

estimators defined in equations (A.13) and (A.14), Γ̂∗j = diag(γ̂∗j,ii, i = 1, ..., Nj) with

γ̂∗j,ii :=
1

T

T∑
t=1

(ε̂j,i,t − ¯̂εj,i)
2 (A.22)

where ¯̂εj,i = 1
T

∑T
t=1 ε̂j,i,t, and ε̂j,i,t = yj,i,t − λ̂c ′j,if̂ ct − λ̂s ′j,i f̂ sj,t, for j = 1, 2. Define the test statistic:

ξ̃(kc) := N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2 [

ξ̂(kc)− kc +
1

2N
tr
{

Σ̂U

}]
, (A.23)

and let Assumptions B.1 - B.9 hold. Then:

(i) Under the null hypothesis H0 = H(kc) we have: ξ̃(kc) d−→ N (0, 1) .

(ii) Under the alternative hypothesis H1 =
⋃

0≤r<kc
H(r), we have: ξ̃(kc)

p−→ −∞.

Theorem A.2 corresponds to Theorem 2 in AGGR, where their original estimator residuals’variance
γ̂j,ii = 1

T

∑T
t=1 ε̂

2
j,i,t has been substituted by γ̂∗j,ii in equation (A.22). As the dependent variables in

regressions the (A.13) and (A.14) are not demeaned and both regressions do not include the constant
terms, the residuals of these regressions might not be zero mean by construction, and therefore γ̂∗j,ii
is an appropriate estimator. We also note that if the errors are weakly correlated across series and/or
time, consistent estimation of Σ̃U requires thresholding of estimated cross-sectional covariance and/or
HAC-type estimators. Finally, Theorem A.2 remains the same when the estimator f̂ c?t (or f̂ c∗t ) is used
instead of f̂ ct .
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OA.1 Data Description

We consider three panels of monthly returns in our analysis, namely (i) individual US stock returns
from CRSP, (ii) the panel of test asset portfolios from the April 2021 release of the database “Open
Source Cross-Sectional Asset Pricing” created by Chen and Zimmermann (2021), CZ21 hearafter,
and (iii) the panel of factors from the zoo considered by CZ21.5 For all three panels, we consider
two samples: (i) the chronological time sample which include all data available in each dataset from
Jan. 1966 to Dec. 2020, and (ii) the publication time sample which goes from Jan. 1996 to Dec. 2020,
where the CZ21 test assets portfolios and factors enter with their publication date in the database. We
split the 660 (resp. 300) months in the chronological time (resp. publication time) sample into B =

11 (resp. 5) non-overlapping blocks of 60 months, denoted as b = 1, ..., B. The first block in the
chronological time (resp. publication time) sample is from Jan. 1966 to Dec. 1970 (resp. Jan. 1996 to
Dec. 2000) and the last block is from Jan. 2016 to Dec. 2020. Within each block, we consider only
a balanced sample of individual stocks and test asset portfolios, that is we only include assets with
returns available for all the 60 months. We work with 5-year non-overlapping samples to address the
concern of survivorship bias if we were to use the full sample of individual stocks. Similar to the
arguments in Kim and Korajczyk (2021), one can view the 5-year span as a compromise between a
sample large enough for our test procedure to have desirable small sample properties and the concern
of capturing new and disappearing stocks. Figures OA.1 and OA.2 report the number of individual
CRSP stocks, test assets portfolios and factors available in each of the B blocks in the chronological
time and publication time samples, respectively. Both samples are described in more detail below.

The first chronological time sample panel of test assets consists of individual stocks available from
the Center for Research in Security Prices (CRSP) traded on the New York Stock Exchange (NYSE),
the American Stock Exchange (AMEX) and the NASDAQ for the period from January 1966 through
December 2020. We focus on common stocks (CRSP share codes 10 and 11) and delete all stocks
having less than 60 consecutive monthly returns. We end up having an unbalanced panel for the
returns of 14948 different stocks. The average cross-sectional size, computed in each month, is about
4270 stocks. In the first (resp. last) block, that is the block 1966-1970 (resp. 2016-2020), we have 1539
(resp. 2668) stocks. The publication time sample is constructed analogously but goes from January
1996 to December 2020. Applying the same filters as above, we end up having an unbalanced panel
for the returns of 8131 different stocks. The average cross-sectional size, computed in each month, is
about 4170 stocks. In the first (resp. last) block, that is the block 1996-2000 (resp. 2016-2020), we
have 3779 (resp. 2668) stocks.

Turning to the test assets portfolios and factors from CZ21, we consider the unbalanced panel of

5Data for the “Open Source Cross-Sectional Asset Pricing” project are available on Andrew Chen’s website: https:
//sites.google.com/site/chenandrewy/open-source-ap
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1215 portfolios formed starting from the 205 firm-level characteristic, or predictors, having predictive
ability for firm-level returns according to the four asset pricing meta-studies by McLean and Pontiff
(2016), Green, Hand, and Zhang (2017), Hou et al. (2020), Harvey et al. (2016). The returns of the 205
factors in our zoo panel are those of long-short portfolios of the upper and bottom quantile portfolios
constructed by sorting stocks according to each characteristic.6 Following CZ21, we consider test
asset portfolios and factors associated only with characteristics classified either as “clearly” or “likely”
returns predictors in their study.7

In the chronological time sample we include all the quantile portfolios and factors available in the
baseline version of the database of CZ21, leading to an unbalanced panel of 1214 portfolios associated
with 205 characteristics.8 The average cross-sectional size, computed in each month, is about 1113
portfolios. In the first (resp. last) block, that is the block 1966-2000 (resp. 2016-2020), we have 855
(resp. 1001) test asset portfolios and 141 (resp. 171) factors.

In the publication time sample we include all the quantile portfolios available in the baseline
version of the database of CZ21, after excluding all (binary) portfolios associated to binary
characteristics. This leads to 1159 portfolios associated to 177 characteristics.9 In each 5-years
block going from January of year y − 4 to December of year y, a factor and the relative test assets
portfolios from CZ21 are included for all the dates corresponding to the rolling window only if the
paper introducing the factor was published in year y + 1, or before.10 These choices allow us to have
in the first rolling window (resp. the last), that is the window 1996-2000 (resp. 2015-2020), 59 (resp.
171) factors, and 276 (resp. 959) test asset portfolios.

Finally, for both samples we also download from Kenneth French website the 5 Fama and French
factors: Market, SMB, HML, Operating Profitability (RMW), and Investment Style (CMA), together
with the momentum factor (and based on prior 2-12 months returns), and the 1 month risk free rate
which is used to compute excess returns for the panels of test assets.

6CZ21 construct factors following the methodology of the papers where they have been introduced, therefore most
factors are constructed from long-short portfolios of equal-weighted quintiles. Value-weighting or other quantiles are used
in the factor construction only for the few papers that emphasize these constructions.

7CZ21 define as “clear predictor” a characteristic which is expected to achieve statistically significant mean raw returns
in long-short portfolios (e.g. t-stat > 2.5 in a long-short portfolio, monotonic portfolio sort with 80 bps spread, t-stat > 4
in a regression, t-stat > 3 in 6-month event study). On the other hand, a “likely predictor” is a characteristic expected to
achieve borderline evidence for the significance of mean raw returns in long-short portfolios (e.g. t-stat = 2.0 in long-short
with factor adjustments, t-stat between 2 and 3 in a regression, large t-stat in 3-day event study).

8For 28 characteristics only 2 quantile portfolios are available, for 7 characteristics 3 quantile portfolios are available,
for 5 characteristics 4 quantile portfolios are available, for 105 characteristics 5 quintile portfolios are available, for 1
characteristic 6 quantile portfolios are available, for 1 characteristic 7 quantile portfolios are available, and finally for 58
characteristics all 10 decile portfolios are available.

9More precisely, for 7 characteristics only 3 quantile portfolios are available, for 5 characteristics 4 quantile portfolios
are available, for 105 characteristics 5 quintile portfolios are available, for 1 characteristic 6 quantile portfolios are
available, for 1 characteristic 7 quantile portfolios are available, and finally for 58 characteristics all 10 decile portfolios
are available.

10Publication dates are also available in CZ21.
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Figure OA.1: Number test assets and factors in the Zoo, full sample: 1966-2020

(a) Crsp and CZ21 test assets

(b) CZ21 Factors in the zoo

Panel (a) displays the number of assets in each balanced panel of CRSP individual stocks (red squares) and CZ21 test
assets (blue dots). These two panels of assets are constructed in every year y based on the 5-years non-overlapping window
starting in year y− 4 and ending in year y, for each y = 1970, ..., 2020. Panel (b) displays the number of factors in the our
zoo, that is the number of facotrs in the CZ21 dataset (blue dots). In every 5-year window we include all assets and factors
with non-missing returns for all the 60 months as available in the CZ21 dataset.
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Figure OA.2: Number test assets and factors in the zoo, publication time dataset 1996 - 2020

(a) Crsp and CZ21 test assets

(b) CZ21 Factors in the zoo

Panel (a) displays the number of assets in each balanced panel of CRSP individual stocks (red squares) and CZ21 test
assets (blue dots). These two panels of assets are constructed in every year y based on the 5-years non-overlapping window
starting in year y − 4 and ending in year y, for each y = 2000, ..., 2020. Panel (b) displays the number of factors in the
our zoo, that is the number of facotrs in the CZ21 dataset (blue dots). In every 5-year window we only include assets and
factors with non-missing returns for all the 60 months. Let ypub be the publication year of a certain factor. CZ21 test assets
and the corresponding factor are included in our dataset, for all years y ≥ ypub, that is we include them in our sample only
if their full history is available at least from ypub − 4.
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OA.2 Supplementary empirical results
Figure OA.3: Variability of the FF factors RMW, CMA and Momentum explained by common and
specific factors in Chen and Zimmermann (2021) test assets and CRSP individual stocks.

(a) RWM (operating profitability): CZ21 test assets (b) RWM (operating profitability): CRSP stocks

(c) CMA (investment style): CZ21 test assets (d) CMA (investment style): CRSP stocks

(e) Momentum : CZ21 test assets (f) Momentum : CRSP stocks

For each the Fama and French factors and Momentum the figure displays the fraction of variance (R2) explained by the
three common factors between CRSP and CZ21 test assets (blue bars which are the same in both panels), CZ21’s group-
specific factors (orange bars, left panels), CRSP group-specific factors (orange bars, right panels), and unexplained by
common and group-specific factors (yellow bars). For each year y we report results based on the block starting in year y-4
and ending in year y, for each y = 1970, ..., 2020.
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Figure OA.4: Average R2 of first 10 pervasive factors for Chen and Zimmermann (2021) test assets
and CRSP individual stocks, full sample: 1966-2020

(a) CZ21 test assets

(b) CRSP individual stocks

Panel (a) [resp. Panel (b)] displays the average fraction of variance (R2) of the individuals on the balanced panel of CZ21
test assets [resp. CRSP individual stocks] explained by the first 10 RP-PCs extracted from the same panel. The bottom blue
area in each panel represents the average R2 of the first RP-PC, the second (from the bottom) orange area represents the
average R2 of the second RP-PC, and so on. Lettau and Pelger’s RP-PCs are computed (fixing γLP = −1) on balanced
panel of assets. In every year y each panel of assets is constructed for the rolling window starting in year y-4 and ending in
year y, for each y = 1970, ..., 2019. In every 5-years rolling window we only include assets with non-missing returns for
all the 60 months.
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OA.3 Composition of Common Factors

Figures OA.5 - OA.7 show the composition of the three common factors in terms of their rescaled
factor-loadings for the test asset portfolios for four different 5 years windows: 1966-1970 (first
window in our sample), 1996-2000 (includes dot-com bubble and its burst), 2005-2010 (includes
financial crisis), and 2015-2020 (last window, includes Covid). Weights are grouped according to
the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their paper).
The factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red
while those of highest quantile portfolios (e.g. 10th decile or 5thquintile) are in blue. Each bar shows
the total weight of a category with the contribution of each quantile-portfolio in the categories. Our
group-factor model (2.10) can be written for each date τ in the 5-year window b as:

yτ = Λb fτ + ετ , with τ ∈ b , (OA.1)

where yτ = [y′1,τ , y
′
2,τ ]
′, fτ = [f c ′τ , f

s ′
1,τ , f

s ′
2,τ ]
′, ετ = [ε′1,τ , ε

′
2,τ ]
′, and

Λb =

[
Λc
b,1 Λs

b,1 0

Λc
b,2 0 Λs

b,2

]
. (OA.2)

Let Λ̂b be the estimate of Λb obtained by the estimation procedure for group-factor model of Section
A.5 applied for dates τ ∈ b. Instead of representing the upper (N1 × kc) block of Λ̂b, that is Λ̂c

b,1, we
represent the upper (N1×kc) block of Λ̂b(Λ̂

′
bΛ̂b)

−1, which are the weights of theN1 test asset portfolios
in the kc portfolios mimicking the common factors f̂ cτ when combined with N2 individual stocks (with
weights equal to the lower (N2 × kc) block of Λ̂b), that is (Λ̂′bΛ̂b)

−1Λ̂′b yτ . This choice allows us to
understand the composition of the common factors in terms of all the test asset portfolios. We note
that the sign of each of the common factors and the corresponding loadings are not identified, due
to the sign indeterminacy of principal components applied group by group and also of the canonical
correlation analysis applied on the PCs. At this stage we have not imposed any sign restrictions to
represent the loadings.

Figure OA.5 shows that cross the the vast majority of all the loadings of test asset portfolios on
the first common factor have the same sign, therefore this factor can be mostly interpreted as a “level”
factor. The (absolute value of) correlations of the first common factor with the CRSP-VW index return
are 0.88, 0.69, 0.93 and 0.93 in the 4 windows considered, therefore the first common factor does
proxy relatively well, but not perfectly, for the aggregate market return.
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Figure OA.5: Loadings of first common factor in different 5-year windows

(a) 1966-1970

(b) 1996-2000

Continues into next page.
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Figure OA.5 (cont’d)

(c) 2005-2010

(d) 2016-2020

The figure displays the factor loadings of the first, out of the three, common factor for our group-factor model estimated on the balanced panels of
individual stocks and CZ21-portfolios in four different 5-years windows: 1966-1970 in Panel (a), 1996-2000 in Panel (b), 2005-2010 in Panel (c), and
2016-2020 in Panel (d). Weights are grouped according to the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their
paper and our online appendix). Factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red while those of highest
quantile portfolios (e.g. 10th decile or 5thquintile) are in blue. Each bar shows the total weight of a category with the contribution of each quantile-
portfolio in the categories. The loadings of the common factors are computed as described in Section OA.3. No sign restriction is imposed on the sign of
the loadings and factors.
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Figure OA.6: Loadings of second common factor in different 5-year windows

(a) 1966-1970

(b) 1996-2000

Continues into next page.

Figures OA.6 and OA.7 show the composition of the second and third common factors,
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Figure OA.6 (cont’d)

(c) 2005-2010

(d) 2016-2020

The figure displays the factor loadings of the second, out of the three, common factor for our group-factor model estimated on the balanced panels of
individual stocks and CZ21-portfolios in four different 5-years windows: 1966-1970 in Panel (a), 1996-2000 in Panel (b), 2005-2010 in Panel (c), and
2016-2020 in Panel (d). Weights are grouped according to the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their
paper and our online appendix). Factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red while those of highest
quantile portfolios (e.g. 10th decile or 5thquintile) are in blue. Each bar shows the total weight of a category with the contribution of each quantile-
portfolio in the categories. The loadings of the common factors are computed as described in Section ??. No sign restriction is imposed on the sign of
the loadings and factors.
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Figure OA.7: Loadings of third common factor in different 5-year windows

(a) 1966-1970

(b) 1996-2000

Continues into next page.
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Figure OA.7 (cont’d)

(c) 2005-2010

(d) 2016-2020

The figure displays the factor loadings of the third, out of the three, common factor for our group-factor model estimated on the balanced panels of
individual stocks and CZ21-portfolios in four different 5-years windows: 1966-1970 in Panel (a), 1996-2000 in Panel (b), 2005-2010 in Panel (c), and
2016-2020 in Panel (d). Weights are grouped according to the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their
paper and our online appendix). Factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red while those of highest
quantile portfolios (e.g. 10th decile or 5thquintile) are in blue. Each bar shows the total weight of a category with the contribution of each quantile-
portfolio in the categories. The loadings of the common factors are computed as described in Section ??. No sign restriction is imposed on the sign of
the loadings and factors.
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respectively. Differently from the mostly the uniformity of sign of the weights of first factor, the second
factors is constituted by long and short positions of individual test asset portfolios. In some windows,
we can identify groups of categories in which the lowest and largest quantile portfolio loadings
(mostly) have opposite signs. For instance, in 1966-1970 and 2016-2020 the second factor seem
to have mostly opposite exposures to the extreme quantiles of “valuation”, “volatility” and ”leverage”
(last window only). The second common factor in 1996-2000 (resp. the third one in 2005-2010) have
sizable exposure of the same signs to the bottom (resp. bottom and top) quantiles of “investment” and
“investment alternative” portfolios. Finally, the third factor in 2016-2020 has clear opposite exposures
to the extreme quantiles of “profitability” portfolios.

Some caution should nevertheless be placed on this kind of analysis because model (2.10) implies
that the kc common factors are identified in our model up to a rotation, implying that their loadings
and their interpretation of each one of the factors can change, depending on which linear combination
of them is chosen. It is also possible that applying RP-PC as in Lettau and Pelger (2020b) can generate
common factors of a different nature with respect to those we found simply applying PCA in the first
step of our estimation.

OA.4 Performance evaluation measures

We describe the various performance evaluation measures both in-sample and out-of-sample starting
with the former.

In-sample performance evaluation

Let Nj,b be the total number of assets for which the full sample of returns is available in group j and
block b, with j = 1, 2 and b = 1, ..., B. For each model m and for each group of assets j, we compute
the following six performance measures across the entire sample, that is across all B blocks:

1. Total R2 of Kelly et al. (2019), which for our model with betas changing across blocks can be
expressed as:

Tot. R2
j (m) = 1−

∑B
b=1

∑Nj,b
i=1

∑
τ∈b

(
yj,i,τ − β̂m ′j,i,bf

m
τ

)2

∑B
b=1

∑Nj,b
i=1

∑
τ∈b y

2
j,i,τ

.

It represents the fraction of return variance for all the assets present in group j explained by both
the dynamic behavior of the loadings across different blocks, as well as by the contemporaneous
factor realizations, aggregated over all assets and all time periods, that is across allB blocks. The
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Total R2 summarizes how well the systematic factor in a given model specification describes the
realized riskiness in the panel of individual stocks. In the case of observable factors, i.e. models
in (i), the coefficients βm ′j,i,b are estimated by an OLS regression without intercept of excess returns
on factors, compatible with model (4.13). By construction, the βm ′j,i,b and factors for all other
models (ii) - (vi) are also estimated by PCA, or variation of it, compatible with a linear model
without intercept. 11

2. Predictive R2 from Kelly et al. (2019), which for our model with betas changing across blocks
can be expressed as:

Pred. R2
j (m) = 1−

∑B
b=1

∑Nj,b
i=1

∑
τ∈b

(
yj,i,τ − β̂m ′j,i,bf̄

m
τ

)2

∑B
b=1

∑Nj,b
i=1

∑
τ∈b y

2
j,i,τ

.

where f̄mτ = 1
Tb

∑
τ∈b f

m
τ is the sample average of the factors’realizations within all the Tb dates

in block b only, that is the same block in which the βm ′j,i,τ are estimated compatible with a model
without intercept. Predictive R2 represents the fraction of realized return variation explained
by the model’s description of conditional expected returns, and summarizes the model’s ability
to describe risk compensation only through exposure to systematic risk. Our measure of the
Predictive R2 is slightly different from the in-sample Predictive R2 of Kelly et al. (2019) as ours
allows for factor risk premia which vary across different blocks, while theirs imposes constant
risk premia across dates.12

3. Pricing error R2 of Kelly et al. (2020), which is defined as:

Pr.Err. R2
j (m) = 1−

∑B
b=1

∑Nj,b
i=1

(
1
Tb

∑
τ∈b yj,i,τ − β̂m ′j,i,bf

m
τ

)2

∑B
b=1

∑Nj,b
i=1

(
1
Tb

∑
τ∈b yj,i,τ

)2 ,

that is the fraction of the squared unconditional mean excess returns that is described by factors
and betas. In contrast to the previous two R2 measures, this focuses on whether the model’s

11We also consider the Tot. R2 with constant, an alternative way to compute Total R2, defined as:

Tot. R2
const,j(m) = 1−

∑B
b=1

∑Nj,b

i=1

∑
τ∈b

(
yj,i,τ − α̂mj,i,b − β̂m ′j,i,bf

m
τ

)2

∑B
b=1

∑Nj,b

i=1

∑
τ∈b y

2
j,i,τ

,

and where α̂mj,i,b and β̂m ′j,i,b are estimated by regressions including the intercept of the excess returns on the factors. This
measure is related to the idiosyncratic variation measure considered by Lettau and Pelger (2020a), which they define as
the average variance of the residuals after regressing the returns of test assets on the factors and including the intercept in
the regression.

12Due to the rotational indeterminacy of factors which are re-estimated across different blocks, we cannot impose a
constant factor average across different blocks.
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fitted values do a good job of explaining assets’ average returns. This metric is close in flavor to
formal statistical tests (like the GRS test) of whether or not a cross section of test assets’ pricing
errors are zero.

4. Average RMSα, an alternative to the Pricing error R2, which is computed as the average
over different blocks of the RMSα measure considered by Lettau and Pelger (2020a) and
computed block by block. For each block b, group j and model m, RMSα is computed as

RMSα,j,b(m) =
√

(1/Nj,b) ·
∑Nj,b

i=1 (α̂mj,i,b)
2 , and α̂mj,i,b is the estimated intercept of the same

regressions described in the construction of Tot. R2 with constant. Then, Average RMSj,α(m)

= (1/B) ·
∑B

b=1RMSα,j,b(m). It assesses the model ability to characterize average excess
returns of individual assets. Also this measure is close in flavor to formal statistical tests (like
the GRS test) of whether or not a cross section of test assets’ pricing errors are zero.

Out-of-sample performance evaluation

We implement the out-of-sample version of the Total R2, Pricing R2 and Predicitve R2 where
betas and factor loadings, needed to reconstruct the latent factors out-of-sample for date τ in block
b are computed using information form the previous block b − 1. Analogously to Lettau and Pelger
(2020b) we also compute the annualized Sharpe Ratio of the “Maximum Sharpe-ratio portfolio” that
can be obtained by an optimal (in a mean-variance sense) linear combination of the factors, which are
ultimately portfolios of individual stocks. Our out-of-sample performance measures are defined as:

1. OOS Total R2, which for our model with betas changing across blocks can be expressed as:

OOS Tot. R2
j (m) = 1−

∑B
b=2

∑Nj,b−1

i=1

∑
τ∈b

(
yj,i,τ − β̂m ′j,i,bf

m
τ |b−1

)2

∑B
b=2

∑Nj,b−1

i=1

∑
τ∈b y

2
j,i,τ

.

The beta coefficients β̂mj,i,b are estimated using information available in block b − 1 only, while
returns yj,i,τ are observed at dates τ in block b. For models with observable factors, fmτ |b−1 is
simply the observed value of the factor at date τ in block b, as all our observable factors are
returns of portfolios of individual stocks observed at date τ with weights computed at date τ−1.
Instead, when a model includes latent factors, we compute their values at date τ by running
cross-sectional regressions of the returns yj,i,τ for all assets available both in the previous block
b− 1, and in the current one b, on the factor loadings estimated in the previous block b− 1 only.
More specifically, model v (resp vi) implies that in block b the DGP for the return of individual
stocks (resp. test assets) is:

yj,τ = Λm
j,b f

m
τ + εmj,τ , with τ ∈ b . (OA.3)

Online Appendix - 16



Let Λ̂m
j,b be the PC estimator of matrix Λj,b obtained using the returns of all assets in group

j for dates τ ∈ b. Then, compatible with model (OA.3), factors fmτ |b−1 are computed as
fmτ |b−1 = (Λ̂m ′

j,b−1Λ̂m
j,b−1)−1Λ̂m ′

j,b−1 yj,τ , for all dates τ ∈ b. Analogously, we can write the DGP
(2.10), corresponding to models (iii) and (iv), as in equations (OA.1) and (OA.2). Let Λ̂b be the
estimate of Λb in equation (OA.1) obtained by the estimation procedure for group-factor model
of Section A.5, then fmτ |b−1 is an appropriate subset of (Λ̂′j,b−1Λ̂j,b−1)−1Λ̂′j,b−1 yj,τ , for dates τ ∈ b.

2. OOS Pricing R2, which can be expressed as:

OOS Pr.Err. R2
j (m) = 1−

∑B
b=2

∑Nj,b−1

i=2

(
1
Tb

∑
τ∈b yj,i,τ − β̂m ′j,i,b−1f

m
τ |b−1

)2

∑B
b=1

∑Nj,b
i=1

(
1
Tb

∑
τ∈b yj,i,τ

)2 ,

where all quantities are computed as described for the OOS Total R2.
3. OOS Predictive R2, which can be expressed as:

OOS Pred. R2
j (m) = 1−

∑B
b=2

∑Nj,b−1

i=1

∑
τ∈b

(
yj,i,τ − β̂m ′j,i,bf̄

m
τ |b−1,τ−1

)2

∑B
b=2

∑Nj,b−1

i=1

∑
τ∈b y

2
j,i,τ

.

where f̄mτ |b−1,τ−1 is the sample average of the factor realizations computed over the 60 months
ending at date τ−1, and where the factor is reconstructed (if necessary) for each date as described
for the computation of the OOS Total R2, that is regressing returns in each month τ on loadings
estimated in the previous block b− 1.

4. Maximum Sharpe-ratio, Max. SR, that is the realized Sharpe Ratio of a portfolio of “factors”
(returns) of each model fmτ |b−1 combined at each date τ in block b with weights wmf,b =

(Σ̂m
f,b−1)−1µ̂mf,b−1, where µ̂mf,b−1 and Σ̂m

f,b−1 are the sample mean and covariance, respectively,
of all factors in model m computed using their observations in block b − 1. Therefore, both
factors and their weights in the Maximum Sharpe Ratio portfolio in block b are computed using
the factor loadings estimated in block b− 1.
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Table OA.1: Average RMSα, and Total R2 computed from regressions with intercept.

In-Sample

Average RMSα Total R2, with constant

N. of factors, K 1 3 4 5 6 1 3 4 5 6

r: CRSP, f : FF + mom 1.99 1.90 1.91 2.07 2.08 15.86 24.12 26.40 27.79 29.91
r: CZ21, f : FF + mom 0.91 0.60 0.62 0.65 0.66 76.03 90.59 92.35 91.53 93.09
r: CRSP, f : 3CF 1.69 28.18
r: CZ21, f : 3CF 0.44 93.35
r: CRSP, f : 3CF + CRSP spec. 1.67 1.67 1.66 31.32 34.02 36.58
r: CZ21, f : 3CF + CZ21 spec. 0.38 0.38 0.33 94.72 95.55 96.10
r: CRSP, f : PCA on CZ21 1.73 1.84 1.86 1.94 1.97 19.22 26.52 28.76 30.92 33.29
r: CZ21, f : PCA on CZ21 0.49 0.37 0.35 0.32 0.31 89.92 94.87 95.54 96.02 96.36
r: CRSP, f : PCA on CRSP 1.73 1.67 1.65 1.63 1.63 18.54 28.09 31.15 33.88 36.41
r: CZ21, f : PCA on CRSP 0.50 0.47 0.47 0.46 0.46 87.13 92.86 93.37 93.99 94.39

The table reports RMSα (left panel) and the Total R2 (right panel) in percent for observable factor models (lines 1-2), a latent factor model with only

3 common factors (lines 3-4), a latent factor model with only 3 common factors between individual stocks and CZ21 portfolios (lines 3-4), a latent factor

model with 3 common factors between individual stocks and CZ21 portfolios together with 1, 2, or 3 CRSP-specific factors (line 5), a latent factor model

with 3 common factors between individual stocks and CZ21 portfolios together with 1, 2, or 3 CZ21-specific factors (line 6), a latent factor model where

the factors are K PCs extracted from the CZ21 portfolios only (lines 7-8), a latent factor model where the factors are K PCs extracted from the CRSP

individual stocks only (lines 9-10). Observable factor model specifications are CAPM, FF3, FF3 + Momentum, FF5, and FF5 + Momentum in theK = 1

,3 ,4 ,5 ,6 columns, respectively. The models are estimated on the rolling window starting in year y−4 and ending in year y, for each y = 1970, ..., 2020.

Both RMSα and the Total R2 are computed in-sample either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21)

as described in Section 4.2, therefore taking into account all the estimation windows. All the linear models used to compute the Total R2 include an

intercept, differently from the models used to compute the RMSα, and from those used to produce the results in Table 1.

OA.5 Old and New Factors - Supplementary Results

Feng et al. (2020) find the following factors as having incremental contributions to the pricing of the
cross-section (with our R2s and |α| with respect to 3 common and 3 CZ21-specific factors appearing
in parenthesis): growth in long term net operating assets from Fairfield, Whisenant, and Yohn (2003,
R2 = 53%, |α| = 0.00%), net operating assets from Hirshleifer, Hou, Teoh, and Zhang (2004,
R2 = 73%, |α| = 1.20%), three-year investment growth from Anderson and Garcia-Feijoo (2006,
R2 = 65%, |α| = 0.79%), net external finance from Bradshaw, Richardson, and Sloan (2006,
R2 = 92%, |α| = 1.23%), revenue surprise from Kama (2009, R2 = 56%, |α| = 0.89%, for the
characteristic “Revenue Surprise” which enters the CZ21 database with the paper of Jegadeesh and
Livnat (2006)), betting against beta from Frazzini and Pedersen (2014, R2 = 95%, |α| = 1.64%),
robust minus weak from Fama and French (2015, R2 = 92%, |α| = 0.90%), for the characteristic
“operating profits / book equity” entering the CZ21 database with the paper Fama and French (2006).
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Figure OA.8: RMSα from old factors

(a) Test assets: CRSP individual stocks

(b) Test assets: CZ21 portfolios

For each 5-years rolling window ending in year y we compute the percentageRMSα generated by a linear factor model with 3 common factors between
individual stocks and CZ21 portfolios only (model (i)), with 3 common factors between individual stocks and CZ21 portfolios together with three CZ21-
specific factors (model (ii)), and by linear factor model where the factors are the first six PCs from the old factor zoo (model(iii)). Panel (a) displays
results considering as test assets individual stocks: we report the RMSα for model (i) as red squares, for model (ii) as red circles and for model (iii)
as blue downward triangles. Panel (b) displays results considering as test assets CZ21 portfolios: we report the RMSα for model (i) as black upward
triangles, for model (ii) as black diamonds and for model (iii) as blue stars. The models are estimated on the rolling window starting in year y − 4 and
ending in year y, for each y = 2001, ..., 2020. RMSα are computed as described in Section 4.2, but taking into account only the 5-year window ending
in year y, and are reported in Panels (a) and (b) respectively.
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HXZ Investment and HXZ profitability from Hou, Xue, and Zhang (2015), were present in older
versions of the CZ21 database as “Change in Return on Assets” and “Change in Return on Equity”
entering 2018 with the paper Hou et al. (2020)). In the 2021 version of the database they are attributed
to Balakrishnan, Bartov and Faurel (2010), but are classified as “Indirect Signals” (see Section 2.4
and their Table 4), i.e. are modifications of other characteristics showing“only suggestive evidence of
predictive power (e.g. correlated with earnings/price, modified version of a different characteristic,
in-sample evidence only)”, and therefore are not available. The characteristics “industry-adjusted
change in employees”, “industry-adjusted size” both from Asness, Porter, and Stevens (2000) are
not present in the CZ21 dataset, while “volatility of liquidity (dollar trading volume)” from Chordia,
Subrahmanyam, and Anshuman (2001) although in the CZ21 dataset, by construction are not present
in the rolling windows we consider in the current version of our analysis.

These results indicate that some of the new factors could provide additional information with
respect to the old ones in explaining US stock returns. To assess this issue, in the spirit of the
cross-sectional pricing exercises of Feng et al. (2020), we investigate which factors contribute to
substantial improvement of either TotalR2 or RMSα for the panels of individual stocks and/or test
asset portfolios when added to the three common factors between individual stocks and the old CZ21
portfolios, and first three old CZ21-specific factors, that is we assess the ability of the new factors to
explain the variability and the mean of the returns of both groups of test assets when added to those
six factors. The exercise is somewhat similar the the two pass estimator in Feng et al. (2020). Their
procedure combines the double-selection LASSO method of Belloni et al. (2014) with the Fama and
MacBeth (1973) two-pass regressions to evaluate the contribution of a factor to explaining asset prices
specifically in a high-dimensional setting. The results in their Table 2 show that while most of the new
factors are redundant relative to the existing factors, a few have statistically significant explanatory
power beyond the hundreds of factors proposed in the past. Our procedure differs from the two above
papers in that we approach dimensionality reduction differently. We rely on a relatively small number
of factors, that is the three common factors and the first three CZ21-specific factors, as we have shown
they perform better than PCs form the factor zoo in explain test assets returns.

The double-selection estimator of Feng et al. (2020) is a Fama-MacBeth double machine learning
regularized regression approach. The double-selection procedure of Feng et al. (2020) and our
regressions result in analogous findings: the majority of factors in the zoo are redundant and only
few of them contain genuine new pricing information, as detailed below. In Table 2 of Feng et al.
(2020) a total of twelve out of roughly one hundred factors over the sample 2000 until 2015 appear
significant and robust according to their testing procedure.

From the results in our Table OA.5, we first note that the increase of TotalR2 generated by the
addition of new factor to the 6 old common and CZ21-specific factors is relatively small compared
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Table OA.2: Variability of factors in the zoo explained by 3 common factors between CRSP and the
old CZ21 test assets, and 3 first three group-specific factors old CZ21 test assets: smallest values.

New factor R2

Consensus Recommendation (2002) 24.5
Down forecast EPS (2002) 32.2
Up Forecast (2002) 3.9
Pastor-Stambaugh liquidity beta (2003) 31.3
Change in recommendation (2004) 17.9
Active shareholders (2005) 20.1
Inst own among high short interest (2005) 25.6
Systematic volatility (2006) 24.7
Earnings surprise of big firms (2007) 20.5
Change in Asset Turnover (2008) 23.1
Change in Net Working Capital (2008) 15.7
Customer momentum (2008) 15.3
Off season reversal years 6 to 10 (2008) 28.2
Off season reversal years 11 to 15 (2008) 23.0
Off season reversal years 16 to 20 (2008) 6.8
Return seasonality years 6 to 10 (2008) 5.6
Return seasonality years 11 to 15 (2008) 23.3
Return seasonality years 16 to 20 (2008) 13.0
Return seasonality last year (2008) 25.0
Return seasonality years 2 to 5 (2008) 10.9
Customers momentum (2010) 18.9
Suppliers momentum (2010) 32.1
Real estate holdings (2010) 29.0
Percent Operating Accruals (2011) 22.0
Put volatility minus call volatility (2011) 11.8
Inventory Growth (2012) 24.3
Dividend seasonality (2013) 14.2
Organizational capital (2013) 23.8
R&D ability (2013) 9.1
Growth in advertising expenses (2014) 21.7

For each 5-years rolling window ending in year y we regress each of the new factors (entering the database in year y) on the three common factors

between individual stocks and the old CZ21 portfolios, and first three old CZ21-specific factors, that is those computed using CZ21-portfolios available

only in year y − 1. The Table displays the name of Factors with a value R2 < 35% in these regressions in chronological order of publication, together

with the value of the R2.The publication date in parenthesis next to each factor. We consider years y = 2001, 2002, ..., 2020.
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Table OA.3: Absolute value of the intercept of the factors in the zoo when regressed on the 3
common factors between CRSP and the old CZ21 test assets, and 3 first three group-specific factors
old CZ21 test assets: largest 15 absolute values and their t-stat.

New factor |αi| (tstat)

Consensus Recommendation (2002) 2.0 (2.6)
Probability of Informed Trading (2002) 1.3 (2.6)
Pastor-Stambaugh liquidity beta (2003) 1.3 (2.6)
Idiosyncratic risk (AHT) (2003) 1.3 (1.8)
Firm Age - Momentum (2004) 1.9 (1.8)
Net Operating Assets (2004) 1.5 (3.7)
Inst own among high short interest (2005) 1.7 (1.0)
Mohanram G-score (2005) 1.3 (2.6)
Analyst earnings per share (2006) 1.7 (4.2)
Net equity financing (2006) 1.3 (4.1)
Net external financing (2006) 1.5 (3.8)
Industry return of big firms (2007) 1.7 (3.0)
Efficient frontier index (2009) 1.2 (5.1)
Intermediate Momentum (2012) 1.4 (2.0)
Frazzini-Pedersen Beta (2014) 1.9 (-5.7)

For each 5-years rolling window ending in year y we regress each of the new factors (entering the database in year y) on the three common factors

between individual stocks and the old CZ21 portfolios, and first three old CZ21-specific factors, that is those computed using CZ21-portfolios available

only in year y − 1. The Table displays the name of factors with with the largest absolute values of the intercept in these regressions, in chronological

order of publication, together with absolute value of the intercept (αi). The publication date in parenthesis next to each factor. The t-statistics for the test

of significance of αi is computed using OLD standard errors are reported in parenthesis. We consider years y = 2001, 2002, ..., 2020.

Table OA.4: Regressions of significant factors in table 2 of Feng et al. (2020) on 3 common factors
between CRSP and the old CZ21 test assets only, and on the 3 common factors together with 3 first
three group-specific factors old CZ21 test assets.

New factor R2 on 3 CF R2 on 3 CF and |αi| on 3 CF and (tstat)
3 CZ21-factors 3 CZ21-factors

Growth in long term operating assets (2003) 50.28 53.95 0.03 (0.1)
Net Operating Assets (2004) 33.92 77.29 1.50 (3.7)
Change in capex (three years) (2006) 30.14 71.82 0.61 (-2.6)
Net external financing (2006) 88.23 91.84 1.45 (3.8)
Revenue Surprise (2006) 51.31 54.84 1.02 (4.3)
Frazzini-Pedersen Beta (2014) 94.12 94.43 1.86 (-5.7)
operating profits / book equity (2006) 92.43 93.12 0.96 (3.6)
Asset growth (2008) 64.34 87.72 0.16 (-0.7)

We regress each of the significant factors in table 2 of Feng et al. (2020) in the 5-years rolling window ending in year y, with y being the date in which

the factor enters in our database, on the three common factors between individual stocks and the old CZ21 portfolios only (regression (a)), and on the

three common factors together with the first three old CZ21-specific factors (regression (b)), that is those computed using CZ21-portfolios available only

in year y − 1. The Table displays the name of factors, their publication date, the R2 of regressions (a) and (b), and the absolute value of the intercept

(αi) in regression (b). The t-statistics for the test of significance of αi is computed using OLD standard errors are reported in parenthesis.
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the to Total R2 achievable with the 6 old factors only: the increase in Total R2 ranges from 1.1% to
2.51% (resp. 0.06% to 0.38%) for individual stocks (resp. CZ21 portfolios) compared to a Total R2

achievable with the 6 old factors, which ranges from 26% to 38% (resp. 94% to 97%). Analogous
considerations can be made when looking at theRMSα, which, in the best 10 cases, exhibit a decrease
ranging form 0.01 to 0.06 (resp. 0.04 to 0.02) for individual stocks (resp. CZ21 portfolios) compared
to a RMSα achievable with the 6 old factors, which ranges from 1.88 to 2.58 (resp. 0.27 to 0.45).
Second, none of the factors which appear as the best 10 ones in decreasing the RMSα of CZ21
portfolios, appear also as the best 10 ones in decreasing the RMSα of individual stocks, and only
2 factors, namely Net external financing (2006) and Book-to-market and accruals (2004) appear to be
among the top 10 contributors to Total R2 both for CZ21 portfolios and individual stocks. Moreover,
two factors, namely Analyst earnings per share (2006), Frazzini-Pedersen Beta (2014), although they
seem to improve the pricing of the CZ21 portfolios, if anything they seem to be detrimental for the
pricing of individual stocks, as they increase the RMSα.

Out of the 18 factors with large absolute value of α when regresses on the 6 old factors, we find that
Analyst earnings per share (2006), Frazzini-Pedersen Beta (2014), and Net equity financing (2006) are
among those generating the largest decrease in RMSα for CZ21 portfolios. Interestingly, the last two
are also among the significant factors identified with the methodology of Feng et al. (2020). Out of
these three factors, only Net equity financing (2006) appears as one of the top 10 contributors to the
increase of Total R2 for CZ21 portfolios. Additionally, Revenue surprise (2006) is the only other
factor found significant by Feng et al. (2020) which also appears in the top 10 contributors to the
decrease in RMSα of the CZ21 portfolios.

Out of the 34 factors with small value of R2 when regresses on the 6 old factors, we find that none
are among those generating the largest decrease in RMSα for CZ21 portfolios, while Inst own among
high short interest (2005), Inventory Growth (2012) are among those generating the largest decrease in
Total R2 for CZ21 portfolios. Moreover, Systematic volatility (2006), Suppliers Momentum (2010),
Organizational Capital(2013) are among those generating the largest decrease in RMSα for individual
stocks, while Percent Total Accruals (2011) is among those generating the largest decrease in Total R2

for individual stocks.
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Table OA.5: Changes in Total R2 and RMSα due to new factors.

Panel A: Total R2, test assets: CRSP stocks

New factor Old fac. ∆R2

Top 10
Growth in book equity (2010) 37.41 2.58
Investment to revenue (2004) 35.45 2.15
Employment growth (2014) 39.68 2.11
Volatility smirk near the money (2010) 37.41 1.96
Inventory Growth (2002) 34.53 1.91
Growth in advertising expenses (2014) 39.68 1.90
Taxable income to income (2004) 35.45 1.87
Maximum return over month (2010) 37.41 1.84
Cash to assets (2012) 39.01 1.83
Net external financing (2006) 34.20 1.82

Bottom 10
Inst own among high short interest (2005) 38.56 1.21
Price delay coeff (2005) 38.56 1.20
Leverage component of BM (2007) 29.94 1.19
Inst Own and Market to Book (2005) 38.56 1.17
Dividend seasonality (2013) 38.97 1.17
change in net operating assets (2004) 35.45 1.17
Breadth of ownership (2002) 34.53 1.17
gross profits / total assets (2013) 38.97 1.16
Brand capital investment (2014) 39.68 1.12
Return seasonality last year (2008) 26.86 1.11

Panel B: RMSα, test assets: CRSP stocks

New factor Old fac. ∆RMSα

Top 10
Organizational capital (2013) 1.88 -0.05
Conglomerate return (2012) 1.93 -0.03
Suppliers momentum (2010) 1.86 -0.02
Volatility smirk near the money (2010) 1.86 -0.02
Cash Productivity (2009) 1.77 -0.01
Earnings consistency (2009) 1.77 -0.01
Change in long-term investment (2005) 2.27 -0.01
Systematic volatility (2006) 2.04 -0.01
Inst Own and Turnover (2005) 2.27 -0.01
Growth in book equity (2010) 1.86 -0.00

Bottom 10
Change in financial liabilities (2005) 2.27 0.32
Net equity financing (2006) 2.04 0.34
Composite equity issuance (2006) 2.04 0.37
Put volatility minus call volatility (2011) 1.66 0.41
Efficient frontier index (2009) 1.77 0.45
Down forecast EPS (2002) 2.28 0.47
Net Operating Assets (2004) 2.23 0.48
Up Forecast (2002) 2.28 0.55
Change in recommendation (2004) 2.23 0.62
Frazzini-Pedersen Beta (2014) 1.73 0.64

Panel C: Total R2, test assets: CZ21 portfolios

New factor Old fac. ∆R2

Top 10
Total accruals (2005) 95.25 0.43
Operating Cash flows to price (2004) 95.39 0.37
Net external financing (2006) 96.07 0.37
Change in equity to assets (2005) 95.25 0.36
Change in net financial assets (2005) 95.25 0.34
Net equity financing (2006) 96.07 0.33
Equity Duration (2004) 95.39 0.33
Firm Age - Momentum (2004) 95.39 0.32
52 week high (2004) 95.39 0.30
Growth in book equity (2010) 96.56 0.29

Bottom 10
Real dirty surplus (2011) 96.74 0.08
Dividend seasonality (2013) 97.01 0.08
Return skewness (2015) 96.01 0.08
Leverage component of BM (2007) 95.69 0.08
Idiosyncratic skewness (3F model) (2015) 96.01 0.08
R&D ability (2013) 97.01 0.08
Enterprise component of BM (2007) 95.69 0.07
Change in Asset Turnover (2008) 95.09 0.07
Organizational capital (2013) 97.01 0.06
gross profits / total assets (2013) 97.01 0.06

Panel D: RMSα, test assets: CZ21 portfolios

New factor Old fac. ∆RMSα

Top 10
Taxable income to income (2004) 0.46 -0.05
Analyst earnings per share (2006) 0.39 -0.05
Net debt financing (2006) 0.39 -0.05
Frazzini-Pedersen Beta (2014) 0.32 -0.05
Change in net financial assets (2005) 0.47 -0.04
Equity Duration (2004) 0.46 -0.04
Operating Cash flows to price (2004) 0.46 -0.04
52 week high (2004) 0.46 -0.03
Revenue Surprise (2006) 0.39 -0.03
Tail risk beta (2014) 0.32 -0.03

Bottom 10
Net Operating Assets (2004) 0.46 0.02
Price delay coeff (2005) 0.47 0.02
Change in capex (three years) (2006) 0.39 0.02
Percent Operating Accruals (2011) 0.28 0.02
Up Forecast (2002) 0.46 0.02
Pastor-Stambaugh liquidity beta (2003) 0.46 0.03
change in net operating assets (2004) 0.46 0.03
Book-to-market and accruals (2004) 0.46 0.04
Down forecast EPS (2002) 0.46 0.04
Change in recommendation (2004) 0.46 0.07

For each 5-years rolling window ending in year y we compute the percentage TotalR2 and RMSα generated by a latent factor model with 3 common

factors between individual stocks and CZ21 portfolios together with three CZ21-specific factors (model (i)). When a new factor form the zoo enters in

the dataset we add this factor only to the six factors of model (i) and recompute the TotalR2 with this new set of seven factors (model (ii)). TotalR2

andRMSα are computed using as test assets either the individual stocks or the CZ21 portfolios available in year y for both model (i) and model (ii). For

each set of test assets we report the top 10 and bottom 10 increases in TotalR2 (∆R2), and the top 10 and bottom 10 decreases inRMSα (∆RMSα)

when a new factor is added in model (ii) to the 6 factors in model (i). We also report the TotalR2 and RMSα obtained with the old factors only

(Old fac.), that is with the factors in model (i). The models are estimated on the rolling window starting in year y − 4 and ending in year y, for each

y = 2001, ..., 2020. Total R2’s and RMSα are computed as described in Section 4.2, but taking into account only the 5-year window ending in year

y. Online Appendix - 24



Table OA.6: Changes in Total R2 and RMSα due to new factors. Old factors: 3 common factors
only.

Panel A: Total R2, test assets: CRSP stocks

New factor Old fac. ∆R2

Top 10
Taxable income to income (2004) 28.22 3.17
52 week high (2004) 28.22 3.10
Net Operating Assets (2004) 28.22 2.75
Long-vs-short EPS forecasts (2011) 31.35 2.74
Unexpected R&D increase (2004) 28.22 2.70
Deferred Revenue (2012) 30.89 2.62
Percent Total Accruals (2011) 31.35 2.60
Growth in book equity (2010) 29.86 2.58
Growth in advertising expenses (2014) 30.21 2.56
Cash Productivity (2009) 23.48 2.48

Bottom 10
Idiosyncratic risk (AHT) (2003) 28.23 1.24
Change in recommendation (2004) 28.22 1.24
Up Forecast (2002) 28.64 1.23
Real estate holdings (2010) 29.86 1.22
Return seasonality last year (2008) 21.03 1.21
Put volatility minus call volatility (2011) 31.35 1.21
Inst own among high short interest (2005) 32.62 1.21
Pastor-Stambaugh liquidity beta (2003) 28.23 1.15
Dividend seasonality (2013) 30.98 1.02
Organizational capital (2013) 30.98 0.99

Panel B: RMSα, test assets: CRSP stocks

New factor Old fac. ∆RMSα

Top 10
Cash Productivity (2009) 1.80 -0.08
Inst Own and Market to Book (2005) 2.14 -0.05
Earnings consistency (2009) 1.80 -0.05
Change in Taxes (2011) 1.43 -0.03
R&D capital-to-assets (2011) 1.43 -0.02
Momentum based on FF3 residuals (2011) 1.43 -0.02
Growth in book equity (2010) 1.45 -0.02
Long-vs-short EPS forecasts (2011) 1.43 -0.01
Return seasonality years 16 to 20 (2008) 1.80 -0.01
Change in Forecast and Accrual (2004) 1.95 -0.01

Bottom 10
Analyst earnings per share (2006) 1.85 0.46
Net external financing (2006) 1.85 0.46
Put volatility minus call volatility (2011) 1.43 0.49
Net equity financing (2006) 1.85 0.51
change in net operating assets (2004) 1.95 0.58
Inventory Growth (2002) 1.84 0.59
Up Forecast (2002) 1.84 0.74
Frazzini-Pedersen Beta (2014) 1.70 0.77
Change in recommendation (2004) 1.95 0.79
Net Operating Assets (2004) 1.95 0.83

Panel C: Total R2, test assets: CZ21 portfolios

New factor Old fac. ∆R2

Top 10
52 week high (2004) 89.42 3.13
Price delay R-square (2005) 89.73 2.75
Price delay SE adjusted (2005) 89.73 2.69
Firm Age - Momentum (2004) 89.42 2.58
Inst Own and Idio Vol (2005) 89.73 2.43
Net Operating Assets (2004) 89.42 2.32
Inst Own and Turnover (2005) 89.73 2.18
Amihud’s illiquidity (2002) 91.70 2.18
Inst Own and Market to Book (2005) 89.73 2.12
Intangible return using Sale2P (2006) 91.87 2.08

Bottom 10
Return seasonality years 16 to 20 (2008) 92.02 0.16
Idiosyncratic skewness (3F model) (2015) 94.41 0.15
Organizational capital (2013) 94.27 0.15
R&D ability (2013) 94.27 0.12
Percent Operating Accruals (2011) 93.85 0.12
Consensus Recommendation (2002) 91.70 0.11
Change in Net Working Capital (2008) 92.02 0.11
Return seasonality years 6 to 10 (2008) 92.02 0.10
Sin Stock (selection criteria) (2009) 94.26 0.10
Real estate holdings (2010) 93.07 0.09

Panel D: RMSα, test assets: CZ21 portfolios

New factor Old fac. ∆RMSα

Top 10
Price delay SE adjusted (2005) 0.90 -0.38
Price delay R-square (2005) 0.90 -0.35
Inst Own and Idio Vol (2005) 0.90 -0.34
Inst Own and Turnover (2005) 0.90 -0.31
Change in current operating liabilities (2005) 0.90 -0.26
Inst Own and Market to Book (2005) 0.90 -0.26
change in net operating assets (2004) 0.76 -0.25
Equity Duration (2004) 0.76 -0.25
Change in equity to assets (2005) 0.90 -0.20
Firm Age - Momentum (2004) 0.76 -0.20

Bottom 10
Mohanram G-score (2005) 0.90 0.05
Up Forecast (2002) 0.65 0.06
Operating Cash flows to price (2004) 0.76 0.06
Industry concentration (assets) (2006) 0.53 0.06
Efficient frontier index (2009) 0.29 0.06
Taxable income to income (2004) 0.76 0.07
Industry concentration (equity) (2006) 0.53 0.07
Return on assets (qtrly) (2010) 0.39 0.07
Book-to-market and accruals (2004) 0.76 0.07
Composite equity issuance (2006) 0.53 0.12

Details see Table OA.5
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Figure OA.9: Total R2 generated by old factors and its change due new factors. Old factors: 3
common factors and first 3 CZ21-specific factors.

(a) Total R2. Test assets: CRSP stocks (b) Total R2. Test assets: CZ21 portfolios

(c) Increase in Total R2. Test assets: CRSP stocks (d) Increase in Total R2. Test assets: CZ21 portfolios

For each 5-years rolling window ending in year y we compute the percentage TotalR2 generated by a latent factor model with 3 common factors between
individual stocks and CZ21 portfolios (model (i)). When a new factor form the zoo enters in the dataset we add this factor only to the six factors of model
(a) and recompute the TotalR2 with this new set of seven factors (model (ii)). TotalR2 is computed using as test assets either the individual stocks or
the CZ21 portfolios available in year y for both model (i) and model (ii). In Panels (a) and (b) we report the TotalR2 obtained with the old factors only
(Old fac.), that is with the factors in model (i). We also report all the increases in TotalR2 when a new factor is added in model (ii) to the 6 factors in
model (i). The models are estimated on the rolling window starting in year y − 4 and ending in year y, for each y = 2001, ..., 2020. Total R2’s are
computed as described in Section 4.2, but taking into account only the 5-year window ending in year y.
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Figure OA.10: RMSα generated by old factors and its change due new factors. Old factors: 3
common factors and first 3 CZ21-specific factors.

(a) RMSα. Test assets: CRSP stocks (b) RMSα. Test assets: CZ21 portfolios

(c) Increase in RMSα. Test assets: CRSP stocks (d) Increase in RMSα. Test assets: CZ21 portfolios

For each 5-years rolling window ending in year y we compute the RMSα generated by a latent factor model with 3 common factors between individual
stocks and CZ21 portfolios (model (i)). When a new factor form the zoo enters in the dataset we add this factor only to the six factors of model (a) and
recompute the RMSα with this new set of seven factors (model (ii)). RMSα is computed using as test assets either the individual stocks or the CZ21
portfolios available in year y for both model (i) and model (ii). In Panels (a) and (b) we report the RMSα obtained with the old factors only (Old fac.),
that is with the factors in model (i). We also report all the increases in RMSα when a new factor is added in model (ii) to the 6 factors in model (i).
The models are estimated on the rolling window starting in year y − 4 and ending in year y, for each y = 2001, ..., 2020. RMSα’s are computed as
described in Section 4.2, but taking into account only the 5-year window ending in year y.
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B Assumptions and proofs

Section B.1 includes all the Assumptions required to prove Proportion A.1 and Theorems A.1 and A.2
in Appendix A. Section B.2 provides the proof of Proposition A.1, while Sections B.3 and B.4 provide
the proofs of Theorems A.1 and A.2, respectively. Section B.5 contains additional technical results
required in the previous sections. Finally, Sections B.5 and B.7 provides the uniform asymptotic
expansions and distributions, respectively, of factors and loadings in the group factor model when
factors are estimated by RP-PCA: these results are useful in themselves, but also instrumental to some
of the proofs of the previous results.

In this appendix, we denote by at = [A]t the column vector corresponding to the t-th row a′t of
matrix A = [a1, ..., at, ..., aT ]′.

B.1 Assumptions for Proportion A.1 and all Theorems
(NEED TO BE CHANGED/ADAPTED TO THE NEW PROOFS!!!!)

We make the following assumptions:

Assumption B.1. We have N1, N2, T →∞ such that the conditions in (A.17) hold, that is:√
T/N = o(1), N/T 2 = o(1), and µN =

√
N2/N1 → µ, with µ ∈ [0, 1].

Assumption B.2. The unobservable factor process Ft = [ f c′t , f
s′
1,t, f

s′
2,t ]′ has vector of means, and

covariance matrix as defined in (A.8), that is:

E[Ft] =

 µc

µs1

µs2

 , and ΣF := V (Ft) =

 Ikc 0 0

0 Iks1 Φ

0 Φ′ Iks2

 ,
with all the elements of vector E[Ft] being finite, and where ΣF is positive-definite.

Assumption B.3. The loadings matrix Λj = [ Λc
j

... Λs
j ] = [ λj,1, . . . , λj,Nj ]′ is such that

lim
Nj→∞

1
Nj

Λ′jΛj = Σλ,j , where Σλ,j is a positive-definite (kj, kj) matrix with distinct eigenvalues and

kj = kc + ksj , for j = 1, 2.

Assumption B.4. The error terms εj,i,t and the factors hj,t = [f c′t , f
s′
j,t]
′ are such that for j = 1, 2 and

all i, t ≥ 1: a) E[εj,i,t|Ft] = 0 and E[ε2
j,i,t|Ft] ≤M , a.s., where Ft = σ(Fs, s ≤ t), b) E[ε8

j,i,t] ≤M

and E[‖hj,t‖2r∨8] ≤M , for a constant M <∞, where r > 2 is defined in Assumption B.5 b).

Assumption B.5. Define the variables ξj,t = 1√
Nj

∑Nj
i=1 λj,iεj,i,t and κj,t = 1√

Nj

∑Nj
i=1(ε2

j,i,t − η2
j,t),

indexed by N1, N2, where η2
j,t = plim

Nj→∞

1
Nj

∑Nj
i=1E[ε2

j,i,t|Ft], for j = 1, 2. a) For any t ≥ 1 and h ≥ 0
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have:

[ξ′1,t, ξ
′
2,t, ξ

′
1,t−h, ξ

′
2,t−h]

′ d→ N(0,Ωt(h)), (Ft-stably),

as N1, N2 →∞, where the asymptotic variance matrix is:

Ωt(h) =


Ω11,t(0) Ω12,t(0) Ω11,t(h) Ω12,t(h)

Ω22,t(0) Ω21,t(h) Ω22,t(h)

Ω11,t−h(0) Ω12,t−h(0)

Ω22,t−h(0)

 ,

for Ωjk,t(h) = plim
N1,N2→∞

1√
NjNk

∑Nj
i=1

∑Nk
`=1 λj,iλ

′
k,`cov(εj,i,t, εk,`,t−h|Ft), for any j, k, h.

Moreover, for all N1, N2 ≥ 1 and j = 1, 2, we have: b) E(‖ξj,t‖2r|Ft) ≤ M , a.s., and c)

E [|κj,t|4] ≤ M , for constants M < ∞ and r > 2. Finally, let ℵ̆j,i = 1√
T

∑T
t=1 ε̆j,i,th̆t, then d)

E[‖ℵ̆j,i‖2] ≤M .

Assumption B.6. a) The triangular array processes Vt ≡ VN1,N2,t = [h′j,t, ξ
′
j,t, j = 1, 2]′ and

V ∗t ≡ V ∗N1,N2,t
= [κj,t, η

2
j,t, j = 1, 2]′ are strong mixing of size − r

r−2
, uniformly in N1, N2 ≥ 1. 13

Moreover

b) ‖E(ξj,tξ
′
k,t|Ft)− E(ξj,tξ

′
k,t|Ft, ..., Ft−m)‖2 = O(m−ψ), as m→∞, uniformly in N1, N2 ≥ 1, and

c) ‖η2
j,t − E(η2

j,t|V t+mt−m )‖8 = O(m−ψ), as m→∞, uniformly in N1, N2 ≥ 1,

for j, k = 1, 2, where V t+mt−m = σ(Vs, t−m ≤ s ≤ t+m) and ψ > 1.

Assumption B.7. For j = 1, 2:

a) 1
T

∑T
t=1

∑t−1
s=1 E[η4

j,ts] ≤ M , E

[(
1√
Nj

∑Nj
i=1(εj,i,tεj,i,s − η2

j,ts)

)2
]
≤ M , for any s < t and a

constant M , where η2
j,ts = plim

Nj→∞

1
Nj

∑Nj
i=1E[εj,i,tεj,i,s|Ft]; b) 1√

T

∑T
t=1(1 + η2

j,t)hj,tα
′
j,t = Op(1),

1
T

∑T
t=1 ξj,tα

′
j,t = op(1), E[‖αj,t‖2] = O(1), where αj,t = 1√

NjT

∑Nj
i=1

∑T
s=1,s 6=t εj,i,tεj,i,shj,s;

c) E[‖βj,t‖2] = O(1) and E[‖β̄j,t‖2] = O(1), where βj,t = 1√
NjT

∑Nj
i=1

∑T
s=1,s 6=t εj,i,t(εj,i,sζj,s −

E[εj,i,sζj,s]) and β̄j,t = 1
T

∑Nj
i=1

∑T
s=1,s 6=t εj,i,tE[εj,i,sζj,s], where ζj,t = (η2

j,th
′
j,t, κj,th

′
j,t, ξ

′
j,t, α

′
j,t)
′.

Assumption B.8. For j = 1, 2:

a) P [‖hj,t‖ ≥ δ] ≤ c1 exp(−c2δ
b), for large δ; b)

∑Nj
`=1:`6=iE[εj,`,tεj,i,t] ≤ M , for all i ≥ 1;

c) P [‖ 1
T

∑T
t=1 zj,t‖ ≥ δ] ≤ c1T exp(−c2δ

2T η) + c3Tδ
−1 exp(−c4T

η̄), for all i ≥ 1 and δ >

0, where either zi,t = hj,tεj,i,t, or zi,t = ε2
j,i,t − E[ε2

j,i,t], or zi,t = 1√
Nj

∑Nj
`=1:` 6=i εj,`,tεj,i,t −

13That is, α(h) = O(h−φ) for some φ > r
r−2 , where α(h) = sup

N1,N2≥1
sup
t≥1

sup
A∈Vt

−∞,B∈V∞t+h

|P (A ∩ B) − P (A)P (B)|,

where Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m), and similarly for V ∗t .
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E[ 1√
Nj

∑Nj
`=1:` 6=i εj,`,tεj,i,t]; d) ‖λj,i‖ ≤ M , for all i ≥ 1; where b, c1, c2, c3, c4, η, η̄,M > 0 are

constants, and η ≥ 1/2.

Assumption B.9. The error terms are such that: a) Cov(εj,i,t, εk,`,t−h|Ft) = 0, if either j 6= k, or

i 6= `, b) E[εj,i,t|{εj,i,t−h}h≥1,Ft] = 0, c) E[ε2
j,i,t|{εj,i,t−h}h≥1,Ft] = γj,ii, say, where γj,ii > 0, for

all j, i, t, h.

B.2 Proof of Proposition A.1

From the covariance matrix ΣF of the factor vector
(
f ct , f

s
1,t, f

s
2,t

)′ in equation (A.8), and the definition
of matrices R and R∗ given in Section A.5, it follows that:

R =

(
Ikc 0

0 ΦΦ′

)
, R∗ =

(
Ikc 0

0 Φ′Φ

)
. (B.1)

Noting that also in our set-up matrix ΣF is assumed to be positive definite (see Assumption B.2), then
the proof of Proposition A.1 is omitted as it is analogous to the proof of Proposition 1 in AGGR (see
Section C.1 in their OA).

B.3 Proof of Theorem A.1

The proof of Theorem A.1 is structured analogously to the proof of Theorem 1 in AGGR. The main
novelty in the current paper consists in the derivation of the asymptotic expansion for the estimates of
the pervasive factors extracted by RP-PCA in each group (Subsection B.3.1), which are different in
some higher order terms from that derived in AGGR, who instead derived the asymptotic expansion
of the classical PCA estimators. Our asymptotic expansion provides an higher order terms compared
to the one derived by Lettau and Pelger (2020a) for the RP-PCA estimators. Then, all the steps in the
proof of Theorem 1 in AGGR are re-done taking into account of the new asymptotic expansion of the
factors’ estimators, and the fact that the formulas for the canonical correlations of the estimated factors
are different from those used in AGGR, as they now need to include the factor mean.

The proof starts with the asymptotic expansion of the factor estimates ĥj,t (see Proposition
B.2 in Section B.3.1). This result allows to derive the asymptotic expansion for the sample
canonical correlation matrix R̂ (Section B.3.2), and the asymptotic expansions of the eigenvalues
(and eigenvectors) of matrix R̂ by perturbation methods (Sections B.3.3 and B.3.4). This yields the
asymptotic expansions of the canonical correlations and of the test statistic ξ̂(kc) (Section B.3.5), and
the asymptotic Gaussian distribution of the test statistic (Section B.3.6).
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B.3.1 Asymptotic expansion of the factor estimates ĥj,t

PROPOSITION B.2. Under Assumptions B.1-B.4, B.5 b), c), B.6 a), and B.7, we have:

ĥj,t = Ĥj(hj,t + ψj,t), ψj,t :=
1√
Nj

uj,t +
1

T
bj,t +

1√
NjT

dj,t + ϑj,t, (B.2)

for groups j = 1, 2, and dates t = 1, . . . , T , where:

uj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

1√
Nj

Nj∑
i=1

λj,iεj,i,t,

bj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1 [
1

T

T∑
r=1

h̆∗j,rh̆
∗′
j,r

]−1
 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

×

η2
j,th̆j,t +

1

NjT

Nj∑
i=1

T∑
s=1

T∑
q=1

ε̆∗isε̆
∗
iqh̆
∗
sh̆
∗′
q

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

ht

 ,
dj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1 [
1

T

T∑
r=1

h̆∗j,rh̆
∗′
j,r

]−1
 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

×

 1√
NjT

Nj∑
i=1

T∑
s=1

εj,i,s

h̆∗j,sλ′j,i + λj,ih
′
j,s

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

hj,t,

with h̆∗j,t := hj,t + γ̃RP h̄j , ε̆∗j,i,t := εj,i,t + γ̃RP ε̄j,i λj,i = (λc′j,i, λ
s′
j,i)
′. The terms ϑj,t are such that

1

T

T∑
t=1

(
1√
Nj

uj,t +
1

T
bj,t +

1√
NjT

dj,t + ϑj,t

)
ϑ′k,t = op

(
1

N
√
T

)

and
1

T

T∑
t=1

hj,tϑ
′
k,t = Op

(
1

N

)
, as N1, N2, T →∞. Finally, matrix Ĥj converges in probability to a

nonstochastic positive definite (kj, kj) matrix, for j, k = 1, 2.

Proposition B.2 extends Proposition 3 in AGGR, which was derived for factors estimated by PCA, to
the more general case in which factors are estimated by RP-PCA, as in Lettau and Pelger (2020a,b).
For each group of data j = 1, 2, Proposition B.2 provides a more accurate asymptotic expansion of
RP-PC factor estimator compared to the results in Lettau and Pelger (2020a): this refined result is
needed to control higher-order terms in the asymptotic expansion of the test statistic in our Theorem
A.1. Notably, the term 1√

Nj
uj,t in the expression for ψj,t appears in Proposition 3 of AGGR, and is

also the only term appearing in the expansion of the RP-PC estimator in the OA of Lettau and Pelger
(2020a). Notably, the term of stochastic order 1/

√
N is ut/

√
N , where ut = (Λ′Λ/N)−1ξt is zero
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mean as E[ξt] = 0 from Assumption B.4 a). This term is the usual first order term appearing in the
asymptotic expansion of classical PC factor estimator (see Bai (2003)) and it is also the first order term
appearing in the expansion of RP-PC estimator (see Lettau and Pelger (2020a)). All the other terms
in the expression for ψj,t are new compared to Lettau and Pelger (2020a), and are also different from
those appearing in AGGR.

B.3.2 Asymptotic expansion of matrix R̂

As canonical correlations and canonical directions are invariant to one-to-one transformations of the
vectors ĥ1,t and ĥ2,t, in the asymptotic analysis of the test statistic ξ̂(kc), we can set Ĥj = Ikj , j = 1, 2,
in expansion (B.2) without loss of generality.

Let ¯̂
hj =

1

T

T∑
t=1

ĥj,t, then equation (B.2) implies ¯̂
hj = Ĥj(h̄j,t + ψ̄j,t), with:

ψ̄j,t :=
1√
Nj

ūj,t +
1

T
b̄j,t +

1√
NjT

d̄j,t + ϑ̄j,t. (B.3)

By defining

ŭj,t := uj,t − ūj , (B.4)

b̆j,t := bj,t − b̄j , (B.5)

d̆j,t := dj,t − d̄j , (B.6)

ϑ̆j,t := ϑj,t − ϑ̄j , (B.7)

and

ψ̆j,t := ψj,t − ψ̄j

=
1√
Nj

ŭj,t +
1

T
b̆j,t +

1√
NjT

d̆j,t + ϑ̆j,t , (B.8)

we get

ĥj,t − ¯̂
hj = (hj,t + ψj,t)− (ψ̄j + h̄j) = (hj,t − h̄j) + (ψj,t − ψ̄j)

= Ĥj(h̆j,t + ψ̆j,t) , (B.9)
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for all dates t = 1, ..., T . Therefore, we get:

V̂j,k =
1

T

T∑
t=1

ĥj,tĥ
′
k,t −

¯̂
hj

¯̂
h′j =

1

T

T∑
t=1

(h̆j,t + ψ̆j,t)(h̆j,t + ψ̆j,t)
′ = Ṽj,k + X̂j,k, (B.10)

where:

Ṽj,k =
1

T

T∑
t=1

h̆j,th̆
′
k,t , X̂j,k =

1

T

T∑
t=1

(h̆j,tψ̆
′
k,t + ψ̆j,th̆

′
k,t) +

1

T

T∑
t=1

ψ̆j,tψ̆
′
k,t, (B.11)

for j, k = 1, 2. From the definition of matrix R̂ in (A.10), and by using (B.10) and V̂ −1
jj =(

Ikj + Ṽ −1
jj X̂jj

)−1

Ṽ −1
jj , we get:

R̂ =
(
Ik1 + Ṽ −1

11 X̂11

)−1

Ṽ −1
11

(
Ṽ12 + X̂12

)(
Ik2 + Ṽ −1

22 X̂22

)−1

Ṽ −1
22

(
Ṽ21 + X̂21

)
. (B.12)

By using the definitions of ψj,t in Proposition B.2 and of ψ̄j,t in equation (B.3), the next Lemma
provides an upper bound for terms X̂j,k, j, k = 1, 2.

LEMMA B.1. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have X̂j,k = Op (δN,T ), for

j, k = 1, 2, where δN,T := (min{N, T})−1.

We now expand matrix R̂ at second order in the X̂j,k. We do this because the first-order contribution
of the X̂j,k to the statistic of interest involves leading terms of stochastic order Op

(
1

N
√
T

)
: see

. The second-order remainder term is Op(δ
2
N,T ), and δ2

N,T is not negligible with respect to 1
N
√
T

when T is too small compared to N (that is the case when m = T and 1
N
√
T
≥ 1

T 2 when
T
√
T � N � T 2). In order to get validity of our results for more general conditions on the relative

growth rate of N and T such as in Assumption B.1, we consider a second-order expansion. By using
(I−X)−1 = I+X+X2 +Op(δ

3
N,T ) forX = Op(δN,T ), from equation (B.12) we get the next Lemma.

LEMMA B.2. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7, the second-order asymptotic

expansion of matrix R̂ is:

R̂ = R̃ + Ψ̂ +Op(δ
3
N,T ), (B.13)

where R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 and Ψ̂ = Ṽ −1

11 Ψ̂∗, with Ψ̂∗ = Ψ̂∗ (I) + Ψ̂∗ (II),

Ψ̂∗ (I) = −X̂11R̃ + X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21, (B.14)

Ψ̂∗ (II) = −X̂11Ṽ
−1

11 Ψ̂∗ (I) +
(
X̂22B̃ − X̂21

)′
Ṽ −1

22

(
X̂22B̃ − X̂21

)
, (B.15)

and B̃ = Ṽ −1
22 Ṽ21.
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This Lemma is analogous to Lemma B.2 in AGGR. In equation (B.13) matrix R̂ is decomposed into the
sum of the sample canonical correlation matrix R̃ computed with the true factor values, an estimation
error term Ψ̂ consisting of first-order and second-order components Ψ̂∗ (I) and Ψ̂∗ (II), respectively,
and a third-order remainder term Op(δ

3
N,T ).

B.3.3 Matrix R̃ and its eigenvalues and eigenvectors

We now characterize matrix R̃ and its eigenvalues, that are ρ̃2
1, ..., ρ̃

2
k1

, i.e. the squared sample canonical
correlations of h1,t and h2,t, under the null hypothesis of kc > 0 common factors among the two groups
of observables. Since the vectors h1,t and h2,t have a common component of dimension kc, we know
that ρ̃1 = ... = ρ̃kc = 1 a.s.. Using the notation:

Σ̃cc =
1

T

T∑
t=1

(f ct − f̄ c)(f ct − f̄ c)′ =
1

T

T∑
t=1

f̆ ct f̆
c′
t ,

Σ̃c,j =
1

T

T∑
t=1

(f ct − f̄ c)(f sj,t − f̄ sj )′ =
1

T

T∑
t=1

f̆ ct f̆
s′
j,t, Σ̃j,c = Σ̃′c,j ,

Σ̃j,k =
1

T

T∑
t=1

(f sj,t − f̄ sj )(f sk,t − f̄ sk) =
1

T

T∑
t=1

f̆ sj,tf̆
s′
k,t, j, k = 1, 2,

with f̆ ct := f ct − f̄ c and f̆ sj,t := f sj,t− f̄ sj , we can write matrices Ṽj,k, with j, k = 1, 2, in (B.11) in block
form as:

Ṽjj =

(
Σ̃cc Σ̃c,j

Σ̃j,c Σ̃jj

)
, j = 1, 2, Ṽ12 =

(
Σ̃cc Σ̃c,2

Σ̃1,c Σ̃12

)
= Ṽ ′21.

The last two equations and the definition of R̃ allow to obtain the next Lemma, which is analogous as
the Lemma B.3 in AGGR, with the only fundamental difference being the definition of matrices Σ̃cc,
Σ̃c,j , and Σ̃j,k.

LEMMA B.3. The matrix B̃ defined in Lemma B.2 is such that:

B = Ṽ −1
22 Ṽ21 =

[
Ikc Σ̃−1

cc|2Σ̃c1|2

0 Σ̃−1
22|cΣ̃21|c

]
=

 Ikc Σ̃−1
cc

(
Σ̃c1 − Σ̃c2Σ̃−1

22|cΣ̃21|c

)
0 Σ̃−1

22|cΣ̃21|c

 . (B.16)

The matrix R̃ = Ṽ −1
11 Ṽ12Ṽ

−1
22 Ṽ21 is such that:

R̃ =

[
Ikc Σ̃−1

cc Σ̃c1(Ik1−kc − R̃ss)

0 R̃ss

]
,
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where R̃ss = Σ̃−1
11|cΣ̃12|cΣ̃

−1
22|cΣ̃21|c and Σ̃jk|c := Σ̃jk − Σ̃jcΣ̃

−1
cc Σ̃ck for j, k = 1, 2.

Matrix R̃ss is the sample canonical correlation matrix for the residuals of the sample orthogonal
projections of f̆ s1,t and f̆ s2,t onto f̆ ct , with the latter three factors being the demeaned versions of f s1,t,
f s2,t and f ct . From Lemma B.3, the kc largest eigenvalues of matrix R̃ are ρ̃2

1 = ... = ρ̃2
kc = 1, while the

remaining k1 − kc eigenvalues are the eigenvalues of matrix R̃ss and are such that 1 > ρ̃2
kc+1 ≥ ... ≥

ρ̃2
k1
> 0, a.s.. Let us define:

Ec
(k1×kc)

=

[
Ikc

0

]
, Es

(k1×(k1−kc))
=

[
0

Ik1−kc

]
. (B.17)

Then, the eigenvectors associated with the first kc unit eigenvalues of R̃ are spanned by the columns
of matrix Ec. The columns of matrices Ec and Es span the space Rk1 .

B.3.4 Eigenvalues and eigenvectors of matrix R̂ obtained by perturbation methods

The estimators of the first kc canonical correlations are such that ρ̂2
` , with ` = 1, ..., kc are the kc largest

eigenvalues of matrix R̂. We now derive their asymptotic expansion under the null hypothesis H(kc)

using perturbations arguments applied to equation (B.13). Let Ŵ ∗
1 be a (k1, k

c) matrix whose columns
are eigenvectors of matrix R̂ associated with the eigenvalues ρ̂2

` , with ` = 1, ..., kc. We have:

R̂Ŵ ∗
1 = Ŵ ∗

1 Λ̂, (B.18)

where Λ̂ = diag(ρ̂2
` , ` = 1, ..., kc) is the (kc, kc) diagonal matrix containing the kc largest eigenvalues

of R̂. We know from the previous subsection that the eigenspace associated with the largest eigenvalue
of R̃ (equal to 1) has dimension kc and is spanned by the columns of matrix Ec. Since the columns of
Ec and Es span Rk1 , we can write the following expansions:

Ŵ ∗
1 = Ec Û + Esα̂, Λ̂ = Ikc + M̂, (B.19)

where Ec and Es are defined in equation (B.17), the stochastic (kc, kc) matrix Û is nonsingular with
probability approaching (w.p.a.) 1, stochastic matrix M̂ is diagonal, and α̂ is a (k1 − kc, kc) stochastic
matrix. By the continuity of the matrix eigenvalue and eigenfunction mappings, and Lemma B.1, we
have that α̂ and M̂ converge in probability to null matrices as N1, N2, T → ∞ at rate Op(δN,T ). By
substituting the expansions (B.13) and (B.19) into the eigenvalue-eigenvector equation (B.18), using
the characterization of matrix R̃ obtained in Lemma B.3, and keeping terms up to order Op(δ

3
N,T ), we

get expressions for matrices α̂ and M̂ . These yield the asymptotic expansions of the eigenvalues and
eigenvectors of matrix R̂ provided in the next Lemma.
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LEMMA B.4. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7, we have:

Λ̂ = Ikc + Û−1Σ̃−1
cc

{
Ψ̂∗cc + Ψ̂∗cs(Ik1−kc − R̃ss)

−1Ψ̂sc − Σ̃c,1(Ik1−kc − R̃ss)
−1Ψ̂scΣ̃

−1
cc Ψ̂∗cc

}
Û

+Op(δ
3
N,T ), (B.20)

Ŵ ∗
1 =

(
Ec + Es(Ik1−kc − R̃ss)

−1
[
Ψ̂sc + Ψ̂ss(Ik1−kc − R̃ss)

−1Ψ̂sc

−(Ik1−kc − R̃ss)
−1Ψ̂sc

(
Σ̃−1
cc Ψ̂∗cc

)])
Û +Op(δ

3
N,T ), (B.21)

where Ψ̂cc, Ψ̂cs = Ψ̂′sc, Ψ̂ss denote the upper-left (kc, kc) block, the upper-right (kc, ks1) block and the

lower-right (ks1, k
s
1) block of matrix Ψ̂, and similarly for the blocks of Ψ̂∗.

In equations (B.20) and (B.21), in the terms that are of second-order with respect to Ψ̂, we can replace
Ψ̂ by Ψ̂(I) without changing the order Op(δ

3
N,T ) of the remainder term. Note that the approximation in

(B.20) holds for the terms in the main diagonal, as matrix Λ̂ has been defined to be diagonal.

B.3.5 Asymptotic expansion of
∑kc

`=1 ρ̂`

Let us now derive an asymptotic expansion for the sum of the kc largest canonical correlations∑kc

`=1 ρ̂`. By using the expansion of the matrix square root function in a neighbourhood of the identity,
i.e. (I +X)1/2 = I + 1

2
X − 1

8
X2 +Op(δ

3
N,T ) for X = Op(δN,T ), from equation (B.20) we have:

Λ̂1/2 = Ikc +
1

2
Û−1Σ̃−1

cc

{
Ψ̂∗cc −

1

4
Ψ̂∗ccΣ̃

−1
cc Ψ̂∗cc + Ψ̂∗cs(Ik1−kc − R̃ss)

−1Ψ̂sc

−Σ̃c,1(Ik1−kc − R̃ss)
−1Ψ̂scΣ̃

−1
cc Ψ̂∗cc

}
Û +Op(δ

3
N,T ).

Using
∑kc

`=1 ρ̂` = tr
{

Λ̂1/2
}

, this implies:

kc∑
`=1

ρ̂` = kc +
1

2
tr

{
Σ̃−1
cc

[
Ψ̂∗cc −

1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)
−1Ψ̂(I)

sc

−Σ̃c,1(Ik1−kc − R̃ss)
−1Ψ̂(I)

sc Σ̃−1
cc Ψ̂∗(I)cc

]}
+Op(δ

3
N,T ). (B.22)

The next Lemma provides the asymptotic expansions of the terms within the the trace operator in the
r.h.s. of (B.22) by plugging the expressions of Ψ̂∗ and its components from Lemma B.2.
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LEMMA B.5. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have:

kc∑
`=1

ρ̂` = kc − 1

2N
tr

{
Σ̃−1
cc

1

T

T∑
t=1

E[(µN ŭ
(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft]

}
− 1

2T 2
tr

{
Σ̃−1
cc

1

T

T∑
t=1

∆̃b
(c)

t ∆̃b
(c)′
t

}

− 1

2N
√
T
tr

{
1√
T

T∑
t=1

[
(µN ŭ

(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′ − E[(µN ŭ

(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft]

]}
+Op

(
δ3
N,T

)
+ op (εN,T ) , (B.23)

where εN,T := 1
N
√
T

. The terms in the curly brackets are Op(1).

We have δ3
N,T = o(εN,T ) from the definitions of δN,T in Lemma B.1 and of εN,T in Lemma B.5, and

the condition
√
T � N � T 2 in Assumption B.1. Therefore, the leading stochastic terms in the

difference
∑kc

`=1 ρ̂`−kc are of order Op

(
1
N

)
, Op

(
1
T 2

)
and Op

(
1

N
√
T

)
. If the assumption N � T 2 was

violated, an additional term of order the term of order 1
T
√
NT

would appear on the r.h.s. of equation
(B.23), analogously to what happens in the r.h.s. of the analogous equation in Lemma B.5 of AGGR.14

This additional term is negligible w.r.t. the dominating term of order 1
N
√
T

, and therefore absorbed in
the term op (εN,T ) in our equation (B.23) under Assumption B.1.
From the definition of matrices Σ̃U and Σ̃B in Theorem A.1, we have 1

T

∑T
t=1E[(µN ŭ

(c)
1t −

ŭ
(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft] = Σ̃U and 1

T

∑T
t=1 ∆̃b

(c)

t ∆̃b
(c)′
t = Σ̃B. Moreover, let us define the process

Ut := µN ŭ
(c)
1t − ŭ

(c)
2t . (B.24)

Process Ut depends on N1, N2, but we do not make this dependence explicit for expository purpose.
By using these definitions, from Lemma B.5 we get:

kc∑
`=1

ρ̂` − kc +
1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+

1

2T 2
tr
{

Σ̃−1
cc Σ̃B

}
= − 1

2N
√
T

(
1√
T

T∑
t=1

[U ′tUt − E(U ′tUt|Ft)]

)
+ op (εN,T ) .

(B.25)

Under our set of assumptions the term 1√
T

∑T
t=1 [U ′tUt − E(U ′tUt|Ft)] is Op(1), as in the next

subsection we show that it is asymptotically Gaussian distributed. The remainder term op (εN,T ) in
the r.h.s. of (B.25) is negligible with respect to the first term in the r.h.s. The result in equation
(B.25) is analogous to the one in equation (B.15) in AGGR, with the notable differences being the new
definitions of the term in Ut provided in our equation (B.24), and of matrices Σ̃U and Σ̃B. Moreover,
as mentioned above, under the assumption N � T 2, the term of order 1

T
√
NT

appearing in Lemma B.5
of AGGR is negligible w.r.t. the dominating term of order 1

N
√
T

.

14For example, assumption N � T 2 is violated in the case T 2 � N � T 5/2 allowed by AGGR, but not by our
Assumption B.1
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B.3.6 Asymptotic distribution of the test statistic under the null hypothesis H(kc)

From the asymptotic expansion (B.25) we obtain the asymptotic distribution of ξ̂(kc) =
∑kc

`=1 ρ̂`

under the null hypothesis H(kc) of kc common factors. First, we apply a CLT for weakly dependent
triangular array data to prove the asymptotic normality of 1√

T

∑T
t=1ZN,t as N, T → ∞, where

ZN,t := U ′tUt − E(U ′tUt|Ft) depends on N1, N2 via process Ut defined in (B.24).

i) CLT for Near-Epoch Dependent (NED) processes

Let process VN1,N2,t ≡ Vt be as defined in Assumption B.6, and let V t+mt−m = σ(Vs, t−m ≤ s ≤ t+m)

for any positive integer m, with Vt ≡ V t−∞.

LEMMA B.6. Under Assumptions B.3, B.4 a), b), B.5 b) and B.6 a)-c) we have:

(i) ZN,t is measurable w.r.t. Vt, and E[ZN,t] = 0 for all t ≥ 1 and N1, N2 ≥ 1,

(ii) sup
t≥1,N1,N2≥1

E [‖ZN,t‖r] <∞, for a constant r > 2,

(iii) Process (ZN,t) is L2 Near Epoch Dependent (L2-NED) of size −1 on process (Vt), and (Vt) is

strong

mixing of size −r/(r − 2), uniformly in N1, N2 ≥ 1, 15

(iv) Matrix ΩU := limT,N→∞ V
(

1√
T

∑T
t=1ZN,t

)
is positive definite and such that

ΩU =
∞∑

h=−∞

Γ(h), Γ(h) := lim
N→∞

Cov (ZN,t,ZN,t−h) . (B.26)

Then, by an application of the univariate CLT in Corollary 24.7 in Davidson (1994) and the Cramér-
Wold device, we have that:

1√
T

T∑
t=1

ZN,t
d−→ N (0,ΩU) , (B.27)

as T,N → ∞. Let us now compute the limit autocovariance matrix Γ(h) explicitly. By the Law of
Iterated Expectation and E[ZN,t|Ft] = 0, we have:

Γ(h) = lim
N→∞

E [Cov (ZN,t,ZN,t−h|Ft)] . (B.28)

Moreover, from Assumptions B.3 and B.5 a), vector (U ′t , U
′
t−h)

′ is asymptotically Gaussian for any h,

15That is,
∥∥ZN,t − E[ZN,t|Vt+mt−m ]

∥∥
2
≤ ξ(m), uniformly in t ≥ 1 and N1, N2 ≥ 1, where ξ(m) = O(m−ψ) for some

ψ > 1.
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t as N →∞:(
Ut

Ut−h

)
d→

(
U∞t

U∞t−h

)
∼ N

(
0,

[
ΣU,t(0) ΣU,t(h)

ΣU,t(h)′ ΣU,t(0)

])
, (Ft-stably). (B.29)

We use the Lebesgue Lemma to interchange the limes for N → ∞ and the outer expectation in
the r.h.s. of (B.28), and the fact that convergence in distribution plus uniform integrability imply
convergence of the expectation for a sequence of random variables (see Theorem 25.12 in Billingsley
(1995)) to show the next lemma.

LEMMA B.7. Under Assumptions B.3 and B.5 b), we have:

Γ(h) = E
[
Cov(U∞ ′t U∞t , U

∞ ′
t−hU

∞
t−h|Ft)

]
.

Lemma B.7 allows to deploy the joint asymptotic Gaussian distribution of (U∞ ′t , U∞ ′t−h)′ to compute
the limit autocovariance Γ(h). To compute matrix Γ(h), we use Theorem 12 p. 284 in Magnus
and Neudecker (2007) and Theorem 10.21 in Schott (2005). We get Cov(U∞ ′t U∞t , U

∞ ′
t−hU

∞
t−h|Ft) =

2tr {ΣU,t(h)ΣU,t(h)′}. Therefore from (B.26) and Lemma B.7 we get:

ΩU =
∞∑

h=−∞

2tr {E [ΣU,t(h)ΣU,t(h)′]} = 4ΩU,1. (B.30)

ii) Asymptotic Gaussian distribution of the test statistic

Let us define the constant DN,T = 1
2N
√
T

. From equations (B.25) and (B.30), and by using:

(D2
N,TΩU)1/2 = 1

N
√
T

Ω
1/2
U,1 , and N

√
TΩ

−1/2
U,1 = O

(
N
√
T
)

= O(ε−1
N,T ) , under the hypothesis of kc

common factors in each group the statistics ξ̂(kc) =
∑kc

`=1 ρ̂` is such that:

N
√
TΩ

−1/2
U,1

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}
+

1

2T 2
tr
{

Σ̃−1
cc Σ̃B

}]
= −(D2

N,TΩU)−1/2DN,T
1√
T

T∑
t=1

ZN,T + op(1).

From equation (B.27), the r.h.s. converges in distribution to a standard normal distribution, which
yields Theorem A.1.
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B.4 Proof of Theorem A.2

To establish the asymptotic distribution of the feasible statistic in Theorem A.2 we need to control the
effect of replacing the re-centering and scaling terms by means of their estimates. The latter involve
factors and loadings estimates. Hence, in Section B.6 we derive uniform asymptotic expansions of
factors and loadings estimators. These results are instrumental for the proof of Theorem A.2, as well
as for the proofs of other results in this paper. In Subsection B.4.1 and B.4.2 we show the statements
in Part i) and in Part ii) of Theorem A.2, respectively.

B.4.1 Proof of Part (i)

Let us first consider the asymptotic distribution of ξ̃(kc) under the null hypothesis of kc common
factors. Under the assumptions of Theorem A.2, the infeasible asymptotic distribution in Theorem
A.1 becomes:

N
√
TΩ

−1/2
U,1

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}]
d→ N(0, 1), (B.31)

where ΩU,1 = 1
2
tr {ΣU(0)2} and we use (A.21) and Σ̃B = 0. Theorem A.2 i) follows, if we prove:

tr
{

Σ̂U

}
= tr

{
Σ̃−1
cc Σ̃U

}
+ op

(
1√
T

)
, (B.32)

tr
{

Σ̂2
U

}
= tr

{
ΣU(0)2

}
+ op(1). (B.33)

Indeed, the statistic ξ̃(kc) can be rewritten as:

ξ̃(kc) =

[
1

2
tr
{

Σ̂2
U

}/
ΩU,1

]−1/2{
N
√
TΩ

−1/2
U,1

[
ξ̂(kc)− kc +

1

2N
tr
{

Σ̃−1
cc Σ̃U

}]
+Op

(√
T
[
tr
{

Σ̂U

}
− tr

{
Σ̃−1
cc Σ̃U

}])}
,

where the ratio 1
2
tr
{

Σ̂2
U

}/
ΩU,1 converges in probability to 1 from (B.33), the term within the curly

brackets in the first line in the r.h.s. converges in distribution to a standard normal distribution from
(B.31), and the term on the second line on the r.h.s. is op(1) from (B.32).
Le us now prove equations (B.32) and (B.33) by deriving the asymptotic expansions of Σ̂U and Σ̃−1

cc .
To derive the asymptotic expansion of Σ̂U , we use its definition Σ̂U = µ2

N Σ̂
(cc)
u,11 + Σ̂

(cc)
u,22, where the

matrices Σ̂u,jj =
(

1
Nj

Λ̂′jΛ̂j

)−1 (
1
Nj

Λ̂′jΓ̂
∗
j Λ̂j

)(
1
Nj

Λ̂′jΛ̂j

)−1

, j = 1, 2, involve the estimated loadings
and residuals. We plug in the uniform asymptotic expansions from Proposition B.6 in Section B.6 to
show the next result.
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LEMMA B.8. Under Assumptions B.1 - B.9, i) The asymptotic expansion of estimator Λ̂′jΛ̂j/Nj is:

Λ̂′jΛ̂j

Nj

= Û ′j
[
Σ̃Λ,j +

1√
T

(
LΛ,j + L′Λ,j

)]
Ûj + op

(
1√
T

)
, (B.34)

for j = 1, 2, where Σ̃Λ,j = 1
Nj

Λ′jΛj with Λj = [Λc
j

... Λs
j ], and LΛ,j = Σ̃Λ,jQj and:

Ûj =

[
Ĥc 0

0 Ĥs,j

]
, Qj =

[
0 0√

T Σ̃j,cΣ̃
−1
cc 0

]
, (B.35)

and Ĥc, Ĥs,j are non-singular matrices w.p.a. 1. ii) The asymptotic expansion of Λ̂′jΓ̂
∗
j Λ̂j/Nj is:

1

Nj

Λ̂′jΓ̂
∗
j Λ̂j = Û ′j

[
Ω̃jj +

1√
T

(
LΩ,j + L′Ω,j

)]
Ûj + op

(
1√
T

)
, (B.36)

for j = 1, 2, where Ω̃jj = 1
Nj

Λ′jΓ
∗
jΛj , with Γ∗j = diag(γ∗j,ii, i = 1, ..., Nj), and LΩ,j = Ω̃jjQj .

Equation (B.34) allows to compute the asymptotic approximation of
(

1
Nj

Λ̂′jΛ̂j

)−1

by matrix inversion:

(
1

Nj

Λ̂′jΛ̂j

)−1

= Û−1
j

[
Σ̃−1

Λ,j −
1√
T

Σ̃−1
Λ,j

(
LΛ,j + L′Λ,j

)
Σ̃−1

Λ,j

](
Û ′j
)−1

+ op

(
1√
T

)
. (B.37)

Substituting equations (B.37) and (B.36) into the expression of Σ̂u,jj and rearranging terms, we get:

Σ̂u,jj = Û−1
j Σ̃−1

Λ,j

[
Ω̃jj +

1√
T

(
LΩ,j + L′Ω,j

)
− 1√

T
Ω̃jjΣ̃

−1
Λ,j

(
LΛ,j + L′Λ,j

)
− 1√

T

(
LΛ,j + L′Λ,j

)
Σ̃−1

Λ,jΩ̃jj

]
Σ̃−1

Λ,j

(
Û ′j
)−1

+ op

(
1√
T

)
.

Therefore, from the definitions of matrices LΩ,j and LΛ,j in Lemma B.8, we have:

Σ̂u,jj = Û−1
j

(
Σ̃u,jj +

1√
T

(LU,j + L′U,j)

)(
Û ′j
)−1

+ op

(
1√
T

)
, (B.38)

where Σ̃u,jj = Σ̃−1
Λ,jΩ̃jjΣ̃

−1
Λ,j and LU,j = −QjΣ̃u,jj , for j = 1, 2. In particular, the upper-left (kc, kc)

block of LU,j vanishes, i.e. (LU,j)
(cc) = 0 for j = 1, 2.
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From equation (B.38) we get the asymptotic expansion for Σ̂U = µ2
N Σ̂

(cc)
u,11 + Σ̂

(cc)
u,22:

Σ̂U = Ĥ−1
c

([
µ2
N Σ̃u,11 + Σ̃u,22

](cc)

+
1√
T

[
µ2
N(LU,1 + L′U,1) + LU,2 + L′U,2

](cc))(Ĥ′c)−1

+ op

(
1√
T

)
= Ĥ−1

c Σ̃U

(
Ĥ′c
)−1

+ op

(
1√
T

)
. (B.39)

Moreover, Proposition B.6 ii) implies Σ̃−1
cc =

(
Ĥ−1
c

)′
Ĥ−1
c + op

(
1√
T

)
. This equation, together with

the asymptotic expansion (B.39) and the commutative property of the trace operator, imply equation
(B.32). Similarly, the asymptotic expansion (B.39) and the convergence Σ̃U → ΣU(0) imply equation
(B.33).

B.4.2 Proof of Part (ii)

In order to prove Theorem A.2 (ii), we consider the behavior of statistic ξ̃(kc) under the
alternative hypothesis H1 of less than kc common factors. Specifically, let r < kc be the true

number of common factors in the DGP. The statistic is given by: ξ̃(kc) = N
√
T
(

1
2
tr{Σ̂2

U}
)−1/2[∑kc

`=1 ρ̂` − kc + 1
2N
tr
{

Σ̂U

}]
. We rely on the following Lemma. For its proof we assume that f̂ ct is

used to estimate the common factor in panel j = 1, while estimator f̂ c∗t is used in panel j = 2.

LEMMA B.9. Under the alternative hypothesis H(r), with r < kc, we have ‖Σ̂U‖ ≤ C, w.p.a. 1, for

a constant C > 0.

From Lemma B.9 and using
∑kc

`=1 ρ̂` =
∑kc

`=1 ρ` + op(1), where the op(1) term follows from the
continuity of the eigenvalues mapping, we get:

ξ̃(kc) = N
√
T

(
1

2
tr{Σ̂2

U}
)−1/2

[
kc∑
`=1

ρ` − kc + op(1)

]
.

Under H(r), we have r < kc canonical correlations that are equal to 1, while the other ones are strictly
smaller than 1. Therefore,

∑kc

`=1 ρ` − kc < 0. Then, from Lemma B.9 we get ξ̃(kc) ≤ −N
√
Tc1,

w.p.a. 1, for a constant c1 > 0. The conclusion follows.
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B.5 Additional proofs

This section contains the proofs of Proposition B.2 and Lemmas B.1 - B.9, stated in Sections B.3 and
B.4. The section also includes the proof of the additional technical results needed to prove them.

B.5.1 Proof of Proposition B.2

The group factor model (2.10) implies that the ususal factor model for the Nj individuals in group j
is:

yj,t = Λjhj,t + εj,t

where yj,t = [yj,1,t, ..., yj,Nj ,t]
′, Λ = [λj,1, ..., λj,Nj ]

′ = [Λc
1, Λs

1], hj,t = [f c′t , f
s′
j,t]
′ and εj,t =

[εj,1,t, ..., εj,Nj ,t]
′. Therefore the model for the individual i in panel j is:

yj,i,t = λ′j,i hj,t + εj,i,t,

i = 1, ..., Nj , and t = 1, ..., T . Only for the remaining part of the proof of Proposition B.2 we omit
the group index j since it is immaterial for the proof’s arguments. We write the factor model for the
generic individual i in group j simply as:

yi,t = λ′iht + εi,t, i = 1, ..., N, t = 1, ..., T, (B.40)

where ht is the (k, 1) vector of unobservable factors for group j. In matrix notation, the model can be
written as in equation (A.2), that is:

Y = HΛ′ + ε,

where Y is the (T,N) matrix of observations and H is the (T, k) matrix of factor values. Analogously
to Lettau and Pelger (2020a), define:

W := IT +
(√

γRP + 1− 1
) 1T1′T

T
= IT + γ̃RP

1T1
′
T

T
(B.41)

with both γRP ∈ [−1,+∞), and γ̃RP := (
√
γRP + 1− 1) ∈ [−1,+∞). These definitions imply:

W 2 = IT + γRP
1T1

′
T

T
. (B.42)

We introduce a set of high-level assumptions (Assumptions B.10-B.13 below) and show in Section
B.5.1.7 that they are implied by Assumptions B.2-B.4, B.5 b)-c), B.6 a), B.7.

Assumption B.10. The factors are such that their sample covariance matrix is H ′W 2H/T =

Online Appendix - 43



Σh(W ) + op(1) as T →∞, where the matrix

Σh(W ) := E
[

(ht + γ̃RPE[ht]) (ht + γ̃RPE[ht])
′ ] (B.43)

is positive definite. The loadings are such that Λ′Λ/N = Σλ + o(1) as N →∞.

In the spacial case of γ̃RP = −1 we have Σh(W ) = V (ht) = Ik, from Assumption B.2. Note that
Assumption B.10 is different form Assumption C.1 in AGG, which instead imposed that H ′H/T =

Ik + op(1). The (N, k) matrix of RP-PCA loading estimates Λ̂ = [λ̂1, ..., λ̂N ]′ satisfies the following
eigenvector-eigenvalue equation:

1

NT
(Y ′W 2Y ) Λ̂ = Λ̂ V̂ , (B.44)

where V̂ is the (k, k) diagonal matrix of the k largest eigenvalues of matrix Y ′W 2Y/(NT ), and the
columns of matrix Λ̂ are the associated normalized eigenvectors such that Λ̂′Λ̂/N = Ik.16 Equivalently,
Λ̂ is defined as the eigenvectors matrix Y ′W 2Y/(NT ) multiplied by

√
N . It is easy to see that Λ̂ in

(B.44) is an appropriate estimator for Λ. In fact, the latter is the (true) vector of loadings both in the
original model (A.2), and also on the new “projected model” obtained by pre-multiplying the matrix
of observations Y by W :

WY = WHΛ′ +Wε. (B.45)

This argument is used by Lettau and Pelger (2020a) to prove the asymptotic results for their RP-PC
estimator extending those derived for classical PC in Bai (2003).17 By defining Y̆ := WY , H̆ := WH

and ε̆ := Wε, the “projected model” (B.45) can be written as:

Y̆ = H̆Λ′ + ε̆ . (B.46)

The (T, k) matrix of factor estimators Ĥ = [ĥ1, ..., ĥT ]′ coincides with the estimator obtained as in
Theorem 1 of the OA of Lettau and Pelger (2020a), and is obtained by cross-sectional regressions of
the observed data on the estimated loadings at each date:

Ĥ = Y Λ̂(Λ̂′Λ̂)−1 =
1

N
Y Λ̂, (B.47)

where the last equality follows from the normalization Λ̂′Λ̂/N = Ik. Equation (B.47) allows

16See Theorem 1 of the OA of Lettau and Pelger (2020a).
17Note that when γRP = −1, matrix 1

NT (Y ′W 2Y ) is a re-scaled version of the covariance matrix 1
T (Y ′W 2Y ) of the

non-demeaned original data, and therefore the loadings estimators are a re-scaled version of the eigenvectors of the latter
covariance matrix.
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to establish an asymptotic expansion of the factor estimate with explicit characterization of the
remainder term. This can be obtained by manipulating equations (B.44) and (B.47) using the next
two Assumptions B.12, and by defining:

h̆t := ht +
(√

γRP + 1− 1
)
h̄ = ht + γ̃RP h̄,

ε̆i,t := εi,t +
(√

γRP + 1− 1
)
ε̄i,· = εi,t + γ̃RP ε̄i,·

where h̄ = 1
T

∑T
t=1 ht, and ε̄i,· = 1

T

∑T
t=1 εi,t,

ξt :=
1√
N

N∑
i=1

λiεi,t, ξ̄ :=
1

T

T∑
t=1

ξt =
1√
N

N∑
i=1

λiε̄i,·,

and

ξ̆t := ξt + γ̃RP ξ̄ =
1√
N

N∑
i=1

λi [εi,t + γ̃RP ε̄i,·] =
1√
N

N∑
i=1

λiε̆i,t . (B.48)

We also define H̆ = [h̆1, ..., h̆
′
T ]′. Then the following two Assumptions allow to prove Proposition B.3.

Assumption B.11. We have (i) E[ε̆it] = 0; (ii) E[ε̆8
it] ≤M and E[‖h̆2r∨8

it ] ≤M ; and (iii) E[ξ̆8
t ] ≤M

and E[‖ξ̆it‖2r] ≤M , for a constant M <∞, where r > 2 is defined in Assumption B.5 b).

(iv) Let η̆ts = 1
N

∑N
i=1E[ε̆i,tε̆i,s], with s < t. Then 1

T

∑T
t=1

∑t−1
s=1 E[η̆4

ts] ≤ M and

E

[(
1√
N

∑N
i=1 ε̆i,tε̆i,s − η̆2

ts

)2
]
≤M .

Assumption B.12. We have (i) 1√
NT
H ′W 2εΛ = 1√

T

∑T
t=1 h̆tξ̆

′
t = Op(1) and E[‖ξ̆t‖2] = O(1),

(ii) ‖ 1
NT
εW 2ε′Λ‖ = Op

(
1√
m

)
,

(iii) ‖ 1
NT
εW 2ε′‖ = Op

(
1√
m

)
, where m := min{N, T},

(iv) ‖ 1
NT
εε′W 2H‖ = Op

(
1√
m

)
,

(v) Let ℵ̆i := 1√
T
H ′W 2ε = 1√

T

∑T
t=1 h̆tε̆i,t, then E[‖ℵ̆i‖2] = O(1).

Note that by setting γRP = 0, Assumption B.12 implies: 1√
NT
H ′εΛ = 1√

T

∑T
t=1 htξ

′
t = Op(1),

E[‖ξt‖2] = O(1), ‖ 1
NT
εε′H‖ = Op

(
1√
m

)
, ‖ 1

NT
εε′‖ = Op

(
1√
m

)
and E[‖ℵi‖2] = O(1).
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PROPOSITION B.3. Under Assumptions B.10-B.12 we have:

(H̃ ′)−1ĥt − ht =
1√
N
ut +

1

T
b̆t +

1√
NT

d̆t + ϑ̆t, t = 1, ..., T, (B.49)

where matrix H̃ = (Λ′Λ/N)(H ′W 2H/T )(Λ′Λ̂/N)V̂ −1 is invertible w.p.a. 1, and:

ut = (Λ′Λ/N)−1ξt

b̆t =

(
Λ′Λ

N

)−1

S̆ ′

[
η2
t h̆t +

(
H ′W 2H

T

)−1

Π̆4

(
Λ′Λ

N

)
ht

]
,

d̆t =

(
Λ′Λ

N

)−1

S̆ ′
[
Π̆1 + Π̆′1

(
Λ′Λ

N

)]
ht,

ϑ̆t =

(
Λ′Λ

N

)−1

S̆ ′
[

1√
NT

ᾰt +
1

N
Π̆2ht

]
+ r̆t + R̆t,

with η2
t = plim

N→∞

1
N

∑N
i=1 E[ε2

i,t|Ft] and Ft is the sigma-field generated by the hs for s ≤ t,

rt = r1,t + r7,t + r8,t + R̂t , (B.50)
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vector r1,t is defined as:

r1,t =
1

T

(
Λ′Λ

N

)−1

B̂′S̆′
[
η2
t h̆t + Π̆4

(
Λ′Λ

N

)
ht

]
+

1

N

(
Λ′Λ

N

)−1

B̂′S̆′Π̆2ht

+
1√
NT

(
Λ′Λ

N

)−1

B̂′S̆′
[
Π̆1 + Π̆′1

(
Λ′Λ

N

)]
ht +

1√
NT

(
Λ′Λ

N

)−1

B̂′S̆′ᾰt

+
1√
NT

M∗′(H ′W 2H/T )−1Π̆3ht +
1√
NT

M∗∗′Π̆′3

(
Λ′Λ

N

)
ht

+
1

T
√
N
M∗′κth̆t + γ̃RPM

∗′
[

1

T 2
η2
t h̆t +

1

T
√
NT

ᾰ∗t +
1

T 3
√
N
κth̆t

]
+ M∗′

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

N
√
T
M∗′Π̆′1 ξt + M∗′

{
1

T 2
η̆4
t h̆t +

1√
NT 2

κ̆tη̆
2
t h̆t +

1√
NTT

˘̄αt

+
1

T 2
√
N
κ̆tη̆

2
t h̆t +

1

NT 2
κ̆2
t h̆t +

1

NT
√
N

˘̄ϕt +
1

NT
√
T

˘̄γt

+
1

T
√
NT

η̆2
t

˘̆αt +
1

NT
√
T
κ̆t ˘̆αt +

1

N
√
NT

δ̆t +
1

NT
χ̆t − γ̃RP

[
1

T 2
√
N
β̆1,t +

1

NT 2
√
T
β̆2,t +

1

NT 2
β̆3,t

]}

+
1

T
√
N
M∗Π̆4ξt +M∗∗′

{
1

NT

(
1

T

T∑
t=1

η̆2
t ξ̆tξ̆

′
t

)
+

1

NT
√
N

(
1

T

T∑
t=1

κ̆tξ̆tξ̆
′
t

)

+
1

N2

(
1

T

T∑
t=1

ξ̆t ˘̆ϕ′t

)′
+

1

N
√
TN

(
1

T

T∑
t=1

ξ̆t ˘̆γt

)′ht

+
1

N
√
NT

M∗∗′Π̆′1

(
1

T

T∑
t=1

ξ̆tξ̆
′
t

)
ht +

1

NT
M∗∗′Π̆′1Π̆′1

(
Λ′Λ

N

)
ht

+ M∗∗′
[

1

NT
√
T
β̆4,t +

1

NT
√
NT

β̆5,t +
1

N2
√
T
β̆6,t +

1

NT
√
N
β̆7,t

]
+

1

N
√
NT

M∗∗′Π̆′1

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t

+ γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

N
√
T
M∗∗′Π̆′3ξ̆t +

1

NT
√
N
M∗∗′Π̆′1Π̆′1ξ̆t (B.51)
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vector r7,t is defined as:

r7,t = = M∗∗′(H ′W 2H/T )−1

{(
H ′ε′W 2εεW

NT
√
T

)(
Wεε′W 2Λ

N2T
√
T

)
ht +

1

TN
Π̆4Π̆2ht

+

(
H ′ε′W 2εεW

NT
√
T

)(
Wεε′W 2H

NT
√
T

)(
Λ′Λ

N

)
ht +

1

TN
Π̆4Π̆′1(Λ′Λ/N)ht

+
1

NT

T∑
s=1

N∑
i=1

εi,tε̆i,s

{
1

T 2
η̆4
s h̆s +

1√
NT 2

κ̆sη̆
2
s h̆s +

1√
NTT

˘̄αs

+
1

T 2
√
N
κ̆sη̆

2
s h̆s +

1

NT 2
κ̆2
sh̆s +

1

NT
√
N

˘̄ϕs +
1

NT
√
T

˘̄γs

+
1

T
√
NT

η̆2
s

˘̆αs +
1

NT
√
T
κ̆s ˘̆αs +

1

N
√
NT

δ̆s +
1

NT
χ̆s − γ̃RP

[
1

T 2
√
N
β̆1,s +

1

NT 2
√
T
β̆2,s +

1

NT 2
β̆3,s

]}
+

1

T
Π̆4

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1√
N

(
H ′W 2εε′W

NT
√
T

)(
Wεε′W 2H

NT
√
T

)
ξt +

1

NT
√
T

Π̆4Π̆′1ξt

}
, (B.52)

vector r8,t is defined as:

= M∗∗∗′Π̆′1

{
1

N
√
NT

(
Λ′ε′W 2ε

NT

)(
ε′W 2εΛ

NT

)
+

1

N2T
Π̆′1Π̆2 +

1

NT
Π̆′3

(
Λ′Λ

N

)
+

1

NT
√
NT

(Π̆′1)2

(
Λ′Λ

N

)}
ht

+M∗∗∗′Π̆′1

{
1√
NT

[
1

NT
√
T
β̆4,t +

1

NT
√
NT

β̆5,t +
1

N2
√
T
β̆6,t +

1

NT
√
N
β̆7,t

]
+

1

NT
Π̆1

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

NT
√
N

Π̆′3ξt +
1

N2T
√
T

(Π̆′1)2ξt

}

+M∗∗∗′
(

Λ′ε′W 2ε

NT

){
1

N

(
Λ′ε′W 2ε

NT

)(
ε′W 2ε

NT

)
+

1

N
√
NT

Π̆2

(
H ′W 2ε√
NT

)

+
1√
NT

(
Λ′Λ

N

)
Π̆3 +

1

NT

(
Λ′Λ

N

)
Π̆1

(
ε′W 2H√
NT

)}
ht

+M∗∗∗′
(

Λ′ε′W 2ε

NT

){
1√
NT

(
ε′W 2H√
NT

){
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

N
√
T

(
ε′W 2εε′W 2H

NT
√
NT

)
ξt +

1

NT
√
N

(
ε′W 2H√
NT

)
Π̆′1ξt

}

+M∗∗∗′
1

NT

T∑
s=1

N∑
i=1

ε̆itε̆is

[
1

NT
√
T
β̆4,s +

1

NT
√
NT

β̆5,s +
1

N2
√
T
β̆6,s +

1

NT
√
N
β̆7,s

]
(B.53)
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R̂′t is the t-th row of matrix R̂ defined by:

R̂ =
1

N4T 3
(HΛ′ + ε)(ε′W 2ε+ ΛH ′W 2ε)3(Λ̂Ĥ −1 − Λ)

[
S̆(Ik + B̂)

]3
(

Λ′Λ

N

)−1

. (B.54)

The term ξt is defined in Assumption B.5, and

S̆ = (Λ′Λ/N)−1(H ′W 2H/T )−1

B̂ = (H ′W 2H/T )(Λ′Λ/N)
[
(Ik + Â)−1 − Ik

]
(Λ′Λ/N)−1(H ′W 2H/T )−1,

Â = (Λ′Λ/N)−1Λ′(Λ̂Ĥ −1 − Λ)/N

M∗ = S̆(Ik + B̂)(Λ′Λ/N)−1, M∗∗ =
[
S̆(Ik + B̂)

]2

(Λ′Λ/N)−1

M∗∗∗ =
[
S̆(Ik + B̂)

]3

(Λ′Λ/N)−1

ℵ̆i =
1√
T

T∑
t=1

ε̆i,th̆t

Π̆1 =
1√
NT

H ′W 2εΛ =
1√
NT

H̆ ′ε̆Λ =
1√
T

T∑
t=1

h̆tξ̆
′
t, (B.55)

Π̆2 =
1

NT
Λ′ε′W 2εΛ =

1

NT
Λ′ε̆′ε̆Λ =

1

T

T∑
t=1

ξ̆tξ̆
′
t,

Π̆3 =
1

NT
√
NT

H̆ ′ε̆ε̆′ε̆Λ =
1√
N

(
1

T

T∑
t=1

˘̆αtξ̆
′
t) +

1

T
(

1√
T

T∑
t=1

η̆2
t h̆tξ̆

′
t) +

1√
NT

(
1

T

T∑
t=1

h̆tξ̆
′
tκ̆t),

Π̆4 =
1

NT
H ′W 2εε′W 2H =

1

NT
H̆ ′ε̆ε̆′H̆ =

1

N

N∑
i=1

ℵ̆iℵ̆′i, (B.56)
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Moreover:

η2
t = plim

N→∞

1

N

N∑
i=1

E[ε2
i,t|Ft], η̆2

t = plim
N→∞

1

N

N∑
i=1

E[ε̆2
i,t|Ft],

κt =
1√
N

N∑
i=1

(ε2
i,t − η2

t ) , κ̆t =
1√
N

N∑
i=1

(ε̆2
i,t − η̆2

t ) ,

ᾰt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tε̆i,sh̆s , ˘̆αt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

ε̆i,tε̆i,sh̆s ,

ᾰ∗t =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,sh̆t

ϕ̆t =
1

T

N∑
i=1

T∑
s=1,s 6=t

εi,tE[ε̆i,sξ̆s], γ̆t =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,t(ε̆i,sξ̆s − E[ε̆i,sξ̆s]),

˘̆ϕt =
1

T

N∑
i=1

T∑
s=1,s 6=t

ε̆i,tE[ε̆i,sξ̆s], ˘̆γt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

ε̆i,t(ε̆i,sξ̆s − E[ε̆i,sξ̆s]),

˘̄αt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tε̆i,sη̆
2
s h̆s, ˘̄ϕt =

1

T

N∑
i=1

T∑
s=1,s 6=t

εi,tE[ε̆i,sκ̆sh̆s],

˘̄γt =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,t(ε̆i,sκ̆sh̆s − E[ε̆i,sκ̆sh̆s]),

δ̆t =
1

T

N∑
i=1

T∑
s=1,s 6=t

εi,tE[ε̆i,s ˘̆αs], χ̆t =
1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,t(ε̆i,s ˘̆αs − E[ε̆i,s ˘̆αs]),

(B.57)

and

β̆1,t :=
1√
NT

N∑
i=1

T∑
s=1

h̆tη̆
2
t εi,tεi,s, β̆2,t :=

1√
NT

N∑
i=1

T∑
s=1

h̆tκ̆
2
t εi,tεi,s,

β̆3,t :=
1√
NT

N∑
i=1

T∑
s=1

˘̆αtεi,tεi,s,

β̆4,t :=
1√
NT

N∑
i=1

T∑
s=1

εitε̆isη̆
2
s ξ̆s, β̆5,t :=

1√
NT

N∑
i=1

T∑
s=1

εitε̆isκ̆sξ̆s,

β̆6,t :=
1√
NT

N∑
i=1

T∑
s=1

εitε̆is ˘̆ϕs, β̆7,t :=
1√
NT

N∑
i=1

T∑
s=1

εitε̆is ˘̆γs. (B.58)
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Moreover, if the eigenvalues of matrix Σ
−1/2
λ Σh(W )Σ

−1/2
λ for a specific choice of W (that is for a

specific choice of γ̃RP ) in Assumption B.10 are distinct, then, for a suitable ordering and choice of the

signs of the factor estimates, we have Σ
−1/2
λ H̃

p−→H ∗, where the columns of the orthogonal matrix

H ∗ are the normalized eigenvectors of Σ
−1/2
λ Σh(W )Σ

−1/2
λ .

In equation (B.49), which corresponds to the expansion in (B.2), the difference (H̃ ′)−1ĥt − ht is
written as a sum of a zero-mean term at stochastic order 1/

√
N , terms at orders 1/T , 1/

√
NT and

1/N , plus remainder terms rt and R̂t. Notably, the term of stochastic order 1/
√
N is ut/

√
N , where

ut = (Λ′Λ/N)−1ξt is zero mean as E[ξt] = 0 from Assumption B.4 a). This term is the usual first
order term appearing in the asymptotic expansion of classical PC factor estimator (see Bai (2003)) and
it is also the first order term appearing in the expansion of RP-PC estimator (see Lettau and Pelger
(2020a)). The remainder terms rt and R̂t are either scaled by factors that converge to zero faster than
max{ 1

T
, 1√

NT
, 1
N
} = O( 1

m
), where m = min{N, T}.

We now control for the magnitude of the remainder terms rt and R̂t in ϑt to show the bounds
in Proposition B.2. The next Proposition B.4 provides an upper bound for T−1/2‖ĤH̃ −1 − H‖ =(

1
T

∑T
t=1 ‖(H̃ −1)′ĥt − ht‖2

)1/2

, namely the root MSE of the factor estimates. It is analogous to
Lemma A.1 in Bai (2003), but is now derived for RP-PCs instead of only PCs, and yields a sharper
upper bound. This result is used to derive a bound on the remainder term R̂, which is also provided in
Proposition B.4. Let us define the matrix:

Ĥ := (Λ′Λ/N)−1H̃ = (H ′W 2H/T )(Λ′Λ̂/N)V̂ −1. (B.59)

PROPOSITION B.4. Under Assumptions B.10-B.12, we have:

i) N−1/2‖Λ̂Ĥ −1 − Λ‖ = Op(1/
√
T ) and N−1/2‖Λ̂H̃ −1 − Λ‖ = Op(1/

√
T ). Moreover,

ii) T−1/2‖ĤH̃ −1 −H‖ = Op(1/
√
N), and

iii)

T−1/2‖R̂‖ = Op

(
1

m
√
Tm

)
. (B.60)

From Proposition B.4 and Assumption B.10, we have term Â defined in (B.55) is such that
‖Â‖ = Op(

1√
T

). By the series representation of the inverse matrix function in a neighborhood of the
identity, we deduce that ‖(Ik + Â)−1 − Ik‖ = Op(

1√
T

). Thus, from Proposition B.4 and Assumption
B.10 we get that term B̂ appearing in the remainder term rt in the expansion of Proposition B.3 is such
that:

B̂ = Op

(
1√
T

)
. (B.61)

To control for the remainder term rt we use the next assumption.
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Assumption B.13. We have: (i) E[ε2
i,t|Ft] ≤ M for all i ≥ 1 and t ≥ 1, and a constant M > 0,

(ii) 1√
T

∑T
t=1 htα

′
t = Op(1), (iii) 1√

T

∑T
t=1 η

2
t htα

′
t = Op(1), (iv) 1

T

∑T
t=1 ξtα

′
t = op(1), and (v)

E[‖at‖2] = O(1), where at is any of the following processes: κtht, αt, κtξt, ϕt, γt, ᾱt, κ2
tht, ϕ̄t,

γ̄t, κtαt, δt, χt.

PROPOSITION B.5. Under Assumptions B.1 and B.10-B.13, we have:

1

T

T∑
t=1

‖r̆t‖2 = Op

(
1

N

)
. (B.62)

Moreover, ϑ̆t satisfies 1
T

∑T
t=1 ϑ̆th

′
t = Op

(
1
N

+ 1
T
√
T

)
and 1

T

∑T
t=1

(
1√
N
ut + 1

T
b̆t + 1√

NT
d̆t + ϑ̆t

)
ϑ̆′t

= op

(
1

N
√
T

)
.

Propositions B.3 and B.5 yield Proposition B.2 (withH = H ′ in each group). �

In the remaining part of this subsection B.5.1 we provide the proofs of Propositions B.3-B.5 and
show that Assumptions B.10-B.13 are implied by the Assumptions in Appendix B.1.

B.5.1.1 Proof of Proposition B.3

From equation (B.45) we have Y ′W 2Y = ΛH ′W 2HΛ′+ΛH ′W 2ε+ε′W 2HΛ′+ε′W 2ε. By plugging
this equation into (B.44), and rearranging the terms, we get:

Λ̂V̂ − Λ
(
H ′W 2H/T

) (
Λ′Λ̂/N

)
=

1

NT
(ε′W 2εΛ̂ + ΛH ′W 2εΛ̂ + ε′W 2HΛ′Λ̂). (B.63)

The large sample behaviours of the matrices Λ′Λ̂/N and V̂ are given in the next Lemmas B.10 and
B.11, respectively.

LEMMA B.10. Under Assumptions B.10-B.12, the matrix Λ′Λ̂/N is invertible w.p.a. 1, and the

inverse is such that ‖(Λ′Λ̂/N)−1‖ = Op(1).

LEMMA B.11. Under Assumptions B.10-B.12, we have V̂
p→ V , where V is the (k, k) diagonal

matrix with diagonal elements corresponding to the eigenvalues of matrix ΣλΣh(W ). These

eigenvalues are the same as those of matrices Σh(W )Σλ and Σ
1/2
λ Σh(W )Σ

1/2
λ .

From Lemma B.11 and Assumption B.10, the matrix V̂ is invertible w.p.a. 1. From Assumption
B.10 and Lemmas B.10 and B.11, matrix Ĥ is invertible w.p.a. 1, and its inverse is:

Ĥ −1 = V̂ (Λ′Λ̂/N)−1(H ′W 2H/T )−1. (B.64)
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From Assumption B.10 and Lemmas B.10 and B.11, matrix Ĥ is invertible w.p.a. 1. By post-
multiplication of equation (B.63) times the matrix (Λ′Λ̂/N)−1(H ′W 2H/T )−1, and using the definition
of matrix Ĥ given in (B.59), we get:

Λ̂Ĥ −1 − Λ =
1

NT
(ε′W 2ε+ ΛH ′W 2ε)Λ̂(Λ′Λ̂/N)−1(H ′W 2H/T )−1 +

1

T
ε′W 2H(H ′W 2H/T )−1

(B.65)
By using Λ̂ = [Λ̂Ĥ −1 − Λ]Ĥ + ΛĤ , the last equation can be rewritten as:

Λ̂Ĥ −1 − Λ =
1

NT
(ε′W 2ε+ ΛH ′W 2ε)ΛĤ (Λ′Λ̂/N)−1(H ′W 2H/T )−1 +

1

T
ε′W 2H(H ′W 2H/T )−1

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)[Λ̂Ĥ −1 − Λ]Ĥ (Λ′Λ̂/N)−1(H ′W 2H/T )−1, (B.66)

and the following also holds:

(Λ′Λ̂/N)−1 =

[
Λ′Λ

N

(
Ik + (Λ′Λ/N)−1Λ′(Λ̂Ĥ −1 − Λ)/N

)
Ĥ

]−1

= Ĥ −1(Ik + Â)−1(Λ′Λ/N)−1 (B.67)

where Â = (Λ′Λ/N)−1Λ′(Λ̂Ĥ −1 − Λ)/N . By substituting (B.67) in the first term in the r.h.s. of
(B.66), and rearranging terms, we get:

Λ̂Ĥ −1 − Λ

=
1

T
ε′W 2H(H ′W 2H/T )−1 +

1

NT
(ε′W 2ε+ ΛH ′W 2ε)Λ(Ik + Â)−1(Λ′Λ/N)−1(H ′W 2H/T )−1

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

(
Λ̂Ĥ −1 − Λ

)
(Ik + Â)−1(Λ′Λ/N)−1(H ′W 2H/T )−1

=
1

T
ε′W 2H(H ′W 2H/T )−1 +

1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

(
Λ̂Ĥ −1 − Λ

)
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

(B.68)

where
B̂ = (H ′W 2H/T )(Λ′Λ/N)

[
(Ik + Â)−1 − Ik

]
(Λ′Λ/N)−1(H ′W 2H/T )−1, (B.69)

or equivalently

(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂) = (Ik + Â)−1(Λ′Λ/N)−1(H ′W 2H/T )−1.

Equation (B.68) is a recursive equation for Λ̂Ĥ −1 − Λ, since this quantity appears also in the third
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term in the r.h.s. By iterating this equation B.68, we get:

Λ̂Ĥ −1 − Λ

=
1

T
ε′W 2H(H ′W 2H/T )−1 +

1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

T
ε′W 2H(H ′W 2H/T )−1

}
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}[
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]2

+
1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

(
Λ̂Ĥ −1 − Λ

) [
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]2

, (B.70)

and by substituting again (B.68) into (B.70), we get:

Λ̂Ĥ −1 − Λ

=
1

T
ε′W 2H(H ′W 2H/T )−1 +

1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

T
ε′W 2H(H ′W 2H/T )−1

}
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

+
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}[
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]2

+
1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

{
1

T
ε′W 2H(H ′W 2H/T )−1

}[
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]2

+
1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}[
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]3

+
1

N3T 3
(ε′W 2ε+ ΛH ′W 2ε)3

(
Λ̂Ĥ −1 − Λ

) [
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]3

, (B.71)

We can now obtain the expansion for the RP-PC factor estimator Ĥ . By using the definition of Y
from (A.2) and the equality Λ̂ = [Λ̂Ĥ −1 − Λ]Ĥ + ΛĤ , equation (B.47) can be re-written as:

Ĥ =
1

N
Y Λ̂ = H

(
Λ′Λ

N

)
Ĥ +

(
εΛ

N

)
Ĥ +

1

N
(HΛ′ + ε)[Λ̂Ĥ −1 − Λ]Ĥ . (B.72)

As matrix Ĥ defined in equation (B.59) is invertible w.p.a. 1, then also H̃ in invertible w.p.a. 1 by
Assumption B.3, with its inverse being:

H̃ −1 = Ĥ −1(Λ′Λ/N)−1 = V̂ (Λ′Λ̂/N)−1(H ′W 2H/T )−1(Λ′Λ/N)−1. (B.73)
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By post-multiplication of equation (B.72) times the matrix H̃ −1 we get:

ĤH̃ −1 −H =
1

N
εΛ(Λ′Λ/N)−1 +

1

N
(HΛ′ + ε)[Λ̂Ĥ −1 − Λ](Λ′Λ/N)−1. (B.74)

By plugging in equation (B.71) into (B.74 ), using the definition of S̆ and re-arranging terms we get:

ĤH̃ −1 −H =
1

N
εΛ(Λ′Λ/N)−1

+

(
1

NT
HΛ′ε′W 2H

)
S̆(Ik + B̂)(Λ′Λ/N)−1 +

(
1

NT
εε′W 2H

)
S̆(Ik + B̂)(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

[
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

]
S̆(Ik + B̂)(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε) · 1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

T
ε′W 2H(H ′W 2H/T )−1

}
S̆(Ik + B̂)(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε) · 1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}[
S̆(Ik + B̂)

]2
(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

{
1

T
ε′W 2H(H ′W 2H/T )−1

}[
S̆(Ik + B̂)

]2
(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}[
S̆(Ik + B̂)

]3
(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

1

N3T 3
(ε′W 2ε+ ΛH ′W 2ε)3

(
Λ̂Ĥ −1 − Λ

) [
(Λ′Λ/N)−1(H ′W 2H/T )−1(Ik + B̂)

]3
(Λ′Λ/N)−1 ,

(B.75)

By using the definitions of M∗, M∗∗, M∗∗∗ and R̂ provided in Proposition B.3 the last equation can
be expressed as:

ĤH̃ −1 −H =
1

N
εΛ(Λ′Λ/N)−1 +

(
1

NT
HΛ′ε′W 2H

)
M∗ +

(
1

NT
εε′W 2H

)
M∗

+
1

N
(HΛ′ + ε) ·

[
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

]
M∗

+
1

N
(HΛ′ + ε)

1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

T
ε′W 2H(H ′W 2H/T )−1

}
M∗

+
1

N
(HΛ′ + ε) · 1

NT
(ε′W 2ε+ ΛH ′W 2ε)

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}
M∗∗

+
1

N
(HΛ′ + ε)

1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

{
1

T
ε′W 2H(H ′W 2H/T )−1

}
M∗∗

+
1

N
(HΛ′ + ε)

1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)

}
M∗∗∗

+R̂, (B.76)

We now study each of the terms in the r.h.s. of the last equation in order to write expansion of
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ĤH̃ −1 −H for each date t. The first term in the r.h.s. of equation (B.76) is such that:[
1

N
εΛ(Λ′Λ/N)−1

]
t

=
1√
N

(Λ′Λ/N)−1ξt =
1√
N
ut. (B.77)

The second term in the r.h.s. of equation (B.76) can be written as:

1

NT
(HΛ′ε′W 2H)M∗ =

1√
NT

H

(
1√
NT

Λ′ε′W 2H

)
M∗ =

1√
NT

HΠ̆′1M
∗

where Π̆1 is defined in Proposition B.3. Therefore:[
1

NT
(HΛ′ε′W 2H)M∗

]
t

= M∗′ 1√
NT

Π̆1ht (B.78)

The third term in the r.h.s. of equation (B.76) can be written as
(

1
NT
εε′W 2H

)
M∗. Noting that:

1

NT
[εε′W 2H]t =

1

NT

N∑
i=1

T∑
s=1

εi,tε̆i,sh̆s =
1

NT

N∑
i=1

εi,tε̆i,th̆t +
1

NT

N∑
i=1

T∑
s=1,s6=t

εi,tε̆i,sh̆s

=
1

NT

N∑
i=1

ε2
i,th̆t + γ̃RP

1

NT

N∑
i=1

εi,tε̄i,·h̆t +
1

NT

N∑
i=1

T∑
s=1,s 6=t

εi,tε̆i,sh̆s

=
1

NT

N∑
i=1

ε2
i,th̆t + γ̃RP

1

NT 2

N∑
i=1

T∑
s=1

εi,tεi,sh̆t +
1

NT

N∑
i=1

T∑
s=1,s6=t

εi,tε̆i,sh̆s

=
1

NT

N∑
i=1

ε2
i,th̆t + γ̃RP

1

NT 2

N∑
i=1

ε2
i,th̆t + γ̃RP

1

NT 2

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,sh̆t +
1

NT

N∑
i=1

T∑
s=1,s 6=t

εi,tε̆i,sh̆s

=

(
1 +

1

T
γ̃RP

)
1

NT

N∑
i=1

ε2
i,th̆t + γ̃RP

1

T
√
NT

 1√
NT

N∑
i=1

T∑
s=1,s6=t

εi,th̆tεi,s

+
1

NT

N∑
i=1

T∑
s=1,s 6=t

εi,tε̆i,sh̆s

=

(
1 +

1

T
γ̃RP

)[
1

T

(
1

N

N∑
i=1

E[ε2
i,t|Ft]h̆t

)
+

1

T
√
N

(
1√
N

N∑
i=1

{ε2
i,t − E[ε2

i,t|Ft]}h̆t

)]

+γ̃RP
1

T
√
NT

 1√
NT

N∑
i=1

T∑
s=1,s6=t

εi,th̆tεi,s

 +
1√
NT

 1√
NT

N∑
i=1

T∑
s=1,s6=t

εi,tε̆i,sh̆s


=

(
1 +

1

T
γ̃RP

)[
1

T
η2
t h̆t +

1

T
√
N
κth̆t

]
+

1√
NT

ᾰt + γ̃RP
1

T
√
NT

ᾰ∗t

=
1

T
η2
t h̆t +

1

T
√
N
κth̆t +

1√
NT

ᾰt + γ̃RP

[
1

T 2
η2
t h̆t +

1

T
√
NT

ᾰ∗t +
1

T 3
√
N
κth̆t

]
, (B.79)
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where η2
t , κt, ᾰt and ᾰ∗t are defined in Proposition B.3. Therefore:[

1

NT
(εε′W 2H)M∗

]
t

=
1

T
M∗′η2

t h̆t +
1

T
√
N
M∗′κth̆t +

1√
NT

M∗′ᾰt

+γ̃RPM
∗′
[

1

T 2
η2
t h̆t +

1

T
√
NT

ᾰ∗t +
1

T 3
√
N
κth̆t

]
(B.80)

The fourth term in the r.h.s. of equation (B.76) can be written as:

1

N2T
(HΛ′ + ε)

[
ε′W 2ε+ ΛH ′W 2ε

]
ΛM∗

=
1

N2T
(HΛ′ε′W 2εΛ)M∗ +

1

N2T
(HΛ′ΛH ′W 2εΛ)M∗ +

1

N2T
(εε′W 2εΛ)M∗ +

1

N2T
(εΛH ′W 2εΛ)M∗

(B.81)

The date t - element of the first term in the r.h.s. of equation (B.81) can be computed from:[
1

N2T
(HΛ′ε′W 2εΛ)M∗

]
t

= M∗′ 1

N

(
1

NT
Λ′ε′W 2εΛ

)
ht = M∗′ 1

N
Π̆2ht , (B.82)

where Π̆2 is defined in Proposition (B.3). The date t - element of the second term in the r.h.s. of
equation (B.81) can be computed as:[

1

N2T
(HΛ′ΛH ′W 2εΛ)M∗

]
t

=
1√
NT

M∗′
(

1√
NT

Λ′ε′W 2H

)(
Λ′Λ

N

)
ht

=
1√
NT

M∗′Π̆′1

(
Λ′Λ

N

)
ht. (B.83)
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The date t - element of the third term in the r.h.s. of equation (B.81) can be computed from:

[
1

N2T
εε′W 2εΛ

]
t

=
1

N2T

N∑
i=1

T∑
s=1

N∑
`=1

εi,tε̆i,sε̆`,sλ` =
1

N
√
NT

N∑
i=1

T∑
s=1

εi,tε̆i,sξ̆s

=
1

N
√
NT

N∑
i=1

εi,tε̆i,tξ̆t +

 1

N
√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tε̆i,sξ̆s


=

1

N
√
NT

N∑
i=1

ε2
i,tξ̆t + γ̃RP

1

N
√
NT

N∑
i=1

εi,tε̄i,·ξ̆t

+

 1

N
√
N

 1

T

N∑
i=1

T∑
s=1,s6=t

εi,tE[ε̆i,sξ̆s]

+
1

N
√
T

 1√
NT

N∑
i=1

T∑
s=1,s6=t

εi,t(ε̆i,sξ̆s − E[ε̆i,sξ̆s])




=
1

N
√
NT

N∑
i=1

ε2
i,tξ̆t + γ̃RP

1

N
√
NT 2

N∑
i=1

T∑
s=1

εi,tεi,sξ̆t +

[
1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t

]

=

(
1 +

1

T
γ̃RP

)
1

N
√
NT

N∑
i=1

ε2
i,tξ̆t + γ̃RP

1

N
√
NT 2

N∑
i=1

T∑
s=1,s6=t

εi,tεi,sξ̆t +

[
1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t

]

=

(
1 +

1

T
γ̃RP

)
1√
NT

{
1

N

N∑
i=1

E[ε2
i,t]ξ̆t

}
+

(
1 +

1

T
γ̃RP

)
1

NT
·

{
1√
N

N∑
i=1

(ε2
i,tξ̆t − E[ε2

i,t]ξ̆t)

}

+ γ̃RP
1

NT
√
T

1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tξ̆tεi,s +

[
1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t

]

=

(
1 +

1

T
γ̃RP

)[
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t

]
+

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

1

NT
√
T
ᾰ∗t

=
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]
(B.84)

For the last equation to hold we need a condition such that:

1√
NT

N∑
i=1

T∑
s=1,s 6=t

εi,tεi,sξ̆t = Op(1) .

It is enough to add ᾰ∗t in the list of terms in Assumption B.13 v).

which implies:[
1

N2T
εε′W 2εΛM∗

]
t

= M∗′
{

1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
(B.85)
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The date t - element of the fourth term in the r.h.s. of equation (B.81) can be computed by noting that:

1

N2T
(εΛH ′W 2εΛ)M∗ =

1

N
√
T

(
εΛ√
N

)(
1√
NT

H ′W 2εΛ

)
M∗ =

1

N
√
T

(
εΛ√
N

)
Π̆1M

∗

which implies: [
1

N2T
(εΛH ′W 2εΛ)M∗

]
t

=
1

N
√
T
M∗′Π̆′1 ξt. (B.86)

The fifth term in the r.h.s. of equation (B.76) can be written as:

1

N2T 2
(HΛ′ + ε)

[
ε′W 2εε′W 2H + ΛH ′W 2εε′W 2H

]
(H ′W 2H/T )−1M∗

=

[
1

N2T 2
HΛ′ε′W 2εε′W 2H +

1

N2T 2
HΛ′ΛH ′W 2εε′W 2H +

1

N2T 2
εε′W 2εε′W 2H

+
1

N2T 2
εΛH ′W 2εε′W 2H

]
(H ′W 2H/T )−1M∗ . (B.87)

The date t - element of the first term in the r.h.s. of equation (B.87) can be computed by first noting
that:

1

N2T 2
HΛ′ε′W 2εε′W 2H(H ′W 2H/T )−1M∗ =

1√
NT

H

(
1

NT
√
NT

Λ′ε′W 2εε′W 2H

)
(H ′W 2H/T )−1M∗,

and that the term in the brackets in the r.h.s. of the last equation is:

1

NT
√
NT

Λ′ε′W 2εε′W 2H =
1

NT
√
NT

N∑
i=1

T∑
t=1

N∑
`=1

T∑
s=1

λiε̆i,tε̆`,tε̆`,sh̆
′
s

=
1

NT
√
T

T∑
t=1

N∑
`=1

T∑
s=1

ξ̆tε̆`,tε̆`,sh̆
′
s

=
1

NT
√
T

T∑
t=1

N∑
`=1

T∑
s=1,s6=t

ξ̆tε̆`,tε̆`,sh̆
′
s +

1

NT
√
T

T∑
t=1

N∑
`=1

ξ̆tε̆
2
`,th̆
′
t

=
1√
N

(
1

T

T∑
t=1

ξ̆t ˘̆α
′
t

)
+

1

T

(
1√
T

T∑
t=1

ξ̆tη̆
2
t h̆
′
t

)
+

1√
NT

(
1

T

T∑
t=1

ξ̆tκ̆th̆
′
t

)
= Π̆′3,

which implies:[
1

N2T 2
H(Λ′ε′W 2εε′W 2H)(H ′W 2H/T )−1M∗

]
t

=
1√
NT

M∗′(H ′W 2H/T )−1Π̆3ht .(B.88)

The date t - element of the second term in the r.h.s. of equation (B.87) can be computed by first noting
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that:

1

N2T 2
HΛ′ΛH ′W 2εε′W 2H =

1

T
H

(
Λ′Λ

N

)
1

NT
H ′W 2εε′W 2H =

1

T
H

(
Λ′Λ

N

)
1

NT

N∑
i=1

T∑
t=1

T∑
s=1

h̆i,tε̆i,tε̆i,sh̆
′
i,s

=
1

T
H

(
Λ′Λ

N

)
1

N

N∑
i=1

(
1√
T

T∑
t=1

h̆i,tε̆i,t

)(
1√
T

T∑
s=1

ε̆i,sh̆
′
i,s

)

=
1

T
H

(
Λ′Λ

N

)
1

N

N∑
i=1

ℵ̆iℵ̆′i =
1

T
H

(
Λ′Λ

N

)
Π̆4

which implies:[
1

N2T 2
HΛ′ΛH ′W 2εε′W 2H(H ′W 2H/T )−1M∗

]
t

=
1

T
M∗′(H ′W 2H/T )−1Π̆4

(
Λ′Λ

N

)
ht(B.89)

To compute the date t - element of the third term in the r.h.s. of equation (B.87), that is
1

N2T 2 εε
′W 2εε′W 2HM∗, we need an expression for the term 1

NT
[Wεε′W 2H]t. Using the definitions

of terms η̆t, κ̆t, and ˘̆αt in Proposition B.3, we get:

1

NT
[Wεε′W 2H]t =

1

NT

N∑
i=1

T∑
s=1

ε̆i,tε̆i,sh̆s =
1

NT

N∑
i=1

ε̆i,tε̆i,th̆t +
1

NT

N∑
i=1

T∑
s=1,s6=t

ε̆i,tε̆i,sh̆s

=
1

T

(
1

N

N∑
i=1

E[ε̆2
i,t|Ft]h̆t

)
+

1

T
√
N

(
1√
N

N∑
i=1

{ε̆2
i,t − E[ε̆2

i,t|Ft]}h̆t

)
+

1

NT

N∑
i=1

T∑
s=1,s6=t

ε̆i,tε̆i,sh̆s

=
1

T
η̆2
t h̆t +

1

T
√
N
κ̆th̆t +

1√
NT

˘̆αt. (B.90)
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The date t - element of the third term in the r.h.s. of equation (B.87) is:

1

N2T 2
[εε′W 2εε′W 2HM∗]t

= M∗′
1

N2T 2

T∑
s=1

N∑
i=1

εi,tε̆i,s[Wεε′W 2H]s = M∗′
1

NT

T∑
s=1

N∑
i=1

εi,tε̆i,s

(
1

T
η̆2
s h̆s +

1

T
√
N
κ̆sh̆s +

1√
NT

˘̆αs

)

= M∗′

 1

NT 2

N∑
i=1

εi,tε̆i,tη̆
2
t h̆t +

1

NT 2

T∑
s=1,s6=t

N∑
i=1

εi,tε̆i,sη̆
2
s h̆s

+
1

NT 2
√
N

N∑
i=1

εi,tε̆i,tκ̆th̆t +
1

NT 2
√
N

T∑
s=1,s6=t

N∑
i=1

εi,tε̆i,sκ̆sh̆s

+
1

NT
√
NT

N∑
i=1

εi,tε̆i,t ˘̆αt +
1

NT
√
NT

T∑
s=1,s 6=t

N∑
i=1

εi,tε̆i,s ˘̆αs


= M∗′

 1

NT 2

N∑
i=1

ε̆i,tε̆i,tη̆
2
t h̆t +

1

NT 2

T∑
s=1,s6=t

N∑
i=1

εi,tε̆i,sη̆
2
s h̆s − γ̃RP

1

NT 2

N∑
i=1

T∑
s=1

εi,sεi,tη̆
2
t h̆t

+
1

NT 2
√
N

N∑
i=1

εi,tε̆i,tκ̆th̆t +
1

NT 2
√
N

T∑
s=1,s6=t

N∑
i=1

εi,tε̆i,sκ̆sh̆s − γ̃RP
1

NT 3
√
N

N∑
i=1

T∑
s=1

εi,sεi,tκ̆th̆t

+
1

NT
√
NT

N∑
i=1

εi,tε̆i,t ˘̆αt +
1

NT
√
NT

T∑
s=1,s 6=t

N∑
i=1

εi,tε̆i,s ˘̆αs − γ̃RP
1

NT 2
√
NT

N∑
i=1

T∑
s=1

εi,sεi,t ˘̆αt

 ,

and therefore we have:

1

N2T 2
[εε′W 2εε′W 2H(H ′W 2H/T )−1M∗]t = M∗′(H ′W 2H/T )−1

{
1

T 2
η̆4
t h̆t +

1√
NT 2

κ̆tη̆
2
t h̆t +

1√
NTT

˘̄αt

+
1

T 2
√
N
κ̆tη̆

2
t h̆t +

1

NT 2
κ̆2
t h̆t +

1

NT
√
N

˘̄ϕt +
1

NT
√
T

˘̄γt

+
1

T
√
NT

η̆2
t

˘̆αt +
1

NT
√
T
κ̆t ˘̆αt +

1

N
√
NT

δ̆t +
1

NT
χ̆t − γ̃RP

[
1

T 2
√
N
β̆1,t +

1

NT 2
√
T
β̆2,t +

1

NT 2
β̆3,t

]}
,

(B.91)

where the three terms

β̆1,t :=
1√
NT

N∑
i=1

T∑
s=1

h̆tη̆
2
t εi,tεi,s, β̆2,t :=

1√
NT

N∑
i=1

T∑
s=1

h̆tκ̆
2
t εi,tεi,s, β̆3,t :=

1√
NT

N∑
i=1

T∑
s=1

˘̆αtεi,tεi,s

are all Op(1) by the new Assumption B.7 d).
The date t-element of the fourth term in the r.h.s. of equation (B.87), that is

Online Appendix - 61



1
N2T 2 εΛH

′W 2εM∗ε′W 2H , can be easily computed by noting that:

1

N2T 2
εΛH ′W 2εε′W 2H =

1

T
√
N

(
εΛ√
N

)[
1

N

(
1√
T
H ′W 2ε

)(
1√
T
ε′W 2H

)]
=

1

T
√
N

(
εΛ√
N

)[
1

N

N∑
i=1

ℵ̆iℵ̆′i

]
=

1

T
√
N

(
εΛ√
N

)
Π̆4 ,

which implies:[
1

N2T 2
εΛH ′W 2εε′W 2H(H ′W 2H/T )−1M∗

]
t

=
1

T
√
N
M∗(H ′W 2H/T )−1Π̆4ξt . (B.92)

The sixth term in the r.h.s. of equation (B.76) can be written as:

1

N3T 2
(HΛ′ + ε) ·

[
ε′W 2ε+ ΛH ′W 2ε

]
·
[
ε′W 2εΛ + ΛH ′W 2εΛ

]
M∗∗

=
1

N3T 2
HΛ′ε′W 2εε′W 2εΛM∗∗ +

1

N3T 2
HΛ′ε′W 2εΛH ′W 2εΛM∗∗

+
1

N3T 2
HΛ′ΛH ′W 2εε′W 2εΛM∗∗ +

1

N3T 2
HΛ′ΛH ′W 2εΛH ′W 2εΛM∗∗

+
1

N3T 2
εε′W 2εε′W 2εΛM∗∗ +

1

N3T 2
εε′W 2εΛH ′W 2εΛM∗∗

+
1

N3T 2
εΛH ′W 2εε′W 2εΛM∗∗ +

1

N3T 2
εΛH ′W 2εΛH ′W 2εΛM∗∗ (B.93)

The date t - element of the first term in the r.h.s. of equation (B.93) can be computed by first noting
that:[

1

N2T
Wεε′W 2εΛ

]
t

=
1

N2T

N∑
i=1

T∑
s=1

N∑
`=1

ε̆i,tε̆i,sε̆`,sλ` =
1

N
√
NT

N∑
i=1

T∑
s=1

ε̆i,tε̆i,sξ̆s

=
1

N
√
NT

N∑
i=1

ε̆i,tε̆i,tξ̆t +

 1

N
√
NT

N∑
i=1

T∑
s=1,s 6=t

ε̆i,tε̆i,sξ̆s


=

1

N
√
NT

N∑
i=1

ε̆2
i,tξ̆t +

 1

N
√
N

 1

T

N∑
i=1

T∑
s=1,s6=t

ε̆i,tE[ε̆i,sξ̆s]

+
1

N
√
T

 1√
NT

N∑
i=1

T∑
s=1,s6=t

ε̆i,t(ε̆i,sξ̆s − E[ε̆i,sξ̆s])




=
1

N
√
NT

N∑
i=1

ε̆2
i,tξ̆t +

[
1

N
√
N

˘̆ϕt +
1

N
√
T

˘̆γt

]

=
1√
NT

{
1

N

N∑
i=1

E[ε̆2
i,t]ξ̆t

}
+

1

NT
·

{
1√
N

N∑
i=1

(ε̆2
i,tξ̆t − E[ε̆2

i,t]ξ̆t)

}
+

[
1

N
√
N

˘̆ϕt +
1

N
√
T

˘̆γt

]
=

1√
NT

η̆2
t ξ̆t +

1

NT
κ̆tξ̆t +

1

N
√
N

˘̆ϕt +
1

N
√
T

˘̆γt, (B.94)

Online Appendix - 62



Then, date t - element of the first term in the r.h.s. of equation (B.93) is:

1

N3T 2
HΛ′ε′W 2εε′W 2εΛ

= H · 1√
N

[
1

T

(
Λ′ε′W√

N

)
·
(

1

N2T
Wεε′W 2εΛ

)]
= H · 1√

N

1

T

T∑
t=1

ξ̆t

[
1

N2T
Wεε′W 2εΛ

]
t

= H · 1√
N

[
1

T

T∑
t=1

ξ̆t

(
1√
NT

η̆2
t ξ̆
′
t +

1

NT
κ̆tξ̆
′
t +

1

N
√
N

˘̆ϕ′t +
1

N
√
T

˘̆γt

)]

= H · 1√
N

[
1√
NT

(
1

T

T∑
t=1

η̆2
t ξ̆tξ̆

′
t

)
+

1

NT

(
1

T

T∑
t=1

κ̆tξ̆tξ̆
′
t

)
+

1

N
√
N

(
1

T

T∑
t=1

ξ̆t ˘̆ϕ′t

)
+

1

N
√
T

(
1

T

T∑
t=1

ξ̆t ˘̆γt

)]
(B.95)

which implies:[
1

N3T 2
HΛ′ε′W 2εε′W 2εΛM∗∗

]
t

=
1√
N
M∗∗′

 1√
NT

(
1

T

T∑
t=1

η̆2
t ξ̆tξ̆

′
t

)
+

1

NT

(
1

T

T∑
t=1

κ̆tξ̆tξ̆
′
t

)
+

1

N
√
N

(
1

T

T∑
t=1

ξ̆t ˘̆ϕ′t

)′
+

1

N
√
T

(
1

T

T∑
t=1

ξ̆t ˘̆γt

)′ht
(B.96)

The date t - element of the second term in the r.h.s. of equation (B.93) can be computed by noting
that:

1

N3T 2
HΛ′ε′W 2εΛH ′W 2εΛ = H · 1

N
√
NT

[
1

T

(
Λ′ε′W√

N

)
·
(
WεΛ√
N

)
·
(

1√
NT

H ′W 2εΛ

)]
= H · 1

N
√
NT

(
1

T

T∑
t=1

ξ̆tξ̆
′
t

)
Π̆1

which implies:

[
1

N3T 2
HΛ′ε′W 2εΛH ′W 2εΛM∗∗

]
t

=
1

N
√
NT

M∗∗′Π̆′1

(
1

T

T∑
t=1

ξ̆tξ̆
′
t

)
ht (B.97)

The date t - element of the third term in the r.h.s. of equation (B.93) can be computed by first noting
that:[

1

N3T 2
HΛ′ΛH ′W 2εε′W 2εΛM∗∗

]
t

=

[
H

1√
NT

(
Λ′Λ

N

)(
1

NT
√
NT

H ′W 2εε′W 2εΛ

)
M∗∗

]
t

=

[
H

1√
NT

(
Λ′Λ

N

)
Π̆3M

∗∗
]
t

=
1√
NT

M∗∗′Π̆′3

(
Λ′Λ

N

)
ht. (B.98)
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The date t - element of the fourth term in the r.h.s. of equation (B.93) is:[
1

N3T 2
HΛ′ΛH ′W 2εΛH ′W 2εΛM∗∗

]
t

=

[
H

1

NT

(
Λ′Λ

N

)
·
(
H ′W 2εΛ√

NT

)(
H ′W 2εΛ√

NT

)
M∗∗

]
t

=

[
H

1

NT

(
Λ′Λ

N

)
Π̆1Π̆1M

∗∗
]
t

=
1

NT
M∗∗′Π̆′1Π̆′1

(
Λ′Λ

N

)
ht (B.99)

The date t - element of the fifth term in the r.h.s. of equation (B.93) is:

[
1

N3T 2
εε′W 2εε′W 2εΛM∗∗

]
t

= M∗∗′
1

NT

T∑
s=1

N∑
i=1

εitε̆is

[
1

N2T
Wεε′W 2εΛ

]
s

= M∗∗′
1

NT

T∑
s=1

N∑
i=1

εitε̆is

(
1√
NT

η̆2
s ξ̆s +

1

NT
κ̆sξ̆s +

1

N
√
N

˘̆ϕs +
1

N
√
T

˘̆γs

)
= M∗∗′

[
1

NT
√
T
β̆4,t +

1

NT
√
NT

β̆5,t +
1

N2
√
T
β̆6,t +

1

NT
√
N
β̆7,t

]
, (B.100)

where:

β̆4,t :=
1√
NT

N∑
i=1

T∑
s=1

εitε̆isη̆
2
s ξ̆s, β̆5,t :=

1√
NT

N∑
i=1

T∑
s=1

εitε̆isκ̆sξ̆s,

β̆6,t :=
1√
NT

N∑
i=1

T∑
s=1

εitε̆is ˘̆ϕs, β̆7,t :=
1√
NT

N∑
i=1

T∑
s=1

εitε̆is ˘̆γs.

The date t - element of the sixth term in the r.h.s. of equation (B.93) can be computed by first noting
that:

1

N3T 2
εε′W 2εΛH ′W 2εΛ =

1√
NT
·
(

1

N2T
εε′W 2εΛ

)
·
(

1√
NT

H ′W 2εΛ

)
=

1√
NT
·
(

1

N2T
εε′W 2εΛ

)
Π̆1

which implies:[
1

N3T 2
εε′W 2εΛH ′W 2εΛM∗∗

]
t

=
1

N
√
NT

M∗∗′Π̆′1

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
(B.101)

The date t - element of the seventh term in the r.h.s. of equation (B.93) can be computed by first noting
that:

1

N3T 2
εΛH ′W 2εε′W 2εΛ =

1

N
√
T

(
εΛ√
N

)
·
(

1

NT
√
NT

H ′W 2εε′W 2εΛ

)
=

1

N
√
T

(
εΛ√
N

)
· Π̆3
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which implies: [
1

N3T 2
εΛH ′W 2εε′W 2εΛM∗∗

]
t

=
1

N
√
T
M∗∗′Π̆′3ξ̆t (B.102)

The date t - element of the eighth, and final, term in the r.h.s. of equation (B.93) can be computed by
first noting that:

1

N3T 2
εΛH ′W 2εΛH ′W 2εΛ =

1

NT
√
N

(
εΛ√
N

)(
1√
NT

H ′W 2εΛ

)
·
(

1√
NT

H ′W 2εΛ

)
=

1

NT
√
N

(
εΛ√
N

)
· Π̆1 · Π̆1

which implies: [
1

N3T 2
εΛH ′W 2εΛH ′W 2εΛM∗∗

]
t

=
1

NT
√
N
M∗∗′Π̆′1Π̆′1ξ̆t . (B.103)
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The seventh term in the r.h.s. of equation (B.76) can be written as:

1

N
(HΛ′ + ε)

1

N2T 2
(ε′W 2ε+ ΛH ′W 2ε)2 1

T
ε′W 2H · (H ′W 2H/T )−1M∗∗

= H
1

N3T 3

[
Λ′ε′W 2εε′W 2ε+ Λ′ε′W 2εΛH ′W 2ε+ Λ′ΛH ′W 2εε′W 2ε+ Λ′ΛH ′W 2εΛH ′W 2ε

]
×ε′W 2H · (H ′W 2H/T )−1M∗∗

+
[
εε′W 2εε′W 2ε+ εε′W 2εΛH ′W 2ε+ εΛH ′W 2εε′W 2ε+ εΛH ′W 2εΛH ′W 2ε

]
×ε′W 2H · (H ′W 2H/T )−1M∗∗ (B.104)

The date t - element of the first term in the r.h.s. of equation (B.104) can be computed by first noting
that:

1

N3T 3
(Λ′ε′W 2εε′W 2ε)ε′W 2H

=
1

T

(
Λ′ε′W 2εε′W

N2T

)(
Wεε′W 2H

NT

)
=

1

T

T∑
t=1

[
Wεε′W 2εΛ′

N2T

]
t

([
Wεε′W 2H

NT

]
t

)′
=

1

T

T∑
t=1

[
1√
NT

η̆2
t ξ̆t +

1

NT
κ̆tξ̆t +

1

N
√
N

˘̆ϕt +
1

N
√
T

˘̆γt

] [
1

T
η̆2
t h̆
′
t +

1

T
√
N
κ̆th̆

′
t +

1√
NT

˘̆α′t

]
(B.105)

which implies:[
H

1

N3T 3
(Λ′ε′W 2εε′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1

×

{
1

T

T∑
s=1

[
1

T
η̆2
s h̆s +

1

T
√
N
κ̆sh̆s +

1√
NT

˘̆αs

] [
1√
NT

η̆2
t ξ̆
′
s +

1

NT
κ̆tξ̆
′
s +

1

N
√
N

˘̆ϕ′s +
1

N
√
T

˘̆γ′s

]}
ht

= M∗∗′(H ′W 2H/T )−1

(
H ′ε′W 2εεW

NT
√
T

)(
Wεε′W 2Λ

N2T
√
T

)
ht (B.106)

The date t - element of the second term in the r.h.s. of equation (B.104) can be computed by first noting
that:

1

N3T 3
(Λ′ε′W 2εΛH ′W 2ε)ε′W 2H =

1

TN

(
Λ′ε′W 2εΛ

NT

)(
H ′W 2εε′W 2H

NT

)
=

1

TN
Π̆2Π̆4

(B.107)
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which implies:[
H

1

N3T 3
(Λ′ε′W 2εΛH ′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1 1

TN
Π̆4Π̆2ht

(B.108)

The date t - element of the third term in the r.h.s. of equation (B.104) can be computed by first noting
that:

1

N3T 3
(Λ′ΛH ′W 2εε′W 2ε)ε′W 2H

=
1

T
(Λ′Λ/N)

(
H ′W 2εε′W

NT

)(
Wεε′W 2H

NT

)
= (Λ′Λ/N)

1

T

T∑
t=1

[
Wεε′W 2H

NT

]
t

([
Wεε′W 2H

NT

]
t

)′
= (Λ′Λ/N)

1

T

T∑
t=1

[
1

T
η̆2
t h̆t +

1

T
√
N
κ̆th̆t +

1√
NT

˘̆αt

]
·
[

1

T
η̆2
t h̆
′
t +

1

T
√
N
κ̆th̆

′
t +

1√
NT

˘̆α′t

]
(B.109)

which implies:[
H

1

N3T 3
(Λ′ΛH ′W 2εε′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1

×

{
1

T

T∑
t=1

[
1

T
η̆2
t h̆t +

1

T
√
N
κ̆th̆t +

1√
NT

˘̆αt

] [
1

T
η̆2
t h̆
′
t +

1

T
√
N
κ̆th̆

′
t +

1√
NT

˘̆α′t

]
(Λ′Λ/N)

}
ht

= M∗∗′(H ′W 2H/T )−1

(
H ′ε′W 2εεW

NT
√
T

)(
Wεε′W 2H

NT
√
T

)(
Λ′Λ

N

)
ht (B.110)

The date t - element of the fourth term in the r.h.s. of equation (B.104) can be computed by first noting
that:

1

N3T 3
(Λ′ΛH ′W 2εΛH ′W 2ε)ε′W 2H =

1

T
√
NT

(Λ′Λ/N)

(
H ′W 2εΛ√

NT

)(
H ′Wεε′W 2H

NT

)
=

1

T
√
NT

(Λ′Λ/N)Π̆1Π̆4 (B.111)

which implies: [
H

1

N3T 3
(Λ′ΛH ′W 2εΛH ′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1 1

TN
Π̆4Π̆′1(Λ′Λ/N)ht (B.112)
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The date t - element of the fifth term in the r.h.s. of equation (B.104) is[
1

N3T 3
(εε′W 2εε′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1 1

NT

T∑
s=1

N∑
i=1

εi,tε̆i,s

[
Wεε′W 2εε′W 2H

N2T 2

]
s

= M∗∗′(H ′W 2H/T )−1 1

NT

T∑
s=1

N∑
i=1

εi,tε̆i,s

{
1

T 2
η̆4
s h̆s +

1√
NT 2

κ̆sη̆
2
s h̆s +

1√
NTT

˘̄αs

+
1

T 2
√
N
κ̆sη̆

2
s h̆s +

1

NT 2
κ̆2
sh̆s +

1

NT
√
N

˘̄ϕs +
1

NT
√
T

˘̄γs

+
1

T
√
NT

η̆2
s
˘̆αs +

1

NT
√
T
κ̆s ˘̆αs +

1

N
√
NT

δ̆s +
1

NT
χ̆s − γ̃RP

[
1

T 2
√
N
β̆1,s +

1

NT 2
√
T
β̆2,s +

1

NT 2
β̆3,s

]}
(B.113)

The date t - element of the sixth term in the r.h.s. of equation (B.104) is[
1

N3T 3
(εε′W 2εΛH ′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1 1

T

(
H ′W 2εε′W 2H

NT

)[
εε′W 2εΛ

N2T

]
t

= M∗∗′(H ′W 2H/T )−1 1

T
Π̆4

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t+

+ γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
(B.114)
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The date t - element of the seventh term in the r.h.s. of equation (B.104) is[
1

N3T 3
(εΛH ′W 2εε′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1 1√
N

(
H ′W 2εε′W

NT
√
T

)(
Wεε′W 2H

NT
√
T

)[
εΛ√
N

]
t

= M∗∗′(H ′W 2H/T )−1 1√
N

{
1

T

T∑
s=1

[
Wεε′W 2H

NT

]
s

([
Wεε′W 2H

NT

]
s

)′}
ξt

= M∗∗′(H ′W 2H/T )−1 1

T
√
N

×

{
1

T

T∑
s=1

[
1

T
η̆2
s h̆s +

1

T
√
N
κ̆sh̆s +

1√
NT

˘̆αs

]
·
[

1

T
η̆2
s h̆
′
s +

1

T
√
N
κ̆sh̆

′
s +

1√
NT

˘̆α′s

]}
ξt

= M∗∗′(H ′W 2H/T )−1 1√
N

(
H ′W 2εε′W

NT
√
T

)(
Wεε′W 2H

NT
√
T

)
ξt (B.115)

The date t - element of the eighth term in the r.h.s. of equation (B.104) is[
1

N3T 3
(εΛH ′W 2εΛH ′W 2ε)ε′W 2H · (H ′W 2H/T )−1M∗∗

]
t

= M∗∗′(H ′W 2H/T )−1 1

NT
√
T

(
H ′W 2εε′W 2H

NT

)(
Λε′W 2H√

NT

)[
εΛ√
N

]
t

= M∗∗′(H ′W 2H/T )−1 1

NT
√
T

Π̆4Π̆′1ξt (B.116)

Therefore, the date t - element (B.104), which we denote ad r7,t is:

r7,t = = M∗∗′(H ′W 2H/T )−1

{(
H ′ε′W 2εεW

NT
√
T

)(
Wεε′W 2Λ

N2T
√
T

)
ht +

1

TN
Π̆4Π̆2ht

+

(
H ′ε′W 2εεW

NT
√
T

)(
Wεε′W 2H

NT
√
T

)(
Λ′Λ

N

)
ht +

1

TN
Π̆4Π̆′1(Λ′Λ/N)ht

+
1

NT

T∑
s=1

N∑
i=1

εi,tε̆i,s

{
1

T 2
η̆4
s h̆s +

1√
NT 2

κ̆sη̆
2
s h̆s +

1√
NTT

˘̄αs

+
1

T 2
√
N
κ̆sη̆

2
s h̆s +

1

NT 2
κ̆2
sh̆s +

1

NT
√
N

˘̄ϕs +
1

NT
√
T

˘̄γs

+
1

T
√
NT

η̆2
s

˘̆αs +
1

NT
√
T
κ̆s ˘̆αs +

1

N
√
NT

δ̆s +
1

NT
χ̆s − γ̃RP

[
1

T 2
√
N
β̆1,s +

1

NT 2
√
T
β̆2,s +

1

NT 2
β̆3,s

]}
+

1

T
Π̆4

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1√
N

(
H ′W 2εε′W

NT
√
T

)(
Wεε′W 2H

NT
√
T

)
ξt +

1

NT
√
T

Π̆4Π̆′1ξt

}
. (B.117)
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The eighth term in the r.h.s. of equation (B.76) can be written as:

1

N4T 3
(HΛ′ + ε)(ε′W 2ε+ ΛH ′W 2ε)2(ε′W 2εΛ + ΛH ′W 2εΛ)M∗∗∗

= H

{
1

N
√
NT

(
Λ′ε′W 2ε

NT

)(
ε′W 2εΛ

NT

)
+

1

N2T

(
Λ′ε′W 2εΛ

NT

)(
H ′W 2εΛ√

NT

)

+
1

NT

(
Λ′Λ

N

)(
H ′W 2εε′W 2εΛ

NT
√
NT

)
+

1

NT
√
NT

(
Λ′Λ

N

)(
H ′W 2εΛ√

NT

)(
H ′W 2εΛ√

NT

)}(
H ′W 2εΛ√

NT

)
M∗∗∗

+

{
1√
NT

(
εε′W 2εε′W 2εΛ

N3T 2

)
+

1

NT

(
εε′W 2εΛ

N2T

)(
H ′W 2εΛ√

NT

)

+
1

NT
√
N

(
εΛ√
N

)(
H ′W 2εε′W 2εΛ

NT
√
NT

)
+

1

N2T
√
T

(
εΛ√
N

)(
H ′W 2εΛ√

NT

)(
H ′W 2εΛ√

NT

)}(
H ′W 2εΛ√

NT

)
M∗∗∗

+H

{
1

N

(
Λ′ε′W 2ε

NT

)(
ε′W 2ε

NT

)
+

1

N
√
NT

(
Λ′ε′W 2εΛ

NT

)(
H ′W 2ε√
NT

)

+
1√
NT

(
Λ′Λ

N

)(
H ′W 2εε′W 2ε

NT
√
NT

)
+

1

NT

(
Λ′Λ

N

)(
H ′W 2εΛ√

NT

)(
H ′W 2ε√
NT

)}(
ε′W 2εΛ

NT

)
M∗∗∗

+

{
1√
NT

(
εε′W 2εΛ

N2T

)(
H ′W 2ε√
NT

)

+
1

N
√
T

(
εΛ√
N

)(
H ′W 2ε

NT

)(
ε′W 2ε√
NT

)
+

1

NT
√
N

(
εΛ√
N

)(
H ′W 2εΛ√

NT

)(
H ′W 2ε√
NT

)}(
ε′W 2εΛ

NT

)
M∗∗∗

+

(
ε′W 2ε

NT

)(
εε′W 2εε′W 2εΛ

N3T 2

)
M∗∗∗, (B.118)

which can be written as

r8,t = H

{
1

N
√
NT

(
Λ′ε′W 2ε

NT

)(
ε′W 2εΛ

NT

)
+

1

N2T
Π̆2Π̆1 +

1

NT

(
Λ′Λ

N

)
Π̆3 +

1

NT
√
NT

(
Λ′Λ

N

)
Π̆2

1

}
Π̆1M

∗∗∗

+

{
1√
NT

(
εε′W 2εε′W 2εΛ

N3T 2

)
+

1

NT

(
εε′W 2εΛ

N2T

)
Π̆1 +

1

NT
√
N

(
εΛ√
N

)
Π̆3 +

1

N2T
√
T

(
εΛ√
N

)
Π̆2

1

}
Π̆1M

∗∗∗

+H

{
1

N

(
Λ′ε′W 2ε

NT

)(
ε′W 2ε

NT

)
+

1

N
√
NT

Π̆2

(
H ′W 2ε√
NT

)

+
1√
NT

(
Λ′Λ

N

)
Π̆3 +

1

NT

(
Λ′Λ

N

)
Π̆1

(
H ′W 2ε√
NT

)}(
ε′W 2εΛ

NT

)
M∗∗∗

+

{
1√
NT

(
εε′W 2εΛ

N2T

)(
H ′W 2ε√
NT

)

+
1

N
√
T

(
εΛ√
N

)(
H ′W 2ε

NT

)(
ε′W 2ε√
NT

)
+

1

NT
√
N

(
εΛ√
N

)
Π̆1

(
H ′W 2ε√
NT

)}(
ε′W 2εΛ

NT

)
M∗∗∗

+

(
ε′W 2ε

NT

)(
εε′W 2εε′W 2εΛ

N3T 2

)
M∗∗∗. (B.119)
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Therefore, the date t - element (B.119), which we denote ad r8,t is:

r8,t = M∗∗∗′Π̆′1

{
1

N
√
NT

(
Λ′ε′W 2ε

NT

)(
ε′W 2εΛ

NT

)
+

1

N2T
Π̆′1Π̆2 +

1

NT
Π̆′3

(
Λ′Λ

N

)
+

1

NT
√
NT

(Π̆′1)2

(
Λ′Λ

N

)}
ht

+M∗∗∗′Π̆′1

{
1√
NT

[
εε′W 2εε′W 2εΛ

N3T 2

]
t

+
1

NT
Π̆1

[
εε′W 2εΛ

N2T

]
t

+
1

NT
√
N

Π̆′3ξt +
1

N2T
√
T

(Π̆′1)2ξt

}

+M∗∗∗′
(

Λ′ε′W 2ε

NT

){
1

N

(
Λ′ε′W 2ε

NT

)(
ε′W 2ε

NT

)
+

1

N
√
NT

Π̆2

(
H ′W 2ε√
NT

)

+
1√
NT

(
Λ′Λ

N

)
Π̆3 +

1

NT

(
Λ′Λ

N

)
Π̆1

(
ε′W 2H√
NT

)}
ht

+M∗∗∗′
(

Λ′ε′W 2ε

NT

){
1√
NT

(
ε′W 2H√
NT

)[
εε′W 2εΛ

N2T

]
t

+
1

N
√
T

(
ε′W 2ε√
NT

)(
H ′W 2ε

NT

)′
ξt +

1

NT
√
N

(
ε′W 2H√
NT

)
Π̆′1ξt

}

+M∗∗∗′
1

NT

T∑
s=1

N∑
i=1

ε̆itε̆is

[
εε′W 2εε′W 2εΛ

N3T 2

]
s

(B.120)
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which is equal to:

r8,t = M∗∗∗′Π̆′1

{
1

N
√
NT

(
Λ′ε′W 2ε

NT

)(
ε′W 2εΛ

NT

)
+

1

N2T
Π̆′1Π̆2 +

1

NT
Π̆′3

(
Λ′Λ

N

)
+

1

NT
√
NT

(Π̆′1)2

(
Λ′Λ

N

)}
ht

+M∗∗∗′Π̆′1

{
1√
NT

[
1

NT
√
T
β̆4,t +

1

NT
√
NT

β̆5,t +
1

N2
√
T
β̆6,t +

1

NT
√
N
β̆7,t

]
+

1

NT
Π̆1

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

NT
√
N

Π̆′3ξt +
1

N2T
√
T

(Π̆′1)2ξt

}

+M∗∗∗′
(

Λ′ε′W 2ε

NT

){
1

N

(
Λ′ε′W 2ε

NT

)(
ε′W 2ε

NT

)
+

1

N
√
NT

Π̆2

(
H ′W 2ε√
NT

)

+
1√
NT

(
Λ′Λ

N

)
Π̆3 +

1

NT

(
Λ′Λ

N

)
Π̆1

(
ε′W 2H√
NT

)}
ht

+M∗∗∗′
(

Λ′ε′W 2ε

NT

){
1√
NT

(
ε′W 2H√
NT

){
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

N
√
T

(
ε′W 2ε√
NT

)(
H ′W 2ε

NT

)′
ξt +

1

NT
√
N

(
ε′W 2H√
NT

)
Π̆′1ξt

}

+M∗∗∗′
1

NT

T∑
s=1

N∑
i=1

ε̆itε̆is

[
1

NT
√
T
β̆4,s +

1

NT
√
NT

β̆5,s +
1

N2
√
T
β̆6,s +

1

NT
√
N
β̆7,s

]
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Therefore, the expansion in (B.76) for date t reads:

(H̃ ′)−1ĥt − ht =
1√
N

(Λ′Λ/N)−1ξt + M∗′
1√
NT

Π̆1ht

+
1

T
M∗′η2

t h̆t +
1

T
√
N
M∗′κth̆t +

1√
NT

M∗′ᾰt + γ̃RPM
∗′
[

1

T 2
η2
t h̆t +

1

T
√
NT

ᾰ∗t +
1

T 3
√
N
κth̆t

]
+ M∗′

1

N
Π̆2ht +

1√
NT

M∗′Π̆′1

(
Λ′Λ

N

)
ht

+ M∗′
{

1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t + γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

N
√
T
M∗′Π̆′1 ξt

+
1√
NT

M∗′(H ′W 2H/T )−1Π̆3ht + M∗′(H ′W 2H/T )−1 1

T
Π̆4

(
Λ′Λ

N

)
ht

+ M∗′
{

1

T 2
η̆4
t h̆t +

1√
NT 2

κ̆tη̆
2
t h̆t +

1√
NTT

˘̄αt

+
1

T 2
√
N
κ̆tη̆

2
t h̆t +

1

NT 2
κ̆2
t h̆t +

1

NT
√
N

˘̄ϕt +
1

NT
√
T

˘̄γt

+ +
1

T
√
NT

η̆2
t

˘̆αt +
1

NT
√
T
κ̆t ˘̆αt +

1

N
√
NT

δ̆t +
1

NT
χ̆t − γ̃RP

[
1

T 2
√
N
β̆1,t +

1

NT 2
√
T
β̆2,t +

1

NT 2
β̆3,t

]}

+
1

T
√
N
M∗(H ′W 2H/T )−1Π̆4ξt + M∗∗′

{
1

NT

(
1

T

T∑
t=1

η̆2
t ξ̆tξ̆

′
t

)
+

1

NT
√
N

(
1

T

T∑
t=1

κ̆tξ̆tξ̆
′
t

)

+
1

N2

(
1

T

T∑
t=1

ξ̆t ˘̆ϕ′t

)′
+

1

N
√
TN

(
1

T

T∑
t=1

ξ̆t ˘̆γt

)′ht

+
1

N
√
NT

M∗∗′Π̆′1

(
1

T

T∑
t=1

ξ̆tξ̆
′
t

)
ht +

1√
NT

M∗∗′Π̆′3

(
Λ′Λ

N

)
ht +

1

NT
M∗∗′Π̆′1Π̆′1

(
Λ′Λ

N

)
ht

+ M∗∗′
[

1

NT
√
T
β̆4,t +

1

NT
√
NT

β̆5,t +
1

N2
√
T
β̆6,t +

1

NT
√
N
β̆7,t

]
+

1

N
√
NT

M∗∗′Π̆′1

{
1√
NT

η2
t ξ̆t +

1

NT
κtξ̆t +

1

N
√
N
ϕ̆t +

1

N
√
T
γ̆t

+ γ̃RP

[
1

T 2
√
N
η2
t ξ̆t +

1

NT 2
κtξ̆t +

1

NT
√
T
ᾰ∗t

]}
+

1

N
√
T
M∗∗′Π̆′3ξ̆t +

1

NT
√
N
M∗∗′Π̆′1Π̆′1ξ̆t + r7,t + r8,t + R̆t . (B.122)

By rearranging and decomposing the terms of order 1/
√
N , 1/

√
NT , 1/T , and 1/N in the last equations, the expansion

in (B.49) follows.
Let us now prove the convergence of matrices Ĥ and H̃ . From Proposition B.4 and Assumption B.10, we have

op(1) = Λ′(Λ̂− ΛĤ )/N = (Λ′Λ̂/N)− ΣλĤ + op(1), which implies:

(Λ′Λ̂/N) = ΣλĤ + op(1). (B.123)
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By combining equations (B.59) and (B.123), and using Lemma B.11 and Assumption B.10, we get:

Σh(W 2)ΣλĤ = Ĥ V + op(1). (B.124)

The definition of matrix H̃ and Assumption B.10 imply:

H̃ = ΣλĤ + op(1) , (B.125)

which combined with equation (B.124) implies:

ΣλΣh(W 2)H̃ = H̃ V + op(1), (B.126)

and
Σ

1/2
λ Σh(W 2)Σ

1/2
λ (Σ

−1/2
λ H̃ ) = (Σ

−1/2
λ H̃ )V + op(1). (B.127)

The last equation shows that Σ
−1/2
λ H̃ are the eigenvectors of Σ

1/2
λ Σh(W 2)Σ

1/2
λ .

Moreover, equation (B.125) implies:

Σ
−1/2
λ H̃ = Σ

1/2
λ Ĥ + op(1) . (B.128)

By substituting the quality Λ̂ = (Λ̂− ΛĤ ) + ΛĤ into the RP-PCA loadings constraint Λ̂′Λ̂/N = Ik, Assumption B.10,
Proposition B.4 and equation (B.123), we get:

Ĥ ′ΣλĤ = Ĥ ′Σ
1/2
λ Σ

1/2
λ Ĥ = Ik + op(1). (B.129)

The last equation, combined with (B.128), implies also:

H̃ ′Σ
−1/2
λ Σ

−1/2
λ H̃ = Ik + op(1). (B.130)

Recall that V is the diagonal matrix with diagonal elements corresponding to the eigenvalues of the symmetric matrix
Σ

1/2
λ Σh(W 2)Σ

1/2
λ . Then, if these eigenvalues are distinct, equations (B.127) and (B.130) imply that the columns of matrix

Σ
−1/2
λ H̃ converge in probability to the orthonormal eigenvectors of matrix Σ

1/2
λ Σh(W )Σ

1/2
λ . Proposition B.3 follows. �

In the remaining part of this subsection we provides the proofs of all the Lemmas and checks of the Assumptions.

B.5.1.2 Proof of Proposition B.4

By computing the norms of both sides of equation (B.66), using the triangular inequality and the Cauchy-Schwarz
inequality, Lemmas B.10 and B.11, and Assumption B.10, we get:

‖Λ̂Ĥ −1 − Λ‖ = Op

(
‖ 1

NT
ε′W 2εΛ‖+ ‖ 1

NT
ΛH ′W 2εΛ‖+ ‖ 1

T
ε′W 2H‖

)
+Op

[(
‖ 1

NT
ε′W 2ε‖+ ‖ 1

NT
ΛH ′W 2ε‖

)
‖Λ̂Ĥ −1 − Λ‖

]
, (B.131)

To control the term in the r.h.s. we use the first three results in next lemma.
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LEMMA B.12. Under Assumptions B.10 and B.12, we have: (i) ‖ 1

T
ε′W 2H‖ = Op

(√
N

T

)
,

(ii) ‖ 1

NT
ΛH ′W 2ε‖ = Op

(
1√
T

)
and (iii) ‖ 1

NT
ΛH ′W 2εΛ‖ = Op

(
1√
T

)
. Moreover, we also have:

(iv) ‖ 1

N
ε̆Λ‖ = Op

(√
T

N

)
, which implies ‖ 1

N
εΛ‖ = Op

(√
T

N

)
.

(v) ‖ 1

NT
HΛ′ε′‖ = Op

(
1√
N

)
and (vi) ‖ 1

NT
HΛ′ε′H‖ = Op

(
1√
N

)
.

(check if and where the last 2 results are used).

By multiplying both sides of equation (B.131) times N−1/2, and using Assumption B.12 ii)-iii) and Lemma B.12, we get:

N−1/2‖Λ̂Ĥ −1 − Λ‖ = Op

(
1√
Nm

+
1√
NT

+
1√
N

√
N√
T

)
+Op

(
1√
m

+
1√
T

)
N−1/2‖Λ̂H̃ −1 − Λ‖

= Op

(
1√
T

+
1√
NT

+
1√
Nm

)
+ op(N

−1/2‖Λ̂Ĥ −1 − Λ‖),

where m = min{N,T}. The last equation simplifies as:

N−1/2‖Λ̂Ĥ −1 − Λ‖ = Op

(
1√
T

)
, (B.132)

using that 1√
T
> 1√

Nm
, which is implied by Assumption B.1. This last result shows part i) of Proposition B.4.

By plugging in equation (B.66) into equation (B.74) we get:

ĤH̃ −1 −H

=
1

N
εΛ(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

{
1

NT
(ε′W 2εΛ + ΛH ′W 2εΛ)Ĥ (Λ′Λ̂/N)−1(H ′W 2H/T )−1

}
(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

{
1

T
ε′W 2H(H ′W 2H/T )−1

}
(Λ′Λ/N)−1

+
1

N
(HΛ′ + ε)

{
1

NT
(ε′W 2ε+ ΛH ′W 2ε)[Λ̂Ĥ −1 − Λ]Ĥ (Λ′Λ̂/N)−1(H ′W 2H/T )−1

}
(Λ′Λ/N)−1

(B.133)

By computing the norms of both sides of the last equation, pre-multiplying by 1/
√
T , using the triangular inequality and

the Cauchy-Schwarz inequality, Lemmas B.10 and B.11, and Assumption B.10, we get:
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1√
T
‖ĤH̃ −1 −H‖

=
1√
T

∥∥∥∥ 1

N
εΛ

∥∥∥∥ ·Op(1) +

∥∥∥∥ 1

N2T
HΛ′ε′W 2εΛ

∥∥∥∥ ·Op(1) +

∥∥∥∥ 1

N2T
εε′W 2εΛ

∥∥∥∥ ·Op(1)

+
1√
T

∥∥∥∥ 1

N2T
HΛ′ΛH ′W 2εΛ

∥∥∥∥ ·Op(1) +
1√
T

∥∥∥∥ 1

N2T
εΛH ′W 2εΛ

∥∥∥∥ ·Op(1)

+
1√
T

∥∥∥∥ 1

NT
HΛ′ε′W 2H

∥∥∥∥ ·Op(1) +
1√
T

∥∥∥∥ 1

NT
εε′W 2H

∥∥∥∥ ·Op(1)

+

√
N

T

∥∥∥∥ 1

N2T
HΛ′ε′W 2ε

∥∥∥∥ 1√
N
‖Λ̂Ĥ −1 − Λ‖Op(1) +

√
N

T

∥∥∥∥ 1

N2T
εε′W 2ε

∥∥∥∥ 1√
N
‖Λ̂Ĥ −1 − Λ‖Op(1)

+

√
N

T

∥∥∥∥ 1

N2T
HΛ′ΛH ′W 2εΛ

∥∥∥∥ 1√
N
‖Λ̂Ĥ −1 − Λ‖Op(1) +

√
N

T

∥∥∥∥ 1

N2T
εΛ′W 2εΛ

∥∥∥∥ 1√
N
‖Λ̂Ĥ −1 − Λ‖Op(1)

=
1√
T

∥∥∥∥ 1

N
εΛ

∥∥∥∥ ·Op(1) +
1

T

∥∥∥∥ 1√
T
H

∥∥∥∥∥∥∥∥ 1

N
ε̆Λ

∥∥∥∥2

·Op(1) +
1√
N

∥∥∥∥ 1√
NT

ε

∥∥∥∥∥∥∥∥ 1

NT
ε′W 2εΛ

∥∥∥∥ ·Op(1)

+
1√
N

∥∥∥∥ 1√
NT

HΛ′
∥∥∥∥∥∥∥∥ 1

NT
ΛH ′W 2εΛ

∥∥∥∥ ·Op(1) +
1√
N

∥∥∥∥ 1√
NT

ε

∥∥∥∥∥∥∥∥ 1

NT
ΛH ′W 2εΛ

∥∥∥∥ ·Op(1)

+
1√
NT

∥∥∥∥ 1√
T
H

∥∥∥∥∥∥∥∥ 1√
NT

Λ′ε′W 2H

∥∥∥∥ ·Op(1) +
1√
T

∥∥∥∥ 1

NT
εε′W 2H

∥∥∥∥ ·Op(1)

+

√
N

N

∥∥∥∥ 1√
T
H

∥∥∥∥∥∥∥∥ 1

NT
Λ′ε′W 2ε

∥∥∥∥OP ( 1√
T

)
+

√
N

N

∥∥∥∥ 1√
NT

ε

∥∥∥∥∥∥∥∥ 1

NT
ε′W 2ε

∥∥∥∥OP ( 1√
T

)
+

√
N

N

∥∥∥∥ 1√
NT

HΛ′
∥∥∥∥∥∥∥∥ 1

NT

′
ΛH ′W 2εΛ

∥∥∥∥OP ( 1√
T

)
+

√
N

T

∥∥∥∥ 1√
NT

ε

∥∥∥∥∥∥∥∥ 1

NT
ΛH ′W 2εΛ

∥∥∥∥OP ( 1√
T

)
. (B.134)

Therefore, by using Assumptions B.10, B.12 ii), iii), iv) and Lemma B.12 ii), iv), we get:

1√
T
‖ĤH̃ −1 −H‖ = OP

(
1√
N

)
+OP

(
1

N

)
+OP

(
1√
Nm

)
+OP

(
1√
NT

)
+OP

(
1√
Tm

)
+OP

(
1

T

)
+OP

(
1√
NTm

)
+OP

(
1

T
√
N

)
= OP

(
1√
N

)
+OP

(
1

T

)
+OP

(
1√
Tm

)
= OP

(
1√
N

)
,

where the last two equalities follow from Assumption B.1. Therefore we get:

T−1/2‖ĤH̃ −1 −H‖ = Op

(
1√
N

)
. (B.135)
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The reminder term R̂ is controlled by first noting that, from its definition in equation (B.54), we have

1√
T
R̂ =

1√
NT

(HΛ′ + ε)

[
1

NT
(ε′W 2ε+ ΛH ′W 2ε)

]3 1√
N

(Λ̂Ĥ −1 − Λ)
[
S̆(Ik + B̂)

]3
(

Λ′Λ

N

)−1

.

and that from equations and (B.135), Assumptions B.10 and B.12 ii), and Lemmas B.10, B.11 and B.12 ii), and the

Cauchy-Schwarz inequality we have:

T−1/2‖R̂‖ = Op

[(∥∥∥∥ HΛ√
NT

∥∥∥∥+

∥∥∥∥ ε√
NT

∥∥∥∥)
(∥∥∥∥ε′W 2ε

NT

∥∥∥∥3

+

∥∥∥∥ΛH ′W 2ε

NT

∥∥∥∥3
)(

1√
N
‖Λ̂H̃ −1 − Λ‖

)]

= Op

[(
1

m
√
m

+
1

T
√
T

)
1√
T

]
= Op

(
1

m
√
Tm

)
.

This last result concludes the proofs of Proposition B.4. �

B.5.1.3 Proof of Proposition B.5

Let us first establish the MSE bound for remainder term rt, which can be computed by first noting that, from its definition
we have:

1

T

T∑
t=1

‖rt‖2 ≤
2

T

T∑
t=1

(
‖r1,t‖2 + ‖r7,t‖2 + ‖r8,t‖2 + ‖R̂t‖2

)
. (B.136)

Moreover, from the definition of r1,t in (B.50) and Assumption B.13 we have

(
1

T

T∑
t=1

‖r1,t‖2
)1/2

= Op

[
‖B̂‖

(
1

T
+

1

N
+

1√
NT

)]
+Op

(
1

N
√
T

+
1

T
√
N

+
1

T 2
+

1

N
√
N

)
= Op

[
1√
T

(
1

T
+

1

N
+

1√
NT

)]
+Op

(
1

N
√
T

+
1

T
√
N

+
1

T 2
+

1

N
√
N

)
= Op

(
1

N
√
T

+
1

T
√
N

+
1

T
√
T

+
1

N
√
N

)
. (B.137)

From Assumption ... also have:

(
1

T

T∑
t=1

‖r7,t‖2
)1/2

= ...., (B.138)

(
1

T

T∑
t=1

‖r8,t‖2
)1/2

= ...., (B.139)
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and (
1

T

T∑
t=1

‖R̂t‖2
)1/2

= Op

(
1

m
√
Tm

)
, (B.140)

where the last equality follows directly from bound (B.60). Combining the last four results, and by using Assumption B.1

we get:

(
1

T

T∑
t=1

‖r1,t‖2
)1/2

= Op

(
1

N
√
T

+
1

T
√
N

+
1

T
√
T

+
1

N
√
N

)
. (B.141)

Let us now show that 1
T

∑T
t=1 ϑth

′
t = Op(

1
N + 1

T
√
T

). We use ϑ̆t = ϑ̃t + R̂t where

ϑ̃t =

(
Λ′Λ

N

)−1

S̆′
(

1√
NT

αt +
1

N
Π̆2ht

)
+ rt.

From the Cauchy-Schwarz inequality and the bound in (B.60), we have:

1

T

T∑
t=1

ϑ̆th
′
t =

1

T

T∑
t=1

ϑ̃th
′
t +

1

T

T∑
t=1

R̂th′t =
1

T

T∑
t=1

ϑ̃th
′
t +Op

(
1

m
√
Tm

)
.

Moreover, by using Assumption B.13, bound (B.141) and 1
T
√
N

= o( 1
N ) (which follows from Assumption B.1), we have:

1

T

T∑
t=1

ϑ̃th
′
t = Op

[
1√
NT

S̆′

(
1√
T

T∑
t=1

αth
′
t

)]
+Op

[
1

N
S̆′Π̆2

(
1

T

T∑
t=1

hth
′
t

)]
+Op

(
1

N
√
T

+
1

T
√
N

+
1

T
√
T

+
1

N
√
N

)
= Op

(
1

N
+

1

T
√
T

)
.

Then, 1
T

∑T
t=1 ϑ̆th

′
t = Op

(
1
N + 1

T
√
T

)
follows.

Let us finally show that 1
T

∑T
t=1( 1√

N
ut + 1

T b̆t + 1√
NT

d̆t + ϑ̆t)ϑ̆
′
t = op(

1
N
√
T

). We have:

1

T

T∑
t=1

(
1√
N
ut +

1

T
b̆t +

1√
NT

d̆t + ϑ̆t)ϑ̆
′
t =

1

T

T∑
t=1

(
1√
N
ut +

1

T
b̆t +

1√
NT

d̆t + ϑ̃t)ϑ̃
′
t

+
1

T

T∑
t=1

R̂tϑ̃′t +
1

T

T∑
t=1

[(Ĥ ′)−1ĥt − ht]R̂′t.

Moreover, by using bound (B.141) and Assumption B.13:

(
1

T

T∑
t=1

‖ϑ̃t‖2)1/2 = Op

(
1

N
+

1

T
√
T

+
1√
NT

)
= Op

(
1

N
+

1√
NT

)
, (B.142)
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where the last equation follows from Assumption B.1. Thus, from (B.60) and
√
T � N � T 2 (Assumption B.1), we get:

1

T

T∑
t=1

R̂tϑ̃′t = Op

[
T−1/2‖R̂‖( 1

T

T∑
t=1

‖ϑ̃t‖2)1/2

]

= Op

[
1

m
√
Tm

(
1

N
+

1√
NT

)]
= op(

1

N
√
T

).

Further, from Proposition B.4 ii) bound (B.60)

1

T

T∑
t=1

[(H̃ ′)−1ĥt − ht]R̂′t = Op

(
T−1/2‖ĤĤ −1 −H‖T−1/2‖R̂‖

)
= Op

[
1√
N

1

m
√
Tm

]
= op(

1

N
√
T

),

since
√
T � N � T 2. Finally, from Assumption B.13 and the bound in (B.142), we have:

1

T

T∑
t=1

(
1√
N
ut +

1

T
b̆t +

1√
NT

d̆t + ϑ̃t)ϑ̃
′
t

=
1

T

T∑
t=1

1√
N
utϑ̃
′
t +

1

T

T∑
t=1

1

T
b̆tϑ̃
′
t +Op

[(
1√
NT

+
1

N

)2
]

=
1

T
√
N

T∑
t=1

utϑ̃
′
t +

1

T 2

T∑
t=1

b̆tϑ̃
′
t + op

(
1

N
√
T

)
,

and:

1

T
√
N

T∑
t=1

utϑ̃
′
t =

1

N
√
T

(
1

T

T∑
t=1

utᾰt)S

(
Λ′Λ

N

)−1

+
1√
NT

(
1√
T

T∑
t=1

uth
′
t)

×

{
1

T
Op

(
B̂
)

+
1

N
Op

(
B̂
)

+
1√
NT

Op

(
B̂
)

+
1√
NT

Op

(
Π̆3

)}

+
1√
NT

(
1√
T

T∑
t=1

uth̆
′
t)

1

T
Op

(
B̂
)

+Op

[
1√
NT

+
1

N
√
N

+
1

N
√
T

+
1

T 2

]
+ op(

1

N
√
T

)

=
1

N
√
T

(Λ′Λ/N)−1(
1

T

T∑
t=1

ξtᾰ
′
t)S

(
Λ′Λ

N

)−1

+ op(
1

N
√
T

) = op(
1

N
√
T

),

from Assumption B.13 (iv), and:

1

T 2

T∑
t=1

btϑ̃
′
t =

1√
NT 2

(
1√
T

T∑
t=1

btᾰ
′
t)S

(
Λ′Λ

N

)−1

+ ...

+...+ op(
1

N
√
T

)

=
1√
NT 2

(
Λ′Λ

N

)−1

S′(
1√
T

T∑
t=1

η2
t h̆tᾰ

′
t)S

(
Λ′Λ

N

)−1

+ op(
1

N
√
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) = op(
1

N
√
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since
√
T � N � T 2. Hence, 1

T

∑T
t=1( 1√

N
ut + 1

T b̆t + 1√
NT

d̆t + ϑ̆t)ϑ̆
′
t = op(

1
N
√
T

) follows. �

B.5.1.4 Proof of Lemma B.10

The proof follows closely the proof of Proposition 1 (ii) in Bai (2009), applied to the projected model (B.46), that is:
Y̆ = H̆Λ′ + ε̆ . Let us denote by Λ0 the matrix of true factor loadings, in order to distinguish it from a matrix Λ of generic
factor values. The estimator Λ̂ is obtained from minimization of the LS criterion:

min
H̆,Λ:Λ′Λ/N=Ik

tr[(Y̆ − H̆Λ′)′(Y̆ − H̆Λ′)]. (B.143)

The criterium in (B.143), after concentration w.r.t. H , that is by using Ĥ = Y̆ Λ(Λ′Λ)−1, becomes tr(Y̆ MΛY̆
′), where

MΛ = IN − PH and PΛ = Λ(Λ′Λ)−1Λ′. Let us divide the criterium by NT , and subtract its value at Λ0, to get:

SNT (Λ) =
1

NT
tr(Y̆ MΛY̆

′)− 1

NT
tr(ε̆MΛ0 ε̆′).

The matrix of factor estimates Λ̂ is the minimizer of function SNT (Λ) w.r.t. Λ such that Λ′Λ/N = Ik. By using
Y̆ = H̆Λ0′ + ε̆, we get:

SNT (Λ) =
1

NT
tr(H̆Λ0′MΛΛ0H̆ ′) + 2

1

NT
tr(H̆Λ0′MΛε̆

′) +
1

NT
tr(ε̆(PΛ − PΛ0)ε̆′). (B.144)

Now, let us show that the second and third terms in the r.h.s. are op(1) uniformly w.r.t. the (N, k) matrix Λ such that
Λ′Λ/T = Ik. We follow here different arguments compared to the ones in the proof of Lemma A.1 in Bai (2009), since
we deploy slightly different assumptions. We have:

1

NT
tr(H̆Λ0′MΛε̆

′) =
1

NT
tr(Λ0′ε̆′H̆)− tr

[
1

N
Λ0′Λ(

1

N
Λ′Λ)−1 1

NT
Λ′ε̆′H̆

]
= Op(‖

1

NT
Λ0′ε̆′H̆‖) +Op(‖

1

NT
Λ′ε̆′H̆‖) = Op(‖

1√
NT

ε̆′H̆‖) = Op(
1√
T

),

and:

1

NT
tr(ε(PΛ − PΛ0)ε′) =

1

N
tr

[
1

N
ε̆Λ(

1

N
Λ′Λ)−1 1

N
Λ′ε̆′

]
− tr

[
1

N
ε̆Λ0(

1

N
Λ0′Λ0)−1 1

N
Λ0′ε̆′

]
=

1

N
tr

[
Λ′(

1

NT
ε̆′ε̆)Λ

]
− 1

N
tr

[
(

1

N
Λ0′Λ0)−1Λ0′(

1

NT
ε̆′ε̆)Λ0

]
= Op(‖

1

NT
ε̆′ε̆‖) = op(1),

uniformly w.r.t. the (N, k) matrix Λ such that Λ′Λ/T = Ik, using Assumptions B.10 and B.12 i) and iii), Lemma B.12 i),
and the invariance of the trace under cyclical permutations.

Thus, from (B.144) we get SNT (Λ) = S̃NT (Λ) + op(1), where:

S̃NT (Λ) =
1

NT
tr(H̆Λ0′MΛΛ0H̆ ′) = tr[(Λ0′MΛΛ0/N)(H̆ ′H̆/T )], (B.145)
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and the op(1) term is uniform w.r.t. Λ such that Λ′Λ/N = Ik. We have:

S̃NT (Λ̂) ≥ 0,

0 = SNT (Λ0) ≥ SNT (Λ̂) = S̃NT (Λ̂) + op(1),

which imply S̃NT (Λ̂) = op(1). Then, from equation (B.145), Assumption B.10 and Λ̂′Λ̂/N = Ik, it follows:

Λ0′Λ0/N − (Λ0′Λ̂/N)(Λ̂′Λ0/N) = op(1).

Thus, from Assumption B.10, we have (Λ0′Λ̂/N)(Λ̂′Λ0/N) = Σλ + op(1). Lemma B.10 follows. �

B.5.1.5 Proof of Lemma B.11

Let us multiply both sides of equation (B.63) by N−1Λ′ to get:

(Λ′Λ̂/N)V̂ − (Λ′Λ/N)
(
H ′W 2H/T

) (
Λ′Λ̂/N

)
=

1

N2T
Λ′(ε′W 2εΛ̂ + ΛH ′W 2εΛ̂ + ε′W 2HΛ′Λ̂).

By applying the Cauchy-Schwarz inequality, Assumption B.12 ii), Lemmas B.10 and B.12 (i), and N−1/2‖Λ̂‖ =
√
k,

we get:

(Λ′Λ̂/N)V̂ − (Λ′Λ/N)
(
H ′W 2H/T

) (
Λ′Λ̂/N

)
= op(1).

Then, from Lemma B.10 and Assumption B.10, we get:

V̂ = (Λ′Λ̂/N)−1(Λ′Λ/N)
(
H ′W 2H/T

) (
Λ′Λ̂/N

)
+ op(1)

= (Λ′Λ̂/N)−1 ΣλΣh(W ) (Λ′Λ̂/N) + op(1)

We deduce that the eigenvalues of matrix V̂ converge in probability to the eigenvalues of matrix ΣλΣh(W ). Since matrix
V̂ is diagonal, the conclusion follows. �

B.5.1.6 Proof of Lemma B.12

(i) Using 1√
T

[ε̆′H]i = 1√
T

∑T
t=1 ε̆i,th̆t = ℵ̆i and Assumption B.12 v), we have:

‖ 1

T
εW 2H‖ = ‖ 1

T
ε̆H̆‖ =

1√
T

[
tr

(
N∑
i=1

ℵ̆iℵ̆′i

)]1/2

=

√
N

T

[
tr

(
1

N

T∑
t=1

ℵ̆iℵ̆′i

)]1/2

= Op

(√
N

T

)
. (B.146)

(ii) By using (B.146) and N−1/2‖Λ‖ = Op(1) we have:

‖ 1

NT
ΛH̆ ′ε̆‖ ≤ 1√

N

1√
N
‖Λ‖‖ 1

T
H̆ ′ε̆‖ = Op

(
1√
T

)
.
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(iii) By using Assumption B.12 i), we have

‖ 1

NT
ΛH̆ ′ε̆Λ‖ ≤ 1√

T

1√
N
‖Λ‖‖ 1√

NT
H̆ ′ε̆Λ‖ = Op(

1√
T

),

(iv) Using 1√
N

[ε̆Λ]t = 1√
N

∑N
i=1 λiε̆i,t = ξ̆t and Assumption B.12 i), we have:

‖ 1

N
ε̆Λ‖ =

1√
N

[
tr

(
T∑
t=1

ξ̆tξ̆
′
t

)]1/2

=

√
T

N

[
tr

(
1

T

T∑
t=1

ξ̆tξ̆
′
t

)]1/2

= Op

(√
T

N

)
. (B.147)

In case v) and vii) are needed, proof is the same as in AGGR (v) By using (B.147) and T−1/2‖H‖ = Op(1), we have:

‖ 1

NT
HΛ′ε′‖ ≤ 1

T
‖H‖‖ 1

N
εΛ‖ = Op

(
1√
N

)
.

(vi) We have:

‖ 1

NT
HΛ′ε′H‖ ≤ 1√

N
T−1/2‖H‖‖ 1√

NT
Λ′ε′H‖ = Op(

1√
N

),

by using 1√
NT

Λ′ε′H = 1√
T

∑T
t=1 ξth

′
t = Op(1) from Assumption B.12 i). �

B.5.1.7 Check of the conditions in Assumptions B.11-B.10

a) Check of Assumption B.10

Assumption B.10 is standard in the factor literature, see e.g. Bai and Ng (2002), Stock and Watson (2002), Bai (2003). It
is implied by Assumptions B.2 and B.3. �

b) Check of Assumption B.11

[ TO BE WRITTEN ] �

c) Check of Assumption B.12

Using the definitions of h̆t and ξ̆t, we get:

1√
T

T∑
t=1

h̆tξ̆
′
t =

1√
T

T∑
t=1

(ht + γ̃RP h̄)(ξt + γ̃RP ξ̄)
′

=
1√
T

T∑
t=1

htξ
′
t + γ̃RP

(
1

T

T∑
t=1

ξt

)
1√
T

T∑
t=1

ht + γ̃RP

(
1

T

T∑
t=1

ht

)
1√
T

T∑
t=1

ξ′t

+γ̃2
RP

1√
T

(
1√
T

T∑
t=1

ht

)(
1√
T

T∑
t=1

ξt

)′
= Op(1) +OP (1/

√
T ).
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where the last equality follows from Assumptions B.4 b), B.5 b) and B.6 a) which imply 1√
T

∑T
t=1 ht = Op(1) and

1√
T

∑T
t=1 ξt = Op(1). Moreover, Assumption B.6 a) also implies 1√

T

∑T
t=1 htξ

′
t = Op(1).

Equality E[‖ξ̆t‖2] = O(1) follows directly from Assumption B.11 (iii). And this completes the proof of part (i).

To bound 1
NT εW

2ε′Λ, we first need to bound the j-th column of matrix 1
NT ε

′εΛ, that is 1
NT [ε′εΛ]j =

1
NT

∑T
t=1

∑N
i=1 εj,tεi,tλi:

1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi =
1

NT

T∑
t=1

ε2
j,tλi +

1

NT

T∑
t=1

N∑
i=1,i 6=j

εj,tεi,tλi

=
1

NT

T∑
t=1

E[ε2
j,t]λi +

1

NT

T∑
t=1

(ε2
j,t − E[ε2

j,t])λi +
1

NT

T∑
t=1

N∑
i=1,i 6=j

εj,tεi,tλi

=
1

N
η∗jλj +

1

N
√
T
κ∗jλj +

1√
NT

α∗j

where

η∗j =
1

T

T∑
t=1

E[ε2
j,t]

κ∗j =
1√
T

T∑
t=1

(ε2
j,t − E[ε2

j,t])

α∗j =
1√
NT

T∑
t=1

N∑
i=1,i6=j

εj,tεi,tλi
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Analogously, by using the definitions of ε̆i,t, we get:

1

NT

T∑
t=1

N∑
i=1

ε̆j,tε̆i,tλi

=
1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi + γ̃RP
1

NT

T∑
t=1

N∑
i=1

(
1

T

T∑
s=1

εj,s

)
εi,tλi

+γ̃RP
1

NT

T∑
t=1

N∑
i=1

εj,t

(
1

T

T∑
r=1

εi,r

)
λi + γ̃2

RP

1

N

N∑
i=1

(
1

T

T∑
s=1

εj,s

)(
1

T

T∑
r=1

εi,r

)
εi,tλi

=
1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi + γ̃RP
1

NT 2

T∑
t=1

N∑
i=1

εj,tεi,tλi + γ̃RP
1

NT 2

T∑
t=1

N∑
i=1

T∑
r=1,r 6=t

εj,tεi,rλi

+γ̃RP
1

NT 2

T∑
t=1

N∑
i=1

εj,tεi,tλi + γ̃RP
1

NT 2

T∑
t=1

N∑
i=1

T∑
s=1,s 6=t

εj,sεi,tλi

+γ̃2
RP

1

NT 2

T∑
t=1

N∑
i=1

εj,tεi,tλi + γ̃2
RP

1

NT 2

N∑
i=1

T∑
s=1

T∑
r=1,r,s6=t

εj,sεi,rλi

=
1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi + op

(
1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi

)

+γ̃RP
1

NT 2

T∑
t=1

N∑
i=1

T∑
r=1,r 6=t

εj,tεi,rλi + γ̃RP
1

NT 2

T∑
t=1

N∑
i=1

T∑
s=1,s 6=t

εj,sεi,tλi + γ̃2
RP

1

NT 2

N∑
i=1

T∑
s=1

T∑
r=1,r,s6=t

εj,sεi,rλi

=
1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi + op

(
1

NT

T∑
t=1

N∑
i=1

εj,tεi,tλi

)

+γ̃RP
1

T
√
NT

T∑
t=1

 1√
NT

N∑
i=1

T∑
r=1,r 6=t

εj,tεi,rλi

+ γ̃RP
1

T
√
NT

T∑
t=1

 1√
NT

N∑
i=1

T∑
s=1,s 6=t

εj,sεi,tλi


+γ̃2

RP

1

TN

N∑
i=1

 1

T

T∑
s=1

T∑
r=1,r,s6=t

εj,sεi,rλi


which implies:

1

NT

T∑
t=1

N∑
i=1

ε̆j,tε̆i,tλi =
1

N
η∗jλj +

1

N
√
T
κ∗jλj +

1√
NT

α∗j + op

(
1

N
η∗jλj +

1

N
√
T
κ∗jλj +

1√
NT

α∗j

)

+ γ̃RP
1√
NT

1

T

T∑
t=1

(δ∗j,t + δ∗∗j,t) + γ̃2
RP

1

TN

N∑
i=1

δ∗∗∗i,j
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Therefore,

‖ 1

NT
ε̆′ε̆Λ‖2 =

N∑
j=1

(
1

NT
[ε̆′ε̆Λ]j)

′(
1

NT
[ε̆′ε̆Λ]j) =

N∑
j=1

‖ 1

NT
[ε̆′ε̆Λ]j‖2 =

N∑
j=1

‖ 1

NT

T∑
t=1

N∑
i=1

ε̆j,tε̆i,tλi‖2

≤ 2
N∑
j=1

{
1

N2
‖η∗jλj‖2 +

1

N2T
‖κ∗jλj‖2 +

1

NT
‖α∗j‖2 + op

(
1

N2
‖η∗jλj‖2 +

1

N2T
‖κ∗jλj‖2 +

1

NT
‖α∗j‖2

)

+γ̃RP
1

NT

1

T 2
‖

T∑
t=1

δ∗j,t‖2 + γ̃RP
1

NT

1

T 2
‖

T∑
t=1

δ∗∗j,t‖2 + γ̃2
RP

1

T 2N2
‖

N∑
i=1

δ∗∗∗i,j ‖2
}

≤ 2
1

N

N∑
j=1

{
1

N
‖η∗jλj‖2 +

1

NT
‖κ∗jλj‖2 +

1

T
‖α∗j‖2 + op

(
1

N
‖η∗jλj‖2 +

1

NT
‖κ∗jλj‖2 +

1

T
‖α∗j‖2

)}

+4γ̃RP

 1

T 2

1

NT

N∑
j=1

T∑
t=1

‖δ∗j,t‖2 +
1

T 2

1

NT

N∑
j=1

T∑
t=1

‖δ∗∗j,t‖2 + γ̃RP
1

T 2

1

N2

N∑
j=1

N∑
i=1

‖δ∗∗∗i,j ‖2


= Op

(
1

T
+

1

N

)
,

Therefore part (ii) follows from Assumptions B.4 a), ..., Assumption B.13 (which is checked below),

Assumption B.13 v), since η2
t ≤M (Assumption B.4 a)).

Let us now show the validity of Assumption B.12 (iii). We have:

‖ 1

NT
ε̆ε̆′‖2 =

1

N2T 2
Tr[ε̆ε̆′ε̆ε̆′] =

1

N2T 2

T∑
t=1

N∑
i=1

N∑
j=1

T∑
s=1

ε̆i,tε̆i,sε̆j,sε̆j,t

=
1

N2T 2

T∑
t=1

N∑
i=1

N∑
j=1

ε̆2
i,tε̆

2
j,t +

1

N2T 2

T∑
t=1

T∑
s=1,s 6=t

N∑
i=1

N∑
j=1

ε̆i,tε̆i,sε̆j,tε̆j,s.

The first term in the r.h.s. isOp(T−1) from Assumption B.4 b). Let us now consider the second term in the r.h.s..

We have:

1

N2T 2

T∑
t=1

T∑
s=1,s 6=t

N∑
i=1

N∑
j=1

ε̆i,tε̆i,sε̆j,tε̆j,s

=
2

T 2

T∑
t=1

t−1∑
s=1

(
1

N

N∑
i=1

ε̆i,tε̆i,s

)2

=
2

T 2

T∑
t=1

t−1∑
s=1

η̆4
ts +

4

T 2

T∑
t=1

t−1∑
s=1

(
1

N

N∑
i=1

(ε̆i,tε̆i,s − η̆2
ts)

)
η̆2
ts +

2

T 2

T∑
t=1

t−1∑
s=1

(
1

N

N∑
i=1

(ε̆i,tε̆i,s − η̆2
ts)

)2

,

where η̆2
ts := plim

N→∞

1
N

∑N
i=1 ε̆i,tε̆i,s. By taking expectations, and using the Cauchy-Schwarz inequality and

Assumption B.11 (iv) (in AGGR it was B.7 a)), we get that 1
N2T 2

∑T
t=1

∑T
s=1,s 6=t

∑N
i=1

∑N
j=1 ε̆i,tε̆i,sε̆j,tε̆j,s =
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Op(
1
T + 1

N ). Assumption B.12 iii) follows.

Assumption B.12 (iv) is implied by Assumptions ?? a) and Assumption B.13 (which is checked below).

Indeed, from (B.79) we have:

‖ 1

NT
εε′W 2H‖2 = ‖ 1

NT
εε̆′H̆‖2 =

T∑
t=1

(
1

NT
[εε̆′H̆]t)

′(
1

NT
[εε̆′H̆]t) =

T∑
t=1

‖ 1

NT
[εε̆′H̆]t‖2

≤ 2
T∑
t=1

(
1

T 2
‖η2
t h̆t‖2 +

1

T 2N
‖κth̆t‖2 +

1

NT
‖ᾰt‖2

+γ̃RP

[
1

T 4
‖η2
t h̆t‖2 +

1

T 3N
‖ᾰ∗t ‖2 +

1

T 6N
‖κth̆t‖2

])
= Op(

1

T
+

1

N
),

under Assumption B.13 v), ..., since η2
t ≤M (Assumption ?? a)) and ... .

Finally, Assumption B.12 (iv) follows directly from Assumption B.5 d) .

�

d) Check of the conditions in Assumption B.13

Assumption B.13 i) corresponds to Assumption B.4 a). Assumptions B.13 (ii)-(iv) are implied by Assumption

B.7 b). Assumption B.13 (v) is implied by Assumptions B.5 b), c), and B.7 c). �

This concludes the proofs of all the technical results needed to prove Proposition B.2. �
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B.5.2 Proof of Lemma B.1

(TO BE ADAPTED) We prove the bound for X̂1,2; the bounds for the other terms are obtained similarly. We

substitute the definition ψ̆j,t = 1√
Nj
ŭj,t + 1

T b̆j,t + 1√
NjT

d̆j,t + ϑ̆j,t into (B.11) and use N2 = N , N1 = N/µ2
N .

We get:

X̂12 =
1

T
√
N

T∑
t=1

(h̆1,tŭ
′
2,t + µN ŭ1,th̆

′
2,t) +

µN
TN

T∑
t=1

ŭ1,tŭ
′
2,t (B.148)

+
1

T 2

T∑
t=1

(
h̆1,tb̆

′
2,t + b̆1,th̆

′
2,t

)
+

1

T 2
√
N

T∑
t=1

(
b̆1,tŭ

′
2,t + µN ŭ1,tb̆

′
2,t

)
+

1

T 3

T∑
t=1

b̆1,tb̆
′
2,t

+
1

T
√
NT

T∑
t=1

(
h̆1,td̆

′
2,t + µN d̆1,th̆

′
2,t

)
+

µN

TN
√
T

T∑
t=1

(
ŭ1,td̆

′
2,t + d̆1,tŭ

′
2,t

)
+

1

T 2
√
NT

T∑
t=1

(
b̆1,td̆

′
2,t + µN d̆1,tb̆

′
2,t

)
+

µN
NT 2

T∑
t=1

d̆1,td̆
′
2,t +

1

T

T∑
t=1

(h̆1,tϑ̆
′
2,t + ϑ̆1,th̆

′
2,t)

+
1

T

T∑
t=1

[(
µN√
N
ŭ1,t +

1

T
b̆1,t +

µN√
NT

d̆1,t + ϑ̆1,t

)
ϑ̆′2,t + ϑ1,t

(
1√
N
ŭ2,t +

1

T
b̆2,t +

1√
NT

d̆2,t

)′]
.

To bound the terms in the r.h.s. of (B.148), we use that under Assumptions B.2-B.4, B.5 b)-c) and B.6 a) we

have:

1√
T

T∑
t=1

hj,tu
′
k,t = Op(1),

1

T

T∑
t=1

uj,tu
′
k,t = Op(1), (B.149)

1

T

T∑
t=1

hj,tb
′
k,t = Op(1), (B.150)

1

T

T∑
t=1

bj,tu
′
k,t = Op

(
1√
T

)
, (B.151)

1

T

T∑
t=1

bj,tb
′
k,t = Op(1), (B.152)

1

T

T∑
t=1

hj,td
′
k,t = Op(1), (B.153)

1√
T

T∑
t=1

uj,td
′
k,t = Op(1), (B.154)

1

T

T∑
t=1

bj,td
′
k,t = Op(1), (B.155)

1

T

T∑
t=1

dj,td
′
k,t = Op(1), (B.156)
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for j, k = 1, 2. These bounds are shown below by using the definitions of uj,t, bj,t, dj,t in Proposition

B.2. Therefore, the first nine summation terms in the r.h.s. of (B.148) are of order Op( 1√
NT

), Op( 1
N ), Op( 1

T ),

Op(
1

T
√
NT

), Op( 1
T 2 ), Op( 1√

NT
), Op( 1

NT ), Op( 1
T
√
NT

) and Op( 1
NT ), respectively. From Proposition B.2, the

last two summation terms in the r.h.s. of (B.148) are of orderOp( 1
N + 1

T 2 ) and op( 1
N
√
T

), respectively. Therefore,

we get X̂1,2 = Op (δN,T ), where δN,T = max{ 1
N ,

1
T } = (min{N,T})−1.

Proof of (B.150). We have:

1

T

T∑
t=1

hj,tb
′
k,t =

(
1

T

T∑
t=1

hj,th
′
k,tη

2
k,t

)(
1

T

T∑
t=1

hk,th
′
k,t

)−1(
1

Nk

Nk∑
i=1

λk,iλ
′
k,i

)−1

.

The first and second terms in the r.h.s. are Op(1) by Assumptions B.2, B.4 b) and B.6 a) and an application of a

LLN for mixing processes. The third term in the r.h.s. is Op(1) by Assumption B.3. Then, (B.150) follows.

Proof of (B.151). We have:

bj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1(
1

T

T∑
t=1

hj,th
′
j,t

)−1

hj,tη
2
j,t, (B.157)

and:

uj,t =

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1

ξj,t,

where η2
j,t and ξj,t are defined as in Assumption B.5. Then, we have:

1

T

T∑
t=1

bj,tu
′
k,t =

1√
T

 1

Nj

Nj∑
i=1

λj,iλ
′
j,i

−1(
1

T

T∑
t=1

hj,th
′
j,t

)−1 [
1√
T

T∑
t=1

η2
j,thj,tξ

′
k,t

](
1

Nk

Nk∑
i=1

λk,iλ
′
k,i

)−1

.

Now, 1√
T

∑T
t=1 η

2
j,thj,tξ

′
k,t = Op(1) follows from the bound ‖η2

j,thj,tξ
′
k,t‖r ≤ M with r > 2 (implied by

Assumptions B.4 a)-b) and B.5 b) and Cauchy-Schwarz inequality), the mixing property with size r/(r − 2) in

B.6 a), and an application of Corollary 14.3 in Davidson (1994). Then, (B.151) follows.

The proofs of the other bounds are established by similar arguments and are omitted. �

B.5.3 Proofs of Lemmas B.2, B.3 and B.4

The proofs of Lemma B.2, B.3 and B.4 are analogous to the proofs of Lemmas B.2, B.3 and B.4 in AGGR (see

their Online Appendices C.5, C.6 and C.7), respectively, and therefore are omitted. �

B.5.4 Proof of Lemma B.5

The proof is based on the asymptotic expansions of the terms within the trace operator in the r.h.s. of equation

(B.22). We distinguish the terms that are first-order, resp. second-order, with respect to the X̂j,k.
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i) Asymptotic expansion of first-order term Ψ̂
∗(I)
cc

From equation (B.14), we have Ψ̂
∗(I)
cc =

[
−X̂11R̃+ X̂12B̃ − B̃′X̂22B̃ + B̃′X̂21

](cc)
. As matrices R̃ and B̃

have the same structure [ Ec
... ∗ ] (see Lemma B.3), we have:

Ψ̂∗(I)cc = −X̂(cc)
11 + X̂

(cc)
12 − X̂

(cc)
22 + X̂

(cc)
21 . (B.158)

From the expressions of the matrices X̂j,k in (B.11), and using the fact that upper kc-dimensional subvector

of both h̆1,t and h̆2,t is f̆ ct , the upper-left (kc, kc) blocks of the first and second matrices in the r.h.s. vanish.

Therefore, from (B.158) we get:

Ψ̂∗(I)cc = − 1

T

T∑
t=1

(ψ̆
(c)
1,t − ψ̆

(c)
2,t )(ψ̆

(c)
1,t − ψ̆

(c)
2,t )
′, (B.159)

where ψ̆(c)
j,t denotes the upper (kc, 1) block of vector ψ̆j,t. To compute the matrix in the r.h.s., we plug the

expressions ψ̆j,t =
1√
Nj

ŭj,t +
1

T
b̆j,t +

1√
NjT

d̆j,t + ϑ̆j,t for j = 1, 2 from (B.8), and use Proposition B.2

(CHECK notation in PROPOSITION B.2) and Assumptions B.1-B.4, B.5 b)-c) and B.6 a) to bound negligible

terms up to op (εN,T ), where εN,T = (N
√
T )−1.

LEMMA B.13. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have:

Ψ̂∗(I)cc = − 1

N

(
1

T

T∑
t=1

E[(µN ŭ
(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft]

)

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µN ŭ

(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′ − E[(µN ŭ

(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft]

])

− 1

T 2

(
1

T

T∑
t=1

(b̆
(c)
1,t − b̆

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′

)
+ op (εN,T ) ,

where the terms in the parentheses are Op(1).

Lemma B.13 shows that the leading stochastic terms in Ψ̂
∗(I)
cc are of order Op

(
1

N

)
, Op

(
1

N
√
T

)
and

Op

(
1

T 2

)
.

ii) Asymptotic expansion of the second-order terms in the r.h.s. of (B.22)

The asymptotic expansion of the second-order term Ψ̂∗(II)cc − 1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc −

R̃ss)
−1Ψ̂(I)

sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)
sc Σ̃−1

cc Ψ̂∗(I)cc is provided in the next lemma.
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LEMMA B.14. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have:

Ψ̂∗(II)cc − 1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)

sc Σ̃−1
cc Ψ̂∗(I)cc

=
1

T 2

{[
1

T

T∑
t=1

(
b̆
(c)
1,t − b̆

(c)
2,t

)
F̆ ′t

]
Σ̃−1
F

[
1

T

T∑
t=1

F̆t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′]}
+ op(εN,T ),

where Σ̃F = 1
T

∑T
t=1 F̆tF̆

′
t , and the terms in the curly brackets are Op(1).

From Lemmas B.13 and B.14, the asymptotic expansion of the term within the square brackets in the r.h.s

of (B.22) is:

Ψ̂∗cc −
1

4
Ψ̂∗(I)cc Σ̃−1

cc Ψ̂∗(I)cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc − Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)

sc Σ̃−1
cc Ψ̂∗(I)cc

= − 1

N

(
1

T

T∑
t=1

E[(µNu
(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

)
− 1

T 2

{
1

T

T∑
t=1

∆̃b
(c)

t ∆̃b
(c)′
t

}

− 1

N
√
T

{
1√
T

T∑
t=1

[
(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′ − E[(µNu

(c)
1t − u

(c)
2t )(µNu

(c)
1t − u

(c)
2t )′|Ft]

]}
+op (εN,T ) , (B.160)

where ∆̃bt are the sample residuals defined in Theorem A.1.

Moreover, from Assumptions B.2, B.4 b) and B.6 a), and Corollary 14.3 in Davidson (1994), we have:

Ṽjj = Ikj +Op(T
−1/2), j = 1, 2, Ṽ12 =

[
Ikc 0

0 Φ

]
+Op(T

−1/2). (B.161)

By plugging (B.160) into (B.22), and Σ̃cc = Ikc +Op(T
−1/2) from (B.161), the conclusion follows. �

B.5.4.1 Proof of Lemma B.13

We substitute the expressions ψ̆j,t = 1√
Nj
ŭj,t + 1

T b̆j,t + 1√
NjT

d̆j,t + ϑ̆j,t for j = 1, 2 into the r.h.s. of (B.159).

We use N2 = N and N1 = N/µ2
N , and partition vectors ŭj,t and b̆j,t in block-form as:

ŭj,t =

[
ŭ

(c)
jt

ŭ
(s)
jt

]
, b̆j,t =

[
b̆
(c)
jt

b̆
(s)
jt

]
, j = 1, 2.

Moreover, we use that from Proposition B.2 the contribution of the remainder terms ϑ̆j,t in the r.h.s. of (B.159)

is of order op (εN,T ), and that under Assumptions B.2-B.4, B.5 b)-c) and B.6 a) we have 1√
T

∑T
t=1 ŭj,td̆

′
k,t =
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Op(1) and 1
T

∑T
t=1 d̆j,td̆

′
k,t = Op(1) (see (B.154) and (B.156)). Therefore, we get:

Ψ̂∗(I)cc = − 1

TN

T∑
t=1

(µN ŭ
(c)
1,t − ŭ

(c)
2,t)(µN ŭ

(c)
1,t − ŭ

(c)
2,t)
′

− 1

T 2
√
N

T∑
t=1

[
(b̆

(c)
1,t − b̆

(c)
2,t)(µN ŭ

(c)
1,t − ŭ

(c)
2,t)
′ + (µN ŭ

(c)
1,t − ŭ

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′
]

− 1

T 3

T∑
t=1

(b̆
(c)
1,t − b̆

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′

− 1

T 2
√
NT

T∑
t=1

[
(b̆

(c)
1,t − b̆

(c)
2,t)(µN d̆

(c)
1,t − d̆

(c)
2,t)
′ + (µN d̆

(c)
1,t − d̆

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′
]

+ op (εN,T ) .

By recentering the first term in the r.h.s., and highlighting the convergence rates, we have:

Ψ̂∗(I)cc = − 1

N

(
1

T

T∑
t=1

E[(µN ŭ
(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft]

)
(B.162)

− 1

N
√
T

(
1√
T

T∑
t=1

[
(µN ŭ

(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′ − E[(µN ŭ

(c)
1t − ŭ

(c)
2t )(µN ŭ

(c)
1t − ŭ

(c)
2t )′|Ft]

])

− 1

T
√
NT

(
1√
T

T∑
t=1

[
(b̆

(c)
1,t − b̆

(c)
2,t)(µN ŭ

(c)
1,t − ŭ

(c)
2,t)
′ + (µN ŭ

(c)
1,t − ŭ

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′
])

− 1

T 2

(
1

T

T∑
t=1

(b̆
(c)
1,t − b̆

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′

)

− 1

T
√
NT

(
1

T

T∑
t=1

[
(b̆

(c)
1,t − b̆

(c)
2,t)(µN d̆

(c)
1,t − d̆

(c)
2,t)
′ + (µN d̆

(c)
1,t − d̆

(c)
2,t)(b̆

(c)
1,t − b̆

(c)
2,t)
′
])

+ op (εN,T ) .

Finally, by using ... and N � T 2 we get the expansion in Lemma B.13. �

B.5.4.2 Proof of Lemma B.14

i) Asymptotic expansion of Ψ̂
∗(II)
cc

Let us start with Ψ̂
∗(II)
cc . From the definitions of the matrices X̂j,k in equation (B.11), bounding the higher-order

terms as in the proof of Lemma B.1, and using that 1
T
√
NT
≤ 1√

NT
≤ 1

2

(
1
N + 1

T 2

)
, we have:

X̂j,k =
1

T
Ξ̃j,k +

1√
NT

Ŝj,k +Op

(
1

N
+

1

T 2

)
, (B.163)
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where:

Ξ̃j,k =
1

T

T∑
t=1

(h̆j,tb̆
′
k,t + b̆j,th̆

′
k,t), (B.164)

Ŝj,k =
1√
T

T∑
t=1

(µN,kh̆j,tŭ
′
k,t + µN,j ŭj,th̆

′
k,t) +

1

T

T∑
t=1

(µN,kh̆j,td̆
′
k,t + µN,j d̆j,th̆

′
k,t), (B.165)

with µN,1 = µN and µN,2 = 1. Terms Ξ̃j,k and Ŝj,k are Op(1) under Assumptions B.2-B.4, B.5 b)-c) and

B.6 a). Then, from the definition of Ψ̂∗(II) in (B.15), the bounds
(

1
T + 1√

NT

) (
1
N + 1

T 2

)
= o(εN,T ) and(

1
N + 1

T 2

)2
= o(εN,T ) which hold if T 1/2 � N � T 5/2, we get:

Ψ̂∗ (II) =
1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)}
+

1

T
√
NT

{
−Ξ̃11Ṽ

−1
11

[
−Ŝ11R̃+ Ŝ12B̃ − B̃′Ŝ22B̃ + B̃′Ŝ21

]
−Ŝ11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(
Ŝ22B̃ − Ŝ21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ŝ22B̃ − Ŝ21

)}
+op(εN,T ).

Neglecting terms at order op(εN,T ) when we further assume N � T 2 we get:

Ψ̂∗ (II) =
1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)}
+op(εN,T ),

Let us now compute the (cc) block of this expansion. We get:

Ψ̂∗ (II)
cc =

1

T 2

{
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)}
(cc)

+op(εN,T ). (B.166)
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ii) Asymptotic expansion of Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)

−1Ψ̂
(I)
sc

Let us now consider the term Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)−1Ψ̂

(I)
sc . By the formula of the partitioned inverse for Ṽ −1

11 ,

and Lemmas B.1 and B.13, we have:

Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)
sc

= Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1
[
(Ṽ −1

11 )ssΨ̂
∗(I)
sc +Op

(
T−1/2Ψ̂∗(I)cc

)]
= Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1(Ṽ −1

11 )ssΨ̂
∗(I)
sc +Op

(
δN,T

1√
T

(
1

N
+

1

T 2
+

1

T
√
NT

+ εN,T

))
= Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1(Ṽ −1

11 )ssΨ̂
∗(I)
sc + op(εN,T ), (B.167)

if N � T 5/2. Let us consider Ψ̂
∗(I)
cs (Ik1−kc − R̃ss)−1(Ṽ −1

11 )ssΨ̂
∗(I)
sc . By using Ψ̂∗(I) = −X̂11R̃ + X̂12B̃ −

B̃′X̂22B̃+B̃′X̂21, the expansion for X̂j,k in (B.163), R̃ss = ΦΦ′+op(1), and the condition T 1/2 � N � T 4/2

to control negligible terms, we get:

Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1(Ṽ −1
11 )ssΨ̂

∗(I)
sc

=
1

T 2

{[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+op(εN,T ).

iii) Asymptotic expansion of Ψ̂
∗ (II)
cc + Ψ̂

∗(I)
cs (Ik1−kc − R̃ss)

−1Ψ̂
(I)
sc

By putting the expansions (B.166) and (B.167) together, we get the asymptotic expansion:

Ψ̂∗ (II)
cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)

sc

=
1

T 2

{(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

))
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

}
+ op(εN,T ). (B.168)

Let us now rework the term at order T−2. For this purpose we use the equations:[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cc

= −Ξ̃11,cc + Ξ̃12,cc − Ξ̃22,cc + Ξ̃21,cc = 0,[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

= −Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc

−B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc,[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

= −Ξ̃11,ccR̃cs − Ξ̃11,csR̃ss + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss

−Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs.
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Then, a block product computation yields:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

])
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

= −
[
Ξ̃11,cc(Ṽ

−1
11 )cs + Ξ̃11,cs(Ṽ

−1
11 )ss

]
×[

−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
+
[
−Ξ̃11,ccR̃cs − Ξ̃11,csR̃ss + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss − Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs

]
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
=

[
−Ξ̃11,cc

(
(Ṽ −1

11 )cs(Ṽ
−1

11 )−1
ss (Ik1−kc − R̃ss) + R̃cs

)
−Ξ̃11,cs + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss − Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs

]
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
.

Let us show that the term (Ṽ −1
11 )cs(Ṽ

−1
11 )−1

ss (Ik1−kc − R̃ss) + R̃cs vanishes. Indeed, from equation (??) we have:

(Ṽ −1
11 )cs(Ṽ

−1
11 )−1

ss (Ik1−kc − R̃ss) + R̃cs =
[
(Ṽ −1

11 )cs(Ṽ
−1

11 )−1
ss + R̃cs(Ik1−kc − R̃ss)−1

]
(Ik1−kc − R̃ss)

=
[
(Ṽ −1

11 )cs(Ṽ
−1

11 )−1
ss + Σ̃−1

cc Σ̃c,1

]
(Ik1−kc − R̃ss)

= Σ̃−1
cc

[
Σ̃cc(Ṽ

−1
11 )cs + Σ̃c,1(Ṽ −1

11 )ss

]
(Ṽ −1

11 )−1
ss (Ik1−kc − R̃ss)

= Σ̃−1
cc

[
(Ṽ11)cc(Ṽ

−1
11 )cs + (Ṽ11)cs(Ṽ

−1
11 )ss

]
(Ṽ −1

11 )−1
ss (Ik1−kc − R̃ss)

= 0.

Therefore, we get:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

])
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

=
[
−Ξ̃11,cs + Ξ̃12,ccB̃cs + Ξ̃12,csB̃ss − Ξ̃22,ccB̃cs − Ξ̃22,csB̃ss + Ξ̃21,cs

]
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
=

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]′
×(Ik1−kc − R̃ss)−1(Ṽ −1

11 )ss

[
−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

]
.
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Let us consider the term −Ξ̃11,sc + Ξ̃12,sc - B̃′csΞ̃22,cc - B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc =

−
[
(Ξ̃11,sc − Ξ̃12,sc)− B̃′cs(Ξ̃21,cc − Ξ̃22,cc)− B̃′ss(Ξ̃21,sc − Ξ̃22,sc)

]
.

Using Ξ̃11,sc − Ξ̃12,sc = 1
T

∑
t f̆

s
1,t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′
,

Ξ̃21,cc − Ξ̃22,cc = 1
T

∑
t f̆

c
t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′
and

Ξ̃21,sc − Ξ̃22,sc = 1
T

∑
t f̆

s
2,t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′
, we can write it as:

−Ξ̃11,sc + Ξ̃12,sc − B̃′csΞ̃22,cc − B̃′ssΞ̃22,sc + B̃′csΞ̃21,cc + B̃′ssΞ̃21,sc

= − 1

T

T∑
t=1

[
f̆s1,t − B̃′csf̆ ct − B̃′ssf̆ s2,t

] (
b̆
(c)
1,t − b̆

(c)
2,t

)′
.

Noting that

B̃′ = Ṽ12Ṽ
−1

22 =

[
I 0

B̃′cs B̃′ss

]
,

we deduce that:

f̃1⊥2c,t = f̆ s1,t − B̃′csf̆ ct − B̃′ssf̆s2,t, t = 1, ..., T,

are the residuals in the sample orthogonal projection of f̆ s1,t on f̆s2,t and f̆ ct . Let us now show that (Ik1−kc −
R̃ss)

−1(Ṽ −1
11 )ss is the inverse of the sample variance of that residuals. Indeed, the sample variance is:

1

T

T∑
t=1

f̃1⊥2c,tf̃
′
1⊥2c,t =

1

T

T∑
t=1

[
f̆s1,t − B̃′csf̆ ct − B̃′ssf̆2,t

]
f̆s′1,t

= Σ̃11 − B̃′csΣ̃c,1 − B̃′ssΣ̃2,1 =
(
Ṽ11 − B̃′Ṽ21

)
ss

=
(
Ṽ11(Ik1 − R̃)

)
ss

= −Σ̃1cR̃cs + Σ̃11(Ik1−kc −Rss)

=
[
−Σ̃1cR̃cs(Ik1−kc −Rss)−1 + Σ̃11

]
(Ik1−kc −Rss)

=
(
−Σ̃1cΣ̃

−1
cc Σ̃c1 + Σ̃11

)
(Ik1−kc −Rss) = [(Ṽ −1

11 )ss]
−1(Ik1−kc −Rss),

from Equation (C.67) in the OA of AGGR . By gathering these results, we get:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

])
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

=

[
1

T

T∑
t=1

(
b̆
(c)
1,t − b̆

(c)
2,t

)
f̃ ′1⊥2c,t

](
1

T

T∑
t=1

f̃1⊥2c,tf̃
′
1⊥2c,t

)−1 [
1

T

T∑
t=1

f̃1⊥2c,t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′]
.
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Let us now consider the term
[(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)]
cc

also showing at order T−2 in the r.h.s.

of the asymptotic expansion (B.168). Direct computation yields:[(
Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

)]
cc

=

[
(Ξ̃22,cc − Ξ̃21,cc)

′ ... (Ξ̃22,sc − Ξ̃21,sc)
′
]
Ṽ −1

22

[
Ξ̃22,cc − Ξ̃21,cc

Ξ̃22,sc − Ξ̃21,sc

]

=

[
1

T

T∑
t=1

(
b̆
(c)
1,t − b̆

(c)
2,t

)
h̆′2,t

](
1

T

T∑
t=1

h̆2,th̆
′
2,t

)−1 [
1

T

T∑
t=1

h̆2,t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′]
.

Hence, the term at order T−2 in the r.h.s. of (B.168) becomes:(
−Ξ̃11Ṽ

−1
11

[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
+
(

Ξ̃22B̃ − Ξ̃21

)′
Ṽ −1

22

(
Ξ̃22B̃ − Ξ̃21

))
cc

+
[
−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
cs

(Ik1−kc − R̃ss)−1(Ṽ −1
11 )ss ×[

−Ξ̃11R̃+ Ξ̃12B̃ − B̃′Ξ̃22B̃ + B̃′Ξ̃21

]
sc

=

[
1

T

T∑
t=1

(
b̆
(c)
1,t − b̆

(c)
2,t

)
h̆b
′
2,t

](
1

T

T∑
t=1

h̆2,th̆
′
2,t

)−1 [
1

T

T∑
t=1

h̆2,t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′]

+

[
1

T

T∑
t=1

(
b̆
(c)
1,t − b̆

(c)
2,t

)
f̃ ′1⊥2c,t

](
1

T

T∑
t=1

f̃1⊥2c,tf̃
′
1⊥2c,t

)−1 [
1

T

T∑
t=1

f̃1⊥2,c

(
b̆
(c)
1,t − b̆

(c)
2,t

)′]

=

[
1

T

T∑
t=1

(
b̆
(c)
1,t − b̆

(c)
2,t

)
F̆ ′t

]
Σ̃−1
F

[
1

T

T∑
t=1

F̆t

(
b̆
(c)
1,t − b̆

(c)
2,t

)′]
, (B.169)

where:

Σ̃F =
1

T

T∑
t=1

F̆tF̆
′
t ,

because f̃1⊥2c,t is orthogonal in-sample to h̆2,t, and (f̃ ′1⊥2,c, h
′
2,t)
′ is a linear transformation of (f̆ c′t , f̆

s′
1,t, f̆

s′
2,t)
′.

By substituting (B.169) into (B.168), we get:

Ψ̂∗ (II)
cc + Ψ̂∗(I)cs (Ik1−kc − R̃ss)−1Ψ̂(I)

sc

=
1

T 2

{[
1

T

T∑
t=1

(
b
(c)
1,t − b

(c)
2,t

)
F ′t

]
Σ̃−1
F

[
1

T

T∑
t=1

Ft

(
b
(c)
1,t − b

(c)
2,t

)′]}
+ op(εN,T ). (B.170)

iv) Conclusion

We finally consider the other second-order terms in the r.h.s. of (B.22).
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By Ψ̂
∗(I)
cc = Op

(
1
N + 1

T 2 + εN,T
)

from Lemma B.13, we have:

Ψ̂∗(I)cc Σ̃−1
cc Ψ̂∗(I)cc = op(εN,T ), (B.171)

if T 1/2 � N � T 2. Moreover, by using Σ̃c,1(Ik1−kc − R̃ss)−1 = Op(T
−1/2) from (B.161), Ψ̂

(I)
sc = Op(δN,T ),

and Ψ̂
∗(I)
cc = Op

(
1
N + 1

T 2 + εN,T
)
, we have:

Σ̃c,1(Ik1−kc − R̃ss)−1Ψ̂(I)
sc Σ̃−1

cc Ψ̂∗(I)cc = Op

[
1√
T
δN,T

(
1

N
+

1

T 2
+ εN,T

)]
= op (εN,T ) , (B.172)

if T 1/2 � N � T 2. From (B.170), (B.171) and (B.172), the conclusion follows. �

B.5.5 Proof of Lemma B.6

We show the conditions in parts (i)-(iv) of Lemma B.6. Part (i) follows by the Law of Iterated Expectation and

E(Ut|Ft) = 0, which is implied by Assumption B.4 a). Part (ii) is implied by Assumptions B.3, B.4 b) and B.5

b). The NED property in part (iii) holds true because conditional expectations givenFt can be well approximated

by elements in the sigma-field Vt+mt−m generated by the mixing process (Vt), for large m, by Assumptions B.3,

B.4 b), B.5 b) and B.6 a)-c), as we show in the next lemma.

LEMMA B.15. Assumptions B.3, B.4 b), B.5 b) and B.6 a)-c) imply part (iii) in Lemma B.6.

To check part (iv) in Lemma B.6 we use:

lim
T,N→∞

V

(
1√
T

T∑
t=1

ZN,t

)
= lim

T,N→∞

1

T

T−1∑
h=−T+1

(T − |h|)Cov (ZN,t,ZN,t−h)

= lim
N→∞

∞∑
h=−∞

Cov (ZN,t,ZN,t−h) ,

where the first equality follows from stationarity of the data. The series converges because the zero-mean process

ZN,t is a L2-mixingale with size −1, 18 by Theorem 17.5 in Davidson (1994) and Conditions (ii)-(iii), which

implies ‖Cov (ZN,t,ZN,t−h)‖ =
∥∥E [E(ZN,t|Vt−h)Z ′N,t−h

]∥∥ ≤ ‖E(ZN,t|Vt−h)‖2‖ZN,t−h‖2 = O
(
h−ψ

)
,

uniformly in N1, N2 ≥ 1, for some ψ > 1. The latter uniform bound also allows for an application of the

Lebesgue Lemma to get:

ΩU = lim
T,N→∞

V

(
1√
T

T∑
t=1

ZN,t

)
=

∞∑
h=−∞

Γ(h),

where Γ(h) = limN→∞Cov (ZN,t,ZN,t−h), which yields equation (B.26). The computations in Subsection

B.3.6, and in particular Lemma B.7, show that the limit in Γ(h) is well-defined.

18That is, ‖E[ZN,t|Vt−m]‖2 ≤ ζ(m), uniformly in t ≥ 1 and N1, N2 ≥ 1, where ζ(m) = O(m−ψ) for some ψ > 1.
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B.5.5.1 Proof of Lemma B.15

Assumption B.6 a) gives the strong mixing condition for process Vt. Since Ut = µN

(
Σ̃−1

Λ,1ξ̆1,t

)(c)
−(

Σ̃−1
Λ,2ξ̆2,t

)(c)
, where Σ̃Λ,j = Λ′jΛj/Nj ,

ξ̆j,t := ξj,t − ξ̄j,t (B.173)

for j = 1, 2, and process Ut is function of the components of process Vt. Therefore, to prove the NED property

for process ZN,t, we simply have to show that processes XN,t = E(U ′tUt|Ft) is L2-NED on (Vt). We have:

‖XN,t − E(XN,t|Vt+mt−m )‖2 ≤ ‖XN,t − E(XN,t|Ft, ..., Ft−m)‖2
= ‖E(U ′tUt|Ft)− E(U ′tUt|Ft, ..., Ft−m)‖2 = O(m−ψ),

for ψ > 1, by the Law of Iterated Expectation and Assumption B.6 b). The conclusion follows. �

B.5.6 Proof of Lemma B.7

The proof of Lemma B.7 is analogous to the proof of Lemma B.7 in AGGR (see their Online Appendix C.10),

with their assumption A.5 b) replaced by our similar A ssumption B.5 b), and therefore is omitted.

B.5.7 Proof of Lemma B.8

The proof of Lemma B.8 deploys the following uniform asymptotic expansions of factors and loadings estimates:

f̂ ct = Ĥ−1
c

[
f ct +

1√
N1

u
(c)
1,t

]
+ op

(
T−1/2

)
, (B.174)

f̂sj,t = Ĥ−1
s,j

[
f̃sj,t +

1√
Nj

u
(s)
j,t

]
+ op(T

−1/2), j = 1, 2, (B.175)

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
w̆cj,i

]
+ op

(
T−1/2

)
, j = 1, 2, (B.176)

λ̂sj,i = Ĥ′s,j
[
λsj,i +

1√
T
w̆sj,i

]
+ op

(
T−1/2

)
, j = 1, 2, (B.177)

where the op(T−1/2) terms are uniform w.r.t. 1 ≤ t ≤ T and 1 ≤ i ≤ Nj , vector uj,t is defined in Proposition

B.2, f̃sj,t = fsj,t − Σ̃j,cΣ̃
−1
cc f

c
t , w̆cj,i = Σ̃−1

cc
1√
T

∑T
t=1 f̆

c
t ε̆j,i,t and w̆sj,i = ( ˘̃F s ′j

˘̃F sj /T )−1 1√
T

∑T
t=1

˘̃
f sj,tε̆j,i,t, and

matrices Ĥc and Ĥs,j are such that Ĥ′cĤc = Ikc + op(1) and Ĥ′s,jĤs,j = Iksj + op(1).

These asymptotic expansions hold under Assumptions B.1-B.4, B.5 b)-c), B.6 a), B.7, B.8, and are derived

in Proposition B.6 in Section B.6.
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B.5.7.1 Proof of Lemma B.8 Part (i)

To derive the asymptotic expansion of matrix Λ̂′jΛ̂j/Nj , we work with the matrix versions of the asymptotic

expansions in equations (B.176) and (B.177). Stacking the loadings λ̂cj,i in matrix Λ̂cj = [λ̂cj,1, ..., λ̂
c
j,Nj

]′ we get:

Λ̂cj =

[
Λcj +

1√
T

(Gcj + Λsj
√
T Σ̃j,cΣ̃

−1
cc )

]
Ĥc + op

(
T−1/2

)
,

where

Gcj =
1√
T
ε̆′jF̆

c, (B.178)

and op(T
−1/2) denotes a matrix whose rows are (kc, 1) vectors uniformly of order op(T−1/2). Similarly,

stacking the loadings λ̂sj,i in matrix Λ̂sj = [λ̂sj,1, ..., λ̂
s
j,Nj

]′ we get:

Λ̂sj =

[
Λsj +

1√
T
Gsj

]
Ĥs,j + op

(
T−1/2

)
,

where

Gsj =
1√
T
ε̆′jF̆

s
j . (B.179)

By gathering these expansions into matrix Λ̂j = [Λ̂cj
... Λ̂sj ], we get:

Λ̂j =

(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)
Ûj + op

(
T−1/2

)
, j = 1, 2, (B.180)

where

Gj =
[
Gcj

... Gsj

]
=

1√
T
ε̆′jH̆j , H̆j = [F̆ c

... F̆ sj ], (B.181)

Ûj =

[
Ĥc 0

0 Ĥs,j

]
, (B.182)

Qj =

[
0 0

√
T Σ̃j,cΣ̃

−1
cc 0

]
. (B.183)
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To compute
Λ̂′jΛ̂j
Nj

, we consider the matrix product:

1

Nj

[
Λj +

1√
T
Gj +

1√
T

ΛjQj

]′ [
Λj +

1√
T
Gj +

1√
T

ΛjQj

]
=

1

Nj
Λ′jΛj +

1

Nj

√
T

(
Λ′jGj +G′jΛj

)
+

1

NjT
G′jGj +

1√
T

[(
1

Nj
Λ′jΛj

)
Qj +Q′j

(
1

Nj
Λ′jΛj

)]
+

1

NjT

(
Q′jΛ

′
jGj +G′jΛjQj

)
+

1

T
Q′j

(
1

Nj
Λ′jΛj

)
Qj . (B.184)

Let us now bound the different terms. We have:

1√
Nj

Λ′jGj =
1√
NjT

Λ′j ε̆
′
jH̆j =

1√
NjT

Nj∑
i=1

T∑
t=1

λj,ih̆
′
j,tε̆j,it = Op (1) ,

and:
1

Nj
G′jGj =

1

Nj

Nj∑
i=1

(
1√
T

T∑
t=1

h̆j,tε̆j,i,t

)(
1√
T

T∑
t=1

h̆j,tε̆j,i,t

)′
= Op(1),

by arguments similar to the proof of Lemma B.1. Thus, by using these bounds and Λ′jΛj/Nj = O(1) and

Qj = Op(1), from equation (B.184) we get:

1

Nj

[
Λj +

1√
T
Gj +

1√
T

ΛjQj

]′ [
Λj +

1√
T
Gj +

1√
T

ΛjQj

]
=

1

Nj
Λ′jΛj +

1√
T

(
LΛ,j + L′Λ,j

)
+Op

(
1√
NT

+
1

T

)
,

where

LΛ,j =

(
Λ′jΛj

Nj

)
Qj . (B.185)

Therefore we have:

Λ̂′jΛ̂j

Nj
= Û ′j

[
Λ′jΛj

Nj
+

1√
T

(
LΛ,j + L′Λ,j

)]
Ûj + op

(
1√
T

)
.

B.5.7.2 Proof of Lemma B.8 Part (ii)

a) Asymptotic expansion of Γ̂j

We start by deriving the uniform asymptotic expansion for the residuals. The asymptotic expansions in (B.174)-
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(B.177) allow to compute the asymptotic expansion of ε̂j,i,t:

ε̂j,i,t = yj,i,t − λ̂c ′j,if̂ ct − λ̂s ′j,if̂sj,t = εj,i,t −
[
λ̂c ′j,if̂

c
t − λc ′j,if ct

]
−
[
λ̂s ′j,if̂

s
j,t − λs ′j,ifsj,t

]
= εj,i,t −

[(
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
w̆cj,i + op(T

−1/2)

)′(
f ct +

1√
N1

u
(c)
1,t + op(T

−1/2)

)
− λc ′j,if ct

]
−

[(
λsj,i +

1√
T
w̆sj,i + op(T

−1/2)

)′(
fsj,t − Σ̃j,cΣ̃

−1
cc f

c
t +

1√
Nj

u
(s)
j,t + op(T

−1/2)

)
− λs ′j,if sj,t

]

= εj,i,t −
(

1√
N1

λc ′j,iu
(c)
1,t +

1√
T
w̆c′j,if

c
t

)
−

(
1√
Nj

λs ′j,iu
(s)
j,t +

1√
T
w̆s′j,if

s
j,t

)
+ op

(
T−1/2

)
. (B.186)

Here the op(T−1/2) term is uniform w.r.t. 1 ≤ i ≤ Nj , 1 ≤ t ≤ T by the bounds in the next Lemma B.16 and

Assumption B.8 d).

LEMMA B.16. Let X = Op,`(aN,T ) mean X = Op[aN,T (log T )b̄] for some b̄ > 0. Under Assumption B.8 we

have the following uniform bounds:

sup
1≤t≤T

‖hj,t‖ = Op,`(1), (B.187)

sup
1≤t≤T

‖uj,t‖ = Op,`(1), (B.188)

sup
1≤i≤Nj

‖ 1

T

T∑
t=1

hj,tεj,i,t‖ = Op,`(T
−η/2), (B.189)

where η ≥ 1/2.

If we adopt f̂ ct to compute residuals in panel j = 1, and f̂ c∗t for j = 2, we have:

ε̂j,i,t = εj,i,t −
1√
T

(
w̆c′j,if

c
t + w̆s′j,if

s
j,t

)
− 1√

Nj

(
λc ′j,iu

(c)
j,t + λs ′j,iu

(s)
j,t

)
+ op

(
T−1/2

)
. (B.190)

Equation (B.190) allows us to compute:

γ̂∗j,ii =
1

T

T∑
t=1

˘̂ε2
j,i,t =

1

T

T∑
t=1

[
ε̆j,i,t −

1√
T

(
w̆c′j,if̆

c
t + w̆s′j,if̆

s
j,t

)
− 1√

Nj

(
λc ′j,iŭ

(c)
j,t + λs ′j,iŭ

(s)
j,t

)]2

+ op

(
T−1/2

)
=

1

T

T∑
t=1

ε2
j,i,t −

2

T
√
T

T∑
t=1

εj,i,t

(
w̆c ′j,i f̆

c
t + w̆s ′j,i f̆

s
j,t

)
− 2

T
√
Nj

T∑
t=1

εj,i,t

(
λc ′j,iŭ

(c)
j,t + λs ′j,iŭ

(s)
j,t

)
+

1

T 2

T∑
t=1

(
w̆c ′j,i f̆

c
t + w̆s ′j,i f̆

s
j,t

)2
+

1

TNj

T∑
t=1

(
λc ′j,iu

(c)
j,t + λs ′j,iŭ

(s)
j,t

)2

+
2

T
√
TNj

T∑
t=1

(
w̆c ′j,i f̆

c
t + w̆s ′j,i f̆

s
j,t

)(
λc ′j,iŭ

(c)
j,t + λs ′j,iŭ

(s)
j,t

)
+ op

(
T−1/2

)
.
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By solving out the parentheses, using w̆cj,i = 1√
T

∑T
t=1 ε̆j,i,tf̆

c
t = Op(1), w̆sj,i =

( ˘̃F s ′j
˘̃F sj /T )−1 1√

T

∑T
t=1

˘̃
fsj,tε̆j,i,t = Op(1), 1√

T

∑T
t=1 ε̆j,i,tŭ

(c)
j,t = Op(1) and 1√

T

∑T
t=1 ε̆j,i,tŭ

(s)
j,t = Op(1),

uniformly in 1 ≤ i ≤ Nj , we get:

γ̂∗j,ii =
1

T

T∑
t=1

ε̆2
j,i,t +Op

(
1

N

)
+ op

(
T−1/2

)
,

uniformly in 1 ≤ i ≤ Nj . Using that 1/N = o(1/
√
T ) when

√
T � N , we get:

γ̂j,ii =
1

T

T∑
t=1

ε̆2
j,i,t + op

(
T−1/2

)
= γj,ii +

1√
T
wεj,i + op

(
T−1/2

)
,

uniformly in 1 ≤ i ≤ Nj , where

wεj,i :=
1√
T

T∑
t=1

(ε̆2
j,i,t − γj,ii).

Therefore, we have:

Γ̂j = Γj +
1√
T
W ε
j + op

(
T−1/2

)
, (B.191)

where Γj = diag(γj,ii, i = 1, ..., Nj) and W ε
j = diag(wεj,i, i = 1, ..., N), for j = 1, 2.

b) Asymptotic expansion of 1
Nj

Λ̂′jΓ̂jΛ̂j

From (B.180) and (B.191) we have:

1

Nj
Λ̂′jΓ̂jΛ̂j = Û ′jΩ̂∗jjÛj + op

(
T−1/2

)
, (B.192)

where we define:

Ω̂∗jj :=
1

Nj

(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)′(
Γj +

1√
T
W ε
j

)(
Λj +

1√
T
Gj +

1√
T

ΛjQj

)
= Ω̃jj + Ω̂∗jj,I + Ω̂∗jj,II + Ω̂∗ ′jj,II + Ω̂∗jj,III + Ω̂∗ ′jj,III + Ω̂∗jj,IV + Ω̂∗jj,V

+
1√
T

(Ω̃jjQj +Q′jΩ̃jj) +
1√
T

(Ω̂∗jj,IQj +Q′jΩ̂
∗
jj,I) +

1√
T

(Ω̂∗jj,IIQj +Q′jΩ̂
∗ ′
jj,II)

+
1√
T

(Ω̂∗jj,IIIQj +Q′jΩ̂
∗ ′
jj,III) +

1

T
Q′jΩ̃jjQj +

1

T
Q′jΩ̂

∗
jj,IQj ,
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and:

Ω̃jj :=
1

Nj
Λ′jΓjΛj ,

Ω̂∗jj,I :=
1

Nj

√
T

Λ′jW
ε
j Λj = Op

(
1√
NT

)
,

Ω̂∗jj,II :=
1

Nj

√
T
G′jΓjΛj = Op

(
1√
NT

)
,

Ω̂∗jj,III :=
1

NjT
G′jW

ε
j Λj = Op

(
1

T

)
,

Ω̂∗jj,IV :=
1

NjT
G′jΓjGj = Op

(
1

T

)
,

Ω̂∗jj,V :=
1

NjT
√
T
G′jW

ε
jGj = Op

(
1

T
√
T

)
.

Collecting the previous results, we get:

Ω̂∗jj = Ω̃jj +
1√
T

(
LΩ,j + L′Ω,j

)
+Op

(
1√
NT

+
1

T

)
, (B.193)

where:

LΩ,j = Ω̃jjQj . (B.194)

By substituting into equation (B.192) we get:

1

Nj
Λ̂′jΓ̂jΛ̂j = Û ′j

[
Ω̃jj +

1√
T

(
LΩ,j + L′Ω,j

)]
Ûj + op

(
T−1/2

)
, j = 1, 2.

�

B.5.7.3 Proof of Lemma B.16

We prove the uniform bounds in (B.187) and (B.189). The proof of bound (B.188) follows by similar arguments.

Proof of (B.187). Let δ = c(log T )b̄, for constants c > 0 and b̄ = 1/b, where b > 0 is defined in Assumption

B.8 a). Then:

P [ sup
1≤t≤T

‖hj,t‖ ≥ δ] ≤
T∑
t=1

P [‖hj,t‖ ≥ δ] ≤ c1T exp(−c2δ
b) = c1T exp[−c2c

b(log T )]

= c1T
1−c2cb = o(1),

if c > (1/c2)1/b. Thus, sup
1≤t≤T

‖hj,t‖ = Op[(log T )b̄].

Proof of (B.189). Let δ = c(log T )1/2T−η/2, for constants c > 0 and η, where η ≥ 1/2 is defined in
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Assumption B.8 c). Then:

P [ sup
1≤i≤Nj

‖ 1

T

T∑
t=1

hj,tεj,i,t‖ ≥ δ] ≤
Nj∑
i=1

P [‖ 1

T

T∑
t=1

hj,tεj,i,t‖ ≥ δ] ≤ Nj sup
1≤i≤Nj

P [‖ 1

T

T∑
t=1

hj,tεj,i,t‖ ≥ δ]

≤ c1NjT exp(−c2δ
2T η) + c3TNjδ

−1 exp(−c4T
η̄)

= c1NjT exp(−c2c
2(log T )) + c3TNjδ

−1 exp(−c4T
η̄)

= O(T 7/2−c2c2) + o(1) = o(1),

if c > ( 7
2c2

)1/2. Thus, sup
1≤i≤Nj

‖ 1
T

∑T
t=1 hj,tεj,i,t‖ = Op[(log T )1/2T−η/2] = Op,`(T

−η/2).

B.5.8 Proof of Lemma B.9

We assume that estimator f̂ ct is used to get factor loadings on panel j = 1, and estimator f̂ c ∗t is used to get

factor loadings on panel j = 2. Recall Σ̂U = (N2/N1)Σ̂
(cc)
u,11 + Σ̂

(cc)
u,22. Let r be the true number of common

factors, and let kc denote the number of common factors used in the estimation procedure. We consider the case

with r < kc ≤ k ≡ min{k1, k2}.
Let us first consider panel j = 1. The common factor estimator is f̂ ct = Ŵ ′1ĥ1,t where Ŵ1 is the k1 × kc

matrix whose columns are eigenvectors of R̂ associated with the kc largest eigenvalues, normalized to have

Ŵ ′1Ŵ1 = Ikc . Without loss of generality, let Ĥj = Ikj in Proposition B.2. Then, we have R̂ = R + op(1),

where R =

(
Ir 0

0 ΦΦ′

)
. The large-sample limit of Ŵ1 is the matrix of normalized eigenvectors associated

to the kc largest eigenvalues of matrix R. These eigenvalues are 1, with multiplicity r, and ρ2
r+1, ..., ρ2

kc , that

are the kc − r largest eigenvalues of matrix ΦΦ′ (assumed distinct, to simplify the proof). Let α denote the

(k1 − r) × (kc − r) matrix whose columns are the corresponding normalized eigenvectors of ΦΦ′. Then, we

have Ŵ1 = W1 + op(1) where

W1 =

[
U 0

0 α

]
,

r × r matrix U is possibly stochastic and such that U ′U = Ir, and α′α = Ikc−r. For later use, we denote by β

the (k1 − r) × (k1 − kc) matrix whose columns are an orthonormal basis of the orthogonal complement to the

columns space of α. Then, [α
... β] is an orthogonal matrix, β′β = Ik1−kc , α

′β = 0, and:

αα′ + ββ′ = Ik1−r. (B.195)

From Proposition B.2 with Ĥj = Ikj we have ĥj,t ' hj,t, where symbol ' means equality up to terms that

are asymptotically negligible for determining large-sample limits. Then:

f̂ ct 'W ′1h1,t =

[
U ′f ct
α′fs1,t

]
.
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Let us consider the estimation of the factor loadings on the panel with j = 1. From (B.195) the model for

this panel can be written as:

y1,i,t = f c ′t λc1,i + fs ′1,tλ
s
1,i + ε1,i,t = [Uf c ′t ][Uλc1,i] + [α′fs1,t]

′[α′λs1,i] + [β′fs1,t]
′[β′λs1,i] + ε1,i,t

= f c ′
t
λc1,i + fs ′

1,t
λs1,i + ε1,i,t,

where f c
t

=

[
U ′f ct
α′fs1,t

]
, λc1,i =

[
U ′λc1,i
α′λs1,i

]
, fs

1,t
= β′f s1,t and λs1,i = β′λs1,i. Note that the transformed factors

f c
t

and fs
1,t

are orthogonal, and have dimensions kc and k1 − kc respectively. Since f̂ ct converges to f c
t
, by

regressing y̆1,i,t onto ˘̂
f ct we estimate λc1,i. Then, the residuals satisfy the model:

ξ1,i,t ' fs ′1,t
λs1,i + ε1,i,t.

The group-specific factor is estimated by extracting the first k1−kc RP-PCs (RP-Principal components) from the

residuals, which yields asymptotically f̂s1,t ' Vfst , where V is p.d. matrix. So for the estimated factor loadings

we have:

λ̂c1,i ' λc1,i =

[
U ′λc1,i
α′λs1,i

]
, λ̂s1,i ' Vλs1,i = Vβ′λs1,i.

Thus, λ̂1,i is asymptotically an orthogonal transformation of λ1,i, i.e. λ̂1,i ' R1λ1,i, say. Using ε̂1,i,t ' ε1,i,t,

we get Σ̂u,11 ' R1Σu,11R′1, which implies Σ̂u,11 = Op(1).

Let us now consider the estimation of factor loadings in panel j = 2. By paralleling the above arguments,

we have Σ̂u,22 = Op(1). Thus, ‖Σ̂U‖ = Op(1). The conclusion follows. �

B.6 Uniform asymptotic expansions of factor values and factor loadings in the
group factor model

In order to prove Lemma B.8, we need to the asymptotic expansions of factor values and factor loadings in our

group factor model, which is provided in the following Proposition B.6. This proposition provides the uniform

asymptotic expansions for the estimators of the factor values and factor loadings in Definitions 1 and 2 and

equations (A.13) and (A.14), up to terms op(N̄−1/2), where N̄ := max{N1, T}.

PROPOSITION B.6. i) Under Assumption B.1 with µ > 0, and Assumptions B.2-B.4, B.5 b)-c), B.6 a), B.7,

B.8 (TO BE CHECKED !!!!) the asymptotic expansions of the factors estimators are given by:

f̂ ct = Ĥ−1
c

[
f ct +

1√
N1

u
(c)
1,t

]
+ op

(
N̄−1/2

)
, (B.196)

and:

f̂sj,t = Ĥ−1
s,j

[
f̃sj,t +

1√
Nj

u
(s)
j,t

]
+ op(N̄

−1/2), j = 1, 2, (B.197)
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where f̃sj,t = fsj,t − Σ̃j,cΣ̃
−1
cc f

c
t and the op terms are uniform w.r.t. 1 ≤ t ≤ T . The asymptotic expansions of the

loadings estimators are:

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
w̆cj,i

]
+ op

(
N̄−1/2

)
, j = 1, 2, (B.198)

and:

λ̂sj,i = Ĥ′s,j
[
λsj,i +

1√
T
w̆sj,i

]
+ op

(
N̄−1/2

)
, j = 1, 2, (B.199)

where the op terms are uniform w.r.t. 1 ≤ i ≤ Nj . Matrices Ĥc and Ĥs,j are such that:

ĤcĤ′c = Σ̃cc + op(N̄
−1/2), Ĥs,jĤ′s,j = (

1

T
F̃ s ′j F̃ sj )−1 + op(N̄

−1/2), j = 1, 2, (B.200)

where F̃ sj = [f̃sj,1, ..., f̃
s
j,T ]′. Vector uj,t is defined in Proposition B.2, and w̆cj,i = Σ̃−1

cc
1√
T

∑T
t=1

˘̃
f ct ε̆j,i,t and

w̆sj,i = 1√
T

∑T
t=1

˘̃
fsj,tε̆j,i,t.

This proposition is analogous to Proposition D.4 in AGGR (see their Online Appendix D.4). In the

asymptotic expansion of f̂ ct , the stochastic term at order N−1/2
1 comes from the estimation of the principal

components in the first subgroup. Interestingly, no bias term of order 1/T appears in the expansions of f̂ ct
and f̂ s1,t, as these bias terms can be absorbed into the terms op(N̄−1/2) under Assumption B.1, whihc implies
√
T � N � T 2. Instead, bias terms of order 1/T were present in AGGR, who used the assumptions
√
T � N � T 5/2. Similarly, bias terms of order 1/T in the expansions of the loadings estimators appearing in

Propositon 4 of AGGR are also absorbed in the terms op(N̄−1/2) in our Proposition B.6.

In the asymptotic expansion of λ̂cj,i, the term Σ̃−1
cc Σ̃c,jλ

s
j,i is induced by the fact that the common and

frequency-specific factors are not orthogonal in-sample. The expansion of λ̂cj,i does not contain explicitly a bias

component at order N−1
j , since N−1

j = op(N̄
−1/2) under Assumption B.1.

The uniform asymptotic expansions at order op(T−1/2) in Proposition B.6 ii) suffice for the proof of

Theorem A.2.

B.6.1 Proof of Proposition B.6

We start by providing some uniform bounds in Subsection B.6.1 a), that are instrumental for the rest of the proof

of Proposition B.6. Then, in Subsections B.6.1 b)-e) we establish the uniform asymptotic expansions of factors

and loadings up to order op(N̄−1/2), where N̄ = max{N1, T} (proof of part i)). Finally, in Subsection B.6.1 f)

we show how to get the uniform asymptotic expansions up to order op(T−1/2) under a less restrictive asymptotic

scheme (proof of part ii)).
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a) Uniform bounds (TO BE CHECKED !!!! )

Let X = Op,`(aN,T ) mean X = Op[aN,T (log T )b̄] for some b̄ > 0. Under Assumption B.8 we have the

following uniform bounds, which complement those in Lemma B.16:

sup
1≤t≤T

‖bj,t‖ = Op,`(1), (B.201)

sup
1≤t≤T

‖dj,t‖ = Op,`(1), (B.202)

sup
1≤t≤T

‖ĥj,t‖ = Op,`(1), (B.203)

sup
1≤t≤T

‖βcj,t‖ = Op,`(1), (B.204)

sup
1≤i≤Nj

‖ 1

T

T∑
t=1

βcj,tεj,i,t‖ = Op,`(T
−η/2), (B.205)

sup
1≤i≤Nj

‖ 1

T

T∑
t=1

ε2
j,i,t‖ = Op(1), (B.206)

sup
1≤i≤Nj

1

NjT

Nj∑
`=1,`6=i

T∑
t=1

λj,`εj,`,tεj,i,t = Op,`(
1√
NT η

) +O(
1

N
), (B.207)

where η ≥ 1/2. We prove below the uniform bound in (B.207). The proofs of the other ones follow by similar

arguments.

Proof of (B.207). We have:

1

NjT

Nj∑
`=1,` 6=i

T∑
t=1

λj,`εj,`,tεj,i,t =
1√
Nj

 1

T

T∑
t=1

 1√
Nj

Nj∑
`=1,` 6=i

εj,`,tεj,i,t − E[
1√
Nj

Nj∑
`=1,` 6=i

λj,`εj,`,tεj,i,t]


+

1

Nj

Nj∑
`=1,` 6=i

λj,`E[εj,`,tεj,i,t].

From Assumption B.8 c) we have 1
T

∑T
t=1

(
1√
Nj

∑Nj
`=1,`6=i εj,`,tεj,i,t − E[ 1√

Nj

∑Nj
`=1,` 6=i λj,`εj,`,tεj,i,t]

)
=

Op,`(T
−η/2), uniformly in 1 ≤ i ≤ Nj , similarly as in the proof of (B.189). From Assumptions B.8 b) and d)

we have
∑Nj

`=1,`6=i λj,`E[εj,`,tεj,i,t] = O(1), uniformly in 1 ≤ i ≤ Nj . Then, (B.207) follows.
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b) Asymptotic expansion of f̂ ct

Let us start by establishing the asymptotic expansion of f̂ ct up to order op(N̄−1/2). Equation (B.21) and Ψ̂ =

Op(δN,T ) imply Ŵ ∗1 = [Ec+Es(Ik1−kc−R̃ss)−1Ψ̂
(I)
sc ]Û+Op(δ

2
N,T ). The normalized eigenvectors corresponding

to the canonical directions are: Ŵ1 = Ŵ ∗1 D̂, where D̂ = diag(Ŵ ∗ ′1 V̂11Ŵ
∗
1 )−1/2. Then, from Definition 1 and

equation (B.2), we get:

f̂ ct = Ŵ ′1ĥ1,t = D̂Û ′
[
E′cĥ1,t + Ψ̂(I) ′

sc (Ik1−kc − R̃ss)−1E′sĥ1,t

]
+Op,l

(
δ2
N,T

)
= D̂Û ′

[
f ct +

1√
N1

u
(c)
1,t +

1

T
b̆
(c)
1,t +

1√
N1T

d̆
(c)
1,t + ϑ̆

(c)
1,t

+Ψ̂(I) ′
sc (Ik1−kc − R̃ss)−1

(
fs1,t +

1√
N1

u
(s)
1,t +

1

T
b̆
(s)
1,t +

1√
N1T

d̆
(s)
1,t + ϑ̆

(s)
1,t

)]
+Op,l

(
δ2
N,T

)
,

(B.208)

uniformly in 1 ≤ t ≤ T , where we use the expansion of the factor estimates in Proposition B.2, and (B.203).

Under Assumption B.1 with µ > 0, N = N2 and N1 grow at the same rate such that T 1/2 � N � T 2.

Therefore, (log T )b̄δ2
N,T = o(N̄−1/2), for any b̄ > 0, 1√

N1
δN,T = o(N̄−1/2) and 1

T δN,T = o(N̄−1/2) under

Assumption B.1 with µ > 0. By using uniform bounds in Lemma B.16 (this Lemma needs to be written and
proved ... but should hold!) and (B.201)-(B.202), and keeping only terms up to op(N̄−1/2), we get:

f̂ ct = Ĥ−1
c

[
f

(c)
t +

1√
N1

u
(c)
1,t +

1

T
˘̄b

(c)
1,t + Ψ̂(I) ′

sc (Ik1−kc − R̃ss)−1f s1,t

]
+ op

(
N̄−1/2

)
, (B.209)

uniformly in 1 ≤ t ≤ T , where Ĥ−1
c = D̂Û ′ and ˘̄b1,t is defined in equation (A.18).

To further develop this asymptotic expansion, we need the asymptotic behavior of Ψ̂
(I)
sc . From equation

Ψ̂ = Ṽ −1
11 Ψ̂∗ (see Lemma B.2) we have Ψ̂

(I)
sc = (Ṽ −1

11 )scΨ̂
∗(I)
cc + (Ṽ −1

11 )ssΨ̂
∗(I)
sc . From Lemma B.13, we have

Ψ̂
∗(I)
cc = Op

(
1
N + 1

T 2 + 1
T
√
NT

)
= op(N̄

−1/2) under Assumption B.1 with µ > 0. Moreover, from (B.14) and

Lemma B.3 we get:

Ψ̂∗(I)sc = −(X̂11,sc − X̂12,sc) + B̃′cs(X̂21,cc − X̂22,cc) + B̃′ss(X̂21,sc − X̂22,sc).

From Lemmas B.1 and B.3, and equation (B.161), the second term in the r.h.s. is Op(T−1/2δN,T ) = op(N̄
−1/2)

under Assumption B.1 with µ > 0. Now, we substitute in the definitions of terms X̂j,k from (B.11), and use that
1
T

∑T
t=1 ψ̆j,tψ̆

′
k,t = op(N̄

−1/2). We get:

Ψ̂∗(I)sc = − 1

T

T∑
t=1

(f̆s1,t − B̃′ssf̆s2,t)[ψ̆
(c)
1,t − ψ̆

(c)
2,t ]
′ + op(N̄

−1/2).
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By using the definition of ψ̆j,t, B̃ss = Φ′ +Op(T
−1/2), and keeping terms up to op(N̄−1/2), we get:

Ψ̂∗(I)sc = − 1

T

(
1

T

T∑
t=1

(f̆s1,t − Φf̆s2,t)[
˘̄b

(c)
1,t −

˘̄b
(c)
2,t ]
′

)
+ op(N̄

−1/2)

= − 1

T
E[(f̆s1,t − Φf̆s2,t)(

˘̄b
(c)
1,t −

˘̄b
(c)
2,t)
′] + op(N̄

−1/2).

Thus, by using (Ṽ −1
11 )ss = Ik1−kc +Op(T

−1/2) and N � T 3, we get:

Ψ̂(I)
sc = − 1

T
E[(f̆s1,t − Φf̆s2,t)(

˘̄b
(c)
1,t −

˘̄b
(c)
2,t)
′] + op(N̄

−1/2). (B.210)

Thus, from (B.209) and (B.210), and by using (Ik1−kc−R̃ss)−1 = (Ik1−kc−ΦΦ′)−1+Op(T
−1/2) andN � T 3,

we get:

f̂ ct = Ĥ−1
c

[
f

(c)
t +

1√
N1

u
(c)
1,t +

1

T
β̆c1,t

]
+ op

(
N̄−1/2

)
, (B.211)

uniformly in 1 ≤ t ≤ T , where:

β̆c1,t = ˘̄b
(c)
1,t − E[(˘̄b

(c)
1,t −

˘̄b
(c)
2,t)(f̆

s
1,t − Φf̆s2,t)

′](Ik1−kc − ΦΦ′)−1fs1,t,

which yields (B.196). By noting that 1/T = op(N̄
−1/2) under Assumption B.1, we get:

f̂ ct = Ĥ−1
c

[
f

(c)
t +

1√
N1

u
(c)
1,t

]
+ op

(
N̄−1/2

)
, (B.212)

The asymptotic expansion for estimator f̂ c ∗t is obtained by interchanging the roles of panels j = 1 and

j = 2. Hence,

f̂ c ∗t = Ĥ∗
−1
c

[
f

(c)
t +

1√
N2

u
(c)
2,t

]
+ op

(
N̄−1/2

)
,

uniformly in 1 ≤ t ≤ T .

Finally, let us show the asymptotic expansion for ĤcĤ′c. We first need to compute:

˘̂
f ct = f̂ ct − f̄ c

= Ĥ−1
c

[
f̆

(c)
t +

1√
N1

ŭ
(c)
1,t

]
+ op

(
N̄−1/2

)
, (B.213)

Substituting the expression of f̂ ct from equation (B.213) into the equality 1
T

∑T
t=1

˘̂
f ct

˘̂
f c′t = Ikc from equation
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(A.12), we get:

Ikc = Ĥ−1
c

1

T

T∑
t=1

(
f̆ ct +

1√
N1

ŭ
(c)
1,t

)(
f̆ ct +

1√
N1

ŭ
(c)
1,t

)′ (
Ĥ−1
c

)′
+ op

(
N̄−1/2

)
= Ĥ−1

c Σ̃cc

(
Ĥ−1
c

)′
+ op

(
N̄−1/2

)
, (B.214)

using arguments similar to the proof of Lemma B.1 and Assumption B.1 with µ > 0. Thus, we get

ĤcĤ′c = Σ̃cc + op
(
N̄−1/2

)
, which yields the first equation in (B.200). By using (B.161) it follows:

ĤcĤ′c = Ikc +Op(T
−1/2). (B.215)

c) Asymptotic expansion of λ̂cj,i

Let us now derive the asymptotic expansion of the loading estimator

λ̂cj,i =
(

˘̂
F c ′

˘̂
F c
)−1 ˘̂

F c ′y̆j,i =
˘̂
F c ′y̆j,i/T (B.216)

up to order op
(
N̄−1/2

)
, where yj,i is the i-th column of matrix Y̆j and ˘̂

F c = [
˘̂
f c1 , ...,

˘̂
f cT ]′. From equation (B.213)

we have ˘̂
F c =

(
F̆ c + 1√

N1
Ŭ c1

)(
Ĥ−1
c

)′
+ op

(
N̄−1/2

)
, where Ŭ c1 = [ŭ

(c)
1,1, ..., ŭ

(c)
1,T ]′, which implies:

˘̂
F cĤ′c − F̆ c =

1√
N1

Ŭ c1 + op

(
N̄−1/2

)
. (B.217)

Here op
(
N̄−1/2

)
denotes a matrix whose rows are uniformly of stochastic order op

(
N̄−1/2

)
. Then:

λ̂cj,i = (
˘̂
F c ′

˘̂
F c)−1 ˘̂

F c ′y̆j,i =
1

T
˘̂
F c ′y̆j,i

=
˘̂
F c ′

(
F̆ cλcj,i + F̆ sj λ

s
j,i + εj,i

)
=

1

T
˘̂
F c ′

([
˘̂
F cĤ′c −

(
˘̂
F cĤ′c − F̆ c

)]
λcj,i + F̆ sj λ

s
j,i + ε̆j,i

)
= Ĥ′cλcj,i −

1

T
˘̂
F c ′

(
˘̂
F cĤ′c − F̆ c

)
λcj,i +

1

T
F̂ c ′F̆ sj λ

s
j,i +

1

T
˘̂
F c ′ε̆j,i,

for j = 1, 2. By writing ˘̂
F c =

[
F̆ c + (

˘̂
F cĤ′c − F̆ c)

]
(Ĥ′c)−1, and rearranging terms, we get:

λ̂cj,i = Ĥ′c
{
λcj,i + (Ĥ′c)−1(Ĥc)−1 1

T
F̆ c ′εj,i + (Ĥ′c)−1(Ĥc)−1 1

T
F̆ c ′F̆ sj λ

s
j,i

+(Ĥ′c)−1(Ĥc)−1(
˘̂
F cĤ′c − F̆ c)′εj,i + (Ĥ′c)−1(Ĥc)−1 1

T
(

˘̂
F cĤ′c − F̆ c)′F̆ sj λsj,i

−(Ĥ′c)−1(Ĥc)−1 1

T

[
F̆ c + (

˘̂
F cĤ′c − F̆ c)

]′ ( ˘̂
F cĤ′c − F̆ c

)
λcj,i

}
. (B.218)
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We use equation (B.217) to bound the different terms. We have:

1

T
(

˘̂
F cĤ′c − F̆ c)′ε̆1,i =

1√
N1T

Ŭ c ′1 ε̆1,i + op(N̄
−1/2)

= (Λ′1Λ1/N1)−1 1

N1T

N1∑
`=1

T∑
t=1

λ1,`ε̆1,`,tε̆1,i,t + op(N̄
−1/2)

= (Λ′1Λ1/N1)−1 1

N1T

T∑
t=1

λ1,iε̆
2
1,i,t + (Λ′1Λ1/N1)−1 1

N1T

N1∑
`=1,`6=i

T∑
t=1

λ1,`ε̆1,`,tε̆1,i,t

+op(N̄
−1/2) = Op(N

−1
1 ) +Op,l[(N1T

η)−1/2] + op(N̄
−1/2),

uniformly in 1 ≤ i ≤ N1, using bounds (B.205)-(B.206) and Assumption B.8 d). A similar bound holds for

j = 2. Since N1 grows at the same rate as N and T 1/2 � N , we have N−1
1 = o(N̄−1/2). Moreover, from

η ≥ 1/2 and T 1/2 � N , we have Op,l[(N1T
η)−1/2] = op(N̄

−1/2). Hence, 1
T (

˘̂
F cĤ′c − F̆ c)′ε̆j,i = op(N̄

−1/2),

uniformly in 1 ≤ i ≤ N1. Moreover:

1

T
(

˘̂
F cĤ′c − F̆ c)′F̆ sj =

1

T
√
N1

Ŭ c ′1 F̆ sj + op(N̄
−1/2)

= Op((N1T )−1/2) + op(N̄
−1/2) = op(N̄

−1/2),

and:

1

T

[
F̆ c + (

˘̂
F cĤ′c − F̆ c)

]′ ( ˘̂
F cĤ′c − F̆ c

)
=

1

T
√
N1

F̆ c ′Ŭ c1

= Op((N1T )−1/2 +N−1
1 ) + op(N̄

−1/2) = op(N̄
−1/2).

Further, from (B.215) we have (Ĥc)−1(Ĥ′c)−1 = (Ĥ′cĤc)−1 = Σ̃−1
cc + op(N̄

−1/2) = Ikc + op(T
−1/2). Then,

from (B.218) and Assumption B.8 d) we get:

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc

1

T
F̆ c ′ε̆j,i

]
+ op(N̄

−1/2),

uniformly in 1 ≤ i ≤ Nj . The last equation can be rewritten as

λ̂cj,i = Ĥ′c
[
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
w̆cj,i

]
+ op

(
N̄−1/2

)
, j = 1, 2, (B.219)
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where:

w̆cj,i := Σ̃−1
cc

1√
T
F̆ c ′ε̆j,i = Σ̃−1

cc

1√
T

T∑
t=1

f̆ ct ε̆j,i,t,

Σ̃cc =
1

T
F̆ c ′F̆ c =

1

T

T∑
t=1

f̆ ct f̆
c ′
t , Σ̃c,j =

1

T
F̆ c ′F̆ sj =

1

T

T∑
t=1

f̆ ct f̆
s′
j,t.

d) Asymptotic expansion of f̂ sj,t

Let us now derive the asymptotic expansion of term f̂sj,t. We start by computing the asymptotic expansion of

the regression residuals ξj,i,t := yj,i,t − f̂ c ′t λ̂cj,i, where we replace f̂ ct with f̂ c ∗t for j = 2. By substituting the

asymptotic expansions in equations (B.212) and (B.219), have:

ξj,i,t = fs ′j,tλ
s
j,i + εj,i,t −

(
f̂ c ′t λ̂cj,i − f c ′t λcj,i

)
= fs ′j,tλ

s
j,i + εj,i,t

−

[(
f ct +

1√
Nj

u
(c)
j,t

)′(
λcj,i + Σ̃−1

cc Σ̃c,jλ
s
j,i +

1√
T
w̆cj,i

)
− f c ′t λcj,i

]
+op(N̄

−1/2)

= f̃s ′j,tλ
s
j,i + ej,i,t + op(N̄

−1/2), (B.220)

where we define:

f̃sj,t := fsj,t − Σ̃j,cΣ̃
−1
cc f

c
t , (B.221)

ej,i,t := εj,i,t −
1√
T
f c′t w̆

c
j,i −

1√
Nj

u
(c) ′
j,t λ

c
j,i. (B.222)

The term op(N̄
−1/2) is uniform in i = 1, ..., Nj and t = 1, ..., T by bounds (B.187)-(B.188) and (B.203)-

(B.204), and Assumption B.8 d). Then, the residuals ξj,i,t, with i = 1, ..., Nj and t = 1, ..., T , satisfy an

approximate factor structure with factors f̃sj,t, loadings λsj,i and errors ej,i,t, up to op(N̄−1/2). Differently from

the proof of Proposition D.4 d) in AGGR, our error terms ej,i,t do not contain a factor structure at order T−1.

The RP-PC estimator to the panel of residuals ξj,i,t has an asymptotic expansion analogous to the one of

Proposition B.2:

f̂sj,t = Ĥ−1
s,j

[
f̃sj,t +

1√
Nj

v∗ sj,t +
1

T
b∗ sj,t +

1√
NjT

d∗ sj,t + ϑ∗ sj,t

]
, j = 1, 2, (B.223)
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where Ĥs,j , j = 1, 2, is a non-singular matrix w.p.a. 1, and: (TO BE CHECKED!!!!!!)

v∗ sj,t =

(
1

Nj
Λs′j Λsj

)−1 1√
Nj

Λs′j ej,t

b∗ sj,t =

(
1

Nj
Λs ′j Λsj

)−1( 1

T
˘̃F s ′j

˘̃F sj

)−1

(η∗j,t)
2 ˘̃
fsj,t,

d∗ sj,t =

(
1

Nj
Λs ′j Λsj

)−1( 1

T
˘̃F s ′j

˘̃F sj

)−1
 1

NjT

Nj∑
i=1

T∑
r=1

ej,i,rf̃
s
j,rλ

s ′
j,i + ...

 f̃ sj,t + ...,

where (η∗j,t)
2 = plim

Nj→∞

1
Nj

∑Nj
i=1E[e2

j,i,t|Ft] and F̃ sj denotes the matrix with rows f̃ s ′j,t . We have

1

Nj
Λs ′j ej,t =

1

Nj

Nj∑
i=1

λsj,iεj,i,t −
1√
T

 1

Nj

Nj∑
i=1

λsj,iw̆
c ′
j,i

 f ct −
1√
Nj

(
Λs′j Λcj
Nj

)
u

(c)
j,t .

We have 1
Nj

∑Nj
i=1 λ

s
j,iw̆

c ′
j,i = Op(N

−1/2
j ), 1

Nj
Λs ′j Λcj = Σ

(sc)
λ,j +O(N

−1/2
j ). Thus:

1

Nj
Λs ′j ej,t =

1

Nj

Nj∑
i=1

λsj,iεj,i,t −
1√
Nj

(
Λs′j Λcj
Nj

)
u

(c)
j,t + op(N̄

−1/2),

uniformly w.r.t. t = 1, ..., T , and:

1√
Nj

v∗ sj,t =
1√
Nj

vsj,t + op(N̄
−1/2),

where vsj,t =
(

Λs′j Λsj
Nj

)−1
1√
Nj

∑Nj
i=1 λ

s
j,iεj,i,t −

(
Λs′j Λsj
Nj

)−1 (Λs′j Λcj
Nj

)
u

(c)
j,t . Moreover:

b∗ sj,t = [Σ
(ss)
λ,j ]−1η2

j,tf̆
s
j,t +Op(T

−1/2 +N−1/2).

Therefore, we have:

f̂sj,t = Ĥ−1
s,j

[
f sj,t − Σ̃jcΣ̃

−1
cc f

c
t +

1√
Nj

vsj,t

]
+ op(N

−1/2
j ), j = 1, 2, (B.224)

uniformly w.r.t. t = 1, ..., T .

Let us now show that vsj,t = u
(s)
j,t , the lower ksj -dimensional component of uj,t. For this purpose, let us

denote by Σ̃ab and (Σ̃−1)ab, with a, b = c, s the blocks of matrix Σ̃ ≡ Σ̃λ,j and of its inverse Σ̃−1. Then, we

have:

vsj,t = Σ̃−1
ss

1√
Nj

Nj∑
i=1

λsj,iεj,i,t − Σ̃−1
ss Σ̃scu

(c)
j,t ,
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and:

u
(c)
j,t = (Σ̃−1)cc

1√
Nj

Nj∑
i=1

λcj,iεj,i,t + (Σ̃−1)cs
1√
Nj

Nj∑
i=1

λsj,iεj,i,t.

Therefore, we get:

vsj,t = Σ̃−1
ss [Ikj − Σ̃sc(Σ̃

−1)cs]
1√
Nj

Nj∑
i=1

λsj,iεj,i,t − Σ̃−1
ss Σ̃sc(Σ̃

−1)cc
1√
Nj

Nj∑
i=1

λcj,iεj,i,t.

From the property of the matrix inverse, Ikj − Σ̃sc(Σ̃
−1)cs = Σ̃ss(Σ̃

−1)ss and Σ̃sc(Σ̃
−1)cc = −Σ̃ss(Σ̃

−1)sc.

Therefore, we get:

vsj,t = (Σ̃−1)ss
1√
Nj

Nj∑
i=1

λsj,iεj,i,t + (Σ̃−1)sc
1√
Nj

Nj∑
i=1

λcj,iεj,i,t =

Σ̃−1 1√
Nj

Nj∑
i=1

λj,iεj,i,t

(s)

= u
(s)
j,t .

Plugging the latter equation in (B.224) yields (B.197).

e) Asymptotic expansion of λ̂sj,i

Let us now derive the asymptotic expansion of factor loadings estimator λ̂sj,i up to order op
(
N̄−1/2

)
. The

analysis parallels the one in Subsection B.6.1 c). We have

λ̂sj,i =
(

˘̂
F s ′

˘̂
F s
)−1 ˘̂

F s ′j ξ̆j,i =

˘̂
F s ′j ξ̆j,i

T
,

where ξ̆j,i is the i-th column of matrix Ξ̆j and ˘̂
F sj = [

˘̂
f sj,1, ...,

˘̂
f sj,T ]′. From equation (B.224) we have

˘̂
F sj =

(
˘̃F sj + 1√

Nj
Ŭ sj

)(
Ĥ−1
s,j

)′
+ op

(
N̄−1/2

)
, where Ŭ sj = [ŭ

(s)
j,1 , ..., ŭ

(s)
j,T ]′, which implies:

˘̂
F sj Ĥ′j,s −

˘̃F sj =
1√
Nj

Ŭ sj + op

(
N̄−1/2

)
. (B.225)

Then:

λ̂sj,i =
1

T
˘̂
F s ′j ξ̆j,i =

1

T
˘̂
F s ′j

(
˘̃F sj λ

s
j,i + ĕj,i

)
+ op(N̄

−1/2)

=
1

T
˘̂
F s ′j

([
˘̂
F sj Ĥ′j,s −

(
˘̂
F sj Ĥ′j,s −

˘̃F sj

)]
λsj,i + ĕj,i

)
+ op(N̄

−1/2)

= Ĥ′j,sλsj,i −
1

T
˘̂
F s ′j

(
˘̂
F sj Ĥ′j,s −

˘̃F sj

)
λsj,i +

1

T
˘̂
F s ′j ĕj,i + op(N̄

−1/2), j = 1, 2,
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uniformly in i = 1, ..., Nj . By writing ˘̂
F sj =

[
˘̃F sj + (

˘̂
F sj Ĥ′j,s −

˘̃F sj )
]

(Ĥ′j,s)−1, and rearranging terms, we get:

λ̂sj,i = Ĥ′s,j
{
λsj,i + (Ĥ′j,s)−1(Ĥj,s)−1 1

T
˘̃F s ′j ĕj,i

+(Ĥ′j,s)−1(Ĥj,s)−1 1

T
(

˘̂
F sj Ĥ′j,s −

˘̃F sj )′ĕj,i

−(Ĥ′j,s)−1(Ĥj,s)−1 1

T

[
˘̃F sj + (

˘̂
F sj Ĥ′j,s −

˘̃F sj )
]′

(
˘̂
F sj Ĥ′j,s −

˘̃F sj )λsj,i

}
+ op(N̄

−1/2).

(B.226)

By using equations ĕj,i = ε̆j,i− 1√
T
F̆ cw̆cj,i− 1√

Nj
Ŭ cj λ

c
j,i and ˘̃F s ′j F̆ c = 0, equation (B.225), and paralleling the

computations in Subsection B.6.1 c), we get:

1

T
˘̃F s ′j ĕj,i =

1

T
˘̃F s ′j ε̆j,i + op(N̄

−1/2),

1

T
(

˘̂
F sj Ĥ′j,s −

˘̃F sj )′ĕj,i = op(N̄
−1/2),

1

T

[
˘̃F sj + (

˘̂
F sj Ĥ′j,s −

˘̃F sj )
]′

(
˘̂
F sj Ĥ′j,s −

˘̃F sj ) = op(N̄
−1/2),

(Ĥ′j,s)−1(Ĥj,s)−1 = ( ˘̃F s ′j
˘̃F sj /T )−1 + op(N̄

−1/2),

uniformly in i = 1, ..., Nj . Thus, from (B.226) we get:

λ̂sj,i = Ĥ′s,j
{
λsj,i + ( ˘̃F s ′j

˘̃F sj /T )−1 1

T
˘̃F s ′j ε̆j,i

}
+ op(N̄

−1/2),

uniformly in i = 1, ..., Nj . This equation can be written as:

λ̂sj,i = Ĥ′s,j
[
λsj,i +

1√
T
w̆sj,i

]
+ op(N̄

−1/2),

where:

w̆sj,i = ( ˘̃F s ′j
˘̃F sj /T )−1 1√

T

T∑
t=1

˘̃
fsj,tε̆j,i,t.

f) Asymptotic expansions up to order op(T−1/2)

Let us start by establishing the uniform asymptotic expansion of estimator f̂ ct at order op(T−1/2). From (B.208),

using (log T )b̄δN,T = o(T−1/2), for any b̄ > 0, and the uniform bounds (B.187)-(B.203), we get:

f̂ ct = Ĥ−1
c

(
f ct +

1√
N1

u
(c)
1,t

)
+ op(T

−1/2),
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uniformly in t = 1, ..., T , which yields the uniform bound for f̂ ct . The uniform bounds for the other estimators

follow by paralleling the arguments in Subsection B.6.1 c)-e). �

B.7 Asymptotic distribution of factors and loadings in generic group factor
model

The next proposition provides the asymptotic distribution of the common and group-specific factors estimators

introduced in Definitions 1 and 2 in the main body of the paper. To simplify the proof, we assume that N1 and

N2, with N2 ≤ N1, grow at the same rate, i.e., N2/N1 → µ with µ > 0. This condition could be relaxed at the

expense of a more involved restriction on N1, N2, T .

PROPOSITION B.7. Under Assumption B.1 with µ > 0, and Assumptions B.2 - B.8 we have:

√
N1

[
Ĥcf̂ ct − f ct

Ĥs,1f̂s1,t −
(
fs1,t − (F s ′1 F c)(F c ′F c)−1f ct

) ] d−→ N (0,Σu,11,t) , (Ft-stably), (B.227)

and:

√
N2

[
Ĥ∗c f̂ c ∗t − f ct

Ĥs,2f̂s2,t −
(
fs2,t − (F s ′2 F c)(F c ′F c)−1f ct

) ] d−→ N (0,Σu,22,t) , (Ft-stably), (B.228)

for any t, where matrices Ĥc, Ĥ∗c and Ĥs,j are such that ĤcĤ′c = ( 1
T F

c ′F c)−1 + op(N
−1/2
1 ), Ĥ∗cĤ∗ ′c =

( 1
T F

c ′F c)−1 + op(N
−1/2
2 ) and Ĥs,jĤ′s,j = ( 1

T F̃
s ′
j F̃ sj )−1 + op(N

−1/2
j ), we define F c = [f c1 , ..., f

c
T ]′,

F sj = [fsj,1, ..., f
s
j,T ]′ and F̃ sj = F sj − F c(F c′F c)−1(F c′F sj ) for j = 1, 2. and β̃cj,t = βcj,t − E[βcj,tf

c ′
t ]f ct

is the residual of the orthogonal projection of βcj,t onto f ct .

From Proposition B.7 a linear transformation of vector f̂ ct (resp. f̂ c∗t ) estimates the common factor f ct at rate

1/
√
N1 (resp. 1/

√
N2) with no bias of order 1/T . Compared to the analogous asymptotic expansion derived

in Proposition 5 of AGGR, the bias terms of order 1/T are negligible under our Assumption B.1. The variance

of the asymptotic Gaussian distribution is the upper-left (c, c) block of matrix Σu,11,t (resp. Σu,22,t), i.e. the

asymptotic variance of the estimation error u1,t (resp. u2,t) for the PC vector in group 1 (resp. group 2). The

estimation error for recovering the common factors from the group PC’s is of order op(N
−1/2
1 ), and therefore

asymptotically negligible. The estimator f̂sj,t approximates the residual of the sample projection of the group-j

specific factor on the common factor, up to a linear transformation, at rate 1/
√
Nj and with an asymptotic bias

of order 1/T .

Let us now derive the asymptotic distribution of the factor loadings estimators in equations (A.13) and

(A.14). For this purpose, we introduce the next assumption.
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Assumption B.14. We have for any j = 1, 2 and i ≥ 1:

1√
T

T∑
t=1

 f ct εj,i,t

fsj,tεj,i,t

fsj,t ⊗ f ct

 d→ N

0,

 Φcc
j,i Φcs

j,i 0

Φsc
j,i Φss

j,i 0

0 0 Ψj


 ,

as T →∞, where:

Φcc
j,i =

∞∑
h=−∞

E[f ct f
c′
t−hεj,i,tεj,i,t−h], Φcs

j,i =
∞∑

h=−∞
E[f ct f

s′
j,t−hεj,i,tεj,i,t−h] = (Φsc

j,i)
′,

Φss
j,i =

∞∑
h=−∞

E[fsj,tf
s′
j,t−hεj,i,tεj,i,t−h], Ψj =

∞∑
h=−∞

E
[
fsj,tf

s′
j,t−h ⊗ f ct f c′t−h

]
.

Assumption B.14 states that time series averages of the error terms scaled by the factors, as well as time

series averages of the cross-products of common and specific factors, are asymptotically Gaussian. It is used to

show the asymptotic normality of the loadings estimators in Proposition B.8, and is implied by e.g. a mixing

condition on the individual error series jointly with the factor process. The part of Assumption B.14 concerning

scaled error terms corresponds to Assumption F.4 in Bai (2003).

PROPOSITION B.8. Under Assumption B.1 with µ > 0, Assumptions B.2 - B.8 and B.14 we have:

√
T

 (
Ĥ′c
)−1

λ̂cj,i − λcj,i(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

 d−→ N

[ 0

0

]
,

 (Φcc
j,i + (λs′j,i ⊗ Ikc)Ψj(λ

s
j,i ⊗ Ikc)

)
Ψcs
j,i

Ψsc
j,i Ψss

j,i

 ,(B.229)

for any j, i, where Ĥc and Ĥs,j , j = 1, 2, are the same non-singular matrices of Proposition B.7.

The factor loadings are estimated at rate
√
T . Matrix Φcc

j,i is the asymptotic variance for cross-sectional OLS

regression of data in group j on the true values of the common factor. The additional component in the

asymptotic variance of estimator λ̂cj,i is due to the fact that the true values of common and group-specific factors

are not orthogonal in-sample. This fact is not taken into account by the estimator of factor loadings. Finally,

there are no bias terms at order N−1
1 , N−1

2 in the large sample distributions of factor loadings, since in our

asymptotics
√
T/N = o(1) and hence such bias terms are negligible.

B.7.1 Proof of Proposition B.7

We use the asymptotic expansions in Proposition B.6 i). Specifically, equations (B.196) and (B.197) for j = 1

imply:

√
N1

[
Ĥcf̂ ct − f ct

Ĥs,1f̂s1,t − (f s1,t − (F s′1 F
c)(F c′F c)−1f ct )

]
= u1,t + op(1).
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From Assumptions B.3 and B.5 a), we have u1,t
d−→ N (0,Σu,11,t), Ft-stably. Then, the asymptotic distribution

in (B.227) follows. The asymptotic distribution in (B.228) can be establish along similar lines.

B.7.2 Proof of Proposition B.8

We prove Proposition B.8 by the asymptotic expansions in Proposition B.6 i), by keeping only terms up to

op(T
−1/2). Specifically, equation (B.198) implies:

√
T

[(
Ĥ′c
)−1

λ̂cj,i − λcj,i
]

= wcj,i + (F c′F sj /
√
T )λsj,i + op(1)

=
1√
T

T∑
t=1

f ct (εj,i,t + f s ′j,tλ
s
j,i) + op(1)

=
1√
T

T∑
t=1

[
f ct εj,i,t + (λs′j,i ⊗ Ikc)(fsj,t ⊗ f ct )

]
+ op(1).

Moreover, equation (B.199) imply:

√
T

[(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

]
=

1√
T

T∑
t=1

fsj,tεj,i,t + op(1).

Thus, we get:

√
T

 (
Ĥ′c
)−1

λ̂cj,i − λcj,i(
Ĥ′s,j

)−1
λ̂sj,i − λsj,i

 =
1√
T

T∑
t=1

[
f ct εj,i,t + (λs′j,i ⊗ Ikc)(fsj,t ⊗ f ct )

fsj,tεj,i,t

]
+ op(1).

Then, Assumption B.14 yields (B.229). �
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