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Abstract
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1 Introduction

The dominant research theme in empirical asset pricing is the low dimensional factor representation
of a large set of asset returns. Ideally any high dimensional set of asset returns should contain
the information necessary to recover the factors. In practice, the literature has taken two different
approaches. Jensen, Black, and Scholes (1972) and Fama and MacBeth (1973), among many others,
have advocated to collect stocks into portfolios and subsequently run cross-sectional regressions using
portfolios as test assets. An alternative approach is to estimate cross-sectional risk premia using the

entire universe of stocks as advocated by Litzenberger and Ramaswamy (1979), among others.

One might think that the choice between individual stocks versus sorted portfolios should only be
a matter of practical implementation and ultimately should uncover the same low dimensional factor
space. Unfortunately this is not the case. Extracting factors from individual stocks using static models
is believed to overstate the “true” set because time-varying loadings may add spurious factors (see
e.g. Breitung and Eickmeier (2011), among others). The main advantage of using portfolios is that
their risk exposures are more stable across time. This being said, it is also known that portfolios
might diversify away and therefore mask relevant risk- or return-related features of individual assets.
Moreover, as Lewellen, Nagel, and Shanken (2010) point out, sorting on characteristics also results
in a strong factor structure across test portfolios and indeed even factors that are weakly correlated
with the sorting characteristics would explain the differences in average returns across test portfolios

regardless of the economic theories underlying the factors.

It seems that we want to find the low dimensional factor representation able to price the cross-
section of sorted portfolios and that of individual stocks. To put it differently, when we extract factors
from stocks we want them to also correctly price sorted portfolios and vice versa. Using terminology
from the factor model literature, we want to find the factor space that is common between panels of
individual stocks and panels of sorted portfolio returns as it provides a path toward extracting the true
set of factors neither affected by sorting characteristics nor by varying risk exposures and recalcitrant

features of individual stocks. In the remainder of the paper we will call these the common factors.

The task of finding common factors is not trivial and requires theoretical insights so far not explored

in the empirical asset pricing literature. The approach we use in this paper was first alluded to in the



last section of the Roll and Ross (1980) paper on the empirical testing of the APT and remained largely
unresolved since then. Numerous attempts have been made to address the problem, including recently
by Pukthuanthong, Roll, and Subrahmanyam (2019). To achieve the task set forth we need to expand
the theory underpinning a procedure recently proposed by Andreou, Gagliardini, Ghysels, and Rubin
(2019) (henceforth AGGR). They study a situation where (latent) factors h, , and hs ,, are estimated
from two separate panels of data, and one is interested in testing how many factors are common
between them. AGGR show that the common factor space is identified by examining how many linear
combinations of respectively h; ; and hy . are perfectly correlated. Equivalently, they introduce a test
for the number of canonical correlations between h; ; and 59, equal to one and derive its asymptotic
distribution.! Their analysis does not directly translate into a procedure suitable for asset pricing
applications. One of the contributions of our paper is to provide the theory for such applications.
It should parenthetically be noted that when we refer to latent factors, we do not necessarily mean
principal component analysis (PCA). Indeed, our analysis also covers recently proposed procedures

such as for example those advocated by Lettau and Pelger (2020a and 2020b).

The novel testing procedure identifies 3 factors at the intersection of individual stock returns and
sorted portfolios. Surprisingly, we find that neither the Fama and French 3 (FF3) nor 5 (FF5) factor
models, both with or without a momentum factor (hence up to 6 factors), span the factor space common
between individual stocks and sorted portfolios. In fact out of the 6 factors considered, only the excess
market returns factor seems to be the most related to the common factors, while all the other 5 factors
are only partially spanned by the common factors, and a large part of their variability are specific to

portfolio sorting. For convenience we will call the 3 common factors 3CF.

The search for factors has been on steroids with literally hundreds of potential additional candidate
factors beyond FF3 suggested in the literature. The endeavor has been dubbed the factor zoo by
Cochrane (2011) and terms such as p-hacking (meaning data-snooping or data-mining) have been
used to describe the hunt for factors.> The literature started of with the pretty tame single factor

model, i.e. the CAPM. It is perhaps more appropriate to say that we moved from a petting zoo to

ITo sort out genuine risk factors Pukthuanthong et al. (2019) also rely on canonical correlations, but do not present a
formal statistical procedure.

2See Harvey, Liu, and Zhu (2016), McLean and Pontiff (2016), Chorida, Goyal, and Saretto (2020) Hou, Xue, and
Zhang (2020), Feng, Giglio, and Xiu (2020), Chen (2019) among others.



a jungle. For example, Harvey and Liu (2019) have documented over 400 factors published in top
journals. In our empirical application we use a data set of over a thousand portfolios associated with

205 characteristics. It takes up to 10 PCs from this factor zoo to span the space of 3CF.

We perform a comprehensive in- and out-of-sample (OOS) analysis of the pricing performance
of 3CF compared to a wide range of standard models as well as the factor zoo. Using multiple in-
sample performance evaluation measures we find that the three common factors perform better than a
large collection of observable and latent factor models in pricing individual stock and sorted portfolios
assets. Turning to the out-of-sample analysis the results yield several interesting empirical findings.
The three common factors yield again the highest total, pricing and predictive OOS R?s with respect to
the same benchmark models. For the individual stocks as well as sorted portfolios the OOS predictive

R?s gains using 3CF can be 80% and 50% vis-a-vis for example the Fama-French factors.

We regress factors from the zoo onto 3CF and document which ones yield the best fit. We find two
of the three Fama and French factors (CAPM Beta and Size) along with portfolios based on market
beta put forward by Frazzini and Pedersen (2014), and different measures of idiosyncratic risk and
liquidity or uncertainty, such as Bid-ask Spread, Cash-flow to price variance, Volume to market equity,

EPS Forecast Dispersion, Days with zero trades, Volume Variance, and Price delay R-square.

The rest of the paper is organized as follows. Section 2 introduces the spanning test and details
the data on the various cross-sections of asset returns used to estimate common latent factor spaces.
Section 3 covers the empirical implementation of the testing procedure, followed by Section 4 where
we report the results of an extensive empirical study comparing the asset pricing performance of the
common factors with widely used factors in the asset pricing literature. Section 5 revisits the topic of

the factor zoo. Conclusions appear in Section 6.

2 Factor Space Spanning Test

We consider a situation where we have a panel of individual stocks as well as a panel of portfolios
returns combining those individual stocks. In a first subsection we present a formal framework for the
characterization of the factor model representation for both panels. A second subsection provides the

details regarding the testing procedure to identify and estimate the factors common between the two



panels. A final subsection described data sources.

2.1 Sorting and time-varying loadings

We assume that individual stock excess returns have the following factor structure:
Tie = Ui 1 ff +eir 1=1,....Ny 7=1,...,t, (2.1)

with b; - is the vector of conditional betas and f¢ a set of k¢ factors, where the superscript ¢ will be
clarified later. The conditional betas are driven by common (Z,_;) as well as stock-specific (Z-J_l)
variables (see e.g. Gagliardini, Ossola, and Scaillet (2016), namely: b; .1 = W+ BiZ, 1+ C’Z-Zm_l,
and therefore:

Tig =00 + BiZr—1 + CiZira] fE+ €ir - (2.2)

Moreover, we can write the time-varying loadings in equation (2.2) as follows:
- /
BiZ. y+CiZi; | ff=Mfi+ Mf’fiT + 07 (2.3)

with f7 L fi_ and both factor vectors orthogonal to the errors d; - (an illustration of the above equation
appears in Appendix Section A.1).? In the above equation the (sort of scaled) factors Ji . emerge from
the product of factors f¢ times the common component driving the loadings. The remainder term 9; ,
is assumed idiosyncratic, or (at most) weakly cross-sectionally correlated among the individual stocks.
Then:

rig = 0] + M f7 + IMP) fin + @i, (2:4)

which means that the constant loadings representation of individual stocks features the genuine factors
f5 augmented by f7 , which are spurious factors present because of the time-varying betas (with
super/subscripts s and 1 referring to factors specific to the first panel).

Let us now examine the creation of spurious factors generated by characteristic-sorted portfolios

which is the more popular approach in empirical asset pricing in part because the easy availability of

31t should parenthetically be noted that stock-specific variables Z‘J,l typically represent characteristics but also could
represent interactions of characteristics. Moreover, in addition to single sorting, our analysis also covers portfolios built on
double, triple etc. characteristic sorting. See in particular Appendix Section A.2 for further details.
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test asset portfolios from websites such as the one maintained by Kenneth French. The usual argument
in favor of test asset portfolios is that they dramatically reduces the noise stemming from idiosyncratic
risk, see e.g. the discussion in the recent work of Harvey and Liu (2021). We start with sorting along
a single characteristic and consider more complex sorting schemes later. Namely, suppose we create
j=1,..., Ny portfolios with weight for stock 7 in portfolio j : ¢;; ,—1/N1 = g;(Zi—1)/N1, with N;
the number of individual stocks (as specified in equation (2.1)) and 2; ,_; € Zm—l is a single asset 7
characteristic. Then the portfolio excess returns are:

!/

ff—i—ujJ jzl,...,NQ T:1,...,t, (25)

Ny

1
p
T = —E 0ir1bir—1
2,7 754 T 2,7
[Nl —

where u;; = N% vazll o i r—16€; r. Note that without loss of generality the portfolios involve the entire
cross-section of stocks, with the obvious implication that only a subset of weights might be non-zero.

Moreover, suppose that the betas for portfolio j are such that:

1 1
f— . ~, 0 . . ~~
Fl Zz:; O-/j,i,r—lbi,T—l - ﬁl Zz:; gj(zz,r—l) |:bz + BZZ’T—l + CzZz,T—l

12

WH+W;Z:_, as Ny—oo, j=1,...,No 7=1,...,t, (2.6)
for some 13?, Z7_, and W;. Therefore, we have portfolio returns:
~ !/
o= [bg’ + WJZ;E,J oty  j=1....Ny T=1,... ¢ 2.7)

Let us define the linear projection (with super/subscripts s and 2 referring to factors specific to the

second panel):
(Wiz: ) fe=KOfe+ KV fs +mje j=1,...,Ny T=1,...1

with f7 L f5 L n;, forall j and 7;, weakly cross-sectionally correlated. This yields the following

constant loading factor representation of sorted portfolio returns:

~ i
o= [0+ K] pe o KT g+ 28



which means that the constant loadings representation of sorted portfolios features the genuine factors
J+ augmented by spurious factors f5  to account for characteristics-based portfolio sorts and time-
varying betas.

Under some mild regularity conditions appearing in the Appendix Section A.3 pertaining to
masking of factors in portfolio sorts and convergence of portfolio betas, we have two panels - one
consisting of individual stock excess returns and the other of sorted portfolios with returns described
by equations (2.4) and (2.8), respectively. It is worth describing here some of the regularity conditions
which are detailed in Appendix Section A.3. Assumption A.l allows for some individual stocks and
some portfolios to mask some factors, but not a significant collection of stocks or portfolios is allowed
to block out any specific factor. In addition, Assumption A.2 guarantees that the common factors
between the two panels to be f¢ only, instead of f¢ and/or Z/ _, f¢. In the Appendix we discuss various

scenarios, showing that overall the regularity conditions are mild. They imply that:

E(fj=p°, E [ffr} =ui,  E[fs.]=u,

E [(f — o) (f3, } = by construction, 2.9)
E[(f 1,7 )(fQT_lu )/i|

E[(f¢—p)(fs, —m)] = by construction.

The equations in (2.9) imply that factors appearing in panels of individual stock or portfolio excess
returns due to time-varying betas and factors appearing in portfolios due to characteristic-based sorting
and time-varying betas may be mutually dependent via the covariance matrix ¢. What is important,
however, is the orthogonality of f; with respect to both f7'_and f3 _, by the linear projection arguments.

Summarizing, we have shown that if individual stocks were used, a researcher would conclude
that f7 and f7  are risk factors. Conversely, a researcher starting from sorted portfolio returns would
conclude that the risk factors are instead f7 and f5 . Whilst to the best of our knowledge, other
methods cannot address this, our testing procedure allows us to identify f¢, namely the factors which

are the drivers of both individual stock and sorted portfolios excess returns.



2.2 Estimation and testing

Since the testing approach applies to different settings beyond panels of individual stock and sorted
portfolio returns we use the generic notation y; ; = [y; 1-, ..., ¥;n,-| collects N; observations in panel
(group) j =1, 2. It will be convenient to use the terms of group factor models, and interchangeably
refer to groups and panels 1 and 2. To formulate the various hypotheses of interest we borrow the

notation from AGGR, for the (two) group factor model setting:

A A O Iz
n, &1,
=t fio |+ T, =1t (2.10)
y2,7' 5 0 A% s 52,7’
f2,7’
where AS = [A7), .., Afy ] and A] = [A],, ..., A] ] are the matrices of factor loadings and
Ejr = [Ej1rs - Ej, er]/ the error terms, with 7 =1, ..., ¢. The dimensions of the common factor f¢and

the group-specific factors f7_, f5 . are respectively £, k{ and k3. In the remainder of this subsection
we go through the four steps of the procedure, the technical details and formal definitions appear in

Appendix A.S.

Step 1: We start with extracting factors from each panel separately. For the application in the paper,
this means extracting factors from individual stock returns and doing the same for sorted portfolios.
As is typically done (see e.g. Lehmann and Modest (1988) and recently Kim and Korajczyk (2021),
among many others), we will study non-overlapping sample blocks of generic length w of the panels
covering data from ¢t — w + 1 to t.* We focus here on one sample and resort to either PCA or a version
of principal component analysis with a penalty term accounting for the cross-sectional pricing error
in expected returns recently suggested by Lettau and Pelger (2020a and 2020b), and summarized in
Appendix A.4. In particular, their estimator searches for factors that can explain both the expected

return and covariance structure.

Step 2: Let k; = k° + kj, for j = 1,2, be the dimensions of the factor spaces for the two panels,

“We use a block sampling scheme to avoid look ahead biases in full sample factor extraction as well as survivorship
biases for individual firms (see section OA.1 in the Online Appendix for further discussion). Our theory is based on
asymptotic expansions, but as Andreou et al. (2019) show via simulation, it is also suitable to describe finite sample
behavior in settings corresponding to the empirical application of the paper.



and define £ = min(ky, k2). We collect the factors of each group in the k;-dimensional vectors h; -
then hy, = Hy [f¢, ffT]/ and hy; = Hs [ ¢, f5] ', meaning that the factors we extract from each
group are some linear transformation #; of the underlying factors, with ; being a k; x k; full rank
matrix, for j = 1, 2. This means that some linear combinations of &, , - namely those corresponding to
f£ - are perfectly correlated with linear combinations of %, ; and vice versa. Let us recall at this point
the purpose of canonical correlation analysis. In general canonical correlation applies to a setting
where we have two random vectors, in our application i, ; and hs -, and finds linear combinations
of respectively h; , and hy, which have maximum correlation with each other. Therefore we are

interested in finding how many of these linear combinations, also known as canonical variables, are

perfectly correlated, i.e. have canonical correlation equal to one.

Step 3: Proposition A.1 in the Appendix tells us that the dimension k¢ is the number of unitary
canonical correlations between h;, and hy .. The largest possible number of common factors is
k = min(ky, k2). We develop a test for k¢ : Hy(r) : k° = r against Hy(r) : k¢ < r, for any given
r=k, k—1,..., 1. More precisely, we sort the canonical correlations from high to low and let p, be
the /-th sorted sample canonical correlation between the factors fLLT and BQJ estimated on a sample of

length w, and let:

)= pe (2.11)
/=1

be the sum of the r largest sample canonical correlations. We reject the null for » = £ common factors
Hy, = H(k°) when £(k¢) — k° is negative and large - namely the sum of the largest k¢ estimated

canonical correlations is substantially less than £¢.° The test statistic is:

~ o\ V2L .
£(k°) == Nvw (%tr{z:%] ) [g(kC) K+ %tr {EU}] , (2.12)

with N = min{N;, N»} and the term Sy is defined in the technical appendix. In the generic case,
under the null hypothesis Hy(r) : k° = 7 we have: &(r) 4N (0,1), and under the alternative

hypothesis H;(r) : k¢ < r, £(r) <= —oo as N and T grow large.f

SWhen we reject the null H (k) we look at the null hypothesis: H(k — 1) = {p; = ... = py—1 = 1} , and so forth until
we identify the dimension of the common factor space. Sequential testing issues are addressed in Andreou et al. (2019).

6See Theorem 2 of AGGR, and its extension Theorem A.2 in Appendix Section A.5.2. The asymptotic distribution and
rate of convergence of the test statistic £(k¢) in Theorem A.2 are unchanged when the true numbers of factors & and ko



Step 4: Once the dimension k¢ is identified, we can recover the common factors f¢ via the canonical
directions - i.e. the weights of the linear combinations yielding unitary canonical correlations - applied

to the factors estimated from each of the separate panels.

It is worth highlighting a number of theoretical contributions of the paper. The theory in AGGR
only covers panel data centered at zero. Appendix A.5 extends the estimators and theoretical results of
Andreou et al. (2019) to the case where factors are allowed to have any finite mean, compatible with
model (2.9). This general set-up is more relevant for asset pricing applications. Moreover, the current
paper shows that the testing and estimation procedures for common factors across different panels
based on canonical correlation and directions can be applied (a) to “classical” PCA estimators of the
factors, and more importantly for asset pricing (b) to the more recent variations of PCA as proposed by
Lettau and Pelger (2020a). Appendix A.4 shows the formal relationship between the different PC-type

estimators for factors.

2.3 Data

To conclude a few words about the data. In Online Appendix, henceforth OA, Section OA.1 we
provide a detailed description of the data. Broadly speaking we can summarize the data as follows.
We consider three panels of monthly returns in our analysis, namely (i) individual US stock returns
from CRSP, (ii) the panel of test asset portfolios from the April 2021 release of the database “Open
Source Cross-Sectional Asset Pricing” created by Chen and Zimmermann (2021), CZ21 hereafter, and
(111) the panel of factors from the zoo considered by CZ21. For all three panels from Jan. 1966 to
Dec. 2020 we split the 660 months into B = 11 non-overlapping blocks of 60 months, denoted as
b = 1,...,B. The first block is from Jan. 1966 to Dec. 1970 and the last block is from Jan. 2016
to Dec. 2020. Within each block, we consider only a balanced sample of individual stocks and test
asset portfolios, that is we only include assets with returns available for all the 60 months. We work
with 5-year non-overlapping samples, analogous to the empirical application of Lehmann and Modest
(1988), to address the concern of survivorship bias if we were to use the full sample of individual
stocks. Similar to the arguments in Kim and Korajczyk (2021), one can view the 5-year span as a

compromise between a sample large enough for our test procedure to have desirable small sample

are unknown, and are estimated by some consistent empirical selection method.



properties and the concern of capturing new and disappearing stocks.

3 Testing Test Assets

In order to identify the factor space neither affected by portfolio sorting characteristics nor by varying
risk exposures and other specific features of individual stocks, we implement the four-steps procedure
described in Section 2.2 for each of non-overlapping sample blocks from end of 1970 until end of 2020
with 5-years increments. These are 5-years samples y; , of balanced panels of individual stock returns
and y, , balanced panels of test asset portfolios.” Similar to Pukthuanthong et al. (2019) we decide to
fix a priori the maximum number of pervasive factors in each panel k; and ks to 10.

The pervasive factors in each balanced panel of assets are computed using Lettau and Pelger’s
Risk-premium PCs, or RP-PCs , fixing y,p = —1, and we simply refer to them as PCs. The number
kf of common factors between the first 10 PCs of individual stocks and the first 10 PCs of portfolio
test assets is 3 for all 5-years blocks except for the blocks ending in 2000, 2005, 2015, 2020 where it
is 4. While there is some variation we will proceed with the number of factors being equal to 3 across
the entire sample. Henceforth we will refer to these three factors as the “common” factors and use the
acronym 3CF. A first subsection is devoted to the testing of the common factor space and the second
subsection covers the economic interpretation of the common factors.

Figure 1 displays the sum of the canonical correlations of the three factors common to the CRSP
and CZ21 test assets with the 3 Fama and French factors (FF3): Market, SMB and HML factors, and
the sum of the canonical correlations of the common factors with the 5 Fama and French factors (FF5):
FF3 plus RMW-operating profitability, CMA-investment style. The figure also displays the sum of
canonical correlations between common factors and FF3/FF5 factors augmented with the momentum
factor. The red line across the plot marks the 3-factor benchmark common factor space.

The results in the figure convey a surprisingly simple and clear message. We observe that over the
entire sample the canonical correlations between FF3 and common factors (blue circles, thick dotted
line) are well below 3. This implies that over this sample period FF3 does not span the common

factor space. What happens if we move from FF3 to FF5, i.e. we add RMW-operating profitability

"More precisely, we have 11 panels ending at ¢ = Dec. 1970, Dec. 1975, ..., Dec. 2020 with observations ¥ - and y2 -
form =t —59,t —58,...,t.
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Figure 1: Sum of canonical correlations of three factors common between Chen and Zimmermann
(2021) test asset portfolios and CRSP stocks with Fama and French 3, 5 factors and momentum.

The figure displays the sum of the canonical correlations of the three factors common across CRSP and CZ21 test assets
with the 3 Fama and French factors (FF3): Market, SMB and HML factors (blue circles, thick dotted line), and the sum of
the canonical correlations of the three common factors with the 5 Fama and French factors (FF5) - adding RMW-operating
profitability, CMA-investment style (black stars, thick dashed line). In addition, it also displays FF3/FF5 augmented with
the momentum factor (FF3+Mom - blue circles, thin dotted line, FF5+Mom - black stars, thin dashed line). The red line
across the plot marks the 3-factor benchmark common factor space. All quantities are computed on non-overlapping blocks
of 5 years of monthly data, that is for each year y we report results computed on the block starting in year y — 4 and ending
in year y, for each y = 1970, ..., 2020.

and CMA-investment style? In the same figure, using the same approach, the black thick dashed line
with stars shows that adding two FF factors falls again short of spanning the common factor space. In
fact, in most years the improvements of the two additional factors appears to only be minor. The same
analysis is repeated with as observable factors FF3 and FF5 plus momentum (FF3+Mom - blue circles,
thin dotted line, FF5+Mom - black stars, thin dashed line). While the higher number of observable
factors increases mechanically the value of the sum of non-zero canonical correlations, it remains
the case that adding the momentum factor is not enough to span the common factors. This means
that the popular models fall short of capturing the three common factors.® In addition, we examine
formally whether the differences between the FFS+momentum factors versus the common factors are
statistically significant. Andreou, Gagliardini, Ghysels, and Rubin (2021) derive a formal test between
latent and observed factors similar in spirit to the test of AGGR explained in the previous section.
Applying such a test, we reject the null that the FF5 and momentum factors span the k¢ = 3 common

factors - put differently all the lines in Figure 1 are significantly below 3. Finally, this also begs the

8In Online Appendix Section OA.3 we provide details about the composition of the three common factors in terms of
their rescaled factor loadings.
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question whether members of the zoo might help us out in recovering the common factor space, a topic
addressed in Section 5.

So far we established the existence of common factors between individual stocks and sorted
portfolios, and shown that they are only partially spanned by FF5 and momentum. We now study how
each of the FF5 and momentum observable factors taken one-by-one are related to (a) the common
factors and (b) the factors which are specific respectively to the sorted portfolios or to the CRSP
individual stocks. This analysis allows us to check (a) whether the common factors span at least one of
the observable factors, and (b) to understand the nature of the panel-specific factors: portfolio-specific
and individual stock-specific.

To achieve the task at hand, we regress each of the 6 observable factors on (i) the 3CF factors and
(ii) all the panel-specific factors, and report the R2s of these regression for FF3 in Figure 2.° For each
of the three FF3 factors the figure displays the fraction of variance (R?) explained by the common
factors (blue bars which are the same in both panels), the CZ21 group-specific factors (orange bars,
left panels), the CRSP group-specific factors (orange bars, right panels), and unexplained by common
and group-specific factors (yellow bars).

Not surprisingly, on average (across the different rolling windows) 85% of the variability of the
market factor is explained by the common factors, and specific factors of portfolio test assets tend to
explain almost all the remaining part of its variability, with their R? ranging between 2% and 20%,
depending on the time period. In the right panel of Figure 2 we observe that the factors specific to
individual stocks are not able to capture the same amount of the variability unexplained by the common
factors, as their R?s are below 10%. The fact that CRSP stock-specific factors explain much less of the
variability of observable factors compared to the CZ21 group-specific factors is an empirical regularity
that we observe across all the FF5 and momentum factors. For instance, CZ21 group-specific factors
explain between 10% and 60% of SMB while, CRSP stock-specific factors explain only 1% to 40%.
Moreover, on average 50% of the variability of SMB is explained by the 3CF, and for the remaining
50% we note that between 4 and 20 % (resp. 20 to 45%) is not explained by portfolio sort specific
factors (resp. individual stock specific factors). Analogous conclusions can be drawn for HML, as

well as the other three factors reported in the Online Appendix.

Figure OA.3 in the Online Appendix covers the other three considered so far - RMW, CMA and momentum.
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Figure 2: Variability of FF3 factors explained by common and specific factors in Chen and
Zimmermann (2021) test assets and CRSP individual stocks.
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For each of the FF factors the figure displays the fraction of variance (R?) explained by 3CF (blue bars which are the same
in both panels), CZ21’s group-specific factors (orange bars, left panels), CRSP group-specific factors (orange bars, right
panels), and unexplained by common and group-specific factors (yellow bars). For each year y we report results based on
the block starting in year y-4 and ending in year y, for each y = 1970, ..., 2020.

The finding implies that out of the 6 factors considered, only the market seems to be the one which
is the most related to the common factors, while all the other FF and momentum factors identified in
the literature based on sorting stocks on characteristics are only partially spanned by common factors,
and a large part of their variability is due to a risk dimension which is specific to portfolio sorting.

We can examine the same question from a different angle, similar to what appears in Figure 1,
by replacing the common factors by the group-specific factors. Recall that we started with 10 PCs in
each panel and found three common factors. Therefore, we have 7 remaining group-specific factors
in each panel. Figure 3 displays the sum of the canonical correlations of the 7 group-specific factors
(Panel (a) the CZ21- and Panel (b) CRSP-specific) with FF3 (blue circles, thick dotted line), FF5
(black stars, thick dashed line), FF3 factors and momentum (blue circles, thin dotted line), and FF5

factors and momentum (black stars, thin dashed line). Recall that the group-specific factors reflect (1)
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Figure 3: Sum of canonical correlations of three group-specific factors in Chen and Zimmermann
(2021) test assets and CRSP stocks with Fama and French 3, 5 factors and momentum.
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(a) CZ21 test assets

I I L I
70 75 80 85 20 s 00 0s 10 15 20

(b) CRSP individual stocks

Panel (a) displays the sum of the canonical correlations of the seven specific factors in CZ21 test asset portfolios with: (i)
FF3 (blue circles, thick dotted line): (ii) FF5 (black stars, thick dashed line); (iii) the FF3 factors and momentum (blue
circles, thin dotted line); (iv) the FF5 factors and momentum (black stars, thin dashed line). Panel (b) displays the sum
of the canonical correlations of the seven specific factors in CRSP individual stocks with the same four sets of observable
factors. For each year y we report results computed on the rolling window starting in year y — 4 and ending in year y, for
each y = 1970, ..., 2020.

spurious factors due to time variation in betas and (2) spurious factors due to characteristic-sorting.
Panel (a) shows that FF factors with or without momentum relate to the CZ21-specific factors. This
finding is perhaps not surprising, since the FF factors are constructed by sorting. The sum of canonical
correlations is equal to one for FF3, two for FF3 plus momentum and FF5 and finally the sum equals
three for FF5 plus momentum. If we combine the findings in Figures 1 and 3 it appears that one linear
combination of FF3 (putting most of the weight on the market) is perfectly correlate with one common
factor and another linear combination of FF3 perfectly correlates with a sorting-specific factor (Panels
(c) through (f) in Figure 3 suggest this is a combination of SMB and HML). Similar arguments can be

made for the others FF and momentum configurations.
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The finding in Panel (b) may appear a bit as more surprising, showing that there is also some
correlation — although not as strong as in Panel (a) — with factors specific to individual stocks pertaining
to time-varying betas. It is worth recalling, however, that the beta dynamics are often instrumented via
characteristics also used for sorting (see the many papers on the topic starting with Ferson and Harvey
(1991) up to the recent applications of Instrumented Principal Component Analysis of Kelly, Pruitt,
and Su (2019)), and the fact that in our model group-specific factors are also allowed to be mutually,

although not perfectly, correlated (through the covariance matrix ® in equation (2.9)).

4 Asset Pricing Performance of Common Factors

How do the common factors perform as predictors? How does their performance compare with the
widely used factors in the asset pricing literature? These are questions we address in this section. In
a first subsection we characterize the empirical models used in the forecasting evaluation, followed by

subsections covering in-sample and out-of-sample empirical results.

4.1 Empirical models

We model the excess returns of CRSP individual stocks and test asset sorted portfolios as linear

functions of different sets of K factors. In particular, we consider the following sets of factors:

(i) FF + mom: Under this header we have a set of models starting with the market factor only,

defined as the value-weighted index of all CRSP stocks minus the risk-free (K = 1); FF3 and
FF5 only (K = 3,5); FF3 + Momentum, FF5 + Momentum, (K = 4, 6);

(i) 3CF: K = k¢ = 3 common factors;

(iii) 3CF + CRSP-spec.: k¢ = 3 common factors and £{ = 1,2, 3 group-specific factors from the
panel of CRSP stocks (K = 4,5, 6);

(iv) 3CF + CZ21-spec.: k¢ = 3 common factors and k5 = 1,2, 3 group-specific factors from the
panel of CZ21 test assets portfolios (K = 4,5, 6);

(v) PCA on CRSP: factors estimated as the first K = 1, 3,4, 5,6 PCs on CRSP individual stocks;

(vi) PCA on CZ21: factors estimated as the first K = 1, 3,4, 5,6 PCs on CZ21 test assets portfolios.!'”

10Note that are our CZ21 test-asset portfolios are a special type (i.e. long-only) of “managed portfolios” using the
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All the models, factors and betas/loadings are estimated in each 5-years block b using the data available
in that block only. Therefore, loadings/betas are constant for all the dates 7 in each block b, but are
allowed to change in the B different blocks. Let y;; - be the excess return in month 7 belonging to
block b of the ¢-th asset in group 7, with 5 = 1 corresponding to individual stocks, and 7 = 2 to CZ21

test asset portfolios. Each model m for y;; - can be expressed as

Yjir = Biip [ir +€5ir s with 7€0, J=12 (4.13)
where [T = [fme, fams, s, =1 ;"Z‘;)’ , ;”Z‘Z]’ while f™¢ and )\TZ‘Z (resp. f;° and A;”J’j)') are

the common (resp. group-specific) factors and betas/loadings. For all models in (i), the factors are
observable, while for all the remaining models (ii) - (vi) the factors are latent and need to be estimated
either using the procedure for group-factor models described in Section 2.2 and detailed in Appendix
A.5 (models (ii) - (iv)), or by performing PCA performed in only one panel of excess returns (models
(v) - (vi)). In models (i), (ii), (v) and (vi) we have )\TZZ = 0 and K = k¢, as all the factors are assumed

to be common across the two groups of assets.

4.2 Performance evaluation measures

We describe the in-sample and out-of-sample performance evaluation measures. The technical details
appear in Online Appendix Section OA 4.

In-sample performance evaluation

We compute the following performance measures across the entire sample, that is across all B blocks:

 Total R? of Kelly et al. (2019) which represents the fraction of return variance for all the
assets explained by both the dynamic behavior of the loadings and the contemporaneous factor

realizations across different blocks, aggregated over all assets and all time periods.

e Predictive R? from Kelly et al. (2019) which represents the fraction of realized return variation

terminology of Kelly et al. (2019), and to the extent that PCs computed on our test-asset portfolios are similar to PCs
computed on manged portfolios constructed in their way, the factors computed for our model (vi) are similar to the first
step estimation of their (Instrumented) Principal Components.
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explained by the model’s description of conditional expected returns, and summarizes the

model’s ability to describe risk compensation only through exposure to systematic risk.

e Pricing error R* of Kelly, Palhares, and Pruitt (2020) which pertains to the fraction of the

squared unconditional mean excess returns that is described by factors and betas.

In the Online Appendix we also report results using Average RM S, an alternative to the Pricing
error R%, which is computed as the average over different blocks of the RM S, measure considered

by Lettau and Pelger (2020a) and computed block by block.!!

Out-of-sample performance evaluation

We implement the out-of-sample version of the Total R?, Pricing R? and Predictive R* with betas
and factor loadings computed using information from block b — 1 to price date 7 assets in block
b. Analogously to Lettau and Pelger (2020b) we also compute the annualized Sharpe Ratio of the
“Maximum Sharpe-ratio portfolio” that can be obtained by an optimal (in a mean-variance sense) linear
combination of the factors, which are ultimately portfolios of individual stocks. The out-of-sample
performance measures are defined as: (a) O0S Total R?, (b) OOS Pricing R?, (c) OO0S Predictive R?,
and (d) Maximum Sharpe-ratio, Max. SR.

4.3 Empirical results

The goal is to compare the role of the factor model specifications in explaining the variation of returns
for individual CRSP stocks as well as CZ21 test assets, both in- and out-of-sample, during the period
1966-2020. Panels A - C in Table 1 present respectively the Total, Pricing and Predictive R* evaluation
measures. The first two rows in each panel pertain to the Total/Pricing/Predictive R%s of the benchmark
models which consist of the FF and momentum factors, starting with the one-factor market (CAPM),
then FF3, FF3 with momentum, FF5 and finally FF5 and momentum. The columns are therefore
labeled 1, 3, 4, 5 and 6 corresponding to the number of factors /K in each model. For comparison,
the next two rows refer to the corresponding R?s of the three common factors (Comm). These are

followed by the models which consider both the three common factors as well as the panel-specific

"Table OA.1 in the Online Appendix covers Average RM S, and an alternative version of Total R? computed from
regressions with constant similar to Lettau and Pelger (2020b).
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Table 1: In- and Out-of-sample performamce evaluation factor models

In-Sample Out-of-Sample
N. of factors, K 1 3 4 5 6 1 3 4 5 6
Panel A: Total R?
r: CRSP, f: FF + mom 143 228 252 264 286 8.5 7.3 4.0 1.5 <0
r: CZ21, f: FF + mom 739 898 915 90.7 923 70.8 83.6 84.7 83.6 84.8
r: CRSP, f: 3CF 27.0 13.7
r: CZ21, f: 3CF 92.8 86.8
r: CRSP, f: 3CF + CRSP spec. 30.1 329 354 140 143 144
r: CZ21, f: 3CF + CZ21 spec. 943 952 958 89.3 90.8 914
r: CRSP, f: PCA on CZ21 18.0 254 277 298 322 12.0 106 9.8 8.8 8.2
r: CZ21, f: PCA on CZ21 89.3 945 953 958 96.2 873 919 925 929 93.1
r: CRSP, f: PCAonCRSP 173 270 30.1 329 354 125 138 141 144 146
r:CZ21, f: PCAon CRSP 865 923 928 935 939 837 860 864 865 86.
Panel B: Pricing R?
r: CRSP, f: FF + mom 337 509 542 527 555 4.0 93 11.1 115 11.6
r: CZ21, f: FF + mom 752 89.0 884 90.0 89.7 78.8 855 844 86.7 864
r: CRSP, f: 3CF 454 19.5
r: CZ21, f: 3CF 91.8 91.4
r: CRSP, f: 3CF + CRSP spec. 458 46.0 46.2 18.7 19.5 21.8
r: CZ21, f: 3CF + CZ21 spec. 933 936 959 923 925 94.0
r: CRSP, f: PCA on CZ21 51.6 59.1 613 62.7 643 157 11,5 11.1 11.3 115
r: CZ21, f: PCA on CZ21 89.7 949 96.1 973 979 90.9 935 946 954 958
r: CRSP, f: PCA on CRSP 50.0 554 563 579 588 152 18.6 194 219 188
r: CZ21, f: PCA on CRSP 91.0 923 924 926 92.7 91.3 91.8 921 920 92.0
Panel C: Predictive R2
r: CRSP, f: FF + mom 066 109 120 1.17 1.26 002 003 <0 <0 <0
r: CZ21, f: FF + mom 260 4.00 4.03 4.07 4.12 005 096 1.05 097 1.05
r: CRSP, f: 3CF 0.99 0.24
r: CZ21, f: 3CF 4.17 2.02
r: CRSP, f: 3CF + CRSP spec. 1.02 1.02 1.03 0.21 020 0.19
r: CZ21, f: 3CF + CZ21 spec. 428 430 4.40 1.84 173 1.76
r: CRSP, f: PCA on CZ21 1.10 131 137 142 146 0.19 0.10 0.02 <0 <0
r: CZ21, f: PCA on CZ21 403 437 443 450 454 152 163 1.65 167 1.69
r: CRSP, f: PCA on CRSP 1.06 121 125 129 1.31 0.31 028 025 023 0.22
r: CZ21, f: PCA on CRSP 407 4.19 420 423 4.23 207 213 212 212 2.11

Panels A - C of the table report Total/Pricing and Predictive R2s in percent for observable factor models (lines 1-2 in each panel), 3CF a latent factor
model with 3 factors common between individual stocks and CZ21 portfolios (lines 3-4 in each panel), the same 3 common factors together with 1, 2, or 3
CRSP-specific factors (line 5 in each panel), again the same 3 common factors together with 1, 2, or 3 CZ21-specific factors (line 6 in each panel), a latent
factor model where the factors are K PCs extracted from the CZ21 portfolios only (lines 7-8 in each panel), and a latent factor model where the factors
are K PCs extracted from the CRSP individual stocks only (lines 9-10). Observable factor model specifications are CAPM, FF3, FF3 + Momentum, FF5,
and FF5 + Momentum in the K = 1,3 ,4,5,6 columns, respectively. The models are estimated on the rolling window starting in year y — 4 and ending

in year y, for each y = 1970, ..., 2020. Total R?’s in-sample (left table) and out-of sample (right table) are computed either for the excess returns of

individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21) as described in Section 4.2.
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factors (individual CRSP stocks and CZ21 test assets) in order to evaluate whether the latter have
additional explanatory power for the variation of returns beyond the three common factors. Finally,
the last four rows in each panel of Table 1 pertain to the R?s for models with factors based on the PCs
from each of the two panels as well as the PCs across the two panels (namely PCs from CRSP are used
to price CZ21 assets and vice versa). Last but not least, Table 2 displays the maximum Sharpe ratio
portfolios.

From the in-sample analysis reported in Table 1 we can draw the following two important
observations. First, the three common factors typically yield better or comparable in-sample Total,
Pricing and Predictive R?s vis-2-vis the benchmark models (i.e. CAPM K =1, FF3 K = 3, FF3 plus
momentum, K =4, FF5 K =5 and FF5 plus momentum K = 6). There are number of cases where the
traditional models with K > 3 do better in-sample. Second, adding the corresponding group-specific
factors from the two panels (of individual stock and test assets) leads only to marginal improvements
compared to models with the three common factors.

Of greater interest are the out-of-sample results in Table 1. They yield the following key empirical

findings:

« the three common factors yield the highest OOS Total, Pricing and Predictive R?s compared to
any FF (plus momentum) benchmark model (with up to K = 6). The relative gains of the OOS

Total, Pricing and Predictive R?s are the largest for individual stocks

* adding to 3CF the corresponding panel-specific factors (from individual stock and CZ21 assets)

leads sometimes to only marginal improvements

* PCA on CZ21 yields better results than 3CF for OOS Total and Pricing (but not Predictive)
R?s for CZ21 returns. However, those factors poorly predict individual stocks out-of-sample

according to the three types of R%s considered

* PCA on CRSP is comparable to 3CF, both for CZ21 and CRSP returns, but under-perform when

panel-specific factors are added to the common ones (with the exception of OOS Predictive R?s)

Last but not least, Table 2 presents the out-of-sample annualized maximum Sharpe Ratio (SR) for

the different factor model specifications. Interestingly, we find that the three common factors perform
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Table 2: Out-of-sample factor portfolio Sharpe ratios

N. of factors, K 1 3 4 5 6
FF + mom 0.39 030 0.62 0.63 0.81
3CF 0.58

3CF + CZ21 spec. 047 040 0.67
3CF + CRSP spec. 0.50 0.51 047
PCA on CZ21 049 054 081 098 0.84
PCA on CRSP 0.61 049 051 047 043

The table reports out-of-sample annualized Sharpe ratios for the mean-variance efficient portfolio of factors in each model - see caption Table 1 for details.

relatively better producing a SR of 0.58, vis-a-vis the CAPM and FF3 models which have SRs of
0.30 and 0.39, respectively. Nevertheless, the FF5 factor model plus momentum (KX = 6) produces the
highest SR of 0.81 among the traditional benchmark models. If we limit ourselves to K = 3, then the
common factor model outperforms all other specifications in Table 2. Adding factors beyond K =3
does increase SR, however, and the best model is PCA on CZ21. Moreover, PCA on CRSP, which
according the performance measures reported in Table 1 is similar to common factors in pricing both
panels of excess returns, features among the smallest maximum Sharpe Ratios. Overall, it is worth

highlighting that the 3CF model does better than the strongest competitors appearing in Table 1.

5 Revisiting the Factor Zoo

The factor zoo is represented by all the factors collected by CZ21. As detailed in Online Appendix
Section OA.1, when we refer to the factor zoo we use a data set of over a thousand portfolios associated
with 205 characteristics. In this section we investigate the ability of PCs extracted form the factor zoo,
which we call zoo PCs, to price and explain the variability of the panels of individual stocks and the
CZ21 portfolios. In addition, we study the relationship between factors in the zoo and (a) the 3CF
factors and (b) the CZ21-specific factors. Finally, we address the question whether the new factors
entering in the zoo in a certain year provide additional information relative to the set of previously

published factors.

20



Figure 4: Number of common factors between Chen and Zimmermann (2021)’s test assets and CRSP
stocks, and sum of common factors canonical correlations with 3, 5, 10 and 15 PCs from the zoo.
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The figure displays the sum of the canonical correlations of 3CF factors with the first 15 PCs (magenta circles, dashed
line), 10 PCs (blue circles, dotted thin line), 5 PCs (black stars, dashed thin line), and finally the first 3 PCs form the factor
700 (green diamonds, dotted thin line). For each year y we report results computed on the block starting in year y — 4, for
each y = 1970, 1975, ..., 2020.

5.1 Common Factors and the Zoo

Figure 4 shows the sum of the canonical correlations of the three common factors with the first 3,
5, 10 and 15 zoo PCs. As before, all PCs and common factors are estimated from non-overlapping
5-year balanced panels of monthly data over the period 1966-2020. The figure allows us to understand
whether the PCs from the zoo panel span the space of the common factors. The first observation
emerging from Figure 4 is that 3 zoo PCs yield a sum of canonical correlations roughly equal to 2 as
if there is constantly a missing factor. Going to 5 zoo PCs gets us to 2.5 and it takes up to 10 PCs from
the factor zoo to approximately span the set of 3 common factors.

Table 3 documents which factors from the zoo are the most related (a) to 3CF, and (b) to 3CF
augmented with the first three group-specific factors of the CZ21 portfolios. Panel A reports the twenty
factors with the largest average R?s - across all our 5 non-overlapping windows - when regressed on
the 3CF factors. Among them, we find two of the three Fama-French factors (CAPM Beta and Size)
along with portfolios based on market beta put forward by Frazzini and Pedersen (2014), and different
measures of idiosyncratic risk and liquidity or uncertainty, such as Bid-ask Spread, Cash-flow to price
variance, Volume to market equity, EPS Forecast Dispersion, Days with zero trades, Volume Variance,
and Price delay R-square. Turning to Panel B, we report the factors in the zoo showing the highest

increase in the R? - averaged across all non-overlapping 5 years windows - when the first 3 CZ21-
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Table 3: Variability of the factors in the zoo explained by the 3 common factors, and 3 first three
group-specific factors from Chen and Zimmermann (2021)

Panel A: 3 Common factors only Panel B: 3 CZ21-specif. added to 3 common factors
Factor R?  Factor AR?
CAPM beta (1973) 92.8  Cash Productivity (2009) 39.2
Frazzini-Pedersen Beta (2014) 87.8  Intangible return using BM (2006) 38.0
Bid-ask spread (1986) 83.6  Book to market using most recent ME (1985) 373
Cash-flow to price variance (1996) 80.7  Total assets to market (1992) 36.5
Volume to market equity (1996) 79.9  Market leverage (1988) 35.2
Price (1972) 79.9  Off season long-term reversal (2008) 34.7
Idiosyncratic risk (AHT) (2003) 78.0  Intangible return using CFtoP (2006) 34.6
Idiosyncratic risk (3 factor) (2006) 72.9  Sales-to-price (1996) 32.8
EPS Forecast Dispersion (2002) 71.8  Option to stock volume (2012) 32.7
Tail risk beta (2014) 71.8  Book to market using December ME (1992) 32.0
Days with zero trades (2006) 71.7  Efficient frontier index (2009) 31.3
Idiosyncratic risk (2006) 71.3  Momentum without the seasonal part (2008) 31.1
52 week high (2004) 70.9  Past trading volume (1998) 30.5
Days with zero trades (2006) 69.1  Initial Public Offerings (1991) 29.9
Size (1981) 68.7  Change in current operating liabilities (2005) 29.6
Days with zero trades (2006) 67.7  Change in equity to assets (2005) 29.5
Maximum return over month (2010)  67.1 Momentum (12 month) (1993) 29.0
Volume Variance (2001) 66.7  Intangible return using Sale2P (2006) 29.0
Analyst earnings per share (2006) 65.1  Employment growth (2014) 28.9
Price delay R-square (2005) 64.5  Intangible return using EP (2006) 28.8

We regress each of the factors in the zoo present in the 5-years rolling window ending in y on (a) the 3CF factors, and (b) 3CF + first 3 group-specific
factors in CZ21 test assets. Factors names correspond to those in the Online Appendix of CZ21. For each factor, we compute the average across all years
of the R? of these regressions. Panel A reports the 20 factors with the largest average R? for regression (a), i.e. the most related to the three common
factors. Panel B reports the sorted 20 factors with the highest average increase in R? for regression (b) when added to the 3 common factors in regression
(a), that is the factors which are most related to the first three CZ21-specific factors. Factor names correspond to those in the Online Appendix of CZ21.

We consider years y = 1970, 1975, ..., 2020.

specific factors are added as regressors to 3CF. Interestingly, the majority of the factors which are the
most related to the three CZ21 group-specific factors are associated with Book-to-Market (i.e. Total
assets to market, and alternative ways to compute this ratio) or other valuation factors (i.e. Sales-to-
Price), Momentum (i.e. Momentum 12 months, and without seasonal part), Long-Term reversal (i.e.
Off-season long term reversal, and Intangibles using BM, or CFtoP, or EP) and investment (i.e. Change
in Equity-to-assets, and Employment growth)

These findings complement the results of Figure 2 (and Figure OA.3) confirming the market and
size are the factors most correlated with 3CF (for Size this is especially true for the first half of our
sample), while the majority of the variability of book-to-market and momentum is mostly explained
by CZ21-specific factors (i.e. are due to sorting).

Table 4 reports the performance evaluation measures for the zoo PCs (compared to Table 1 we

added a column for K = 10 using the insights gained from Figure 4). For convenience of comparison
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Table 4: Total, Pricing and Predictive R?s - Common factors versus zoo PCs

In-Sample Out-of-Sample
N. of factors, K 1 3 4 5 6 10 1 3 4 5 6 10
Panel A: Total R?
r: CRSP, f: 3CF 27.0 13.7
r: CZ21, f: 3CF 92.8 86.8
r: CRSP, f: PCAonZoo 12.7 21.8 247 27.1 29.6 37.2 36 26 28 23 1.8 <0
r: CZ21, f: PCAonZoo 422 68.6 72.6 756 77.7 83.0 294 49.0 535 560 59.0 577
Panel B: Pricing R?
r: CRSP, f: 3CF 45.4 19.5
r: CZ21, f: 3CF 91.8 91.4
r: CRSP, f: PCAonZoo <0 <0 12,6 239 249 385 32 39 44 <0 <0 <O
r: CZ21, f:PCAonZoo <0 <0 <0 92 7.7 286 <0 <0 <0 <0 <0 <O
Panel c: Predictive R?
r: CRSP, f: 3CF 0.99 0.24
r: CZ21, f: 3CF 4.17 2.02
r: CRSP, f: PCAonZoo <0 0.13 036 0.60 0.63 0.95 <0 <0 <0 <0 <0 <O
r: CZ21, f: PCAonZoo <0 <0 0.07 085 1.04 199 <0 <0 <0 <0 <0 <O

The table reports Total, Pricing and Predictive R?s in percent for a latent factor model with only 3 common factors (lines 1-2 in each of the three panels) -
arepeat of lines 3-4 in Panels A - C of Table 1, and a latent factor model where the factors are K PCs extracted from the factors in the zoo only (lines 3-4).
The models are estimated on the rolling window starting in year y — 4 and ending in year y, for each y = 1970, ..., 2020. R?’s in-sample (left table)
and out-of sample (right table) are computed either for the excess returns of individual stocks (7 : CRSP) or CZ21 portfolios (r : CZ21) as described in

Section 4.2.

we repeat the results for 3CF from Panels A - C in Table 1. The zoo PCs have positive in- and out-of
sample Total R?s for individual stocks better than the observable factors, but worse than all the other
latent factor models (comparing with results in Table 1). Moreover, they perform worse than the other
set of factors in explaining CZ21 portfolio returns. The pricing performance of the zoo PCs is also the

worst, as evident from their low or negative Pricing R? appearing in Table 4.

5.2 Old and New Factors

We can also address the question whether the new factors entering the zoo in a certain year provide
additional information relative to the previously published factors. So far we used a “chronological
time” sample which include all data available in each data set from Jan. 1966 to Dec. 2020. Here

we consider a “publication time” sample which goes from Jan. 1996 to Dec. 2020, where the CZ21

23



Figure 5: T'otal R? from old factors
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For each 5-years rolling window ending in year y we compute the percentage Total R? generated by a linear factor model with 3CF only (model (i),
with 3CF + three CZ21-specific factors (model (ii)), and by linear factor model where the factors are the first six PCs from the old factor zoo (model(iii)).
Total R? is computed using as test assets either the individual stocks or the CZ21 portfolios available in year y for both model (i) and model (ii). When
test assets are individual stocks we report the T'otal R? for model (i) as red squares, for model (ii) as red circles and for model (iii) as blue downward
triangles. When test assets are CZ21 test assets we report the T'otal R? for model (i) as black upward triangles, for model (ii) as black diamonds and
for model (iii) as blue stars. The models are estimated on the rolling window starting in year y — 4 and ending in year y, for each y = 2001, ..., 2020.

Total R?’s are computed as described in Section 4.2, but taking into account only the 5-year window ending in year .

test assets portfolios and factors enter with their publication date in the database. So far we used
non-overlapping block samples. To do the analysis here we proceed on an annual basis instead and
use a S-years rolling sample scheme which allows us to examine the so called “new” factors being
introduced every year versus the pre-existing factors, called the “old” factors.

For each 5-years rolling window ending in year y, we define the old CZ21 portfolios as the those
corresponding to the factors in the zoo available in the 5-years rolling window ending in year y — 1 to
distinguish them from the new CZ21 portfolios, that is those corresponding to the new factors entering
in the database in year y according to their publication date. In every 5-years window, we can compute
common and panel-specific factors as we did in the prior sections. Then, we regress each of the new
factors on the old three common factors and first three old CZ21-specific factors.

In Figure 5 we report the T'otal R* generated by linear factor models involving the factors only
form the old zoo. In particular, we consider a model with 3CF only (model (1)), another model with
3CF augmented with three CZ21-specific factors (model (ii)), and a final linear factor model where

the factors are the first 6 PCs from the old factor zoo (model(iii)). As before, the models are estimated
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on 5-years rolling windows starting in year y — 4 and ending in year y, for each y = 2001, ..., 2020.
We note that although there is some time variation, the T'otal R?> of models (i) and (ii) for both set
of test assets remained relatively stable in our sample, indicating that the old factors tend to explain
a relatively constant fraction of the time series variation of test assets excess returns. Interestingly
though, all the T'otal R?s tend to be higher during rolling windows including one of the three stress
periods in our sample, namely: the 2001 dot-com bubble, the 2008 financial crisis and the 2020 COVID
pandemic.

As expected, the models explain a much larger fraction of the variability of CZ21 portfolios, as
measured by T'otal R?, than of individual stocks. Finally, we note that for CZ21 portfolios the 6 PCs
from the old zoo (model (iii)) always produce a lower T'otal R compared to models (i) and (ii). For
individual stocks the 6 PCs form the old zoo always produce a lower T'otal R? than the 3CF plus the
3 CZ21-specific factors, but comparable to a model with 3CF only. Similar conclusions can be drawn
when looking at the pricing performance of the same sets of factors for the panels of individual stocks
and sorted portfolios, as can be seen from Figure OA.8 in the OA, where we plot the Root Mean
Squared o’ (RM S,,), which is an alternative way to assess the pricing performance for each model
(see also the Pricing R*s defined in Appendix OA.4).

Next we turn to Figure 6 where for each 5-years rolling window ending in year y we regress each of
the new factors (entering the database in year y) on old 3CF (i.e. year y — 1) plus first three old CZ21-
specific factors. Figure 6 (a) displays the R?’s for each of these regressions, while Figure 6 (b) displays
the absolute value of the intercepts (|«|). The new factors with low R*s and those with high |«| and/or
significant ¢-stat provide additional information to the space already spanned by the ’old’ factors. The
detailed results are reported in Online Appendix Tables OA.2 and OA.3 respectively. We find that 4
factors have R?s smaller or equal than 10%, and 7 R%*s < 15%. Most are related to seasonality (2
of the 4 at 10% and 4 out of 7 at 15%).'> Next, looking at the alphas we consider three cases: (a)
la| > 1.5%, (b) estimates with ¢-stats above 2, and (c) a combination of both (a) and (b). The exercise
i1s somewhat similar to Kozak, Nagel, and Santosh (2018) in their Section II, where they check whether

factors have significant alphas with respect to PCs computed from the factors themselves. There are 7

12 According to the results appearing in Online Appendix Table OA.2 the factors with R?s below 10% in chronological
order are: Up Forecast (2002), Off season reversal years 16 to 20 (2008), Return seasonality years 6 to 10 (2008), and
R&D ability (2013). In addition for the higher threshold of 15% to following are included: Return seasonality years 16 to
20 (2008), Put volatility minus call volatility (2011), and Dividend seasonality (2013).
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Figure 6: Regressions of new factors entering the zoo on 3CF and 3 first three CZ21-specific factors
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For each 5-years rolling window ending in year y we regress each of the new factors (entering the database in year y) on
old 3CF (i.e. year y — 1) plus first three old CZ21-specific factors. Figure (a) displays the R?’s for each of these regressions,
while Figure (b) displays the absolute value of the intercepts. We consider years y = 2001, 2002, ..., 2020.

factors with |a| > 1.5%. Several among them have insignificant estimates. Counting the alphas that
have t-stats above 2 regardless of the magnitude, we count 11.'3 There are only a handful of factors
with high alphas and significant ¢-stats: Consensus Recommendation (2002), Net Operating Assets
(2004), Analyst earnings per share (2006), Net external financing (2006), Industry return of big firms
(2007) and Frazzini-Pedersen Beta (2014).

Our analysis is different from the previous literature as we use the factors common between CZ21
and CRSP as the reference model. Section OA.5 reports extensive additional results showing that the
increments in Total R* and RM S,, generated by the addition of new factors with respect to the 6 old
common and CZ21-specific factors is relatively small. So the conclusion one can draw is that new
factors in the zoo seem only to improve marginally the ability of a model including the 6 old factors
in pricing, and explaining the time series variability, of the two large sets of test assets we consider.

Moreover, no factor seems to both generate an incremental contribution to the 6 old factors in pricing

13 According to the results in Online Appendix Table OA.3 the factors with || > 1.5% are in chronological order:
Consensus Recommendation (2002), Firm Age - Momentum (2004), Net Operating Assets (2004), Institutional ownership
among high short interest (2005), Analyst earnings per share (2006), Industry return of big firms (2007) and finally:
Frazzini-Pedersen Beta (2014) and those with t-stats above 2 are: Consensus Recommendation (2002), Probability of
Informed Trading (2002), Pastor-Stambaugh liquidity beta (2003), Net Operating Assets (2004), Mohanram G-score
(2005), Analyst earnings per share (2006), Net equity financing (2006), Net external financing (2006), Industry return
of big firms (2007), Efficient frontier index (2009), Intermediate Momentum (2012), and Frazzini-Pedersen Beta (2014).
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of both sets of test assets, and in explaining their time series variation.'* These findings are compatible
with the idea that newly proposed factors might help to price and explain the time series variability
of few portfolios built on the same characteristics of the factors themselves, but might not be relevant
in explaining the returns of many other portfolios sorted on different characteristics, or all individual
stocks.

It is worth comparing our findings with those in Table 2 of Feng et al. (2020). Although similar
in spirit to the analysis considered here, their approach is based on a different approach. Namely,
their procedure combines the double-selection LASSO method of Belloni, Chernozhukov, and Hansen
(2014) with the Fama and MacBeth (1973) two-pass regressions to evaluate the pricing contribution
of a factor in a high-dimensional setting and identifies a selection of factors which contains factors
with incremental value. By contain we mean that their procedure potentially identifies a selection of
factors that is larger than the set with genuine pricing contributions. The results in their Table 2 show
that while most of the new factors are redundant relative to the existing factors, a few have statistically
significant explanatory power beyond the hundreds of factors proposed in the past. In this respect our
results agree with their findings, but the specifics are somewhat different. They have a total of twelve
out of roughly one hundred factors (a smaller set than what we considered here) over the sample
2000 until 2015 which appear significant according to their testing procedure. There is one factor in
common identified by our approach and theirs: betting against beta from Frazzini and Pedersen (2014).

No other factors identified by the Feng et al. (2020) procedure have an R? lower than 50%.

6 Conclusions

The projection arguments put forward in Hansen and Jagannathan (1991) imply, as noted by Kozak
et al. (2018), that there exists a factor representation of the stochastic discount factor (SDF). Moreover,
there is practically no disagreement that the space of factors spanning the SDF is low-dimensional. In

this paper we found 3 factors which were selected via a novel procedure addressing a longstanding

A closer inspection of Table OA.5 shows that Frazzini-Pedersen Beta (2014), Change in net financial assets (2005),
Equity Duration (2004), Operating Cash flows to price (2004), and 52 week high (2004) are among the top improves of both
Total R? and RS M, for the panel of of CZ21 portfolios when added to the old factors, nevertheless none of them appears
a a top 10 contributor for the same two measures computed for the panel of individual stocks. Actually, Frazzini-Pedersen
Beta (2014) seems to be detrimental to the pricing of individual stock returns when added to the old factors.
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debate in the empirical asset pricing literature.

We started from the idea that equity risk factors reside at the intersection of two panels: (a)
individual stock returns and (b) sorted portfolio returns. We extract factors from both panels and find
the common factor space between the two panels, yielding factors which price both individual stocks
and sorted portfolios. We labeled these three common factors 3CF. We show that this provides a path
toward extracting factors neither affected by sorting characteristics nor by varying risk exposures and

recalcitrant features of individual stocks.

We also find that at any point during our sample neither FF3 nor FF5, both with or without a
momentum factor, span the 3CF factor space. In fact we also find that out of the 6 factors considered,
only the market seems to be the one which is the most related to the common factors, while all the
other 5 factors, are only partially spanned by common factors, and a large part of their variability is

specific to portfolio sorting.

Regarding the factor zoo we find that over the sample period 1996-2020 it takes 10 PCs from the
factor zoo panel to span the set of common factors. Moreover, we also address the question whether the
new factors entering in the zoo in a given year provide additional information relative to the previously
published factors. We find that new factors being added to the zoo seem only to improve marginally
the empirical performance compared to existing factors.

Last but not least, it should be noted that the testing procedure introduced in our paper can be
applied in many other asset pricing settings. A few examples are: comparing panels of private equity

and publicly traded companies, international asset pricing comparing stock in different countries, etc.
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Appendix

Section A.l1 provides an illustrative example for equation (2.3) whereas Section A.2 extends our
analysis to multiple sorting and interaction terms. A discussion of regularity conditions appears in
Section A.3. Section A.4 summarizes variations of Principal Components Analysis (PCA) discussed
by Lettau and Pelger (2020a and 2020b) and Zaffaroni (2019), among others, allowing to estimate non-
zero mean factors from a panel of excess returns. Section A.5 extend Theorems 1 and 2 in AGGR to the
case in which the latent factors are estimated by the variations of PCA described in Section A.4. As the
factors are not zero-mean, the estimators of the canonical correlations among the factors from the two
groups and the test statistics in Theorems 1 and 2 of AGGR need to be adjusted accordingly. Proofs of
propositions and theorems, together with the assumptions, are provided in the Online Appendix. We
will denote the sample mean a generic sequence z;, t = 1,...,T as z = % Zthl ¢, the T'-dimensional

vector of ones as 11 = [1, ..., 1]', and the identity matrix of order T" as Ir.

A.1 TIllustrative example for equation (2.3)

It might be worth providing a simple illustrative example of the result appearing in equation (2.3).
Assume there are two mutually independent factors with Gaussian marginal distributions f; ~ N(m;,1)
where m; > 0, 7 = 1,2 are the expected values (risk premia) of the factors. Both factors also
feature order one autocovariance parameterized by p; # 0 and volatility prediction E(f; ,_1 fZT) =
p? # 0 for ¢ = 1, 2. Assume that f; is the “true/common” factor in f¢, and the time-varying
betas b; ,_ are driven by Z,_; = fi,_1fo,-1 so that f, only affects the loadings. According
to equation (2.3) we need to regress Z._if1, onto fi, and show that also f, . appears in that
projection. We do so sequentially, first projecting on f; and then regress the residual onto f5 since
both regressors are mutually independent (cfr. Frisch-Waugh-Lovell theorem). Denote by /3; the slope
coefficient of the projection onto fi, i.e. 51 = cov(Z,_1 f1+, f1,7) var(fi,) = cov(Z;_1fi, fi,-) =
cov(fir—1for—1fir f1.0)=(p) —mips — m3)ms. The residuals projected onto fo.- yield a slope 35 =
cov(Zr_1 fir — (p] — mip1 — m?)m2f1m fo) var(fa 7)) = cov(fir—1for—1fir for) = (p1 + m%)ﬂz
Hence, the time-invariant factor representation of model (2.1) features the “true” factor f;, with
loading proportional to the slope 3; = (p? — myp; — m3)my # 0 and a factor driving the time-varying
betas which has loading proportional to the slope (32 = (p; + m?)ps # 0: this is an illustration of what
happens in equation (2.3). Furthermore, our assumption implies that the residuals after projection on

fi- and f5 ., i.e.d;, in equation (2.3), feature weak cross-sectional dependence.
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A.2 Multiple sorting and interaction terms

In this section we show that our analysis also covers portfolios built on double, triple etc. characteristic
sorting, as long as Assumptions A.l1 and A.2 are satisfied for the entire set of portfolios considered.
To see this, note that we referred to w; ., as the vector collecting the N,, characteristics of each
asset 7, that is w; ;1 = [W;,-11, ..., W;ir—1,n,] . Portfolio weights g;(w; ,_1) are defined as generic
functions allowing to construct for example the j-th portfolio by sorting stocks on one characteristic,
say gj(wir—1) = ¢+ 1{qa-1]w. r—14) < Wir—1h < @o|w. r—14]} Where gow.,—1] is the a-decile
of the cross-sectional distribution at date 7 — 1 of the characteristic w; ,_1 4, and 1 {-} denotes the
indicator function. Moreover, our generic function g;(w; ,_1) allows also for portfolios built by double-
sorting stocks on two characteristics of stock ¢, say size (w;.—1,1) and book-to-market (w;,_;2):
gj(wir—1) = ¢ 1{ga-1(W.r-11] < Wir—11 < QoW rm11]  @a—1[W. r12) < Wir—12 < qplw. r-12]},
where gg[w. ,_1 2] is the S-decile of the cross-sectional distribution at date 7 — 1 of the characteristic
Wi, r—1,2-

We also noted in the main body of the paper that our analysis can handle interactions of
characteristics. To see this, consider another generic set IV, individual characteristics 2; -1, ..., Zi - N,
not necessarily overlapping with w; . Then, each element Z',T,Lh of the vector of specific variables
Z-,T_l appearing in betas of individual stocks could simply be some (transformations of) a specific

characteristic, say Z; .1, = z;r—1,1, but can also be a function of multiple characteristic, say

Zi,'rfl,h = Zir-1,1 " %i,r—1,2-

A.3 Regularity conditions

In this section we digress on two technical regularity conditions which result in the constant loading
factor representation for the two panels - one of individual stock excess returns and the other of sorted
portfolios with returns described by equations (2.4) and (2.8).

We start with an assumption which tells us that some masking of factors may occur, but only for
an asymptotically vanishing fraction of the individual stocks and portfolios. Put differently, some
stocks/portfolios may mask some factors, but not a significant collection of portfolios is allowed to

block out any specific factor.

- /
ASSUMPTION A.1 (No Masking). Consider matrix A§ = [bg + K ]c] appearing in equation (2.8).
For any element k € {1,...,k°}, the fraction Ny, out of Ny portfolios with non-zero A3 . for factor k
is such that Ny ./ Ny is bounded away from zero. Similarly, for A = [b? + MY]' the fraction Ny, out of

Ny individual stocks with non-zero AS . for factor k is such that N /Ny is bounded away from zero.
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In addition, we also need the following assumption for the common factors between the two panels of

respectively individual stocks and sorted portfolios to be f¢ only, instead of f¢ and/or Z!_, f¢.

ASSUMPTION A.2 (Convergence of portfolio betas). Consider the term W;Z;_, appearing in the
vector of portfolio j’s betas [l;g + WjZ:_l] in equation (2.7). The fraction N; out of N, portfolios for
which W, Z*_, = A; Z,_4, is such that N3 /Ny converges to zero as N1, No, Ny — oo, for A; # 0.

Assumption A2 holds if > gj(wir—1)CiZism1 # WZ,_1, and =31 g;(w;.—1)B;
converges to a time dependent limit N; — oo, say W;Z._, for a sufficiently large number of
portfolios. This implies N% vazll 9j(wir—1)BiZ—1 — I/T/}ZT,lZT,l, which is not linear in Z,_;. To
illustrate the condition that N% > 9(w; ;) B; converges to a time-dependent limit, consider a situation
where the portfolio weights for portfolio j load on stocks with characteristic w; ; in a given interval
Z; (think of size, book-to-market etc.). Then, the large sample limit of N% > 9(w; +)B; for portfolio
j is: E[B;|w;, € Z;|. The time dependent limit in Assumption A.2 holds for example when the
group of stocks having characteristics in a certain range, varies over time, and there is sufficient cross-
sectional heterogeneity in the coefficients in B;. As an illustrative example, we can consider size
sorted portfolios. Assumption A.2 implies that the mix of firms in a particular decile size portfolio
varies through time in terms of characteristics other than size. Finally, of less interest but worth noting
is the fact that a sufficient condition for Assumption A.2 to hold is that W; = 0 for a fraction of NJ*
out of N, portfolios such that 1 — N3*/N, converges to zero, i.e. the betas with respect the common

factors f¢ are time invariant for the majority of the portfolios: N% vazll air—1bir—1 — B?.

A.4 Factor estimation: PCA and its recent extensions

To simplify the exposition we will use a generic notation here for the discussion of various estimators
which can be applied to different panel data settings. Let y; be /N-dimensional vector of returns, and
assume that the data generating process of y; is a linear factor model as the APT of Ross (1976), that
is:

yr = Nhy + &4, t=1,..,T, (A.1)

where h; is the (k,1) vector of (unobservable) factors with expected value p;, = E[hy], possibly
different from zero, A = [\, , ..., Ay]" is the (I, k) full column-rank matrix of unknown loadings, and
the idiosyncratic innovations F[e;] = 0. These assumptions imply E[y;] = Auy, possibly different

from zero. Model (A.1) can be written as:

Y = HN +e, (A.2)
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where Y = [yi,...,yr|" is the (T, N)-dimensional matrix of observed excess returns, and H =
[h1, ..., hr]" is the (T, k)-dimensional matrix of factor values.

Lettau and Pelger (2020a, 2020b) and Zaffaroni (2019) suggest that estimating model (A.2)
by performing PCA on the demeaned returns ¢, = 1; — ¢, as typically done in the finance and
macroeconomics literature, is restrictive as the mean of the factors and the returns should contain
information on the factor structure. Let th = h; — h be the demeaned factors, and Ui = % Zthl Yit
be the time series mean of the returns of the i-th asset, with 2 = 1,..., N. Lettau and Pelger (2020a)
address the estimation of the non-demeaned factors in model (A.1) with their RP-PCA procedure,

which consists in solving the following minimization problem:

N T N
_ 1 LA
\ IIllIl)\ NT Z Z (Uir — 2+ (1+ WRP)N Z(yz — '\ (A.3)
1y ooy AN, =1 t=1 =1
hi, ..., hp,

The first double summation in (A.3) corresponds to the average unexplained (time-series) variation
of the data, the second summation correspond to the (cross-sectional) average of the squared “pricing
errors” across all N assets, and ygp € [—1, +00) is a constant which can be interpreted as a tuning
parameter: as it increases more weight is given to the pricing errors in the factor estimation. They

show that the solution to (A.3) can be obtained by performing the following two steps:

(i) Estimate the loading matrix A; is as \//N; times the (/V, k) matrix of the eigenvectors associated

to the largest k eigenvalues of matrix

1 « 1 & 1Y
Mgp(vrp) = T Z ytyé + YrP T Z Yt T Z Ye | - (A.4)
=1 =1 =1

The estimated loadings, that we denote as A Rrp, are such that A’R Pf\ rp/N = I. 15

(ii) Estimate the latent factors in model (A.1) at each date ¢ by a cross-sectional regression of the

returns y; on the estimated loadings Agp:
7 AlA -1 /

We denote as Hpp = [lAzLRp, s lAvaRp]’ the (T, k) matrix of estimated factors.

SLettau and Pelger (2020a), in their online appendix, §how t}lat Aj, RP can bev obtained as the cpnventional PCA
estimator of the loadings applied to the “projected” model: Y; = H,;A; + &; where Y := W (ygrp)Y, H := W(yrp)H,

g :=W(yrp)e, and W(vygp) = IT + (\/'pr +1— 1) %. That is, the loading matrix A; rp can bf: e§timated as VN
times the (V, k) matrix of the eigenvectors associated to the largest k eigenvalues of Mpp(ygrp) = 7YY .
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As linear latent factor models are identified up to an invertible transformation, an equivalent estimator
Hp of the factors is obtained by rescaling Hpp such that the (uncentered) second moment of the
estimated factors is Hi/pHpyp/T = I, that is Hyp = Hgp <I:[§%P]:IRP/T> 71/2. Following Lettau
and Pelger (2020a), we refer to Hpp and ]:IEP as “RP-PCA estimators”. Importantly, the factors
estimated by RP-PCA have a mean h = %Zthl h, which is not necessarily equal to zero. In
fact, equation (A.5) shows that fz,; rp 1s a linear combination of the original returns which are not-

demeaned. !¢

Special case of the RP-PCA: yzp =0

When vzp = 0, the matrix Mzp(yrp) characterizing the RP-PCA estimator (A.5) coincides with the
conventional PCA estimator but with loadings estimated from the uncentered second moment matrix
of the returns Mpp(vrp = 0) = 1 ZL y+y;. The RP-PCA estimators of the factors and the loadings
with ygp = 0 coincides with those proposed by Zaffaroni (2019).

Special cases of the RP-PCA: vzp = —1

When ~vgzp = —1 the RP-PCA estimator of the loadings, denoted by Apca, is computed as v/ N times
the eigenvectors of the sample variance-covariance matrix of the returns V(yt) = Mgp(yrp = —1) =

% Zthl 7:7;. We denote the RP-PCA factor estimator in this special case as ﬁt PCA:

A A " -1
hopea = (Mpcahpoa)  Apea (A.6)

and name APCA and ﬁt’ pca as the “conventional PCA” estimators of the loadings and factors,
respectively, as they are used by most of the financial literature. For instance, the factor estimators
used in Connor and Korajczyk (1988), Lehmann and Modest (2005), Kozak et al. (2018), Kozak,
Nagel, and Santosh (2020), Giglio and Xiu (2021), and Pukthuanthong et al. (2019), among others
all coincide with }Alt pca- Another frequently used estimator, denoted by }:lt pca, 1s obtained by a

cross-sectional regression of the demeaned returns ; on Apca:

~

2 N N —1
hi.pca == (A/PCAAPCA> Npoa T - (A7)

167 affaroni (2019), in his Section 3, notices the estimated factors th, rp are portfolio (excess-) returns, and correspond
to “the feasible PCA-estimators” of the infeasible “mimicking portfolios” (of the true the latent factors) proposed by
Huberman, Kandel, and Stambaugh (1987) and Breeden, Gibbons, and Litzenberger (1989). See Lehmann and Modest
(2005) for a discussion of factor-mimicking portfolio estimators.
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Differently from izt, pca and th rp, factors ;Lt7 pca have zero-mean as they are linear combinations of
the demeaned data ¢;."”

Let Y = [f, e gr| be (T, N') matrix collecting the demeaned returns. AGGR consider the
estimator H boa = [ﬁ’i POAs -+ ~}7 peal of the k factors which is defined as /7 times the eigenvectors
associated to the k largest eigenvalues of the matrix ﬁ}}ff’ . By construction the estimated factors

are zero mean, and their (sample) variance-covariance matrix is Hpo Hpos/T = Ix. Using the

A~

arguments in Bai and Ng (2002), it can be shown that H}, is equal to the PCA estimator in (A.7)

~

2 2 2 —-1/2
rescaled to have unit variance: Hp 4, = Hpca (H poaHpoa/ T) )

Importantly, l~1t7 pca and ﬁ: pca are consistent estimators of the latent factors only when these are
assumed to have zero expected value, as in Assumption A.2 of AGGR. In the next Section A.5 we show
that relaxing this assumption does not change the main results of their paper, but requires modifications

to their canonical correlations estimator as well as other statistics.

A.5 Identification, estimation and test for common and group-

specific factors with generic mean

Consider the group-factor model appearing in equation (2.10). As in AGGR we assume, without loss
of generality, that the group-specific factors f7, and f3, are orthogonal to the common factor f. Since

the unobservable factors can be standardized, we have:

It pe fe Iie 0 0
Elf, |=|mn]|, ad Xp=V]|f,|=]0 L o |, (A.8)
f2$,t ,U/; fit 0 q)/ Ik;

where the expected values of the factors are finite, and matrix X is positive-definite. We allow for
a non-zero covariance ¢ between group-specific factors, but differently from AGGR, we allow the
factors to have expected value different from zero. We refer to (A.8) as Assumption B.2 in the list of
regularity conditions in Appendix B.1. Model (2.10) together with Assumption B.2 is identified by the
same arguments used by AGGR.

Let hy, = [ff, f3], with j = 1,2, and Vj, = Cov(hjy, hey), with j, £ = 1,2. The k = min(ky, k)
largest eigenvalues of the matrices R = V;;'ViyVy'Vay and R* = Vi,'Vo, Vi1'Viy are the same,

and are equal to the squared canonical correlations p%, ¢ = 1,..,k, between h;, and hy;. The

17 As discussed Section 2 of Zaffaroni (2019), Bt, pc 4 is the estimator of the (demeaned) latent factors iLt := hy — hof
model (A.1) for the the demeaned data g;. This can be easily seen by noting that the model for the demeaned data can be

written as: g = Aj(hy — h) + (e — &).
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associated eigenvectors wy ¢ (resp. wo ), with £ = 1, ..., k, of matrix R (resp. R*) standardized such
that wigvllwu = 1 (resp. w’27£V22w274 = 1) are the canonical directions which yield the canonical
variables w} ,hy ; (resp. w) ,ho ). The next Proposition A.1 deals with determining k¢, the number of
common factors, using canonical correlations between the vectors A, ; and hsy ¢, which are unobserved
and estimated by PCA or its variations described in Section A.4. It corresponds to Proposition 1 in

AGGR where the zero mean assumption of the factors is replaced with our new Assumption B.2.
PROPOSITION A.1. Under Assumption B.2, the following hold:

(i) If k¢ > O, the largest k¢ canonical correlations between hy, and hy, are equal to 1, and the

remaining k — k¢ canonical correlations are strictly less than 1.

(ii) Let W; be the (k;, k) matrix whose columns are the canonical directions for h;, associated with
the k¢ canonical correlations equal to 1, for j = 1,2. Then, f; = W;hjvt (up to an orthogonal

matrix), for 3 = 1, 2.
(iii) If k¢ = O, all canonical correlations between h ; and hy are strictly less than 1.

(iv) Let W; (resp. W3) be the (ki, k) (resp. (ko, k3)) matrix whose columns are the eigenvectors of

matrix R (resp. R*) associated with the smallest k3 (resp. k3) eigenvalues.
Then f;, = W h; (up to an orthogonal matrix) for j = 1, 2.

Proposition A.1 shows that the number of common factors £¢, the common factor space spanned by
/¢, and the spaces spanned by group-specific factors, can be identified from the canonical correlations
and canonical variables of h;; and hy,. Therefore, the factor space dimensions k¢, kj, and factors f;
and f7,, 7 = 1,2, are identifiable (up to a rotation) from information that can be inferred by disjoint

PCA, or its variations described in Section A.4, on the two subgroups.

A.5.1 Estimators

When the true number of factors £; > 0 in each subgroup j = 1,2 and k¢ > 0 are known, Proposition
A.1 suggests the following estimation procedure. Let h;, and ho, be estimated by extracting the first
k; PCs (or its variations) from each sub-panel j, and denote by ﬁjyt these PC estimates of the factors,

7=1,2. Let f/jg denote the empirical covariance matrix between ﬁjﬂf and }Al&t, ie.:

T T
N 1 PO 1 - 1 - .
Vie = T g hj,thlé,t - (T E hj,t) (T E h/e,t) ) J,0=1,2, (A.9)
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and let:
R o= ViVl Vo, and = Vg Vs Vi (A10

be the estimators of matrices matrices R and R*, respectively. Differently from AGGR, the estimators
of the variance-covariance matrices f/] ¢ take into account that the estimated factors might have non-zero
mean, compatible with the RP-PCA estimators described above. Matrices R and R* have the same
non-zero eigenvalues. The k¢ largest eigenvalues of R (resp. R*), denoted by pz, 0 = 1,..., k¢, are
the first k¢ squared sample canonical correlation between le,t and iLgyt. The associated k¢ canonical
directions, collected in the (ki,k°) matrix W, (resp. (kz, k°) matrix Wg), are the eigenvectors
associated with the k¢ largest eigenvalues of matrix R (resp. R*), normalized to have length 1 with

respect to Vn (resp. ‘722). It also holds that:
WIViLW, = Ie, and WiVao Wy = Ije. (A.11)

DEFINITION 1. Two estimators of the common factors vector are ff = Wl’ izu and ff* = WZ’IA”LM.

Definition 1 and equation (A.11) imply that the estimated common factors have identity sample

variance-covariance matrix:
) 1 - 1<~ - 1 <~
V) =5 ) Fif - (;fo) (TZ ) = lre (A.12)

and analogously V (fi*) = ~ "1 fer fo — (% > ff *) (% S Af*') = I}, i.e. the estimated
common factor values match in-sample the normalization condition of identity variance-covariance
matrix in (A.8). An estimator for the group-specific factors f7, (resp. f5,) is obtained by computing
the first k] (resp. k3) principal components of the variance-covariance matrix of the residuals of the
regression of ¥ ; (resp. y2;) on the estimated common factors.

Let Fe = [f¢/ ..., f&']" be the (T,k°) matrix of estimated demeaned common factors, and
Aj = [;\5,1, o Ai n,) the (N, k) matrix collecting the estimated loadings, and let Y; be the (T, N;)

matrix of (time-series) demeaned observations for group j:

~

c ! T Tac ! e\ — I ne .
AF =YJF(FO'F)™ = ZYJFS, =12 (A.13)
As shown in the OA, this estimator is unbiased for A° when group-specific factors Fts have expected

value different from zero. In this case, indeed, regressing the non-demeaned original data Y; on the

non-demeaned estimated factors F* would produce a biased estimator for A¢ as the residuals of this

41



regression model would be a linear function of Fts which, in general, are not zero-mean, as allowed by
the first of the two conditions in (A.8).

Define the residual (N, 1) vector &;; = y;; — Aj fe and the (T, N;) matrix of the regression
residuals =; = [, 1, ..., &) forj =1,2.

DEFINITION 2. Estimators of the specific factors fft (resp. f;t ) are defined as the first k3 (resp. k3)

Risk Premium Principal Components of sub-panel =, (resp. =»).

Note that ft : ff — fc the demeaned estimated common factor, is orthogonal in-sample both to
ft71 = ft . — f7 and to ft2 = ft2 f;, that is the demeaned group-specific factors, matching
the population orthogonality assumption in (A.8). Let us define éj as the (7', ;) matrix of (time-
series) demeaned estimated residuals for group j. Then, the (N, k%) matrix of the loadings estimators

Jr vy
As \s \s I 31a.
A =[N A ] s

NG =1 s ( s | TS\ — 1o =/ Trs .

A; = ZF; (F; ’FJ) =7 ;F j=12. (A.14)
In a follow-up paper, Andreou, Gagliardini, Ghysels, and Rubin (2020) explore the idea that linear
combinations of the two estimators ft"’ and ff* also yield valid estimators when they are estimated by

PCA on demeaned data as in AGGR. Following their arguments, we can consider the generic estimator

o = S(w)(fe +wfe), (A.15)

obtained as the linear combination of ftc and ff* estimated by RP-PCs as in our Definition 1 and where
the scalar parameter w is the weight. The transformation by matrix S(w) = [(1 + w?) Iz + 2wD] /2,
with D = diag(py, ..., pre), ensures that the new estimator has identity sample covariance matrix, that

1s:
T
Z C*/_ %thc* Z c*l = Ije . (A.16)
t=1

The parametric family (A.15) encompasses the estimators ftc and ftc* in our Definition 1, which
correspond to choices w = 0 and w = 400, respectively. By using arguments analogous to those
in Andreou et al. (2020), it can be shown that choosing w = 1, the common factor estimator ff* is
an equally-weighted linear combination of the two basis estimators ff and ff*. This new estimator
extends the one proposed by Goyal, Pérignon, and Villa (2008), which was originally derived for zero

mean data and factors, by allowing factors with possibly non-zero mean. '8

18 Andreou et al. (2020) also show that an alternative choice for w is provided by the optimal weight which minimizes
the Asymptotic Mean Square Error (AMSE) of the factor estimator. In a simplified setting k° = 1, under the same set
of assumptions of Theorem A.2 and the additional assumption N1/T? = o(1), they show that the average AMSE is
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For a given choice of the weight w, let F* = [f&*/ . fer']' be the (T, k) matrix of estimated
common factors, the estimators of the common factor loadings, group-specific factors and loadings are
the same as in equation (A.13), Definition 2, and equation (A.14), respectively, where the estimator
Feis replaced by Fe*. In unreported Monte Carlo experiments we find that the estimator ff* with
weight w = 1, has better small sample properties than the estimators ff and ff*. For this reason in the

empirical application we use ff* as the estimator of the common factors with weight w = 1.

A.5.2 Inference on the number of common factors via canonical correlations

In order to infer the dimension k¢ of the common factor space, we consider the case where the number
of pervasive factors k; and ks, in each sub-panel is known, hence £ = min(ky, ko) is also known. As
explained in AGGR, all the results remain unchanged when the numbers of pervasive factors k; and
ko are estimated consistently. From Proposition A.1, dimension £¢ is the number of unit canonical
correlations between h, ; and ho .

We consider the hypotheses:

HO)y={l>p1>...>2p}, HU)={pr=1>p2>...>pr},...,
HE)={p = .. =pre=1>pre1 > ... 2 p}, ...,
and finally H(k) ={p1 = ... = pp = 1},

where p1, ..., pi, are the ordered canonical correlations of h; ; and hs ;. Generically, H (k¢) corresponds
to the case of £° common factors and k1 — k¢ and ky — k¢ group-specific factors in each group, and
H(0) corresponds to the absence of common factors. In order to select the number of common factors,
let us consider the following sequence of tests: H, = H(k°) against Hy = | Jy., .. H(r), for each
k¢ =k, k—1,...,1. To test Hy against Hy, for any given k¢ = k. k — 1,..., 1_we consider the test
statics & (k) defined in equation (2.11). The null hypothesis Hy = H (k°) is rejected when & (k¢) — k¢
is negative and large. The critical value is obtained from the large sample distribution of the statistic
when Ny, Ny, T'— oo, provided below. The number of common factors is estimated by sequentially
applying the tests starting from k¢ = k, the maximum number of common factors.

Let us denote N = min{/N;, Na} and py = \/m Without loss of generality, we set N = N,

which implies pny < 1. We assume that:
VT/N =o0(1), N/T? =0(1) and py — p, with g € [0,1]. (A.17)

Note that the assumption N/T? = o(1) is made by Lettau and Pelger (2020a), and is more restrictive
than the assumption N/T°/2 = o(1) made by AGGR in their equation (4.1).

minimized for w = [Ny Eg?l] /N1 Egg)g] This result also holds when the factors have possibly non-zero mean as in the
set-up of this paper.
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The large sample distribution of the test statistic for the number of common factors is derived
following the same arguments as in AGGR. In Proposition B.2 of the Online Appendix we show that,
fort=1,...,T and j =1, 2, the estimator ijt is asymptotically equivalent, up to negligible terms, to
Hi(h,, + wj//N; + b;+/T) where

-1

N;
1 /
uie = | ¥ E AN E :>‘J1‘€J1t7
J =1 J i=1

N T —1
o 1 < 1 v 9
b = N. Z >‘j:i)‘;',i (f Z hji%‘,t) n?,thj,t
J =1

and 77, = ]ghm N, ZZ | Ele3;,|F] is the limit average error variance conditional on the sigma
— 00

field 7, = o(F,,s < t) generated by current and past factor values Fy = (ff, f7;, f5)', and A

= (A{;, A¥;)". The zero-mean term u;, drives the randomness in group factor estimates conditional
on factor path. Vector b;; is measurable with respect to the factor path and induces a bias term at
order 7! in principal components estimates. Vectors u;,; and b;, depend on sample sizes but, for
convenience, we omit the indices IV, T'. and 7:[j is a nonsingular stochastic factor rotation matrix.
This expansion extends the results in Lettau and Pelger (2020a).

Let ¥, jx1(h) = Cov(ujy, uk—n|F:) be the conditional covariance between w;; and uy ¢, i.e.

! 1 Nj Ny 1 Ny -1
3 Y .. - . / .
by :Jkt Z Aj i \/W ; z:Z1 )‘J,Z)‘k,ecov(gj,z,h Ek,é,tfh‘}-t) (Nk ; Ak, k,z) )
and 3, iz, (—h) = Zygjs(R), for j, k=1,2 and h=0,1,.... We define ¥, ;;; = %, ;:(0), and set
Sujki(h) = plim ¥, (h)and Ty ; = Jim L3 i M X and let

Jv°
Nj,Nk%OO

&9‘\(

-y ’Jnﬂhﬂ (A.18)

be the large sample counterpart of b;,, from Assumptions B.2 - B.4. The following Theorem A.1
provides the asymptotic distribution of the infeasible test statistic é (k°).

THEOREM A.1. Under Assumptions B.1 - B.7, and the null hypothesis Hy = H (k°) of k® common
factors, we have:

—1/2 2 e, 1 1 S 1§ d
NVT - Q" - |€(k°) — k‘+2Ntr{E EU}+2Ttr{2 23}}—>N(0,1), (A.19)
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where ¥, = T Lyl fefe. Moreover Sy = % ST &)t &)tc | and

—(0) 1< 1 & -
Ab, = by — by — (T Z(bl,t—bQ,t>F;> (TZ ’ ;) F,
t=1

t=1
3 - slee) | 5 (cc) 3
Sy = Z( S0+ B, — S, — anECS )
Qui = = Z E tT{EUt EUt )}]
h—foo
Sva(h) = w28 (h) + 29 (b — ) (h) = ux (), h=..,-1,0,1
Ut u,11,t u,22,t My 12t M2y, 91,4\ 1), o LU L

where the upper index (c) denotes the upper (k°, 1) block of a vector, the upper index (c, ¢) denotes the
upper-left (k*, k°) block of a matrix, and Fy = [f¢', i), £3) = [(Ff = ). (Fiy = B) (50— F3)T,
with f¢ =30, f¢/T, and f3 =S, f3,/T, for j = 1,2.

Theorem A.1 corresponds to Theorem 1 in AGGR, where estimator of the canonical correlations of
the estimated factors (used to compute f (k)), and the sample covariance matrix of the true factors icc
have been modified to take into account that under our new Assumption B.2 the factors are allowed to
have a non-zero mean.

To get a feasible distributional result for the statistic ¢ (k¢), we need consistent estimators for the
unknown scalar tr {flc_cliy} and tr {f]c_clf) B}, and matrix 2y ; in Theorem A.1. To simplify the
analysis, we make the simplifying assumptions that the errors ¢;;, are (i) uncorrelated across sub-
panels j and individuals ¢, at all leads and lags, and (ii) a conditionally homoscedastic martingale

difference sequence for each individual 7, conditional on the factor path, that is,

Cov(gjips €kpi—nlFi) = 0, if either j # k, ori # £,
E[gj,i,t‘{gj,i,tfh}hzlaft] = 0, E[«"’Jii,t’{%,i,ph}hzhft] = Vjii (say), (A.20)

for all 7, 4, t, h, see Assumption B.9 in the Online Appendix for more details.! Then, we have
Su =13 + 2%, Su(0) =Sy = @22 + 2, Quy = —tr (22}, (A2

Matrices %, ;; and ¥, ;; = %,;;(0) do not depend on time. In Theorem A.2 we show that, by
replacing Y. with its large sample limit /., and matrix ¥y by a consistent estimator Su (defined
in the Thoerem), the asymptotic distribution of the feasible statistic is unchanged with respect to that
of Theorem A.1.

YOur simplifying Assumption B.9 is the same as Assumption A.9 in AGGR.
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THEOREM  A2. Let Yy = (No/NDEEY + 2L, with
. N R N . .
Youjj = (ﬁ/\;/\j) (ﬁA;FjAj) <ﬁA;Aj) where A; = [Aj : Aj?], A; and A} are the loadings
estimators defined in equations (A.13) and (A.14), f‘j = diag(¥;;, i =1,..., N;) with
| T
i = D (e — )’ (A.22)

t:l

where £;; = %ZL Ejitrand €1 = Yjit — )\C /ft /\5’ jt, for j = 1,2. Define the test statistic:

£(k°) = N\/_( tr{2? })_1/2 {f(k) k:%L%tr{f]U}}, (A.23)

and let Assumptions B.1 - B.9 hold. Then:

(i) Under the null hypothesis Hy = H (k®) we have: £(k°) 4N (0,1).

(ii) Under the alternative hypothesis Hy = ) H(r), we have: &(k¢) 2> —
0<r<kec

Theorem A.2 corresponds to Theorem 2 in AGGR, where their original estimator residuals’variance
N 1 T

Vigi = T 2ut=1 jzt
regressions the (A.13) and (A.14) are not demeaned and both regressions do not include the constant

has been substituted by 7;;; in equation (A.22). As the dependent variables in

terms, the residuals of these regressions might not be zero mean by construction, and therefore 77,
is an appropriate estimator. We also note that if the errors are weakly correlated across series and/or
time, consistent estimation of requires thresholding of estimated cross-sectional covariance and/or
HAC-type estimators. Finally, Theorem A.2 remains the same when the estimator ftc* (or ff*) is used
instead of ff.

46



ONLINE APPENDIX

“Factors Common to Individual Stock

and Sorted Portfolio Returns”.

Elena Andreou! Patrick Gagliardini’> Eric Ghysels® M. Rubin*

Date: February 7, 2022

!'University of Cyprus and CEPR, e-mail: elena.andreou@ucy.ac.cy
2Universita della Svizzera italiana, Lugano and Swiss Finance Institute, e-mail: pat rick.gagliardini@usi.ch

3University of North Carolina - Chapel Hill and CEPR, e-mail: eghysels@unc.edu
4EDHEC Business School, Nice, France, e-mail: mirco.rubin@edhec.edu



OA.1 Data Description

We consider three panels of monthly returns in our analysis, namely (i) individual US stock returns
from CRSP, (ii) the panel of test asset portfolios from the April 2021 release of the database “Open
Source Cross-Sectional Asset Pricing” created by Chen and Zimmermann (2021), CZ21 hearafter,
and (iii) the panel of factors from the zoo considered by CZ21.> For all three panels, we consider
two samples: (i) the chronological time sample which include all data available in each dataset from
Jan. 1966 to Dec. 2020, and (ii) the publication time sample which goes from Jan. 1996 to Dec. 2020,
where the CZ21 test assets portfolios and factors enter with their publication date in the database. We
split the 660 (resp. 300) months in the chronological time (resp. publication time) sample into B =
11 (resp. 5) non-overlapping blocks of 60 months, denoted as b = 1,..., B. The first block in the
chronological time (resp. publication time) sample is from Jan. 1966 to Dec. 1970 (resp. Jan. 1996 to
Dec. 2000) and the last block is from Jan. 2016 to Dec. 2020. Within each block, we consider only
a balanced sample of individual stocks and test asset portfolios, that is we only include assets with
returns available for all the 60 months. We work with 5-year non-overlapping samples to address the
concern of survivorship bias if we were to use the full sample of individual stocks. Similar to the
arguments in Kim and Korajczyk (2021), one can view the 5-year span as a compromise between a
sample large enough for our test procedure to have desirable small sample properties and the concern
of capturing new and disappearing stocks. Figures OA.1 and OA.2 report the number of individual
CRSP stocks, test assets portfolios and factors available in each of the B blocks in the chronological
time and publication time samples, respectively. Both samples are described in more detail below.

The first chronological time sample panel of test assets consists of individual stocks available from
the Center for Research in Security Prices (CRSP) traded on the New York Stock Exchange (NYSE),
the American Stock Exchange (AMEX) and the NASDAQ for the period from January 1966 through
December 2020. We focus on common stocks (CRSP share codes 10 and 11) and delete all stocks
having less than 60 consecutive monthly returns. We end up having an unbalanced panel for the
returns of 14948 different stocks. The average cross-sectional size, computed in each month, is about
4270 stocks. In the first (resp. last) block, that is the block 1966-1970 (resp. 2016-2020), we have 1539
(resp. 2668) stocks. The publication time sample is constructed analogously but goes from January
1996 to December 2020. Applying the same filters as above, we end up having an unbalanced panel
for the returns of 8131 different stocks. The average cross-sectional size, computed in each month, is
about 4170 stocks. In the first (resp. last) block, that is the block 1996-2000 (resp. 2016-2020), we
have 3779 (resp. 2668) stocks.

Turning to the test assets portfolios and factors from CZ21, we consider the unbalanced panel of

SData for the “Open Source Cross-Sectional Asset Pricing” project are available on Andrew Chen’s website: https :
//sites.google.com/site/chenandrewy/open—-source—ap
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1215 portfolios formed starting from the 205 firm-level characteristic, or predictors, having predictive
ability for firm-level returns according to the four asset pricing meta-studies by McLean and Pontiff
(2016), Green, Hand, and Zhang (2017), Hou et al. (2020), Harvey et al. (2016). The returns of the 205
factors in our zoo panel are those of long-short portfolios of the upper and bottom quantile portfolios
constructed by sorting stocks according to each characteristic.® Following CZ21, we consider test
asset portfolios and factors associated only with characteristics classified either as “clearly” or “likely”
returns predictors in their study.’

In the chronological time sample we include all the quantile portfolios and factors available in the
baseline version of the database of CZ21, leading to an unbalanced panel of 1214 portfolios associated
with 205 characteristics.® The average cross-sectional size, computed in each month, is about 1113
portfolios. In the first (resp. last) block, that is the block 1966-2000 (resp. 2016-2020), we have 855
(resp. 1001) test asset portfolios and 141 (resp. 171) factors.

In the publication time sample we include all the quantile portfolios available in the baseline
version of the database of CZ21, after excluding all (binary) portfolios associated to binary
characteristics. This leads to 1159 portfolios associated to 177 characteristics.” In each 5-years
block going from January of year y — 4 to December of year y, a factor and the relative test assets
portfolios from CZ21 are included for all the dates corresponding to the rolling window only if the
paper introducing the factor was published in year 3 + 1, or before.!” These choices allow us to have
in the first rolling window (resp. the last), that is the window 1996-2000 (resp. 2015-2020), 59 (resp.
171) factors, and 276 (resp. 959) test asset portfolios.

Finally, for both samples we also download from Kenneth French website the 5 Fama and French
factors: Market, SMB, HML, Operating Profitability (RMW), and Investment Style (CMA), together
with the momentum factor (and based on prior 2-12 months returns), and the 1 month risk free rate

which is used to compute excess returns for the panels of test assets.

6CZ21 construct factors following the methodology of the papers where they have been introduced, therefore most
factors are constructed from long-short portfolios of equal-weighted quintiles. Value-weighting or other quantiles are used
in the factor construction only for the few papers that emphasize these constructions.

7CZ21 define as “clear predictor” a characteristic which is expected to achieve statistically significant mean raw returns
in long-short portfolios (e.g. t-stat > 2.5 in a long-short portfolio, monotonic portfolio sort with 80 bps spread, t-stat > 4
in a regression, t-stat > 3 in 6-month event study). On the other hand, a “likely predictor” is a characteristic expected to
achieve borderline evidence for the significance of mean raw returns in long-short portfolios (e.g. t-stat = 2.0 in long-short
with factor adjustments, t-stat between 2 and 3 in a regression, large t-stat in 3-day event study).

8For 28 characteristics only 2 quantile portfolios are available, for 7 characteristics 3 quantile portfolios are available,
for 5 characteristics 4 quantile portfolios are available, for 105 characteristics 5 quintile portfolios are available, for 1
characteristic 6 quantile portfolios are available, for 1 characteristic 7 quantile portfolios are available, and finally for 58
characteristics all 10 decile portfolios are available.

"More precisely, for 7 characteristics only 3 quantile portfolios are available, for 5 characteristics 4 quantile portfolios
are available, for 105 characteristics 5 quintile portfolios are available, for 1 characteristic 6 quantile portfolios are
available, for 1 characteristic 7 quantile portfolios are available, and finally for 58 characteristics all 10 decile portfolios
are available.

10Publication dates are also available in CZ21.
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Figure OA.1: Number test assets and factors in the Zoo, full sample: 1966-2020
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(b) CZ21 Factors in the zoo

Panel (a) displays the number of assets in each balanced panel of CRSP individual stocks (red squares) and CZ21 test
assets (blue dots). These two panels of assets are constructed in every year y based on the 5-years non-overlapping window
starting in year y — 4 and ending in year y, for each y = 1970, ..., 2020. Panel (b) displays the number of factors in the our
700, that is the number of facotrs in the CZ21 dataset (blue dots). In every 5-year window we include all assets and factors

with non-missing returns for all the 60 months as available in the CZ21 dataset.
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Figure OA.2: Number test assets and factors in the zoo, publication time dataset 1996 - 2020
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(b) CZ21 Factors in the zoo

Panel (a) displays the number of assets in each balanced panel of CRSP individual stocks (red squares) and CZ21 test
assets (blue dots). These two panels of assets are constructed in every year y based on the 5-years non-overlapping window
starting in year y — 4 and ending in year y, for each y = 2000, ..., 2020. Panel (b) displays the number of factors in the
our zoo, that is the number of facotrs in the CZ21 dataset (blue dots). In every 5-year window we only include assets and
factors with non-missing returns for all the 60 months. Let ¥, be the publication year of a certain factor. CZ21 test assets
and the corresponding factor are included in our dataset, for all years y > y,s, that is we include them in our sample only
if their full history is available at least from y,,,;, — 4.
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OA.2 Supplementary empirical results

Figure OA.3: Variability of the FF factors RMW, CMA and Momentum explained by common and
specific factors in Chen and Zimmermann (2021) test assets and CRSP individual stocks.
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(a) RWM (operatlng profitability): CZ21 test assets (b) RWM (operatlng profitability): CRSP stocks
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(e) Momentum : CZ21 test assets (f) Momentum : CRSP stocks

For each the Fama and French factors and Momentum the figure displays the fraction of variance (R?) explained by the
three common factors between CRSP and CZ21 test assets (blue bars which are the same in both panels), CZ21’s group-
specific factors (orange bars, left panels), CRSP group-specific factors (orange bars, right panels), and unexplained by
common and group-specific factors (yellow bars). For each year y we report results based on the block starting in year y-4
and ending in year y, for each y = 1970, ..., 2020.
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Figure OA.4: Average R? of first 10 pervasive factors for Chen and Zimmermann (2021) test assets
and CRSP individual stocks, full sample: 1966-2020
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(b) CRSP individual stocks

Panel (a) [resp. Panel (b)] displays the average fraction of variance (R?) of the individuals on the balanced panel of CZ21
test assets [resp. CRSP individual stocks] explained by the first 10 RP-PCs extracted from the same panel. The bottom blue
area in each panel represents the average R? of the first RP-PC, the second (from the bottom) orange area represents the
average R? of the second RP-PC, and so on. Lettau and Pelger’s RP-PCs are computed (fixing v p = —1) on balanced
panel of assets. In every year y each panel of assets is constructed for the rolling window starting in year y-4 and ending in
year y, for each y = 1970, ..., 2019. In every 5-years rolling window we only include assets with non-missing returns for
all the 60 months.
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OA.3 Composition of Common Factors

Figures OA.5 - OA.7 show the composition of the three common factors in terms of their rescaled
factor-loadings for the test asset portfolios for four different 5 years windows: 1966-1970 (first
window in our sample), 1996-2000 (includes dot-com bubble and its burst), 2005-2010 (includes
financial crisis), and 2015-2020 (last window, includes Covid). Weights are grouped according to
the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their paper).
The factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red
while those of highest quantile portfolios (e.g. 10" decile or 5*quintile) are in blue. Each bar shows
the total weight of a category with the contribution of each quantile-portfolio in the categories. Our

group-factor model (2.10) can be written for each date 7 in the 5-year window b as:

yr =Ny fr +e,, with T€ED, (OA.1)
where Yr = [y/l,‘r’ yén’]/’ fT = [ 7(':,? f,7,'7 5,7/'],’ Er = [6/177'7 8,2,7']/’ and
A A 0
Ap=| b et (OA.2)
Ab,2 0 Ab,2

Let A, be the estimate of A, obtained by the estimation procedure for group-factor model of Section
A.5 applied for dates 7 € b. Instead of representing the upper (N; x k¢) block of Ay, that is [\gﬁl, we
represent the upper (V; x k¢) block of A,(A}A,)~!, which are the weights of the V; test asset portfolios
in the k¢ portfolios mimicking the common factors fTC when combined with N, individual stocks (with
weights equal to the lower (N, x k¢) block of Ay), that is (AjA,)~'A} 5,. This choice allows us to
understand the composition of the common factors in terms of all the test asset portfolios. We note
that the sign of each of the common factors and the corresponding loadings are not identified, due
to the sign indeterminacy of principal components applied group by group and also of the canonical
correlation analysis applied on the PCs. At this stage we have not imposed any sign restrictions to
represent the loadings.

Figure OA.5 shows that cross the the vast majority of all the loadings of test asset portfolios on
the first common factor have the same sign, therefore this factor can be mostly interpreted as a “level”
factor. The (absolute value of) correlations of the first common factor with the CRSP-VW index return
are 0.88, 0.69, 0.93 and 0.93 in the 4 windows considered, therefore the first common factor does

proxy relatively well, but not perfectly, for the aggregate market return.
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f first common factor in different 5-year windows
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Continues into next page.
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Figure OA.5 (cont’d)
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(d) 2016-2020

The figure displays the factor loadings of the first, out of the three, common factor for our group-factor model estimated on the balanced panels of
individual stocks and CZ21-portfolios in four different 5-years windows: 1966-1970 in Panel (a), 1996-2000 in Panel (b), 2005-2010 in Panel (c), and
2016-2020 in Panel (d). Weights are grouped according to the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their
paper and our online appendix). Factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red while those of highest
quantile portfolios (e.g. 10*" decile or 5t quintile) are in blue. Each bar shows the total weight of a category with the contribution of each quantile-
portfolio in the categories. The loadings of the common factors are computed as described in Section OA.3. No sign restriction is imposed on the sign of

the loadings and factors.
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Loadings of second common factor in different 5-year windows

Figure OA.6
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Continues into next page.

Figures OA.6 and OA.7 show the composition of the second and third common factors,
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Figure OA.6 (cont’d)
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(d) 2016-2020

The figure displays the factor loadings of the second, out of the three, common factor for our group-factor model estimated on the balanced panels of
individual stocks and CZ21-portfolios in four different 5-years windows: 1966-1970 in Panel (a), 1996-2000 in Panel (b), 2005-2010 in Panel (c), and
2016-2020 in Panel (d). Weights are grouped according to the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their
paper and our online appendix). Factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red while those of highest
quantile portfolios (e.g. 10*" decile or 5t quintile) are in blue. Each bar shows the total weight of a category with the contribution of each quantile-
portfolio in the categories. The loadings of the common factors are computed as described in Section ??. No sign restriction is imposed on the sign of

the loadings and factors.

Online Appendix - 11



f third common factor in different 5-year windows
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Figure OA.7 (cont’d)
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The figure displays the factor loadings of the third, out of the three, common factor for our group-factor model estimated on the balanced panels of
individual stocks and CZ21-portfolios in four different 5-years windows: 1966-1970 in Panel (a), 1996-2000 in Panel (b), 2005-2010 in Panel (c), and
2016-2020 in Panel (d). Weights are grouped according to the 34 categories defined by CZ21 listed in alphabetical order (see supplementary files to their
paper and our online appendix). Factor weights of the lowest quantile portfolios (e.g. first decile or quintile) are shown in red while those of highest
quantile portfolios (e.g. 10*" decile or 5t quintile) are in blue. Each bar shows the total weight of a category with the contribution of each quantile-
portfolio in the categories. The loadings of the common factors are computed as described in Section ??. No sign restriction is imposed on the sign of

the loadings and factors.
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respectively. Differently from the mostly the uniformity of sign of the weights of first factor, the second
factors is constituted by long and short positions of individual test asset portfolios. In some windows,
we can identify groups of categories in which the lowest and largest quantile portfolio loadings
(mostly) have opposite signs. For instance, in 1966-1970 and 2016-2020 the second factor seem
to have mostly opposite exposures to the extreme quantiles of “valuation”, “volatility” and “’leverage”
(last window only). The second common factor in 1996-2000 (resp. the third one in 2005-2010) have
sizable exposure of the same signs to the bottom (resp. bottom and top) quantiles of “investment” and
“investment alternative” portfolios. Finally, the third factor in 2016-2020 has clear opposite exposures
to the extreme quantiles of “profitability” portfolios.

Some caution should nevertheless be placed on this kind of analysis because model (2.10) implies
that the £° common factors are identified in our model up to a rotation, implying that their loadings
and their interpretation of each one of the factors can change, depending on which linear combination
of them is chosen. It is also possible that applying RP-PC as in Lettau and Pelger (2020b) can generate
common factors of a different nature with respect to those we found simply applying PCA in the first

step of our estimation.

OA.4 Performance evaluation measures

We describe the various performance evaluation measures both in-sample and out-of-sample starting

with the former.

In-sample performance evaluation

Let IV}, be the total number of assets for which the full sample of returns is available in group j and
block b, with j = 1,2 and b = 1, ..., B. For each model m and for each group of assets j, we compute

the following six performance measures across the entire sample, that is across all B blocks:

1. Total R? of Kelly et al. (2019), which for our model with betas changing across blocks can be

expressed as:

B Njp am 1 ogm 2
zb:l Zlil ZTEb (iji’T - /8j7i7bf7' )
_ 5 ~ .
Eb:l Zzzjib ZTEb y]2',i,7'

It represents the fraction of return variance for all the assets present in group ;7 explained by both

Tot. R} (m) =1

the dynamic behavior of the loadings across different blocks, as well as by the contemporaneous

factor realizations, aggregated over all assets and all time periods, that is across all B blocks. The
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Total R? summarizes how well the systematic factor in a given model specification describes the
realized riskiness in the panel of individual stocks. In the case of observable factors, i.e. models
in (7), the coefficients 5;% are estimated by an OLS regression without intercept of excess returns
on factors, compatible with model (4.13). By construction, the ]T% and factors for all other
models (ii) - (vi) are also estimated by PCA, or variation of it, compatible with a linear model
without intercept. !!

2. Predictive R* from Kelly et al. (2019), which for our model with betas changing across blocks

can be expressed as:

B Nj Am 1 Fm 2
Zb:l Zizl ZTeb (yj,iﬁ - jﬂl,bfT >
B B N, :
Dbt Dinh > e y?w

Pred. Ri(m) =1

where f™ = Tib > rep /7 is the sample average of the factors’realizations within all the T, dates

m/
2,07

without intercept. Predictive R? represents the fraction of realized return variation explained

in block b only, that is the same block in which the are estimated compatible with a model
by the model’s description of conditional expected returns, and summarizes the model’s ability
to describe risk compensation only through exposure to systematic risk. Our measure of the
Predictive R? is slightly different from the in-sample Predictive R* of Kelly et al. (2019) as ours
allows for factor risk premia which vary across different blocks, while theirs imposes constant
risk premia across dates.'?

3. Pricing error R? of Kelly et al. (2020), which is defined as:

B Niv (1 am o em 2
S S (& e i — B4
- 2
B N;
S S (& e viir)

Y

Pr.Err. R3(m) =1

that is the fraction of the squared unconditional mean excess returns that is described by factors

and betas. In contrast to the previous two R? measures, this focuses on whether the model’s

"We also consider the Tot. R? with constant, an alternative way to compute Total R?, defined as:

2

B N, R N

5 > b=t Pty Zreb (yjn'ﬁ - o‘?}i,b - ﬂ%,/bf;n)

Tot. Rconst,j (m) =1- B Ny 5 )
Zb:l > i Z‘reb Y5

and where @;”Z , and Bjml’b are estimated by regressions including the intercept of the excess returns on the factors. This
measure is related to the idiosyncratic variation measure considered by Lettau and Pelger (2020a), which they define as
the average variance of the residuals after regressing the returns of test assets on the factors and including the intercept in
the regression.

2Due to the rotational indeterminacy of factors which are re-estimated across different blocks, we cannot impose a
constant factor average across different blocks.
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fitted values do a good job of explaining assets’ average returns. This metric is close in flavor to
formal statistical tests (like the GRS test) of whether or not a cross section of test assets’ pricing
eITors are Zero.

4. Average RM S, an alternative to the Pricing error R?, which is computed as the average
over different blocks of the RM S, measure considered by Lettau and Pelger (2020a) and
computed block by block. For each block b, group j and model m, RMS, is computed as
RMS, jp(m) = \/(1/Nj7b) : Zf-vzjf(dﬁb)? , and &}, is the estimated intercept of the same

regressions described in the construction of T'ot. R* with constant. Then, Average RM S; ,(m)

— (1/B) - .0 RM S, js(m). Tt assesses the model ability to characterize average excess
returns of individual assets. Also this measure is close in flavor to formal statistical tests (like

the GRS test) of whether or not a cross section of test assets’ pricing errors are zero.

Out-of-sample performance evaluation

We implement the out-of-sample version of the Total R?, Pricing R? and Predicitve R? where
betas and factor loadings, needed to reconstruct the latent factors out-of-sample for date 7 in block
b are computed using information form the previous block b — 1. Analogously to Lettau and Pelger
(2020b) we also compute the annualized Sharpe Ratio of the “Maximum Sharpe-ratio portfolio” that
can be obtained by an optimal (in a mean-variance sense) linear combination of the factors, which are

ultimately portfolios of individual stocks. Our out-of-sample performance measures are defined as:

1. OOS Total R?, which for our model with betas changing across blocks can be expressed as:

B Njb—1 Am 1 rm 2
Zb:2 Zi:l reb \Yiir — Bj,i,bfﬂb—l

B Ny
Do 2ii reb yJQ}iJ

OOS Tot. R:(m) = 1

The beta coefficients B;”Zb are estimated using information available in block b — 1 only, while
returns y;; . are observed at dates 7 in block b. For models with observable factors, [}, _; is
simply the observed value of the factor at date 7 in block b, as all our observable factors are
returns of portfolios of individual stocks observed at date 7 with weights computed at date 7 — 1.
Instead, when a model includes latent factors, we compute their values at date 7 by running
cross-sectional regressions of the returns y; ;  for all assets available both in the previous block
b — 1, and in the current one b, on the factor loadings estimated in the previous block b — 1 only.
More specifically, model v (resp vi) implies that in block b the DGP for the return of individual

stocks (resp. test assets) is:
Yir = N5 [+, with TED. (OA.3)
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Let /A\}’fb be the PC estimator of matrix A;; obtained using the returns of all assets in group
j for dates 7 € b. Then, compatible with model (OA.3), factors ffqu are computed as

Tl = (/A\fbl 1]\%71)*1/1%’7 1 Yj- for all dates 7 € b. Analogously, we can write the DGP
(2.10), corresponding to models (iii) and (iv), as in equations (OA.1) and (OA.2). Let A, be the
estimate of A, in equation (OA.1) obtained by the estimation procedure for group-factor model

of Section A.5, then f7}, , is an appropriate subset of (Njp 1 Ajp1) ' A)y 1 )7, for dates 7 € b
. OO0S Pricing R?, which can be expressed as:

B Nip—1 (1 Am 1 2
J,b— 1 . __ [Am m
Zb:Q > is <Tb Zreb Yiir 5,i,b—1 T|b71>

OOS Pr.Err. R} (m) = 1 ~ 5
B 7,
Dbt 2ot (Tib > oreb ij)

Y

where all quantities are computed as described for the OOS Total R>.

. 00S Predictive R?, which can be expressed as:

R 2
ZB ZNj,bfl . _ AmI!IFm
b=2 2si=1 reb \ Yiir b T)b—1,7—1

B N oo
Do il Dore yJQZT

OO0S Pred. R (m) =1

rm
where fT‘b*l,T*l

ending at date 7—1, and where the factor is reconstructed (if necessary) for each date as described

is the sample average of the factor realizations computed over the 60 months

for the computation of the OOS Total R?, that is regressing returns in each month 7 on loadings
estimated in the previous block b — 1.

. Maximum Sharpe-ratio, Maz. SR, that is the realized Sharpe Ratio of a portfolio of “factors”
(returns) of each model :\Lb—l combined at each date 7 in block b with weights wyy, =
(f]j[fb_l)‘l Afy—q, Where (i, and i%_l are the sample mean and covariance, respectively,
of all factors in model m computed using their observations in block b — 1. Therefore, both
factors and their weights in the Maximum Sharpe Ratio portfolio in block b are computed using

the factor loadings estimated in block b — 1.
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Table OA.1: Average RM S,,, and Total R* computed from regressions with intercept.

In-Sample
Average RM S, Total R2, with constant

N. of factors, K 1 3 4 5 6 1 3 4 5 6
r: CRSP, f: FF + mom 1.99 190 191 2.07 2.08 15.86 24.12 2640 27.79 2991
r: CZ21, f: FF + mom 091 0.60 0.62 0.65 0.66 76.03 90.59 9235 91.53 93.09
r: CRSP, f: 3CF 1.69 28.18

r: CZ21, f: 3CF 0.44 93.35

r: CRSP, f: 3CF + CRSP spec. 1.67 1.67 1.66 31.32 34.02 36.58
r: CZ21, f: 3CF + CZ21 spec. 038 038 0.33 94.72  95.55 96.10
r: CRSP, f: PCA on CZ21 1.73 184 1.86 194 1.97 19.22 2652 2876 30.92 33.29
r: CZ21, f: PCA on CZ21 049 037 035 032 0.31 89.92 9487 9554 96.02 96.36
r: CRSP, f: PCA on CRSP 1.73 1.67 1.65 1.63 1.63 18.54 28.09 31.15 33.88 3641
r: CZ21, f: PCA on CRSP 050 047 047 046 046 87.13 9286 93.37 93.99 94.39

The table reports RM Sy, (left panel) and the Total R? (right panel) in percent for observable factor models (lines 1-2), a latent factor model with only
3 common factors (lines 3-4), a latent factor model with only 3 common factors between individual stocks and CZ21 portfolios (lines 3-4), a latent factor
model with 3 common factors between individual stocks and CZ21 portfolios together with 1, 2, or 3 CRSP-specific factors (line 5), a latent factor model
with 3 common factors between individual stocks and CZ21 portfolios together with 1, 2, or 3 CZ21-specific factors (line 6), a latent factor model where
the factors are K PCs extracted from the CZ21 portfolios only (lines 7-8), a latent factor model where the factors are K PCs extracted from the CRSP
individual stocks only (lines 9-10). Observable factor model specifications are CAPM, FF3, FF3 + Momentum, FF5, and FF5 + Momentum in the K = 1
,3,4.5,6 columns, respectively. The models are estimated on the rolling window starting in year y — 4 and ending in year y, for each y = 1970, ..., 2020.
Both RM S, and the Total R? are computed in-sample either for the excess returns of individual stocks (r : CRSP) or CZ21 portfolios (r : CZ21)
as described in Section 4.2, therefore taking into account all the estimation windows. All the linear models used to compute the T'otal R? include an

intercept, differently from the models used to compute the RM S, and from those used to produce the results in Table 1.

OA.5 Old and New Factors - Supplementary Results

Feng et al. (2020) find the following factors as having incremental contributions to the pricing of the
cross-section (with our R%s and || with respect to 3 common and 3 CZ21-specific factors appearing
in parenthesis): growth in long term net operating assets from Fairfield, Whisenant, and Yohn (2003,
R?* = 53%, |a| = 0.00%), net operating assets from Hirshleifer, Hou, Teoh, and Zhang (2004,
R? = 73%, |a| = 1.20%), three-year investment growth from Anderson and Garcia-Feijoo (2006,
R? = 65%, al = 0.79%), net external finance from Bradshaw, Richardson, and Sloan (2006,
R? = 92%, |a| = 1.23%), revenue surprise from Kama (2009, R? = 56%, || = 0.89%, for the
characteristic “Revenue Surprise” which enters the CZ21 database with the paper of Jegadeesh and
Livnat (2006)), betting against beta from Frazzini and Pedersen (2014, R?> = 95%, |a| = 1.64%),
robust minus weak from Fama and French (2015, R? = 92%, |a| = 0.90%), for the characteristic
“operating profits / book equity” entering the CZ21 database with the paper Fama and French (2006).
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Figure OA.8: RM S, from old factors
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(b) Test assets: CZ21 portfolios

For each 5-years rolling window ending in year y we compute the percentage RM S, generated by a linear factor model with 3 common factors between
individual stocks and CZ21 portfolios only (model (i)), with 3 common factors between individual stocks and CZ21 portfolios together with three CZ21-
specific factors (model (ii)), and by linear factor model where the factors are the first six PCs from the old factor zoo (model(iii)). Panel (a) displays
results considering as test assets individual stocks: we report the RM S, for model (i) as red squares, for model (ii) as red circles and for model (iii)
as blue downward triangles. Panel (b) displays results considering as test assets CZ21 portfolios: we report the RM S, for model (i) as black upward
triangles, for model (ii) as black diamonds and for model (iii) as blue stars. The models are estimated on the rolling window starting in year y — 4 and
ending in year y, for each y = 2001, ...,2020. RM S, are computed as described in Section 4.2, but taking into account only the 5-year window ending

in year y, and are reported in Panels (a) and (b) respectively.
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HXZ Investment and HXZ profitability from Hou, Xue, and Zhang (2015), were present in older
versions of the CZ21 database as “Change in Return on Assets” and “Change in Return on Equity”
entering 2018 with the paper Hou et al. (2020)). In the 2021 version of the database they are attributed
to Balakrishnan, Bartov and Faurel (2010), but are classified as “Indirect Signals” (see Section 2.4
and their Table 4), i.e. are modifications of other characteristics showing*“only suggestive evidence of
predictive power (e.g. correlated with earnings/price, modified version of a different characteristic,
in-sample evidence only)”, and therefore are not available. The characteristics “industry-adjusted
change in employees”, “industry-adjusted size” both from Asness, Porter, and Stevens (2000) are
not present in the CZ21 dataset, while “volatility of liquidity (dollar trading volume)” from Chordia,
Subrahmanyam, and Anshuman (2001) although in the CZ21 dataset, by construction are not present
in the rolling windows we consider in the current version of our analysis.

These results indicate that some of the new factors could provide additional information with
respect to the old ones in explaining US stock returns. To assess this issue, in the spirit of the
cross-sectional pricing exercises of Feng et al. (2020), we investigate which factors contribute to
substantial improvement of either T'otal R? or RM S,, for the panels of individual stocks and/or test
asset portfolios when added to the three common factors between individual stocks and the old CZ21
portfolios, and first three old CZ21-specific factors, that is we assess the ability of the new factors to
explain the variability and the mean of the returns of both groups of test assets when added to those
six factors. The exercise is somewhat similar the the two pass estimator in Feng et al. (2020). Their
procedure combines the double-selection LASSO method of Belloni et al. (2014) with the Fama and
MacBeth (1973) two-pass regressions to evaluate the contribution of a factor to explaining asset prices
specifically in a high-dimensional setting. The results in their Table 2 show that while most of the new
factors are redundant relative to the existing factors, a few have statistically significant explanatory
power beyond the hundreds of factors proposed in the past. Our procedure differs from the two above
papers in that we approach dimensionality reduction differently. We rely on a relatively small number
of factors, that is the three common factors and the first three CZ21-specific factors, as we have shown
they perform better than PCs form the factor zoo in explain test assets returns.

The double-selection estimator of Feng et al. (2020) is a Fama-MacBeth double machine learning
regularized regression approach. The double-selection procedure of Feng et al. (2020) and our
regressions result in analogous findings: the majority of factors in the zoo are redundant and only
few of them contain genuine new pricing information, as detailed below. In Table 2 of Feng et al.
(2020) a total of twelve out of roughly one hundred factors over the sample 2000 until 2015 appear
significant and robust according to their testing procedure.

From the results in our Table OA.5, we first note that the increase of Total R? generated by the

addition of new factor to the 6 old common and CZ21-specific factors is relatively small compared
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Table OA.2: Variability of factors in the zoo explained by 3 common factors between CRSP and the
old CZ21 test assets, and 3 first three group-specific factors old CZ21 test assets: smallest values.

New factor R?

Consensus Recommendation (2002) 24.5
Down forecast EPS (2002) 32.2
Up Forecast (2002) 3.9

Pastor-Stambaugh liquidity beta (2003) 31.3
Change in recommendation (2004) 17.9
Active shareholders (2005) 20.1
Inst own among high short interest (2005) 25.6
Systematic volatility (2006) 24.7
Earnings surprise of big firms (2007) 20.5
Change in Asset Turnover (2008) 23.1
Change in Net Working Capital (2008) 15.7
Customer momentum (2008) 153

Off season reversal years 6 to 10 (2008) 28.2
Off season reversal years 11 to 15 (2008)  23.0
Off season reversal years 16 to 20 (2008) 6.8
Return seasonality years 6 to 10 (2008) 5.6
Return seasonality years 11 to 15 (2008) 233
Return seasonality years 16 to 20 (2008) 13.0

Return seasonality last year (2008) 25.0
Return seasonality years 2 to 5 (2008) 10.9
Customers momentum (2010) 18.9
Suppliers momentum (2010) 32.1
Real estate holdings (2010) 29.0
Percent Operating Accruals (2011) 22.0
Put volatility minus call volatility (2011) 11.8
Inventory Growth (2012) 24.3
Dividend seasonality (2013) 14.2
Organizational capital (2013) 23.8
R&D ability (2013) 9.1

Growth in advertising expenses (2014) 21.7

For each 5-years rolling window ending in year y we regress each of the new factors (entering the database in year y) on the three common factors
between individual stocks and the old CZ21 portfolios, and first three old CZ21-specific factors, that is those computed using CZ21-portfolios available
only in year y — 1. The Table displays the name of Factors with a value R? < 35% in these regressions in chronological order of publication, together

with the value of the R2.The publication date in parenthesis next to each factor. We consider years y = 2001, 2002, ..., 2020.
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Table OA.3: Absolute value of the intercept of the factors in the zoo when regressed on the 3
common factors between CRSP and the old CZ21 test assets, and 3 first three group-specific factors
old CZ21 test assets: largest 15 absolute values and their t-stat.

New factor lo;|  (tstat)

Consensus Recommendation (2002) 20 (2.6)
Probability of Informed Trading (2002) 1.3 (2.6)
Pastor-Stambaugh liquidity beta (2003) 1.3 (2.6)

Idiosyncratic risk (AHT) (2003) 1.3  (1.8)
Firm Age - Momentum (2004) 1.9 (1.8)
Net Operating Assets (2004) 1.5 3.7
Inst own among high short interest (2005) 1.7  (1.0)
Mohanram G-score (2005) 1.3 (2.6)
Analyst earnings per share (2006) 1.7 (4.2
Net equity financing (2006) 1.3 @@.1)
Net external financing (2006) 1.5 (3.8)
Industry return of big firms (2007) 1.7 (3.0)
Efficient frontier index (2009) 1.2 (5.1)
Intermediate Momentum (2012) 1.4  (2.0)
Frazzini-Pedersen Beta (2014) 1.9 (-5.7)

For each 5-years rolling window ending in year y we regress each of the new factors (entering the database in year y) on the three common factors
between individual stocks and the old CZ21 portfolios, and first three old CZ21-specific factors, that is those computed using CZ21-portfolios available
only in year y — 1. The Table displays the name of factors with with the largest absolute values of the intercept in these regressions, in chronological
order of publication, together with absolute value of the intercept (c;). The publication date in parenthesis next to each factor. The t-statistics for the test

of significance of o; is computed using OLD standard errors are reported in parenthesis. We consider years y = 2001, 2002, ..., 2020.

Table OA.4: Regressions of significant factors in table 2 of Feng et al. (2020) on 3 common factors
between CRSP and the old CZ21 test assets only, and on the 3 common factors together with 3 first
three group-specific factors old CZ21 test assets.

New factor R%?on3CF R?on 3 CF and || on 3 CF and (tstat)
3 CZ21-factors 3 CZ21-factors
Growth in long term operating assets (2003) 50.28 53.95 0.03 0.1
Net Operating Assets (2004) 33.92 77.29 1.50 3.7
Change in capex (three years) (2006) 30.14 71.82 0.61 (-2.6)
Net external financing (2006) 88.23 91.84 1.45 3.8)
Revenue Surprise (2006) 51.31 54.84 1.02 “4.3)
Frazzini-Pedersen Beta (2014) 94.12 94.43 1.86 (-5.7)
operating profits / book equity (2006) 92.43 93.12 0.96 3.6)
Asset growth (2008) 64.34 87.72 0.16 (-0.7)

We regress each of the significant factors in table 2 of Feng et al. (2020) in the 5-years rolling window ending in year y, with y being the date in which
the factor enters in our database, on the three common factors between individual stocks and the old CZ21 portfolios only (regression (a)), and on the
three common factors together with the first three old CZ21-specific factors (regression (b)), that is those computed using CZ21-portfolios available only
in year y — 1. The Table displays the name of factors, their publication date, the R? of regressions (a) and (b), and the absolute value of the intercept

(a;) in regression (b). The t-statistics for the test of significance of oy; is computed using OLD standard errors are reported in parenthesis.
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the to T'otal R?* achievable with the 6 old factors only: the increase in Total R? ranges from 1.1% to
2.51% (resp. 0.06% to 0.38%) for individual stocks (resp. CZ21 portfolios) compared to a T'otal R?
achievable with the 6 old factors, which ranges from 26% to 38% (resp. 94% to 97%). Analogous
considerations can be made when looking at the RM S,,, which, in the best 10 cases, exhibit a decrease
ranging form 0.01 to 0.06 (resp. 0.04 to 0.02) for individual stocks (resp. CZ21 portfolios) compared
to a RM S, achievable with the 6 old factors, which ranges from 1.88 to 2.58 (resp. 0.27 to 0.45).
Second, none of the factors which appear as the best 10 ones in decreasing the RM S, of CZ21
portfolios, appear also as the best 10 ones in decreasing the RM S, of individual stocks, and only
2 factors, namely Net external financing (2006) and Book-to-market and accruals (2004) appear to be
among the top 10 contributors to T'otal R? both for CZ21 portfolios and individual stocks. Moreover,
two factors, namely Analyst earnings per share (2006), Frazzini-Pedersen Beta (2014), although they
seem to improve the pricing of the CZ21 portfolios, if anything they seem to be detrimental for the
pricing of individual stocks, as they increase the RM S,,.

Out of the 18 factors with large absolute value of o when regresses on the 6 old factors, we find that
Analyst earnings per share (2006), Frazzini-Pedersen Beta (2014), and Net equity financing (2006) are
among those generating the largest decrease in RM S, for CZ21 portfolios. Interestingly, the last two
are also among the significant factors identified with the methodology of Feng et al. (2020). Out of
these three factors, only Net equity financing (2006) appears as one of the top 10 contributors to the
increase of Total R? for CZ21 portfolios. Additionally, Revenue surprise (2006) is the only other
factor found significant by Feng et al. (2020) which also appears in the top 10 contributors to the
decrease in RM S, of the CZ21 portfolios.

Out of the 34 factors with small value of R? when regresses on the 6 old factors, we find that none
are among those generating the largest decrease in RM S, for CZ21 portfolios, while Inst own among
high short interest (2005), Inventory Growth (2012) are among those generating the largest decrease in
Total R? for CZ21 portfolios. Moreover, Systematic volatility (2006), Suppliers Momentum (2010),
Organizational Capital(2013) are among those generating the largest decrease in RN S, for individual
stocks, while Percent Total Accruals (2011) is among those generating the largest decrease in T'otal R?

for individual stocks.
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Table OA.5: Changes in Total R? and RM S,, due to new factors.

Panel A: T'otal R2, test assets: CRSP stocks

Panel C: Total RZ2, test assets: CZ21 portfolios

New factor Old fac. AR? New factor Old fac. AR?Z?
Top 10 Top 10

Growth in book equity (2010) 37.41 2.58 Total accruals (2005) 95.25 0.43
Investment to revenue (2004) 35.45 2.15 Operating Cash flows to price (2004) 95.39 0.37
Employment growth (2014) 39.68 2.11 Net external financing (2006) 96.07 0.37
Volatility smirk near the money (2010) 37.41 1.96 Change in equity to assets (2005) 95.25 0.36
Inventory Growth (2002) 34.53 1.91 Change in net financial assets (2005) 95.25 0.34
Growth in advertising expenses (2014) 39.68 1.90 Net equity financing (2006) 96.07 0.33
Taxable income to income (2004) 35.45 1.87 Equity Duration (2004) 95.39 0.33
Maximum return over month (2010) 37.41 1.84 Firm Age - Momentum (2004) 95.39 0.32
Cash to assets (2012) 39.01 1.83 52 week high (2004) 95.39 0.30
Net external financing (2006) 34.20 1.82 Growth in book equity (2010) 96.56 0.29
Bottom 10 Bottom 10

Inst own among high short interest (2005) 38.56 1.21 Real dirty surplus (2011) 96.74 0.08
Price delay coeff (2005) 38.56 1.20 Dividend seasonality (2013) 97.01 0.08
Leverage component of BM (2007) 29.94 1.19 Return skewness (2015) 96.01 0.08
Inst Own and Market to Book (2005) 38.56 1.17 Leverage component of BM (2007) 95.69 0.08
Dividend seasonality (2013) 38.97 1.17 Idiosyncratic skewness (3F model) (2015) 96.01 0.08
change in net operating assets (2004) 35.45 1.17 R&D ability (2013) 97.01 0.08
Breadth of ownership (2002) 34.53 1.17 Enterprise component of BM (2007) 95.69 0.07
gross profits / total assets (2013) 38.97 1.16 Change in Asset Turnover (2008) 95.09 0.07
Brand capital investment (2014) 39.68 1.12 Organizational capital (2013) 97.01 0.06
Return seasonality last year (2008) 26.86 1.11 gross profits / total assets (2013) 97.01 0.06
Panel B: RM S, test assets: CRSP stocks Panel D: RM S, test assets: CZ21 portfolios

New factor Old fac. ARM S, New factor Old fac. ARMS.
Top 10 Top 10

Organizational capital (2013) 1.88 -0.05 Taxable income to income (2004) 0.46 -0.05
Conglomerate return (2012) 1.93 -0.03 Analyst earnings per share (2006) 0.39 -0.05
Suppliers momentum (2010) 1.86 -0.02 Net debt financing (2006) 0.39 -0.05
Volatility smirk near the money (2010) 1.86 -0.02 Frazzini-Pedersen Beta (2014) 0.32 -0.05
Cash Productivity (2009) 1.77 -0.01 Change in net financial assets (2005) 0.47 -0.04
Earnings consistency (2009) 1.77 -0.01 Equity Duration (2004) 0.46 -0.04
Change in long-term investment (2005) 2.27 -0.01 Operating Cash flows to price (2004) 0.46 -0.04
Systematic volatility (2006) 2.04 -0.01 52 week high (2004) 0.46 -0.03
Inst Own and Turnover (2005) 2.27 -0.01 Revenue Surprise (2006) 0.39 -0.03
Growth in book equity (2010) 1.86 -0.00 Tail risk beta (2014) 0.32 -0.03
Bottom 10 Bottom 10

Change in financial liabilities (2005) 2.27 0.32 Net Operating Assets (2004) 0.46 0.02
Net equity financing (2006) 2.04 0.34 Price delay coeff (2005) 0.47 0.02
Composite equity issuance (2006) 2.04 0.37 Change in capex (three years) (2006) 0.39 0.02
Put volatility minus call volatility (2011) 1.66 0.41 Percent Operating Accruals (2011) 0.28 0.02
Efficient frontier index (2009) 1.77 0.45 Up Forecast (2002) 0.46 0.02
Down forecast EPS (2002) 2.28 0.47 Pastor-Stambaugh liquidity beta (2003) 0.46 0.03
Net Operating Assets (2004) 2.23 0.48 change in net operating assets (2004) 0.46 0.03
Up Forecast (2002) 2.28 0.55 Book-to-market and accruals (2004) 0.46 0.04
Change in recommendation (2004) 2.23 0.62 Down forecast EPS (2002) 0.46 0.04
Frazzini-Pedersen Beta (2014) 1.73 0.64 Change in recommendation (2004) 0.46 0.07

For each 5-years rolling window ending in year y we compute the percentage T'otal R? and RM S,, generated by a latent factor model with 3 common

factors between individual stocks and CZ21 portfolios together with three CZ21-specific factors (model (i)). When a new factor form the zoo enters in

the dataset we add this factor only to the six factors of model (i) and recompute the Total R? with this new set of seven factors (model (ii)). T'otal R2

and RM S, are computed using as test assets either the individual stocks or the CZ21 portfolios available in year y for both model (i) and model (ii). For

each set of test assets we report the top 10 and bottom 10 increases in T'otal R? (A R?), and the top 10 and bottom 10 decreases in RM S, (A RM Sy)

when a new factor is added in model (ii) to the 6 factors in model (i). We also report the Total R? and RM S,, obtained with the old factors only

(Old fac.), that is with the factors in model (i). The models are estimated on the rolling window starting in year y — 4 and ending in year y, for each

y = 2001, ..., 2020. Total R*’s and RM S, are computed as described in Section 4.2, but taking into account only the 5-year window ending in year

Y.
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Table OA.6: Changes in T'otal R? and RM S,, due to new factors. Old factors: 3 common factors

only.
Panel A: T'otal R2, test assets: CRSP stocks Panel C: Total R2, test assets: CZ21 portfolios
New factor Old fac. AR? New factor Old fac. AR?Z?
Top 10 Top 10
Taxable income to income (2004) 28.22 3.17 52 week high (2004) 89.42 3.13
52 week high (2004) 28.22 3.10 Price delay R-square (2005) 89.73 2.75
Net Operating Assets (2004) 28.22 2.75 Price delay SE adjusted (2005) 89.73 2.69
Long-vs-short EPS forecasts (2011) 31.35 2.74 Firm Age - Momentum (2004) 89.42 2.58
Unexpected R&D increase (2004) 28.22 2.70 Inst Own and Idio Vol (2005) 89.73 2.43
Deferred Revenue (2012) 30.89 2.62 Net Operating Assets (2004) 89.42 2.32
Percent Total Accruals (2011) 31.35 2.60 Inst Own and Turnover (2005) 89.73 2.18
Growth in book equity (2010) 29.86 2.58 Amihud’s illiquidity (2002) 91.70 2.18
Growth in advertising expenses (2014) 30.21 2.56 Inst Own and Market to Book (2005) 89.73 2.12
Cash Productivity (2009) 23.48 2.48 Intangible return using Sale2P (2006) 91.87 2.08
Bottom 10 Bottom 10
Idiosyncratic risk (AHT) (2003) 28.23 1.24 Return seasonality years 16 to 20 (2008) 92.02 0.16
Change in recommendation (2004) 28.22 1.24 Idiosyncratic skewness (3F model) (2015) 94.41 0.15
Up Forecast (2002) 28.64 1.23 Organizational capital (2013) 94.27 0.15
Real estate holdings (2010) 29.86 1.22 R&D ability (2013) 94.27 0.12
Return seasonality last year (2008) 21.03 1.21 Percent Operating Accruals (2011) 93.85 0.12
Put volatility minus call volatility (2011) 31.35 1.21 Consensus Recommendation (2002) 91.70 0.11
Inst own among high short interest (2005) 32.62 1.21 Change in Net Working Capital (2008) 92.02 0.11
Pastor-Stambaugh liquidity beta (2003) 28.23 1.15 Return seasonality years 6 to 10 (2008) 92.02 0.10
Dividend seasonality (2013) 30.98 1.02 Sin Stock (selection criteria) (2009) 94.26 0.10
Organizational capital (2013) 30.98 0.99 Real estate holdings (2010) 93.07 0.09
Panel B: RM S, test assets: CRSP stocks Panel D: RM S, test assets: CZ21 portfolios
New factor Old fac. ARM S, New factor Old fac. ARMS.
Top 10 Top 10
Cash Productivity (2009) 1.80 -0.08 Price delay SE adjusted (2005) 0.90 -0.38
Inst Own and Market to Book (2005) 2.14 -0.05 Price delay R-square (2005) 0.90 -0.35
Earnings consistency (2009) 1.80 -0.05 Inst Own and Idio Vol (2005) 0.90 -0.34
Change in Taxes (2011) 1.43 -0.03 Inst Own and Turnover (2005) 0.90 -0.31
R&D capital-to-assets (2011) 1.43 -0.02 Change in current operating liabilities (2005) 0.90 -0.26
Momentum based on FF3 residuals (2011) 1.43 -0.02 Inst Own and Market to Book (2005) 0.90 -0.26
Growth in book equity (2010) 1.45 -0.02 change in net operating assets (2004) 0.76 -0.25
Long-vs-short EPS forecasts (2011) 1.43 -0.01 Equity Duration (2004) 0.76 -0.25
Return seasonality years 16 to 20 (2008) 1.80 -0.01 Change in equity to assets (2005) 0.90 -0.20
Change in Forecast and Accrual (2004) 1.95 -0.01 Firm Age - Momentum (2004) 0.76 -0.20
Bottom 10 Bottom 10
Analyst earnings per share (2006) 1.85 0.46 Mohanram G-score (2005) 0.90 0.05
Net external financing (2006) 1.85 0.46 Up Forecast (2002) 0.65 0.06
Put volatility minus call volatility (2011) 1.43 0.49 Operating Cash flows to price (2004) 0.76 0.06
Net equity financing (2006) 1.85 0.51 Industry concentration (assets) (2006) 0.53 0.06
change in net operating assets (2004) 1.95 0.58 Efficient frontier index (2009) 0.29 0.06
Inventory Growth (2002) 1.84 0.59 Taxable income to income (2004) 0.76 0.07
Up Forecast (2002) 1.84 0.74 Industry concentration (equity) (2006) 0.53 0.07
Frazzini-Pedersen Beta (2014) 1.70 0.77 Return on assets (qtrly) (2010) 0.39 0.07
Change in recommendation (2004) 1.95 0.79 Book-to-market and accruals (2004) 0.76 0.07
Net Operating Assets (2004) 1.95 0.83 Composite equity issuance (2006) 0.53 0.12

Details see Table OA.5
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Figure OA.9: Total R? generated by old factors and its change due new factors. Old factors: 3
common factors and first 3 CZ21-specific factors.
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(c) Increase in Total R2. Test assets: CRSP stocks  (d) Increase in Total R2. Test assets: CZ21 portfolios

For each 5-years rolling window ending in year iy we compute the percentage T'otal R? generated by a latent factor model with 3 common factors between
individual stocks and CZ21 portfolios (model (i)). When a new factor form the zoo enters in the dataset we add this factor only to the six factors of model
(a) and recompute the T'otal R? with this new set of seven factors (model (ii)). T'otal R? is computed using as test assets either the individual stocks or
the CZ21 portfolios available in year y for both model (i) and model (ii). In Panels (a) and (b) we report the Total R? obtained with the old factors only
(Old fac.), that is with the factors in model (i). We also report all the increases in Total R% when a new factor is added in model (ii) to the 6 factors in
model (i). The models are estimated on the rolling window starting in year y — 4 and ending in year y, for each y = 2001, ..., 2020. Total R?’s are

computed as described in Section 4.2, but taking into account only the 5-year window ending in year y.
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Figure OA.10: RM S, generated by old factors and its change due new factors. Old factors: 3
common factors and first 3 CZ21-specific factors.
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(c) Increase in RM S,,. Test assets: CRSP stocks

(d) Increase in RM S,,. Test assets: CZ21 portfolios

For each 5-years rolling window ending in year y we compute the RM S, generated by a latent factor model with 3 common factors between individual

stocks and CZ21 portfolios (model (i)). When a new factor form the zoo enters in the dataset we add this factor only to the six factors of model (a) and

recompute the RM S, with this new set of seven factors (model (ii)). RM S, is computed using as test assets either the individual stocks or the CZ21

portfolios available in year y for both model (i) and model (ii). In Panels (a) and (b) we report the RM S, obtained with the old factors only (Old fac.),

that is with the factors in model (i). We also report all the increases in RM S, when a new factor is added in model (ii) to the 6 factors in model (i).

The models are estimated on the rolling window starting in year y — 4 and ending in year y, for each y = 2001, ...,2020. RM S, ’s are computed as

described in Section 4.2, but taking into account only the 5-year window ending in year y.
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B Assumptions and proofs

Section B.1 includes all the Assumptions required to prove Proportion A.1 and Theorems A.1 and A.2
in Appendix A. Section B.2 provides the proof of Proposition A.1, while Sections B.3 and B.4 provide
the proofs of Theorems A.1 and A.2, respectively. Section B.5 contains additional technical results
required in the previous sections. Finally, Sections B.5 and B.7 provides the uniform asymptotic
expansions and distributions, respectively, of factors and loadings in the group factor model when
factors are estimated by RP-PCA: these results are useful in themselves, but also instrumental to some
of the proofs of the previous results.

In this appendix, we denote by a; = [A]; the column vector corresponding to the ¢-th row a} of

matrix A = [ay, ..., ay, ..., ar|’.

B.1 Assumptions for Proportion A.1 and all Theorems
(NEED TO BE CHANGED/ADAPTED TO THE NEW PROOFS!!!!)
We make the following assumptions:

Assumption B.1. We have Ny, Ny, T' — oo such that the conditions in (A.17) hold, that is:
VT /N =o0(1), N/T? = o(1), and piy = \/Na/ Ny — p, with i € [0, 1].

Assumption B.2. The unobservable factor process I, = [ f{', i, f3, ] has vector of means, and
covariance matrix as defined in (A.8), that is:
;e e 0 0
E[Ft] = ,u‘; s and EF = V(Ft) = 0 ka d )
13 0 @ I

with all the elements of vector E|F}] being finite, and where ¥ is positive-definite.

Assumption B.3. The loadings matrix Ay = [ AS © A ] = [ N, ..., Ajw, | is such that

Nl'igloo N%A;-Aj = X\, where ¥, ; is a positive-definite (k;, k;) matrix with distinct eigenvalues and
J

kj =k +kj, forj =1,2.

Assumption B.4. The error terms €;;; and the factors h;; = [f{', f51]" are such that for j = 1,2 and

alli,t > 1: a) Ele;;4|F] = 0and E[e3,,|F}] < M, a.s., where F, = o(F,,s <t), b) E[}, ] <M
and E|||\h;4]|>"V®] < M, for a constant M < oo, where 1 > 2 is defined in Assumption B.5 b).

. . N; N;
Assumption B.5. Define the variables £;, = —\/IN_] Y1 Nji€jie and Kjyp = —\/IN_J Zi:ﬁ(%%i,t - 7732‘,t)’
indexed by Ny, Ny, where 17, = plim - vazjl Ele?; | Fil, for j =1,2. a) Foranyt > 1and h >0
: 7 i,

Nj-)OO
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have:
(€0 €l b on] = N(0,%(R)),  (Fi-stably),

as N1, Ny — o0, where the asymptotic variance matrix is:

Qll,t(o) Ql2,t(0) Q11,15(h) Ql2,t<h)

h) Q200 (0)  Qore(h)  Qany(h)
' Q14 n(0) Qg n(0) |

(

Qoo4-1(0)

. N; N .

for Qi (h) = Nl;})]}érgoo\/ﬁ D i Doty NjiNk ooV (it Erei—n| Fr), for any j, k, h.

Moreover, for all Ni,Ny > 1 and j = 1,2, we have: b) E(||§.|[*|F) < M, a.s., and c)
E||k;4|Y] < M, for constants M < oo and v > 2. Finally, let R;; = \/LTZL £;iihy, then d)

B[Rzl < M

Assumption B.6. a) The triangular array processes V; = Vy, Nyt = [0},&,,7 = 1,2]" and
Vi = Vv = Kjw i = 1,2 are strong mixing of size ——, uniformly in Ny, N, > 1. 13
Moreover

b) | E(&4&k 4| Ft) — E(&a&i o Fis ooy Fim)|l2 = O(m™Y), as m — oo, uniformly in Ny, Ny > 1, and
o)z, — Emz Vi) |ls = O(m™Y), as m — oo, uniformly in Ny, Ny > 1,
for j,k =1,2, where Vi7" = o(Vy,t —m < s < t+m)and ) > 1.

Assumption B.7. For j = 1,2:
2
a) th lzt 1 E[Tl] ] < M, E (\/#— vazjl(emtej,i,s _77]2',155)> ] < M, forany s < t and a

constant M, where 7732',153 = phm—ZZ L Elejiiiis| Fil; b) \th (1 +77]t>hjta]t = 0,(1),

J—>OO
T
%Zt:l 5j7t0‘;‘,t = 0p(1), Ellcvjtl ] = O(1), where o, = \/ﬁ Zz‘:1 Zs=1,s;«ét €,i45,,sMj,5
pa) Nj T
c) E[||8;:0*] = OQ1) and E||B;:|*] = O(1), where 8;, = \/ﬁzizl D smt,st Eiit (€5 Clis —
pa) Nj T
ElejisCjs)) and By = 7 > i Zszl,s;ét €jitEeji,5C sl where G, = (77] th],t7 Kj, thg t fg t ]t),

Assumption B.8. For j = 1,2:
a) Pl||hj.ll > 6] < ciexp(—cad®), for large 5; b) Zévzjm#iE[ejvg’tng] < M, foralli > 1;

c) P[H%Zle zidl > 0] < T exp(—cd*T") + c3T5 Lexp(—csTT), for all i > 1 and 6 >

. 1 N;
0, where either ziy = hjicjiq, or ziy = €5,, — Ele3,; ], or ziy = e D i1 E30E it —
BThatis, a(h) = O(h™?) for some ¢ > —, where a(h) = sup sup sup |P(AN B) — P(A)P(B)],

Ni,N221 t21 AeV! ,BeVyy,

where V/T" = o(V,,t —m < s <t +m), and similarly for V,*.
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E[\/;V S Siaciinls @) Vsl < M, for all i > 1; where b,y ca, ¢, ¢4,m,0, M > 0 are
J
constants, and n > 1/2.

Assumption B.9. The error terms are such that:  a) Cov(gjit, €k e—n|Fi) = 0, if either j # k, or
i # L, b)Elejii{ejii—ntn=1,F] =0, ¢ E[eiw
all j,1i,t, h.

{Ej,i,tfh}hzla ft] = v,ii» say, where v;;; > 0, for

B.2 Proof of Proposition A.1

From the covariance matrix X of the factor vector ( TE fies f;}t)/ in equation (A.8), and the definition

of matrices R and R* given in Section A.5, it follows that:

Iie 0 Lie O
R=|[*F , Rr=|"" . (B.1)
0 o 0 P

Noting that also in our set-up matrix X is assumed to be positive definite (see Assumption B.2), then
the proof of Proposition A.1 is omitted as it is analogous to the proof of Proposition 1 in AGGR (see
Section C.1 in their OA).

B.3 Proof of Theorem A.1

The proof of Theorem A.1 is structured analogously to the proof of Theorem 1 in AGGR. The main
novelty in the current paper consists in the derivation of the asymptotic expansion for the estimates of
the pervasive factors extracted by RP-PCA in each group (Subsection B.3.1), which are different in
some higher order terms from that derived in AGGR, who instead derived the asymptotic expansion
of the classical PCA estimators. Our asymptotic expansion provides an higher order terms compared
to the one derived by Lettau and Pelger (2020a) for the RP-PCA estimators. Then, all the steps in the
proof of Theorem 1 in AGGR are re-done taking into account of the new asymptotic expansion of the
factors’ estimators, and the fact that the formulas for the canonical correlations of the estimated factors
are different from those used in AGGR, as they now need to include the factor mean.

The proof starts with the asymptotic expansion of the factor estimates ﬁj,t (see Proposition
B.2 in Section B.3.1). This result allows to derive the asymptotic expansion for the sample
canonical correlation matrix R (Section B.3.2), and the asymptotic expansions of the eigenvalues
(and eigenvectors) of matrix R by perturbation methods (Sections B.3.3 and B.3.4). This yields the
asymptotic expansions of the canonical correlations and of the test statistic é (k¢) (Section B.3.5), and

the asymptotic Gaussian distribution of the test statistic (Section B.3.6).
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B.3.1 Asymptotic expansion of the factor estimates iAth
PROPOSITION B.2. Under Assumptions B.1-B.4, B.5 b), c), B.6 a), and B.7, we have:

R . 1 1
hjv=H;(hje+ Vi), Y= \/Tuj,t + Tbjt + ——=d;: + U, (B.2)
J

VN, T
for groups 7 = 1,2, and datest = 1,...,T, where:

Q&

Il
—
2|~
\‘Mg
Rt
>
~

|

with h = hye+ ’YRPh], it = Ejit + YRPEji Nji = ()\j’l, )\j’z) The terms 0, are such that

T
1 1 1 1
—E Wi+ =bj + djs+ 0 i =0 (—)
T (m” e NT ”) TP\ NVT

t=1

Z h;, t19 (N) as Ny, Ny, T'" — oo. Finally, matrix 7—[ converges in probability to a

nonstochasttc positive definite (k;, k;) matrix, for j, k = 1,2.

Proposition B.2 extends Proposition 3 in AGGR, which was derived for factors estimated by PCA, to
the more general case in which factors are estimated by RP-PCA, as in Lettau and Pelger (2020a,b).
For each group of data 5 = 1,2, Proposition B.2 provides a more accurate asymptotic expansion of
RP-PC factor estimator compared to the results in Lettau and Pelger (2020a): this refined result is
needed to control higher-order terms in the asymptotic expansion of the test statistic in our Theorem
A.1. Notably, the term \/FUJ + in the expression for v;, appears in Proposition 3 of AGGR, and is
also the only term appearing in the expansion of the RP-PC estimator in the OA of Lettau and Pelger
(2020a). Notably, the term of stochastic order 1/v/N is u;/v/N, where u; = (A'A/N)~1&, is zero
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mean as E[;] = 0 from Assumption B.4 a). This term is the usual first order term appearing in the
asymptotic expansion of classical PC factor estimator (see Bai (2003)) and it is also the first order term
appearing in the expansion of RP-PC estimator (see Lettau and Pelger (2020a)). All the other terms
in the expression for ¢;, are new compared to Lettau and Pelger (2020a), and are also different from

those appearing in AGGR.

B.3.2 Asymptotic expansion of matrix R

As canonical correlations and canonical directions are invariant to one-to-one transformations of the
vectors lAth and ]Algyt, in the asymptotic analysis of the test statistic f (k©), we can set ?:[j =1, =12,

in expansion (B.2) without loss of generality.

T
= 1 ~ = P _
Let h; = T E h;., then equation (B.2) implies h; = H,;(h;: + 1;), with:
t=1

1 1- 1 - -
w]t = \/F'U/j’t + T 7,t + N-de’t + lgjﬂg. (B3)
J J
By defining
’E/Lj,t = Uje — ﬂj s (B4)
Bjﬂg = bjﬂg - ij y (BS)
Czj,t = dj,t - _]' y (B6)
1§j,t = ﬂj,t - ng 3 (B7)
and
&j,t = Yy — QZj
1 v 1 4 1 2 v
= \/ﬁu‘]’t + T .t + NTd]’t + 19‘7‘7,5 5 (B8)
J J
we get

>

gt —hy = (b Gsa) = (g + hy) = (hys — hy) + (5 — 0y)
= Hj(hj + ¥50) (B.9)
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for all dates ¢t = 1, ..., T. Therefore, we get:

T T
N 1 N~ A 7 1 o o o o ~ o
Vi = 7 > hyihi, = hihl; = T > (hje 4 i) (hjs + ¥50) = Vie+ Xj,  (B.10)
t=1 t=1
where:
- 1 & 1 < 1 &
ik =T > hiihh,, Xjk= T > (hjatbiy + i) + T > it (B.11)
t=1 t=1 t=1

for jk = 1,2. From the definition of matrix R in (A.10), and by using (B.10) and V;; =

N
<[kj + Vj;lij> Vj;l, we get:

A - A -1 . - A ~ A -1 ~ A
R= (1 + V' &) Vit (Vie+ Kiz) (I + V' X22)  Vig' (Vi + Xaa) . (B12)

By using the definitions of 1;; in Proposition B.2 and of zzjﬂt in equation (B.3), the next Lemma

provides an upper bound for terms X ik Jo k=12

LEMMA B.1. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have X, = O, (3x.1), for
J, k =1,2, where 57 := (min{N,T})"..

We now expand matrix R at second order in the X k- We do this because the first-order contribution
of the X, to the statistic of interest involves leading terms of stochastic order O, (ﬁ) see
1

. . 2 2 . . . .
The second-order remainder term is O,(dy 7). and dy  is not negligible with respect to VT

when T is too small compared to N (that is the case when m = T and WT > % when

TVT < N < T?). In order to get validity of our results for more general conditions on the relative
growth rate of NV and 7" such as in Assumption B.1, we consider a second-order expansion. By using
(I-X)' =T+ X+X?+0,(03 1) for X = Op(dn,r), from equation (B.12) we get the next Lemma.

LEMMA B.2. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7, the second-order asymptotic
expansion of matrix R is:
R=R+T+0,0%), (B.13)

where R = \71]1‘712%51\721 and U = f/ﬁl\if*, with U = g+ () 4 g UD),

. . . . I N~ X
o = Xy Ve O 4 <X22B - X21) 5% (XQQB - le) 7 (B.15)

and B = ‘7251‘721.
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This Lemma is analogous to Lemma B.2 in AGGR. In equation (B.13) matrix Ris decomposed into the
sum of the sample canonical correlation matrix R computed with the true factor values, an estimation
error term W consisting of first-order and second-order components g+ () and b+ 4D, respectively,

and a third-order remainder term O, (43, ).

B.3.3 Matrix R and its eigenvalues and eigenvectors

We now characterize matrix 2 and its eigenvalues, that are p?, ..., ,5%1 ,1.e. the squared sample canonical
correlations of /; ; and hg ;, under the null hypothesis of £° > 0 common factors among the two groups

of observables. Since the vectors h; ¢ and hy; have a common component of dimension k¢, we know

that p; = ... = pre = 1 a.s.. Using the notation:

- 1 o 1 o

S = O = IWF=F) =5 LI
t=1 t=1

. 1 & 1 & . .

Sej = w2 = FNE B =5 Ffn =%,
t=1 t=1

3 1 T B B 1 T

Sk = Y (= B = =5 Bl dk=12
t=1 t=1

with f¢ := f¢ — f¢and f3, := f3, — f7, we can write matrices V;, with j, k = 1,2, in (B.11) in block

ot ijcc i/]c j o ijcc ic =
‘/.7.7 - - s N Y j — 17 27 ‘/12 - i ad 72 - ‘/2/1
by Ejj Zl,c 212

j7C

form as:

The last two equations and the definition of R allow to obtain the next Lemma, which is analogous as
the Lemma B.3 in AGGR, with the only fundamental difference being the definition of matrices f]cc,
SCJ‘, and ij,k-

LEMMA B.3. The matrix B defined in Lemma B.2 is such that:

o Le S7LS, Le S (Sa - SaSy S
B = ‘/2;1‘/21: k ~c_c{2~ 12] _ k cc 1~ 1 ~2 22|c 21| (B16)
b)) 2‘0221|c 0 2;2|6221\c

The matrix R = f/ﬁlf/m \72511721 is such that:
~ [kc ic_clicl([klfkc — RSS)
0 Ry,

Y
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where Ry = X7} Y191550 So1je and Sipe i= N — D550 Sex for j, k = 1,2.

|e 22|e

Matrix R, is the sample canonical correlation matrix for the residuals of the sample orthogonal
projections of fit and f;}t onto ftc, with the latter three factors being the demeaned versions of f7,,
f3, and ff. From Lemma B.3, the £ largest eigenvalues of matrix Rare j? = ... = pi. = 1, while the
remaining k; — k¢ eigenvalues are the eigenvalues of matrix R, and are such that 1 > .., > ... >

Oz, > 0, as.. Let us define:

Te 0
E. =", E, =
(k1 xke) 0 (k1 % (k1—k*)) Tiy e

Then, the eigenvectors associated with the first k¢ unit eigenvalues of R are spanned by the columns

(B.17)

of matrix E,. The columns of matrices E, and E, span the space R*'.

B.3.4 Eigenvalues and eigenvectors of matrix R obtained by perturbation methods

The estimators of the first k¢ canonical correlations are such that 57, with ¢ = 1, ..., k¢ are the k° largest
eigenvalues of matrix R. We now derive their asymptotic expansion under the null hypothesis H (k°)
using perturbations arguments applied to equation (B.13). Let Wl* be a (ki, k) matrix whose columns

are eigenvectors of matrix R associated with the eigenvalues p?, with £ = 1, ..., k. We have:
RW; = WiA, (B.18)

where A = diag(p?,¢ =1, ..., k%) is the (k°, k) diagonal matrix containing the k¢ largest eigenvalues
of R. We know from the previous subsection that the eigenspace associated with the largest eigenvalue
of R (equal to 1) has dimension k¢ and is spanned by the columns of matrix £.. Since the columns of

E. and E, span R*', we can write the following expansions:
Wi =E,U+ By, A=Ie+M, (B.19)

where E. and E, are defined in equation (B.17), the stochastic (k¢, k¢) matrix U is nonsingular with
probability approaching (w.p.a.) 1, stochastic matrix M is diagonal, and & is a (k; — k¢, k©) stochastic
matrix. By the continuity of the matrix eigenvalue and eigenfunction mappings, and Lemma B.1, we
have that & and M converge in probability to null matrices as Ny, N3, T — oo at rate O,(dn 7). By
substituting the expansions (B.13) and (B.19) into the eigenvalue-eigenvector equation (B.18), using
the characterization of matrix R obtained in Lemma B.3, and keeping terms up to order Op(d?V’T), we
get expressions for matrices & and M. These yield the asymptotic expansions of the eigenvalues and

eigenvectors of matrix R provided in the next Lemma.
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LEMMA B.4. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7, we have:

A - Ik:c +Z/A{_1i;;1 {\ijzc + ¢[:5<]k1—kc - Rss)_l\i]sc - ZN]c,l(jlﬁ—kc - Rss)_lilsci_llil* }Z/A{

+0,(0% 1), (B.20)
VAVI* - (EC + Es(jh—kc - RSS)_I [\i]sc T quS(Ikl—kC - Rss)_lqjsc
(e = Roo) e (S2002,) | ) U+ Op(53 1), (B21)

where U, U, = U W, denote the upper-left (k, k) block, the upper-right (k°, k) block and the

lower-right (k3, k3) block of matrix U, and similarly for the blocks of Al

In equations (B.20) and (B.21), in the terms that are of second-order with respect to \if, we can replace
U by UD without changing the order Op(é?V’T) of the remainder term. Note that the approximation in

(B.20) holds for the terms in the main diagonal, as matrix A has been defined to be diagonal.

B.3.5 Asymptotic expansion of Ele Do

Let us now derive an asymptotic expansion for the sum of the k¢ largest canonical correlations
Zf;l pe. By using the expansion of the matrix square root function in a neighbourhood of the identity,
ie. (I+X)2 =T+ 3X — £1X? 4+ 0,(0% 1) for X = O,(én,r), from equation (B.20) we have:

A 1o ¢ Liss Res) 1
AP = Let SUT'S {‘If = LS 4 W (T e — Rao) T W

4 cc—ce

)

St (T e — Rss)—lx@%i;@;} U+ 0,6 7).
Using S5, pp = tr {Al/Z}, this implies:
- 1 N TP A o
Z = Kt gtr {2 {qf —~ qu:gﬂz;;\p;gf) + D (L e — Rye) 710
l=
STy e — Rss)*lxirg?i;\ifzg”] } + 0, (683 7). (B.22)

The next Lemma provides the asymptotic expansions of the terms within the the trace operator in the

r.h.s. of (B.22) by plugging the expressions of U* and its components from Lemma B.2.
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LEMMA B.S. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have:

ke L (L X 1 < 1= () (e

Db = kgt {ECJT > Ellpitsy) — i) (it — i) m]} ~ ggatr {ECJT > Ab Ab, }
t=1

1 1 vl C v C c v v
PO L {\/T Z [(,UNUL) - “ét))(:“Nugt) - “ét))/ E[(MNugt) - uét))(uzvugt) “2t |-7:]} }

t=1

+0p (0%,r) + 0p (en 1) (B.23)
where en  := WT The terms in the curly brackets are Op(1).

We have 5?V,T = o(en,r) from the definitions of §y 7 in Lemma B.1 and of ¢y in Lemma B.5, and
the condition /7 <« N < T? in Assumption B.1. Therefore, the leading stochastic terms in the
difference 3| po — k° are of order O,, (%), O, (7=) and O ( 5 f) If the assumption N < T? was
violated, an additional term of order the term of order F would appear on the r.h.s. of equation

(B.23), analogously to what happens in the r.h.s. of the analogous equation in Lemma B.5 of AGGR.'*

This additional term is negligible w.r.t. the dominating term of order —=, and therefore absorbed in

N\F ’
the term o, (e r) in our equation (B.23) under Assumption B.1.

From the definition of matrices ¥y and Yp in Theorem A.l, we have %ZLE[(MN&(I? —

BN (il — @Y F] = Sy and s &)EC)&)EC)/ — Y. Moreover, let us define the process
U, — v(e) _ (o) B.24
t = HUNU — Uy (B.24)

Process U; depends on Ny, Ns, but we do not make this dependence explicit for expository purpose.
By using these definitions, from Lemma B.5 we get:

k€ T
Z ke +—tr {2 Sy }—i—%tr{z 123} - W <1TZ A —E(Ut’Utm)]) +op (en.1) -

t=1

(B.25)

Under our set of assumptions the term \%ZL [UU, — E(UJU|F;)] is O,(1), as in the next
subsection we show that it is asymptotically Gaussian distributed. The remainder term o, (ex7) in
the r.h.s. of (B.25) is negligible with respect to the first term in the r.h.s. The result in equation
(B.25) is analogous to the one in equation (B.15) in AGGR, with the notable differences being the new
definitions of the term in U, provided in our equation (B.24), and of matrices S and X 5. Moreover,

as mentioned above, under the assumption N < 1?2, the term of order appearing in Lemma B.5

T\/i
of AGGR is negligible w.r.t. the dominating term of order —= \f

“For example, assumption N < T2 is violated in the case 72 < N < T°/? allowed by AGGR, but not by our
Assumption B.1
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B.3.6 Asymptotic distribution of the test statistic under the null hypothesis H (k°)

From the asymptotic expansion (B.25) we obtain the asymptotic distribution of f (k) = Zif:l Do
under the null hypothesis H (k°) of k¢ common factors. First, we apply a CLT for weakly dependent
triangular array data to prove the asymptotic normality of % Zthl Zyt as N, T — oo, where

Zny = UU, — E(U;U;|F;) depends on Ny, N, via process U, defined in (B.24).
i) CLT for Near-Epoch Dependent (NED) processes
Let process Vi, n,+ = V; be as defined in Assumption B.6, and let V{1 = o(V,,t —m < s < t+m)
for any positive integer m, with V, = V' __.
LEMMA B.6. Under Assumptions B.3, B.4 a), b), B.5 b) and B.6 a)-c) we have:
(i) Zn. is measurable w.rt. V;, and E[Zy,] = 0 forallt > 1 and Ny, Ny > 1,

(ii))  sup  E|[||Zn.]|"] < oo, for a constant v > 2,
t>1,N1,Na>1

(iii) Process (Zy ) is L? Near Epoch Dependent (L*-NED) of size —1 on process (V;), and (V) is
strong
mixing of size —r/(r — 2), uniformly in Ny, Ny > 1, 1
(iv) Matrix Qy := limp n_yoo V (\/LT Zthl ZN¢) is positive definite and such that

o0

Qu= > T(h), T(h):= lim Cov(Zxs, Zn4-n) - (B.26)
h=—o0

Then, by an application of the univariate CLT in Corollary 24.7 in Davidson (1994) and the Cramér-
Wold device, we have that:

T
1
7 > Zne 5 N(0,), (B.27)
t=1

as T, N — oo. Let us now compute the limit autocovariance matrix I'(h) explicitly. By the Law of

Iterated Expectation and E[Zy | F;] = 0, we have:

I'(h) = lim E[Cov(Zn4, ZN1—n|F)]- (B.28)

N—oo

Moreover, from Assumptions B.3 and B.5 a), vector (U/, U;_,)" is asymptotically Gaussian for any h,

BThatis, || Zn,e — E[Zn| V||, < €(m), uniformly in ¢ > 1 and Ny, No > 1, where £(m) = O(m~") for some
P > 1.
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tas N — oo:

U, U Yui(0) Xpe(h
N b )~ N o, val ), vah) . (F;-stably). (B.29)

Ut—h Utofh ZU,t(h) ZU,t(o)
We use the Lebesgue Lemma to interchange the limes for N — oo and the outer expectation in
the r.h.s. of (B.28), and the fact that convergence in distribution plus uniform integrability imply

convergence of the expectation for a sequence of random variables (see Theorem 25.12 in Billingsley
(1995)) to show the next lemma.

LEMMA B.7. Under Assumptions B.3 and B.5 b), we have:
I'(h)=FE [Cov(Utoo ’Utoo, Utofh' tofh|]:t)] )

Lemma B.7 allows to deploy the joint asymptotic Gaussian distribution of (U, U®/)’ to compute
the limit autocovariance I'(h). To compute matrix I'(h), we use Theorem 12 p. 284 in Magnus
and Neudecker (2007) and Theorem 10.21 in Schott (2005). We get Cov(U* 'U°, U2,/ Uz, | F:) =
2tr {32y +(h)Xy+(h)'}. Therefore from (B.26) and Lemma B.7 we get:

Qu= > 2tr{E[Sus(h)Sva(h)]} = 4Qu1. (B.30)

h=—0oc0

ii) Asymptotic Gaussian distribution of the test statistic

Let us define the constant Dy = WT From equations (B.25) and (B.30), and by using:
(D3 r)? = =3, and NVTQ/” = 0 <N\/T) — O(ex'y) , under the hypothesis of &°

common factors in each group the statistics & (k<) = Zlle p¢ 1s such that:

NVTQ, {é(kC) — K+ %tr {50} + %tr {igjiB}}

T
1
= —(DXsr) PDyr—= Y Znr + 0p(1).
ﬁ t=1

From equation (B.27), the r.h.s. converges in distribution to a standard normal distribution, which
yields Theorem A.1.
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B.4 Proof of Theorem A.2

To establish the asymptotic distribution of the feasible statistic in Theorem A.2 we need to control the
effect of replacing the re-centering and scaling terms by means of their estimates. The latter involve
factors and loadings estimates. Hence, in Section B.6 we derive uniform asymptotic expansions of
factors and loadings estimators. These results are instrumental for the proof of Theorem A.2, as well
as for the proofs of other results in this paper. In Subsection B.4.1 and B.4.2 we show the statements

in Part i) and in Part ii) of Theorem A.2, respectively.

B.4.1 Proof of Part (i)

Let us first consider the asymptotic distribution of & (k¢) under the null hypothesis of k¢ common
factors. Under the assumptions of Theorem A.2, the infeasible asymptotic distribution in Theorem

A.1 becomes: )
NVTQ,Y? [é(kC) — ke gt {i:;;i,]}} 2 N(0, 1), (B.31)

where Q1 = %tr {3(0)?} and we use (A.21) and f]B = 0. Theorem A.2 1) follows, if we prove:

tr{iU} _ tr{ic_cliy}—i—op (%) (B.32)
tr{ig} = tr {Zu(0)%} + 0,(1). (B.33)

Indeed, the statistic £(k°) can be rewritten as:
k) = Btr {22} / QUJ] o {N\/TQU}/Q {é(/f) oy %tr {iccli,]}l
w0, (VE [ {8}~ {55, 1)),

where the ratio %tr {ﬁ%} / (271 converges in probability to 1 from (B.33), the term within the curly
brackets in the first line in the r.h.s. converges in distribution to a standard normal distribution from
(B.31), and the term on the second line on the r.h.s. is 0,(1) from (B.32).

Le us now prove equations (B.32) and (B.33) by deriving the asymptotic expansions of Sy and f)c‘cl.
ce)

To derive the asymptotic expansion of 3, we use its definition 3 = u?viici)l + ) where the

~ A A N A A ~ A\ 1 “
matrices X, j; = (NijA;Aj) (NijA;FjAj) (NijA;Aj) , 7 = 1,2, involve the estimated loadings

and residuals. We plug in the uniform asymptotic expansions from Proposition B.6 in Section B.6 to

show the next result.
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LEMMA B.8. Under Assumptions B.1 - B.9, i) The asymptotic expansion of estimator A;Aj /N is:

Ay {i Lt )} U; + (—1 ) (B.34)
= . . ; . 1 O 5 .
Nj j A,j \/T A,j A,j J D \/T
for j = 1,2, where iA,j = N%A;-Aj with A; = [A; : Aj-], and Ly j = f]A’ij and:
- H. 0 0 0
uj = ~ ) Q] = R ) (B35)
0 Hsy VTE; 520 0

and H,, 7:[S7j are non-singular matrices w.p.a. 1.  ii) The asymptotic expansion of f\;f;‘f\] /N is:

T . 1
A, =U, [ij 7 (Lo, + ng)l U; + o, (ﬁ) , (B.36)
for j =1,2, where Q;; = N%A;F;Aj, with 17 = diag(7j ;,1 =1, ..., N;), and Lo ; = Q;,Q;.

n o~ —1
Equation (B.34) allows to compute the asymptotic approximation of ( g A;-Aj) by matrix inversion:
J

TV Ul P <1 1
(WA;A]) - ujl{zA;_ﬁzA}j (Lag + L)) EA}j] (@) +o (ﬁ) (B.37)

J

Substituting equations (B.37) and (B.36) into the expression of fle and rearranging terms, we get:

. ST 1 1
Eu,jj - Uj IZA}J» |:ij + ﬁ (LQ,j + Lglj) — ﬁ
1

~ ~ ~ ~ N\ —1 1
-1 -1
_ﬁ (LA,j + L;X,j) ZA,ijj:| ZA,j (U;) + Op (ﬁ) .

Therefore, from the definitions of matrices L ; and L, ; in Lemma B.8, we have:

Q30 (Lag + Lhy)

- 1 , S\ 1
S = ujl(zu,jﬁﬁ(LU,ﬁLU,j)) (uj) +o, (ﬁ) (B.38)

where 3, j; = f)j\}jfljjix}j and Ly,; = —Q,;%, ;;, for j = 1,2. In particular, the upper-left (£, k°)
block of Ly ; vanishes, i.e. (L ;)¢ = 0 for j = 1,2.
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From equation (B.38) we get the asymptotic expansion for Sy = 12,5 + ZA)Q(LC?Q

U,

. ) - .o 1 &\ [\ "1 1
T Hj([“?@u:“* Bum| + = U (Lo L) + Loa o+ L)' )) (7)) +o <ﬁ)

— H'Sy (7%;)1 +o, (%) . (B.39)

~ A I A~
Moreover, Proposition B.6 ii) implies 3! = <H51> Hl+o, (ﬁ) This equation, together with

the asymptotic expansion (B.39) and the commutative property of the trace operator, imply equation
(B.32). Similarly, the asymptotic expansion (B.39) and the convergence Yy — Y(0) imply equation
(B.33).

B.4.2 Proof of Part (ii)

In order to prove Theorem A.2 (ii), we consider the behavior of statistic & (k°) under the

alternative hypothesis H; of less than k° common factors. Specifically, let » < k¢ be the true

- 172
number of common factors in the DGP. The statistic is given by: £(k°) = Nv/T <%tr{2%]}>
[21;;1 pe— k¢~ ﬁtr {2(]}] . We rely on the following Lemma. For its proof we assume that ff is

used to estimate the common factor in panel j = 1, while estimator ff* is used in panel j = 2.

LEMMA B.9. Under the alternative hypothesis H(r), with r < k¢, we have |3y || < C, w.p.a. 1, for
a constant C' > (.

From Lemma B.9 and using Zif:l pe = 25:1 pe + 0,(1), where the 0,(1) term follows from the
continuity of the eigenvalues mapping, we get:

. 1. —1/2 [ k€
{(he) = NT (Gr(53) [Z o=k op<1>] -

Under H(r), we have r < k¢ canonical correlations that are equal to 1, while the other ones are strictly
smaller than 1. Therefore, Zlg; pe — k¢ < 0. Then, from Lemma B.9 we get é (k) < =N VTe,

w.p.a. 1, for a constant ¢; > (. The conclusion follows.
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B.S Additional proofs

This section contains the proofs of Proposition B.2 and Lemmas B.1 - B.9, stated in Sections B.3 and

B.4. The section also includes the proof of the additional technical results needed to prove them.

B.5.1 Proof of Proposition B.2

The group factor model (2.10) implies that the ususal factor model for the N; individuals in group j
is:

Yjt = Ajhjﬂg + Ejt
where Yjt = [yj,lﬂf’ ey yj,Nj,t]/, A = [/\j,h ey )\ijj]/ = [A?, Aﬂ, hj,t = [ tCI7 ;’ﬁl and 8]‘775 =
5,15 - €j,n,.) - Therefore the model for the individual 7 in panel j is:

f— , . . .
Yjir = Nji Pje + €5t

t=1,..,Nj,and ¢ = 1,...,T. Only for the remaining part of the proof of Proposition B.2 we omit
the group index j since it is immaterial for the proof’s arguments. We write the factor model for the

generic individual ¢ in group j simply as:
Vit =Nh+ey, i=1,.,N, t=1..T, (B.40)

where h; is the (k, 1) vector of unobservable factors for group j. In matrix notation, the model can be

written as in equation (A.2), that is:
Y = HN + ¢,

where Y is the (7', N) matrix of observations and H is the (7', k) matrix of factor values. Analogously
to Lettau and Pelger (2020a), define:

1,1/ 1.1
W= lp+ (Ve +1-1) ==L = Iy + fpp— (B41)

with both ygp € [—1, +00), and Ygp := (/yrp + 1 — 1) € [~1, +00). These definitions imply:

2 Ir17
W :[T—i-’)/Rp T (B.42)

We introduce a set of high-level assumptions (Assumptions B.10-B.13 below) and show in Section
B.5.1.7 that they are implied by Assumptions B.2-B.4, B.5 b)-c), B.6 a), B.7.

Assumption B.10. The factors are such that their sample covariance matrix is HW?*H/T =
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Yr(W) +0,(1) as T — oo, where the matrix
Sh(W) = E [ (i + ArpElh]) (he + Frp E[h])" ] (B.43)

is positive definite. The loadings are such that NA/N = ¥, + o(1) as N — .

In the spacial case of gp = —1 we have X, (W) = V(h) = I, from Assumption B.2. Note that
Assumption B.10 is different form Assumption C.1 in AGG, which instead imposed that H'H/T =
I + 0,(1). The (N, k) matrix of RP-PCA loading estimates A = [\, ..., Ay]’ satisfies the following

eigenvector-eigenvalue equation:

1 . . R
W(Y W2Y)A = AV, (B.44)
where V is the (k, k) diagonal matrix of the k largest eigenvalues of matrix Y'W?2Y/(NT), and the
columns of matrix A are the associated normalized eigenvectors such that NA /N = I,.'° Equivalently,
A is defined as the eigenvectors matrix Y'W?2Y/(NT) multiplied by v/N. It is easy to see that A in
(B.44) is an appropriate estimator for A. In fact, the latter is the (true) vector of loadings both in the
original model (A.2), and also on the new “projected model” obtained by pre-multiplying the matrix
of observations Y by W:

WY =WHN + We. (B.45)

This argument is used by Lettau and Pelger (2020a) to prove the asymptotic results for their RP-PC
estimator extending those derived for classical PC in Bai (2003).!” By defining Y =WY,H:=WH

and ¢ := We, the “projected model” (B.45) can be written as:
Y =HMN+¢. (B.46)

The (T, k) matrix of factor estimators H = [hy, ..., hy]’ coincides with the estimator obtained as in
Theorem 1 of the OA of Lettau and Pelger (2020a), and is obtained by cross-sectional regressions of

the observed data on the estimated loadings at each date:

H = YANA)™' = %Yf\, (B.47)

where the last equality follows from the normalization A’A/N = [;. Equation (B.47) allows

16See Theorem 1 of the OA of Lettau and Pelger (2020a).

1"Note that when ygp = —1, matrix 5 (Y'W?2Y) is a re-scaled version of the covariance matrix + (Y'W?Y) of the
non-demeaned original data, and therefore the loadings estimators are a re-scaled version of the eigenvectors of the latter
covariance matrix.
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to establish an asymptotic expansion of the factor estimate with explicit characterization of the
remainder term. This can be obtained by manipulating equations (B.44) and (B.47) using the next
two Assumptions B.12, and by defining:

he = h + (\/’YRP+1 - 1) h = hy+yrph,
it = Eit+ (\/ Yrp +1— 1> &, = &t + VrPEi,

_ I
where h = T t L hesand &5 = & Zt:1 Eits

1 & I s 1 &
§ = N ; ANi€it §:= T ;& = N ; i€,
and
1
& =& + Trp€ = \/—ZA lei¢ + VrPE:] = T; : (B.43)
We also define H = [;Ll, e h’T]’ . Then the following two Assumptions allow to prove Proposition B.3.

Assumption B.11. We have (i) E[&;,] = 0; (ii) E[£%] < M and E[||h2™V8] < M; and (iii) E[}] < M
and E[||€4]|*"] < M, for a constant M < oo, where v > 2 is deﬁned in Assumption B.5 b).
(iv) Let s = Sy Elgisdis), with s < t. Then T LS S VB < M oand

2
E {(\ﬁ Zfil éi,téi,s - 77t25> 1 < M.
Assumption B.12. We have (i) A=H'W?eA = <= 31, hu&] = Oy(1) and E[||&?] = O(1),
(i) || WA = O, (),
(iii) || g7eW?'|| = O, (\%) where m := min{N, T},

(iv) || azee' W2H|| = O, (ﬁ)

(v) Let Ny := = H'W?e = —= 570 Iy, then E[|[Ri][2] = O(1).
Note that by setting ygp = 0, Assumption B.12 implies: %H’e/\ = %23—1 hi&; = O,(1),
Ell&?) = O | fpee'H|l = Oy (4 ) el = O, () and B[N |2 = O(1).
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PROPOSITION B.3. Under Assumptions B.10-B.12 we have:

~ A 1 1. 1 . .
N hy —hy = ——up + =by + —d, + 7y, t=1,..,T,
( ) t t \/Nt Tt mt t

where matrix 7 = (NA/N)Y(H'W?H/T)(NA/N)V " is invertible w.p.a. 1, and:

u, = (NA/N)I

y AMAN | L HW?2H\ . /ANA
o () s e () ()

y NAN P o Te o /NA
() s e ()]

. NN T 1. .
= ol —Ilh X R
7~9t ( N ) S _m@t + N 2 t:| + 7 + ty

N

Y

with n} = plim~ Y,_, Ele},|F] and Fy is the sigma-field generated by the h, for s <,

N—oo

re = Tie + 170 + 180 + Ry,
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vector 1y is defined as:

T1,t

T\ N

/ / / —1
TlvT (ANA> B'S {Hl + 1T} (ANAH he + N <ANA> B'S'&;

5 1 o (ANA
MY(H'W?H/T) 'TI3h; + NTM**’Hg< )ht

—=M" Kltht +YrpM™ |:T277t t +

/ —1 / / -1
! (AA> By [ngzat T ﬁ4<AA>ht] ; jv(“ 5§,
1

1
VNT

1
oy + Keh
VN T/—t TS\/»tt]

e R S
{\/»Tﬁtft /itft N\/N%-FN\/T%-F’YRP {T%/ngt—FNT?Rt&—FNT\/Tat}}

ot

* * 1 v v27 1
7]\4/1‘[/ &+ M’{ iRy - "@tntzht“‘ﬁ

N\F
o w25
T2\F/€t"7t

h + —

v 1
vgv o ¥ o ~
750& + O + —
T\/ e TVT e NvNT ! NTXt WRP[

\ﬁ
EESIVR YRS S ay B Y Z i
TyN st NT \ T 2 "stse NT\F 2

T
1 1 1 A'A
M**/ T/ h 7M**/H, H/ h
NVNT <T Z§t§t> ¢ T NT ( N ) t

**’[1B+ Bs.i + 5+1B]
NTVT ' NTVNT ! N?f ST NTYNT

1 *x/ 77/ { 1 27 1 4 1
= &t + kbt + +
NVNT N St N N\F P NVT NT !
- 1 25 1 4 1 T / 1 T 77! &
;& + ket + MoV M*11
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vector 7, is defined as:

1~ 2 ’ 2
ey = = M**/(H/W2H/T)_1 (H gW 55W> (W€E W=A
NTVT N2TT

H'e'W?2eeW Wee' W2H AA 1 o o
+ — ) hy + =TI (AMA/N)R
<NTf )(NTfT)(N)*TN“( /)b

1 o o
) hy + ﬁHzLHth

1 o
7 7,8 hs s hs 7_9
ZZ” {TQ”G +f2 et INTT ™

8111
1

1 v27 27 ~ 4
+———— Ry 2hs + —=k2hs + <+ .
TQ\/N st TN Nwﬁ“’ NTﬁ’V
ﬁg ¢ ;"%s&s ! 1 Xs '-YRP |: 61 s 52 s ! 253 s:| }
TF T\/T NVNT T2/N NT?f TN

1 # 1 1 - 27 ¢ 1 5k
_|_ + + T + 7!@ + —=a
{antgt NT tgt \/ngt N\/T’Yt YRP [T2\/N77t£t NT2 tgt NT\/T t:|}
1 (H W2ee! W) <W€€ W2H

N AV NTVT )gt NT\F H“Hl&} (-52)

vector rg, is defined as:

o rwwwt 1 Ne'W2e\ [(eW?2eA , 1 o, (ANA 1 A’A
- M Hl{Nm - ~ +N2TH I + =10 (= NTﬁ(H) he

o 1 1 v 1 v 1 o
+M1T { + + P s }
1{\/ﬁ NTVT NTﬁﬁ“ vt ot Ny
+H{ oy PRI [ S AR ]}
=K —— K «
' me NT T N\F% NVT TR e gt Nt

L i — L gy
NIV Bt gy )6
LA Ne'W2e 1 (NeW?3e\ (W3 N 1 i, H'W?2e
NT N NT NT NVNT VNT
VNT\N ) " NT\'N t
ANe'W2e
M***/
e (M)
1<W2H){1 2, 4 £y 1 +1 N [ +1 g_i_lV*]}
Fd N —
VNT \ VNT \ﬁTﬁt t tSt N\F% N\F% YRP TQ\Fnt N2 st NTVT t
1 e'W2ee'W2H 1 eW2H\ -,
+ §t+ ngt
NVT NTVNT NTVN \ V/NT

T N
1 o 1 o
+M***7 & 515 S ’s+7 s
NT gg t [ NTVT NT\/ 7 \/T”B“ NTVN T }

(B.53)
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7%; is the t-th row of matrix R defined by:

A 1 / / ! A p— & 8 ’ A,A
R = < (HA' + &) (W2 + AW (A~ = A) |S(L + B)| (N

The term &, is defined in Assumption B.5, and

S = (NA/N)YYHW?H/T)™!
B = (H'W2H/T)(NA/N) [(]k + A Ik} (NA/N) "N (H'W?H/T)™,
A = (NA/N)'N' (A=t —A)/N

M= U+ BYWANYT, M =[S+ B)] (0A/N)
|

e =[S+ B)] )

1 T
N, = —=)> cith

T
o 1 1 o 1 o o
I, = ——HW??<AN= ——H'&\ = — h ’,
! VNT VNT T; o
1 1 1 <&
ﬁ _ A// 2 A= A/u/uA: 7]
9 NT eWee NT & - t_zlﬁtft,
1 1 1< 1 1 <& 1 &
I, = HEN = ——=(=Y &l + =(—= > ) + —(= > h&'iy),
3 NT\/_T \/N(th; tgt) T< T;nt tgt) \/_T(T; tSt t)
1 1 &
2 _ A2 ~ I1A72 _ TS T RV
I, = NTHW&?WH_WH%H_NZNZNN
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Moreover:

n =

Ry =

and
Bra
Ba.
Bua

Be.t

N N
1 9 y
pthZE[g?t’FtL 77152 = phm—ZE[a”\}}],
N—oo i—1 N—oo i1
1 N N
W Z(E?,t ), Ry = (522,15 ) s
\/_ =1 =1

T T
Z Z 5i,tE[§i,s€s]> ’\?t = % Z Z 5i,t(€i,s§s - E[é,sés]%

N T . . 1 N 5 .
> D fuBlug) %=WZ > Gk — E[ELL),

N T T
o7 2 2 i D
e t1: €it€i.s5 2t T T —= tR:Eit€is)
NT “— — NT — —
=1 s=1 =1 s=1
N T
33
- at€1t5157
NT 1=1 s=1
N T N T
SODPICEE T DD IR
— Eit€isTsGs, 5t = T — Eit€isksCs,
NT — — NT — —
i=1 s=1 i=1 s=1
N T N T
I A e DIy
—F Eit€isPs, T T — Eit€isVs-
NT — - NT — —
i=1 s=1 i=1 s=1
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Moreover, if the eigenvalues of matrix E;l/th(W)E;1/2 for a specific choice of W (that is for a
specific choice of Yrp) in Assumption B.10 are distinct, then, for a suitable ordering and choice of the
signs of the factor estimates, we have E;l/ *H# Ly A%, where the columns of the orthogonal matrix
JC* are the normalized eigenvectors of 2;1/2Zh(W)E;1/2.

In equation (B.49), which corresponds to the expansion in (B.2), the difference (%2’ )‘%t — h; 18
written as a sum of a zero-mean term at stochastic order 1/4/N, terms at orders 1/7', 1/v/NT and
1/N, plus remainder terms 7, and R, Notably, the term of stochastic order 1/+/N is u,/v/N, where
u; = (NA/N)71&, is zero mean as E[¢;] = 0 from Assumption B.4 a). This term is the usual first
order term appearing in the asymptotic expansion of classical PC factor estimator (see Bai (2003)) and
it is also the first order term appearing in the expansion of RP-PC estimator (see Lettau and Pelger
(2020a)). The remainder terms r; and 7215 are either scaled by factors that converge to zero faster than
max{7, =, v} = O(;;), where m = min{N, T'}. )

We now control for the magnitude of the remainder terms r; and R; in 1J; to show the bounds

in Proposition B.2. The next Proposition B.4 provides an upper bound for T-'/2|H 7" — H|| =

SO 1/2
(% S Y hy — htHQ> , namely the root MSE of the factor estimates. It is analogous to
Lemma A.1 in Bai (2003), but is now derived for RP-PCs instead of only PCs, and yields a sharper
upper bound. This result is used to derive a bound on the remainder term R, which is also provided in

Proposition B.4. Let us define the matrix:
H = (NA/N)Y ' = (H'W?H/T)(NA/NYWL. (B.59)

PROPOSITION B.4. Under Assumptions B.10-B.12, we have:
i) NV2|As=t — A|| = 0,(1)VT) and N~Y?||A#~" — A|| = O,(1/VT). Moreover,
i) T-V2|HA~' — H|| = O,(1/VN), and

iii)

- 1
T'2|R| = O ( ) . (B.60)
Rl = 0, (———

From Proposition B.4 and Assumption B.10, we have term A defined in (B.55) is such that
= Op(\/%?). By the series representation of the inverse matrix function in a neighborhood of the
identity, we deduce that || (I, + A)~' — I, = O,(=). Thus, from Proposition B.4 and Assumption

) VT
B.10 we get that term B appearing in the remainder term r, in the expansion of Proposition B.3 is such

that: .
=0, (ﬁ) . (B.61)

To control for the remainder term 7; we use the next assumption.
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Assumption B.13. We have: (i) E[e},|F] < M forall i > 1 and t > 1, and a constant M > 0,
(i) S0 bl = Oyl(1), (i) = S0 b = Oy(1), (iv) 230, &t = o,(1), and (v)
Ell|a;||?] = O(1), where a; is any of the following processes: kihy, oy, Ki&s, ©o Voo O Kihy, Py

i, Kty Oty Xt

PROPOSITION B.5. Under Assumptions B.1 and B.10-B.13, we have:
LS~ 2 o () B.62)
— Tt = p | ~F . .
T — N

Moreover, U, satisfies %Z;ﬁzl 1§th; =0, (% + ﬁf) and :lp 23:1 <\/Lﬁut + %bt + ﬁc@ + 75t> 152
_ 1

o (stn)

Propositions B.3 and B.5 yield Proposition B.2 (with H = .7#” in each group). |

In the remaining part of this subsection B.5.1 we provide the proofs of Propositions B.3-B.5 and
show that Assumptions B.10-B.13 are implied by the Assumptions in Appendix B.1.
B.5.1.1 Proof of Proposition B.3
From equation (B.45) we have Y/W?2Y = AH'W2HN +ANH'W?e+'W2HN +'W?2e. By plugging
this equation into (B.44), and rearranging the terms, we get:

N o 1 o o o
AV — A (H'W2H/T) (A’A/N) = (WA + AH' WA + W2 HN'R). (B.63)

The large sample behaviours of the matrices A’ A /N and V are given in the next Lemmas B.10 and
B.11, respectively.

LEMMA B.10. Under Assumptions B.10-B.12, the matrix N\’ A/N is invertible w.p.a. 1, and the
inverse is such that |[(NA/N)7Y| = 0,(1).

LEMMA B.11. Under Assumptions B.10-B.12, we have 7N V, where V is the (k, k) diagonal

matrix with diagonal elements corresponding to the eigenvalues of matrix X,%,(W). These

eigenvalues are the same as those of matrices ¥,(W )X\ and Z}\/ QEh(W)Ei/ ?

From Lemma B.11 and Assumption B.10, the matrix V is invertible w.p.a. 1. From Assumption

B.10 and Lemmas B.10 and B.11, matrix 7 is invertible w.p.a. 1, and its inverse is:

A

AL =V(NA/N)"YHW?H/T)™. (B.64)
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From Assumption B.10 and Lemmas B.10 and B.11, matrix A is invertible w.p.a. 1. By post-
multiplication of equation (B.63) times the matrix (A’A/N)~*(H'W2H/T)~!, and using the definition
of matrix 7 given in (B.59), we get:

A#— — A= 7€ W2e + AH'W2)A(NA/N) " (H'W?H/T)™ + %5’W2H(H’W2H/T)1
(B.65)
By using A= [A%Z -1 A]jiz + A7, the last equation can be rewritten as:
A#—t — A = NlT(E W2e + AH'W?) A (NA/N) " (H'W?HT) ™" + %s’WQH(H’WQH/T)‘l
NlT(s W2 + AH'W2) A" — NA(NA/N) (HW2H/T), (B.66)
and the following also holds:
) L R -1
(MA/N)™P = { [k + (NA/N) TN (At — A)/N) %]
= (I + A (NA/N)! (B.67)

where A = (A'A/N)"'A’(A#~! — A)/N. By substituting (B.67) in the first term in the r.h.s. of

(B.66), and rearranging terms, we get:

A#t — A

1 .
= ?E'WQH(H'W%LI/T)-1 eW?e + ANH'W?e)A(I, + A)"H(NA/N) Y (H'W?H/T) ™

+y7

NT (/W + AH'W ) (A%Z—l - A) (Iy + AN (N A/N) Y (H'W2HT) ™
_ _g WEH(H'W?H/T)™ + %(E'Wm + AHW2A) (NA/N) " (H'W?H/T) ™ (I, + B)
+%(5 W2 + AH'W2) (A%%—l . A) (NA/N) " (H'W2H/T)™\ (I, + B)
(B.68)
where
B = (H'W?H/T)(N'A/N) [(Ik LA - Ik] (NA/N)YYH'W2H/T)™,  (B.69)

or equivalently
(NA/N)Y Y H'W?H/T) (I + B) = (I, + A) " YNA/N) " (H'W?H/T)™!

Equation (B.68) is a recursive equation for A=t — A, since this quantity appears also in the third
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term in the r.h.s. By iterating this equation B.68, we get:

A=t — A
1 R
= fg'W2H(H/WQH/T)-1 N7 ——(eW?2eA + AH'W?eA)(AN'A/N) Y (H'W?H/T) (I}, + B)

1 .
+—— (W3 + AH'W?) {Te’WQH(H’WzH/T)‘l} (AMA/NY Y H'W?H/T) (I, + B)

NT(
n 1 1 (
NT

NT (€W?e + AH'W?e) {

eW?eN + AH' W%A)} [(A'A/N)*l(H’WQH/T)”(Ik + E’)] :

_I_

A N 2
s (W% + AW %e)? <A%‘1 - A) [(A’A/N)‘I(H’WQH/T)‘l(Ik + B, (B.70)

and by substituting again (B.68) into (B.70), we get:

A" —

1 .
= f5'W2111(H’M/2H/T)-1 eW?2eA + AH'W2eA)(NA/N)" Y (H'W?H/T) (I, + B)

NT(

+%(5’W25 + AH'W?e) {fe’WQH(H’VWH/T)‘l} (NA/N)N(H'W?H/T) (I, + B)
—l—%(e’WQe + AH'W?) {NlT(g W?2eA + AH' W25A)} [(A’A/N)’l(H’WQH/T)*l(Ik + B)]2
a7 (€W + AH'W %) {%g W2H(H'W?H/T)~ } [(A’A/N)*I(H’I/W H/T) (I + B)] 2

+ 327 (e'W? + AH'W?) {% (e'W?eA + AH' W%A)} [(A’A/N)—l( HW2H/T) (I, + B)] 3
b (W% 4 MBI (Ao = A [V A/N) (W2 T) 5+ B)] B.71)

We can now obtain the expansion for the RP-PC factor estimator H. By using the definition of Y
from (A.2) and the equality A = [f\(%z -1 A]%Z + A, equation (B.47) can be re-written as:

AA
N

H = iy]\:H(

s e\ , 1 , a1 .
N ) I+ (W) H + N(HA +e)[A Aoz, (B.72)

As matrix .7 defined in equation (B.59) is invertible w.p.a. 1, then also A in invertible w.p.a. 1 by

Assumption B.3, with its inverse being:

A7V = ATHNA/N)TY = VINA/N)Y Y HW?H/T) Y(ANA/N) (B.73)
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By post-multiplication of equation (B.72) times the matrix 7~ we get:
. 1 1 AN
HA ' —H = NsA(A’A/N)_l - N(HA’ +&)[ATH — AJ(NA/N)TE. (B.74)

By plugging in equation (B.71) into (B.74 ), using the definition of S and re-arranging terms we get:

BA —H = —cA(WA/N)!

N
- 1l 2 & ® / -1 1 2 & » 1 -1

+ (NTHA w ) S(I + B)(AN'A/N)™L + <NTEE W2H ) S(I) + B)(A'A/N)
+%(HA’ +€) [NlT(g’W?eA + AH’W%A)] S(I, + B)(A'A/N) ™!

1 1 N
+N(HA’+5) N—(s W2 + AH'W?e ){5’W2H(H’W2H/T)_ }S(Ik+B)(A A/N)7!

1 1
+N(HA’ +e)- N—(s W2 + AH'W?e ){N(e W2eA + AH'W2eA) ¢ | S(Ii + B A A/N)7E

i / 11172 1772 . 2 2 ! -1
(BN 4 2) s (/W2 + AH'W e Ta "W2H(H'W2H/T)™! [S(Ik + B)] (A'A/N)

i / r72 17172 L 2 2 & NEIN -1
(A 4 &) s (/W e + AH'W2e)? § ——(W2eA + AH'WeA) [S(IHB)} (NA/N)

L (A "W2e + AH'W?e)? (As™? (MA/NY Y H'W?H/T)" (I, + B C (A AN
+ (HA +0) o (W2 + ( - A) [y JT) NI+ B)| (WA/N)

(B.75)

By using the definitions of M™, M**, M*** and R provided in Proposition B.3 the last equation can
be expressed as:

N~ 1
A —H - %EA(A’A/N)_l + (NlTHA'g’W?H> M+ <NT55 W2H >

1 1

NT —(&'W?2eA + AH’W25A)]

L 1 1

++ —(HAN +¢)— NT (W2 + AH'W?) {E’WQH(H’W2H/T)1} M*

%(HA’ +e)- ﬁ(gw% + AH'W2e) { ('W2eA + AH’W%A)} M**

1
+N(HA’ +€) 32 (€W?e + AH'W?e)? { eW?*H (H’W2H/T)_1} M**

i / 172 ! 2 _\2 L / 2 ! 2 kokok
+N(HA +5)N2T2(5W e+ AH' W*e) NT(sW eA+AH'W*eA) p M
4R, (B.76)

We now study each of the terms in the r.h.s. of the last equation in order to write expansion of
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H.#~' — H for each date t. The first term in the r.h.s. of equation (B.76) is such that:

1 1 1
—eA(NA/N 1} = —(NA/N)Y = —u,. B.77
g = e - o B.77)
The second term in the r.h.s. of equation (B.76) can be written as:
—(HNEW?H)M* = L g ( ! A’e’W2H> M = L HIT M
NT VNT  \V/NT VNT
where I1; is defined in Proposition B.3. Therefore:
L — (HNW?H)M* ] VN ) (B.78)
NT ' VNT
The third term in the r.h.s. of equation (B.76) can be written as (ﬁse W?2H ) M*. Noting that:
1 1 N 1 N T
11172 v 7 v 7
ﬁ[es W<H], = NT ; ;61 & shs = NT ;ei,t&,tht +NT ;S;# €i1€ishs
1 N T .
= NT Zez o+ FrP NT Zez i+ 1o Z:: D cirdishs

N
= NT ZE tht + fYRP NT2 Z Z €i,tE4, sht % Z Z Eiytgi’shs

i=1 s=1 i=1 s=1,s%#t

T N T
= Zgz tht + ’YRP NT2 Z‘Sz tht + IVRP NT2 Z €it€4q, sht + 1T Z Z Ei,t&!i,shs

=1 s=1,s#t i=1 s=1,s#t

) 1 L XN ) L N }
= (1+ TWRP) NTZEztht-F’YRPT\/— (Z Z Ei,thtgi,s> + WZ _Z €i 1€ shs

1 o
“2‘ + mht] , (B.79)
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where 77, , &; and & are defined in Proposition B.3. Therefore:

1 a2 1 1 27 1 1T 1 Y
——(ee'W*H)M™ = —M"nhy + ——=M"rkthy + —M"
NT ) , T TN M N
~ P I SN 1 . 1 v
Fire M gt R ] B8O

The fourth term in the r.h.s. of equation (B.76) can be written as:

1
——(HN +¢) [¢W? + AH'W?| AM*

N2T
_ 1 !/ 2 * / ! 2 * / 2 * 1 / 2 *
= —NQT(HAs W=eAN)M™* + N2T(HA AH'WZeA)M™ + NQT(% W=eA)M™* + 7N2T(6AHW eN)M
(B.81)
The date ¢ - element of the first term in the r.h.s. of equation (B.81) can be computed from:
(HNEW?eAN)M*| = L LA%’W%A hy = M*’imht (B.82)
N2T . N \NT N ’

where ﬁQ is defined in Proposition (B.3). The date ¢ - element of the second term in the r.h.s. of

equation (B.81) can be computed as:

1 1 1 AA
HANAHW?cA M*} = M*’( A’g’WQH) (—)h
LWT( W= A\ N
1 . NA
= ——MYIT, | — ) h,. B.83
W 1(N> t ( )
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The date ¢ - element of the third term in the r.h.s. of equation (B.81) can be computed from:

N
[N12T56 W%A} - Z Z Zez t€i.sE0.s A = N\/ljvT Z Z €i481,5Es

t

N2T
N\/—T Z &4, th tft [

1
:N\/NTZ &5 &t + VrP——= \/» ZEzth &

1 1 N T 1 1 N T o o
N\/N Z Z €1tE E; st] +rﬁ Z Z 5i,t(5i,s§s_E[5i,s£sD

1 1
(1 + T’YRP) NN 51 tft +YRP—F—— N\FT2 Z Z Eit€; sgt

i=1 s=1,s7t
N 1 1 1 XL, y
{N Z & f } (1 + T'YRP> NT {N Z(@Z,tft - E[E?,t]gt)}
.
Z

f
al |
NT\F F ; A E”&E” [ VN LthrNxf %}

1 o o 1 1
=1+ 77 L R . }+ b+ Yt + YrP——= "
( T”RP> {fﬂft N NN T ”“’szft

S

1, 1 1
= P+ + + — &
Tt NT Gt G T R [T%F (s T2 Kot T t}

(B.84)

For the last equation to hold we need a condition such that:

T

Z Z tgzﬁgt ( )

s=1,s

7\

It is enough to add &; in the list of terms in Assumption B.13 v).

which implies:

/ 2 *
AM
[N2T€€W € L

1, 1 .1 1 1 1
= MY =126 + < ribe + pe + + . +d*”
{\/NTTH& NT T NN T T2\F it gl NTVT
(B.85)
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The date ¢ - element of the fourth term in the r.h.s. of equation (B.81) can be computed by noting that:

1 1 e\ 1 1 e\ o
(eAH'W?A)M* = ( HW?eA ) M* = — [ — | I, M*
N2T NVT \VN) \VNT NVT \VN
which implies:
1 y
{ NQT(&AH’W%A)M*} = NIT ML &;. (B.86)
t

The fifth term in the r.h.s. of equation (B.76) can be written as:

N21T2 (HN +¢) [EW?ee'W?H + AHW?ee'W?H| (HW?H/T)™"M*

1 1
{ HNW?ee'W?H + HANAH'W?ce'W?H +

2 2
e NI e ee'Weee'W*H

1
+ N7 ——eANH'W?ce/W?H | (HW?*H/T) *M* . (B.87)

The date ¢ - element of the first term in the r.h.s. of equation (B.87) can be computed by first noting

that:

1
N2T7?

1 1
H
VNT (NT\/NT

and that the term in the brackets in the r.h.s. of the last equation is:

—— HNW?eeW*H(H'W?*H/T)*M* =

A’e’ere’WQH) (HW?*H/T) ' M*,

1 1 N N T .
NeW?ee W?H = Ni&i1&0 1o shl
NTYNT © O CF NT\/NT;;;; ki
T N T .
= NTIZZZﬁ?uEeb
1 ; ;/ 7T . 1 T N -
= oh <2 !
ﬁ;;;g;#gs“w +NT\/T;ZZ::1 t€e ¢l
1 y

which implies:

1
N2T7?

1 o
H(NW?2eeW2HYH'W?H/T 1]\/[*} = ——MY(H'W?H/T) '113h, .(B.88

The date ¢ - element of the second term in the r.h.s. of equation (B.87) can be computed by first noting
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that:

1
— HNAH'W?c'W?H

N2T?

which implies:

N2T?

;HA/AH’W255’W2H(H’W2H/T)‘1M*}

1 /ANAN 1 1 /AA) 1 A y
- —_H —— H'W?:e'W?H = —H — hi1&i4; sh,
T (N)NT Wree'W T <N)NT2;; #E1tC58 M5 s
1 /NMA\N 1SN 1 . 1L
= ZH ~ —= D higgir | | == D _Eishis
7 (50) w2 (G i) (7 Kot
1. /NAN 1 L. . 1 /NAN -
- - “SORY = ZH i
T (N)N; LT <N> 4

t

1 */ 11172 —17 A'A
= MY (H'W2H/T) m( ¥ ) tB.89)

To compute the date ¢ - element of the third term in the rh.s. of equation (B.87), that is
~2pzee' W2ee'W2HM*, we need an expression for the term = [Wee'W?H],. Using the definitions
of terms 7, k¢, and &, in Proposition B.3, we get:

1

NT [(Wee'W?H], =
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NT Z Z &i,t&q shs
i=1 s=1,s#t
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The date ¢ - element of the third term in the r.h.s. of equation (B.87) is:

N2T? [ee'W?2ee' W2 HM*),

T N
M S e W W~ M S S
s=11i=1 s=11=1
*/ 1 N
=M NT2 ZEZ €073 ht + Z Zgz €5 5775

s=1,s#t i=1

TQfZEzté'ztﬁitht‘f' T2x/> Z Zglt{fzsﬁjs s

s=1,s#t i=1

NT\/i 251 tez tOét + NT\l/i Z Z & t51 sas

s=1,s#t i=1
N
] L 2, 5
= NT?2 251 € t77t t + Z 251 +€i 5775 — YRP
s=1,s#t i=1

NT2\/—ZEZ tgztmtht+NT2\/— Z Zgztgz s’ﬁs s 'YRPNTB\/—ZZEZSé:ztEtht

s=1,s#t i=1

N
1 Y 1
+ — E; gléé+7 €& Ozé
NT\/W; PRASTRASY NT\/W Z Z PRASE ] 'VRP

s=1,s#t i=1

and therefore we have:

[ee'W2ee W2H(H'W?H/T) " *M*|, = M*'(H'W?H/T)™*

N2T2
o w2y 1 oy 1 .
Tzfmt o et T NT\F% T NTVT "
vgv 1 oY 1 < 1 1
T\/—m \/Tmozﬁ- 7N\/ﬁ6 NTXt YrP [TQ\F

where the three terms

NT NT

i=1 s=1 i=1 s=1

N T
o 1 o o 1 o y 1
5l,t = \/—— Z Z htntQEi,tgi,sy @2,1& = htﬁt& t€i,s5 53,1& = \/ﬁ

are all O,(1) by the new Assumption B.7 d).

The date t¢-element of the fourth term in the rh.s.
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Lith
T2”+\FT2

S s+ Fﬁsﬁs'i_ Cd“s
< s TV N VNT )

1 N T 5
W Z Z €i,s€z‘,t77t2ht

i=1 s=1

=1 s=1

§ § €i,s€4, tat ,

zlsl

o ht +

Bie+

of equation (B.87),

1
VNTT

1 o
NTQfﬁ2t+NT2B :|}

Qi

(B.91)

that

is



2z ANH'W2eM*e'W?2H, can be easily computed by noting that:

1 1 eA 1/ 1 1
— e AH'W?e'W?H = —(—) [— (—H’W%) —e’W2H)}
NeT™ TVN \VN/ LN \NT VT
N
1 v 1 e\ o
= — N; R — (=) 1,,
TVN ( ) Z " TVN \/N> !
which implies:
1 5
AH'W? H(H'W2H/T) 'M*| = ———M*(H'W?H/T)'T1,& . (B.92
~NoTEe Weee'W*H(H'W?H/T) ]t VN (H'W=H/T) 114§, . (B.92)

The sixth term in the r.h.s. of equation (B.76) can be written as:
o (HA +2)- [e'W?e + AH'W?e| - [€W?eA + AH'W?eA] M*

1 2 2 *k
= 372 —— HNW=ee'W2eAM N3T2

/ 2 2 *ok
N3T2 —— HNAH'W?ce'WcAM N3T2

1
N3T2 — e W2 W2 AM™ + AT e’ W2eNH' W2 AM*

]' 2 2 kK 1
N3T28AH Weee'W2eAM N3T2

HNEW?2eANH' W2 AM*

HANAH' W?2sAH' W2 AM**

eANH'W?2?eAH' W2 AM** (B.93)

The date ¢ - element of the first term in the r.h.s. of equation (B.93) can be computed by first noting
that:

1 N T N 1 N T v
[N2TW€E W%A} t = VT z:zl ; Zéi,té,séz,s)\z = NUNT Zzzl ; € t€i,s€s

1 N 1 oo
= N\/NT;Ei,tﬁi,tﬁt-i- {N\/NTZ( > eiytei,sgs]

1 (1 © } 1 1 X ) y
v | T X auBldl | =] am D D Gelids — BELED)

1 N
NvVNT Zi:l bt

1 5 1 1
% Bl 4 4 ; B.9%4
\/Nng75 NT e N\/N% N\/T% ( )
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Then, date ¢ - element of the first term in the r.h.s. of equation (B.93) is:

LHA’s/T/I/'2Es’T/I/2&:A

N3T?

1 [1 [(NeW 1 - 1 1 A
=H = T< ~ >.<N2TW55W sAﬂ:H —fo;& N Wee'W sAt

T

L [1e=s( 1 .o 1 .
-—H. . — | = = &2 /Jr % /Jr u/Jr u)

VN T;t<\/m”t5t NT T R T

T T T

1 1 (1 g 1 (1 v 5 1 Iy 1 [(1evy
:Hi - - v / + I\ﬁ/', 1/ + - o/ + - o

VN | VNT (T ;m& f) NT (T; t&ff,) 7]\7 N <Tt_21§f¢f> 7]\7\/? Tt:zl tVt

which implies:

1
[WHAIEIWQEE/WQEAM**]

t

The date ¢ - element of the second term in the r.h.s. of equation (B.93) can be computed by noting
that:

1 1 1 (ANEW WeA 1
HNEW?eAH'W?eA = H - {— ( ) . ( ) . ( H’W25A>}
N3T?2 NvVNT |T vV N v N vVNT

T
1 1 ~ov 3
—H. A
NVNT (T - S t) !

which implies:

T
1 1 (1 s
{ NBTQHA’&’W%AH’WZEAM**} =~ mM**’H@( Ejtg;) hy (B.97)
t

The date ¢ - element of the third term in the r.h.s. of equation (B.93) can be computed by first noting
that:

1 1 NA 1
HNAH’W%&’W%AM**} = [H < ) ( H’W285’W25A> M**}
LVi%T2 . VNT \ N NT/NT .
1 A/A = *ok 1 *k/ 7T/ A/A
— [Hﬁ (W) 3 M L = ﬁM 1T, <T> h,. (B.98)
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The date ¢ - element of the fourth term in the r.h.s. of equation (B.93) is:

/ / 2 / 2
HA’AH’W%AH’W%AM**] — {HL (M) : (H W €A> (H W 5A> M**}
, NT \ N VNT VNT ’

1 [/NA 1 Lo (NA
_ [HW < ~ )Hm M**} — WM**’H;H’1 ( I )ht (B.99)
t

o

The date ¢ - element of the fifth term in the r.h.s. of equation (B.93) is:

1 / 2_ 1 2 *ok ok / 1 v 2
AM = M it A
{NSTQaEW ee'W*e t NT ;;atew N2TW€€W € )
1 1 1
- M**li &g 519 ( v2 s KRsGs ds + ds>
1 o
_ + 4 + , (B.100
e | \Fﬂu et e+ \Fﬂn] (8.100)
where:
1 N T 1 N T
54,15 = == Z Z ztgzsnsgsv ﬁ5,t e e Z Z 5it§is’\%s§sa
NT i=1 s=1 NT =1 s=1
1 N T 1 N T
Bﬁ,t = \/T Z Z 5it§is¢57 67,t === Z Z €it€is s
T i=1 s=1 T =1 s=1

The date ¢ - element of the sixth term in the r.h.s. of equation (B.93) can be computed by first noting
that:

1 1 1 1 o
"W2eAH' W2 = —— . W2 = gwe _ , 11172
N3T2<€€ € JNT <N2T€E W=eA \/WH W=eA TNT N2TE€ W=eA | 1I;
which implies:
———ee'W2eAH' WQeAM**}
N3T2 .
1 sk / T/ { é— — k é— + 1 + ~ |: 1 25 + 1 g + 1 v*:|}
= — ——kK ——a
NVNT ant t T tSt N\ﬁ(pt \F% TYRP T2\/Nnt t NTZ tSt NT\/T t

(B.101)

The date ¢ - element of the seventh term in the r.h.s. of equation (B.93) can be computed by first noting
that:

1 1 e\ 1 1 e\ .
——eAH'W?ee'W?eA = —— () . (H’WQgg’WQEA) = ( ) 10
N3T? NVT \VN /) \NTVNT NVT \VN)
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which implies:

1 1 .
{—5AH’W255’W25AM**} ¥ ﬁM**’Hgft (B.102)
t

N3T?

The date ¢ - element of the eighth, and final, term in the r.h.s. of equation (B.93) can be computed by
first noting that:

1 1 eA 1 1 1 eA v v
—_cAH'W?2eAH'W?eA = () (H’WQEA) . (H'W%A) = () R
N3T? NTVN \VN ) \V/NT VNT NTVN \vN/) ' 1

which implies:

1 1 .
—5AH’W25AH’W25AM**] = M*TLILE, (B.103)
t

N3T? NTvV/N
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The seventh term in the r.h.s. of equation (B.76) can be written as:

1
N(HA, + E)NQTQ

= Hogy [NW2e W 4 NEW2AH' e + NAH'T e W e + NAHW ']
< W2H - (H'W2H/T) M
+ [ee'WPee'WPe 4 e/ W2eAH'We 4 eNH'WPee'W2e  eAH'W A H'W e ]
< WHH - (HWRH/T) 7M™ (B.104)

1
(€W?2e + AH’W%)ZTE’WQH (H'W?H/T) *M**

The date ¢ - element of the first term in the r.h.s. of equation (B.104) can be computed by first noting
that:

1

S(NeW?ee'W2e)e'W?H

T
1 Ne'W2ee!W Wee'W2H 1 Z Wee'W2eN WeeW?2HT \'
T N2T NT B N2T |, NT |,

t:1

T
1 e 1 . 1 . 1 o 1 . 1 .
= 2 |+ el + by + : h + /‘%h’+—d’}
T & [WT% NS R Nﬁ%H TNt T UNT ™
(B.105)

which implies:

1
{H e (A’e’era’Wza)e/W2H~(H’WQH/T)‘lM**} = M*™(H'W?*H/T)™*
t

1 1 1 1 ¢ 1 ¢
v27 2~ M M

th it | |t e L e
{TZ{ TV CRYee Sl v A KoV S v A A
H’a’erssW) (Wse WQA)

NTVT N2T\/T

The date ¢ - element of the second term in the r.h.s. of equation (B.104) can be computed by first noting
that:

= M*(H'W?*H/T)™! ( (B.106)

1
N3T3

(NeW?eAH'W?e)eW?H =

TN NT NT - ﬁmm

(B.107)

1 <A’5’W25A> (H'WZee’W2H> 1
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which implies:

H

(NeW?eAH'W?e)eW?H - (HW?H/T)"'M*™| = M**'(H’W2H/T)1%ﬁ4ﬁ2ht

t

N3T3
(B.108)

The date ¢ - element of the third term in the r.h.s. of equation (B.104) can be computed by first noting
that:

N (NAH'W?ee'W?2e)e'W?2H
1, H'W?2ee'W\ [ Wee'W2H 1 & ng/W2H Wee'W2HT \’
_?(AA/N)< NT )( NT AA/N?; . NT |,
T
1 1, 1 1 1
= (NA/N)= —“2h+—f%h+—d} { T Bl + }
( /)T;[Tntt T\/Ntt \/W e Ny \/—t \/—
(B.109)
which implies:
1
[H AT (NAH'W?ee'W?e)e'W?H - (H’WQH/T)‘lM**] = M*™(H'W?*H/T)™*
t
T
1 1 1 1 1
- hy + + PR+ ———=Rh, + 5/} ANA/N) 3 h
{T;[ntt \/_tt\/_:||:T77ttT\/Ntt mt( /)
Hl / 2 / 2H A/A
- M**’(H’W2H/T)—1( =W €€W) (WEEW ) ( )ht (B.110)
NTVT NTVT N

The date ¢ - element of the fourth term in the r.h.s. of equation (B.104) can be computed by first noting
that:

1 1 HW?2eA\ (HWee'W2H
NAHW?2eANH'W?e) e W?H = ANA/N ( ) ( )
N3T3 ( ) T\/NT( /N) VNT NT
1 ..
= T\/W(A’A/N)Hlm (B.111)

which implies:

1

HN3T3

(NAH'W2eAH'W2e)e' W?H - (H’W2H/T)1M**1

t

= M**’(H’V[/2H/T)1%1‘1&1 (NA/N)h, (B.112)
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The date ¢ - element of the fifth term in the r.h.s. of equation (B.104) is

(e W?ee'W?2e)e'W?H - (H’WQH/T)lM**}

N3T3 .
Wee'W2ee'W?H
*% 2
MW /T szs{ e
s=1 i=1 S
1 y 1
= M*™'(H'W?H/T)~ £i. 513{ N 4.+ Iis 72he + Qs
1 9 o 1 .
+—V h + Vgh + _s+ _s
T%/N NT? NTVN' NT\/T7
1 v 1 5 1 1
u2u RV ~
sWs + —/{sas s P— s s
T\/—n T N\/_ X YRP [TQ\/Nﬁl NT2\/_62 NT263 ]}
(B.113)
The date ¢ - element of the sixth term in the r.h.s. of equation (B.104) is
(W2 eAH'W?e)eW?H - (HW?H/T) ™ M**
N3T3 .
H'W?2ee'W2H )\ [ee'W2eA
— M**/ H,WQH T
ez () e,
= M*™(H'W?H/T)~ l1_[4{ 77 Lfitét + ! Py + ! Vet
VNT "™ NT NVN™  NVT
+ et i+ —
YrP T2 \/—7],5 t T NT? RSt NT \/_
(B.114)
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The date ¢ - element of the seventh term in the r.h.s. of equation (B.104) is

AT ——— (eAH'W?ec'W?e)e'W?*H - (HW?*H/T)~ 1M**}
t

= M™(H'W?H/T)~ j—( ]\V;V;T/E—W> <W;;V¢V;H) [jAN]t

) 1 Wee W?H Wee'W2H] \'
AW ) T—{ (57 s

= M*(H'W?*H/T)™! 7

1 1 . 1 1 . 1.
R A — —l——ds] { 25 %h o+ a}
{TZ{ TV N VNT Tl T N T U NT 2
1 (H’W%e’W) (W&ta’W2H)€
VN \ NTVT NTVT )

The date ¢ - element of the eighth term in the r.h.s. of equation (B.104) is

= M*(H'W?*H/T)™! (B.115)

{ o (EAH' WA We) W2H - (H’W2H/T)1M**1
t

1 H'W?ee'W?H Ae'W?H eA
v () ()
( /7) NTVT NT NT VN,

1 N
I1,IT! B.116
NTﬁ 4 ]_gt ( )

Therefore, the date ¢ - element (B.104), which we denote ad 17 is:

— M**/(H/WQH/T)il

—— T, 115k,

H'e'W?2eeW\ [ Wee' W2A 1
r7y = =M"(H'W?H/T)™! ( >( >h -
nt ( /T) { NTVT NeTyT ) T TN

H'e'W?2eeW Wee' W2H ANA 1 o o
+ hy + LI (A'A/N)h
(NTﬁ)(NTﬁ)( )tTN“(/)t

1 L 1 1
+ €i,4E4,s 7“§7L8+7,48v§718+75¢5
NT 821; o {T2n Tz VNTT
1 g 1y 1 . 1 .
FostPhs + ———i2hg + s+ s
T2\/JV K NT? NT\/NLP NTVT

v 1 1 1 .
\/2\/ k& +
T\/iné s 7T\/T/€5045 N\/— NTXs 'YRP l:TQ\/—Bla T2\/—ﬁ25 NT2/83,8:|}
1 1 1
+ e+ pr + S B R Ny S,
{\FTm o NN T NyT TR [T%/ngt N NTVT t]}

1 [(H'W?'W Wee' W2H 1
= 11T .
+\/N< NTVT )( NTVT )gt NTVT 15t} (B.117)

+

_l’_i
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The eighth term in the r.h.s. of equation (B.76) can be written as:

1
N4T3(

oy 1 Ne'W?2e\ [eW2eA N 1 NeW?2eA\ [ H'W2eA

o NVNT NT NT N2T NT VNT

N 1 (A’A) (H/W25€/W28A> n 1 (A’A) (H’W25A> (H’W25A> <H’W25A> A
NT \ N NTVNT NTNT N VvVNT VNT vVNT
1 ee'W2ee'W2eA 1 ee'W2eA H'W?2eA

VNT N3T? NT N2T VNT

s ) () sk () () () )
le( Ne'W2e ) ( ]vvv;g> +N\/1W (A’s;\I;I;QeA) <%g>
) () (5 () () 2
1 ee'W2eA H'W?2e
ot (552) (55
st (38) () (50 s ) () () 52

e'W?2e ee'W2ee'W2eA
+< N7 ) ( 7 )M (B.118)

HAN +¢)(eW?e + AH'W?2e)?(e'W?2eA + AH'W2eA) M***

+

—N

which can be written as

1 NeW2e e'W2eA 1 o . 1 [ANAN ¢ 1 ANAN oo | «
T8t H{N %NT( NT )( NT >+N2T 2 1+NT<N> 3+7NT %NT<N> 1} 1
1 EE/W2E€/W28A> 1 (5E’W25A) 1 ( eA ) y 1 ( eA ) 9 | &
+ + — I + — | II H IT M***
{\/NT ( N3T? NT \' N2T PNV \Un) T ey \UN '
LH 1 NeW2e\ (W2 N 1 i H'W?3¢
N NT NT NV N VNT
1 AAN o 1 NA\ « [H'W?Z2e e'W?2eA
+\/NT(N) 3+NT(N) 1<VNT>}< NT >
N 1 <E€/W28A> (H’W25>
VNT \ N2T VNT
n 1 (5/\) (H’W25> <5’W25> N 1 <€A) i (H’W%) <5’W25A) A
NVT \VN) \ NT VNT ) " NTVN\VN) '\ VNT NT

e'W?2e\ [eeW?2ee'W2eA e
+< N7 )( o >M . (B.119)
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Therefore, the date ¢ - element (B.119), which we denote ad rg ; is:

I 1 Ne'Wee e'W?2eA , 1 ANA 1 A’A
= I + II My + — II — T h
o . {N\/ N1 N1 N2Z 2T NI N Z\ZZ\/ ( ) '

1 W 2ee! W2eA 1 . [ee/W2eA 1. 1
+M***’H’1{ [55 e ] +—10 [65 : ] + I, + (IT))2¢,
t t

VNT N3T2 NT N2T NTVN 3 N2T\/T
(A/E/W2€) 1 (A’E’VV2 >(5 W2e > 1 i (H/WQS)

NT e\ T
1 AAN o 1 eW?2H
o () i 5in () i () o

NeW2e 1 ’W2H ee'W2eA
NT NT |,

_"_M***/

13/2)& NT\F<\/@) 1&}

Ve 1 iig 2 |:€E/W2€E/W2€A:|
— it€is |

N3T?
(B.120)
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which is equal to:

R 1 NeW2e\ [eW?2eA , 1 A’iA 1 A’A
rgr =M 11 {Nr ( NT NT + NQTH H2 NTH N NTF(H ) hy

v 1 1 g 1 . 1 1 y
+ M { + + +—F }
1{¢W NTﬁﬁ‘“ NTVNT > e NryR

Lo 1 . 1. 1, 1 1,
+ {\ﬁT%ft ke + \/N(pt—k N\/T% +YrpP [TQ\/N%&‘F NTzfitft‘f‘ NT\/Tat]}

M 1 o
_’_71—[/ T — H/ 2
NT\/N 3€t N2T\/T( 1) ft
enny [N EW?2e 1 (NeW2e\ (W3 1 - (H'WZ2
e (BEZ SN 2 + 11,
NT N NT NT NV N VNT
VNT\N ) " NT\'N i
ANe'W32e
M***/
. <NT ){
1 EWQH 1 1 . 1 oy 1 o 1,
tft Fétft N\F@t-F \f% +YrP mntft-f'wﬁtft'i‘mat
1 8W2 H’I/V2 1 eW2H\ -,
+ ft+ 11
VNT NTVN \ VNT

"

1 L 1 1
+M***/7 gz ézs |: s /7 s g s+ 3 5:|
NTZZ ¢ NT\F& NT Bs. \/TBG’ NTW&’

s=1 =1

(B.121)
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Therefore, the expansion in (B.76) for date ¢ reads:

- R 1 1 -
ANV hy—hy = ——(ANA/N)YTYE + MY ——T1h
( ) t t \/N( / ) gt \/ﬁ 174t
+ lM*’% —i—LM*/Ii;L—I—LM*/d + 7 M*[ 2, + L & + nh}
T nttT\/N ttm t TRP TQthTmtT?’\/»tt
ANA
+ M*’ Hth + 7M*’H/ he
VNT ‘N

v v 1 1 1 ¢ 1 v 1
+ M*’{ 2%+ o+ b + Ve + 7 [ &+ ket + a”
N E e OV VL UV i ¥ e vl

+ N\/— M*/H/ é—t
+ 7M*’(H’W2H/T)_1ﬁ3ht + MY (H'W?H/T)™* 1ﬁ4 AA hy
VNT T N
—+ M*,{ 1 'I];lh,t+ ththt+#oi‘t
17 VNT? VNTT
1 1 1.
+ = Flithy + g Rhy + Ge + o
T2\/ NT NTVN NTVT
+ 2 1““+15+1”~[1ﬁv ﬂ+1ﬁv”
+ =R+ —F— —=Xt —
TFUt VT N YNT T NT N TR e NTZ\F 2T NTR
T
y 1 (1 oo 1 1 .
+ L arEwrET) e - ] (LS e ) + = R
VN ( /T) a8t NT T;m&t N T; +§t&;

T ! T !
1 (1. ., 1 12
1 (1 ; 1 (1 L,
TNz (T thl M) T NVTN (T Zf: 5”) ¢

+ M [ Bs.t + Be.t +

s, 4

1 1 1 1 1
M**/H/ J— v _|_ v

N\/ﬁ {\/7T77t§t NT tEt N\/N@t N\/T'Yt

NT\F@‘”LNTF N2JT

N 1 9% v ",
+ L ki ——a
TR {T%/Nnt& N7t N T t”

1
+ M**I é—t

T M**/H/Hllﬁt + r7e + T8 + Ry . (B.122)

NT\F

By rearranging and decomposing the terms of order 1/ VN, 1/v/NT, 1/T, and 1/N in the last equations, the expansion
in (B.49) follows.

Let us now prove the convergence of matrices # and . From Proposition B.4 and Assumption B.10, we have
0p(1) = N(A — A#)/N = (NA/N) — £55 + 0,(1), which implies:

(NA/N) = Sy + 0,(1). (B.123)
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By combining equations (B.59) and (B.123), and using Lemma B.11 and Assumption B.10, we get:
Sh(WAEAA = AV + 0,(1). (B.124)

The definition of matrix % and Assumption B.10 imply:

H = Sz +0y(1), (B.125)
which combined with equation (B.124) implies:
SASR (WA = AV + 0,(1), (B.126)
and
SV, (WHSY2(2722) = (52 4)V + 0,(1). (B.127)
The last equation shows that ¥, Y2 57 are the eigenvectors of X 2 (W3, /2,
Moreover, equation (B.125) implies:
S VP = SN2 4 0,(1) (B.128)

By substituting the quality A = (A — A#) + AJ# into the RP-PCA loadings constraint A’A /N = I, Assumption B.10,
Proposition B.4 and equation (B.123), we get:

'S\ = ASNPENP A = I+ 0,(1). (B.129)
The last equation, combined with (B.128), implies also:
ASPETNPA = I+ 0,(1). (B.130)

Recall that V' is the diagonal matrix with diagonal elements corresponding to the eigenvalues of the symmetric matrix

1/ 2 (W2) ni/2 . Then, if these eigenvalues are distinct, equations (B.127) and (B.130) imply that the columns of matrix

1/2 1/25, (W)E}\m. Proposition B.3 follows. B

H converge in probability to the orthonormal eigenvectors of matrix X

In the remaining part of this subsection we provides the proofs of all the Lemmas and checks of the Assumptions.

B.5.1.2 Proof of Proposition B.4

By computing the norms of both sides of equation (B.66), using the triangular inequality and the Cauchy-Schwarz
inequality, Lemmas B.10 and B.11, and Assumption B.10, we get:

JN 1
A~ —A| = <||€ W2eA| + ||—AH W2eA| + |T€’W2H|>
+0, | (IgzpeWel + gt w2l ) 1A~ ] B.131)
To control the term in the r.h.s. we use the first three results in next lemma.
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1 N
LEMMA B.12. Under Assumptions B.10 and B.12, we have: (i) ||T€’W2HH =0, (\/ T)’

DI A W2 =0, (1 1 2 =0, (L :
(ii) HNTAH Wee|| =0, (ﬁ) and (iii) H AH W=eA|| =0, (\/T) Moreover, we also have:

N T S T
(iv) ||*5A|| =0, (\/;> which implies ||—5A|| =0, <\/;>

! el L
<\/N> and(w)H HA H| = <\/N)

( check lf and where the last 2 results are used ).

(v) H*HA' =

By multiplying both sides of equation (B.131) times N /2, and using Assumption B.12 ii)-iii

L, 1 1 W L it
0p<m+m+mﬁ>+op(ﬁ+ﬁ)N |AA~1 — A

1 1 1 o
Op | =4+ — + —— ) + 0, (N V2||As#— — A|]),
P (\/T VNT \/Nm> o( ” I

where m = min{N, T'}. The last equation simplifies as:

N2 Az~ — Al

- 1
N-Y2A#—A| = O () B.132

using that f \/7 which is implied by Assumption B.1. This last result shows part i) of Proposition B.4.

By plugging in equation (B.66) into equation (B.74) we get:

Hx# ' —H
= lsA(A/A/N)*l

HA’ +e {NlT (e'W?2eA + AH'W?eA) A (A’A/N)l(H’WZH/T)l} (A'A/N)~1
HA’ +e {;EIWQ H’WQH/T)_l} (AMA/N)!
S(HN +2) {NlT (W2 + AH'W2) A" — A]%(A’[\/N)_l(H’W2H/T)_1} (AA/N)!

(B.133)

By computing the norms of both sides of the last equation, pre-multiplying by 1/ VT, using the triangular inequality and
the Cauchy-Schwarz inequality, Lemmas B.10 and B.11, and Assumption B.10, we get:
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T

1 1
L NaA'.Op<1>+llN2THA/gW25A‘.OWHNWW%A'.opm

1
-Pj? N?FHAAHWV%A’ Op( vRHNZTEAH'W%A‘'o,,(l)
+']§‘ D;T}{A/’VVQI{H-(%( fosaI@a}{H~Ch(1)
DAL gnewre]| LA - ajo,0 ¢ e W 2| —— A — A0, (1)

T ||N2T VN N2T VN

N 1 . 4
o AQTJ¥AQ&HWWQaA‘VGVHAﬁf —Ajo,)+ /X 'LVZTgAWvﬂax‘V[nAﬁf — AJO,(1)

1 o 2 1,0
+:;,V@J1Lv HAHLVQAHI%@)+\}H¢T5 ! AHWv%A'm%u)

ovied b | ] R wH%WQHH‘O

VIV L A2 _ 2 L
*N’ HHH veweor () + e [

Y 1 / - A2
+4“V‘¢NTHA NTAHWV&A‘OP(¢T>

N 1 1
TRVl NTAHW%A‘O;:(\/T). (B.134)

Therefore, by using Assumptions B.10, B.12 ii), iii), iv) and Lemma B.12 ii), iv), we get:

1

1 A - 1 1 1 1
—=||[H#'~H| = O <>+O <)+O <>+O <>+O ( >
VT =00 0n) 7O\ ) PO\ U ) T O \Unr) O U
1 1 1
+0p (=) +0p [ ——— ) +0p [ —=
o (z) +or (Fmm) + o (7m)
1 1 1 1
= Op|l—=]4+0p|=|+0p|—)=0p|—= ],
g <m> " (T) " <FTm> " <m>
where the last two equalities follow from Assumption B.1. Therefore we get:

L 1
T-Y2\H# "~ H| = O () B.135
[ I AW ( )
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The reminder term R is controlled by first noting that, from its definition in equation (B.54), we have

\1@7@ _ \/%( HA +¢) {NT@'W% n Awa%)] ’ \/%(A%Z—l —A) [§<Ik + B)} ’ (A];,A) B

and that from equations and (B.135), Assumptions B.10 and B.12 ii), and Lemmas B.10, B.11 and B.12 ii), and the

> (elaor—an)

Cauchy-Schwarz inequality we have:

or (e el (|55

= 0| (ovm + 7m) v = (m\/Tn)

e'Wae

HAH’W2

TR

This last result concludes the proofs of Proposition B.4.

B.5.1.3 Proof of Proposition B.5

Let us first establish the MSE bound for remainder term r,, which can be computed by first noting that, from its definition

we have:
1 & 2 & .
2l = 7 (el + el + el + [1Re2) (B.136)
t=1 t=1
Moreover, from the definition of 71 ; in (B.50) and Assumption B.13 we have
T 1/2
! 2 = [|B||<+1+1>]+O<1+1—|—1—|—1>
T & T N /NT P\NvT TVN T? NVN
1 1

e (o w )] o (e o o )

= 0O, <N\1/T+T\1/N+T\1/T+N\1/N>. (B.137)
From Assumption ... also have:
LI 1/2
(TZ| 2) S (B.138)
t=1

1/2
> (B.139)

(1
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and

1 & V2 1
LS~ pe2 W B.140
(Tgu u) (o). (B.140)

where the last equality follows directly from bound (B.60). Combining the last four results, and by using Assumption B.1
we get:

T 1/2

1 ) 1 1 1 1

- - 0 + + + . B.141
(T thl el ) ? (N\/T TVN  TVT N\/N) (.14

Let us now show that & S°7_ 94k, = O, (& + —=). We use J; = J; + R; where
T 2ut=1 Vil \N T 77

< AMAN T 1 1.
— (== ’ ) .
v (N> 5 <WTO“+N 2 t>+”

From the Cauchy-Schwarz inequality and the bound in (B.60), we have:

1 & 1 - 1 & 1 & 1
SO U = 2 O+ Y Reb == > Ok + 0, <> :
T t=1 T t=1 T =1 T =1 mvTm
Moreover, by using Assumption B.13, bound (B.141) and L_ — o(L) (which follows from Assumption B.1), we have:
TVN N
T T T
1 ~ 1 1 1., 1 1 1 1 1
— Nh, = O, | —5| —= ah, || +0, | =51, | = h:h! +O( + + + >
T;” " |VNT (ﬁ%”) "IN 2<T§“> "\NVT " TVN ' TVT ' NVN
1 1
0) + —
g <N T\/T>
T
Then, +>°,_, Uk} = O, (% + TIT) follows.
Let us finally show that - Zthl(iNut + %lv)t + ﬁcit +9,)0, = OP(Ni/:?)' We have:

Moreover, by using bound (B.141) and Assumption B.13:

T
Lo = o (L b LYy o (L, L
(T;Hﬂtll) = Olytrmt ) ~ O vt (B.142)
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where the last equation follows from Assumption B.1. Thus, from (B.60) and /T < N < T2 (Assumption B.1), we get:

T

IR 19

1A . -
F2 Ry = Oy |T
t=1

R

Further, from Proposition B.4 ii) bound (B.60)

T
— £ _ - 1 1 1
S s~ IR = 0, (TP = HITPR]) = 0, | S| = o),

t=1

Nl =

since VT < N < T2. Finally, from Assumption B.13 and the bound in (B.142), we have:

and:

1 _ ’
TWZW% - N T<Tzutat)s(

t=1 t=1

+0 [ C— ! 1}4—0(1 )
8 R VR o IRV
1 d NA 1 1
= — A =) = -
a3 aas () et - el
from Assumption B.13 (iv), and:
1 T L1 Ky e (AT
+ —&—op(N\/»)
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since vT' < N < T?. Hence, % Zle(ﬁut + b+ ﬁcit +9,)0; = o, ) follows. [ |

1
NT
B.5.1.4 Proof of Lemma B.10

The proof follows closely the proof of Proposition 1 (ii) in Bai (2009), applied to the projected model (B.46), that is:
Y = HA + £ . Let us denote by A° the matrix of true factor loadings, in order to distinguish it from a matrix A of generic
factor values. The estimator A is obtained from minimization of the LS criterion:

~ min (Y — HN) (Y — HA')). (B.143)
H,A:ANA/N=I,
The criterium in (B.143), after concentration w.r.t. H, that is by using H = IU/A(A’ A)~1, becomes tr(}v/M Y ), where
My = Iy — Py and Py = A(A’A)~A’. Let us divide the criterium by N7, and subtract its value at A°, to get:

1
(YMAY ) — 71‘,T(€MAO€ )

Snr(A) = NT

NT
The matrix of factor estimates A is the minimizer of function Sy7(A) wrt. A such that A’A/N = I;. By using
Y = HAY + & we get:

1 . y 1 . 1
Snr(A) = ﬁtr(HAO’MAAOH’) + 2ﬁtr(HAO’MA§’) + g tr(E(Pa - Pro)&"). (B.144)

Now, let us show that the second and third terms in the r.h.s. are 0,(1) uniformly w.r.t. the (N, k) matrix A such that
ANA/T = I. We follow here different arguments compared to the ones in the proof of Lemma A.1 in Bai (2009), since
we deploy slightly different assumptions. We have:

1 y
——tr(HAY M)&")

NT

L rgiy e | LAyt L ae g
NTtr(A ¢'H) tr[ AA(NAA) AeH

1 v 1
AO’“’H +0,(||—==A&H|) = &H —),
Ol 7 )+ On(ll 577 1 (H\FT = (\/T)
and:
1 _ / _ l 1 1 1 A _— =2A0 1 07 A0 —li (%%
—NTtr(a(PA Ppro)e’) = Ntr [N “A(— AA) N } tr {NaA (=A"A") NA 5
_ 1 1 1 ol v 1 i 07 A0\—1 40/ 1 </ <\ A O
= N {A (NT 5)A} N {(NA A°)TA (—NTs &)A
1

= Oylll5722l) = 0p(1),

uniformly w.r.t. the (N, k) matrix A such that A’A/T = I, using Assumptions B.10 and B.12 i) and iii), Lemma B.12 i),
and the invariance of the trace under cyclical permutations.

Thus, from (B.144) we get Syr(A) = Syr(A) + 0,(1), where:

Snr(A) = NLTtr(ﬁAO'MAAOFJ') — tr[(AY My A /N (T, (B.145)
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and the 0, (1) term is uniform w.r.t. A such that A’A/N = Ij,. We have:

Syr(A)
0= Syr(A°)

v

Oa
> Syr(A) = Snr(A) + 0,(1),

V

which imply Sy7(A) = 0,(1). Then, from equation (B.145), Assumption B.10 and A’A /N = Iy, it follows:
AYAY/N — (AYA/NY(NA°/N) = 0,(1).

Thus, from Assumption B.10, we have (A”A/N)(A’A°/N) = ) + 0,(1). Lemma B.10 follows. [ ]

B.5.1.5 Proof of Lemma B.11

Let us multiply both sides of equation (B.63) by N~'A’ to get:

N(EW2eA + AH'W2eA + € W2HA'A).

(AN'A/N)V — (N'A/N) (H'W2H/T) (A’]\/N) N2

By applying the Cauchy-Schwarz inequality, Assumption B.12 ii), Lemmas B.10 and B.12 (i), and N ~V/2||A|| = v/,
we get:

(NA/NYV — (N A/N) (H'W2H/T) (A’A/N) = 0,(1).

Then, from Lemma B.10 and Assumption B.10, we get:

V = (WA/N)"YNA/N) (H'W2H/T) (A’A/N) +o0,(1)
(NA/N)"E S8 (W) (AA/N) + 0,(1)

We deduce that the eigenvalues of matrix 14 converge in probability to the eigenvalues of matrix XX, (W). Since matrix

Vis diagonal, the conclusion follows. |

B.5.1.6 Proof of Lemma B.12

(i) Using \F[E H|; = \F Zt 1 €4, +hy = R; and Assumption B.12 v), we have:

1 .
IZeW2H] = |I5eH] = —=

1 & 2 N
tr (N ZNN)} =0, ( T) . (B.146)

(i) By using (B.146) and N~'/2||A|| = O,(1) we have:

Iy o 1
I < <INl el = O, (ﬁ)
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(iii) By using Assumption B.12 i), we have

H'EA| = Op(——)

—AH”A < ,
H [ =

f \FIIAIIII F

(iv) Using \/—[EA] \/» ZL 1Ay = §t and Assumption B.12 i), we have:

1, 1 T T
HNEAH = ﬁ [t"' <;§t§t> = \/; tr

1/2

1
—HA/ "N < =I\H A — .
el < pllIgeal =0, (<)

(vi) We have:

1
7HA/ /H < —1/2 H
| | \/JT | H”F

by using mA’E’H \/1T ZtT:] &hy = 0, (1) from Assumption B.12 i).

A/ /HH = ()p(ﬁ

B.5.1.7 Check of the conditions in Assumptions B.11-B.10

a) Check of Assumption B.10

(xe)] (%)

In case v) and vii) are needed, proof is the same as in AGGR (v) By using (B.147) and 7—1/2 |H| = O,

1)1

(B.147)

(1), we have:

Assumption B.10 is standard in the factor literature, see e.g. Bai and Ng (2002), Stock and Watson (2002), Bai (2003). It

is implied by Assumptions B.2 and B.3.

b) Check of Assumption B.11

[ TO BE WRITTEN ]

¢) Check of Assumption B.12

Using the definitions of hy and ét, we get:

T T
Z hél = Z (ht +3rPh) (& + ARPE)

3\
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where the last equality follows from Assumptions B.4 b), B.5 b) and B.6 a) which imply % Zle hy = Op(1) and

fzt 1£t
Equality E[[|&|*] =

2./

To bound NT&‘W e’'A,
1 T .
NT 2ate1 Zi:l €j it A

1 T N
— Eit€it N

where

Op(1). Moreover, Assumption B.6 a) also implies f Zt L =

0,(1).

O(1) follows directly from Assumption B.11 (iii). And this completes the proof of part (i).

we first need to bound the j-th column of matrix ize’eA, that is x[e’eA]; =

T N
Z Z gjt?'fztA

1 T
= N7 SNt
t=1

=1i=1,
1 T T
_ 2
= w72 Bl + Z
t=1 =1
1 1 1
= —NA\+ ——=K\ + —0]
N NyT Y T UNT Y
1 I
77; = TZE[ait]
t=1
* 1 2 2
Ky = —F= Z(%‘,t E[%‘,t])
Ti=
T
o = 72 Z €j,t5i7t)\
! NT t=11i=1,i#j
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Analogously, by using the definitions of &; ;, we get:

t=1 i=1
1 T N 1 T
R SRR S (z) cu
NTt:lz:l NTt 1 =1 T
1 T N N 1 T 1 T
1 T N T N 1 T N T
:ﬁzzsﬂw T S S
t=1 i=1 t=1 i=1 t=1 i=1 r=1,r#t
1 T N 1 T N T
HYRP N2 Zzgj,tgi,t)\i'f‘:yRP T2 ST et
t=1 i=1 t=1 i=1 s=1,s#t
1 T N 1 N T T
ke s D DL it T he o 2L, DL Cisfinh
t=1 i=1 i=1 s=1r=1,r,s#t
1 1
— ﬁ Z Z Ej,tEi,tAi + Op (]VT Z Z 5j,t5i,t)\i>
t=1 i=1 t=1 i=1
T N T 1 T N T N T T
D D) DD MISICRER ST B Sl S o =D D) DD DRCICISY
t=1 i=1 r=1,r#t t=1 i=1 s=1,s#t i=1 s=1r=1,rs#t
1 1
= N7 z:: z; it A + 0p (NT ; ; 5j,t€i,t)\i>
1 T 1 N T 1 T N T
+YrP Z 72 Z Ej,tgi,r)\i + YrpP Z 72 Z 5]551t)\
TVNT = NT = r=1,r#t TVvNT = | VNT s=1,s
N 1 T T
e RS Y s
i=1 s=1r=1,rs#t
which implies
T N
1 1 1 1 1 1 1
— EN = A —= KA+ ——=a + 0 < ’fx+f<ﬁfx+oﬁ>
WT 2 S = i i e e (s i s
1 1 T N
VRP\/WT;( t) 'YRPTNZZ;
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Therefore,

Al = S (el (rnlefehly) = Y I el = 3 e D0 D epasiadal?
j=1 j=1 j=1 t=1 i=1
N
2 2 2 * 2 2 2
< 23 { I+ gl I+ gl oo (Gl + sl + gl
j:
11 11, «
~ * (12 ~ Kk 2 ***
+7RPNTT2||;5]‘¢|| +7RPM712||;5J,75 RPT2N2 HZ(S }
1 & 1 1 1
2 * 2 2 2 * 2 * (12
< N}j{|mAn SN+ g+ 0p (AP + ﬂ%&H+TMM>}

N T 1 N T
+MPWMZZWW—WQDZWMWWW S oI

j=1t=1 =1 1i=1

1 1
:%<T+N)

Therefore part (ii) follows from Assumptions B.4 a), ..., Assumption B.13 (which is checked below),
Assumption B.13 v), since 17t2 < M (Assumption B.4 a)).
Let us now show the validity of Assumption B.12 (iii). We have:

1 T N N T
|| vle = Tr [gglggl 5@ tez 55 35 t

N2T? N2T2 3,584,
t=1 i=1 j=1 s=1

T N N 1 T T N N

W2 2 v v v
= N2T2 Z z :2 :6%755 N2T72 2 : § : E :E : €i,t€4,5€5,t€ 5,5+
t=1 i=1 j=1 t=1 s=1,s#t i=1 j=1

The first term in the r.h.s. is O, (T~1) from Assumption B.4 b). Let us now consider the second term in the r.h.s..
We have:

A A
NIE DL D 2D Fitfisfindis

t=1 s=1 i=1
g T i1 4 =1/ N o T =1/ N 2
- Ly mwzz(szS )it 2305 (S -
t=1 s=1 t=1 s=1 =1 t=1 s=1
where 72, = phm ~ Zl 1 €it€i,s- By taking expectations, and using the Cauchy-Schwarz inequality and
N—oo

Assumption B.11 (iv) (in AGGR it was B.7 a)), we get that W thl 23:1,3# Zi:l ijl € 1€i s€j4Ejs =
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Op(#% + ). Assumption B.12 iii) follows.
Assumption B.12 (iv) is implied by Assumptions ?? a) and Assumption B.13 (which is checked below).
Indeed, from (B.79) we have:
T

L.
|!7€6W2HH2 = H*ES’HH2 = D (57l ’H])( ZH* & Hli|I?
t=1

T
1
2 h2 h2 2
> (gallthd + gapgliel? + gl

IN

~ 1 27 112 2 1 72
2k h = Op(= + —
#3ne |l + 6P + g eehd?] ) = Ol + )

under Assumption B.13 v), ..., since nt2 < M (Assumption ?? a)) and ... .

Finally, Assumption B.12 (iv) follows directly from Assumption B.5 d) .

d) Check of the conditions in Assumption B.13

Assumption B.13 i) corresponds to Assumption B.4 a). Assumptions B.13 (ii)-(iv) are implied by Assumption
B.7 b). Assumption B.13 (v) is implied by Assumptions B.5 b), ¢), and B.7 ¢). |

This concludes the proofs of all the technical results needed to prove Proposition B.2. |
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B.5.2 Proof of Lemma B.1

(TO BE ADAPTED) We prove the bound for X 1,2; the bounds for the other terms are obtained similarly. We

i ition ¥, » — —L 47 17 1. 9. i - - 2
i:,bstlttute the definition 1) ; = \/Fjuﬂvt + 705 + \/mdj’t + 19 into (B.11) and use No = N, N1 = N/pu5,.
e get:
;I =
o v oy N .
Xy = —— Z(hl,tugvt + ,uNul,th'Q’t) + N Zul,tu’w (B.148)
TvN o t=1
1 — 1 1 «
= (hl,tb'z,t + bl,th/Q,t) + > (bl,tﬂlz,t + ﬂNﬁl,thQ,t> + 5 0 by
t=1 VN = ™=
1 T i T
7 3 7 7 N v 31 y ~/
+ Z <h17tdl2’t + MNdl,thIQ,t> + Z <u17td2’t + dl,tug,t>
TVNT = TNVT =
1 T uy & T
v N v 7]
+ 3 <b1 oy, + vy tb’27t) + VN didyy + S (R D)
TQ\/ NT =1 T t=1 t=1

To bound the terms in the r.h.s. of (B.148), we use that under Assumptions B.2-B.4, B.5 b)-c) and B.6 a) we

have:

\;Tihﬂu;c’t = 0,(1), r}éuﬂu%’t:OP(l), (B.149)
;ihj,tb;c,t ~ 0,(1), (B.150)
t=1

;gbj,tu;m - o, (;T) (B.151)
}ibj,tbz,t = 0,(1), (B.152)

;ihj,td;,t = 0,(1), (B.153)

\}Tiumdgi = 0,(1), (B.154)
t=1

;idj,td;,t = 0,(1), (B.156)
t=1
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for j,k = 1,2. These bounds are shown below by using the definitions of w;;, b;:, d; in Proposition
B.2. Therefore, the first nine summation terms in the r.h.s. of (B.148) are of order O)( \/W) Op(3)s Op(),
O (W) Op(2), O (ﬁ) Op(57), O (T\/W) and Op( w7 ) respectively. From Proposition B.2, the
last two summation terms in the r.h.s. of (B.148) are of order O ( +7 1) and op( ~ \F) respectively. Therefore,
we get X9 = O, (dn.7), where Sy 7 = max{%, 7} = (min{N,T})~*
Proof of (B.150). We have:

-1

1 T 1 I 1 I -1 1 M
=S hib, == hihn? = hyh) — ) AN
T; 3,69kt <T; Gt 1Mk ¢ T; kit ¢ Ny ; ik

The first and second terms in the r.h.s. are O, (1) by Assumptions B.2, B.4 b) and B.6 a) and an application of a
LLN for mixing processes. The third term in the r.h.s. is Op(1) by Assumption B.3. Then, (B.150) follows.
Proof of (B.151). We have:

-1 _
T 1

N
1 O 1
bj,t = F Z )‘j,i)‘;',i (T Z h]’,th;ﬁ) hj,tnj%t, (B157)
T =1 t=1

and:
-1

L
wt=\ N, Z NN | G
i=1
where 77]2’15 and &;; are defined as in Assumption B.5. Then, we have:

-1

1 & 1 (1% T 1y & 1 O
. ! _ . ! = . / 2 i / i /
T ;:1 bjrug, = Wia 7Nj ;—1 AjiAji (T t; h],thj,t> Wi ;:1 Uj,thy,tfk,t] (Nk; ;_1 Ak 1“>

Now, ﬁ S njz,thjvté.;c,t = O,(1) follows from the bound |17 ,7;+& ,|l- < M with v > 2 (implied by
Assumptions B.4 a)-b) and B.5 b) and Cauchy-Schwarz inequality), the mixing property with size r/(r — 2) in
B.6 a), and an application of Corollary 14.3 in Davidson (1994). Then, (B.151) follows.

The proofs of the other bounds are established by similar arguments and are omitted. |

B.5.3 Proofs of Lemmas B.2, B.3 and B.4

The proofs of Lemma B.2, B.3 and B.4 are analogous to the proofs of Lemmas B.2, B.3 and B.4 in AGGR (see
their Online Appendices C.5, C.6 and C.7), respectively, and therefore are omitted. |

B.5.4 Proof of Lemma B.5

The proof is based on the asymptotic expansions of the terms within the trace operator in the r.h.s. of equation

(B.22). We distinguish the terms that are first-order, resp. second-order, with respect to the X ke

Online Appendix - 88



i) Asymptotic expansion of first-order term \ilzél)

N Ao~ P ~ A~ ~ A (cc) - ~
From equation (B.14), we have \I':y) = |-X11R+ X12B — B'X92B + B' X5 . As matrices R and B

have the same structure [ E, : * ] (see Lemma B.3), we have:
I OIS SRR S ¢ LD ¢ e (B.158)

From the expressions of the matrices X 4k in (B.11), and using the fact that upper k°-dimensional subvector
of both 7117,5 and 7127,5 is ff, the upper-left (k¢, k) blocks of the first and second matrices in the r.h.s. vanish.
Therefore, from (B.158) we get:

1 T

Ui = =2 ST - SN — 052 (B.159)

t=1

where H(©) denotes the upper (k¢, 1) block of vector v~t. To compute the matrix in the r.h.s., we plug the
it pp 4, P plug

o 1. 1 o o
expressions v ; = —==1; + —=bj; + —=—==d;; + V;; for j = 1,2 from (B.8), and use Proposition B.2

VN T v N;T
(CHECK notation in PROPOSITION B.2) and Assumptions B.1-B.4, B.5 b)-¢) and B.6 a) to bound negligible
terms up to o, (ex.7), Where ey 7 = (NVT) L.

LEMMA B.13. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have:

T
T % 1 1 vl(c vlc vlc vlc
b = -5 (T D Bl(vity) — i) it - uéﬁ)'!ﬂ])

where the terms in the parentheses are Op(1).

Lemma B.13 shows that the leading stochastic terms in @ZEI) are of order O, <1> Op <1> and
N N\T

0, <;2>

ii) Asymptotic expansion of the second-order terms in the r.h.s. of (B.22)

- 14 ~ A A
The asymptotic expansion of the second-order term W*(/1) — Z\ngﬂzgjqug” + U (L _pe —

Res) 720D — 50 (I, _ge — Rys) MOS0 s provided in the next lemma.
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LEMMA B.14. Under Assumptions B.1-B.4, B.5 b)-c), B.6 a) and B.7 we have:

e — DB 4 U (T e — Ra) B — S (T e — Ros) PO S
T T
1 1 7 i S 1 = [ 5(c v\’
R TIENCRUOEIER ES AT
t=1

t=1
where ¥ = + Zthl FyF, and the terms in the curly brackets are Op(1).

} + OP(EN,T)v

From Lemmas B.13 and B.14, the asymptotic expansion of the term within the square brackets in the r.h.s
of (B.22) is:

T % 1A* o — 1% Tk 3, —13 - > —13 o — 13 *
\chc B Z\Ilcgl)zccllpcél) + \chl) (Iklfkc - RSS) 1\1129 - ECJ(Ikl*kc - RSS) 1\112?203\1]05[)

T T
1 1 c c c 1 1 — C (C)
t=1

T
- ) _ () © _ v _ g (e (o) (e F
N\f {\F ; { :“N“hf Uyy ) (UNUY, — Usgy) [(unugy — U, )(MNUU u2t ) ‘ ]] }

+op (enT) 5 (B.160)

where &)t are the sample residuals defined in Theorem A.1.
Moreover, from Assumptions B.2, B.4 b) and B.6 a), and Corollary 14.3 in Davidson (1994), we have:

Iie 0

Vij =TIy, + Op(T7'?), j=1,2, Vip= +0,(T7/?). (B.161)

By plugging (B.160) into (B.22), and f)cc = Ipe + Op(T_l/Q) from (B.161), the conclusion follows. |

B.5.4.1 Proof of Lemma B.13

We substitute the expressions sz¢ = ﬁuﬂ + b t+ \/—djt + 19]t for 5 = 1, 2 into the r.h.s. of (B.159).

We use Ny = N and N; = N/ ,u%,, and partition vectors ;; and bjyt in block-form as:
- (c) 7 (c)
) il . b .
Ujp = [ 19 ] bjt = ! 5@) ] ; J=12
]t Jt

Moreover, we use that from Proposition B.2 the contribution of the remainder terms 1;]-71/ in the r.h.s. of (B.159)

is of order o, (e 1), and that under Assumptions B.2-B.4, B.5 b)-c) and B.6 a) we have % ZZ;I ﬁj,taul%t =
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Op(1) and £ 31, djud), , = Op(1) (see (B.154) and (B.156)). Therefore, we get:

T
T % 1 vlc vl(c c vlc
‘I’cél) = TN Z(MNug,Z - ué})(uwﬁ} - U§,Z)’
t=1
1 T[() (¢) (e) () () @)y (5l ()}
- Z (blft - b2(,:t)(uNﬂ1?t - f‘z?t), + (:U’Nﬂlt,:t - aZ?t)(blt,:t - bQTt)/
T?VN =
1 Z
— g 2O = B (B — 55
t=1
1 a (¢) () () () () @)y i) ()
T = Z (bft - bQ?t)(MNdft - dft)/ + (MNdft - 2ft)(blft - b;t), +op (enT) -
T2/NT ] [ }

" 1 1 vlc vlc vic vl|C
v o= -5 < > El(uits) — i) uvisy) — )| t]> e
=1

T
1 1 7(c j(c J(c J(c J(c J(c 7(c 7(c
o (120 00 Do 5+ )= D) B ) 4 v
Finally, by using ... and N < T? we get the expansion in Lemma B.13. |

B.5.4.2 Proof of Lemma B.14

i) Asymptotic expansion of g

Let us start with \ifgé”) . From the definitions of the matrices X 4,k in equation (B.11), bounding the higher-order

terms as in the proof of Lemma B.1, and using that T\/#Ni < ﬁ < % (% + %), we have:
5 1

=~ 1 4 1 1
Xjk = Tk +—=S5jx+Op < ) , (B.163)

JNT N2
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where:

T
—_ 1 v v v ]
Sik = 5 > (hiabis +bishi ), (B.164)
t=1
1 < 1 &
Sik = ﬁ;uw,khj,mk,t+uzv,jﬂj,thz,t)+T;(uw,khj,tdz,t+uN,jdj,th;,t>, (B.165)

with un1 = pun and pyo = 1. Terms éj,k and S’M are O,(1) under Assumptions B.2-B.4, B.5 b)-c) and
B.6 a). Then, from the definition of U*(1D) ip (B.15), the bounds (% + ﬁ) (% + %) = o(en,r) and
(% + 7 )2 = o(ey ) which hold if TV/? <« N < T°/2, we get:

T2
Tox 1 —_—  r— —_— = —_— - 5/ — I / — — r — !~ — —_— ~ —_—
ANCED R 77 {—:11‘/111 {—5113 + Z12B — B'E99B + B':21} + <:2QB — :21> Vay' (:223 - :21>}
1 _ o e
TVNT {—511V1_11 —S11R+ S12B — B'S%B + B'521]

Neglecting terms at order o, (e 1) when we further assume N < 7?2 we get:

. L 2 5[ 2 pLi= B pim B pe = 5 = \Xo-1(z p =
ANCED R 73 {—:11V111 {—inR + Z12B — B'E99B + B':21} + <:223 - :21) Vay' (:223 - :21>}
+0P(6N,T)v

Let us now compute the (cc) block of this expansion. We get:

1
T2

[1]:

N ~ ~ ~ ~ ~ ~ -~ o~ ~ ~ ~ ~ ~ ! - -~ ~ ~
gr U0 = {—EHVHl [—EUR 42158 — B'EyB + B’Egl} 4 (5223 _ 21) V! (5223 _ 521> }
(cc)

+0p(€N,T)- (B.166)
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ii) Asymptotic expansion of \ilzgl) (Lpy —ge — Rss)’l\if(s?
*(1)

Let us now consider the term \i’cs (L) —e — Rss)_l\ilg?. By the formula of the partitioned inverse for ‘N/ﬁl,

and Lemmas B.1 and B.13, we have:
U (I _ge — Reg) 10D
= WD Iy e = Reg) ™ | (V) WD 4 0, (1772020 ) |

- S e e 1 /1 1 1
= UL Ty — Roo) (Vi) ®30 + 0y (&V’T\/T <N Nt 6“))

= WD (I, e — Roe) VY)W + 0 (enr), (B.167)

if N < T%2. Let us consider W'\ (In,—ke — Rss)"N(V7 )SS\IISE ) By using U*() = —X 1R + X128 —
B’ X1, B+ B' X491, the expansion for Xj,k in (B.163), Rys = ®®'+0,(1), and the condition T/% < N < T*/?
to control negligible terms, we get:

\ij*(I) (Ikl_kc — Rss)_l(vl_ll)ss\ilzgl)

1 —_ = — ~ ) — -t >/ r— = — Cr— — = — - >/ r— - >/ —
= 72 { —EnR+Z19B — B'E99B + B’am} (Iny ke — Rss) " (Vi Y)ss [—:HR +=19B — B'Z9B + B’z21] Sc}
CS
+0p(€N,T)-

iii) Asymptotic expansion of W7 + \I!*(I)(I Ky —ke — ]%ss)_l\ifg?

By putting the expansions (B.166) and (B.167) together, we get the asymptotic expansion:

‘I’:c(H) + ‘ijzgl)(lkl—kc - RSS)_I@U)

sc
- 72 { <—§11‘7ﬁl [—éufi +Z19B — B'Z99B + B’ém] ( 9B — ~21> ‘7251 <é223 _ ém))

cc

+[-EnR+E0B - BEnB+ B _21} Iy ke — Ros) "L (Vi71)ss %
+

—EHR élgé — B ._.QQB + B ._21] } + Op(EN,T)- (B.168)

sc

Let us now rework the term at order 72, For this purpose we use the equations:

[I]z

[ = 5. = 75 Y A ~r= ]
—EnR+E12B — B'E22B + B'Ey; =

4cc

11,cc += \—412 ,cc EQQ,CC + EQl,cc = 07

[ = 5 = 7 ~1= ~ = ] = = ~ =
—EnR+E12B — B'Z220B + B'E0 = —Elisec +E12,5c — BesZ22.cc
L 4.8C

—_

. )
—Bl 599 sc + Bcsuzl ce + Bssuzl s¢y

[ = 5 = 75 Y- == =
—E1R+E12B — B'Z202B + B'E9 = —Eiteclles —

4cs

[1]2

ll,csRss + ElZ,CCBcs + ElQ,csBss

_EQQ,CCBCS - E22,03-885 + 321708‘
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Then, a block product computation yields:

b [E0ft BB - BEnB + BEn] (e — R (7)o x
_l’_

=198 — B2 B + B 521}

sc
— (B, (VY By (T
= T |=11 cc( 1 )cs +'~11,cs( 11 )ss X
—_ S/ — >/ — ) — / —
[ Z11,sc + '—'12 sc — Bcs~:22,cc - 355:22,30 + Bcs~:21,cc + Bsg':@l,sc]
+ [_EII,CCR - Ell,csRss + E'12,(:(:Bcs + ElQ,csBss - EQQ,CCBCS - EQQ,csBss + EQLCS]

5 —1/yr—1 —_ —_ S/ — S/ — o/ — / —
X (Ikl—k‘c - Rss) (‘/11 )ss [_:11,50 + =12,5¢ — Bcs\:22,cc - B35~:22,sc + 305:21,00 + Bss:@l,sc}
[ E e (YT Ty e — Rog) + R
= | —Eitee (Vi1 )es(Vin )ss Ty —ke ss) + Res
E11 ,CS += ~12 cchs + E12,cs-Bss - EQZ,cchs - E22,csBss + E21,05}

D —1/y7—1 = Rl = Rl = > Vi R =
(Ikl—kc - Rss) (VH )ss |: Z11,s¢ T -12 sc — 305522,06 - 355:22,50 + Bcs~:21,cc + 353:21,80:| .

Let us show that the term (171]1)08(171]1);51 (Tgy —ge — RSS) + R, vanishes. Indeed, from equation (??) we have:

(‘7111)68(‘71;1);91 (Ik1—kc - RSS) + Rcs = [( ~1_1)cs(‘~/1;1);91 + cs(Ik1—kC - Rss)_l} (Ikl—kc - Rss)
= ( ~1_1)CS(‘~/1€1);91 + iciclic 1] (I/ﬂfkc RSS)
+

|
(@) Mr
—
| —
—
=~
=
N—
(@)
(o)
—~
N
=
SN—
o)
»
—~
=~
=
N—

(o)

»
—
N
=

N—

w
w
—_

—

N

=

N—r
vy
»
—~
=
2
\
=
[v)
|
=
w
w
&

Therefore, we get:

<_

[1]:
[1]:

11‘71]1 [— 1R +Z12B - B'E»B + B é21:|>
cc

~Z11R+E12B — B'E92B + ~'ém} (Iny—ke — Rss) (Vi H)ss X

CcSs

+
[—énﬁi + é123 — B/émé + B'ém}

[

= {*éll,cs + é12,CCBCS + élZ,csBS.s -
(Ikrlfkf - Rss)_l(f/lzl)ss [ é'11 ,SC + ~12 sc B '—‘22 ,cc T B ~—'22 ,sC + B -21 ,cC + B -21 sc:|

= [_éll,sc + é12,30 - B£5é22,cc - B;5é22,sc + B(/;séﬂ,cc + B;5é21,sc]/

11,sc + ~12 ,s¢ BQSEQQ,CC - 325322,56 + Bé5é21,cc + B;5é21,sc} .

[I]z

% (T ke = Ras) 7 (Vi )ss |-
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Let us consider the term —=1; sct ._12 .sc " BCS._QQ ce = BSS._QQ sc + BCS._.Ql ce + BSS_Ql se =

11
- |:(§11,sc - é12,5::) - B/ (EQI cc ‘—22 cc) - Bgs(‘—'Ql sc —'22,50)

/
. = _ 1 #s (v(c) _ 50
Using Z11,5c — E12,5c = 7 ¢ fis (bu b3 )
/

= = _ 1 e (§(e) _ ¥(c)
291 cc — 292,cc = It (bu —by; ) and

VS )

2 9

T
= = — 1
—2l,sc = —=22,sc — T

H!/ = Hl = !/ =
- BSS‘:‘QQ,SC + BCS‘:'QLCC + B53:21,sc

:—%Z[fu L= Bl (8- 15))

[I]z
%
+
[1]
5
&

|
wsf}
8 ~
[1]x
N

8

Noting that
I 0

R/ R/
BCS BSS

we deduce that:
flJ—2cvt:ff,t_BésftC_BgszS,t? t:]-a"’aTa

are the residuals in the sample orthogonal projection of fit on fit and ftc. Let us now show that (I, _pc —

Rss)*l (f/ﬁl)ss is the inverse of the sample variance of that residuals. Indeed, the sample variance is:

T
J_Zthlj_Qct = Z[fu th} flt

IIM%

= %y —BLY1 Bl Y1 = <‘~/11 - B/Vm)

- (fuin ),
= _ilcRcs + i11(Ik1—kc - Rss)
= [_ilcRcs(Iklka - Rss)il + i11} (Iklfkc - Rss)

= <_ilcic_clicl + ill) (Ik‘1—k‘c - RSS) = [(‘71;1)33]_1(],191—]90 - Rss)7

Ss

from Equation (C.67) in the OA of AGGR . By gathering these results, we get:

(_EHVH { E11R+Z19B -~ B'Z92B + B HQID

cc
+ [ EnR+EZ12B - B'=»B+ B uzl} (I, —ge — Ry )_1(‘71]1)33 X
[—:11R +=19B — B'=92B + B :21}

LT
Z( _b(c>f1J_2ct

t=1

sc

T -1
( Z 112¢ tflJ_Zc t>
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Let us now consider the term [<_QQB _21) ‘7251 (éQQB — §21>:|
of the asymptotic expansion (B.168). Direct computation yields

~ ~ ~ . ~ ~ ~
{(3223 - 521> V! <522B - 521)}

cc
- |:(é22,cc - éQl,cc)/ =

also showing at order 7'~ in the r.h.s.
cc

= =1 522,0(3 - EQI,CC
(~22,sc - 521,5(:) :| V22 ~ =
=22,s¢ T —=21,sc
T T
1 1(0) 50 i 12“ i
= |7 E <b1t - th) hoel | = ha,ihs 4

T ; ; T )

t=1 t=1

SNSRI
Hence, the term at order T°

in the r.h.s. of (B.168) becomes

~ ~ ~ ! - ~ ~ ~
HooB — E21) Vo' (:223 - :21>)
+ {—énﬁ +Z12B — B'EyeB+ B ~21} (In, ke — Res) (Vi) ss X
[_EHR + 3123 - B/ézzé + Blézl}
1 & r (1 T /
= |70 () —857) by, (T > hz,th;,t) = > hae (B B57) ]
t=1 t=1 t=1
1 1 & ' /
RESSICERTHY I |65 oF TV B 5 oF SO
t=1 t=1 t=1
L (50 50\ ] 51 LS~ 7 (50 _ 5@
DM G A RADFE Y AUV (B.169)
t=1 t=1
where:
5 1< .
Sp=5) R
t=1
because fi | 2c + is orthogonal in-sample to ho > and ( f1 12,60 hy ;)" is a linear transformation of ( ft I3 t, stt)’ .
By substituting (B.169) into (B.168), we get:
Ue D 4 D (I ge — Rys) 10D
T
1 1 C c <« — 1
S O GRET E E oF
t=1
iv) Conclusion

/ } +op(enr).  (B.170)

We finally consider the other second-order terms in the r.h.s. of (B.22)
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By Wil = Op (% + 7= + en,r) from Lemma B.13, we have:

U8 M = o (enr), (B.171)

if T'/2 < N < T?. Moreover, by using X1 (I, e — Rss) ™" = O,(T~'/?) from (B.161), ) = Op(6n,1),
and U217 = 0, (& + 72 + €n,7), we have:

. e 1 1 11
Sen(Tgy —ge — Res) MO DB 100D = op[ o, ( +6NT>}

JTNTAN T T2
= 0p <€N,T> , (B.172)
if TY/2 <« N < T2. From (B.170), (B.171) and (B.172), the conclusion follows. [

B.5.5 Proof of Lemma B.6

We show the conditions in parts (i)-(iv) of Lemma B.6. Part (i) follows by the Law of Iterated Expectation and
E(U¢|F;) = 0, which is implied by Assumption B.4 a). Part (ii) is implied by Assumptions B.3, B.4 b) and B.5
b). The NED property in part (iii) holds true because conditional expectations given JF; can be well approximated
by elements in the sigma-field V[

B.4b),B.5 b) and B.6 a)-c), as we show in the next lemma.

generated by the mixing process (V;), for large m, by Assumptions B.3,

LEMMA B.15. Assumptions B.3, B.4 b), B.5 b) and B.6 a)-c) imply part (iii) in Lemma B.6.

To check part (iv) in Lemma B.6 we use:

T
1
li — Z = li — ZnNt, 2
v (G o) T,&fﬁooT 2 [T o G vy
= lim Cov (ZNt, ZNt—h),

N—oo
=—00

where the first equality follows from stationarity of the data. The series converges because the zero-mean process
ZNyisa L2—mixingale with size —1, 18 by Theorem 17.5 in Davidson (1994) and Conditions (ii)-(ii1), which
implies [|Cov (2w, Znn)l = || B [E(Ena Vi) Zhvea] | < IBEwalVin) 2l Znanlls = O (h7%),
uniformly in Ny, No > 1, for some ¢ > 1. The latter uniform bound also allows for an application of the

Lebesgue Lemma to get:
[e.e]

T
1
Q= lim V|[—=S"2y,| = T'(h),

h=—00

where I'(h) = limy_o Cov (Zn4, Zn4—n), Which yields equation (B.26). The computations in Subsection
B.3.6, and in particular Lemma B.7, show that the limit in I'(h) is well-defined.

That is, | E[Zn,¢[Vi—m]|l, < ¢(m), uniformly in ¢ > 1 and Ny, N2 > 1, where {(m) = O(m~") for some 1) > 1.
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B.5.5.1 Proof of Lemma B.15
~ o c)
Assumption B.6 a) gives the strong mixing condition for process V;. Since U; = uy (Exlﬁl,t) _
- o (o) -
<EX12§2¢> ‘ , Where ¥ ; = A;Aj/N.’
&t =&t — & (B.173)

for j = 1, 2, and process Uy is function of the components of process V;. Therefore, to prove the NED property

for process Zy ¢+, we simply have to show that processes Xy ; = E(U[U;|F) is L2-NED on (V;). We have:

XNt — E(XNAVEM2 < |1 XNt — E(XNt|Fry ooy From) |2
= ||E(U[U|F) — E(U[U|F, ..., Fr—m)ll2 = O(m™),

for ¢ > 1, by the Law of Iterated Expectation and Assumption B.6 b). The conclusion follows. |

B.5.6 Proof of Lemma B.7

The proof of Lemma B.7 is analogous to the proof of Lemma B.7 in AGGR (see their Online Appendix C.10),

with their assumption A.5 b) replaced by our similar A ssumption B.5 b), and therefore is omitted.

B.5.7 Proof of Lemma B.8

The proof of Lemma B.8 deploys the following uniform asymptotic expansions of factors and loadings estimates:

~ n 1 (c) —1/2
fe = Hcl |:fc_|_ u ] +o (T )) (B.174)
t t /le 1,t D
A ~ 1 1 _ )
O LR i) | Fop(T) =12, (B.175)
A= [Aiﬁ S BeiNi + 7= ﬂ]+op (r772), =12, (B.176)
. N 1, _ ,
N o= My {Aiﬁﬁ%ﬂ} +op(T77), j=12 B0

where the op(T_l/ 2) terms are uniform w.r.t. 1 <¢ <Tand 1 < ¢ < N, vector u;; is defined in Proposition
~ ~ ~ T <o o < 4 _ T 4 o
B2, 3, =[5, — SjeS e ws, = 52 7 it ffEj e and w3, = (F7'F7/T) ™ 2= 30, 7€, and
matrices H. and H, ; are such that H;’H = I +op(1) and H ;Hs j = Tis + op(1).
These asymptotic expansions hold under Assumptions B.1-B.4, B.5 b)-c), B.6 a), B.7, B.8, and are derived

in Proposition B.6 in Section B.6.
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B.5.7.1 Proof of Lemma B.8 Part (i)

To derive the asymptotic expansion of matrix f\;ij/

expansions in equations (B.176) and (B.177). Stacking the loadings 5\52 in matrix A; = [5\;1, o

Ac c 1 c s STER s ! ’ —1/2
Aj = Aj + ﬁ(G] + A]'\/szvczcc ):| He + Op <T / ) s

where

1
G5 = EE,

Cc

and 0,(T~'/2) denotes a matrix whose rows are (k° 1) vectors uniformly of order o, (T

stacking the loadings A7 ; in matrix Aj = [AS

\s / .
I ...,)\j’Nj] we get:

AS AS 1 s| 17 —-1/2
5 = |: 5 + /—G]:| Hs,j + Op (1 / ) y
where

Gj = fJFS

By gathering these expansions into matrix f\j = [f\c-

: A%, we get:

AJ = < f \/*A QJ) Z/{ + OP (T_1/2) .7 = 1>2>
where
. 1 o 17 ] c . 118
G; = G; : G; } = 7Tstja H; =[F Fj]a
. . 0
U = R ,
L 0 Hs’j
[ 0
R N ]
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N, we work with the matrix versions of the asymptotic

- Af N, ] we get:

(B.178)

Similarly,

(B.179)

(B.180)

(B.181)

(B.182)

(B.183)



’

A A
To compute

, we consider the matrix product:

1 1
7l R J@]P+W + e
/ 1 / / / 1 L . . / i’ )
- NAA +N\F(AG + GiA;) + NTG]G +ﬁ[<NjAjAJ>Q]+Qj<NjAjA]>]
(Q NG+ GA, Q])+ Q < ;Aj> Q;. (B.184)

Let us now bound the different terms. We have:

N.
1 1 1 !
—=N.G; =

T
I s .}vl/, iy =0, (1),
/Nj J NJT jeitti = \/W g ; Jyilvg t< gt p( )

and:
fi

1 1 Yo/ I 1 & /
— GG, = — —_— E‘,té',i,t — E‘,tg',i,t =0 (1)’
NNz(ﬁz e D) =0,

by arguments similar to the proof of Lemma B.1. Thus, by using these bounds and AjA;/N; = O(1) and
Q; = Op(1), from equation (B.184) we get:

1 1 1 1 1 1
Aj+— +—Gi+ —=MN,Q;i| = ——NA+—(Lpr;+L);
N] f \/} JQJ] [ \/T J \/T JQ]:| Nj ] \/T( Aj A,])
‘o (1+1)
P\VNT T)’
where
L (AgAj > o) (B.185)
A = i .
J N] J

Therefore we have:

A {A;A _ (Laj+ L )] U ( )
= + + j i +o
Nj Nj \/> Mg Ayj J p \/>

B.5.7.2 Proof of Lemma B.8 Part (ii)

a) Asymptotic expansion of r j

We start by deriving the uniform asymptotic expansion for the residuals. The asymptotic expansions in (B.174)-
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(B.177) allow to compute the asymptotic expansion of £; ; ;:
Ejit = Yjit — )‘c /ft )‘jz/ js,t = Ejit — [)‘C/ft A /ft} [)‘jz/ jst )‘jz/ ]St}

: 1 ' 1 (.
= Ejit— K/\jZ + 3% cjNji t \fu“; i+ op(T1/2)> (ff + ﬁugg + op(T1/2)> - Ajl'ff}

-~ 1
. [<>\s \/7 jl +Op T—1/2 ( Ej,czc_clftc+ \/ﬁug t) “+o0 (T_1/2)> — )\szlf] t]
J
@ 4 Lo >_< A L vs/f]’t> +op (T—1/2). (B.186)

- gj,i,t_<r Y RASR \/T w; \/73@ st \F wj
Here the op(T_l/Q) term is uniform w.r.t. 1 <7 < N;, 1 < ¢ < T by the bounds in the next Lemma B.16 and
Assumption B.8 d).

LEMMA B.16. Let X = O, ¢(an1) mean X = Oplan,r(log T)?) for some b > 0. Under Assumption B.8 we

have the following uniform bounds:

1§up [hjell = Ope(1), (B.187)
Sup |ujell = Ope(1), (B.188)
1<t<

sup ||+ ZhﬂmH = O, (T7?), (B.189)

1<i<N;

wheren > 1/2.

If we adopt ftc to compute residuals in panel j = 1, and ff* for j = 2, we have:

. 1 o, 5, cr () s (s) ~1/2
N]
Equation (B.190) allows us to compute:
RS S 1 MONSVIMO :
A% _ 2 2o wcl s cry(c s1(s -1/2
Vj,ii - 725]',2'715_72 Ejiit — ﬁ( ft ]z ]t)_ <A]Z ]t /\jz Jt> +0P (T >
T t=1 T =1 \% NJ

T
1 vs cl(C S
= TZEJZM \fzfm@wfﬁ lejt)_ \/}Z&T%”()‘M/ Jt) +Aju §t))
t=1
RS NO (s)
uc/ us/ c/, \C s1v\S
( ft th) N]Z<>\“ Jit )‘Jl Jt>
t=1

zf: ( vc/ vs/fj t) ( ;;ujct) ;’z/vg t)) + 0, (T—1/2>

+

=
Mq

-
Il

1
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By solving out the parentheses using w§ f Zt 1644 tft = Op(1), w5, =

(B3 'Fg /1) o S Fiuiia = O 0, s | Eadity) = 0,(1) and J= S &uiify) = O,(1),
\/T f VT

uniformly in 1 < ¢ < Nj, we get.

T

o 1 1 _
Vi = TZ gt T <N> +0op (T 1/2>,

uniformly in 1 < ¢ < N;. Using that 1/N = o(1/v/T) when VT < N, we get:

T

X 1 ) . )
Tii = Zsii,t +0p (T 1/2) = Vjii + ﬁwjl + oy (T 1/2) ,

uniformly in 1 <7 < NNV;, where

1 I
ijﬂ - 7T Z(éjQ,z,t 7],22)
t=1
Therefore, we have:
f\ r 1 £ 71/2
R (77172). (B.191)
where I'; = diag(vji, i =1, ..., N;) and W5 = dz’ag(wii, i=1,..,N),forj=1,2.

b) Asymptotic expansion of A’ F A
From (B.180) and (B.191) we have:

ARy = W05 0 + 0, (T712) (B.192)
where we define:

%= (MGt JQJ>< - 7m) (8 g )

= Qi+ 0+ U+ U+ O+ G + v + QG
) 1. N 1
+\/>( JJQ]+QJ ]]) f(ij,IQj+Q; jj,1)+\/*( ngIQ]+Q] ]]II)

+—=( j],IIIQ]+QJ JJHI)‘F QQ]JQJ+ Qijlej7
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and:

ol
Il

1
ii EAQFJ‘AJ,

) 1 1
PP WEN; =0, [ — |,
2 NyT p<\/NT>

) 1 1
= G'TiA =0, — ),
2k NyVT p<\/NT>

A 1 1
Yinr = N7 GSWJ'EAJ:OP <T)
A 1
* R /
O, = E . _GWEG; =0 <1 )
T NTVT "\rvT)
Collecting the previous results, we get:
A* A 1 / ]. ]_
Vi = it gm e+ lag) + 0| b7 ) (B.193)
where:
La; = Q. (B.194)

By substituting into equation (B.192) we get:

~ 1 ~
T Qs+ —— LQ,+L§T}L[+0 (T”/Q), J=12
- \/T( J J) J p

B.5.7.3 Proof of Lemma B.16

We prove the uniform bounds in (B.187) and (B.189). The proof of bound (B.188) follows by similar arguments.

Proof of (B.187). Let § = ¢(log T)?, for constants ¢ > 0 and b = 1/b, where b > 0 is defined in Assumption
B.8 a). Then:

T
Pl sup ||hj| > 6] < ZP[th,tH > 6] < 1T exp(—c20°) = 1T exp|—cac’ (log T)]
1<t<T
= T e = o(1),

if ¢ > (1/cg)'/%. Thus, sup ||| = Op[(log T)?].
1<t<T

Proof of (B.189). Let § = c(log T)Y/2T="/2, for constants ¢ > 0 and 7, where > 1/2 is defined in
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Assumption B.8 ¢). Then:

N.
SUPN ||*Zhjt5ﬂt” > 0] < ZP ||*Zhjt511t|| > 0] < N; SUP P H*Zhj,temt” > 4]
LAXAS i=1 =1 1<i<

< 1 N;T exp(—cod*T") + c3TN;6~ exp(—C4T’7)
= ¢1N;Texp(—cac®(logT)) + c3TN;6 " exp(—csT7)
— O(T?/Q—CQCQ) + 0(1) _ 0(1)’

ife > (55)"% Thus, sup |14 0 hysejill = Opllon ) 21712 = 0, (1772,
SISV

B.5.8 Proof of Lemma B.9

We assume that estimator ft is used to get factor loadings on panel 5 = 1, and estimator fc * is used to get
factor loadings on panel ;7 = 2. Recall Sy = (N2 /Nl) u, 1)1 + ESJ 2)2 Let r be the true number of common
factors, and let k¢ denote the number of common factors used in the estimation procedure. We consider the case
with r < k¢ < k = min{ky, k2 }.

Let us first consider panel j = 1. The common factor estimator is ff = W{ﬁl,t where W1 is the k1 x k€
matrix whose columns are eigenvectors of R associated with the k¢ largest eigenvalues, normalized to have

W{W, = Ii. Without loss of generality, let 7:[j = I, in Proposition B.2. Then, we have R=R+ op(1),

I 0 .
where R = ( (; o0/ > . The large-sample limit of W is the matrix of normalized eigenvectors associated
to the k¢ largest eigenvalues of matrix R. These eigenvalues are 1, with multiplicity r, and p? TP pic, that

are the k¢ — r largest eigenvalues of matrix ®®’ (assumed distinct, to simplify the proof). Let o denote the
(k1 —r) x (k° — r) matrix whose columns are the corresponding normalized eigenvectors of ®®’. Then, we
have Wi = Wi + 0,(1) where

u o

Wy =
! 0 «

r X r matrix U is possibly stochastic and such that 4'U = I, and o/ = Iyc_,.. For later use, we denote by 3

the (k1 — r) x (k1 — k°) matrix whose columns are an orthonormal basis of the orthogonal complement to the

columns space of «. Then, [« : 3] is an orthogonal matrix, 8’8 = Iy, ke, &’ = 0, and:
ad' + BB = Iy . (B.195)

From Proposition B.2 with 7:[]- = Ij; we have fzj,t ~ hj, where symbol ~ means equality up to terms that

are asymptotically negligible for determining large-sample limits. Then:

u'fy

ff = Wihyy =
' o/fft
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Let us consider the estimation of the factor loadings on the panel with j = 1. From (B.195) the model for

this panel can be written as:

e = FEN G+ POt e = TS ) + [0/ £ [0 ) + 18/ F2) I8N + e
- Lf /A{Li + ﬁ;ﬁz + €1,

u/fc u/)\c .

LS, = Lo, fs = B'ff,and A, = 'A% . Note that the transformed factors
! £s ’ /\S L1.t ’ )t g

' fiy a'A]; '

Lf and ﬁ , are orthogonal, and have dimensions k“ and ki — k© respectively. Since ff converges to f7, by

where ﬁ = [

regressing 71 ;¢ onto f{ we estimate A{ ;. Then, the residuals satisfy the model:
~ fS71\S .
fl,i,t = Jq A + €1t

The group-specific factor is estimated by extracting the first k1 — k° RP-PCs (RP-Principal components) from the
residuals, which yields asymptotically fft ~) Lf, where V is p.d. matrix. So for the estimated factor loadings

we have:

~

ANE
¢~ N — u )‘1,i
10 — 214 —

IS~ s /\ S
s ) 1i = VAL, =VBA .
AL

Thus, 5\172- is asymptotically an orthogonal transformation of Ay ;, i.e. 5\171- ~ RiA1,, say. Using €11 ~ €14,
we get f]u,ll ~ R1%, 11 R}, which implies 2%11 = Op(1).

Let us now consider the estimation of factor loadings in panel 7 = 2. By paralleling the above arguments,
we have 3, 92 = O,(1). Thus, ||y = O,(1). The conclusion follows. [

B.6 Uniform asymptotic expansions of factor values and factor loadings in the

group factor model

In order to prove Lemma B.8, we need to the asymptotic expansions of factor values and factor loadings in our
group factor model, which is provided in the following Proposition B.6. This proposition provides the uniform
asymptotic expansions for the estimators of the factor values and factor loadings in Definitions 1 and 2 and
equations (A.13) and (A.14), up to terms o,(N~1/2), where N := max{Ny, T'}.

PROPOSITION B.6. i) Under Assumption B.1 with n > 0, and Assumptions B.2-B.4, B.5 b)-c), B.6 a), B.7,
B.8(TO BE CHECKED !!!!) the asymptotic expansions of the factors estimators are given by:

N . 1 _
c  _ -1 c o (¢) N,1/2 B.196
ft 7-[C |:ft + \/ﬁlu17t:| + Op ( ) ) ( . )
and.:
A . N 1 s - .
fjs,t = H;} ﬁt + u( ) + Op(N 1/2)7 ji=1,2, (B.197)

N
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where fjt =fii— ijvcigcl f£ and the oy, terms are uniform w.r.t. 1 <t < T'. The asymptotic expansions of the
loadings estimators are:

ic Y c s —1% s 1 oy N — .
i = He [Aj,i + 30 Be A+ ﬁwj,z-] to, (N712), j=1,2, (B.198)

and:

i =T [Aii + to, (N712), j=12, (B.199)

1 v S
ﬁwm

where the oy, terms are uniform w.rt. 1 <1 < N;. Matrices 7-26 and 7:[30 are such that:

N - L 1~ = - ,
HoHe = Bee +0p (V%) HaogHiy = (GE BT 4 0p(NT), =12, (B.200)
where Z:"js = [ﬁl, ey NJST]’ Vector uj is defined in Proposition B.2, and w5, = f)c_clﬁ S ffEjie and

wj,i = ﬁ 25:1 JE]‘S,tguj,i,t-

This proposition is analogous to Proposition D.4 in AGGR (see their Online Appendix D.4). In the
asymptotic expansion of ff, the stochastic term at order N, /2 comes from the estimation of the principal
components in the first subgroup. Interestingly, no bias term of order 1/7" appears in the expansions of ftc
and f,, as these bias terms can be absorbed into the terms o,(N~'/2) under Assumption B.1, whihc implies
VT < N < T?. Instead, bias terms of order 1 /T were present in AGGR, who used the assumptions
VT < N < T°2. Similarly, bias terms of order 1 /T in the expansions of the loadings estimators appearing in
Propositon 4 of AGGR are also absorbed in the terms o, (N -1/ 2) in our Proposition B.6.

In the asymptotic expansion of 5\51, the term f]gclflc,j)\;i is induced by the fact that the common and
frequency-specific factors are not orthogonal in-sample. The expansion of A ; does not contain explicitly a bias
component at order N, ;1, since [V, ;1 = 0p(N ~1/2) under Assumption B.1.

The uniform asymptotic expansions at order op(T_l/ 2) in Proposition B.6 ii) suffice for the proof of
Theorem A.2.

B.6.1 Proof of Proposition B.6

We start by providing some uniform bounds in Subsection B.6.1 a), that are instrumental for the rest of the proof
of Proposition B.6. Then, in Subsections B.6.1 b)-e) we establish the uniform asymptotic expansions of factors
and loadings up to order o,(N~1/2), where N = max{Ny, T} (proof of part i)). Finally, in Subsection B.6.1 f)
we show how to get the uniform asymptotic expansions up to order o, (7' -1/ 2) under a less restrictive asymptotic

scheme (proof of part ii)).
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a) Uniform bounds (TO BE CHECKED !!!!)

Let X = Op¢(anr) mean X = Oylan,r(log T)?] for some b > 0. Under Assumption B.8 we have the

following uniform bounds, which complement those in Lemma B.16:

1<i<N; N T

sup [[bjell = Ope(1),
1<t<T
sup [|djill = Ope(1),
1<t<T
sup ||hel = Ope(),
1<t<T
22, 1850 = One()
sup B5 €5, = Opy T-"/2
1<i<N, || Z 7€ JZtH D ( )7
T
2
sup €5, = 0,(1),
2 Il = o)

1 1
Z Z)‘Jfgﬂtfy,zt = Op,Z(W)JFO(N)a

{=140#0 t=1

(B.201)

(B.202)

(B.203)

(B.204)

(B.205)

(B.206)

(B.207)

where 7 > 1/2. We prove below the uniform bound in (B.207). The proofs of the other ones follow by similar

arguments.
Proof of (B.207). We have:

T Z ZAjeg_]Ztg]Zt =

0=10#£3 t=1

T
1
Ej0tE5,it —
7 |73 (.3, 0
1

1

T

N
t— > NeElejeigiidl-
I p=1,04i

E )\Jfgjftgj,zt

Je 1,044

. 1 T 1 N 1 Nj
From Assumption B.8 ¢) we have £ ;_; ( N D021 02i EitCiit — B [\/7]\7], D01 i )‘j,€5j,e,t5j,i,t]> =
Op,g(T_”/ 2), uniformly in 1 < ¢ < V;, similarly as in the proof of (B.189). From Assumptions B.8 b) and d)

N.
we have > 7 L Ao Elej 085 ]
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b) Asymptotic expansion of ff

Let us start by establishing the asymptotic expansion of f¢ up to order 0,(N~'/2). Equation (B.21) and ¥ =
O,(0n.7) imply Wi = [E.+Es(1, kl_kc—éss)*l@g{;)]lfl +Op(512\7,T)~ The normalized eigenvectors corresponding
to the canonical directions are: Wy = W} D, where D = diag(W; 'Vi;W;)~1/2. Then, from Definition 1 and
equation (B.2), we get:

fo = Wihy, =D [Eghu + WD (I e — Rss)‘lE;lil,t] +Op, (6%7)

co e 1 1, 1 o) | 3l
~ D [ fi+ 7%N1uf2 + b+ Tlesz +9)
~ ~ _ s 1 s 1. s 1 (s a(s
P (e = R) ™ (ot el 0+ S+ 002) |+ O ().

(B.208)

uniformly in 1 < t < T, where we use the expansion of the factor estimates in Proposition B.2, and (B.203).
Under Assumption B.1 with 4 > 0, N = N, and N; grow at the same rate such that 7V/2 <« N < T2
Therefore, (log T)béfv’T = o(N~1/2), for any b > 0, ﬁ5N7T = o(N"Y2) and +6n1 = o(N~1/2) under
Assumption B.1 with ¢ > 0. By using uniform bounds in Lemma B.16 (this Lemma needs to be written and
proved ... but should hold!) and (B.201)-(B.202), and keeping only terms up to op(N -1/ 2), we get:

1

. L 1¢ “ ~ -
feo= ! [f,fc) + Wufﬁ + Tbﬁfz + D (L, e — Ryy) ™! ff,t] +o, (N 1/2) . (B.209)
1
uniformly in 1 <t < T, where 7:(;1 = DU’ and li)Lt is defined in equation (A.18).
To further develop this asymptotic expansion, we need the asymptotic behavior of @g?
U = ‘71_11\i/* (see Lemma B.2) we have \i/&? = (‘N/ﬂl)sclilzé[) + (171—11)85\1/22”. From Lemma B.13, we have

\Ilzél) =0, <% + 25 + ﬁ) = op(N_1/2) under Assumption B.1 with ¢ > 0. Moreover, from (B.14) and

Lemma B.3 we get:

. From equation

@:gn = _(Xll,sc - XlQ,sc) + B(’js(XQI,CC - X22,cc) + BQS(X'ZI,SC - XZQ,SC)'

From Lemmas B.1 and B.3, and equation (B.161), the second term in the r.h.s. is O, (T /25y 1) = 0,(N~1/?)

under Assumption B.1 with © > 0. Now, we substitute in the definitions of terms X j.k from (B.11), and use that
T i1 Viath, = 0p(N71/2). We get:
T

Tk 1 s 51 Fs V(¢ v(c -
\I}sy) = _f Z(fl,t - B;sf2,t)[w§7t) - wé,t]/ + 0p<N 1/2)-

t=1

Online Appendix - 108



By using the definition of 1), ;, Bss = ® + O,(T~'/2), and keeping terms up to 0,(N~'/2), we get:

Thus, by using (Vi;)ss = I, xe + Op(T7Y2) and N < T3, we get:

sc

1 v v (e 2 —
W = —ZEl(fi, - 250 - 0]+ op(N ). (B.210)
Thus, from (B.209) and (B.210), and by using (I, e —Rss) ™' = (I; e — @) 140, (T~ /?)and N < T3,
we get:

fio= H AT+

C 1 hotel NT —
m g,z + Tﬁl,t:| + Op (N 1/2) 3

(B.211)
uniformly in 1 <t < T, where:
o= 10 - G - )

t 2,t)(ff,t - (I)fés,t),](lkl—k?c - (I)‘I)/)_lfls,ta
which yields (B.196). By noting that 1/T = o,(N~'/2) under Assumption B.1, we get:

ftc — 7’1;1 |: t(C) + 1ug?2:| + op (N*l/Q) ’

(B.212)
VN1
The asymptotic expansion for estimator ff * is obtained by interchanging the roles of panels j = 1 and
7 = 2. Hence,
ex _ a7 10, 1 (0 -1/2
fit =M. [f + ——=uy,| +o (N ),
t c t \/m 2.t p
uniformly in1 <t <T.

Finally, let us show the asymptotic expansion for 7:107:[2 We first need to compute:

fe = f-r
9y Flc 1 o (c NT—
_ g [ ©) 4 Nluig] +o, (N-12)

(B.213)

Substituting the expression of ff from equation (B.213) into the equality % Zthl ff ff’ = Ijc from equation
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(A.12), we get:

1
e = Ho TZ
= 'S, (?2;1>'+op (1\7—1/2>7 (B.214)

using arguments similar to the proof of Lemma B.1 and Assumption B.1 with ¢ > 0. Thus, we get
HeHL = See + 0, (N71/2), which yields the first equation in (B.200). By using (B.161) it follows:

HH. = Ine + O,(T~Y?). (B.215)

¢) Asymptotic expansion of 5\;@

Let us now derive the asymptotic expansion of the loading estimator
N 22Nl b
i = (F “F ) Flg0 = FOy;/T (B.216)

up to order o, (N ~1/2), where y;; is the i-th column of matrix Y; and £ = [f{, ..., %]'. From equation (B.213)

% /! _ o
we have F'¢ = (FC FU1> (7—[;1) + 0, (N71/2), where Uf = [ﬂﬁ, - agc)T] , which implies:

J AT ¢ + o, (N—W) . (B.217)

1
vV Ny
Here o, (]\7 -1/ 2) denotes a matrix whose rows are uniformly of stochastic order o, (N -1/ 2). Then:

1 ¥
TFc/ij

= Fc’ <Fc/\§7i + F;/\;,i + Ejﬂ')

o, = (FCE) T =
1 x PN X~ o 9
= S ([F%’ - (FCH’C - Fﬂ NG+ NS + a“j,i)
N 1 x A o 1~ 1z
= NG — S F (PR = ) 05 4+ o FEN  + Fe e
for j = 1,2. By writing ['¢ = [F‘C + (FeH, — FC)] (H’)~', and rearranging terms, we get:

ic ’ c AfAflvc AfAfl“c”ss
fe, = H;{,{A“HH;}) R N G AR B 20 SN

N ~ N 1 x - o o
L) (o) (P = Y g+ (RO (o)™ (PR — oY D,

N N N AV S-S o
— () F) o [P (PR - FC)} (e, - o) A;ﬂ}. (B.218)
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We use equation (B.217) to bound the different terms. We have:

1ot 1., -
T(FCHIC—FC)%M = melfl,iJrop(N 1/2)
L M
= (AﬁAl/Nl)flﬁ Z Z ALeE104E 10+ 0p(N7H2)
st =1
. T
= (AJA1/N1)™ TZA11511t+ (A1A1/N1)~ NT Z 2/\165161551,1,15

0=1,0i t=1
+OP(N_1/2) = Op(Nf )+ Onl[(NlTn)_l/Q] + Op( 1/2)’

uniformly in 1 < 7 < Nj, using bounds (B.205)-(B.206) and Assumption B.8 d). A similar bound holds for
j = 2. Since N; grows at the same rate as N and T'/?2 < N, we have Nfl = O(N_I/Q). Moreover, from
n>1/2and T'/? < N, we have O, ;[(N1T") /2] = 0,(N~'/2). Hence, %(FC’]:[’C — FOY&;; = 0,(N~1/2),
uniformly in 1 < ¢ < Nj. Moreover:
1 ey [c\/! IS 1 re ! s T —1/2
= Op((NlT)_l/z) +0p(N712) = 0)(N7172),

and:

1 [C XcA/_“c ! XcA/_“c
T[F +(FoA, F)] (F?-l F)
1 rcITrc
= oywt U
= Op((NMT) 2+ N + 0p(N712) = 0, (N71/2).

Further, from (B.215) we have (H.)"'(H.) ™! = (H/Ho) ™" = 221 4 0,(N~Y/2) = Ie + 0,(T~'/?). Then,
from (B.218) and Assumption B.8 d) we get:

. 1
X = H [AC +2001TFC’5“] + o, (N7,

uniformly in 1 <7 < IV;. The last equation can be rewritten as

N 1 _
A = He [/\j,i + 3 BN + =, ] to, (N712), j=1,2, (B.219)

VT
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where:

T
=~ 1 . 1 o
o -1 o -1 Z o
w‘;z = ECC 1-1P’C ,6.]71 = ECC T — tcsjzz:t7
T T
~ 1o, 1 Y ~ 1 1 o v
e = pFUEC=g ) R Se=gFUE =50 fil
t=1 t=1

d) Asymptotic expansion of fjt

Let us now derive the asymptotic expansion of term fjt We start by computing the asymptotic expansion of
"X
asymptotic expansions in equations (B.212) and (B.219), have:

the regression residuals &;; ¢ 1= yji+ — fs where we replace f¢ with ff * for j = 2. By substituting the

Gie = LNt eiin— (fe00 = 1250)

s/\s
T5eN5i tejin

for—k
VN

+0P(N_1/2)

/
. 1
Uﬁ) ) <)\§z + X508, + \/ijcz) - ff /)\§,i]

= [3IN+ejin + op(N712), (B.220)

where we define:
ff0 = [ — Sl S (B.221)
€jit Ejit — \/1? g — \/1N—JU§CB XS i (B.222)

The term op(N*1/2) is uniform in 7 = 1,...,N; and ¢ = 1,...,T by bounds (B.187)-(B.188) and (B.203)-
(B.204), and Assumption B.8 d). Then, the residuals §;;;, with ¢ = 1,...,N; and ¢ = 1,...,T, satisfy an
approximate factor structure with factors fjt loadings A% ; and errors €;; ¢, up to op(]V -1/ 2). Differently from
the proof of Proposition D.4 d) in AGGR, our error terms e, ; + do not contain a factor structure at order 7.
The RP-PC estimator to the panel of residuals §;;; has an asymptotic expansion analogous to the one of

Proposition B.2:

N . ~ 1 1
Fe = Hoj |Fet S0 =i s =12, (B223)
) ) ) T s N]T s s

1
7@ ’U‘;': tS +
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1 -1
i = < NjAj‘/A§> \ﬁAj’e],t

1 AT AN :
* s 17 * \2 f.
e = (wams) (3575) wod.

" 1 -1 12 <\ ~
g = (o) (5E) (S et ) Fer
i=1 r=1
where (77;,15) = plim ~ N Z Ele j,z‘,t|]:t] and FJS denotes the matrix with rows Nﬁt’ . We have
]*)OO
N;
1 1 1 1 A AS
—Alejy = A3 P Iy < ! J>u@.
]\']"7 j ot Z 7,8 Ejit — f N] — VLR ft \/ﬁj ]\f‘7 Jit

We have 3= 077 A3 s ! = Op(N; %), 305 'AS = 209 4 O(N] /%), Thus:

AS/AC

1., 1
N T D“E”” W< N,

) (C) +op(N 712,

uniformly w.r.t. ¢ = 1, ..., 7T, and:

jt + OP N_1/2)7

1,
7’0_
\/Nj gt /N
ASIAS

-1 Jas —1 I A cC
A8 N ASTAS ASTAS (c)
7 1 IS o ., J 7 : .
where th = ( N ) N > im1 )\st,z,t ( Ny ) ( N >uj7t. Moreover:

b = [ 3 + Op(T Y2+ NT12),

Therefore, we have:

o (N, j=1,2 (B.224)

f;t:/}:lsl[fst_i _1
) N EED Jc=ce \/>Jt

uniformly w.r.t. t =1, ..., T.
(s)

Jit?
denote by Eab and (E )ab, with a,b = c, s the blocks of matrix ¥ = X ; and of its inverse Y ~1. Then, we

Let us now show that v7, = w;;, the lower k?-dimensional component of w;. For this purpose, let us

have:

5 1 3
s _ v—1 S o —1 (C)
Vit = Z:ss N, § )‘j,i‘g]ﬂ:t - Ess E5Cuj,t’
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and:

() _ E E
uj7t - )\j i€t + )\] i€t

]11 -711

s o —1 S —1¥ N
Vit = )Y s [IkJ - Z]sc § )\] i€g,,t — Esc X E )\] i€g,i,t-
J i=1 ] i=1

From the property of the matrix inverse, Iy, — isc(i_l)cs = 238(2_1)33 and isc(i_l)cc = Y Hse.

Therefore, we get:
vi, = e +( e e =¥
gt — 5,i€4,0t 7€t = J,1< 7585t - Y5t
] i=1 J i=1 ] i=1

Plugging the latter equation in (B.224) yields (B.197).

e) Asymptotic expansion of 5\51.

Let us now derive the asymptotic expansion of factor loadings estimator )\]i up to order o, (N -1/ 2). The

analysis parallels the one in Subsection B.6.1 c). We have

o= (F) T Fpg =
where &;; is the i-th column of matrix Z; and };f’ = [Xj’l, - }T]’ . From equation (B.224) we have
Fo = <15“; + ﬁﬁ;) (7—1;;)/ + 0p (N71/2), where UF = [i'%), ..., a%), which implies:
39— F} = \/lN—jUf +o, (N712). (B.225)
Then:
Nji = %I;JS /gN - %i—f, (f‘ys)‘}sz +é Z) +0p(N71/2)
= %f’f’ ([Ff’l:[;-’s - (f?’js’;’:lgs - ﬁ;ﬂ i€ Z) + 0, (N71/2)
= AN g E (B = ) X B it op (N2, =12,
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uniformly in ¢ = 1, ..., N;. By writing FS = [FS + (FsH, — Fs)} (H’ )=, and rearranging terms, we get:

J J 158 J 7,8
. . A L
Ma = M {)\jz (M)~ (o) ITFJ‘S "¢j
yo\— o1 %o . .
+(H;’S) 1</H]78) 1T(FJ'S/H9,S - ‘Fjs)/ej,z
) y 1 X v ¥ P )
_<H978)71(%]‘75)71T [FJS + (F;H;,s - FJS> (F]‘-SH;,S )AS } + 0p<N71/2).

(B.226)

By using equations ¢;; = &, — %F%b;l \/1? vj ;i and ]3']-5 'Fe =0, equation (B.225), and paralleling the
J

computations in Subsection B.6.1 c), we get:

1=, _
TFJS ‘€0 = TFS '8+ 0p(N71/2),
1 2. - X N _
(P, — F2)ej; = op(N7Y?),

T
S Er v i - B (B - B = o (),
(

Hja) ()™ = (BT T) ™ 4 0p(N12),
uniformly in ¢ = 1, ..., V;. Thus, from (B.226) we get:
o = g { Xk By BT L s f 0, (7),
uniformly in 7 = 1, ..., N;. This equation can be written as:

\s 2 s 1 “ s —
)\j/i = 7'[;73 |:)\ + ﬁw :| +Op(N 1/2),

where:

~

W = (FS’FS/T Z jtsm

f) Asymptotic expansions up to order o,(7/2)

Let us start by establishing the uniform asymptotic expansion of estimator ff at order op(T_l/ 2). From (B.208),
using (log T)béNyT = 0(T‘1/2), for any b > 0, and the uniform bounds (B.187)-(B.203), we get:

r 7 1 c —
fe=HZ <ff + o u§,2> +0p(T712),
1
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uniformly in ¢t = 1, ..., T, which yields the uniform bound for ftc. The uniform bounds for the other estimators

follow by paralleling the arguments in Subsection B.6.1 c¢)-e). |

B.7 Asymptotic distribution of factors and loadings in generic group factor

model

The next proposition provides the asymptotic distribution of the common and group-specific factors estimators
introduced in Definitions 1 and 2 in the main body of the paper. To simplify the proof, we assume that /N7 and
Ny, with Ny < Ny, grow at the same rate, i.e., No/N1 — p with g > 0. This condition could be relaxed at the

expense of a more involved restriction on N, No, T
PROPOSITION B.7. Under Assumption B.1 with p > 0, and Assumptions B.2 - B.8 we have:

ﬂcff - ftc
Hsafio = (fie — (FY'FOFCFO) L)

VN

] <, N(0,3yu114), (Fi-stably), (B.227)
and:

\/Nzl N SHcft . {t e ]&N(o,zu,m,t), (Fi-stably), (B.228)
Hsofse = (f30— (B "FO)FFO)TL)

for any t, where matrices H., H: and H, j are such that HH, = (=F¢'F°)~1 + op(Nl_l/Q), HAH: ' =
($F°'F)~1 + Op(N;1/2) and Hs jH ; = (%FJS ’Ff)_1 + op(Nj_l/g), we define F¢ = [ff,..., f%],
F = [y i) and B} = F§ — FA(POF) N (FYEY) for j = 1,2, and 5, = f5, — E[55, /¢ | f¢

is the residual of the orthogonal projection of B;t onto ff.

From Proposition B.7 a linear transformation of vector ff (resp. ff*) estimates the common factor f at rate
1/ \/ﬁl (resp. 1/ \/ﬁg) with no bias of order 1/7". Compared to the analogous asymptotic expansion derived
in Proposition 5 of AGGR, the bias terms of order 1/T" are negligible under our Assumption B.1. The variance
of the asymptotic Gaussian distribution is the upper-left (c, ¢) block of matrix ¥, 11+ (resp. Xy.22.), i.e. the
asymptotic variance of the estimation error uy ;¢ (resp. ug ;) for the PC vector in group 1 (resp. group 2). The
estimation error for recovering the common factors from the group PC’s is of order o, (N, 1 2), and therefore
asymptotically negligible. The estimator f]st approximates the residual of the sample projection of the group-j
specific factor on the common factor, up to a linear transformation, at rate 1/ \/]7] and with an asymptotic bias
of order 1/T.

Let us now derive the asymptotic distribution of the factor loadings estimators in equations (A.13) and

(A.14). For this purpose, we introduce the next assumption.
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Assumption B.14. We have for any j = 1,2 and ¢ > 1:

. figjie | o5 P5i
VT | L | SN0 @5 e 0]
t=
f2® ff 0 0 U
as'T — oo, where:
o0 o0
= > B[ nejiicii-nl,  ®5 = > Bl £l neiisciienl = (@55,
h=—0oc0 h=—0oc0
o0 [ee]
5 = > B S i), U= > E[f 5 @ ]
h=—00 h=—o00

Assumption B.14 states that time series averages of the error terms scaled by the factors, as well as time
series averages of the cross-products of common and specific factors, are asymptotically Gaussian. It is used to
show the asymptotic normality of the loadings estimators in Proposition B.8, and is implied by e.g. a mixing
condition on the individual error series jointly with the factor process. The part of Assumption B.14 concerning

scaled error terms corresponds to Assumption F.4 in Bai (2003).

PROPOSITION B.8. Under Assumption B.1 with i > 0, Assumptions B.2 - B.8 and B.14 we have:

R -1 .
H! A, — )\ cc sl )W (NS c e
g | G8) Xa=x | [0] (255 + (0 B @ 1) W53 1Y oo

N
! s 8 sc 88
(Hs,j) )‘j,i - /\j,i w35 U5
for any j, i, where H, and 7:[57]-, j = 1,2, are the same non-singular matrices of Proposition B.7.

The factor loadings are estimated at rate V'T. Matrix @7 is the asymptotic variance for cross-sectional OLS
regression of data in group j on the true values of the common factor. The additional component in the
asymptotic variance of estimator X;z is due to the fact that the true values of common and group-specific factors
are not orthogonal in-sample. This fact is not taken into account by the estimator of factor loadings. Finally,
there are no bias terms at order N; !, N, ! in the large sample distributions of factor loadings, since in our

asymptotics v/7'/N = o(1) and hence such bias terms are negligible.

B.7.1 Proof of Proposition B.7

We use the asymptotic expansions in Proposition B.6 i). Specifically, equations (B.196) and (B.197) for 5 = 1
imply:

/]:[cfc - fc
v N1 N o ¢ ¢ =uit+o (1)
Hoafiy — (f1, — (FYFO)(FOFO) L) :
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From Assumptions B.3 and B.5 a), we have u1 4 i> N (0,%4,11,¢), Fi-stably. Then, the asymptotic distribution
in (B.227) follows. The asymptotic distribution in (B.228) can be establish along similar lines.

B.7.2 Proof of Proposition B.8

We prove Proposition B.8 by the asymptotic expansions in Proposition B.6 i), by keeping only terms up to
0,(T~1/2). Specifically, equation (B.198) implies:

ﬁ{(ﬁ;)lx;i_xgi} =t + (FUFS VTN, + 0,(1)

T
D Jiegan + F1AL) + op(1)

t=1

N

[feejin + (N @ Iie) (fe ® f)] + 0p(1).

5= gl s

t=1

Moreover, equation (B.199) imply:

3 T
ﬁ[(ﬁ;j) K;_A;J]— >~ fiiic+onlh)

Thus, we get:

n—1 .
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Then, Assumption B.14 yields (B.229). n
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