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1 Introduction

Forecasting is hard, especially about the future—or so goes a famous saying. Yet rational-
expectations models assume that agents can forecast the distant future as well as an oracle
who knows the shocks and their distribution, understands how shocks propagate through the
economy, and uses Bayes’ rule to incorporate any new information. In reality, when faced with
the difficult task of forecasting in a complex world, agents are bound to rely on simple models.
The unrealism of the rational-expectations assumption would not be of great concern had the
predictionsofworkhorsemacromodelsbeen robust toalternative specificationsof expectations.
However, the answers to several important questions inmacro, ranging from the determinacy of
equilibrium in new-Keynesian models and the power of forward guidance to the consequences
of government debt and the optimal path of fiscal policy, are highly sensitive to the specification
of long-run expectations.

This paper proposes a framework in which agents are constrained to forecast using simple
time-seriesmodels andcharacterizes the resultingbias in their forecasts andactions. It considers
the problem of an agent attempting to forecast future values of a set of observables based on
their past realizations. The observables follow a stochastic process, whichmaynot have a simple
representation, whereas the agent can only entertain stochastic processes that can be repre-
sentedbya low-dimensional state-spacemodel. Consequently, the agentmayendupwith a low-
dimensional approximation to the true process. This form of model misspecification leads to
bias in the agent’s forecasts and deviations in her actions from the rational-expectations bench-
mark. The paper characterizes this bias and studies its implications for the agent’s actions, and
ultimately, macroeconomic aggregates.

The bias in the agent’s forecasts takes a straightforward form when the true process satisfies
an ergodicity assumption. The bias then takes the formof persistence bias—a tendency to attend
to the most persistent observables at the expense of less persistent ones. The agent forecasts
the most persistent observables as well as an agent with rational expectations while treating
less persistent observables as if they were i.i.d. This selective attention to persistent variables
leads to the stickiness of expectations and actions. It also anchors the agent’s foreword-looking
decisions to sluggish, backward-looking observables and increases the co-movement between
various actions.

The paper’s sharp theoretical results offer a powerful toolbox, which helps one study how
bounded rationality alters the predictions of standard macroeconomic models and the asso-
ciated policy prescriptions. I illustrate the use of these tools in the context of three workhorse
macromodels: thenew-Keynesianmodel, the realbusinesscycle (RBC)model, and theDiamond–
Mortensen–Pissarides (DMP)model. Constrainingagents to simplemodels in thenew-Keynesian
model dampens the response of output and inflation to interest rate changes and significantly
reduces the power of forward guidance. Doing so in the RBC model changes the behavior of

1



aggregate consumption bymaking it actmore like a stock variable, which responds sluggishly to
productivity shocks, thus increasing its volatility. Constraining agents to simple models in the
DMP model leads to significant amplification, propagation, and negative co-movement of the
unemployment rate and the number of vacancies in response to separation shocks.

Section 2 presents the general framework. A population of agents observe a sequence of ob-
servables over time and use their past observations to forecast the future values of the observ-
ables. The observables follow a stationary and ergodic stochastic process that satisfies weak
technical assumptions. However, the trueprocessmaybe a complex object, whichdoes not have
a (finite-dimensional) parametric representation.

Agents do not have access to the true process. They instead rely on low-dimensional para-
metric representations of the true process when forming their forecasts. In particular, they use
linear-Gaussian state-spacemodels with at most 3 state variables. The set of models agents can
entertain is otherwise flexible. For instance, it includes all ARMAmodels of appropriate order.

The only free parameter in the specification of agents’ expectations is the dimension3 of their
models. Meanwhile, thematrices thatparametrize agents’models aredeterminedendogenously
as they fit their models to the true process.

I assume that agents settle on 3-state pseudo-true models, stochastic processes with 3-state
representations that minimize the Kullback–Leibler divergence rate (KLDR) from the true pro-
cess. TheKLDRgeneralizes theusualnotionofKLdivergence to (non-i.i.d.) stochasticprocesses.
The choice of divergence is based on a Bayesian learning result: Agents who start with a full-
support prior over the set of3-statemodels andupdate their beliefs usingBayes’ rulewill asymp-
totically forecastas if theywere using apseudo-true3-statemodel. This result holds irrespective
of agents’ preferences or the details of any decision problem theymay be facing.

Section 3 characterizes the set of pseudo-true 3-state models. I start the analysis by estab-
lishing a valuable linear-invariance property for the class of pseudo-true state-space models: A
linear transformation of the vector of observables leads to an analogous transformation of the
set of pseudo-true models. This property implies that the framing of agents’ observations does
not affect how they form their expectations. Agents’ forecasts and actions only depend on the
amount of information available to them and not on how it is presented. Neither are agents’
expectations changed by augmenting the vector of observables with variables that are linear
combinationsof variables already in their information set. The linear-invariancepropertymakes
the framework immediately applicable in macro applications, even when there is no unique or
obvious way of defining the vector of observables.

The linear-invariance result also illustrates a dichotomy in the agents’ understanding of in-
tratemporal (or cross-sectional) and intertemporal (or time-series) relationships among observ-
ables. Agents uncover all linear intratemporal relationships among observables, but they can
onlyentertain intertemporal relationshipsmediated throughasmallnumberofpersistent states.
While arguably stark, this dichotomybrings into sharp focus the paper’s premise that forecasting
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is difficult because it requires forecasters to recognize stochastic patterns that unfold over time.
It also sets this paper apart from the extensive literature that focuses on the difficulty of paying
attention to a large cross-section of observables, such as in the rational inattention framework
of Woodford (2003) and Sims (2003) and Gabaix (2014)’s model of sparsity.

I proceed to characterize agents’ forecastswhen theyusepseudo-true3-statemodels, starting
with the 3 = 1 case. Agents’ forecasts given a pseudo-true 1-state model can be expressed in
terms of four endogenous variables: perceived persistence, perceived noise, vector of relative
attention, and vector of relative sensitivity. Persistence captures agents’ belief about the persis-
tence of the subjective state of the economy. Noise determines agents’ belief about the noisi-
ness of observables—when seen as signals of the subjective state. Observables that influence
the agents’ estimate of the subjective state by more have greater relative attention, and agents’
forecastsofobservableswith larger relative sensitivityaremoresensitive tochanges in theagents’
estimate of the subjective state.

These endogenous variables take simple forms when the true process satisfies an ergodicity
condition, which I refer to as exponential ergodicity, and is satisfied in all my applications. The
perceivedpersistence is then equal to the top eigenvalue of the autocorrelationmatrix at lag one,
the relative attention and relative sensitivity are equal to transformations of the corresponding
eigenvector, and the perceived noise is zero. Agents’ attention is focused on the most persistent
component of the vector of observables when estimating the subjective state, and the perceived
persistence of the subjective state is equal to the persistence of themost persistent component.

The remainder of Section 3 generalizes and marks the limits of the characterization result
just discussed. I show that the result generalizes (under slightly stronger assumptions) to the
3 > 1 case: Agents constrained to 3-state models track the 3 most persistent components of the
vector of observables. I also show that the variance-covariancematrix of observables is identical
under the pseudo-true and true models. In other words, agents constrained to simple models
fully uncover the cross-sectional correlations in observables. Finally, I argue that without a rich-
ness assumption on observables, the true process may fail to be exponentially ergodic, and the
perceived noise may be non-zero.

Section 4 develops the implications of the bias in agents’ forecasts for their behavior. I do
so by augmenting the general framework with a reduced-form specification of agents’ actions,
in which actions in each period linearly depend on forecasts of present discounted values of
the observables. I show that agents’ actions then exhibit three general properties: First, actions
respond less to shocks than under rational expectations. Second, actions look as if they were
responding to a small number of shocks. Third, agents’ various actions co-movewith each other
more than under rational expectations.

Section 5 illustrates the framework’s versatility by applying it to threemicro-founded and cali-
bratedmacromodels. As thefirst application, I consideraversionof the standardnew-Keynesian
model in which agents are constrained to forecast using pseudo-true 1-state models. As in the
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rational expectations version of the model, the equilibrium has a simple linear representation,
whichcanbecomputedanalyticallywithout going to thecomputer. Thefirst result of this section
is a characterization of the equilibrium in a regime without forward guidance.

I then use the equilibrium characterization to study the implications of bounded rational-
ity for the conduct of monetary policy. Several new insights arise from the analysis. First, the
monetary authority generically faces a trade-off between closing the output gap and achieving
stable prices. The “divine coincidence” holds only in the knife-edge cases in which, in equilib-
rium, agents pay no attention to nominal interest rate or their inflation expectations are entirely
insensitive to their estimate of the subjective state.

Second, conventional monetary policy and foreword guidance are less potent than under ra-
tional expectations. The stickiness of agents’ expectations dampens the equilibrium response of
output and inflation to interest rate changes. The fact that information has to be filtered through
a low-dimensionalmodelbeforeagents can incorporate it into their forecasts,meanwhile, lowers
the impact of forward guidance on output and inflation. Furthermore, the power of forward
guidance is largely independent of the duration of guidance, unlike in the rational expectations
version of themodel.

The second application is to the standard RBC model. The RBC model is an excellent case
study in that it has only one exogenous shock and two state variables. Therefore, if agents are
constrained to 3-state models with 3 ≥ 2, they recover the true process, and their expectations
coincide with rational expectations. When 3 = 1, on the other hand, agents’ models will be
pseudo-true, and their forecasts will be biased. This prediction of the model distinguishes it
from signal-extraction-typemodels, which revert to rational expectations when there is a single
exogenous shock in the economy.

Constraining agents to one-dimensional models in the RBC model causes aggregate con-
sumption to behave more like a stock variable. This prediction directly follows from the persis-
tence bias in agents’ expectations. Agents’ estimate of the subjective state mostly depends on
the value of the most persistent variable—the capital stock in equilibrium for the RBC model.
Consequently, consumption—an almost purely forward-looking variable—almost perfectly co-
moves with the value of the capital stock. The anchoring of consumption to the capital stock
makes consumptionmore sluggish andmore volatile than under rational expectations.

For the last application, I studyhowthepredictionsof theDMPmodel changewhenagents are
constrained to use simple models. The standard DMP model has difficulty generating realistic
fluctuations in the unemployment rate, the number of vacancies, and job-finding rate, a fact
known as the Shimer puzzle after Shimer (2005). I show that constraining agents to use simple
models goes toward resolving this puzzle.

I consider a standard calibration of the DMP model with labor productivity and separation
rate shocks. The equilibrium has a 3-state representation, so expectations of agents constrained
to 3-state models with 3 ≥ 3 coincide with rational expectations. I instead consider agents
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constrained to use 1-statemodels. In equilibrium, agents’ estimate of the subjective state closely
tracks the evolution of the unemployment rate. Separation rate shocks increase the unemploy-
ment rate, thusmaking agents pessimistic about the state of the economy. The result is a drop in
vacancy creation following an increase in separations and a negative co-movement between the
unemployment rate and vacancies in response to the separation shock. Meanwhile, the sticki-
ness of expectations slows the dynamics of the economy, thus improving the propagationmech-
anism of themodel.

RelatedLiterature. This paper contributes to the literature that studies properties of pseudo-true
estimates for differentmodels. The termpseudo-truemodel originates in the pioneeringwork of
Sawa (1978), whoproposes the use of KLdivergence as amodel-selection criterion. Agents in the
restricted-perceptions equilibriumof Bray (1982) and Bray and Savin (1986), Rabin and Vayanos
(2010)’s model of the gambler’s fallacy, the natural-expectations framework of Fuster, Laibson,
and Mendel (2010) and Fuster, Hebert, and Laibson (2012), and the Berk–Nash equilibrium of
EspondaandPouzo (2016, 2021) all usepseudo-truemodels to forecastpayoff-relevant variables.

But despite this long history, surprisingly few general results on the properties of pseudo-true
models have appeared in the literature. Such results are almost exclusively derived—with the
notableexceptionofRabinandVayanos (2010)—insettingswhere the setofmodels is sufficiently
restricted that the pseudo-true model can be estimated using OLS regressions. Characterizing
the bias in the agents’ forecasts then reduces to the problem of computing the omitted-variable
bias.

Berk (1966) was the first to observe that, for misspecified models, the posterior distribution
asymptotically concentrates on the set of pseudo-truemodels. Esponda and Pouzo (2016, 2021)
and Molavi (2019) prove related convergence results for static games, hidden Markov models,
and general equilibrium models, respectively. Closest to what I do in this paper, Baram and
Sandell (1978) establish a version of Berk’s result in the case of linear-Gaussian hidden-state
models.

A related literature studies the consistency of maximum-likelihood estimators for misspeci-
fiedmodels. Huber (1967)andWhite (1982, 1994)prove increasinglygeneral versionsof the state-
ment that anymaximum-likelihood estimate asymptotically converges to the set of pseudo-true
models. Douc andMoulines (2012) extend this result to linear-Gaussian hidden-state models.

This paper also belongs to the literature that studies themacroeconomic implications of devi-
ations from rational expectations. The literature on incomplete and noisy information, rational
inattention, andsparsity, e.g.,MankiwandReis (2002), Sims (2003),Woodford (2003),Maćkowiak
andWiederholt (2009), Angeletos and La’O (2009), Angeletos and Lian (2016), and Gabaix (2014,
2020) assumes that agents cannot perfectly observe all thepayoff-relevant variables either due to
exogenous observation noise or due to costly attention. This paper abstracts from the difficulty
of observing a large cross-section of variables and instead focuses on the difficulty of compre-

5



hending complex time-series relationships. The predictions of this framework also distinguish
it from the literature mentioned above: In my model, agents fully uncover cross-sectional rela-
tionships among variables, but their expectations could deviate from rational expectations even
if the economy has a single exogenous shock.

The state-space models used in this paper are relatives of dynamic factor models, e.g., Stock
and Watson (2011). However, the two are distinct mathematically and conceptually. Dynamic
factor and state-space models offer two alternative representations of stochastic processes.1
Each representation suggests a conceptually different decomposition of time-series data.
Dynamic factor models decompose data into common factors and idiosyncratic disturbances,
whereas for state-spacemodels, thedecomposition is intopersistent and transitory components.
The two approaches thus suggest two different simplifications of large time-series data: using a
small number of common factors in the former case and a small number of persistent states in
the latter case.

Estimation of dynamic factor and state-space models are also different. A central result in
the theory of dynamic factor models is the consistency of the estimator based on the principal
componentanalysis (PCA)of thevariance-covariancematrix. Incontrast, the resultsof thispaper
show that estimating state-space models requires PCA of the autocorrelation matrix at lag one.
Moreover, this paper’s results suggest that the PCA estimator is consistent even if the number of
states is misspecified.2 I am aware of no similar result on the consistency of the PCA estimator
for dynamic factor models when the number of common factors is misspecified.

2 General Framework

In this section, I present the environment and themain behavioral assumption of the paper.

2.1 The Environment

Time is discrete and is indexed by B ∈ ℤ. There is ameasure of identical agents, each observing a
sequence of observables over time andusing their past observations to forecast the future values
of observables. I let GB ∈ ℝ< denote the time-B value of the vector of observables, or simply the
observable. The observable follows a mean-zero stochastic process with distribution ℙ and the
corresponding expectation operator E[·].

I make several technical assumptions on the true process ℙ. The process ℙ is stationary er-
godic with E[‖GB ‖2] < ∞. Furthermore, there exists a linear subspaceW of ℝ< such that ℙ(G1,
. . . , GB ) is absolutely continuouswith respect to the restriction of the Lebesguemeasure toWB for

1The sets of time series that can be represented by dynamic factor and state-space models are not nested. Instead, any finite dynamic
factor model has a state-space representation, and any finite state-space model has a dynamic factor representation. See Forni and Lippi
(2001) for a representation result for the (generalized) dynamic factor models.

2An estimator for amisspecifiedmodel is consistent if the estimate converges to a pseudo-truemodel almost surely.
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any B , with density f (G1, . . . , GB ).3 Finally, I assume that the true process has finite entropy rate,
i.e., limB→∞

1
B
E [− log f (G1, . . . , GB )] < ∞. These assumptions are all quite weak. They are satisfied,

for instance, if GB follows a vector ARMA process with Gaussian innovations.
Agents have perfect information about the past realizations of the observable, with their

time-B information set given by {GB , GB−1, . . . }. However, they may use a misspecified model to
map their information to their forecasts. This model misspecification leads to deviations in the
agents’ forecasts from those that arise in the rational-expectations benchmark.

2.2 SimpleModels

As the main behavioral assumption of the paper, I assume that agents are bound to use simple
state-space models to forecast the vector of observables. They can only entertain models of the
form

HB = �HB−1 +EB ,

GB = �
′HB + DB ,

(1)

where HB ∈ ℝ3 is a vector of (subjective) state variables, � ∈ ℝ3×3 is a convergent matrix,EB ∈ ℝ3

is i.i.d. N(0,& ), � ∈ ℝ3×< , DB ∈ ℝ< is i.i.d. N(0, '), and � ′ denotes the transpose of � .4 Formally,
I define a 3-state model as a stationary ergodic stochastic process for GB that can be represented
as in equation (1) with HB a 3-dimensional state variable. Whenever there is no risk of confusion,
I use the term 3-state model to refer both to the stochastic process for GB and the parameters
\ ≡ (�, �,& ,') of its state-space representation. I letΘ3 denote the setof all3-statemodels, let% \

denote the stationary distribution over {GB }∞B=−∞ induced bymodel \ , and let P3 ≡
{
% \ : \ ∈ Θ3

}
.

With slight abuse of notation, I write Θ3 ⊆ Θ3+1 to stress the fact that agents with a larger 3 can
entertain a larger class of models.

The integer 3 is a primitive that captures the agents’ sophistication in modeling the stochas-
tic process for the vector of observables, with larger values of 3 amounting to agents who can
entertain more complex models. When 3 is sufficiently large, the agents’ set of models is large
enough to contain good approximations to any true processℙ. Butwhen3 is small relative to the
number of states required to model the true process, no model in the agents’ set of models will
provide a good approximation toℙ. Agents then necessarily end upwith amisspecifiedmodel of
the true process and biased forecasts—regardless of whichmodel in the set P3 they use tomake
their forecasts. Characterizing this bias is the focus of the next section of the paper.

My preferred rationale for the constraint on the number of states is to capture limits on the
agents’ cognitive abilities, but the constraint can also arise from the agents’ rational fear of over-
fitting. Models with a large number of parameters and many degrees of freedom are prone to
overfitting. Such concernsmay lead rational agents to limit themselves to statisticalmodelswith

3This assumption is weaker than the assumption that ℙ(G1, . . . , G< ) is absolutely continuous with respect to the Lebesguemeasure over
ℝ<B since it allows for the possibility that the true process is degenerate. This additional level of generality will be useful in applications
where the elements of GB may be linearly dependent.

4Amatrix is convergent if all of its eigenvalues are smaller than one inmagnitude. Matrix � being convergent is sufficient for the agents’
model to define a stationary ergodic process.
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a small number of parameters, especially if they only have a short time series to drawuponwhen
estimating theparameters of theirmodel. In the remainderof thepaper, I abstract away fromany
issues arising from small samples and instead consider the long-run limit where the sampling
error vanishes.

2.3 Pseudo-TrueModels

I assume that agents forecast usingmodels in the familyof3-statemodels thatprovide thebest fit
to the trueprocess. I use theKullback–Leibler divergence rate of process% \ from the trueprocess
ℙ as the measure of the fit of model \ .5 The Kullback–Leibler divergence rate (KLDR) of % \ from
ℙ is denoted by KLDR(\ ) and defined as follows. Recall that the true process is supported on a
linear subspaceW ofℝ< . If % \ is also supported onW, then

KLDR(\ ) ≡ lim
B→∞

1
B
E

[
log

(
f (G1, . . . , GB )
5 \ (G1, . . . , GB )

) ]
,

where 5 \ (G1, . . . , GB ) denotes the density of% \ with respect to the restrictionof the Lebesguemea-
sure toWB ; if % \ is not supported onW, then KLDR(\ ) ≡ +∞.

The Kullback–Leibler divergence rate is the natural generalization of the notion of Kullback–
Leibler (KL) divergence to stationary stochastic processes. In the i.i.d. case, the KL divergence of
a candidatemodel from the truemodel captures thedifficulty of rejecting the candidatemodel in
favor of the truemodel using a likelihood-ratio test. That is why the KL divergence is commonly
used as a measure of the fit of a model.6 Similarly, the KLDR(\ ) captures the rate at which the
power of a test for separating a stochastic process % \ from the true process ℙ approaches one as
B → ∞.7 The KLDR is also tightly linked to asymptotics of Bayesian learning, as I discuss in the
following subsection.

Model \ ∗ ∈ Θ3 is a pseudo-true 3-state model if KLDR(\ ∗) ≤ KLDR(\ ) for all \ ∈ Θ3 . If the
agents’ set ofmodels contains amodel \ such that 5 \ (G1, . . . , GB ) = f (G1, . . . , GB ) almost everywhere
and for all B , then any pseudo-true 3-state model is observationally equivalent to the true pro-
cess. The set P3 of distributions is then correctly specified. When no such 3-state model exists,
KLDR(\ ) > 0 for any model \ ∈ Θ3 , and the set P3 is misspecified. I let Θ∗

3
denote the set of all

pseudo-true3-statemodels, and letP∗
3
≡

{
% \ : \ ∈ Θ∗

3

}
. The following result shows that pseudo-

truemodels are observationally equivalent to the trueprocesswhen the set ofmodels is correctly
specified:

Theorem 1. Suppose the set P3 of 3-state models is correctly specified. Then any pseudo-true 3-
state model %3∗ ∈ P∗

3
is observationally equivalent to the true process ℙ.

5Themean-squared forecast error is another commonly used notion of fit. In Appendix B, I define the weightedmean-squared forecast
error and show that it is equivalent to the Kullback–Leibler divergence rate under an appropriate choice of the weightingmatrix.

6See, for instance, Hansen and Sargent (2008).
7See, for instance, Shalizi (2009).
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2.4 Discussion

Pseudo-truemodels arise naturally as the long-run outcome of learning by Bayesian agents with
misspecified priors. Consider an agent who starts with prior `0 with full support over the points
in the setℝ3 ×Θ3 , each corresponding to an initial value of the subjective states, H0, and a 3-state
model, \ , which describes how states and the observable co-evolve. Suppose the agent observes
GB over time and updates her belief using Bayes’ rule. Let `B denote the agent’s time-B Bayesian
posterior over ℝ3 × Θ3 . Berk (1966)’s theorem establishes that, in the limit B → ∞, the agent’s
posterior will assign probability one to the set of pseudo-truemodels.8

This result offers an “as if” interpretation of pseudo-true 3-state models. One can assume
that every agent has a subjective prior—whichmay be different from the true distribution—and
updatesherbelief in light of new informationusingBayes’ law. ByBerk’s theorem, any suchagent
whose prior is supported on the set of 3-statemodels will forecast the observable in the long run
as if she were using a pseudo-true 3-state model. Focusing on pseudo-true models instead of
Bayesian posteriors allows me to do away with the sampling variance in the agents’ posteriors
and their forecasts and instead focus on the asymptotic bias resulting frommisspecification.9

Note that the set of pseudo-true 3-state models is independent of the agents’ preferences.
Instead, it only depends on the number of states agents can entertain and the true stochastic
process. The independence of the agents’ pseudo-truemodels from their preferences is evident
given the “as if” interpretation discussed above: Two agents who start with identical priors, ob-
serve the same sequence of observations, and update their beliefs using Bayes’ rule will end up
with identical posteriors at any point in time—irrespective of their preferences. Berk’s theorem
goesa step furtherbyestablishing that, in the long run, theposterioronlydependson the support
of the prior (not its other details) and the distribution of observations (not their realizations).

The independence of the agents’ pseudo-truemodels from their preferences has a significant
consequence: The set of pseudo-true 3-state models is generically disjoint from the set of 3-
state models that maximize the agents’ payoffs. However, this disparity is a feature, not a bug,
of a positive theory of bounded rationality. While finding the payoff-maximizingmodel requires
knowledge of the true process, one arrives at the set of pseudo-true models simply by following
Bayes’ rule—no knowledge of the true process is necessary.10 Following Bayes’ rule would have

8While Berk (1966) only covers the case of i.i.d. observations and parametric models, the result has seen been extended much more
generally. Bunke andMilhaud (1998) and Kleijn and Van Der Vaart (2006) substantially extend Berk (1966) by providing conditions for the
weak convergence of posterior distributions and considering infinite-dimensional models. Shalizi (2009)’s extension of Berk’s theorem
covers the case of non-i.i.d. observations and hiddenMarkovmodels.

9One can alternatively consider agents who estimate the parameters of their 3-state models using a quasi-maximum-likelihood
estimator. Such agents too will asymptotically forecast as if they relied on pseudo-true 3-state models. See, for instance, Theorem 2 of
Douc andMoulines (2012).
10An analogy with the ordinary least squares (OLS) estimation with omitted variables is instructive. Consider an agent who can only

entertain models of the form G7 = VF7 + Y7 , with Y7 i.i.d. and normally distributed, and is interested in the causal effect of F on G . In the
presence of omitted variables, the OLS estimate (which coincides with the pseudo-true model) will generally be different from the linear-
Gaussian model that maximizes the agent’s payoff, given her preference for estimating the true causal effect. Nevertheless, finding the
payoff-maximizing model requires the agent to know the joint distribution of the independent, dependent, and omitted variables—an
impossible ask.
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led agents to the truth had theirmodel been correctly specified, but it can lead themastray in the
presence of model misspecification.

3 Pseudo-True Subjective Beliefs

In this section, I characterize the subjective beliefs of agents who use pseudo-true 3-state mod-
els. As a preliminary step, I establish a useful invariance property for the class of pseudo-true
models, which is of independent interest.

3.1 Linear Invariance

There are no constraints on the agents’ set of models other than the bound on the number of
subjective state variables. Formally,matrices�,� ,& , and' of representation (1) areunrestricted,
other than theminimal restrictions required for (1) to define aproper stationary ergodic stochas-
tic process.11 This flexibility in the agents’ set of models enables them to capture any linear
intratemporal relationship among observables by the appropriate choice of matrices �, � , & ,
and ' . It thus results in a crucial linear-invariance property for pseudo-true 3-state models.

Theorem 2 (linear invariance). Let G̃B = ) GB denote a linear transformation of GB , and let ℙ̃ denote
the probability distribution over {G̃B }∞B=−∞ induced byℙ and) . Let P∗

3
denote the set of pseudo-true

3-state stationary distributions whenℙ is the true process, and let P̃∗
3
denote the corresponding set

when ℙ̃ is the true process. If) is a full-rank matrix, then the set of probability distributions over
{G̃B }∞B=−∞ induced by P∗

3
and) coincides with P̃∗

3
.12

The theorem establishes that the framing of agents’ observations does not affect how they
formtheir expectations. Agents’modelsand forecastsonlydependon theamountof information
available to them, not how it is presented. For instance, whether agents observe the nominal
interest rate and the inflation rate or the real interest rate and the inflation rate is immaterial for
how they form their expectations. Likewise, agents’ expectations are not affected by augmenting
thevectorof observableswith linear combinationsof variables already in theagents’ information
set.

The dichotomy in the agents’ cognitive abilities—capable of observing all the relevant vari-
ables and uncovering all linear intratemporal relationships among them, yet thoroughly con-
strained in the complexity of intertemporal relationships they can entertain—is arguably stark.
Nevertheless, it highlights the paper’s premise that forecasting is challenging because it requires
forecasters to recognize stochastic patterns that unfold over time. This dichotomy also allows
11In particular, the eigenvalues of � need to be smaller than one inmagnitude andmatrices& and ' need to be positive semidefinite.
12Thedistribution inducedover {G̃B }∞B=−∞ by the distribution% over {GB }∞B=−∞ and themapping) : GB ↦→ G̃B is the pushforwarddistribution

% ◦) −1 definedas% ◦) −1 (
{G̃B }∞B=−∞ ∈ .

)
≡ %

(
{GB }∞B=−∞ : {) GB }∞B=−∞ ∈ .

) for any set. ⊆ ℝ<ℤ. The set of distributions over {G̃B }∞B=−∞ induced
by the set of distributions P over {GB }∞B=−∞ and themapping) : GB ↦→ G̃B is given by P ◦) −1 ≡ {% ◦) −1 : % ∈ P}.
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me to abstract away from the cognitive costs of acquiring information and the mistakes indi-
viduals make when information is presented differently. Furthermore, it makes the framework
immediately portable across different applications, thanks to the linear-invariance result.13

The result also showcases theendogeneityof agents’ expectations. Since theparametersof the
agents’ model are determined endogenously by maximizing the fit to the true distribution, they
covary with the true distribution. This feature of pseudo-true 3-state models, which rational-
expectations models share, makes the framework particularly suited to counterfactual analysis
in macroeconomics, where policy changes can result in changes in the distribution of payoff-
relevant variables.

The linear invariance result allowsme to focus on non-degenerate processes. Define the lag-:
autocovariancematrix of the observable under the true process as follows:

Γ: ≡ E[GB G ′B−: ]. (2)

The true process is degenerate if Γ0 is singular. Whenever Γ0 is singular, there is some lower-
dimensional vector G̃B with E[G̃B G̃ ′B ] non-singular and some full-rank matrix) such that GB = ) G̃B .
By Theorem 2, the set of pseudo-true models when the observable is given by GB can be found
by first finding the set of pseudo-true models given G̃B and then transforming that set by) . Re-
stricting attention to non-singular true processes allows me to restrict agents to the set of mod-
els under which the subjective variance-covariance matrix of the vector of observables is non-
singular.14 In the remainder of the paper, I assume that the variance-covariancematrix Γ0 is non-
singular, andagents canonlyentertain subjectivemodelswithnon-singular variance-covariance
matrices.

3.2 The One-Dimensional Case

I start the analysis of the agents’ pseudo-true models by considering the case where agents can
only entertain one-dimensional models. In this case, a complete characterization of the agents’
forecasts is possible. The insights from the single-state case generalize to the 3-state case, as I
discuss later in this section.

The agents’ pseudo-true 1-state forecasts depend on the true process only through the auto-
correlations of the vector of observables. Define the lag-: autocorrelation matrix of the observ-
able under the true process as follows:

�: ≡
1
2Γ

−1
2
0

(
Γ: + Γ′:

)
Γ

−1
2
0 . (3)

13Rabin (2013) calls for the use of portable extensions of existingmodels in behavioral economics, and economic theorymore generally.
The current framework can be seen as a portable extension of the rational-expectations benchmark, which spans, by varying a single
parameter, 3 , the range between full rationality and a severe form of serial-correlation misperception where agents perceive serially-
correlated variables as independent over time.
14Whenever the true variance-covariance matrix Γ0 is non-singular, any subjective model with a singular variance-covariance matrix is

dominated in terms of fit to the true process by every subjective model with a non-singular variance-covariance matrix. Therefore, no
subjective model with a singular variance-covariancematrix can be a pseudo-truemodel.
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The notion of autocorrelation matrices is a natural generalization of the notion of autocorrela-
tion functions. When the observable GB is a scalar, �: reduces to the usual autocorrelation func-
tion at lag : . When the observable is an <-dimensional vector, on the other hand, �: is an < × <
real symmetric matrix with eigenvalues inside the unit circle.15

Autocorrelationmatrices capture the extent of serial correlation in the vector of observables.
Let d (�1) denote the spectral radiusofmatrix�1.16 When d (�: ) is close to zero for all : , theprocess
is close to being i.i.d., whereas when d (�1) is close to one for small : , then the process is close to
being unit root.

With the definition of autocorrelation matrices at hand, I can now state the general charac-
terization result for the 3 = 1 case:

Theorem 3. Under any pseudo-true 1-state model, the agents’ A-period ahead forecast is given by

� 1∗B [GB+A ] = 0∗A (1 −[∗)?∗>∗′
∞∑
g=0

0∗g[∗gGB−g , (4)

where0∗ and[∗ are scalars in the [−1, 1] and [0, 1] intervals, respectively, thatmaximize_max(Ω(0,
[)), the largest eigenvalue of the < × < real symmetric matrix

Ω(0,[) ≡ −0
2(1 −[)2
1 − 02[2 � + 2(1 −[) (1 − 02[)

1 − 02[2
∞∑
g=1

0g[g−1�g ,

and>∗ = Γ
−1
2
0 C and?∗ = Γ

1
2
0C , whereC is an eigenvector ofΩ(0∗,[∗)with eigenvalue_max(Ω(0∗,[∗)),

which is normalized so thatC ′C = 1.

The endogenous variables 0∗, [∗, >∗, and ?∗ have intuitive meanings. The scalar 0∗ captures
the perceived persistence of the vector of observables. When 0∗ = 0, agents perceive GB as i.i.d.
Whereas when 0∗ = 1, they believe that the observable follows a unit-root process. The scalar
[∗ captures the perceived noise in the agents’ observations. When [∗ is small, agents believe
recent observations to be highly informative of the value of the subjective state. As a result,
their expectations respond more to recent observations and discount old observations more.
The vector >∗ determines the agents’ relative attention to different components of the vector of
observables. When >∗

7
is larger than >∗

8
, agents put more weight on G7 ,B−g relative to G8 ,B−g for all g

when forming their estimate of the subjective state. Finally, the vector ?∗ captures the relative
sensitivity of the agents’ forecasts of different observables to changes in their estimate of the
subjective state. When ?∗

7
is larger than ?∗

8
, then a change in the estimated value of the state at

time B leads agents to change their forecast of G7 ,B+A bymore than their forecast of G8 ,B+A for all A .
A few remarks about the characterization result are in order. First, Theorem 3 does not rule

out the possibility that |0∗ | = 1 and [∗ > 0, in which case the pseudo-true 1-state model would
not be stationary ergodic. However, the following result establishes that any pseudo-true 1-state
model inherits the stationarity and ergodicity of the true process:
15See Lemma A.2 of the appendix for a proof.
16The spectral radius d (- ) of matrix - denotes themaximum among themagnitudes of eigenvalues of - .
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Theorem4. Let% 1∗ denote a pseudo-true 1-statemodel given true distributionℙ. Ifℙ is stationary
ergodic, then so is % 1∗.

Second, the theorem significantly reduces the computational complexity of finding the set
of pseudo-true models. The set of all 3-state models is a manifold of dimension 2<3 , which
is never compact and does not admit a global parameterization for any < > 1—even if 3 =

1.17 Additionally, the KLDR is a non-convex function of \ = (�, �,& ,'). Theorem 3 analytically
concentrates out all but two of the parameters of agents’ models, thus reducing an optimization
problem over a 2<-dimensional non-compact manifold to a problem over a two-dimensional
compact square.

Third, althoughmucheasier than theproblemofKLDRminimizationover the spaceof3-state
models, the problem of maximizing _max(Ω(0,[)) over (0,[) is still non-convex. Consequently,
solving it requires the use of numerical global optimizationmethods. However, the problem can
be solved efficiently in any application, regardless of the dimension of the vector of observables.

The non-convexity of the problem also makes an analytical solution elusive without further
assumptions on the true process. I thus proceed by imposing an additional assumption on the
true process ℙ, which permits a closed-form characterization of the set of pseudo-true 1-state
models.

3.3 Exponential Ergodicity and Incomplete Information

The optimization problem in Theorem 3 has an intuitive closed-form solution given a class of
true stochastic processes that arise naturally in many applications including those studied in
Section 5. The appropriate class turns out to be the following:

Definition 1. The stationary ergodic process ℙ is exponentially ergodic if d (�: ) ≤ d (�1): for all
: ≥ 1, where d (�: ) denotes the spectral radius of the autocorrelationmatrix�: .18

Exponential ergodicity is stronger than ergodicity. While ergodicity requires the serial corre-
lation at lag : to decay to zero as : → ∞, exponential ergodicity requires the rate of decay to be
faster than d (�1). However, many standard processes are exponentially ergodic. For instance,
the vector of observables follows an exponentially ergodic process if it is a linear combination of
< independent AR(1) shocks.

The following result characterizes the agents’ pseudo-true 1-state forecasts when the true
process is exponentially ergodic. It links the agents’ forecasts to the eigenvalues andeigenvectors
of the autocorrelationmatrix at lag one:
17Although the set of 3-state models can be parameterized using matrices �, � , & , and ' , these matrices are in general not identified:

For anymodel \ , there exist a continuum of othermodels \̃ such that % \ = % \̃ . See Gevers andWertz (1984) formore on identification and
parameterization of state-spacemodels.
18The term “exponential ergodicity” has been used to refer to a property of Markov chains, where the effect of initial condition on the

current distribution of the state decays exponentially fast—see, for instanceMeyn and Tweedie (1993). The definition used in this paper is
mathematically distinct from the one in the context of Markov chains, but it captures the analogous idea that the serial correlation in the
variables decays exponentially fast.
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Theorem 5. If the true process is exponentially ergodic, then the A-period ahead forecast of agents
who use pseudo-true 1-state models is given by

� 1∗B [GB+A ] = 0∗A?∗>∗′GB , (5)

where 0∗ is an eigenvalue of �1 largest in magnitude, C denotes the corresponding eigenvector
normalized so thatC ′C = 1, and >∗ = Γ

−1
2
0 C and ?∗ = Γ

1
2
0C .

Agents forecast as if there is a single state with persistence 0∗ driving all the elements of the
vector of observables. Suppose there is a change in the value of the observable. Agents incor-
porate this information by first projecting the change in the observable on vector >∗ to form an
updated estimate � 1∗B [HB ] of the subjective state. Agents thus dismiss as irrelevant any change in
the vector of observables orthogonal to the relative attention vector >∗. They then forecast the
change in the A-period ahead value of the subjective state � 1∗B [HB+A ] under the assumption that
the state has persistence 0∗. Finally, they multiply their estimate of the subjective state by the
relative sensitivity vector ?∗ to form their forecast of the observable in period B + A .

The following example illustrates the result in the context of a commonly-used specification
for the true process:

Example 1. Suppose the true process ℙ has the following representation:

5B = � 5B−1 + nB , nB ∼ N(0, Σ),
GB = �

′5B ,

where

� =

©­­­«
U1 0 . . . 0
0 U2 . . . 0
...

...
. . .

...
0 0 . . . U<

ª®®®¬ ,

Σ =

©­­­­«
f21 0 . . . 0
0 f22 . . . 0
...

...
. . .

...
0 0 . . . f2<

ª®®®®¬
,

� ∈ ℝ<×< is an invertible square matrix, and 1 > |U1 | > |U2 | > · · · > |U< | > 0. It is easy to verify
that d (�: ) = |U1 |: = d (�1): . That is, the true process is exponentially ergodic, and I can use The-
orem 5 to characterize the agents’ pseudo-true 1-state model and their forecasts. The perceived
persistence, perceived noise, relative attention, and relative sensitivity are, respectively, given by
0∗ = U1, [∗ = 0, >∗ = (� ′+� ) 12� −1+ −141, and ?∗ = (� ′+� ) −1

2 � ′+ 41, where+ ≡ (� − � 2)−1Σ is the
variance-covariancematrix of 5B and 41 denotes the first coordinate vector.19

Agents’ forecasts take a particularly simple form if � is the identity matrix, and so, G7B = 57B

for 7 = 1, . . . , <. Then >∗ and ?∗ are both multiples of the first coordinate vector 41, and agents’
19See the proof of Lemma A.3 for a derivation.
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forecasts simplify to

� 1∗B [G1,B+A ] = UA1G1B = EB [G1,B+A ],

� 1∗B [G1,B+A ] = 0 ∀7 ≠ 1.

That is, the agents’ forecast of themost persistent element of the vector of observables coincides
with its rational-expectations counterpart. But agents forecast every other element of the vector
of observables as if it were i.i.d.

The example illustrates that agents exhibit a form of persistence bias. They forecast the most
persistent component of the vector of observables as accurately as under rational expectations
butdo soat the expenseofmissing thedynamicsof other observables. The intuition for the result
is easiest to seewhen themost persistent true state is close to being unit root. Then doing a poor
job of tracking the most persistent state would lead to persistent mistakes in agents’ forecasts.
The persistence of thesemistakes wouldmake them costly from the point of view of KLDRmin-
imization. Therefore, any pseudo-true model tracks the state close to unit root as best possible,
even if doing so results in errors in forecasting the other states.

The absence of perceived noise is the other important feature of pseudo-true 1-state models
when the true process is exponentially ergodic. It leads agents’ forecasts to adjust rapidly in light
of new information. It also leads to path-independent forecasts: The time-B forecasts depend on
the agents’ observation history only through the value of the observable at time B .

One can generalize Example 1 by relaxing the assumption that matrices F and Σ are diagonal
and allowing for non-Gaussian innovations. The following theorem provides a set of sufficient
conditions for the process to be exponentially ergodic:

Theorem 6. Consider a true process ℙ that can be represented as

5B = � 5B−1 + nB
GB = �

′5B ,
(6)

where 5B ∈ ℝ; , nB ∼ WN(0, Σ), � ∈ ℝ;×; is a convergent matrix, and � ∈ ℝ;×< . Suppose the
variance-covariance of 5B is normalized to be the identity matrix. If � is a rank-; matrix and

�+� ′

2



2 = ‖� ‖2, where ‖ · ‖2 denotes the spectral norm, then the process is exponentially ergodic.

The assumption that the process has a representation of the form (6) is almost without loss
of generality. By the Wold representation theorem, any mean zero, covariance stationary, and
purely non-deterministic process can by approximated arbitrarily well by a processwith a repre-
sentationof the form(6). That thevariance-covarianceof 5B is identity iswithout lossof generality
as well. It can always be arranged to hold by an appropriate normalization of 5B .20

The assumption onmatrix � rules out a severe form of defectiveness by guaranteeing that the
largest eigenvalue of the symmetric part of � coincides with the largest singular value of � . It is
20See Lemma A.3 of the appendix and its proof for how this can be done.
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satisfied if � is diagonal or symmetric, for example. However, the assumption required for the
result is much weaker than symmetry.

The most consequential assumption of the theorem is the requirement that � is a rank-;
matrix. This assumption requires the vector of observables, GB , to be rich enough to fully reveal
the vector, 5B , of latent factors. The assumption can thus be seen as a complete information
assumption: If agents observe an observable of the form (6) with a full-rankmatrix� , then they
have enough information to forecast the observable as well as in the full-information rational-
expectations benchmark—even if they fail to do so due to theirmisspecifiedmodels. The follow-
ing proposition shows that this assumption, in general, cannot be dispensed with:

Proposition 1. Consider a true process ℙ that can be represented as in (6) for some 5B ∈ ℝ; , nB ∼
N(0, Σ), diagonal divergent matrix � ∈ ℝ;×; , diagonal matrix Σ ∈ ℝ;×; , andmatrix� ∈ ℝ;×< .
If the representation in (6) is minimal and; > < = 1, then the A-period ahead forecast of agents
who use pseudo-true 1-state models is given by

� 1∗B [GB+A ] = 0∗A (1 −[∗)
∞∑
g=0

0∗g[∗gGB−g

for some 0∗ ∈ (−1, 1) and[∗ ∈ (0, 1).

The class of exponentially ergodic processes constitutes a subset of the class of stationary
ergodic processes. However, the true processes that arise in the applications of Section 5 are
all exponentially ergodic.

3.4 Pseudo-True 3-Dimensional Models

I next investigate whether and how the results from the 3 = 1 case generalize to the 3 > 1 case.
The forecasts of agents who use 3-state models take a form similar to equation (4): Given a 3-
state model \ = (�, �,& ,'), agents’ A-period ahead forecast is given by

� \B [GB+A ] = � ′�A−1
∞∑
g=0

(� −  � ′)g GB−g , (7)

where  ∈ ℝ3×< is the Kalman gainmatrix, which depends on (�, �,& ,').21 Equation (7) is valid
for any 3-state model \ , not just the pseudo-true ones.

To characterize the forecasts under pseudo-true models, one needs to find the (�, �,& ,')
matrices that minimize the KLDR from the true process and the implied Kalman gain  . This is
a hard problem that involvesminimizing a non-convex function over the 2<3-dimensional non-
compactmanifold of 3-statemodelsΘ3 . While the problem can be simplified further, finding an
analytical solution to the problem seems an unlikely possibility even for < = 1.

I instead solve the easier problem ofminimizing the KLDR over a subsetΘ3 ofΘ3 . I saymodel
\ = (�, �,& ,') isMarkovian in observables (m.i.o.) if � −  � ′ = 0, where  is the Kalman gain
21See equations (A.2) and (A.3) in the proof of Theorem 2 for the definition of  .
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matrix corresponding tomodel \ and 0 ∈ ℝ3×3 is thematrix of zeros. I let

Θ3 ≡ {\ = (�, �,& ,') ∈ Θ3 : � −  � ′ = 0} ⊂ Θ3 .

denote the set of m.i.o. 3-state models. The time-B forecasts of an agent using a model \ ∈
Θ3 only depend on the realized value of the vector of observables at time B (and not its past
realizations)—hence, the nameMarkovian in observables. Anymodel \ ∈ Θ3 also features rapid
adjustment and path independence in agents’ forecasts.

Model \ ∗ ∈ Θ3 is a pseudo-truem.i.o. 3-statemodel if KLDR(\ ∗) ≤ KLDR(\ ) for all \ ∈ Θ3 . I let
Θ
∗
3 denote the set of pseudo-truem.i.o. 3-statemodels. Themodels inΘ

∗
3 have several appealing

theoretical properties. They satisfy a version of the linear-invariance result of Theorem 2, and
they have similar Bayesian and quasi-maximum-likelihood learning foundations as (general)
pseudo-true 3-state models. Perhaps most importantly, the following corollary of Theorem 5
shows that constraining agents tom.i.o. models is without loss under some conditions:
Corollary 1. If the true process is exponentially ergodic, then any pseudo-true 1-state model is
m.i.o.

The result shows that—at least in the one-dimensional case—the set of pseudo-truemodels is
a subset of the set of m.i.o. models when the true process is exponentially ergodic. Whether this
result continues to hold for 3-statemodels with 3 > 1 remains an open question. However, I can
stillmakeprogressby taking the restriction tom.i.o. models as anassumptionandcharacterizing
the set of pseudo-truem.i.o. 3-state models and the corresponding forecasts:
Theorem 7. Suppose the lag-1 autocovariance matrix, Γ1, is symmetric. Then the A-period ahead
forecast of agents who use pseudo-true m.i.o. 3-state models is given by

�3∗B [GB+A ] =
3∑
7=1

0∗
7
A?∗

7 >
∗
7
′GB , (8)

where 0∗
1, . . . , 0

∗
3
are the 3 eigenvalues of�1 largest inmagnitude (with the possibility that some of

the 0∗
7
’s are equal), C7 denotes an eigenvector corresponding to 0∗

7
normalized such that C ′

7
C7 = 1,

>∗
7
= Γ

−1
2
0 C7 , ?∗

7
= Γ

1
2
0C7 .

The result shows that the insights from the analysis of single-state models, to a large extent,
carry over to 3-state models. In particular, agents who are restricted to m.i.o. 3-state models
exhibit a form of persistence bias. They focus on perfectly forecasting the 3 most persistent ele-
ments of the vector of observables at the expense of the other elements. Moreover, the perceived
noise in the vector of observables is zero, aswas the case in the 1-state casewith an exponentially
ergodic true process.

3.5 SecondMoments

The results of this section so far were concerned with the conditional first moments of pseudo-
true 3-state models. I end the section by presenting two results on the subjective second mo-
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ments when agents use pseudo-true 3-state models. The first result characterizes the agents’
perceived variance-covariance of the vector of observables under pseudo-true 1-state models.

Theorem 8. Given any pseudo-true 1-state model \ ∗, the subjective variance-covariance of the
vector of observables, Var1∗(GB ), coincides with the true variance-covariance matrix, Γ0.

Agents do not misperceive the unconditional volatility of the vector of observables. Neither
do they misperceive the unconditional means. Instead, it is the conditional expectations and
volatilities that deviate from the corresponding values under rational expectations. The result
is a direct consequence of the assumptions that (i) agents can entertain any stationary 1-state
model and (ii) fit theirmodels to data byminimizing the KLDR. That agents can entertain any 1-
statemodel allows them always tomatch the true volatility of the observables by an appropriate
choice of matrices (�, �,& ,'). The fact that agents fit their models by minimizing the KLDR (or
equivalently by Bayesian updating or maximum-likelihood estimation) means that it is optimal
(from the point of view of maximizing fit) to match the volatility of the observable.

I can prove a weaker version of this result for 3-state models:

Theorem9. Suppose thefirstautocovariancematrix, Γ1, is symmetric. Thengivenanypseudo-true
m.i.o. 3-state model \ ∗, the subjective variance-covariance of the vector of observables, Var3∗(GB ),
coincides with the true variance-covariance matrix, Γ0.

Agentswhoare constrained tousem.i.o. 3-statemodelsuncover the true variance-covariance
matrix of the observable as long as the true process is sufficiently regular. This conclusion is a
consequenceof the fact that the set ofm.i.o. modelsΘ3 is invariant under linear transformations.
Thus, for any Γ0, the set of m.i.o. models contains a subjective model \ such that Var\ (GB ) = Γ0.
KLDRminimization leads the agents to settle on such a subjective model.

4 Implications for Behavior

I next study how the bias in the agents’ forecasts, which results from their use of simple models,
affects their decisions in a reduced-form linear framework. I consider a population of identical
agents whose time-B best responses take the following form:

FB = 1
′GB + �B

[ ∞∑
A=1

VA2 ′GB+A

]
, (9)

where GB ∈ ℝ< is as before the vector of observables,�B [·] denotes the agents’ subjective forecasts,
1, 2 ∈ ℝ< are vectors of parameters capturing agents’ preferences, and V ∈ (0, 1) is a discount
factor.

The best response in equation (9) nests various decisions such as consumption decisions in
the permanent income hypothesis or price setting in the new-Keynesianmodel. In the next sec-
tion, I furtherdevelop the implicationsof the general framework in the context of three canonical
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models in macro: the new-Keynesian model, the real business cycle model, and the Diamond–
Mortensen–Pissarides model.

Throughout this section, I assume that the true process for GB ∈ ℝ< has the following repre-
sentation:

5B = � 5B−1 + nB , nB ∼ N(0, Σ),
GB = �

′5B ,
(10)

where 5B ∈ ℝ; is a set of latent factors, � = diag(U1, . . . , U;) is a diagonal matrix with 1 > |U1 | >
|U2 | > · · · > |U; | > 0 as its diagonals, � ∈ ℝ;×< is a rank-; matrix, and Σ = diag(f21 , . . . , f2;) is
a diagonal positive definite matrix. There are; “shocks,” 51, . . . , 5; , which follow independent
AR(1) processes, such that observables are linear functions of the shocks. The assumption that
the economy is driven by independent AR(1) shocks does not play a substantial role inmy anal-
ysis, but it allows me to study impulse response functions in a way that is consistent with the
literature.

I can use the characterization results of Section 3 to find the agents’ pseudo-true forecasts
when they are constrained to use m.i.o. 3-state models.22 Agents’ actions are then found by
substituting for their subjective forecasts in equation (9):

Proposition 2. Suppose agents’ best responses are given by (9), and the true process is as in (10).
The actions of agentswhohave rational expectations and thosewhouse pseudo-truem.i.o. 3-state
models with 3 < ; are given, respectively, by

FREB =

(
1 +

;∑
7=1

U7 V

1 − U7 V
� †474

′
7�2

) ′

GB ,

F3∗B =

(
1 +

3∑
7=1

U7 V

1 − U7 V
� †474

′
7�2

) ′

GB ,

where� † ∈ ℝ<×; denotes theMoore–Penrose pseudo-inverse of� , and 47 ∈ ℝ; is the 7 th standard
coordinate vector.

Agents’ time-B optimal actions are linear functions of the time-B value of the vector of observ-
ables. This simple observation has an important consequence: By the linear invariance result,
agents’ pseudo-truemodels, forecasts, and actions are all the same whether or not they observe
the actions of other agents. Moreover, each agent’s expectations of other agents’ actions are con-
sistentwith theagent’s expectationsof theobservable andother agents’ best-response functions.

The proposition indicates that agents’ actions take similar forms whether they have rational
expectations or use pseudo-true models; the only difference between the two is in the upper
limit of the sum over 7 . Agents’ actions when they forecast using a pseudo-true 3-state model
can be obtained from their actions under rational expectations by setting U7 = 0 for 7 > 3 . This
observation leads to the following equivalence result:
22By Theorems 1, 5, and 6, the restriction tom.i.o. models is without loss, at the very least, when 3 = 1 and 3 ≥ ;.
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Corollary 2 (observational equivalence). Suppose agents’ best responses can be represented as in
(9). When the true process is given by (10), actions of an agent who uses pseudo-truem.i.o. 3-state
models with 3 < ; are identical to those of an agent with rational expectations in an economy
where the true processes is given by (10)with U3+1 = · · · = U; = 0.

Agents who are constrained to simple models behave as if they ignored the dynamics of all,
but the most persistent, shocks hitting the economy. They treat the less persistent shocks as
if they were i.i.d. when forming their expectations. This persistence bias is at the heart of the
framework’s implications for agents’ behavior. In the remainder of this section, I argue that per-
sistence bias leads to a dampening of the response of the economy to shocks, low-dimensional
behaviorof theeconomy, andadditional co-movementbetweenvarious forward-lookingactions
of agents.

4.1 Stickiness and Dampening

Ignoring the dynamics of some shocks makes agents’ forecasts and actions “sticky.” Changes in
the current value of an i.i.d. observable does not have any information about the future value of
the observable. Therefore, agents who treat a shock as i.i.d. do not update their expectations in
response to changes in the value of the shock. The stickiness of expectations translates into the
stickiness of the agents’ forward-looking actions.

I use the diagnostic tool of impulse-response functions (IRFs) to characterize the extent of
stickiness in agents’ actions. The IRF of agents’ actions to an innovation in the 8 th shock is given
by the profile {3FB+g/3n 8B }g . For agents who use pseudo-true m.i.o. 3-state models with 3 < ;

and agents who have rational expectations, the IRFs are given, respectively, by

3

3n 8B
FREB+g = 1 ′� ′4 8U

g
8 +

V6 ′� ′4 8

1 − U8 V8
Ug+18 ,

3

3 n 8B
F3∗B+g = 1 ′� ′4 8U

g
8︸     ︷︷     ︸

direct response

+
V6 ′� ′4 8

1 − U8 V8
Ug+18 1{8 ≤ 3}︸                        ︷︷                        ︸

expectational response

,

where 1{8 ≤ 3} is one if 8 ≤ 3 and is zero otherwise.
The IRF of actions can be decomposed into the sum of two terms: the direct response of

actions and the response resulting from changes in expectations. For agents who use simple
models, the direct response is identical to the direct response under rational expectations. This
is a direct result of the fact that agents perfectly observe the realization of the observable at any
point in time. The expectational response for constrained agents takes one of two forms. For
the 3 most persistent shocks, the response is again the same as in rational expectations. For the
remaining shocks, the expectational response is zero because agents ignore the dynamics of the
shock when they form their forecasts.
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When thedirect andexpectational responseshave the samesign, thenet effectof constraining
agents to use simplemodels is a dampening of their responses to shocks:

Proposition 3. Suppose agents’ best responses are given by (9), and the true process is as in (10). If
1 ′� ′4 8 and 6 ′� ′4 8U8 have the same sign, then for all B ,���� 3

3n 8B
F3∗B+g

���� ≤ ���� 3

3n 8B
FREB+g

���� ,
with the inequality strict if 3 < 8 ≤ ;, where FRE and F3∗ denote actions of agents with rational
expectations and those who use pseudo-true m.i.o. 3-state models, respectively.

4.2 Low-Dimensional Dynamics and aMain Shock

The forward-looking actions of agents who are constrained to use simple models have low di-
mensional dynamics: An econometrician who analyzes those actions will conclude that the ac-
tions are driven by a small number of shocks. To make this statement precise, I consider agents
who take a number of purely forward-looking actions, with the 8 th such action taking the follow-
ing form:

F8B = �B

[ ∞∑
A=1

VA8 2
′
8 GB+A

]
, (11)

where 2 8 ∈ ℝ< is a vector of parameters, and V8 ∈ (0, 1) is the effective discount factor for the 8 th
decision. Note that equation (11) is simply the best response in (9) with 1 , the parameter captur-
ing thecontemporaneouseffectof observableson theaction, set to zero. The restriction topurely
foreword-looking actions is amatter of convenience; the conclusions will be approximately true
if the actions are sufficiently forward-looking (i.e., if V8 ≈ 1 or 1 8 ≈ 0 for all 8 ).

Proposition 2 still characterizes the actions of agentswho are constrained to use3-statemod-
els. But I can express the actionsmore conveniently in terms of the vector of shocks:

F3∗8B =

3∑
7=1

U7 V82
′
8
� ′47

1 − U7 V8
57B .

It is immediate from this expression that agents’ actions only respond to the 3 most persistent
shocks. Consequently, an econometrician who analyzes the dynamics of agents’ actions will
conclude that the economy is drivenby3 shocks. This conclusion is independent of the specifics
of agents’ preferences, technology, or market structure. It holds both in partial equilibrium and
in general equilibrium, as the analysis in Subsection 4.4 will make clear.

Angeletos, Collard, and Dellas (2020) find that a “main business cycle chocks” explains the
bulk of movements in macroeconomic aggregates at business cycle frequencies. My analysis
suggests that this finding shouldnot comeas a surprise: There is always amain shock—as longas
decisions are sufficiently forward looking andagents use simplemodels. But in general, themain
shock is an endogenous index whose composition depends on the primitives of the economy
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such as preferences, technology, market structure, the stochastic properties of the shocks that
hit the economy, as well as the parameters of policy rules.23

4.3 Co-movement

The low-dimensional dynamics of agents’ actions also lead to additional co-movement between
their different choices. One can measure the extent of co-movement using different metrics,
perhaps the most commonly used one being the correlation. The following proposition shows
that constraining agents to use one-dimensional models leads to additional co-movement in
their choices:

Proposition 4. Consider actions 8 and 9 , both of the form (11). Suppose the true process is as in
(10)with; > 1. Then ���Corr (

F1∗8B , F
1∗
9B

) ��� ≥ ���Corr (
FRE8B , F

RE
9B

) ��� ,
with the inequality strict for generic parameter values.

The result is intuitive in light of what came before. Forward-looking decisions of agents who
are constrained to use 1-statemodels only respond to themost persistent shock in the economy.
Therefore, their various actions co-move perfectly with each other, and the correlation between
the actions is generically one in absolute value. Under rational expectations, in contrast, the co-
movement between different actions is imperfect (except for knife edge cases).24

4.4 Partial Equilibrium vs General Equilibrium

I conclude this section by arguing that the implications of the general framework are largely
unchanged in a general equilibrium setting where the laws of motion for observables depend
on agents’ actions. I consider a stylized general equilibrium (GE) economy inwhich observables
are linear functions of exogenous shocks and agents’ actions. Specifically, I assume that, in equi-
librium, the vector of observables, GB , can be written as

GGEB = �̃ ′5B + 6FGEB , (12)

where 5B ∈ ℝ; is the vector of shocks, �̃ ∈ ℝ;×< is a rank-; matrix, and 6 ∈ ℝ; is a vector
that parameterizes the strength of the GE feedback from agents’ actions to the observable. The
agents’ best-response functions are, as before, given by (9):

FGEB = 1 ′GGEB + �B

[ ∞∑
A=1

VA2 ′GGEB+A

]
. (13)

23In the simple economies considered in this section, where there are no endogenous variables, the main shock is identical to the most
persistent shock hitting the economy. In the applications considered in the next section, however, the composition of themain shock also
depends on the other primitives of the economy.
24Onemight guess that a similar result holds when agents are constrained to use 3-statemodels with 1 < 3 < ;. But this guess turns out

to be incorrect: It is always possible to find actions 8 and 9 for which Corr
(
F3∗
8B
, F3∗
9B

)
= 0 and Corr

(
FRE
8B
, FRE
9B

)
≠ 0.
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I continue to assume that shocks follow; independent AR(1) processes:

5B = � 5B−1 + nB , nB ∼ N(0, Σ), (14)

where � = diag(U1, . . . , U;) and Σ = diag(f21 , . . . , f2;). Equations (12)–(14) together with the
specificationof agents’ subjective expectations fully characterize the (general) equilibriumof the
economy.

I contrast this economy with a partial equilibrium (PE) economy in which

GPEB = � ′5B , (15)

FPEB = 1 ′GPEB + �B

[ ∞∑
A=1

VA2 ′GPEB+A

]
, (16)

and 5B follows (14). Note that the PE economy is nothingmore than themodel I studied so far in
this section.

The term “partial equilibrium” is inspired by the following hypothetical scenario: Suppose
we considered the economy described by equations (12)–(14) but ignored the fact that agents’
actions affect the observable, which in turn affect agents’ actions, and so on. Then the response
of the GE economy to shocks would be described by equations (15)–(16).

My next result establishes an observational equivalence between the GE and PE economies:

Proposition 5 (general equilibrium). Consider the general equilibrium economy (12)–(14) and
thepartial equilibriumeconomy (14)–(16), and suppose that, in each economy, agentsusepseudo-
true m.i.o. 3-state models to forecast the observable. If

�̃ = �

(
� −

(
1 +

3∑
9=1

U9 V

1 − U9 V
� †494

′
9�2

)
6 ′

)
,

then the linear equilibria of the two economies are observationally equivalent.

Several remarks are in order. First, the result is a corollary of the linear invariance result (The-
orem 2) and the fact that agents’ actions are linear in the observable, established in Proposition
2. Second, the proposition covers the rational-expectations case by setting 3 = ;. Third, when
V = 0, the effect of going from PE to GE is to amplify the response of observables to shocks, as
measured by matrix � ′, by the GE multiplier (� − 61 ′)−1. When V > 0, the multiplier has an
additional term, which captures the general equilibrium effect of the updating of expectations
by agents.

Last but not least, the distinctions between exogenous and endogenous variables, on one
hand, and PE andGE, on the other, are largely inconsequential in this framework. Agents’ expec-
tations of endogenous variables are consistent with their expectations of exogenous variables
and the structural equations of the economy, the GE economy is just the PE economy with a
linearly transformed� matrix, and agents’ expectations in theGE economy are just linear trans-
formations of their expectations in the PE economy.
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However, this conclusion relies on the assumption that the economy does not have any en-
dogenous state variable.25 This assumption (together with the linearity of the economy) turns
all general equilibrium restrictions into linear intratemporal relationships between variables—
exactly the kinds of relationships agents can comprehend. When the economy has endogenous
variables, on the other hand, constraining agents to simple models could lead to behave differ-
ently in GE due to a subtle feedback between the agents’ model of the economy and the econ-
omy’s law of motion. In the next section, I illustrate this point in the context of the real business
cycle model and the Diamond–Mortensen–Pissarides model.

5 Applications

5.1 The New-KeynesianModel

As the first application of the general framework, I study the standard three-equation new-
Keynesianmodel.26

5.1.1 Primitives

The primitives of the economy are completely standard. Time is discrete, preferences are time
separable, and discounting is exponential. There is ameasure of household with separable pref-
erences over the final good and leisure. In each period, households decide how much to con-
sume and how much to save in a nominal bond, which is in zero net supply. Households also
make labor-supply decisions taking thewage as given. The consumption good is aCES aggregate
of a continuum of intermediate goods. Intermediate goods are produced by monopolistically
competitive firms using a technology linear in labor. Intermediate-good producers are subject
to a Calvo-style pricing friction. Markets for labor, the final good, and the nominal bond are
competitive.

The economy is subject to technology shocks that move the natural rate of interest and cost-
push shocks that affect the intermediate goods producers’ desired markups. The nominal in-
terest rate is set by a central bank. The exact rule followed by the central bank is irrelevant for
my analysis. Rather, equilibrium outcomes will depend only on the statistical properties of the
interest rate process (such as its serial correlation and its correlation with other aggregate ob-
servables).27
25I say that a state variable is endogenous if its dynamics are endogenous, i.e., determined in equilibrium. For example, shocks are not

endogenous state variables, but the capital stock is.
26Technically speaking, the economywill be a two-equationnew-Keynesianeconomy, describedby thedynamic IS curve and thePhillips

curve. The Taylor rule will play no role inmy analysis.
27The Taylor principle is not necessary for equilibrium uniqueness in my setup. The sunspot equilibria in the new-Keynesian model

require agents to observe payoff-irrelevant common “sunspots.” I restrict the set of variables that can appear in the vector of observables
to be payoff relevant, thus ruling out sunspot equilibria. This is one advantage of explicitly specifying the list of observables on which
agents can condition their forecasts.
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5.1.2 Log-linear temporary equilibrium

It is well known since Preston (2005) that recursive equilibrium equations that relate aggregate
variables (e.g., the aggregate Euler equation) may not be valid away from rational expectations.
Instead, one needs to separately characterize each agent’s optimal behavior using only relation-
ships that are respected by the agent’s expectations.

Myanalysisof thenew-Keynesianmodel thusproceeds in twosteps. Thefirst step is tocharac-
terize the temporary equilibrium relationships, which impose individual optimality andmarket
clearing conditions but not rational expectations.28 The second step is to supplement the tem-
porary equilibriumwith themodel of expectations formationandcharacterize the resulting (full)
equilibrium.

The first step of the analysis is standard. I therefore omit the details of the derivation and use
the log-linearized temporary equilibriumrelationships asmy startingpoint.29 These temporary-
equilibrium conditions are given by

F̂B = −f
(
7̂B − @ <B

)
+ �ℎB

[ ∞∑
A=1

VA
(1 − V

V
F̂B+A − f

(
7̂B+A − @ <B+A

)
− f

V
ĉB+A

) ]
, (17)

ĉB = ^F̂B + `B + � 5
B

[ ∞∑
A=1

(VX )A
(
^F̂B+A +

1 − X
X

ĉB+A + `B+A
) ]

, (18)

where F̂B , 7̂B , and ĉB denote the log-deviations of output gap, (gross) nominal interest rate, and
inflation rate, respectively, from their steady state values, V is the discount factor, f is the elastic-
ity of intertemporal substitution (EIS), X is the Calvo parameter,^ is a composite parameter that
determines the steepness of the Phillips curve, @ <B denotes the technology shock that moves the
natural rate of interest, and `B is the cost-push shock. �ℎB and �

5
B denote subjective expectations

of households and firms, respectively.
I assume that the vector (7̂B , @ <B , `B ) ′, of nominal interest rate, technology shock, and cost-push

shock, follows a mean-zero stationary and exponentially ergodic process.30 This assumption
allowsme to use Theorem 5 to characterize the set of pseudo-true 1-state models.
28The idea of temporary equilibrium goes back to the writings of Hicks (1939) and Lindahl (1939). It has been extensively developed

in the context of Arrow–Debreu economies by Grandmont (1977, 1982). See Woodford (2013) for a discussion of temporary equilibria in
the context of modern monetary models and Farhi and Werning (2017) for an application in the context of a heterogeneous-agent new-
Keynesian economy.
29Interested readers can find the details of this derivation, among other places, in Angeletos and Lian (2018) and Gáti (2020).
30The new-Keynesian literature often assumes that nominal interest rate follows a Taylor rule, which sets the rate as a linear function

of output gap and inflation rate plus a monetary policy shock. As long as shocks follow a stationary and exponentially ergodic process,
the standard specification leads to a process for (7̂B , @<B , `B )′ that is stationary and exponentially ergodic—both in the rational expectations
equilibriumand in theequilibrium inwhichagents are constrained touse simple state-spacemodels. My reduced-formspecificationof the
interest rate process is thus observationally equivalent to the standard specification. But the reduced-form specification has the advantage
of allowing the model to be calibrated without taking a stand on which part of changes in interest rate are systematic and which parts are
due to pure monetary policy shocks. It also enables me to study the effects of forward guidance in a theoretically coherent way. These
pluses come at the expense of precluding counterfactual analyses with respect to the parameters of the Taylor rule.
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5.1.3 Subjective expectations and equilibrium

For simplicity, I assume that households and firms face identical constraints on themodels they
can entertain, and so, end up with identical subjective expectations. Every agent knows the
steady-state values of every variable. The agents’ time-B information set is given by the history
{Gg }g≤B of vector Gg ≡ (F̂g , ĉg , 7̂g , @ <g , `g ) ′, consisting of time-g log-deviations of output, inflation,
and interest rate from their steady-state values, as well as realizations of every shock. Instead of
imposing rational expectations, I assume agents are constrained to use one-dimensional state-
spacemodels of the form (1) to forecast G .

The equilibriumdefinition is straightforward. An equilibrium consists of a stochastic process
ℙ for {GB }B andamodel \ ∗ for agents such that (i)ℙ is derived frommarket clearing conditions and
optimal behavior by households and firms given subjectivemodel \ ∗, and (ii) \ ∗ is a pseudo-true
1-statemodel given the stochastic processℙ. Followingmy earlier work (Molavi, 2019), I refer to
this equilibrium notion as constrained rational expectations equilibrium.

Finding an equilibrium involves solving a fixed-point equation. I can do this in the context of
the new-Keynesianmodel using pen and paper via a guess-and-verify method. I focus on linear
equilibria, in which F̂B and ĉB are linear functions of 7̂B , @ <B , and `B .31 In such an equilibrium, the
GB vector contains two redundant elements (which are linear combinations of other elements of
GB ). Therefore, agents’ forecasts of G canbe obtainedbyfirst finding their forecasts of some three-
dimensional vector 5 that spans the subspace spanned by G and then using the linear invariance
result to find their forecasts of G .

I take 5B ≡ (F̂B , ĉB , 7̂B ) ′ as my basis for the subspace spanned by GB . This choice of 5B has two
advantages over the more natural choice of the vector of shocks. First, it considerably simplifies
the algebra involved in finding the equilibrium. Second, it makes the estimation of the model
more straightforward. By Theorem 5, agents’ model of any vector 5B depends on the autocovari-
ance matrices of 5B at lags zero and one. When 5B consists of output gap, inflation, and interest
rate, those autocovariance matrices have readily available empirical counterparts. Estimating
autocovariance matrices of shocks, on the other hand, is a much harder tasks that requires a
strategy to identify the unobservable shocks.

The following proposition summarizes the equilibrium characterization:

Proposition 6. Suppose the shocks in the new-Keynesianmodel are stationary and exponentially
ergodic, agents are constrained to use 1-state models, and their time-B information set consists of
the history of vector Gg ≡ (F̂g , ĉg , 7̂g , @ <g , `g ) ′ for g ≤ B . In the constrained rational expectations
equilibrium,

F̂B =
1

1 − >FWF − >c (Wc + ^WF )
[
WF (>7 7̂B + >c`B ) − f (1 −Wc>c ) (7̂B − @ <B )

]
, (19)

31The existence and generic uniqueness of a linear equilibrium follows from the guess-and-verify argument. Mymethod for finding an
equilibrium is silent on whether there are other, non-linear equilibria.
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ĉB =
1

1 − >FWF − >c (Wc + ^WF )
[
(Wc + ^WF )>7 7̂B + (1 −WF>F )`B − f (^ +Wc>F ) (7̂B − @ <B )

]
, (20)

where

WF ≡ 0 (?F − f?c ), (21)
Wc ≡ 0V?c , (22)

Γ0 is the variance-covariance matrix of (F̂B , ĉB , 7̂B ),�1 is the corresponding lag-one autocorrelation
matrix, 0 is the eigenvalue of�1 largest inmagnitude,C is the corresponding eigenvector normal-
ized so thatC ′C = 1, > ≡ (>F , >c , >7 ) ′ ≡ Γ

−1
2
0 C , and ? ≡ (?F , ?c , ?7 ) ′ ≡ Γ

1
2
0C .

Thepropositionprovidesanexplicit characterizationof theequilibriumgivenautocovariance
matrices of the vector 5B = (F̂B , ĉB , 7̂B ) ′. Although 5B contains output gap and inflation rate, which
are endogenous objects, the characterization is still useful. One can directly measure the au-
tocovariance matrices of 5B in the data and use the measured values together with values for V,
f , X , and ^ to find the response of the economy to interest rate changes as well as technology
and cost-push shocks. Furthermore, in equilibrium, there is a one-to-one mapping between
autocovariance matrices of 5B and autocovariance matrices of the shocks. Therefore, setting the
autocovariancematrices of 5B to their empirical counterparts is equivalent to choosing the shock
process to target the empirical autocovariancematrices of 5B .

One can use the result to think about optimal monetary policy. The new-Keynesian model
has the so-called “divine coincidence” property under rational expectations: Without cost-push
shocks, the central bank faces no trade-off between its dual goals of zero output gap and stable
inflation. A similar property holds for some parameter values when agents are constrained to
use one-dimensionalmodels: The economy features divine coincidencewhen>7 = 0, i.e., agents
put zero weight on the nominal interest rate when forming their forecasts, and when ?c = 0,
i.e., agents’ inflation expectations are insensitive to their estimate of the state of the economy.
However, these are both knife-edge cases. The following corollary of Proposition 6 establishes
that there is generally a trade-off between output and inflation stabilization:

Corollary 3 (failure of divine coincidence). Suppose the shocks in the new-Keynesian model
are stationary and exponentially ergodic, agents are constrained to use 1-state models, and their
time-B information set consists of the history of vector Gg ≡ (F̂g , ĉg , 7̂g , @ <g , `g ) ′ for g ≤ B . For generic
values of parameters V,f , X , and^ andautocovariancematrices Γ0 and Γ1, the central bank cannot
simultaneously achieve zero output gap and zero inflation, evenwhen the cost-push shock is zero.

The central bank is thus limited in what it can achieve with conventional monetary policy,
even abstracting from the effective lower boundon thenominal interest rate. I proceedby study-
ing if and how forward guidance can help.
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5.1.4 Forward guidance

I consider an economy that has been operating without forward guidance for a long time and
study how implementing forward guidance then affects output and inflation. This is a good
description of where the U.S. economy was in 2009, in the aftermath of the Global Financial
Crisis. Consistent with this story, I end my sample in the fourth quarter of 2008 when taking
themodel to the data.

I assume that agents continue to forecast using a 1-statemodel that is pseudo true in an equi-
libriumwithout forward guidance even as they see forward guidance. This assumption captures
the following scenario. Agents have lived in a new-Keynesian economy without forward guid-
ance for a long time and have had ample opportunities to learn the equilibrium relationships.
However, since agents canonly entertain 1-statemodels, insteadof learning the truemodel, they
have settled on a pseudo-true 1-statemodel. Agents are then confronted with forward guidance
for the first time. The key assumption is that agents do not immediately abandon their model;
rather, they continue to rely on the model they had before the switch to the forward-guidance
regime, even though themodel may not be pseudo-true under the new regime.

The fact that agents have a fully specified model for the stochastic process of G allows me to
study the effects of forward guidance in an internally consistent way. I model forward guidance
as a credible announcement in period B by the central bank that the nominal ratewill followpath
{7̂B+1, 7̂B+2, . . . , 7̂B+) } going forward.

The announcement augments agents’ time-B information set to include {7̂B+1, 7̂B+2, . . . , 7̂B+) } (in
addition to {Gg }g≤B ). Therefore, the agents’ time-B forecasts under forward guidance are the con-
ditional expectations� 1∗B [·] = � 1∗B [·|{Gg }g≤B , 7̂B+1, 7̂B+2, . . . , 7B+) ]. But agents’ forecasts areMarkovian
in observables by Theorem 5 and the assumption that the true process is exponentially ergodic.
Therefore, � 1∗B [·] = � 1∗B [·|GB , 7̂B+1, 7̂B+2, . . . , 7B+) ].

On the other hand, since agents use linear-Gaussian state-space models, their forecasts are
linear functions of the variables in their information set. In particular, for any observable Z ∈
{F̂ , ĉ , 7̂ , @ < , `}

� 1∗B [ZB+A ] = � 1∗ [ZB+A | 5B , 7̂B+1, 7̂B+2, . . . , 7̂B+) ] = ΣZAl) Σ
−1
l)l)

l) ,

where l) ≡ (ZB , 7̂B+1, . . . , 7̂B+) ) ′, ΣZAl) ≡ � 1∗ [ZB+Al ′
)
], and Σl)l) ≡ � 1∗ [l)l ′

)
]. Note that the covari-

ancematrices that showup in the agents’ forecasts of Z are subjective covariancematriceswhich
depend on the agents’ subjectivemodel. But the subjectivemodel is just the pseudo-true 1-state
model, which is fully characterized by Proposition 6.

The response of the economy to forward guidance takes a relatively simple form. Substituting
for the agents’ forecasts in (17) and (18) and simplifying the resulting expression, I obtain

F̂B = U
() )
F7
7̂B + U () )

F< @
<
B + U () )

F` `B +
)∑
A=1

U
() )
F7A
7̂B+A ,
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ĉB = U
() )
c7
7̂B + U () )

c< @
<
B + U () )

c` `B +
)∑
A=1

U
() )
c7A
7̂B+A

whereU’s are constants that dependon theparameters (0,>, ?) of the agents’ pseudo-truemodel
and constants V, f , X , and^ . The expressions for U’s can be found in Appendix C.1.

The U’s have intuitive interpretations: UF7 and Uc7 are the current interest rate elasticities of
output and inflation, respectively, whereasUF7A andUc7A are the elasticities of output and inflation
with respect to the A-period ahead interest rate. Note these elasticities change with the duration
) of central bank’s guidance. That is, committing to a zero interest rate in period B + A is not the
same as the central bank not making any announcement about period B + A ’s interest rate. The
() ) superscript in the above expressions is to emphasize this point.

The expressions for U’s are rather cumbersome andhard to interpret, so I instead calibrate the
model and numerically study the effects of forward guidance.

5.1.5 Calibration and Estimation

The model has few parameters. I calibrate the model at a quarterly frequency. Following Galí
(2015)’s textbook, I set V = 0.99, f = 1, X = 3/4, and ^ = 0.172. I choose the first two autocovari-
ancematrices of the vector (7̂B , @ <B , `B ) ′ of nominal rate, technology shock, and cost-push shock to
match the first two autocovariance matrices of 5B = (F̂B , ĉB , 7̂B ) ′. Since there is a one-to-one map-
ping between the two sets of autocovariancematrices, I can perfectly match the autocovariance
matrices of 5B .

I estimate the empirical autocovariancematrices of 5B using the post war pre Global Financial
Crisis U.S. data. For F̂B , I use the percentage difference between real GDP and Potential Output
in period B ; for ĉB , I use the percentage change in GDPDeflator; and for 7̂B , I use the Effective Fed
Funds Rate. The resulting time series are stationary, so I do not filter them. The sample period is
from the first quarter of 1955 to the fourth quarter of 2008.

The estimated (lag-one) autocorrelations of interest rate, technology shock, and cost-push
shock are given, respectively, by d7 = 0.954, d@< = 0.955, and d` = 0.925, whereas the corre-
sponding standard-deviations are given by f7 = 3.30, f@< = 5.67, and f` = 0.315. However, the
estimated shocks are not independent AR(1) processes. See Appendix C.2 for the full estimated
autocovariancematrices at lags zero and one, in which I also show that the estimated process is
exponentially ergodic.

There are no free parameters for agents’ expectations. Agents’ models, beliefs, and forecasts
are all pinned down by structural parameters V, f , X , and ^ and the stochastic process of the
shocks. The agents’ pseudo-true 1-state model, in equilibrium, is described by

0∗ = 0.985,
>∗
F = 0.022,
>∗
c = −0.42,
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>∗
7 = −0.014,
?∗
F = 0.53,
?∗
c = −2.3,
?∗
7 = −2.5,

where 0∗ denotes the perceived persistence, >∗ is the relative attention vector, and ?∗ is the rela-
tive sensitivity vector.

Agents perceive the subjective state, i.e., “the state of the economy,” as highly persistent. Their
estimate of the state of the economy is highly sensitive to changes in inflation, but it does not
respondmuch to output or interest rate. High outputmakes agents optimistic about the state of
the economy, while high inflation and high interest rate make them pessimistic. Finally, agents’
forecasts of inflation and interest rate move considerably with their estimate of the state of the
economy, but not somuch for output.

5.1.6 Results

Figure 1 plots the impulse response functions to an expansionary interest-rate shock. The rate
is cut by 100 basis points on impact and follows an AR(1) process with persistence parameter
d7 = 0.954—the estimated (lag-one) autocorrelation of interest rate in the data. The responses
of output and inflation rate are both smaller by about a factor of two than their corresponding
responses under rational expectations.32
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Figure 1. Impulse Response Functions to an Expansionary Interest-Rate Shock

Constraining agents to low-dimensional models makes their expectations sticky. This sticki-
ness dampens the response of their forecasts to changes in the interest rate. Since the economy
is almost purely forward looking, the stickiness of agents’ forecasts translates into a dampening
of the response of agents’ actions to the interest rate cut. This is the mechanism behind the
dampening of the response of aggregate variables to the shock.

A similar mechanism is at play in reducing the impact of forward guidance on output and
inflation. Figure 2 plots the responses of output and inflation to a 100 basis point cut in the
currentnominal rate combinedwith anannouncementby the central bank that thenominal rate
32See, for instance, Figure 3.1 of Galí (2015). Note, however, that under rational expectations, the shock being considered is typically a

“pure monetary policy shock,” i.e., a shock to the unsystematic part of the nominal interest rate. Here, in contrast, the shock is a shock to
the nominal interest rate itself. Somy impulse response functions are not directly comparable to those of Galí (2015).
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will be kept at −1% for ) quarters. The figure plots the response at the time of announcement
as the duration of guidance, ) , is varied. The response of output to a 100 basis point rate cut
accompanied by a promise to keep the rate low for another quarter is almost 50% higher than
the response to a rate cut without any guidance.
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Figure 2. The Power of Forward Guidance

But the central bank quickly runs out of ammunition. Promising to keep the rate low for
two quarters (instead of one) increases the response of output only by about 9%. Promising to
keep the rate low for 20 quarters is only 50%more stimulative than promising to keep it low for
one quarter. Likewise, the response of inflation to forward guidance remains relatively flat as)
increases.

The key to understanding Figure 2 is understanding the solution to the filtering problem
agents solve to incorporate forward guidance in their forecasts. Agents first use the announced
path for the interest rate to estimate the path of the subjective state and then use this estimate
to forecast future values of payoff-relevant variables. Therefore, the extent to which forward
guidance influences agents’ forecasts is a function of the sensitivity of their estimate of the
subjective state to changes in the interest rate—>∗

7
is exactly this parameter. The fact that >∗

7

is small in equilibrium implies that agents’ estimate of the subjective state is not too sensitive
to changes in expected interest rate. Furthermore, since the subjective state is mean reverting
with a perceived persistent 0∗ < 1, information about far future is discounted by agents when
they form their expectations. The upshot is that the filtering of information through a one-
dimensional model reduces the sensitivity of agents’ forecasts to forward guidance.

5.2 The Real Business Cycle Model

Formy second application, I consider the textbook real business cycle (RBC)model.

5.2.1 Primitives

Preferences, technology, andmarket structureare standard. Households valueconsumptionand
labor according to the per-period utility function

C (2 , <) = 21−
1
f

1 − 1
f

−k <1+i

1 + i ,
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where 2 denotes consumption, < denotes labor, f is the elasticity of intertemporal substitution
(EIS), i is the inverse Frisch elasticity of labor supply, and k is a constant that determines the
steady-state working hours. The consumption good is produced by a measure of competitive
firms by combining labor and capital according to the Cobb–Douglas production function

=B = 0B<
U
B 9

1−U
B ,

where =B denotes output, 0B is total-factor productivity (TFP), and 9B denotes the capital stock at
the beginning of period B . TFP follows afirst-order autoregressive process in logs: 0̂B ≡ log 0B , and

0̂B = d0̂B−1 + nB . (23)

In every period, households choose consumption, labor supply, and the next period’s capital
stock subject to the following flow budget constraint:

9B+1 = (1 − X + @B )9B +EB<B − 2B ,

where X denotes the depreciation rate of capital, @B is the rental rate of capital, andEB is the wage
rate. Finally, market clearing determines investment:

7B = =B − 2B .

5.2.2 Log-linear temporary equilibrium

As is common in the literature, I log-linearize the model around a steady state in which 0̂B = 0,
=B = =, EB = E , @B = @ , <B = <, 7B = 7 , 9B = 9 , and 2B = 2 . The usual aggregate Euler equation
may not hold away from rational expectations. I instead start by characterizing the temporary
equilibrium relations, which impose individual optimality and market clearing conditions but
not rational expectations. The log-linearized temporary-equilibrium conditions are given by

=̂B = 0̂B + U9̂B + (1 − U)<̂B , (24)
ÊB = 0̂B + U (9̂B − <̂B ), (25)
@̂B = @ 0̂B + (1 − U)@ (<̂B − 9̂B ), (26)

<̂B =
1
i
ÊB −

1
fi

2̂B , (27)

7̂B =
=

7
=̂B −

2

7
2̂B , (28)

9̂B = (1 − X )9̂B−1 + X 7̂B−1, (29)

2̂B =
j

V
9̂B + j@̂B + jZÊB + (j − Vf)

∞∑
A=1

VA�B [@̂B+A ] + jZ
∞∑
A=1

VA�B [ÊB+A ], (30)

where

j ≡ (1 − V)
(
(1 − U)@
Ufi

+ 2

9

) −1
,
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Z ≡ (1 − U) (1 + i )@
Ui

,

and �B [·] denotes the subjective forecast of households. The details of this derivation can be
found in Online Appendix D. Equations (23)–(30) fully characterize the equilibrium of the econ-
omy once the subjective expectations are specified.

5.2.3 Subjective expectations and equilibrium

I find the equilibrium once imposing rational expectations (RE) and once assuming that house-
holds are constrained to 3-state models. In both cases, I assume that households know the
steady-state values of every variable and perfectly observe the vector GB ≡ (0̂B , =̂B , ÊB , @̂B , <̂B , 7̂B , 9̂B ,

2̂B ) of log-deviations from the steady state.
Where the two cases differ is in how households model log-deviations from the steady state.

Under RE, the households’model of GB coincideswith the observable’s true, equilibrium stochas-
tic process. When households are constrained to3-statemodels, on the other hand, they believe
that GB follows a 3-dimensional model of the form (1) and use a pseudo-true 3-state model to
forecast the future values of G .

The equilibrium definition when households use pseudo-true 3-state models is straightfor-
ward. An equilibrium consists of a stochastic process ℙ for GB and a model \ ∗ for households
such that (i)ℙ is derived frommarket clearingconditionsandhouseholds’ optimal consumption,
labor supply, and investment behavior given their subjective model \ ∗, and (ii) \ ∗ is a pseudo-
true 3-state model given the stochastic process ℙ.

The rational-expectations equilibrium has a 2-state representation. Therefore, agents con-
strained to 3-state models with 3 > 1 recover the true process, and the equilibrium given 3-
state models with 3 > 1 coincides with the rational-expectations equilibrium. This observation
highlights the fact that constraining agents to 3-statemodels represents the only deviation from
the full-information rational-expectations benchmark. Furthermore, the constraint is slack as
long as 3 > 1.

Finding an equilibrium involves solving a fixed-point equation. The rational-expectations
equilibriumcanbe foundusingexisting techniques. InOnlineAppendixD, Idiscusshowonecan
find the equilibrium in the case where households use pseudo-true 3-state models with 3 = 1.
In the same appendix, I also provide amore formal definition of equilibrium.

5.2.4 Calibration

The exogenous parameters of themodel are calibrated as follows. A period represents a quarter.
The quarterly discount rate is set to V = 0.99. The EIS and the Frisch elasticity of labor supply are
both set to one. The depreciation rate is set to X = 0.012 and the capital share of output to U = 0.3.
TFP has a persistence parameter of d = 0.95. I set the standard deviation of TFP innovations to
one.
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Note that3 is theonlyextra freeparameter relative to the full-information rational-expectations
version of themodel. Once one chooses a value for 3 , the expectations are fully pinned down by
the primitives of the economy (as in the benchmark). Moreover, the 3-state equilibrium nests
the RE equilibrium by setting 3 > 1.

5.2.5 Results

Figure 3 plots the impulse response functions to a one percent increase in TFP. The responses
for the case where households have rational expectations are in dashed green and for the case
where agents use pseudo-true 1-statemodels are in solid red. Every variable except for the rental
rate of capital is measured in log changes from its steady state value; the rental rate of capital
is measured in percentage point changes from its steady state value. The variable labeled the
“state of the economy” is defined as the households’ nowcast, ĤB , of the subjective state, HB , in
their subjectivemodel of the economy. Since the scale of HB is not identifiable either to the agents
or the econometrician, the scale of ĤB is intrinsically meaningless.
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Figure 3. Impulse Response Functions to a TFP Shock

The state of the economy at time B can be expressed as a linear combination of the time-B
values of the capital stock and TFP, with theweights determined endogenously in equilibrium:33

ĤB = 0.9479̂B + 0.0530̂B .

The state of the economy ismuchmore sensitive to changes in the capital stock than to changes
in TFP. This can also be seen in the impulse response functions: The state of the economy co-
moves almost perfectly with capital.
33As previously mentioned, themagnitude of ĤB is irrelevant. I normalize ĤB to have ĤB = >9 9̂B + >0 0̂B with |>9 | + |>0 | = 1.
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The fact that the state of the economy inherits the dynamics of the capital stock is a mani-
festation of the persistence bias. In equilibrium, the capital stock is more persistent than TFP,
as can be seen from the impulse response functions. Therefore, the households’ nowcast of the
subjective state moves almost one-for-one with changes in the capital stock.

Consumption, in turn, inherits the dynamics of the state of the economy. Since V is close to
one in my calibration, consumption is almost purely forward looking. Therefore, it moves in
tandem with changes in the households’ forecasts, which in turn, move one-for-one with their
nowcast, ĤB , of the subjective state. In equilibrium,

2̂B = 0.0899̂B + 0.088@̂B + 0.0091ÊB + 0.841ĤB .

That is, consumption is muchmore sensitive to changes in the state of the economy than to the
current prices and quantities.

The upshot is that consumption co-moves with the capital stock. The (unconditional) corre-
lation of consumption and the capital stock is 0.999 when households use pseudo-true 1-state
models; in contrast, it is 0.956 when households have rational expectations. Even though con-
sumption is an almost purely forward-looking variable, it is anchored to the most persistent
backward-looking variable in the economy: capital.

The fact that consumption is anchored to capital dampens the initial response of consump-
tion to TFP shocks. The response of consumption on impact when households use a pseudo-
true 1-statemodel is 83% smaller than the corresponding response under RE. The consumption
response in the 1-state case continues to be smaller than the RE response for sixth quarters after
impact. But as the 1-state economybuildsup its capital stock, thehouseholds’ viewof the state of
the economy improves and their consumption increases. At some point, consumption in the 1-
state economy overshoots its RE counterpart. Themodel thus provides a parsimonious account
of the hump-shaped response of consumption to TFP in empirical studies.34 Moreover, the ini-
tial underreaction and the subsequent overshooting of consumption increases its unconditional
volatility relative to the RE benchmark and raises the cost of business cycles.

5.3 The Diamond–Mortensen–Pissarides Model

I next study how the predictions of the standard labor search andmatchingmodel change when
agents are constrained to use simple models. I do so in the context of the stochastic version
of the Diamond–Mortensen–Pissarides (DMP) model in discrete time. I start by describing the
primitives of the economy.

5.3.1 Primitives

There is a continuum of workers and firms in the economy. The mass of workers is normalized
to one, whereas the mass of firms is determined by free entry. Workers and firms are both risk
34For ameta-analysis of the response of aggregate variables to technology shocks, see Ramey (2016, pp. 135–151).
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neutral and discount future at rate V. A worker matched with a firm generates 0B units of output
in each period, whereas an unemployedworker produces 1 < 1 units. I assume that 0B −1 = (1−
1) exp(0̂B ), where 0̂B is a shock to labor productivity net of home production. This specification
of labor productivity guarantees that 0B > 1 for all B , so it is always efficient for workers to be
employed at firms.

Unemployed workers and firms randomly match in a frictional labor market. A matching
function determines the rate at which unemployed workers meet firms. Each unemployed
worker finds a job in period B with probability >B = `\1−UB , and each vacancy is filled with
probability ?B = `\−UB , where \B ≡ DB /CB denotes market tightness, i.e., the ratio of the number
of vacancies to the unemployment rate, and ` and U are parameters of the matching function.
Each job is destroyed in eachperiodwithprobability AB = A exp(ÂB ), where ÂB is a separation shock.
Firms incur a cost 9 per period (measured in the units of output) for maintaining a vacancy.

Wages are determined throughNash bargaining between a worker and a firm, with the threat
point of the worker the value of unemployment, the threat point of the firm the value of an un-
filled vacancy (which will be zero in equilibrium), and the worker’s bargaining power equal to
X .

I assume that net labor productivity and separation rate shocks follow the autoregressive pro-
cess (

0̂B
ÂB

)
=

(
d0 0
0 dA

) (
0̂B−1
ÂB−1

)
+ nB , (31)

where nB ∼ N(0, Σ). This specification allows for labor productivity and separation rate to be
correlated, as is the case in the data.

5.3.2 Temporary equilibrium

The recursive equations that characterize the solution to the DMP model may not hold away
from rational expectations. I instead start by characterizing the temporary-equilibrium rela-
tions, which hold under arbitrary expectations. I assume that firms andworkers usemodelswith
the same number of states, and so, end upwith the same subjective expectations in equilibrium.
Market tightness and wage then satisfy the following equations:35

\UB =
`

9
�B

[ ∞∑
g=1

Vg
g−1∏
9=1

(1 − AB+9 ) (0B+g −EB+g )
]
, (32)

EB = X0B + (1 − X )1 + X�B

[ ∞∑
g=1

Vg
g−1∏
9=0

(1 − AB+9 ) (0B+g −EB+g )
]

− (1 − X )�B
[ ∞∑
g=1

Vg
g−1∏
9=0

(1 − AB+9 − >B+9 ) (EB+g − 1)
]
. (33)

35Nash bargaining only determines the total value delivered toworkers and firms each and not the timing of the payoffs or thewage rate.
To determine the wage, I assume that workers and firms both take the future expected wages as given and adjust the current wage to split
the surplus according to the Nash bargaining solution.
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The unemployment rate follows the first-order difference equation

CB = CB−1 + AB−1(1 − CB−1) − `\1−UB−1 CB−1. (34)

Equations (31)–(34) togetherwith the specificationof the subjective expectations fully character-
ize the equilibrium. The derivation of these equations and other omitted calculations from this
subsection can be found in Online Appendix E. To simplify the numerical computations, I log-
linearize the temporary equilibrium of the economy around a steady state in which 0B = 1 > 1

and AB = A .

5.3.3 Subjective expectations and equilibrium

I solve the model once under rational expectations and once assuming that agents are con-
strained to 1-state models. In both cases, I assume that every agent knows the steady-state
value of every variable and perfectly observes the vector GB ≡ (0̂B , ÂB , \̂B , D̂B , ĈB , >̂B , ?̂B , ÊB ) of log-
deviations from the steady state. Agents constrained to 1-state models believe that GB follows a
1-state model of the form (1) for some \ = (�, �,& ,') and use a pseudo-true 1-state model to
forecast the future values of G .

Equilibrium is defined as in the previous applications. It consists of a stochastic processℙ for
GB and amodel \ ∗ for the agents such that (i)ℙ is derived from the agents’ optimal behavior given
their subjectivemodel \ ∗, and (ii) \ ∗ is a pseudo-true 1-state model given the stochastic process
ℙ. A more formal definition can be found in Online Appendix E.

5.3.4 Calibration

The model is calibrated as follows. Each period corresponds to a month. The discount factor is
set to V = 0.99. I set the mean of the separation rate to A = 0.035, so jobs last for about 2.5 years
on average. The steady-state job-finding probability is set to > = 0.4 per month. The elasticity
parameter of the matching function is set to U = 0.72. The workers’ bargaining power is set to
the same value: X = 0.72. Setting X = U ensures that the Hosios condition is satisfied. I set the
persistenceparameterof the shock to d0 = 0.96 for laborproductivity and dA = 0.90 for separation
rate. I normalize the steady-state output per worker to 0 = 1. The flow payoff to workers from
unemployment is set to 1 = 0.4.36

The impulse response functions are independent of the volatility of the shocks and their cor-
relation when agents have rational expectations—but not when they are constrained to one-
dimensional models. I set the correlation of labor productivity and separation rate shocks to
−0.4 and the ratio of the standard deviation of labor productivity to that of separation rate to ten.
Thesechoices ensure that the (pairwise) correlationcoefficientsbetween laborproductivity, sep-
aration rate, and the unemployment rate are broadly consistent with the data in Shimer (2005).
36These parameter values are all consistent with the calibration in Shimer (2005). Others, such as Hagedorn and Manovskii (2008), rely

on values of 1 closer to one to amplify the response of unemployment to labor productivity shocks.
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Finally, I normalize the standard deviation of labor productivity to one. The results that follow
do not depend on this normalization.

5.3.5 Results

Figures 4 and 5 plot the impulse response functions to a one percent increase in labor productiv-
ity and separation rate, respectively. The responses for the case where households have rational
expectations are in dashed green and for the case where agents use pseudo-true 1-state models
are in solid red. Variables are all measured in log changes from their steady state values. As in
the previous application, the variable labeled the “state of the economy” is defined as the agents’
nowcast, ĤB , of the subjective state, HB . Since the scaleof HB is not identifiable either to theagentsor
the econometrician, the scale of ĤB is intrinsicallymeaningless. However, the two panels plotting
the response of ĤB to labor productivity and separation rate shocks use the same scale, so the
responses of the state of the economy are comparable across the two shocks.

The state of the economy at time B can be expressed as a linear combination of the time-B
values of the unemployment rate, labor productivity, and separation ratewith theweights deter-
mined endogenously in equilibrium:37

ĤB = −0.812ĈB + 0.0100̂B − 0.177ÂB . (35)

The state of the economy is almost five times more sensitive to changes in the unemployment
rate than to changes in separation rate, and it barely responds to changes in labor productivity.

Since the shocks are significantly correlated with each other, the mapping from the persis-
tence of the shocks to their weights in the expression for ĤB is not as simple as in the RBC applica-
tion. Rather, the relative attention vector> , which determines the weights different variables get
in the determination of the state of economy, depends on the joint dynamics of the unemploy-
ment rate, labor productivity, and the separation rate in the way that is fleshed out in Theorem
5. Those dynamics, in turn, are determined in equilibrium as a function, among other things, of
the attention vector, > .

The key tounderstanding the economy’s response to labor productivity shocks is the observa-
tion that current productivity has no direct effect on the agents’ decisions. The only interesting
decision in theDMPmodel is the firms’ vacancy-creation decision, which together with the cur-
rent unemployment rate, fully determinesmarket tightness through equation (32). Market tight-
ness and the exogenous separation rate, in turn, determine next period’s unemployment rate
through equation (34). Current productivity appears nowhere in these equations; it is only the
firms’ forecasts of future productivity that enters the dynamics of market tightness, job-finding
rate, and unemployment. In fact, in equilibrium,

\̂B = 2.76ĤB ,
37I normalize ĤB to have ĤB = >C ĈB + >0 0̂B + >A ÂB with |>C | + |>0 | + |>A | = 1.
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Figure 4. Impulse Response Functions to a Labor Productivity Shock

>̂B = 0.774ĤB .

That is, market tightness and job-finding rate are perfectly correlated with the state of the econ-
omy.

This property of the DMP model leads to a form of complementarity in the agents’ relative
attention to different observables, which, in equilibrium, dampens the response of the economy
to labor productivity shocks. Suppose firms reduce the weight they assign to labor productivity
when forming their estimate of the current state of the economy. This makes their forecasts less
sensitive to current labor productivity and dampens the effect of labor productivity on unem-
ployment fluctuations. This, in turn, reduces labor productivity’s weight in the agents’ estimate
of the state of the economy under a pseudo-true model. In equilibrium, labor productivity re-
ceives little weight in the agents’ forecasts and has a small impact on the dynamics of vacancies,
job-finding rate, and unemployment.38

The economy’s response to a separation rate shock is perhaps evenmore subtle. Under ratio-
nal expectations, an increase in separation rate foreshadows an increase in the unemployment
rate. The increase in the unemployment rate is beneficial to would-be employers: A higher un-
employment rate means a slacker labor market and a higher job-filling rate. This makes it more
likely that a firm will recoup the cost of creating a vacancy, thus leading to an increase in the
number of vacancies through the free-entry condition. This dynamic is behind the counterfac-
tual positive correlation between the number of vacancies and the unemployment rate in aDMP
model with only separation rate shocks.

Constraining agents to low-dimensional models turns this dynamic on its head. By equation
(35), an increase in separations lowers the agents’ nowcast of the state of the economy both
directly and indirectly, through the resulting increase in unemployment. The deterioration in
38Note that thewage is highly sensitive to labor productivity evenwhen agents rely on pseudo-true 1-statemodels. This is due to the fact

that labor productivity has a direct effect on the current wage, as can be seen in equation (33).

39



0 5 10 15 20 25 30 35
separation rate

0.0

0.5

1.0
1 state
RE

0 5 10 15 20 25 30 35
job finding rate

−0.75

−0.50

−0.25

0.00

0 5 10 15 20 25 30 35
wage

−0.4

−0.2

0.0

0 5 10 15 20 25 30 35
vacancies

−1

0

0 5 10 15 20 25 30 35
unemployment rate

0.0

0.5

1.0

0 5 10 15 20 25 30 35
state of the economy

0

Figure 5. Impulse Response Functions to a Separation Rate Shock

the firms’ nowcast lowers their expectation of returns to posting a vacancy. This decrease is
large enough (at least, in the current calibration) to overturn the effect of the increase in the
job-filling rate. As a result, firms post fewer vacancies, causing an even bigger increase in the
unemployment rate.

The recession that follows an increase in separations in the 1-state version of themodel has a
Keynesian flavor. The increase in separations and the resulting increase in unemploymentmake
firmspessimistic. They respondby slowing their recruiting activities, which, in turn, exacerbates
the unemployment problem, darkening the outlook further, and so on. The result is an ineffi-
ciently deep and long recession.

The inability of the standard DMPmodel in generating realistic unemployment fluctuations
in response to realistic productivity and separation shocks is known as the Shimer puzzle after
Shimer (2005). The Shimer puzzle has lead to a large literature, which aims to resolve the puzzle
by modifying the DMP model or Shimer’s calibration of it. The exercise in this subsection sug-
gests a novel path forward. It shows that constraining agents to use simple models allows even
themost basic DMPmodel to exhibit significant amplification, propagation, and co-movement
in response to separation shocks, bringing its behavior more in line with what is in the data.
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A Proofs

Proof of Theorem 2

As a preliminary step, I fix an arbitrary 3-statemodel \ = (�, �,& ,') for the agents and compute
their forecasts and the KLDR of their model from the true process. If the support of % \ does not
coincidewithW, the support of the true process, then KLDR(\ ) = +∞. In what follows, I assume
that % \ is supported onW.

TheKullback–LeiblerDivergenceRate. Since the entropy rate of the true process is finite, theKLDR
of \ from the true process is given by

KLDR(\ ) = lim
B→∞

1
B
E

[
− log 5 \ (G1, . . . , GB )

]
+ constant.

On the other hand, by stationarity,

lim
B→∞

1
B
E

[
− log 5 \ (G1, . . . , GB )

]
= lim
B→∞

E
[
− log 5 \ (GB |GB−1, . . . , G1)

]
= E

[
− log 5 \ (GB+1 |GB , . . . , )

]
.

Therefore, to compute theKLDR, I only need to compute the subjective distributionof GB+1 under
model \ conditional on the history of observations {GB , GB−1, . . . }.

Let � \B [·] denote the agents’ subjective expectation givenmodel \ and conditional on the his-
tory {Gg }Bg=−∞, and let Var\B (·) denote the corresponding variance-covariance matrix. Let ĤB ≡
� \B [HB+1] denote the agents’ subjective conditional expectation of the subjective state. I can ex-
press ĤB recursively using the Kalman filter:

ĤB = (� −  � ′)ĤB−1 +  GB , (A.1)

where  ∈ ℝ3×< is the Kalman gain defined as

 ≡ �Σ̂H�
(
� ′Σ̂H� + '

) †
, (A.2)

the dagger denotes the Moore–Penrose pseudo-inverse, Σ̂H ≡ Var\B (HB+1) is the subjective condi-
tional variance of HB+1, which solves the following (generalized) algebraic Riccati equation

Σ̂H = �
(
Σ̂H − Σ̂H�

(
� ′Σ̂H� + '

) †
� ′Σ̂H

)
� ′ +&, (A.3)

and � ′ denotes the transpose of matrix �.39 Solving equation (A.1) backward, I get

ĤB =

∞∑
g=0

(� −  � ′)g GB−g .

The agents’ subjective conditional expectation of GB+1 canbewritten in terms of their conditional
expectation of HB+1:

� \B [GB+1] = � ′� \B [HB+1] = � ′
∞∑
g=0

(� −  � ′)g GB−g .

39See, for instance, Chapter 4 of Anderson and Moore (2005). Note that I allow for the possibility that % \ is supported on some
proper subspace W of ℝ< , in which case �′Σ̂H� + ' might not be invertible. The Moore–Penrose pseudo-inverse is then the appropriate
generalization of matrix inverse in the expression for the Kalman gain.
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Likewise, the conditional variance of GB+1 can be expressed in terms of the conditional variance
of HB+1:

Σ̂G ≡ Var\B (GB+1) = � ′Σ̂H� + '. (A.4)

More generally, the agents’ A-period ahead forecast of the vector of observables is given by

� \B [GB+A ] = � ′�A−1� \B [HB+1] = � ′�A−1
∞∑
g=0

(� −  � ′)g GB−g . (A.5)

The Kullback–Leibler divergence rate is thus equal to

KLDR(\ ) = − 1
2 log det

∗
(
Σ̂†
G

)
+ <2 log (2c) +

1
2 tr

(
Σ̂†
GΓ0

)
− 1
2

∞∑
g=1

tr
(
Σ̂†
GΦgΓ

′
g

)
− 1
2

∞∑
g=1

tr
(
Σ̂†
GΓgΦ

′
g

)
+ 1
2

∞∑
A=1

∞∑
g=1

tr
(
Σ̂†
GΦAΓg−AΦ

′
g

)
+ constant, (A.6)

where Γ: ≡ E[GB G ′B−: ] denotes the lag-: autocovariancematrix for the vector of observables under
the true process, Φg ≡ � ′(� −  � ′)g−1 , and the constant contains terms that do not depend
on \ . The matrix Σ̂†

G denotes the Moore–Penrose pseudo-inverse of Σ̂G and det∗(Σ̂†
G ) denotes its

pseudo-determinant. These objects are the appropriate counterparts of the matrix inverse and
the determinant for the case whenW does not equal ℝ< , and so, the subjective model \ is de-
generate.

Proof of Theorem 2. Let <̃ denote the dimension of vector G̃B = ) GB , let W̃ denote the linear
subspace of ℝ<̃ defined as W̃ ≡ {G̃ ∈ ℝ<̃ : G̃ = ) G for some G ∈ W}, let Θ̃3 denote the set of
3-state models when the vector of observable is G̃B ∈ ℝ<̃ , let �KLDR(\̃ ) denote the KLDR of model
\̃ ∈ Θ̃3 from the true process ℙ̃ ≡ ℙ ◦) −1, and let Θ̃∗

3
denote the set of models \̃ ∗ ∈ Θ̃3 such that�KLDR(\̃ ∗) ≤ �KLDR(\̃ ) for all \̃ ∈ Θ̃3 .

I first show that W̃ is the support of any distribution in the set P∗
3
◦ ) −1 of distributions over

{G̃B }∞B=−∞ induced by P∗
3
and) as well as the support of any distribution in the set P̃∗

3
. Note that

there always exists a3-statemodel \ forwhichKLDR(\ ) < ∞—one suchmodel is theoneaccord-
ing towhich GB is i.i.d. over timeandhasavariance-covariancematrix that coincideswith the true
variance-covariancematrix, Γ0. Therefore, for any pseudo-true3-statemodel, the KLDR is finite.
Thus, any process % ∈ P∗

3
is supported onW, and so, any process % ∈ P∗

3
◦) −1 is supported on

W̃. On the other hand, since the true distributionℙ is supported onW, the induced distribution
ℙ̃ ≡ ℙ ◦) −1 is supported on W̃. Consequently, by the above argument, any distribution % ∈ P̃∗

3

is also supported on W̃. Therefore, I can restrict my attention to models \ ∈ Θ3 such that % \ is
supported onW andmodels \̃ ∈ Θ̃3 such that % \̃ is supported on W̃.

For any model \ = (�, �,& ,') ∈ Θ3 , define the model) (\ ) ∈ Θ̃3 as) (\ ) ≡ (�, �) ′,& ,)') ′) .
I next show that �KLDR() (\ )) = KLDR(\ ), up to an additive constant that does not depend on
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\ . Fix somemodel \ ∈ Θ3 . Let Σ̂H ≡ Var\B (HB+1) denote the subjective conditional variance of the
subjective state under model \ , and let ˜̂ΣH ≡ Var) (\ )

B (HB+1) denote the corresponding conditional
variance under model) (\ ). Matrices Σ̂H and ˜̂ΣH solve the following Riccati equations:

Σ̂H = �
(
Σ̂H − Σ̂H�

(
� ′Σ̂H� + '

) †
� ′Σ̂H

)
� ′ +&, (A.7)˜̂ΣH = � (˜̂ΣH − ˜̂ΣH�) ′

(
)� ′˜̂ΣH�) ′ +)') ′

) †
)� ′˜̂ΣH ) � ′ +&. (A.8)

Sincematrix) has full rank,) † = () ′) )−1) and) †) = � . Therefore, ˜̂ΣH = Σ̂H . Next, let denote the
Kalman gain given model \ , and let denote  ̃ denote the Kalman gain given model ) (\ ). Note
that

 ̃ = �˜̂ΣH�) ′
(
)� ′˜̂ΣH�) ′ +)') ′

) †
=  ) †.

LetΦg ≡ � ′(�− � ′)g−1 givenmodel \ , and let Φ̃g denote the correspondingmatrix givenmodel
) (\ ). Note that

Φ̃g ≡ )� ′(� −  ) †)� ′)g−1 ) † = )Φg)
†.

Finally, let Σ̂G ≡ Var\B (GB+1) denote the subjective conditional variance of GB+1 given model \ , and
let ˜̂ΣG ≡ Var) (\ )

B (G̃B+1) denote the corresponding conditional variance givenmodel) (\ ). Note that˜̂ΣG = )� ′˜̂ΣH�) ′ +)') ′ = ) Σ̂G)
′.

One the other hand, Γ̃: ≡ Ẽ[G̃B G̃ ′B−: ] = )E[GB GB−: ])
′ = ) Γ:) ′. Therefore, by equation (A.6),

�KLDR() (\ )) = − 1
2 log det

∗
(
) †′Σ̂†

G)
†
)
+ <2 log (2c) +

1
2 tr

(
) †′Σ̂†

G)
†) Γ0) ′

)
− 1
2

∞∑
g=1

tr
(
) †′Σ̂†

G)
†)Φg)

†) Γ′g)
′
)
− 1
2

∞∑
g=1

tr
(
) †′Σ̂†

G)
†) Γg)

′) †′Φ′
g)

′
)

+ 1
2

∞∑
A=1

∞∑
g=1

tr
(
) †′Σ̂†

G)
†)ΦA)

†) Γg−A)
′) †′Φ′

g)
′
)
+ constant.

The fact that ) †) = � implies that the above expression is equal to KLDR(\ ), up to an additive
constant that does not depend on \ .

Likewise, for any model \̃ = (�̃, �̃ , &̃ , '̃) ∈ Θ̃3 , define ) −1(\̃ ) ≡ (�̃, �̃) †′, &̃ ,) †'̃) †′) ∈ Θ3 . By
an argument similar to the one in the previous paragraph, KLDR() −1(\̃ )) = �KLDR(\̃ ), up to an
additive constant that does not depend on \̃ .

Therefore, themapping) defines an isomorphismbetween the set ofmodelsΘ3 and the set of
models Θ̃3 : Anymodel \ ∈ Θ3 can be identifiedwith amodel) (\ ) ∈ Θ̃3 such that the KLDR of% \

from the process ℙ is equal to the KLDR of %) (\ ) from the process ℙ ◦) −1, and anymodel \̃ ∈ Θ̃3

can be identified with a model) −1(\̃ ) ∈ Θ3 such that the KLDR of %) −1 (\̃ ) from the process ℙ is
equal to the KLDR of % \̃ from the process ℙ ◦) −1. This conclusion immediately implies that the
set of pseudo-true 3-state models given the true process ℙ is identified with the set of pseudo-
true 3-state models given the true process ℙ ◦) −1. That is, Θ̃∗

3
= {) (\ ) : \ ∈ Θ∗

3
}.
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It only remains to show that%) (\ ) = % \ ◦) −1 for anymodel \ ∈ Θ3 . Since%) (\ ) and% \ ◦) −1 are
both zero mean, stationary, and normal distributions over {G̃B }∞B=−∞, it is sufficient to show that
the autocovariance matrices of G̃B are identical at all lags under the two distributions. But this
follows the definitions of distributions %) (\ ) and % \ ◦) −1. �

Proof of Theorem 3

Before establishing the theorem, I state and prove a useful lemma:

Lemma A.1. Model \ = (�, �,& ,') is a pseudo-true 3-statemodel given true autocovariancema-
trices {Γ: }: if and only if � = " , � = � ′# −1,& = � −" (� −� ′�)" ′, and ' = # −1′ (� −�� ′) # −1,
where " , � , and # are, respectively, a 3 × 3 convergent matrix, a < × 3 diagonal matrix with
elements in the [0, 1] interval, and an < × < invertible matrix that maximize

− 1
2 log det (##

′) + 1
2 tr (#

′Γ0# ) −
∞∑
g=1

tr
(
(" (� −� ′�))g−1"� ′# ′Γ′g#�

)
+ 1
2

∞∑
A=1

∞∑
g=1

tr
(
� (" (� −� ′�))A−1"� ′# ′Γg−A#�"

′ ( (� −� ′�)" ′)g−1� ′
)
. (A.9)

Proof. I can assumewithout loss of generality that Σ̂H is invertible.40 I start by expressing Σ̂
1
2
H � Σ̂

−1
2
G

as its singular value decomposition:

Σ̂
1
2
H � Σ̂

−1
2
G =*�+ ′,

where* ∈ ℝ<×< and+ ∈ ℝ3×3 are orthogonal matrices, and � ∈ ℝ<×3 is a rectangular diagonal
matrix with singular values of Σ̂

1
2
H � Σ̂

−1
2
G on the diagonal. Note that

+� ′�+ ′ = Σ̂
1
2
H �

(
� ′Σ̂H� + '

) −1
� ′Σ̂

1
2
H .

Since ' is a symmetric positive semidefinite matrix and+ is orthogonal, diagonal elements of�
are weakly smaller than 1 (strictly so if ' is not singular). Next define

" ≡+ −1Σ̂
−1
2
H �Σ̂

1
2
H+ .

Then,

� = Σ̂
1
2
H+"+ −1Σ̂

−1
2
H , (A.10)

� = Σ̂
−1
2
H +�

′* ′Σ̂
1
2
G , (A.11)

 = Σ̂
1
2
H+"� ′* ′Σ̂

−1
2
G , (A.12)

and so

 � ′ = Σ̂
1
2
H+"� ′�+ ′Σ̂

−1
2
H ,

40This is due to the fact that any 3-state model with a singular Σ̂H is observationally equivalent to a 3′-state model with 3′ < 3 .
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Φg = Σ̂
1
2
G*� (" (� −� ′�))g−1"� ′* ′Σ̂

−1
2
G .

I can further reduce the number of parameters in the agent’s model by transforming Σ̂
−1
2
G using

the orthogonal matrix* . Define

# ≡ Σ̂
−1
2
G * .

Note that since Σ̂
−1
2
G is symmetric,

*# ′ = #* ′ = Σ̂
−1
2
G ,

so
Σ̂−1
G = #* ′*# ′ = ## ′,

and
tr

(
Σ̂−1
G Γ0

)
= tr

(
Σ̂

−1
2
G Γ0Σ̂

−1
2
G

)
= tr (*# ′Γ0#* ′) = tr (# ′Γ0# ) .

On the other hand,

tr
(
Σ̂−1
G ΦgΓ

′
g

)
= tr

(
Σ̂

−1
2
G *� (" (� −� ′�))g−1"� ′* ′Σ̂

−1
2
G Γ′g

)
= tr

(
(" (� −� ′�))g−1"� ′# ′Γ′g#�

)
,

and

tr
(
Σ̂−1
G ΦAΓg−AΦ

′
g

)
= tr

(
� (" (� −� ′�))A−1"� ′# ′Γg−A#�"

′ ( (� −� ′�)" ′)g−1� ′
)
.

Therefore, the KLDR can be expressed in terms of matrices" ,� , and# as

KLDR(\ ) = KLDR(",�,# ) + constant,

where, with some abuse of notation, I let

KLDR(",�,# ) ≡ − 1
2 log det (##

′) + 1
2 tr (#

′Γ0# ) −
∞∑
g=1

tr
(
(" (� −� ′�))g−1"� ′# ′Γ′g#�

)
+ 1
2

∞∑
A=1

∞∑
g=1

tr
(
� (" (� −� ′�))A−1"� ′# ′Γg−A#�"

′ ( (� −� ′�)" ′)g−1� ′
)
.

(A.13)

Any non-singular matrix# has a unique decomposition as# = Σ̂
−1
2
G * , where Σ̂

−1
2
G is a symmetric

positive definite matrix and * is a orthogonal matrix.41 On the other hand, for any positive
definitematrix Σ̂G , there exists a positive definitematrix' that satisfies theRiccati equation (A.3).
Therefore, minimizing KLDR(\ ) with respect to \ is equivalent to minimizing KLDR(",�,# )
with respect to " , � , and # subject to the constraints that " is a convergent matrix, � is a
41This is known as the polar decomposition of matrix# .
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rectangular diagonalmatrixwith diagonal elements in the interval [0, 1], and# is a non-singular
matrix.

Next I show how given a tuple (",�,# ) that minimizes KLDR(",�,# ) one can find the cor-
responding parameters (�, �,& ,') of the representation in (1). Let) ≡ Σ̂

1
2
H+ . Then, by Equation

(A.10),
� = )") −1. (A.14)

Substituting for Σ̂G in equations (A.11) and (A.4), I get

� = () −1) ′� ′# −1, (A.15)
' = # −1′ (� −�� ′) # −1. (A.16)

Substituting in (A.3) for � from equation (A.10) and for � from the above equation, I get

& = Σ̂H − �
(
Σ̂H − Σ̂H�

(
� ′Σ̂H� + '

) −1
� ′Σ̂H

)
� ′

= Σ̂H − Σ̂
1
2
H+"+ −1Σ̂

−1
2
H

(
Σ̂H − Σ̂

1
2
H+�

′�+ Σ̂
1
2
H

)
Σ̂

−1
2
H +"

′+ −1Σ̂
1
2
H

= Σ̂H − Σ̂
1
2
H+" (� −� ′�)" ′+ −1Σ̂

1
2
H .

Therefore,
& = ) (� −" (� −� ′�)" ′)) ′. (A.17)

While (",�,# ) are pinned down by the minimization of the Kullback–Leibler divergence, ) is
not identified. However, for any non-singular) and )̃ ≠ ) , themodels described by (",�,# ,) )
and (",�,# ,)̃ ) are observationally equivalent.42 Therefore, without loss of generality, I can set
) = � to get to the following representation:

� = ",

� = � ′# −1,

& = � −" (� −� ′�)" ′,

' = # −1′ (� −�� ′) # −1.

This completes the proof of the lemma.
For future reference, I also compute several other objects under the above representation. The

matrix of Kalman gain is given by
 = "� ′# ′. (A.18)

The subjective forecasts can then be found by substituting for �, � , and  in (A.5):

� \B [GB+A ] = # ′−1�" A−1
∞∑
g=0

(" (� −� ′�))g "� ′# ′GB−g . (A.19)

42See, for instance, Gevers andWertz (1984).
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The subjective variance of GB+1 conditional on the information available to the agents at time B is
given by

Σ̂G = (## ′)−1 .

The unconditional subjective variance of G is given by

Var\ (G ) = � ′Var\ (H)� + ',

where Var(H) solves the discrete Lyapunov equation

Var\ (H) = �Var\ (H)� ′ +&.

Solving the above equation forward, I get

Var\ (H) = � +
∞∑
g=1

" g� ′�" ′g .

Therefore,

Var\ (G ) = � ′
∞∑
g=0

�g&� ′g� + ' = # −1′
(
� +

∞∑
g=1

�" g� ′�" ′g� ′

)
# −1. (A.20)

�

I can now establish Theorem 3.

Proof of Theorem 3. Let" ,� , and# be as in Lemma A.1. When 3 = 1, then

" = 0

for some 0 ∈ [−1, 1] and

� =

©­­­«
31
0
...
0

ª®®®¬ = 3141

for some 31 ∈ [0, 1], where 41 denotes the first coordinate vector. Define

[ ≡ 1 − 321 ,
( ≡ Γ

1
2
0# .

Then KLDR, defined in (A.9), can be written as a function of 0 , [, and ( , with slight abuse of
notation:

KLDR(0,[,) ) = − 1
2 log det (((

′) + 1
2 tr ((

′() − 1
24

′
1(

′Ω(0,[)(41,

where

Ω(0,[) ≡ 0 (1 −[)
∞∑
g=1

(0[)g−1Γ
−1
2
0 (Γg + Γ′g )Γ

−1
2
0 − 02(1 −[)2

∞∑
A=1

∞∑
g=1

(0[)A+g−2Γ
−1
2
0 Γg−AΓ

−1
2
0 .
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I can simplify the second term ofΩ(0,[) further:
∞∑
A=1

∞∑
g=1

(0[)A+g−2Γ
−1
2
0 Γg−AΓ

−1
2
0 =

∞∑
A=1

∞∑
g=A+1

(0[)A+g−2Γ
−1
2
0

(
Γg−A + Γ′g−A

)
Γ

−1
2
0 +

∞∑
A=1

(0[)2(A−1)�

=

∞∑
A=1

∞∑
g=1

(0[)2(A−1)+gΓ
−1
2
0

(
Γg + Γ′g

)
Γ

−1
2
0 +

∞∑
A=1

(0[)2(A−1)�

=

( ∞∑
A=1

(0[)2(A−1)
) (
� +

∞∑
g=1

(0[)gΓ
−1
2
0 (Γg + Γ′g )Γ

−1
2
0

)
=

1
1 − 02[2

(
� + 0[

∞∑
g=1

(0[)g−1Γ
−1
2
0 (Γg + Γ′g )Γ

−1
2
0

)
.

Therefore,

Ω(0,[) = −0
2(1 −[)2
1 − 02[2 � + (1 −[) (1 − 02[)

1 − 02[2
∞∑
g=1

0g[g−1Γ
−1
2
0 (Γg + Γ′g )Γ

−1
2
0 . (A.21)

By Lemma A.1, minimizing the KLDR with respect to �, � ,& , and ' is equivalent to minimizing
KLDR(",�,# ) with respect to" , � , and # . But for any 0 , [, and ( , one can construct a corre-
sponding" ,� , and# . Therefore, I can insteadminimize KLDR(0,[, () with respect to 0 ,[, and
( .

I first minimize KLDR(0,[, () with respect to ( taking 0 and [ as given. The first-order opti-
mality condition with respect to ( is given by

(−1 = ( ′ − 414 ′1(
′Ω(0,[),

which implies that
( ′( − 414 ′1)

′Ω(0,[)( = � . (A.22)

Therefore, for any solution to the problem of minimizing KLDR(0,[, (),

< = tr(� ) = tr (( ′() − tr (
414 ′1(

′Ω(0,[)(
)
= tr (( ′() − 4 ′1(

′Ω(0,[)(41.

So,minimizingKLDR(0,[, () respect to0 ,[, and( is equivalent to solving the followingprogram:

max
0,[

det (( (0,[)( ′(0,[)) ,

where
( (0,[) ∈ argmin

(

−12 log det (((
′) + 1

2 tr ((
′() − 1

24
′
1(

′Ω(0,[)(41. (A.23)

I proceedbyfirst characterizing( (0,[). Note that thenecessary first-order optimality conditions
for problem (A.23) are given by thematrix equation (A.22).

Claim 1. For any matrix ( that solves equation (A.22), the necessary first-order optimality condi-
tion for problem (A.23),
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(i) (41 =
1

√
1 − _

C ,

(ii) ( ′−141 =
√
1 − _C ,

(iii) (( ′ = � + _
1−_CC

′,

where _ is an eigenvalue of the real symmetricmatrixΩ(0,[) andC is a corresponding eigenvector
normalized such thatC ′C = 1.

I return to proving the claim toward the end of the proof. Equation (A.22) in general has
multiple solutions, with each solution corresponding to a local extremumof problem (A.23). The
global optimum of problem (A.23) is given by the solution to equation (A.22) that results in the
largest value for det((( ′). But by part (iii) of Claim 1, det((( ′) = (1 − _)−1. Thus, for any pseudo-
true 1-state model, 0 and[ maximize _max(Ω(0,[)) and ( satisfies parts (i)–(iii) of Claim 1, with
_ = _max(Ω) andC = Cmax(Ω) the corresponding eigenvector.

I next find the parameters �, � ,& , and ' representing the 0 ,[, and ( that minimize KLDR(0,
[, (). First, note that

" = 0,

� =
√
1 −[41,

# = Γ
−1
2
0 (.

The representation in Lemma A.1 is thus given by

� = 0,

� =
√
1 −[4 ′1(−1Γ

1
2
0 ,

& = 1 − 02[,
' = Γ

1
2
0 (

−1′ (� − (1 −[)414 ′1
)
(−1Γ

1
2
0 .

By Claim 1 and the argument above,

4 ′1(
−1 =

√
1 − _max(Ω)C ′

max(Ω),

(−1
′
(−1 = ((( ′)−1 = � − _max(Ω)Cmax(Ω)C ′

max(Ω).

Thus,

� =
√
(1 −[) (1 − _max(Ω))C ′

max(Ω)Γ
1
2
0 ,

and

' = Γ
1
2
0

(
� − _max(Ω)Cmax(Ω)C ′

max(Ω)
)
Γ
1
2
0 − (1 −[) (1 − _max(Ω)) Γ

1
2
0Cmax(Ω)C ′

max(Ω)Γ
1
2
0

= Γ
1
2
0

[
� − (1 −[ +[_max(Ω)) Cmax(Ω)C ′

max(Ω)
]
Γ
1
2
0 .
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Finally, note that" = 0 ,� =
√
1 −[41, and # = Γ

−1
2
0 ( . Therefore, by equation (A.19), the subjec-

tive forecasts are given by

� \B [GB+A ] = 0A (1 −[)Γ
1
2
0 (

′−1414 ′1(
′Γ

−1
2
0

∞∑
g=0

0g[gGB−g . (A.24)

Using Claim 1 to substitute for the optimal ( , I get

� \B [GB+A ] = 0A (1 −[)Γ
1
2
0Cmax(Ω)C ′

max(Ω)Γ
−1
2
0

∞∑
g=0

0g[gGB−g ,

where Cmax(Ω) is a unit-norm eigenvector of Ω with eigenvalue _max(Ω). The theorem then fol-
lows by the definition of > and ? . �

Proof of Claim 1. The first-order optimality condition with respect to ( is given by

( ′( − 414 ′1(
′Ω) = � . (A.25)

Multiplying the transpose of the above equation from right by 41 and from left by ( ′−1, I get

(41 − Ω(41 = ( ′−141. (A.26)

On the other hand, multiplying equation (A.25) from left by ( and from right by (−1, I get

(( ′ = � + (414 ′1(
′Ω. (A.27)

By the Sherman–Morrison formula,

( ′−1(−1 = � −
(414 ′1(

′Ω

1 + 4 ′1( ′Ω(41

Multiplying the above equation from right by (41, I get

( ′−141 =
1

1 + 4 ′1( ′Ω(41
(41. (A.28)

Substituting for ( ′−141 from the above equation in (A.26) and rearranging the terms, I get

Ω(41 =
4 ′1(

′Ω(41
1 + 4 ′1( ′Ω(41

(41. (A.29)

That is, (41 is an eigenvector of Ω. Let _ denote the corresponding eigenvalue and let C =

(41/
√
4 ′1(

′(41. Then equation (A.29) implies

_ =
_4 ′1(

′(41
1 + _4 ′1( ′(41

.

I separately consider the cases _ ≠ 0 and _ = 0. If _ ≠ 0, then

4 ′1(
′(41 = (1 − _)−1,
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and so
(41 =

1
√
1 − _

C.

Equation (A.28) then implies that
( ′−141 =

√
1 − _C,

and equation (A.27) implies that
(( ′ = � + _

1 − _CC
′.

If _ = 0, then equation (A.26) implies that (41 = ( ′−141, and so, (41 and ( ′−141 are both multiples
of C . Furthermore, 4 ′1(−1(41 = 4 ′141 = 1. Therefore, (41 = ( ′−141 = C . On the other hand, equation
(A.27) implies that (( ′ = � . This completes the proof of the claim. �

Proof of Theorem 4

I first prove a useful lemma about the spectral radius of autocorrelation matrices when the true
process is stationary ergodic:

Lemma A.2. For a stationary ergodic process with autocorrelation matrices {�: }: , the spectral
radius of autocorrelationmatrices satisfies d (�: ) ≤ 1 for any : with the inequality strict for : = 1.

Proof. Let_: denote an eigenvalue of�: largest inmagnitude and letC: denote the corresponding
eigenvector normalized such that C ′

:
C: = 1. Define the process l (: )

B ≡ C ′
:
Γ

−1
2
0 GB ∈ ℝ. Since GB is

stationary ergodic, so is l (: )
B for any : . Furthermore, since Γ0 is non-singular, the process l (: )

B is
non-degenerate for any : . I first show that _: is the autocorrelation of the process l (: )

B at lag : .
Note that

E[l (: )
B l

(: )
B−: ] = C

′
: Γ

−1
2
0 E[GB G ′B−: ]Γ

−1
2
0 C: = C

′
: Γ

−1
2
0 Γ:Γ

−1
2
0 C: = C

′
: Γ

−1
2
0

(
Γ: + Γ′

:

2

)
Γ

−1
2
0 C: = C

′
:�:C: = _: .

Furthermore,
E[l (: )

B l
(: )
B ] = C ′

: Γ
−1
2
0 E[GB G ′B ]Γ

−1
2
0 C: = C

′
: Γ

−1
2
0 Γ0Γ

−1
2
0 C: = C

′
:C: = 1.

Therefore, since l (: )
B is stationary,

d (�: ) = |_: | =
E[l (: )

B l
(: )
B−: ]

E[l (: )
B l

(: )
B ]

≤ 1.

Next, toward a contradiction suppose that d (�1) = 1. Then l
(1)
B is perfectly correlated with

l
(1)
B−1, and so, with l

(1)
B−: for every : , contracting the fact that l

(1)
B is stationary ergodic and non-

degenerate. �

I can now prove the theorem.
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Proof of Theorem 4. Define

� (0,[) ≡
∞∑
g=1

0g[g−1�g . (A.30)

Then
_max(Ω(0,[)) = −0

2(1 −[)2
1 − 02[2 + 2(1 −[) (1 − 02[)

1 − 02[2 _max(� (0,[)), (A.31)

where _max(� (0,[)) denotes the largest eigenvalue of� (0,[). To simplify the exposition, I prove
the resultunder theassumption that the largest eigenvalueof� (0,[) is simpleat thepoint (0∗,[∗)
that maximizes _max(� (0,[)).43 The partial derivatives of _max(Ω(0,[)) with respect to 0 and [
are given by

m_max(Ω(0,[))
m0

=
−20 (1 −[)2(1 − 02[2) 2 − 40[ (1 −[)2(1 − 02[2) 2 _max(� )

+ 2(1 −[) (1 − 02[)
1 − 02[2 C ′

max(� )
m�

m0
Cmax(� ), (A.32)

m_max(Ω(0,[))
m[

=
202(1 −[) (1 − 02[)(1 − 02[2) 2 −

2 (1 + 04[2 + 02(1 − 4[ +[2)
)(1 − 02[2) 2 _max(� )

+ 2(1 −[) (1 − 02[)
1 − 02[2 C ′

max(� )
m�

m[
Cmax(� ), (A.33)

where Cmax(� ) denotes the eigenvector of � with eigenvalue _max(� ), normalized such that
C ′
max(� )Cmax(� ) = 1, and

m�

m0
=

∞∑
g=1

g0g−1[g−1�g ,

m�

m[
=

∞∑
g=1

(g − 1)0g[g−2�g .

Note that
[C ′

max(� )
m�

m[
Cmax(� ) + _max(� ) = 0C ′

max(� )
m�

m0
Cmax(� ). (A.34)

for any 0 and[.
Let0∗ and[∗ be scalars in the [−1, 1] and [0, 1] intervals, respectively, thatmaximize_max(Ω(0,

[)). I separately consider the cases[∗ = 1 and[∗ < 1. If[∗ = 1, then � = 0 in the representation
in the proof of Theorem 3 and so the pseudo-true 1-state model is i.i.d.

In the rest of the proof, I assume that [∗ < 1 and show that this implies 0∗ ≠ 1—by a similar
argument0∗ ≠ −1. Towardacontradiction, suppose0∗ = 1. Setting0 = 1 in thepartial derivatives
of _max(Ω(0,[)), I get

m_max(Ω(0,[))
m0

����
0=1

=
2(1 −[)2(1 −[2) 2

[
−1 − 2[_max(� ) + (1 −[2)C ′

max(� )
m�

m0
Cmax(� )

]
,

43The argument can easily be adapted to the case where the largest eigenvalue of � (0∗,[∗) is not necessarily simple by replacing the
gradient of _max (� (0,[)) with its subdifferential and replacing the usual first-order optimality condition with the condition that the zero
vector belongs to the subdifferential.
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m_max(Ω(0,[))
m[

����
0=1

=
2(1 −[)2(1 −[2) 2

[
1 − 2_max(� ) + (1 −[2)C ′

max(� )
m�

m[
Cmax(� )

]
,

where � = � (1,[) and its partial derivatives are computed at 0 = 1. Multiplying the second
equation above by[ and subtracting from it the first equation, I get

[
m_max(Ω(0,[))

m[

����
0=1

− m_max(Ω(0,[))
m0

����
0=1

=
2(1 −[)2(1 −[2) 2

[
1 +[ + (1 −[2)

(
[C ′

max(� )
m�

m[
Cmax(� ) − C ′

max(� )
m�

m0
Cmax(� )

) ]
=
2(1 −[)2(1 −[2) 2 [

1 +[ − (1 −[2)_max(� )
]
,

where in the second equality I am using identity (A.34). Therefore,

m_max(Ω(0,[))
m0

����
0=1

= [
m_max(Ω(0,[))

m[

����
0=1

− 2(1 −[)2(1 −[2) 2 (
1 +[ − (1 −[2)_max(� (1,[))

)
.

Note that
_max(� (1,[)) ≤

∞∑
g=1

[g−1_max(�g ) <
∞∑
g=1

[g−1 =
1

1 −[ ,

where the inequality is by Lemma A.2. Therefore,

−2(1 −[)
2(1 −[2) 2 (
1 +[ − (1 −[2)_max(� (1,[))

)
<
2(1 −[)2(1 −[2) 2 (1 +[ − 1 −[) = 0.

On the other hand, by the optimality of 0∗ = 1 and[∗ < 1,

m_max(Ω(0,[))
m[

����
0∗=1,[=[∗

≤ 0.

Thus,
m_max(Ω(0,[))

m0

����
0∗=1,[=[∗

< 0,

a contradiction to the assumption of optimality of 0∗ = 1 and[∗ < 1. This proves that 0∗ < 1 and
establishes the stationarity of the 1-state model with 0 = 0∗ and[ = [∗. �

Proof of Theorem 5

Let _ denote the eigenvalue of �1 largest in magnitude.44 If d (�1) = 0, then d (�g ) = 0 and so
d (�g ) = 0 for all g ≥ 1. Since �g are symmetric matrices, this implies that �g = 0 for all g ≥ 1.
Therefore,

_max(Ω(0,[)) = −0
2(1 −[)2
1 − 02[2 .

44Theproofdoesnot assume that_ is unique. I allow for thepossibility that_ and_′ = −_ arebotheigenvaluesof�1 and |_ | = |_′ | = d (�1) .
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The above expression is maximized by setting (1 − [)0 = 0. Therefore, by Theorem 3, for any
pseudo-true1-statemodel,� \B [GB+A ] = 0A (1−[)?> ′ ∑∞

g=0 0
g[gGB−g = 0. On theotherhand, if d (�1) =

0, then _ = 0. Therefore, the theorem holds in the case d (�1) = 0.
For the rest of the proof, I assume d (�1) > 0. Define

5 (0,[) ≡ −0
2(1 −[)2
1 − 02[2 + 2(1 −[) (1 − 02[)

1 − 02[2
∞∑
g=1

|0 |g[g−1d (�1)g

= −0
2(1 −[)2
1 − 02[2 + 2(1 −[) (1 − 02[)

1 − 02[2
|0 |d (�1)

1 −[ |0 |d (�1)
,

where in the second equality I am using the fact that d (�g ) < 1. The function 5 (0,[) has two
maximizers given by (0∗,[∗) = (−d (�1), 0) and (0∗,[∗) = (d (�1), 0) with the maximum given by
5
∗
= d (�1)2. I establish the theorem by showing that _max(Ω(0,[)) ≤ 5 (0,[) for all 0 and [,

_max(Ω(_, 0)) = 5 (_, 0) = 5
∗, and _max(Ω(−_, 0)) ≤ 5 (−_, 0) = 5

∗ with the inequality strict if
−_ is not an eigenvalue of �1. This establishes that (0∗,[∗) = (_, 0) is the unique maximizer of
_max(Ω(0,[)) if −_ is not eigenvalue of �1 and that (0∗,[∗) = (_, 0) and (0∗,[∗) = (−_, 0) are the
only maximizers of _max(Ω(0,[)) if _ and −_ are both eigenvalues of�1.

As the first step in doing so, I show that for all 0 and B ,

_max (0g�g ) ≤ |0 |gd (�1)g ,

by considering four disjoint cases: If 0 ≤ 0 and _min(�g ) ≤ 0, then

_max (0g�g ) = 0g_min(�g ) = |0 |g |_min(�g ) | ≤ |0 |gd (�1)g .

If 0 ≤ 0 and _min(�g ) > 0, then

_max (0g�g ) = 0g_min(�g ) ≤ 0 ≤ |0 |gd (�1)g .

If 0 > 0 and _max(�g ) ≤ 0, then

_max (0g�g ) = 0g_max(�g ) ≤ 0 ≤ |0 |gd (�1)g .

Finally, if 0 > 0 and _max(�g ) > 0, then

_max (0g�g ) = 0g_max(�g ) = |0 |g |_max(�g ) | ≤ |0 |gd (�1)g .

So _max (0g�g ) ≤ |0 |gd (�1)g regardless of the values of 0 and the eigenvalues of�1. Therefore,

_max

( ∞∑
g=1

0g[g−1�g

)
≤

∞∑
g=1

[g−1_max (0g�g ) ≤
∞∑
g=1

[g−1 |0 |gd (�1)g =
|0 |d (�1)

1 −[ |0 |d (�1)
,

where the first inequality is using the fact that [g−1 ≥ 0 for all g ≥ 1 and Weyl’s inequality.
Consequently,

_max(Ω(0,[)) ≤ 5 (0,[) < d (�1)2

54



for any 0,[ such that ( |0 |,[) ≠ (d (�1), 0).
I finish the proof by arguing that _max(Ω(_, 0)) = d (�1)2 and _max(Ω(−_, 0)) ≤ 5 (−_, 0) =

d (�1)2 with the inequality strict if −_ is not an eigenvalue of�1. To see this first note that

_max(Ω(0, 0)) = −02 + 2_max(0�1) =
{
−02 + 20_min(�1) if 0 < 0,
−02 + 20_max(�1) if 0 ≥ 0.

Thus,

max
0 ∈[−1,1]

_max(Ω(0, 0)) =
{
_min(�1)2 if |_min(�1) | > _max(�1),

_max(�1)2 if |_min(�1) | ≤ _max(�1),
and

arg max
0 ∈[−1,1]

_max(Ω(0, 0)) =


{_min(�1)} if |_min(�1) | > _max(�1),

{_min(�1), _max(�1)} if |_min(�1) | = _max(�1),

{_max(�1)} if |_min(�1) | < _max(�1).

Since�1 is a symmetric matrix, the eigenvalues of�1 are all real and so

d (�1) =
{
−_min(�1) if |_min(�1) | > _max(�1),

_max(�1) if |_min(�1) | ≤ _max(�1).

This establishes that, in any 1-state constrained rational model,[ = 0, 0 = _, and

Ω(0,[) = −_2� + 2_�1.

By Theorem 3, C is an eigenvector of Ω(0,[) with eigenvalue _max(Ω(0,[)) = _2 and C ′C = 1.
Therefore, C is also an eigenvector of�1, but with eigenvalue _. This completes the proof of the
theorem. �

Proof of Theorem 6

I first prove a useful lemma, which offers a canonical representation of matrices�: :45

Lemma A.3. Suppose {�: }: are the autocorrelation matrices of an <-dimensional stationary er-
godic process that can be represented as in (6) with 5B ∈ ℝ; . There exists a convergent ; × ;

matrix F with ‖F‖2 ≤ 1, and a semi-orthogonal; × < matrixℍ such that

�: = ℍ′
(
F: + F ′:

2

)
ℍ. (A.35)

Conversely, for any positive integers ; ≥ <, ; × ; convergent matrix F with ‖F‖2 ≤ 1, and
semi-orthogonal ; × < matrix ℍ, there exists an <-dimensional stationary ergodic process with
autocorrelationmatrices {�: }: of the form (A.35), which can be represented as in (6).46
45Versionsof this result havepreviously appeared in the control and time-series literatures. For early examples, seeHoandKálmán (1966)

and Akaike (1975).
46Matrixℍ ∈ ℝ;×< is semi-orthogonal ifℍ′ℍ = � , where � denotes the < × < identity matrix.
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Proof. Recall that I have assumed (without loss of generality) that the true process is non-
degenerate, i.e., E[GB G ′B ] is invertible. Invertibility of E[GB G ′B ] requires ; ≥ <, an assumption I
maintain throughout the first part of the proof. Given representation (6), the autocovariance
matrices are given by

Γ: = E
[
GB G

′
B−:

]
= � ′� :E

[
5B−: 5

′
B−:

]
� = � ′F:+� ,

where+ ≡ E
[
5B 5

′
B

]
is the unique solution to the following discrete-time Lyapunov equation:

+ = �+ � ′ + Σ. (A.36)

Therefore,
�: = (� ′+� )

−1
2

(
� ′� :+� +� ′+ � ′:�

2

)
(� ′+� )

−1
2 .

Matrix+ is positive semidefinite; it is positive definite if the representation in (6) is minimal.47
Without loss of generality, I assume that that is the case. Define

ℍ′ ≡ (� ′+� )
−1
2 � ′+

1
2 ,

F ≡+ −1
2 �+

1
2 .

Then
�: = ℍ′

(
F: + F ′:

2

)
ℍ. (A.37)

Note that since � is a convergentmatrix, so is F. Substituting F =+
−1
2 �+

1
2 in equation (A.36), I get

1 − FF ′ =+
−1
2 Σ+

−1
2 .

Therefore, since Σ is positive semidefinite, the spectral radius of FF ′ is weakly smaller than one.
This implies that ‖F‖2 ≤ 1. On the other hand,

ℍ′ℍ = (� ′+� )
−1
2 � ′+� (� ′+� )

−1
2 = � .

That is,ℍ is a (full-rank) semi-orthogonal matrix. This proves the first part of the theorem.
I next argue that given a convergent matrix F̂ ∈ ℝ;×; with ‖F̂‖2 ≤ 1 and a semi-orthogonal

matrix ℍ̂ ∈ ℝ;×< with; ≥ <, there exists a stationary ergodic process such that the correspond-
ing autocorrelationmatrices are given by (A.37) with F = F̂ andℍ = ℍ̂. Given any such F̂ and ℍ̂, let
� = F̂,� = ℍ̂, and Σ = � − F̂F̂ ′. The solution to the Lyapunov equation (A.36) is then given by+ = � .
Therefore, F = � = F̂ andℍ = ℍ̂(ℍ̂′ℍ̂) −1

2 = ℍ̂, where in the last equality I am using the assumption
of semi-orthogonality of ℍ̂. By construction, then the autocorrelationmatrices of the process (6)
withmatrices � ,� , and Σ as above are given by (A.37) with F = F̂ andℍ = ℍ̂. �
47See, for instance, Akaike (1975).
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Proof of Theorem6. I assumewithout loss of generality that the representation in (6) inminimal.
By Lemma A.3 then,

�: = ℍ′
(
F: + F ′:

2

)
ℍ,

where ℍ′ ≡ (� ′+� )
−1
2 � ′+

1
2 , F ≡ + −1

2 �+
1
2 , and+ ≡ E

[
5B 5

′
B

]
is the variance-covariance of 5B . Note

that since the variance-covariance of 5B is normalized to be the identity matrix, + = � , F = � ,
and ℍ = � . Recall that vector GB does not contain any redundant observables (which are linear
combinations of other observables). This assumption, together with the assumption that� is a
rank-; matrix, ensures that� is an invertible; ×; matrix. Therefore, by Lemma A.3, ℍ = � is
an orthogonal matrix. Thus,

d (�: ) = d

(
ℍ′

(
F: + F ′:

2

)
ℍ

)
= d

(
F: + F ′:

2

)
= d

(
� : + � ′:

2

)
(A.38)

for all : . But since the spectral radius of a symmetric matrix equals its spectral norm,

d

(
� : + � ′:

2

)
=






� : + � ′:

2







2
≤ 1
2



� :

2 + 1
2




� ′:




2
=



� :

2 ≤ ‖� ‖:2 . (A.39)

Therefore,
d (�: ) ≤ ‖� ‖:2 .

On the other hand, by equations (A.38) and (A.39),

d (�1) =




� + � ′

2






2
= ‖� ‖2 ,

where the second equality is by assumption. Thus,

d (�: ) ≤ ‖� ‖:2 = d (�1): ,

and the process is exponentially ergodic. �

Proof of Proposition 1

I first state and prove a useful lemma:

Lemma A.4. Suppose �1 has a unique and simple eigenvalue _ with |_| = d (�1) > 0 and let C
denote the corresponding eigenvector normalized to have C ′C = 1.48 If C ′�2C > d (�1)2, then the
agents’ forecasts in any pseudo-true 1-state model are given by (4)with a tuple (0∗,[∗, >∗, ?∗) such
that[∗ > 0.

Proof. Define� (0,[) as in the proof of Theorem 4. As in the proof of Theorem 4, I present the ar-
gument under the assumption that the largest eigenvalue of� (0,[) is simple at the point (0∗,[∗)
48Theassumption that_ is unique and simple is notnecessary for the result. The result generalizes to arbitrarymatrices�1with d (�1) ≠ 0

by replacingC′�2C with themaximum ofC′�2C over all unit-norm eigenvectorsC of�1 with eigenvalues _ such that |_ | = d (�1) .
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that maximizes _max(� (0,[)).49 I start by proposing a candidate solution to problem of maxi-
mizing _max(Ω(0,[)) at which[ = 0 and argue that the candidate does not satisfy the necessary
first-order optimality conditions. Setting[ = 0 in equations (A.32) and (A.33), I get

m_max(Ω(0,[))
m0

����
[=0

= −20 + 2C ′
max(0�1)�1Cmax(0�1),

m_max(Ω(0,[)))
m[

����
[=0

= 202 − 2(1 + 02)_max(0�1) + 202C ′
max(0�1)�2Cmax(0�1),

where I am using the fact that � = 0�1 when [ = 0. Any solution to m_max(Ω(0,[))/m0 |[=0 =

0 satisfies 0 = _, where _ = _min(�1) if _max(�1) ≤ 0, _ = _max(�1) if _min(�1) ≥ 0, and _ ∈
{_max(�1), _min(�1)} otherwise. Evaluating _max(Ω(0,[)) at 0 = _ and[ = 0, I get _max(Ω(_, 0)) =
_2. Therefore, for the solution (0,[) = (_, 0) to the first-order condition m_max(Ω(0,[))/m0 = 0
to be a maximizer of _max(Ω(0,[)), it must be the case that _ is the eigenvalue of �1 largest in
magnitude and C = Cmax(0�1) is a corresponding eigenvector normalized such that C ′C = 1.
Substituting in the expression for m_max(Ω(0,[))/m[ |[=0, I get

m_max(Ω(0,[))
m[

����
0=_,[=0

= 2d (�1)2
(
C ′�2C − d (�1)2

)
> 0,

where the inequality follows the assumption that C ′�2C > d (�1)2. This implies that the pair [ =

0 and 0 = _ does not constitute a local maximizer of _max(Ω(0,[)). Since this pair is the only
candidate with [ = 0 that satisfies the first-order conditions, in any pseudo-true 1-state model,
[ > 0. This establishes the lemma. �

Proof of Proposition 1. Let f2 denote the variance of GB . By the argument in the proof of Lemma
A.3, the lag-: autocorrelation of GB is given by

�: = �
′
(
� : + � ′:

2

)
� ,

where � = +
−1
2 F+

1
2 , � ′ = (ℍ′+ℍ)

−1
2 ℍ′+

1
2 , and + is the solution to the discrete-time Lyapunov

equation (A.36). Since F and Σ are diagonal matrices, so is + . Therefore, � = F. On the other
hand, by Lemma A.3,� is a semi-orthogonal matrix. Therefore,� ′� = 1, and so,

�: =

;∑
7=1

E7U
:
7 ,

whereE7 = �
2
7
≥ 0,∑;

7=1E7 = 1, and U7 is the 7 th diagonal element of F. That is,�
1
:

:
is equal to the

weighted :-norm of the vector (U1, . . . , U;) with weightsE = (E1, . . . ,E;).
Since the representation in (6) isminimal,E7 > 0 for all 7 , andallU7 aredistinct. If thatwerenot

the case, there would exist some ;̃ < ; such that�: =
∑;̃
7=1 Ẽ7 Ũ

:
7
for some non-negative weights

49See footnote 43 for how the argument can be generalized.
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Ẽ7 that sum up to one and some Ũ7 ∈ (−1, 1). Consider the process ℙ̃ represented as in (6) with
F = diag(Ũ1, . . . , Ũ;̃), nB ∼ N(0, Σ), Σ = � − FF ′, and ℍ = f diag(√Ẽ1, . . . ,

√
Ẽ;̃). By the argument

in the proof of Lemma A.3, ℙ̃ has the same autocorrelation matrices as ℙ. Moreover, both ℙ and
ℙ̃ are mean-zero and normal and both have variance f2. Therefore, ℙ and ℙ̃ are observationally
equivalent, a contradiction to theassumption that the representation I startedwithwasminimal.

Next, note that, by the generalizedmean inequality,�
1
:

:
> �1 for all : ≥ 2, where the strictness

of the inequality follows the facts thatE7 > 0 for all 7 and all U7 are distinct. In particular,C ′�2C =

�2 > � 2
1 = d (�1)2, where I am using the fact that GB is a scalar. Thus, by Lemma A.4,[∗ > 0. To see

why[∗ < 1, recall that by Theorem 3, the (0∗,[∗) pair maximizes

Ω(0,[) = −0
2(1 −[)2
1 − 02[2 + 2(1 −[) (1 − 02[)

1 − 02[2
∞∑
g=1

0g[g−1�g .

But Ω(0, 1) = 0 < � 2
1 = Ω(�1, 0). Therefore,[∗ = 1 cannot be part of the description of a pseudo-

true 1-statemodel. Finally, 0∗ ∈ (1, 1) by Theorem 4. The proposition then follows Theorem 3 by
noting that ?∗>∗′ = 1 whenever GB is a scalar. �

Proof of Theorem 7

I first find a transformation G̃B = ) GB of the vector of observables such that ) is invertible and
Γ̃

−1
2
0 Γ̃1Γ̃

−1
2
0 is diagonal. Since matrices Γ0 and Γ1 are both symmetric and Γ0 is non-singular, Γ0 and

Γ1 can be diagonalized simultaneously by a real congruence transformation. Note that since Γ1
is symmetric,

Γ
−1
2
0 Γ1Γ

−1
2
0 =

1
2Γ

−1
2
0

(
Γ1 + Γ′1

)
Γ

−1
2
0 = �1

is symmetric. Therefore, there exists a diagonal matrix Λ, with the eigenvalues of�1 as its diago-
nal elements, and an orthogonal matrix* such that�1 =*Λ* ′. Define

) ≡* ′Γ
−1
2
0 .

It is easy to verify that ) Γ0) ′ = � and ) Γ1) ′ = Λ. The autocovariance matrices of G̃B ≡ ) GB are
given by Γ̃: ≡ E[G̃B G̃ ′B−g ] = ) Γ:) ′. In particular, Γ̃0 = � , Γ̃1 = Λ, and so Γ̃

−1
2
0 Γ̃1Γ̃

−1
2
0 = Λ. To simplify the

exposition, in the rest of the proof I assume that the eigenvalues of�1 are distinct. The argument
when�1 has repeated eigenvalues is similar but slightly more involved.

I next find the pseudo-true m.i.o. 3-state models given the vector of observables G̃B and then
transform themodel backusing the linear invariance result tofind thepseudo-truem.i.o. 3-state
models given observables GB . By Lemma A.1, the KL divergence and the agents’ forecasts can be
represented in terms of matrices "̃ , #̃ , and �̃ of the transformed model as in (A.13) and (A.19).
Let ( ≡ Γ̃

1
2
0 #̃ = #̃ and use the restriction to the set of m.i.o. models to set �̃ = � = (� 0) ′. The

expression for the KLDR in (A.13) then simplifies to

KLDR(\ ) = − 1
2 log det (((

′) + 1
2 tr ((

′() − tr
(
"̃� ′( ′Λ(�

)
+ 1
2 tr

(
"̃� ′( ′(�"̃ ′

)
+ constant.
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I begin by ignoring the constraint that "̃ is a convergent matrix and showing that the solution
to the relaxed problem is also a solution to the original problem. For the relaxed problem, the
necessary first-order optimality conditions with respect to ( and "̃ are given by

� = ( ′( − ( ′Λ′(�"̃� ′ − ( ′Λ(�"̃ ′� ′ + ( ′(�"̃ ′"̃� ′, (A.40)
� ′( ′Λ(� = "̃� ′( ′(�. (A.41)

I proceedbyfirst characterizing the set of all solutions for( and "̃ to these optimality conditions.
Given any such solution, the KLDR is given by− log det ((( ′) /2+constant. Therefore, if there are
multiple solutions to equations (A.40) and (A.41), the optimal solution is the onewith the largest
value of log det ((( ′) .

In the next step, I write ( = ((1 (2) where (1 ∈ ℝ<×3 and (2 ∈ ℝ<×(<−3) . Equation (A.40) then
can be written as(

� 0
0 �

)
=

(
( ′
1(1 ( ′

1(2
( ′
2(1 ( ′

2(2

)
−

(
( ′
1Λ(1 ( ′

1Λ(2
( ′
2Λ(1 ( ′

2Λ(2

) (
"̃ 0
0 0

)
−

(
( ′
1Λ(1 ( ′

1Λ(2
( ′
2Λ(1 ( ′

2Λ(2

) (
"̃ ′ 0
0 0

)
+

(
( ′
1(1 ( ′

1(2
( ′
2(1 ( ′

2(2

) (
"̃ ′"̃ 0
0 0

)
=

(
( ′
1(1 ( ′

1(2
( ′
2(1 ( ′

2(2

)
−

(
( ′
1Λ(1"̃ 0
( ′
2Λ(1"̃ 0

)
−

(
( ′
1Λ(1"̃

′ 0
( ′
2Λ(1"̃

′ 0

)
+

(
( ′
1(1"̃

′"̃ 0
( ′
2(1"̃

′"̃ 0

)
.

This implies

( ′
1(1 − (

′
1Λ(1"̃ − ( ′

1Λ(1"̃
′ + ( ′

1(1"̃
′"̃ = � , (A.42)

( ′
1(2 = 0, (A.43)
( ′
2Λ(1"̃ + ( ′

2Λ(1"̃
′ = 0, (A.44)

( ′
2(2 = � . (A.45)

Likewise, equation (A.41) can be written as

( ′
1Λ(1 = "̃( ′

1(1. (A.46)

Equation (A.45) implies that (2 is a full-rank matrix. On the other hand, since ( ′( =

(
( ′
1(1 0
0 �

)
is invertible, (1 is also a full-rank matrix. Define - ≡ ( ′

1(1 and / ≡ ( ′
1Λ(1. Note that since Λ is

invertible and (1 is full rank, - and / are both invertible. On the other hand, since (1 and (2 are
both full rank, (A.43) implies that the image of (2 is the same as the null space of ( ′

1. Therefore,
equation (A.44) implies that Λ(1"̃ + Λ(1"̃ ′ = (1. for somematrix. , and so,

/"̃ + /"̃ ′ = -. . (A.47)

Moreover, equations (A.42) and (A.46) can be written as

- − /"̃ − /"̃ ′ + - "̃ ′"̃ = � , (A.48)
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/ = "̃- . (A.49)

Solving for "̃ from (A.49) and substituting in (A.48), I get

- = � + /- −1/ . (A.50)

Therefore, since- and / are full rank,- is a real symmetricmatrix with all its eigenvalues strictly
larger than one. Combining (A.47) and (A.48), I get

- − -. + - "̃ ′"̃ = � ,

and so
. = � + "̃ ′"̃ − - −1.

Since the eigenvalues of- are strictly larger than one,. is a positive definite, and thus invertible,
matrix. Since Λ is symmetric, / is also symmetric. Therefore, (A.47) implies

"̃ + "̃ ′ = / −1-. .

Since - ,. , / are all invertible, so is "̃ + "̃ ′. Consequently,

Λ(1 = (1.
(
"̃ + "̃ ′

) −1
.

Since . and ("̃ + "̃ ′)−1 are full rank matrices, this implies that the image of (1 is an invariant
subspace of Λ. Therefore, the image of (1 is spanned by 3 standard coordinate vectors.

Without loss of generality, assume that the elements of G̃B are ordered such that the range of (1
is spanned by the first 3 coordinate vectors 41, . . . , 43 . In such coordinates, (1 can be written as

(1 =
(
(11
0

)
,

where (11 ∈ ℝ3×3 is an invertible matrix. Therefore,

- = ( ′
1(1 = (

′
11(11,

/ = ( ′
11Λ1(11,

where Λ =

(
Λ1 0
0 Λ2

)
, and Λ1 is a 3 × 3 diagonal matrix. Substituting in (A.50), I get

( ′
11(11 = � + (

′
11Λ1(11

(
( ′
11(11

) −1
( ′
11Λ1(11 = � + (

′
11Λ

2
1(11,

and so,
( ′
11

(
� − Λ21

)
(11 = � .

Multiplying the above equation from left by (11 and from right by (−111 (� − Λ21)
−1, I get

(11( ′
11 =

(
� − Λ21

) −1
. (A.51)
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Therefore,

log det ((( ′) = log det (( ′() = log det (( ′
1(1

)
= log det (( ′

11(11
)
= log det ((11( ′

11
)
= − log det

(
� − Λ21

)
.

Thus, minimizing the KLDR requires the range of (1 to be spanned by eigenvectors >1, . . . , >3 of
Λ corresponding to the 3 eigenvalues of Λ largest in magnitude.

It only remains to computematrices �̃, �̃ , &̃ , '̃ . Note that matrix ( can be written as

( =

(
(11 (12
0 (22

)
.

Therefore, (
- 0
0 �

)
= ( ′( =

(
( ′
11(11 ( ′

11(12
( ′
12(11 ( ′

12(12 + (
′
22(22

)
.

Since(11 is an invertiblematrix, theaboveequation implies that(12 = 0and( ′
22(22 = � . Therefore,

since (22 is a symmetric invertible matrix, ( ′
22 = (

−1
22 . I can now find �̃, �̃ , &̃ , '̃ :

�̃ = "̃ = ( ′
11Λ1(

′
11

−1,

�̃ = � ′(−1Γ̃
1
2
0 =

(
(−111 0

)
,

&̃ = � − "̃ (� −� ′�) "̃ ′ = � ,

'̃ = ( ′−1 (� −�� ′) (−1 =
(0 0
0 �

)
.

I can use the above expressions to compute the forecasts of G̃B . Equation (A.19) implies

� \B [G̃B+A ] =
(
( ′
11

−1

0

)
( ′
11Λ

A
1(

′
11

−1 ((11 0) G̃B =
(
ΛA1 0
0 0

)
G̃B .

Using G̃B = ) GB for all B in the above equation, I get

� \B [GB+A ] = ) −1
(
ΛA1 0
0 0

)
) GB = Γ

1
2
0*

(
ΛA1 0
0 0

)
* ′Γ

−1
2
0 GB = Γ

1
2
0*�

′* ′� A
1*�*

′Γ
−1
2
0 GB .

Using the definition of* , I can simplify the above expression to

� \B [GB+A ] =
3∑
7=1

Γ
1
2
0C7_

A
7C

′
7 Γ

−1
2
0 GB ,

where_7 the 7 th largest eigenvalueof�1 andC7 is the corresponding eigenvectornormalized such
thatC ′

7
C7 = 1. The theorem then follows the definitions of 0∗

7
, >∗

7
, and ?∗

7
. �

Proof of Theorem 8

Setting" = 0 ,� =
√
1 −[41, and# = Γ

−1
2
0 ( in equation (A.20), I get

Var\ (G ) = Γ
1
2
0

[
� + 1

1 − 02
[
02(1 −[)2 −

(
1 − 202[ + 02[2

)
_
]
CC ′

]
Γ
1
2
0 ,

where 0 , [, _ = _max(Ω(0,[)), and C are as in Theorem 3. Substituting for _max(Ω(0,[)) from
equation (A.31) in the above equation, I get

Var∗(GB ) = Γ
1
2
0

[
� + 2(1 −[) (1 − 02[)

(1 − 02) (1 − 02[2)
(
02(1 −[) − (1 − 202[ + 02[2)_max(� )

)
CC ′

]
Γ
1
2
0 . (A.52)
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Let 0∗ and [∗ be scalars in the [−1, 1] and [0, 1] intervals, respectively, that maximize _max(Ω(0,
[)). I separately consider the cases [∗ = 1 and [∗ < 1. If [∗ = 1, then the right-hand side of
equation (A.52) is equal to Γ0.

Next suppose [∗ < 1. By the argument in the proof of Theorem 4, the first-order optimality
condition with respect to 0 must hold with equality at 0 = 0∗ and[ = [∗ < 1. Setting m_max(Ω(0,
[))/m0 = 0 andmultiplying both sides of the equation by 0∗, I get

20∗2(1 −[∗)2(1 − 0∗2[∗2) 2 + 40∗2[∗(1 −[∗)2(1 − 0∗2[∗2) 2 _max(� )

=
2(1 −[∗) (1 − 0∗2[∗)

1 − 0∗2[∗2 _max(� ) +
2(1 −[∗) (1 − 0∗2[∗)

1 − 0∗2[∗2 [∗C ′
max(� )

m�

m[
Cmax(� ). (A.53)

Setting[∗ = 0 in the above equation, I get 0∗2 = _max(� ). Setting 0∗2 = _max(� ) in equation (A.52)
then establishes that Var∗(GB ) = Γ0 in the case where[∗ = 0.

Finally, I consider the case where [∗ ∈ (0, 1). Then additionally the first-order optimality
condition with respect to [ must hold with equality. Setting m_max(Ω(0,[))/m[ = 0, multiplying
the resulting equationby[∗, solving for[∗C ′

max(� ) m�m[Cmax(� ), and substituting in equation (A.53),
I get

20∗2(1 −[∗)2(1 − 0∗2[∗2) 2 + 40∗2[∗(1 −[∗)2(1 − 0∗2[∗2) 2 _max(� )

=
2(1 −[∗) (1 − 0∗2[∗)

1 − 0∗2[∗2 _max(� ) −
20∗2[∗(1 −[∗) (1 − 0∗2[∗)(1 − 0∗2[∗2) 2

+
2[∗

(
1 + 0∗4[∗2 + 0∗2(1 − 4[∗ +[∗2)

)
(1 − 0∗2[∗2) 2 _max(� ).

Simplifying the above expression leads to

0∗2(1 −[∗) =
(
1 − 20∗2[∗ + 0∗2[∗2

)
_max(� ).

Combining the above identity with equation (A.52) implies that Var∗(GB ) = Γ0 and finishes the
proof of the theorem. �

Proof of Theorem 9

Define ) as in the proof of Theorem 7 and let G̃B = ) GB . Then by the argument in the proof of
Theorem 7, Γ̃0 = � and Γ̃1 = Λ, where Λ is a diagonal matrix with the eigenvalues of �1 as its
diagonals. Furthermore, any pseudo-true m.i.o. 3-state model \̃ = (�̃, �̃ , &̃ , '̃) given observable
G̃B satisfies

�̃ = ( ′
11Λ1(

′
11

−1,

�̃ =
(
(−111 0

)
,
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&̃ = � ,

'̃ =

(0 0
0 �

)
,

where (11 is 3 × 3 matrix that satisfies (11( ′
11 =

(
� − Λ21

) −1, and Λ1 is a 3 × 3 diagonal matrix
containing the 3 largest eigenvalues of�1. On the other hand, equation (A.20) implies

Var\ (G̃ ) = �̃ ′
∞∑
g=0

�̃g&̃
(
�̃ ′

) g
�̃ + '̃ =

(
( ′
11

−1

0

) ∞∑
g=0

( ′
11Λ

g
1
(
(11( ′

11
) −1

Λg1(11
(
(−111 0

)
+

(0 0
0 �

)
=

(
� 0
0 0

)
+

(0 0
0 �

)
= � .

Therefore, Var\ (G ) = ) −1Var\ (G̃ )) ′−1 = () ′) )−1 = Γ0. �

Proof of Proposition 6

I first show that in a linear equilibrium @ <B and `B can be written as linear functions of F̂B , ĉB ,
and 7̂B . Suppose @ <B and `B can be written as linear functions of F̂B , ĉB , and 7̂B . Then by the linear
invariance result, agents’ forecasts are the same whether they observe vector 5B ≡ (F̂B , ĉB , 7̂B ) ′ or
vector GB , consisting of all the observables. Furthermore, since shocks follow an exponentially
ergodic process and 5B is an invertible linear transformation of the vector of shocks, 5B follows an
exponentially ergodic process as well. Therefore, by the linear invariance result and Theorem 5,

� 1∗B

[ ∞∑
A=1

VA
(1 − V

V
F̂B+A − f

(
7̂B+A − @ <B+A

)
− f

V
ĉB+A

) ]
= WF ĤB , (A.54)

� 1∗B

[ ∞∑
A=1

(VX )A
(
^F̂B+A +

1 − X
X

ĉB+A + `B+A
) ]

= Wc ĤB , (A.55)

where WF and Wc are constants that are to be determined in equilibrium, ĤB = > ′5B is the agents’
time-B estimate of the subjective state, and > ≡ (>F , >c , >7 ) ′ is the relative attention vector. Sub-
stituting in (17) and (18) and collecting terms, I get

f@ <B = F̂B + f7̂B −WF
(
>F F̂B + >c ĉB + >7 7̂B

)
, (A.56)

`B = ĉB − ^F̂B −Wc
(
>F F̂B + >c ĉB + >7 7̂B

)
. (A.57)

These expressions verify my guess that @ <B and `B can be written as linear functions of F̂B , ĉB , and
7̂B .

I nextfindconstantsWF andWc . Using the linear invariance result to substitute forf@ <B+A and`B+A
from the above equations in (A.54) and (A.55) and using Theorem 5 to characterize the resulting
subjective expectations, I get

� 1∗B

[ ∞∑
A=1

VA
(1 − V

V
F̂B+A − f

(
7̂B+A − @ <B+A

)
− f

V
ĉB+A

) ]
=
0 ( (1 − VWF>F )?F − (f + VWF>c )?c − VWF>7?7 )

1 − 0V ĤB ,

� 1∗B

[ ∞∑
A=1

(VX )A
(
^F̂B+A +

1 − X
X

ĉB+A + `B+A
) ]

=
0V (−XWc>F?F + (1 − XWc>c )?c − XWc>7?7 )

1 − 0VX ĤB ,
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where 0 is the perceived persistence, and ? ≡ (?F , ?c , ?7 ) ′ is the relative sensitivity vector. The
above equations give two linear equations for the two unknownsWF andWc . The solution is given
by

WF = 0 (?F − f?c ),

Wc = 0V?c ,

where I am using the fact that > ′? = 1. Finally, solving equations (A.56) and (A.57) for F̂B and ĉB
results in equations (19) and (20). �

B WeightedMean-Squared Forecast Error

The agents’ time-B one-step-ahead forecast error givenmodel \ is defined as

4B (\ ) ≡ GB+1 − � \B [GB+1],

where � \B denotes the agents’ subjective expectation conditional on their information at time B
and givenmodel \ . The weighted average of mean-squared forecast errors given the symmetric
weight matrix, ∈ ℝ<×< is defined as

MSE, (\ ) = E
[
4 ′B (\ ),4B (\ )

]
.

Instead of assuming that the agents uses amodel thatminimizes the KLDR, one can assume that
the agents make their forecasts using themodel \ that minimizesMSE, (\ ) for somematrix, .

Using themean-squared forecast error as thenotionoffithas twodisadvantages relative to the
KL divergence. First, the choice of matrix, introduces additional degrees of freedomwhen the
observable is not a scalar. Second, the minimizer of weightedmean-squared errors is in general
not invariant to linear transformations of the vector of observable (unless if the weight vector,
is transformed accordingly).

Let \ ∗ denote a pseudo-true 3-state model, and let Σ̂∗
G denote the implied subjective variance

of GB+1 conditional on the agents’ information at time B .

Proposition B.1. If, is set to be the inverse of Σ̂∗
G , then \ ∗ ∈ argmin\ ∈Θ3 MSE, (\ ).

The proposition establishes that mean-squared error minimization coincides with KLDR
minimization under the appropriate choice of the weightingmatrix, .

C Details of the NK Application (For Online Publication)

C.1 Forward Guidance

By the linear invariance result, agents’ expectations respect any intratemporal linear relation-
ships that hold in the equilibrium without forward guidance. In particular, by equations (A.56)
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and (A.57),

f� 1∗ [@ <B+A ] = � 1∗ [F̂B+A ] + f� 1∗ [7̂B+A ] −WF
(
>F�

1∗ [F̂B+A ] + >c� 1∗ [ĉB+A ] + >7� 1∗ [7̂B+A ]
)
,

� 1∗ [`B+A ] = � 1∗ [ĉB+A ] − ^� 1∗ [F̂B+A ] −Wc
(
>F�

1∗ [F̂B+A ] + >c� 1∗ [ĉB+A ] + >7� 1∗ [7̂B+A ]
)
.

Substituting in (17) and (18), I get

� 1∗B

[ ∞∑
A=1

VA
(1 − V

V
F̂B+A − f

(
7̂B+A − @ <B+A

)
− f

V
ĉB+A

) ]
= � 1∗B

[ ∞∑
A=1

VAD ′F 5B+A

]
, (C.1)

� 1∗B

[ ∞∑
A=1

(VX )A
(
^F̂B+A +

1 − X
X

ĉB+A + `B+A
) ]

= � 1∗B

[ ∞∑
A=1

(VX )AD ′c 5B+A

]
, (C.2)

where DF , Dc ∈ ℝ3 are vectors that satisfy

D ′F 5B =
1
V

[
(1 − VWF>F )F̂B − (f + VWF>c )ĉB − VWF>7 7̂B

]
,

D ′c 5B =
1
X

[
−XWc>F F̂B + (1 − XWc>c )ĉB − XWc>7 7̂B

]
.

On the other hand,
� 1∗B [ 5B+A ] = Σ5Al) Σ

−1
l)l)

l) , (C.3)

where l) ≡ ( 5 ′B , 7̂B+1, . . . , 7̂B+) ) ′ ∈ ℝ3+) , Σ5Al) ≡ � 1∗ [ 5B+Al ′
)
], and Σl)l) ≡ � 1∗ [l)l ′

)
]. Therefore,

� 1∗B

[ ∞∑
A=1

VAD ′F 5B+A

]
= k ′

F)l) ,

� 1∗B

[ ∞∑
A=1

(VX )AD ′c 5B+A

]
= k ′

c)l) .

wherekF) ,kc) ∈ ℝ3+) are vectors defined as

k ′
F) ≡ (k ′

F 5 ,kF71 , . . . ,kF7) )
′ ≡ D ′F

( ∞∑
A=1

VAΣ5Al)

)
Σ−1
l)l)

, (C.4)

k ′
c) ≡ (k ′

c 5 ,kc71 , . . . ,kc7) )
′ ≡ D ′c

( ∞∑
A=1

(VX )AΣ5Al)

)
Σ−1
l)l)

, (C.5)

andkF 5 ≡ (kFF ,kFc ,kF7 ) ′ andkc 5 ≡ (kcF ,kcc ,kc7 ) ′ are vectors inℝ3. Therefore,

� 1∗B

[ ∞∑
A=1

VA
(1 − V

V
F̂B+A − f

(
7̂B+A − @ <B+A

)
− f

V
ĉB+A

) ]
= k ′

F 5 5B +
)∑
A=1

kF7A 7̂B+A ,

� 1∗B

[ ∞∑
A=1

(VX )A
(
^F̂B+A +

1 − X
X

ĉB+A + `B+A
) ]

= k ′
c 5 5B +

)∑
A=1

kc7A 7̂B+A .

Substituting in equations (17) and (18), I get

F̂B = −f
(
7̂B − @ <B

)
+kFF F̂B +kFc ĉB +kF7 7̂B +

)∑
A=1

kF7A 7̂B+A ,
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ĉB = ^F̂B + `B +kcF F̂B +kcc ĉB +kc7 7̂B +
)∑
A=1

kc7A 7̂B+A .

The above equations can be solved for F̂B and 7̂B to get,

F̂B = UF7 7̂B + UF<@ <B + UF``B +
)∑
A=1

UF7A 7̂B+A ,

ĉB = Uc7 7̂B + Uc<@ <B + Uc``B +
)∑
A=1

Uc7A 7̂B+A

for some constants that depend on thek ’s.
It only remains to computekF) andkc) . I first compute the elements of Σ5Al) . By the law of

iterated expectations and Theorem 5,

� 1∗ [ 5B+A 5 ′B ] = � 1∗
[
� 1∗ [ 5B+A | 5B ] 5 ′B

]
= � 1∗

[
0A?> ′5B 5

′
B

]
= 0A?> ′Γ0.

Next consider elements of the form � 1∗ [ 5B+A 7̂B+g ]. If A < g , then

� 1∗ [ 5B+A 7̂B+g ] = � 1∗
[
5B+A�

1∗ [7̂B+g | 5B+A ]
]
= � 1∗ [ 5B+A0g−A?7> ′5B+A ] = 0g−A?7� 1∗

[
5B+A 5

′
B+A

]
> = 0g−A?7Γ0>.

Likewise, if A > g , then

� 1∗ [ 5B+A 7̂B+g ] = � 1∗
[
7̂B+g�

1∗ [ 5B+A | 5B+g ]
]
= � 1∗

[
4 ′7 5B+g0

A−g?> ′5B+g
]
= 0A−g?> ′� 1∗

[
5B+A 5

′
B+A

]
47 = 0

A−g?> ′Γ047 ,

where 47 is the coordinate vector that selects element 7̂B of vector 5B = (=̂B , ĉB , 7̂B ), i.e., 7̂B = 4 ′
7
5B .

Finally, if A = g , then
� 1∗ [ 5B+A 7̂B+g ] = � 1∗ [ 5B+A 5 ′B+A47 ] = Γ047 .

I next compute the elements of Σl)l) . First, note that

� 1∗ [ 5B 5 ′B ] = Γ0,

and
� 1∗ [ 5 ′B 7̂B+g ] = � 1∗

[
5 ′B �

1∗ [7̂B+g | 5B ]
]
= � 1∗

[
0g?7>

′5B 5
′
B

]
= 0g?7>

′Γ0.

Finally, if g < g ′, then

� 1∗ [7̂B+g 7̂B+g ′] = � 1∗
[
7̂B+g�

1∗ [7̂B+g ′ | 5B+g ]
]
= � 1∗

[
4 ′7 5B+g0

g ′−g?7>
′5B+g

]
= 0g

′−g?7>
′Γ047 ,

and
� 1∗ [7̂B+g 7̂B+g ] = 4 ′7�

1∗ [ 5B+g 5 ′B+g ]47 = 4 ′7 Γ047 .

Putting everything together, I get

Σl)l) =

©­­­­­­«

Γ0 0?7Γ0> 02?7Γ0> . . . 0)?7Γ0>
0?7>

′Γ0 4 ′
7
Γ047 0?7>

′Γ047 . . . 0)−1?7> ′Γ047
02?7> ′Γ0 0?7>

′Γ047 4 ′
7
Γ047 . . . 0)−2?7> ′Γ047

...
...

...
. . .

...
0)?7>

′Γ0 0)−1?7> ′Γ047 0)−2?7> ′Γ047 . . . 4 ′
7
Γ047

ª®®®®®®¬
. (C.6)
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and

Σ5Al) =



(
0A?> ′Γ0 Γ047 0?7Γ0> 02?7Γ0> . . . 0)−1?7Γ0>

) if A = 1,(
0A?> ′Γ0 0A−1?> ′Γ047 . . . 0?> ′Γ047 Γ047 0?7Γ0> . . . 0)−A?7Γ0>

) if 1 < A < ) ,(
0A?> ′Γ0 0A−1?> ′Γ047 . . . 0?> ′Γ047 Γ047

) if A = ) ,(
0A?> ′Γ0 0A−1?> ′Γ047 . . . 0A−)?> ′Γ047

) if A > ) .
(C.7)

Therefore,
∞∑
A=1

VAΣ5Al)

=

( ∞∑
A=1

(0V)A?> ′Γ0 VΓ047 +
∞∑
A=2

0A−1VA?> ′Γ047 . . .

)−1∑
A=1

0)−AVA?7Γ0> + V) Γ047 +
∞∑

A=) +1
0A−) VA?> ′Γ047

)
=

(
0V?> ′Γ0
1−0V VΓ047 + 0V2?> ′Γ047

1−0V 0V?7Γ0> + V2Γ047 + 0V3?> ′Γ047
1−0V . . .

(0) V−V) 0)?7 Γ0>
0−V + V) Γ047 + 0V) +1?> ′Γ047

1−0V

)
.

Likewise,
∞∑
A=1

(VX )AΣ5Al) =

(
0VX?> ′Γ0
1−0VX VXΓ047 + 0 (VX )2?> ′Γ047

1−0VX . . .
(0) VX−(VX )) 0)?7 Γ0>

0−VX + (VX )) Γ047 + 0 (VX )) +1?> ′Γ047
1−0VX

)
.

Given the expressions for Σl)l) ,
∑∞
A=1 V

AΣ5Al) , and
∑∞
A=1(VX )AΣ5Al) , one can use (C.4) and (C.5) to

findkF) andkc) .

C.2 Estimation

I choose the variance-covariance and lag-one autocovariance of AB ≡ (7̂B , @ <B , `B ) ′ to match the
variance-covariance and lag-one autocovariance of 5B = (F̂B , ĉB , 7̂B ) ′. The estimated values are
given by

� [AB A ′B ] =
( 10.9 16.4 0.200
16.4 32.1 −0.0827
0.200 −0.0827 0.0994

)
,

and

� [AB A ′B−1] =
( 10.4 16.2 0.155
15.0 30.7 −0.146
0.302 0.129 0.0920.

)
.

FigureC.1 plots d (�: ) in solid red and d (�1): in dashed green, where d (�: ) denotes the spectral
radius of the lag-: autocorrelationmatrix of 5B .50 The figure verifies that the estimated process is
exponentially ergodic, and so, the agents’ pseudo-truemodel is described by Theorem 5.
50The result would be identical if I instead used the autocorrelationmatrices of AB . This is a corollary of the linear invariance result.
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Figure C.1. Test of Exponential Ergodicity

D Details of the RBC Application (For Online Publication)

D.1 Temporary Equilibrium

The (log-)linearized temporary-equilibrium conditions are given by

ĜB = 0̂B + U9̂B + (1 − U)<̂B , (D.1)
ÊB = 0̂B + U (9̂B − <̂B ), (D.2)
@̂B = @ 0̂B + (1 − U)@ (<̂B − 9̂B ), (D.3)

<̂B =
1
i
ÊB −

1
fi

2̂B , (D.4)

7̂B =
G

7
ĜB −

2

7
2̂B , (D.5)

9̂B = (1 − X )9̂B−1 + X 7̂B−1, (D.6)
0̂B = d0̂B−1 + nB , (D.7)
2̂B = �B [2̂B+1] − fV�B [@̂B+1], (D.8)

where @̂B denotes the first-order deviation of the rental rate of capital from its steady-state value
and the remaining hatted variables are log-deviations from the corresponding steady-state
values. The Euler equation (D.8) may not hold away from rational expectations if 2̂B denotes
the aggregate consumption; it is valid under arbitrary expectations only if 2̂B denotes individual
consumption. However, the individual consumption Euler equation can be combined with
the households’ intertemporal budget constraint and the transversality condition to obtain an
aggregate consumption function that is valid under arbitrary expectations. The log-linearized
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household budget constraint is given by:

9̂B+1 = (1 − X + @ )9̂B + @̂B +
@ (1 − U)

U
(ÊB + <̂B ) −

2

9
2̂B .

Substituting for labor supply in the budget constraint, I get

9̂B+1 =
1
V
9̂B + @̂B +

(1 − U) (1 + i )@
Ui

ÊB −
(
(1 − U)@
Ufi

+ 2

9

)
2̂B ,

where I am using the fact that 1 − X + @ = V−1. Multiplying the above equation by VB , summing
over B , and taking subjective expectations of both sides, I get(

(1 − U)@
Ufi

+ 2

9

) ∞∑
A=0

VA�B [2̂B+A ] =
1
V
9̂B +

∞∑
A=0

VA
(
�B [@̂B+A ] +

(1 − U) (1 + i )@
Ui

�B [ÊB+A ]
)
.

Define

j ≡ (1 − V)
(
(1 − U)@
Ufi

+ 2

9

) −1
,

Z ≡ (1 − U) (1 + i )@
Ui

.

Then the above equation can be written as

1 − V
j

∞∑
A=0

VA�B [2̂B+A ] =
1
V
9̂B +

∞∑
A=0

VA�B [@̂B+A ] + Z
∞∑
A=0

VA�B [ÊB+A ]. (D.9)

On the other hand, the Euler equation implies

�B [2̂B+A ] = 2̂B + fV
A∑

g=1
�B [@̂B+g ].

Therefore,
∞∑
A=0

VA�B [2̂B+A ] =
∞∑
A=0

VA 2̂B + fV
∞∑
A=1

A∑
g=1

VA�B [@̂B+A ]

=
1

1 − V 2̂B + fV
∞∑
g=1

∞∑
A=g

VA�B [@̂B+g ]

=
1

1 − V 2̂B +
Vf

1 − V
∞∑
g=1

Vg�B [@̂B+g ].

Combining the above with equation (D.9), I get

2̂B =
j

V
9̂B + j@̂B + jZÊB + (j − Vf)

∞∑
A=1

VA�B [@̂B+A ] + jZ
∞∑
A=1

VA�B [ÊB+A ]. (D.10)

D.2 Constrained Rational Expectations Equilibrium

Suppose households use a pseudo-true 1-state model to forecast the wage and the rental rate of
capital. Define lB ≡ (=̂B , <̂B , ÊB , @̂B , 2̂B , 7̂B ), 5B ≡ (9̂B , 0̂B ) ′, and bB ≡ ( 5 ′B , l ′

B ) ′. Let D ∈ ℝ8 be a vector that
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satisfies

D ′bB = (j − Vf) @̂B + jZÊB .

Then equation (D.10) can be written as

2̂B =
j

V
9̂B + j@̂B + jZÊB +

∞∑
A=1

VAD ′�B [bB+A ].

Suppose bB = ) 5B for some full-rank matrix)—I later verify that this is indeed the case. Then by
the linear-invariance result,

2̂B =
j

V
9̂B + j@̂B + jZÊB +

∞∑
A=1

VAD ′)�B [ 5B+A ].

The households’ forecasts of 5B when they usemodel \ is given by (4). This can be written recur-
sively as

� \B [ 5B+A ] = 0A (1 −[)ĤB?, (D.11)
ĤB = 0[ĤB−1 + > ′5B = 0[ĤB−1 + >9 9̂B + >0 0̂B , (D.12)

where ĤB denote the households’ estimate of the subjective state at time B . Therefore,

2̂B =
j

V
9̂B + j@̂B + jZÊB +

0V (1 −[)
1 − 0V D ′)?ĤB . (D.13)

I guess that[ = 0 in equilibrium and later verify this guess. Solving for ĤB from (D.12) and substi-
tuting in (D.13), I get

2̂B =

(
j

V
+W9

)
9̂B + j@̂B + jZÊB +W0 0̂B , (D.14)

where

W9 ≡ 0V

1 − 0VD
′)?>9 , (D.15)

W0 ≡ 0V

1 − 0VD
′)?>0 . (D.16)

Equations (D.1)–(D.5) and (D.14) can be solved for lB as a function of 5B . This verifies the guess
that bB = ( 5 ′B , l ′

B ) ′ = ) 5B and leads to an expression for matrix) . In particular,

7̂B = k9 9̂B +k0 0̂B ,

for somek9 andk0 . Substituting for 7̂B−1 from above in (D.6), I get

9̂B = (1 − X + Xk9 )9̂B−1 + Xk0 0̂B−1. (D.17)

I can now describe the constrained rational expectations equilibrium. Equations (D.7) and
(D.17) can be written in vector form as

5B = F (W9 ,W0 ) 5B−1 + nB . (D.18)
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An equilibrium is given by tuples (W ∗
9
,W ∗
0 ) and (0∗,[∗, >∗, ?∗) such that (i) (0∗,[∗, >∗, ?∗) is the

pseudo-true 1-state model given the true process (D.18) whereW9 = W ∗
9
andW0 = W ∗

0 , (ii)W ∗
9
andW ∗

0

are given by equations (D.15) and (D.16) for 0 = 0∗, > = >∗, and ? = ?∗, and (iii)[∗ = 0.
Finding an equilibrium requires solving a fixed-point equation. I start with a candidate (W9 ,

W0 ,[), with [ = 0. The candidate defines a true process as in (D.18). This process in turn leads
to a pseudo-true 1-state model (0̃ , [̃, >̃ , ?̃). Such a pseudo-true 1-state model, in turn, defines
a (W̃9 , W̃0 ) pair through equations (D.15) and (D.16). I solve for the equilibrium by numerically
minimizing the Euclidean distance between tuples (W̃9 , W̃0 , [̃) and (W9 ,W0 ,[) over the set of all (W9 ,
W0 ) pairs. The fixed-point turns out to satisfy [̃ = [ = 0, verifyingmy earlier conjecture.

E Details of the DMP Application (For Online Publication)

E.1 Non-Linear Equilibrium

I start with the workers’ problem. Let *B and +B denote the time-B value to a worker of unem-
ployment and employment, respectively. Those random variables solve the following Bellman
equations:

*B = 1 + V�B [>B+B+1 + (1 − >B )*B+1] , (E.1)
+B = EB + V�B [AB*B+1 + (1 − AB )+B+1] , (E.2)

where1 denotes theworkers’ flowpayoff frombeing unemployed,EB denotes thewage rate, and
>B = `\1−UB denotes the job-finding probability, with \B the labor market tightness and ` and U
parameters of thematching function. Subtracting*B from+B , I get

+B −*B = EB − 1 + V�B [ (1 − AB − >B ) (+B+1 −*B+1)] . (E.3)

Define
_EB ,B+g ≡

g−1∏
9=0

(1 − AB+9 − >B+9 ). (E.4)

Solving (E.3) forward, I get

+B −*B = EB − 1 + �B

[ ∞∑
g=1

Vg_EB ,B+g (EB+g − 1)
]
. (E.5)

This equation is valid under arbitrary expectations.
I consider thefirmsnext. Let �B denote the time-B value to afirmof a job. It solves the following

Bellman equation:
�B = 0B −EB + V�B [(1 − AB ) �B+1].

Solving the equation forward, I get

�B = 0B −EB + �B

[ ∞∑
g=1

Vg_
5
B ,B+g (0B+g −EB+g )

]
, (E.6)
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where
_
5
B ,B+g ≡

g−1∏
9=0

(1 − AB+9 ). (E.7)

Free entry by firms implies
0 = −9 + V�B [?B �B+1], (E.8)

where ?B = `\−UB is the probability of filling a vacancy in each period. Substituting for �B in (E.8)
from (E.6), I get

\UB =
`

9
�B

[ ∞∑
g=1

Vg_
5

B+1,B+g (0B+g −EB+g )
]
. (E.9)

Equation (E.9) determines tightness as a function of the firms’ expectations of wage and labor
productivity.

The wage rate is determined by Nash bargaining. Under Nash bargaining,
�B

1 − X =
+B −*B

X
,

where X denotes the workers’ bargaining power. Combining the above equation with (E.5) and
(E.6) and solving forEB , I get

EB = X0B + (1 − X )1 + X�B

[ ∞∑
g=1

Vg_
5
B ,B+g (0B+g −EB+g )

]
− (1 − X )�B

[ ∞∑
g=1

Vg_EB ,B+g (EB+g − 1)
]
. (E.10)

The unemployment rate follows the first-order difference equation

CB = CB−1 + AB−1(1 − CB−1) − >B−1CB−1. (E.11)

E.2 Steady State

I first consider a steady state in which 0B = 1 > 1 ,EB = E , \B = \ , AB = A , and agents have perfect
foresight. Equation (E.10) implies that in the steady state,

(1 − X ) (E − 1)
1 − V (1 − A − >) =

X (1 −E )
1 − V (1 − A ) .

Therefore,
E =

X (1 − V (1 − A − >)) + (1 − X ) (1 − V (1 − A ))1
1 − V (1 − A − X>) .

Equation (E.6) implies that the value of a job to a firm is constant in the steady state:

�B = � =
1

1 − V (1 − A ) (1 −E ).

Equation (E.8) and the definition of ?B imply
`

9\U
=

1
V �
.

The steady-state unemployment rate satisfies

A
1 − C
C

= >.
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E.3 Log-Linear Model

I next log-linearize themodel around the steady state. Log-linearizing (E.4) and (E.7), I get

_̂EB ,B+g = − 1
1 − A − >

g−1∑
9=0

(>>̂B+9 + A ÂB+9 ) ,

_̂
5
B ,B+g = − 1

1 − A
g−1∑
9=0

A ÂB+9 .

Log-linearizing >B = `\1−UB , I get
>̂B = (1 − U)\̂B .

Log-linearizing (E.9),

\̂B = �B

[ ∞∑
g=1

Vg (1 − A )g−1
(
(1 − 1)`
U9\U

0̂B+g −
E`

U9\U
ÊB+g +

(1 −E )`
U9\U

_̂B+1,B+g

) ]
.

Substituting for `/(9\U), I get

\̂B = �B

[ ∞∑
g=1

Vg−1(1 − A )g−1
(1 − 1
U�

0̂B+g −
E

U�
ÊB+g +

1 −E
U�

_̂B+1,B+g

) ]
.

The term involving _̂5B ,B+g can be simplified further:
∞∑
g=1

Vg−1(1 − A )g−1_̂B+1,B+g = −
∞∑
g=2

Vg−1(1 − A )g−1 A

1 − A
g−2∑
9=0

ÂB+1+9

= −A
∞∑
9=0

ÂB+1+9
∞∑

g=9+2
Vg−1(1 − A )g−2

= − VA

1 − V (1 − A )
∞∑
g=1

Vg−1(1 − A )g−1ÂB+g .

Define
Z ≡ VA (1 −E )

1 − V (1 − A ) .

Then,

\̂B =
1
U�

�B

[ ∞∑
g=1

Vg−1(1 − A )g−1 ( (1 − 1)0̂B+g −EÊB+g − Z ÂB+g )
]
. (E.12)

Log-linearizing (E.10),

EÊB = X (1 − 1)0̂B + X�B
[ ∞∑
g=1

Vg (1 − A )g ((1 − 1)0̂B+g −EÊB+g + (1 −E )_̂5B ,B+g )
]

− (1 − X )�B
[ ∞∑
g=1

Vg (1 − A − >)g
(
(E − 1)_̂EB ,B+g +EÊB+g

) ]
. (E.13)
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The terms involving _̂EB ,B+g and _̂
5
B ,B+g can be simplified further:

∞∑
g=1

Vg (1 − A − >)g _̂EB ,B+g = −
∞∑
g=1

Vg (1 − A − >)g 1
1 − A − >

g−1∑
9=0

(>>̂B+9 + A ÂB+9 )

= −V
∞∑
9=0

(>>̂B+9 + A ÂB+9 )
∞∑

g=9+1
(V (1 − A − >))g−1

= − V

1 − V (1 − A − >)
∞∑
9=0

V9 (1 − A − >)9 (>>̂B+9 + A ÂB+9 ) .

∞∑
g=1

Vg (1 − A )g _̂5B ,B+g = − VA

1 − V (1 − A )
∞∑
9=0

V9 (1 − A )9 ÂB+9 .

Define
j ≡ V (1 − X ) (E − 1)

1 − V (1 − A − >)
Then, (E.13) can be written as

EÊB = X (1 − 1)0̂B + (Aj − X Z )ÂB + >j(1 − U)\̂B

+ �B

[ ∞∑
g=1

Vg (1 − A )g (X (1 − 1)0̂B+g − XEÊB+g − X Z ÂB+g )
]

− �B

[ ∞∑
g=1

Vg (1 − A − >)g
(
(1 − X )EÊB+g − >j(1 − U)\̂B+g − AjÂB+g

) ]
. (E.14)

Finally, log-linearizing (E.11),

ĈB = (1 − A − >)ĈB−1 − (1 − U)>\̂B−1 + >ÂB−1. (E.15)

E.4 Rational Expectations Equilibrium

I guess and verify that under rational expectations \̂B = W\0 0̂B + W\A ÂB and EÊB = WE0 0̂B + WEA ÂB .
Substituting in (E.12) and (E.14), I get

\̂B =
d0

1 − Vd0 (1 − A )
1 − 1 −WE0

U�
0̂B −

dA

1 − VdA (1 − A )
Z +WEA
U�

ÂB ,

and

EÊB =

[
X (1 − 1) + >j(1 − U)W\0 +

VXd0 (1 − A ) (1 − 1 −WE0 )
1 − Vd0 (1 − A )

]
0̂B

+
[

Vd0 (1 − A − >)
1 − Vd0 (1 − A − >)

(>j(1 − U)W\0 − (1 − X )WE0 )
]
0̂B

+
[
Aj − X Z + >j(1 − U)W\A −

VXdA (1 − A ) (Z +WEA )
1 − VdA (1 − A )

]
ÂB

+
[

VdA (1 − A − >)
1 − VdA (1 − A − >)

(>j(1 − U)W\A + Aj − (1 − X )WEA )
]
ÂB .
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These equations validate the guess and yield four linear equations for the four unknowns W\0 ,
W\A , WE0 , and WEA , which can be solved given values for the exogenous parameters. The rational-
expectations equilibrium is then described by (31) and (E.15) with ÊB = W

∗
E0 0̂B +W ∗

EA ÂB , \̂B = W ∗
\0
0̂B +

W ∗
\A
ÂB , and (W ∗

\0
,W ∗

\A
,W ∗
E0 ,W

∗
EA ) the solution to the above linear equations.

E.5 Constrained Rational Expectations Equilibrium

I next consider the equilibriumwhere agents are constrained to use pseudo-true 1-statemodels.
I guess (and later verify) that, in equilibrium,

\̂B = k\CĈB +k\0 0̂B +k\A ÂB ,

EÊB = kECĈB +kE0 0̂B +kEA ÂB .

Using the linear-invariance result to substitute for \̂B+g and ÊB+g in (E.12) and (E.14), I get

\̂B =
1
U�

�B

[ ∞∑
g=1

Vg−1(1 − A )g−1 ( (1 − 1 −kE0 )0̂B+g −kECĈB+g − (Z +kEA )ÂB+g )
]
, (E.16)

and

EÊB = >j(1 − U)k\CĈB + (X (1 − 1) + >j(1 − U)k\0 )0̂B + (Aj − X Z + >j(1 − U)k\A )ÂB

+ �B

[ ∞∑
g=1

Vg (1 − A )g (X (1 − 1 −kE0 )0̂B+g − XkECĈB+g − X (Z +kEA )ÂB+g )
]

+ �B

[ ∞∑
g=1

Vg (1 − A − >)g (>j(1 − U)k\C − (1 − X )kEC )ĈB+g
]

+ �B

[ ∞∑
g=1

Vg (1 − A − >)g (>j(1 − U)k\0 − (1 − X )kE0 )0̂B+g
]

+ �B

[ ∞∑
g=1

Vg (1 − A − >)g (>j(1 − U)k\A − (1 − X )kEA + Aj)ÂB+g
]
. (E.17)

The agents’ forecasts are given by equation (4). I guess that[ = 0 in equilibrium and later verify
this guess. Given the guess,

�B [ĈB+g ] = 0g?C>CĈB + 0g?C>0 0̂B + 0g?C>A ÂB ,

�B [0̂B+g ] = 0g?0>CĈB + 0g?0>0 0̂B + 0g?0>A ÂB ,

�B [ÂB+g ] = 0g?A>CĈB + 0g?A>0 0̂B + 0g?A>A ÂB .

Using the linear-invariance result to substitute for �B [ĈB+g ], �B [0̂B+g ], and �B [ÂB+g ] in (E.16) and
(E.17) and collecting terms verifies the guess that \̂ = k\CĈB + k\0 0̂B + k\A ÂB and ÊB = kECĈB +
kE0 0̂B +kEA ÂB and leads to the following linear equations fork\C ,k\0 ,k\A ,kEC ,kE0 , andkEA :

k\C =
0>C

1 − 0V (1 − A )

(1 − 1 −kE0
U�

?0 −
kEC

U�
?C − Z +kEA

U�
?A

)
, (E.18)
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k\0 =
0>0

1 − 0V (1 − A )

(1 − 1 −kE0
U�

?0 −
kEC

U�
?C − Z +kEA

U�
?A

)
, (E.19)

k\A =
0>A

1 − 0V (1 − A )

(1 − 1 −kE0
U�

?0 −
kEC

U�
?C − Z +kEA

U�
?A

)
, (E.20)

kEC = >j(1 − U)k\C + 0VX (1 − A )>C1 − 0V (1 − A ) [ (1 − 1 −kE0 )?0 −kEC?C − (Z +kEA )?A ]

+ 0V (1 − A − >)>C
1 − 0V (1 − A − >) [ (>j(1 − U)k\0 − (1 − X )kE0 )?0 + (>j(1 − U)k\C − (1 − X )kEC )?C ]

+ 0V (1 − A − >)>C
1 − 0V (1 − A − >) [ (>j(1 − U)k\A − (1 − X )kEA + Aj)?A ] , (E.21)

kE0 = X (1 − 1) + >j(1 − U)k\0 +
0VX (1 − A )>0
1 − 0V (1 − A ) [ (1 − 1 −kE0 )?0 −kEC?C − (Z +kEA )?A ]

+ 0V (1 − A − >)>0
1 − 0V (1 − A − >) [ (>j(1 − U)k\0 − (1 − X )kE0 )?0 + (>j(1 − U)k\C − (1 − X )kEC )?C ]

+ 0V (1 − A − >)>0
1 − 0V (1 − A − >) [ (>j(1 − U)k\A − (1 − X )kEA + Aj)?A ] , (E.22)

kEA = Aj − X Z + >j(1 − U)k\A +
0VX (1 − A )>A
1 − 0V (1 − A ) [ (1 − 1 −kE0 )?0 −kEC?C − (Z +kEA )?A ]

+ 0V (1 − A − >)>A
1 − 0V (1 − A − >) [ (>j(1 − U)k\0 − (1 − X )kE0 )?0 + (>j(1 − U)k\C − (1 − X )kEC )?C ]

+ 0V (1 − A − >)>A
1 − 0V (1 − A − >) [ (>j(1 − U)k\A − (1 − X )kEA + Aj)?A ] . (E.23)

I can now describe the constrained rational expectations equilibrium. Given \̂ = k\CĈB +
k\0 0̂B +k\A ÂB , equations (31) and (E.15) can be written in vector form as

5B = F (k\C ,k\0 ,k\A ) 5B−1 + nB . (E.24)

An equilibrium is then given by tuples (k ∗
\C
,k ∗

\0
,k ∗

\A
,k ∗

EC ,k
∗
E0 ,k

∗
EA ) and (0∗,[∗, >∗, ?∗) such that

(i) (0∗,[∗, >∗, ?∗) is the pseudo-true 1-state model given the true process (E.24) with k\C = k ∗
\C
,

k\0 = k ∗
\0
, and k\A = k ∗

\A
, (ii) (k ∗

\C
,k ∗

\0
,k ∗

\A
,k ∗

EC ,k
∗
E0 ,k

∗
EA ) solves (E.18)–(E.23) given 0 = 0∗,

> = >∗, ? = ?∗, and (iii)[∗ = 0.
Finding an equilibrium requires solving a fixed-point equation. I start with a candidate (k\C ,

k\0 ,k\A ,[), with [ = 0. The candidate defines a true process as in (E.24). The process leads
to a pseudo-true 1-state model (0̃ , [̃, >̃ , ?̃). Such a pseudo-true 1-state model, in turn, defines a
(k̃\C , k̃\0 , k̃\A ) pair through equations (E.18)–(E.23). I solve for the equilibrium by numerically
minimizing the Euclidean distance between pairs (k̃\C , k̃\0 , k̃\A , [̃) and (k\C ,k\0 ,k\A ,[) over the
set of all (k\C ,k\0 ,k\A ) tuples. The fixed-point turns out to satisfy [̃ = [ = 0, verifying my earlier
conjecture.
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