Sitting Next to a Dropout: Academic Success of Students with More Educated Peers

Daniel Goller^{1,3}, Andrea Diem², Stefan C. Wolter^{1,2}

¹Centre for Research in Economics of Education, University of Bern ²Swiss Coordination Centre for Research in Education, Aarau ³Swiss Institute for Empirical Economic Research, University of St.Gallen

> 2022 EEA-ESEM Congress August 24, 2022

Introduction (1/3)

Note. - left scale: university and UAS students; right scale: university dropouts at UAS

- Increasing numbers of university (darkgreen) and University of Applied Sciences (UAS; mint) students in Switzerland
- 24% university BA students do not graduate from university within 8 years
- 8% university BA students instead graduate from an UAS (or other college)

Introduction (2/3)

- An increasing number of university dropouts choose to re-start studies at UAS
- Share of university dropouts at UAS increased from 2009 to 2018 (6 ->7 %)
- Those university dropouts...
 - have more and higher quality compulsory education more
 - already took part in (potentially difficult or "technical") lectures
- ... have a "head start" compared to their fellows.
- \rightarrow Whats the impact of university dropouts on UAS students?
 - Classmates could benefit if knowledge/experience is shared (peer effects)
 - Classmates could suffer if university dropouts raise the benchmark, i.e., grading on the curve or the lecturer speeds up in lecture (benchmark effects)

Introduction (3/3)

Research Question

What's the influence of university dropouts in the UAS on regular (first-enrolled) UAS students' study success?

Findings:

No effect of university dropouts on first-time students on average

Research Question

What's the influence of university dropouts in the UAS on regular (first-enrolled) UAS students' study success?

Findings:

- No effect of university dropouts on first-time students on average
- Higher share of "same-field" university dropouts in UAS classes lead to crowding out of regular starters
- Higher share of "different-field" university dropouts in UAS classes lead to lower dropout and higher completion rates for "regular" UAS students

Research Question

What's the influence of university dropouts in the UAS on regular (first-enrolled) UAS students' study success?

Findings:

- No effect of university dropouts on first-time students on average
- Higher share of "same-field" university dropouts in UAS classes lead to crowding out of regular starters
- Higher share of "different-field" university dropouts in UAS classes lead to lower dropout and higher completion rates for "regular" UAS students
- Effects are non-linear
- Effects differ by treatment dose and treatment level

Daniel Goller

We are in-between two strands of literature

Repeaters

- e.g., Lavy, Paserman, & Schlosser (2012); Gottfried (2013); Hill (2014); Bietenbeck (2020); Xu et al. (2022)
- Negative effects of Repeaters on peers, but...
- ightarrow Repeaters are usually low-ability

High-ability peers

- e.g., Sacerdote (2001); Carrell, Fullerton, & West (2009); Feld, & Zolitz (2017); Berthelon et al. (2019); Humlum & Thorsager (2021)
- Positive effects of high-ability students on peers
- Effect turns negative once difference in ability becomes large
- \rightarrow High-ability students have spent the same amount of time as their peers in the education system

Daniel Goller

Setup - Data

- Administrative data on all students entering the UAS from 2009 to 2018 \rightarrow >100000 observations
- Outcomes: Dropout/exmatriculation at the UAS in 1 (2) year(s); Completion of studies in (4) 5 years.
- Treatment: Share of University dropouts in UAS class, separated into two different treatment variables.
 - enrolled (without graduation) in university (before entering UAS) and UAS in the same field (SF)
 - 2 enrolled in university and UAS in different field (DF)
- Classes are defined as the group enrolled in the same year, institute (and location), full-vs-part-time, and detailed field of study.

Setup - Empirics

- Quasi-random variation in the share of university dropouts in UAS cohorts
- Controlling for
 - (Characteristics of) field of study
 - Institute (details)
 - Class characteristics
 - (Personal characteristics)
- \rightarrow Three estimation methods.
- 1.) Linear regression (fixed effects regression),
- 2.) (Doubly robust) Nonparametric Kernel regression (Kennedy, Ma, McHugh and Small, 2017).
- 3.) Best linear prediction method (Semenova and Chernozhukov, 2021)

Methods: Why CML Methods (2+3): Details

Results (1/4) - ATE: dropout from UAS within 1 year (first-time UAS students)

	(1)	(2)	(3)	(4)	(5)
	Baseline linear	Full linear	Fixed effects	Fixed effects	Best Linear
	model	model	model	model	Prediction
Panel A: all univ. dropo	outs				
Share univ.	-0.033	0.001	-0.003	0.021	-0.059
dropouts in class	(0.024)	(0.028)	(0.030)	(0.046)	(0.054)
Panel B: univ. dropouts	enrolled in the sa	me field (SF) d	it college		
Share SF univ.	0.082**	0.086***	0.085**	0.093*	0.119***
dropouts in class	(0.032)	(0.033)	(0.035)	(0.056)	(0.035)
Panel C: univ. dropouts	enrolled in a diffe	erent field (DF)	at college		
Share DF univ.	-0.168***	-0.163***	-0.164***	-0.132***	-0.166***
dropouts in class	(0.035)	(0.040)	(0.036)	(0.040)	(0.028)
Base covariates	Х	х	х	х	х
All covariates		х	х	х	
Institute-by-Year FE			х		
Institute-by-Field FE				Х	

Results (2/4) - ATE: other outcomes

Panel B: Dropout from	UAS within 2 years		
Share UH	-0.038		
dropouts in class	(0.033)		
Share UH SF		0.157***	
dropouts in class		(0.046)	
Share UH DF			-0.266***
dropouts in class			(0.047)
Panel C: UAS graduation	on within 4 years		
Share UH	-0.077		
dropouts in class	(0.074)		
Share UH SF		-0.378***	
dropouts in class		(0.092)	
Share UH DF			0.296**
dropouts in class			(0.118)
Panel D: UAS graduati	on within 5 years		
Share UH	-0.006		
dropouts in class	(0.068)		
Share UH SF		-0.323***	
dropouts in class		(0.094)	
Share UH DF			0.363***
dropouts in class			(0.099)

Interpretation

Interpretation of those coefficients is...

- ... not straight forward
 - Coefficients are usually interpreted for a change in the treatment variable from 0 to 1 → impossible in our case
 - a realistic increase is 1 additional university dropout in a class of 50, i.e., 0.02
 - Interpretation: 16 additional dropouts within 1 year from UAS for 10000 first-time UAS students
- ... potentially misleading
 - is this true for every treatment dose ...
 - ... and at every treatment level?
 - Are the estimates precise enough or is it extrapolation?

Results (3/4) - Nonparametric estimates

- Effect in fact non-linear
- Dropout probability decreases until share of about 7% university dropouts in class is reached
- For classes with higher shares dropout probability rather increases...

Results (4/4)

 \rightarrow Same minimum for the different field university dropouts (left)

 \rightarrow Minimum for the same field university dropouts is for a share of zero in class. (right)

Summary

- Same field dropouts are negative for first-enrolled UAS students
- Different field dropouts are positive for first-enrolled UAS students
- 'Optimum': 7% university dropouts in UAS classes, consisting of different field university dropouts and no SF university dropouts
- Effects mainly driven by full time students & large classes
- \rightarrow might be optimal to suggest a policy that does not allow to study the same field at UAS if already studied this at university, but:
 - SF university dropouts themselves are less likely to drop out and more likely to graduate from their UAS studies compared to the first-enrolled UAS students and different field university dropouts!

Questions? Working Paper Remarks? Suggestions?

E-Mail: daniel.goller@unibe.ch

Appendix

Students who later dropped out of a university and subsequently entered a UAS had $\frac{1}{2}$ sd higher competencies than the first-time UAS students.

	Reading		Math	
University drenout	(1)	(2)	(3)	(4)
Oniversity dropout	(0.091)	(0.096)	(0.091)	(0.094)
Field Fixed Effects	Х		Х	
Institution Fixed Effects	х		Х	
Field by Institution FE		х		х
N	2272	2272	2272	2272

Notes: Data source: SEATS data. Outcome variables (test scores) are standardized.

 \rightarrow The differences correspond to about $\frac{3}{4}$ years of formal education and is thus economically relevant.

▶ back

Methodology (1/2)

Why causal machine learning?

- Linear additivity of controls
 - to be free from functional form dependence
- \rightarrow Need a flexible way to account for confounding influences
 - Constant treatment effect
 - Speciality: continuous treatment
 - Potentially different effect for different 'doses'
 - Potentially different effect for different treatment level
- \rightarrow Need a flexible way to estimate the effect(s)

Methodology (2/2)

Both approaches build on the same first step, i.e., constructing the pseudo-outcome:

$$\xi(\pi,\mu) = \frac{Y - \mu(X,A)}{\pi(A|X)} \int \pi(A|x) dP(x) + \int \mu(x,A) dP(x)$$

For which $\mu(x,A)$ and $\pi(A|x)$ are estimated using a Random Forest.

 \rightarrow The pseudo-outcome is free from confounding influences.

 \rightarrow The pseudo-outcome is doubly robust, i.e., only one of the nuisance functions need to be consistent, not both.

In the second step $\xi(\pi,\mu)$ is estimated on the treatment variable in two different ways

- ... in a linear regression (Semenova and Chernozhukov, 2021)
- ... in a (non-parametric) kernel regression (Kennedy et al., 2017)

Results (5/4) - Results by fields of study

	(1)	(2)	(3)	(4)
	STEM	Humanities and	Economics and	Health and
		arts	administration	social work
Proportion univ.	0.022	0.064	-0.145	-0.036
dropouts in cohort	(0.040)	(0.052)	(0.092)	(0.032)
Proportion univ. same	0.094**	0.111*	-0.025	0.098*
field dropouts in cohort	(0.044)	(0.064)	(0.105)	(0.058)
Proportion univ. different	-0.124**	0.032	-0.257*	-0.112***
field dropouts in cohort	(0.058)	(0.071)	(0.133)	(0.039)
Ν	34,149	12,778	29,263	25,910

back

Results (6/4) - Results for the university dropouts

	Drop out of UAS within		Graduate in UAS within	
	1 year	2 years	4 years	5 years
Share same subject UH	0.044	0.107	-0.095	-0.042
dropouts	(0.046)	(0.070)	(0.134)	(0.157)
Share different subject UH	-0.105***	-0.150**	0.264*	0.218
dropouts	(0.036)	(0.061)	(0.148)	(0.148)
Individual is same subject	-0.012***	-0.025***	0.053***	0.036***
dropout	(0.004)	(0.007)	(0.013)	(0.013)
Ν	7691	6795	5156	4296

 \rightarrow Effects are similar to those of first-enrolled UAS students, especially for different field dropouts.

 \rightarrow Same field university dropouts are more successful compared to different field dropouts.

▶ back

Results (7/4) - Placebo Treatment Test

	(1)	(2)	(3
Panel A: Dropout from UAS withir	n 1 year		
Proportion univ.	0.044		
dropouts in cohort	(0.027)		
Proportion univ. SF		0.033	
dropouts in cohort		(0.033)	
Proportion univ. DF			0.00
dropouts in cohort			(0.04
Panel B: Dropout from UAS within	2 years		
Proportion univ.	-0.003		
dropouts in cohort	(0.035)		
Proportion univ. SF		-0.002	
dropouts in cohort		(0.043)	
Proportion univ. DF			-0.0
dropouts in cohort			(0.05
Panel C: UAS graduation within 4	years		
Proportion univ.	0.024		
dropouts in cohort	(0.071)		
Proportion univ. SF		0.074	
dropouts in cohort		(0.086)	
Proportion univ. DF			-0.04
dropouts in cohort			(0.11
Panel D: UAS graduation within 5	years		
Proportion univ.	0.031		
dropouts in cohort	(0.063)		
Proportion univ. SF		0.039	
dropouts in cohort		(0.079)	
Proportion univ. DF			0.0
dropouts in cohort			(0.09