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This paper proposes a general framework in which agents are constrained to use simple time-
series models to forecast economic variables and characterizes the resulting bias in the agents’ fore-
casts. It considers agents who can only entertain state-space models with no more than d states,
where d measures the agents’ cognitive abilities. Agents’ models are otherwise unrestricted a priori
and disciplined endogenously by maximizing the fit to the true process. When the true process does
not have a d-state representation, agents end up with misspecified models and biased forecasts. If
the true process satisfies an ergodicity assumption, the bias manifests itself as persistence bias: a
tendencyto attend to the most persistent observables at the expense ofless persistent ones. The bias
causes agents’ foreword-looking decisions to mimic the dynamics of backward-looking, persistent
variables in the economy. It also dampens the response of agents’ actions to shocks and leads to
additional co-movements between various choices. The paper then proceeds to study the implica-
tions of the theory in the context of three calibrated workhorse macro models: the new-Keynesian,
real business cycle, and Diamond-Mortensen—Pissarides models. In each case, constraining agents
to use simple models brings the model’s predictions more in line with the data, without adding any
parameters other than the integer d.
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1 Introduction

Forecasting is hard, especially about the future—or so goes a famous saying. Yet rational-
expectations models assume that agents can forecast the distant future as well as an oracle
who knows the shocks and their distribution, understands how shocks propagate through the
economy, and uses Bayes’ rule to incorporate any new information. In reality, when faced with
the difficult task of forecasting in a complex world, agents are bound to rely on simple models.
The unrealism of the rational-expectations assumption would not be of great concern had the
predictions of workhorse macro models been robust to alternative specifications of expectations.
However, the answers to several important questions in macro, ranging from the determinacy of
equilibrium in new-Keynesian models and the power of forward guidance to the consequences
of government debt and the optimal path of fiscal policy, are highly sensitive to the specification
of long-run expectations.

This paper proposes a framework in which agents are constrained to forecast using simple
time-series models and characterizes the resulting bias in their forecasts and actions. It considers
the problem of an agent attempting to forecast future values of a set of observables based on
their past realizations. The observables follow a stochastic process, which may not have a simple
representation, whereas the agent can only entertain stochastic processes that can be repre-
sented by alow-dimensional state-space model. Consequently, the agent may end up with a low-
dimensional approximation to the true process. This form of model misspecification leads to
bias in the agent’s forecasts and deviations in her actions from the rational-expectations bench-
mark. The paper characterizes this bias and studies its implications for the agent’s actions, and
ultimately, macroeconomic aggregates.

The bias in the agent’s forecasts takes a straightforward form when the true process satisfies
an ergodicity assumption. The bias then takes the form of persistence bias—a tendency to attend
to the most persistent observables at the expense of less persistent ones. The agent forecasts
the most persistent observables as well as an agent with rational expectations while treating
less persistent observables as if they were i.i.d. This selective attention to persistent variables
leads to the stickiness of expectations and actions. It also anchors the agent’s foreword-looking
decisions to sluggish, backward-looking observables and increases the co-movement between
various actions.

The paper’s sharp theoretical results offer a powerful toolbox, which helps one study how
bounded rationality alters the predictions of standard macroeconomic models and the asso-
ciated policy prescriptions. I illustrate the use of these tools in the context of three workhorse
macro models: the new-Keynesian model, the real business cycle (RBC) model, and the Diamond-
Mortensen-Pissarides (DMP) model. Constraining agents to simple models in the new-Keynesian
model dampens the response of output and inflation to interest rate changes and significantly
reduces the power of forward guidance. Doing so in the RBC model changes the behavior of



aggregate consumption by making it act more like a stock variable, which responds sluggishly to
productivity shocks, thus increasing its volatility. Constraining agents to simple models in the
DMP model leads to significant amplification, propagation, and negative co-movement of the
unemployment rate and the number of vacancies in response to separation shocks.

Section 2 presents the general framework. A population of agents observe a sequence of ob-
servables over time and use their past observations to forecast the future values of the observ-
ables. The observables follow a stationary and ergodic stochastic process that satisfies weak
technical assumptions. However, the true process may be a complex object, which does not have
a (finite-dimensional) parametric representation.

Agents do not have access to the true process. They instead rely on low-dimensional para-
metric representations of the true process when forming their forecasts. In particular, they use
linear-Gaussian state-space models with at most d state variables. The set of models agents can
entertain is otherwise flexible. For instance, it includes all ARMA models of appropriate order.

The only free parameter in the specification of agents’ expectations is the dimension d of their
models. Meanwhile, the matrices that parametrize agents’ models are determined endogenously
as they fit their models to the true process.

I assume that agents settle on d-state pseudo-true models, stochastic processes with d-state
representations that minimize the Kullback-Leibler divergence rate (KLDR) from the true pro-
cess. The KLDR generalizes the usual notion of KL divergence to (non-i.i.d.) stochastic processes.
The choice of divergence is based on a Bayesian learning result: Agents who start with a full-
support prior over the set of d-state models and update their beliefs using Bayes’ rule will asymp-
totically forecast as if they were using a pseudo-true d-state model. This result holds irrespective
of agents’ preferences or the details of any decision problem they may be facing.

Section 3 characterizes the set of pseudo-true d-state models. I start the analysis by estab-
lishing a valuable linear-invariance property for the class of pseudo-true state-space models: A
linear transformation of the vector of observables leads to an analogous transformation of the
set of pseudo-true models. This property implies that the framing of agents’ observations does
not affect how they form their expectations. Agents’ forecasts and actions only depend on the
amount of information available to them and not on how it is presented. Neither are agents’
expectations changed by augmenting the vector of observables with variables that are linear
combinations of variables already in their information set. The linear-invariance property makes
the framework immediately applicable in macro applications, even when there is no unique or
obvious way of defining the vector of observables.

The linear-invariance result also illustrates a dichotomy in the agents’ understanding of in-
tratemporal (or cross-sectional) and intertemporal (or time-series) relationships among observ-
ables. Agents uncover all linear intratemporal relationships among observables, but they can
only entertain intertemporal relationships mediated through a small number of persistent states.
While arguably stark, this dichotomy brings into sharp focus the paper’s premise that forecasting



is difficult because it requires forecasters to recognize stochastic patterns that unfold over time.
It also sets this paper apart from the extensive literature that focuses on the difficulty of paying
attention to a large cross-section of observables, such as in the rational inattention framework
of Woodford (2003) and Sims (2003) and Gabaix (2014)’s model of sparsity.

I proceed to characterize agents’ forecasts when they use pseudo-true d-state models, starting
with the d = 1 case. Agents’ forecasts given a pseudo-true 1-state model can be expressed in
terms of four endogenous variables: perceived persistence, perceived noise, vector of relative
attention, and vector of relative sensitivity. Persistence captures agents’ belief about the persis-
tence of the subjective state of the economy. Noise determines agents’ belief about the noisi-
ness of observables—when seen as signals of the subjective state. Observables that influence
the agents’ estimate of the subjective state by more have greater relative attention, and agents’
forecasts of observables with larger relative sensitivity are more sensitive to changes in the agents’
estimate of the subjective state.

These endogenous variables take simple forms when the true process satisfies an ergodicity
condition, which I refer to as exponential ergodicity, and is satisfied in all my applications. The
perceived persistence is then equal to the top eigenvalue of the autocorrelation matrix at lag one,
the relative attention and relative sensitivity are equal to transformations of the corresponding
eigenvector, and the perceived noise is zero. Agents’ attention is focused on the most persistent
component of the vector of observables when estimating the subjective state, and the perceived
persistence of the subjective state is equal to the persistence of the most persistent component.

The remainder of Section 3 generalizes and marks the limits of the characterization result
just discussed. I show that the result generalizes (under slightly stronger assumptions) to the
d > 1 case: Agents constrained to d-state models track the d most persistent components of the
vector of observables. I also show that the variance-covariance matrix of observables is identical
under the pseudo-true and true models. In other words, agents constrained to simple models
fully uncover the cross-sectional correlations in observables. Finally, I argue that without a rich-
ness assumption on observables, the true process may fail to be exponentially ergodic, and the
perceived noise may be non-zero.

Section 4 develops the implications of the bias in agents’ forecasts for their behavior. I do
so by augmenting the general framework with a reduced-form specification of agents’ actions,
in which actions in each period linearly depend on forecasts of present discounted values of
the observables. I show that agents’ actions then exhibit three general properties: First, actions
respond less to shocks than under rational expectations. Second, actions look as if they were
responding to a small number of shocks. Third, agents’ various actions co-move with each other
more than under rational expectations.

Section 5 illustrates the framework’s versatility by applying it to three micro-founded and cali-
brated macro models. As the first application, I consider a version of the standard new-Keynesian
model in which agents are constrained to forecast using pseudo-true 1-state models. As in the



rational expectations version of the model, the equilibrium has a simple linear representation,
which can be computed analytically without going to the computer. The first result of this section
is a characterization of the equilibrium in a regime without forward guidance.

I then use the equilibrium characterization to study the implications of bounded rational-
ity for the conduct of monetary policy. Several new insights arise from the analysis. First, the
monetary authority generically faces a trade-off between closing the output gap and achieving
stable prices. The “divine coincidence” holds only in the knife-edge cases in which, in equilib-
rium, agents pay no attention to nominal interest rate or their inflation expectations are entirely
insensitive to their estimate of the subjective state.

Second, conventional monetary policy and foreword guidance are less potent than under ra-
tional expectations. The stickiness of agents’ expectations dampens the equilibrium response of
output and inflation to interest rate changes. The fact that information has to be filtered through
alow-dimensional model before agents can incorporate itinto their forecasts, meanwhile, lowers
the impact of forward guidance on output and inflation. Furthermore, the power of forward
guidance is largely independent of the duration of guidance, unlike in the rational expectations
version of the model.

The second application is to the standard RBC model. The RBC model is an excellent case
study in that it has only one exogenous shock and two state variables. Therefore, if agents are
constrained to d-state models with d > 2, they recover the true process, and their expectations
coincide with rational expectations. When d = 1, on the other hand, agents’ models will be
pseudo-true, and their forecasts will be biased. This prediction of the model distinguishes it
from signal-extraction-type models, which revert to rational expectations when there is a single
exogenous shock in the economy.

Constraining agents to one-dimensional models in the RBC model causes aggregate con-
sumption to behave more like a stock variable. This prediction directly follows from the persis-
tence bias in agents’ expectations. Agents’ estimate of the subjective state mostly depends on
the value of the most persistent variable—the capital stock in equilibrium for the RBC model.
Consequently, consumption—an almost purely forward-looking variable—almost perfectly co-
moves with the value of the capital stock. The anchoring of consumption to the capital stock
makes consumption more sluggish and more volatile than under rational expectations.

For thelastapplication, I study how the predictions of the DMP model change when agents are
constrained to use simple models. The standard DMP model has difficulty generating realistic
fluctuations in the unemployment rate, the number of vacancies, and job-finding rate, a fact
known as the Shimer puzzle after Shimer (2005). I show that constraining agents to use simple
models goes toward resolving this puzzle.

I consider a standard calibration of the DMP model with labor productivity and separation
rate shocks. The equilibrium has a 3-state representation, so expectations of agents constrained
to d-state models with d > 3 coincide with rational expectations. I instead consider agents



constrained to use 1-state models. In equilibrium, agents’ estimate of the subjective state closely
tracks the evolution of the unemployment rate. Separation rate shocks increase the unemploy-
ment rate, thus making agents pessimistic about the state of the economy. The result is a drop in
vacancy creation following an increase in separations and a negative co-movement between the
unemployment rate and vacancies in response to the separation shock. Meanwhile, the sticki-
ness of expectations slows the dynamics of the economy, thus improving the propagation mech-
anism of the model.

Related Literature. This paper contributes to the literature that studies properties of pseudo-true
estimates for different models. The term pseudo-true model originates in the pioneering work of
Sawa (1978), who proposes the use of KL divergence as a model-selection criterion. Agents in the
restricted-perceptions equilibrium of Bray (1982) and Bray and Savin (1986), Rabin and Vayanos
(2010)’s model of the gambler’s fallacy, the natural-expectations framework of Fuster, Laibson,
and Mendel (2010) and Fuster, Hebert, and Laibson (2012), and the Berk-Nash equilibrium of
Espondaand Pouzo (2016, 2021) all use pseudo-true models to forecast payoff-relevant variables.

But despite this long history, surprisingly few general results on the properties of pseudo-true
models have appeared in the literature. Such results are almost exclusively derived—with the
notable exception of Rabin and Vayanos (2010)—in settings where the set of models is sufficiently
restricted that the pseudo-true model can be estimated using OLS regressions. Characterizing
the bias in the agents’ forecasts then reduces to the problem of computing the omitted-variable
bias.

Berk (1966) was the first to observe that, for misspecified models, the posterior distribution
asymptotically concentrates on the set of pseudo-true models. Esponda and Pouzo (2016, 2021)
and Molavi (2019) prove related convergence results for static games, hidden Markov models,
and general equilibrium models, respectively. Closest to what I do in this paper, Baram and
Sandell (1978) establish a version of Berk’s result in the case of linear-Gaussian hidden-state
models.

A related literature studies the consistency of maximume-likelihood estimators for misspeci-
fied models. Huber (1967) and White (1982, 1994) prove increasingly general versions of the state-
ment that any maximum-likelihood estimate asymptotically converges to the set of pseudo-true
models. Douc and Moulines (2012) extend this result to linear-Gaussian hidden-state models.

This paper also belongs to the literature that studies the macroeconomic implications of devi-
ations from rational expectations. The literature on incomplete and noisy information, rational
inattention, and sparsity, e.g., Mankiw and Reis (2002), Sims (2003), Woodford (2003), Mackowiak
and Wiederholt (2009), Angeletos and La’O (2009), Angeletos and Lian (2016), and Gabaix (2014,
2020) assumes that agents cannot perfectly observe all the payoff-relevant variables either due to
exogenous observation noise or due to costly attention. This paper abstracts from the difficulty
of observing a large cross-section of variables and instead focuses on the difficulty of compre-



hending complex time-series relationships. The predictions of this framework also distinguish
it from the literature mentioned above: In my model, agents fully uncover cross-sectional rela-
tionships among variables, but their expectations could deviate from rational expectations even
if the economy has a single exogenous shock.

The state-space models used in this paper are relatives of dynamic factor models, e.g., Stock
and Watson (2011). However, the two are distinct mathematically and conceptually. Dynamic
factor and state-space models offer two alternative representations of stochastic processes.!
Each representation suggests a conceptually different decomposition of time-series data.
Dynamic factor models decompose data into common factors and idiosyncratic disturbances,
whereas for state-space models, the decomposition is into persistent and transitory components.
The two approaches thus suggest two different simplifications of large time-series data: using a
small number of common factors in the former case and a small number of persistent states in
the latter case.

Estimation of dynamic factor and state-space models are also different. A central result in
the theory of dynamic factor models is the consistency of the estimator based on the principal
component analysis (PCA) of the variance-covariance matrix. In contrast, the results of this paper
show that estimating state-space models requires PCA of the autocorrelation matrix at lag one.
Moreover, this paper’s results suggest that the PCA estimator is consistent even if the number of
states is misspecified.? I am aware of no similar result on the consistency of the PCA estimator

for dynamic factor models when the number of common factors is misspecified.

2 General Framework
In this section, I present the environment and the main behavioral assumption of the paper.

2.1 The Environment

Time is discrete and is indexed by t € Z. There is a measure of identical agents, each observing a
sequence of observables over time and using their past observations to forecast the future values
of observables. Ilet y; € R” denote the time-¢ value of the vector of observables, or simply the
observable. The observable follows a mean-zero stochastic process with distribution P and the
corresponding expectation operator E[-].
I make several technical assumptions on the true process P. The process P is stationary er-
godic with E[||y;||?)] < co. Furthermore, there exists a linear subspace ‘W of R” such that P(y,
.., Yr) is absolutely continuous with respect to the restriction of the Lebesgue measure to ‘W' for

IThe sets of time series that can be represented by dynamic factor and state-space models are not nested. Instead, any finite dynamic
factor model has a state-space representation, and any finite state-space model has a dynamic factor representation. See Forni and Lippi
(2001) for a representation result for the (generalized) dynamic factor models.

2An estimator for a misspecified model is consistent if the estimate converges to a pseudo-true model almost surely.



any ¢, with density £(y1,...,y,).> Finally, I assume that the true process has finite entropy rate,
i.e, lim; . %[E [—logf(y1,...,y:)] < . These assumptions are all quite weak. They are satisfied,
for instance, if y, follows a vector ARMA process with Gaussian innovations.

Agents have perfect information about the past realizations of the observable, with their
time-¢ information set given by {y;, y;-1, ... }. However, they may use a misspecified model to
map their information to their forecasts. This model misspecification leads to deviations in the
agents’ forecasts from those that arise in the rational-expectations benchmark.

2.2 Simple Models

As the main behavioral assumption of the paper, I assume that agents are bound to use simple
state-space models to forecast the vector of observables. They can only entertain models of the
form

zZr = Az + Wy,

Ve =B’z + vy, M
where z; € R? is a vector of (subjective) state variables, A € R%*“ is a convergent matrix, w; € R?
isi.id. N(0,Q), B € R™" p, € R"isii.d. N(0,R), and B’ denotes the transpose of B.* Formally,
I define a d-state model as a stationary ergodic stochastic process for y; that can be represented
as in equation (1) with z; a d-dimensional state variable. Whenever there is no risk of confusion,
I use the term d-state model to refer both to the stochastic process for y; and the parameters
0 = (A, B, Q, R) of its state-space representation. I let ©,; denote the set of all d-state models, let P?
denote the stationary distribution over {y;}{>__, induced by model 6, and let P, = {P? : 6 € ©4}.
With slight abuse of notation, [ write ®; C 04, to stress the fact that agents with a larger d can
entertain a larger class of models.

The integer d is a primitive that captures the agents’ sophistication in modeling the stochas-
tic process for the vector of observables, with larger values of d amounting to agents who can
entertain more complex models. When d is sufficiently large, the agents’ set of models is large
enough to contain good approximations to any true process P. But when d is small relative to the
number of states required to model the true process, no model in the agents’ set of models will
provide a good approximation to P. Agents then necessarily end up with a misspecified model of
the true process and biased forecasts—regardless of which model in the set £, they use to make
their forecasts. Characterizing this bias is the focus of the next section of the paper.

My preferred rationale for the constraint on the number of states is to capture limits on the
agents’ cognitive abilities, but the constraint can also arise from the agents’ rational fear of over-
fitting. Models with a large number of parameters and many degrees of freedom are prone to
overfitting. Such concerns may lead rational agents to limit themselves to statistical models with

3This assumption is weaker than the assumption that P(y1, ..., y,) is absolutely continuous with respect to the Lebesgue measure over
R™ since it allows for the possibility that the true process is degenerate. This additional level of generality will be useful in applications
where the elements of y; may be linearly dependent.

4 A matrix is convergent if all of its eigenvalues are smaller than one in magnitude. Matrix A being convergent is sufficient for the agents’
model to define a stationary ergodic process.



asmall number of parameters, especially if they only have a short time series to draw upon when
estimating the parameters of their model. In the remainder of the paper, I abstract away from any
issues arising from small samples and instead consider the long-run limit where the sampling

error vanishes.

2.3 Pseudo-True Models

[ assume that agents forecast using models in the family of d-state models that provide the best fit
to the true process. I use the Kullback-Leibler divergence rate of process P? from the true process
P as the measure of the fit of model 6.° The Kullback-Leibler divergence rate (KLDR) of P? from
P is denoted by KLDR(0) and defined as follows. Recall that the true process is supported on a
linear subspace ‘W of R”. If PY is also supported on ‘W, then

KLDR(6) = lim %[E [log(%)] ’

where f%(yi, ..., y,) denotes the density of P? with respect to the restriction of the Lebesgue mea-
sure to ‘W¢; if P? is not supported on ‘W, then KLDR(8) = +co.

The Kullback-Leibler divergence rate is the natural generalization of the notion of Kullback-
Leibler (KL) divergence to stationary stochastic processes. In the i.i.d. case, the KL divergence of
a candidate model from the true model captures the difficulty of rejecting the candidate model in
favor of the true model using a likelihood-ratio test. That is why the KL divergence is commonly
used as a measure of the fit of a model.® Similarly, the KLDR(0) captures the rate at which the
power of a test for separating a stochastic process P? from the true process P approaches one as
t — o.” The KLDR is also tightly linked to asymptotics of Bayesian learning, as I discuss in the

following subsection.
Model 6* € Q, is a pseudo-true d-state model if KLDR(6*) < KLDR(0) for all 6 € ©,. If the
agents’ set of models contains amodel 0 such that f9(yy, ..., y,) = £(y1, ..., y,) almost everywhere

and for all ¢, then any pseudo-true d-state model is observationally equivalent to the true pro-
cess. The set £, of distributions is then correctly specified. When no such d-state model exists,
KLDR(0) > 0 for any model 6 € @4, and the set £, is misspecified. I let ©}, denote the set of all
pseudo-true d-state models, and let P; = {P? : 6 € ©}. The following result shows that pseudo-
true models are observationally equivalent to the true process when the set of models is correctly
specified:

Theorem 1. Suppose the set P, of d-state models is correctly specified. Then any pseudo-true d-
state model P%* ¢ P’ is observationally equivalent to the true process P.

5The mean-squared forecast error is another commonly used notion of fit. In Appendix B, I define the weighted mean-squared forecast
error and show that it is equivalent to the Kullback-Leibler divergence rate under an appropriate choice of the weighting matrix.

6See, for instance, Hansen and Sargent (2008).

7See, for instance, Shalizi (2009).



2.4 Discussion

Pseudo-true models arise naturally as the long-run outcome of learning by Bayesian agents with
misspecified priors. Consider an agent who starts with prior yy with full support over the points
in the set R4 x © 4, each corresponding to an initial value of the subjective states, zy, and a d-state
model, 6, which describes how states and the observable co-evolve. Suppose the agent observes
y: over time and updates her belief using Bayes’ rule. Let u; denote the agent’s time-r Bayesian
posterior over R x ©,. Berk (1966)’s theorem establishes that, in the limit t — oo, the agent’s
posterior will assign probability one to the set of pseudo-true models.?

This result offers an “as if” interpretation of pseudo-true d-state models. One can assume
that every agent has a subjective prior—which may be different from the true distribution—and
updates her beliefin light of new information using Bayes’ law. By Berk’s theorem, any such agent
whose prior is supported on the set of d-state models will forecast the observable in the long run
as if she were using a pseudo-true d-state model. Focusing on pseudo-true models instead of
Bayesian posteriors allows me to do away with the sampling variance in the agents’ posteriors
and their forecasts and instead focus on the asymptotic bias resulting from misspecification.’

Note that the set of pseudo-true d-state models is independent of the agents’ preferences.
Instead, it only depends on the number of states agents can entertain and the true stochastic
process. The independence of the agents’ pseudo-true models from their preferences is evident
given the “as if” interpretation discussed above: Two agents who start with identical priors, ob-
serve the same sequence of observations, and update their beliefs using Bayes’ rule will end up
with identical posteriors at any point in time—irrespective of their preferences. Berk’s theorem
goes a step further by establishing that, in thelong run, the posterior only depends on the support
of the prior (not its other details) and the distribution of observations (not their realizations).

The independence of the agents’ pseudo-true models from their preferences has a significant
consequence: The set of pseudo-true d-state models is generically disjoint from the set of d-
state models that maximize the agents’ payoffs. However, this disparity is a feature, not a bug,
of a positive theory of bounded rationality. While finding the payoff-maximizing model requires
knowledge of the true process, one arrives at the set of pseudo-true models simply by following
Bayes’ rule—no knowledge of the true process is necessary.'? Following Bayes’ rule would have

8While Berk (1966) only covers the case of i.i.d. observations and parametric models, the result has seen been extended much more
generally. Bunke and Milhaud (1998) and Kleijn and Van Der Vaart (2006) substantially extend Berk (1966) by providing conditions for the
weak convergence of posterior distributions and considering infinite-dimensional models. Shalizi (2009)’s extension of Berk’s theorem
covers the case of non-i.i.d. observations and hidden Markov models.

90ne can alternatively consider agents who estimate the parameters of their d-state models using a quasi-maximum-likelihood
estimator. Such agents too will asymptotically forecast as if they relied on pseudo-true d-state models. See, for instance, Theorem 2 of
Douc and Moulines (2012).

10An analogy with the ordinary least squares (OLS) estimation with omitted variables is instructive. Consider an agent who can only

entertain models of the form y; = fx; + ¢;, with ¢; i.i.d. and normally distributed, and is interested in the causal effect of x on y. In the
presence of omitted variables, the OLS estimate (which coincides with the pseudo-true model) will generally be different from the linear-
Gaussian model that maximizes the agent’s payoff, given her preference for estimating the true causal effect. Nevertheless, finding the
payoff-maximizing model requires the agent to know the joint distribution of the independent, dependent, and omitted variables—an
impossible ask.



led agents to the truth had their model been correctly specified, but it can lead them astray in the
presence of model misspecification.

3 Pseudo-True Subjective Beliefs

In this section, I characterize the subjective beliefs of agents who use pseudo-true d-state mod-
els. As a preliminary step, I establish a useful invariance property for the class of pseudo-true

models, which is of independent interest.

3.1 Linear Invariance

There are no constraints on the agents’ set of models other than the bound on the number of
subjective state variables. Formally, matrices A, B, Q, and R of representation (1) are unrestricted,
other than the minimal restrictions required for (1) to define a proper stationary ergodic stochas-
tic process.!! This flexibility in the agents’ set of models enables them to capture any linear
intratemporal relationship among observables by the appropriate choice of matrices A, B, Q,
and R. It thus results in a crucial linear-invariance property for pseudo-true d-state models.

Theorem 2 (linear invariance). Letj, = Ty; denote a linear transformation of y;, and let P denote

the probability distribution over {j,};2_, induced byP andT. Let P} denote the set of pseudo-true

d-state stationary distributions when P is the true process, and let 5; denote the corresponding set
when P is the true process. If T is a full-rank matrix, then the set of probability distributions over

{71} _, induced by P} and T coincides with P;.'?

The theorem establishes that the framing of agents’ observations does not affect how they
form their expectations. Agents’ models and forecasts only depend on the amount of information
available to them, not how it is presented. For instance, whether agents observe the nominal
interest rate and the inflation rate or the real interest rate and the inflation rate is immaterial for
how they form their expectations. Likewise, agents’ expectations are not affected by augmenting
the vector of observables with linear combinations of variables already in the agents’ information
set.

The dichotomy in the agents’ cognitive abilities—capable of observing all the relevant vari-
ables and uncovering all linear intratemporal relationships among them, yet thoroughly con-
strained in the complexity of intertemporal relationships they can entertain—is arguably stark.
Nevertheless, it highlights the paper’s premise that forecasting is challenging because it requires

forecasters to recognize stochastic patterns that unfold over time. This dichotomy also allows

1n particular, the eigenvalues of A need to be smaller than one in magnitude and matrices Q and R need to be positive semidefinite.
12The distribution induced over {j }2__ by the distribution P over {y; }%2__ and the mappingT : y; + 7, is the pushforward distribution

PoT ! definedas PoT™! ({71 )32 o €Y) = P ({01} : {T¥:)2_, € V) foranysetY ¢ R"Z. The setof distributions over {7 }&__, induced
by the set of distributions ® over {y, }$2__, and the mapping T : y,  , isgivenby Po Tl = {PoT ! : P € P}.
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me to abstract away from the cognitive costs of acquiring information and the mistakes indi-
viduals make when information is presented differently. Furthermore, it makes the framework
immediately portable across different applications, thanks to the linear-invariance result.'®

Theresult also showcases the endogeneity of agents’ expectations. Since the parameters of the
agents’ model are determined endogenously by maximizing the fit to the true distribution, they
covary with the true distribution. This feature of pseudo-true d-state models, which rational-
expectations models share, makes the framework particularly suited to counterfactual analysis
in macroeconomics, where policy changes can result in changes in the distribution of payoff-
relevant variables.

The linear invariance result allows me to focus on non-degenerate processes. Define the lag-/
autocovariance matrix of the observable under the true process as follows:

I = Elyy,_]- (2)

The true process is degenerate if Iy is singular. Whenever I is singular, there is some lower-
dimensional vector j; with E[7,j/] non-singular and some full-rank matrix T such that y; = Tj;.
By Theorem 2, the set of pseudo-true models when the observable is given by y; can be found
by first finding the set of pseudo-true models given j; and then transforming that set by T'. Re-
stricting attention to non-singular true processes allows me to restrict agents to the set of mod-
els under which the subjective variance-covariance matrix of the vector of observables is non-
singular.'* In the remainder of the paper, I assume that the variance-covariance matrix I'y is non-
singular, and agents can only entertain subjective models with non-singular variance-covariance
matrices.

3.2 The One-Dimensional Case

I start the analysis of the agents’ pseudo-true models by considering the case where agents can
only entertain one-dimensional models. In this case, a complete characterization of the agents’
forecasts is possible. The insights from the single-state case generalize to the d-state case, as |
discuss later in this section.

The agents’ pseudo-true 1-state forecasts depend on the true process only through the auto-
correlations of the vector of observables. Define the lag-I autocorrelation matrix of the observ-
able under the true process as follows:

NlL

=
2

1
Cl = EI‘O (Fl +Fl,) FO . (3)

13Rabin (2013) calls for the use of portable extensions of existing models in behavioral economics, and economic theory more generally.
The current framework can be seen as a portable extension of the rational-expectations benchmark, which spans, by varying a single
parameter, d, the range between full rationality and a severe form of serial-correlation misperception where agents perceive serially-
correlated variables as independent over time.

l4whenever the true variance-covariance matrix I'y is non-singular, any subjective model with a singular variance-covariance matrix is
dominated in terms of fit to the true process by every subjective model with a non-singular variance-covariance matrix. Therefore, no
subjective model with a singular variance-covariance matrix can be a pseudo-true model.
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The notion of autocorrelation matrices is a natural generalization of the notion of autocorrela-
tion functions. When the observable y; is a scalar, C; reduces to the usual autocorrelation func-
tion at lag /. When the observable is an n-dimensional vector, on the other hand, C;isan n x n
real symmetric matrix with eigenvalues inside the unit circle.!

Autocorrelation matrices capture the extent of serial correlation in the vector of observables.
Let p(C;) denote the spectral radius of matrix C;.'® When p(C)) is close to zero for all /, the process
is close to being i.i.d., whereas when p(C;) is close to one for small /, then the process is close to
being unit root.

With the definition of autocorrelation matrices at hand, I can now state the general charac-
terization result for the d = 1 case:

Theorem 3. Under any pseudo-true 1-state model, the agents’s-period ahead forecast is given by
B [yes] = a1 =n)g"p” ) a0 yis, @)
=0

wherea* andn* arescalarsinthe[-1, 1] and [0, 1] intervals, respectively, that maximize A pqx(Q(a,
n)), the largest eigenvalue of the n x n real symmetric matrix

a>(1-n)?  2(1-n(1-a*n) v ; .
Q(a,n) = - T— a2 I+ - a2 ;an Cs,

-1 1
andp* =T uandq* =T u, whereu is an eigenvector ofQ(a*, n*) with eigenvalue A max(Q(a*, n*)),
which is normalized so thatu’'u = 1.

The endogenous variables a*, n*, p*, and g* have intuitive meanings. The scalar a* captures
the perceived persistence of the vector of observables. When a* = 0, agents perceive y; as i.i.d.
Whereas when a* = 1, they believe that the observable follows a unit-root process. The scalar
n* captures the perceived noise in the agents’ observations. When n* is small, agents believe
recent observations to be highly informative of the value of the subjective state. As a result,
their expectations respond more to recent observations and discount old observations more.
The vector p* determines the agents’ relative attention to different components of the vector of
observables. When p; is larger than p;, agents put more weight on y; ,_, relative to y; ,_, forall
when forming their estimate of the subjective state. Finally, the vector g* captures the relative
sensitivity of the agents’ forecasts of different observables to changes in their estimate of the
subjective state. When g is larger than q;, then a change in the estimated value of the state at
time ¢ leads agents to change their forecast of y; ;. by more than their forecast of y; ;,; for all s.

A few remarks about the characterization result are in order. First, Theorem 3 does not rule
out the possibility that |a*| = 1 and n* > 0, in which case the pseudo-true 1-state model would
not be stationary ergodic. However, the following result establishes that any pseudo-true 1-state
model inherits the stationarity and ergodicity of the true process:

153ee Lemma A.2 of the appendix for a proof.
16The spectral radius p(X) of matrix X denotes the maximum among the magnitudes of eigenvalues of X.
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Theorem 4. Let P'* denote a pseudo-true1-state model given true distribution P. IfP is stationary
ergodic, then so is P'*.

Second, the theorem significantly reduces the computational complexity of finding the set
of pseudo-true models. The set of all d-state models is a manifold of dimension 2nd, which
is never compact and does not admit a global parameterization for any n > 1—even if d =
1.17 Additionally, the KLDR is a non-convex function of 8 = (4, B, Q, R). Theorem 3 analytically
concentrates out all but two of the parameters of agents’ models, thus reducing an optimization
problem over a 2n-dimensional non-compact manifold to a problem over a two-dimensional
compact square.

Third, although much easier than the problem of KLDR minimization over the space of d-state
models, the problem of maximizing A< (Q(a, n)) over (a, n) is still non-convex. Consequently,
solving it requires the use of numerical global optimization methods. However, the problem can
be solved efficiently in any application, regardless of the dimension of the vector of observables.

The non-convexity of the problem also makes an analytical solution elusive without further
assumptions on the true process. I thus proceed by imposing an additional assumption on the
true process P, which permits a closed-form characterization of the set of pseudo-true 1-state
models.

3.3 Exponential Ergodicity and Incomplete Information

The optimization problem in Theorem 3 has an intuitive closed-form solution given a class of
true stochastic processes that arise naturally in many applications including those studied in

Section 5. The appropriate class turns out to be the following:

Definition 1. The stationary ergodic process P is exponentially ergodic if p(C;) < p(Cy)" for all

I > 1, where p(C;) denotes the spectral radius of the autocorrelation matrix C;.!8

Exponential ergodicity is stronger than ergodicity. While ergodicity requires the serial corre-
lation at lag I to decay to zero as [ — oo, exponential ergodicity requires the rate of decay to be
faster than p(C;). However, many standard processes are exponentially ergodic. For instance,
the vector of observables follows an exponentially ergodic process if it is a linear combination of
n independent AR(1) shocks.

The following result characterizes the agents’ pseudo-true 1-state forecasts when the true
process is exponentially ergodic. It links the agents’ forecasts to the eigenvalues and eigenvectors
of the autocorrelation matrix at lag one:

17Al’[hough the set of d-state models can be parameterized using matrices 4, B, Q, and R, these matrices are in general not identified:
For any model 6, there exist a continuum of other models 0 such that P? = PY. See Gevers and Wertz (1984) for more on identification and
parameterization of state-space models.

18The term “exponential ergodicity” has been used to refer to a property of Markov chains, where the effect of initial condition on the
current distribution of the state decays exponentially fast—see, for instance Meyn and Tweedie (1993). The definition used in this paper is
mathematically distinct from the one in the context of Markov chains, but it captures the analogous idea that the serial correlation in the
variables decays exponentially fast.

13



Theorem 5. Ifthe true process is exponentially ergodic, then the s -period ahead forecast of agents

who use pseudo-true 1-state models is given by
Etl* [J/t+s] = a*sq*p*/J/t; (5)

where a* is an eigenvalue of C; largest in magmtude u denotes the corresponding eigenvector

normalized so thatu'u = 1, andp* =T} u and q* = 1"2

Agents forecast as if there is a single state with persistence a* driving all the elements of the
vector of observables. Suppose there is a change in the value of the observable. Agents incor-
porate this information by first projecting the change in the observable on vector p* to form an
updated estimate E!*[z] of the subjective state. Agents thus dismiss as irrelevant any change in
the vector of observables orthogonal to the relative attention vector p*. They then forecast the
change in the s-period ahead value of the subjective state E!*[z,,s] under the assumption that
the state has persistence a*. Finally, they multiply their estimate of the subjective state by the
relative sensitivity vector g* to form their forecast of the observable in period ¢ + s.

The following example illustrates the result in the context of a commonly-used specification
for the true process:

Example 1. Suppose the true process P has the following representation:

fi=Ffi1te, € ~N(0,%),

= H,ﬁr
where

[04] 0 0
0 ao 0

F= ) :
0 O ay,
o? 0 0

2

s 0 (o 0

0 0 o2

H e R™" js an invertible square matrix, and 1 > |a1| > |az| > --- > |ay| > 0. It is easy to verify
that p(C;) = |a1|' = p(Cy)’. That is, the true process is exponentially ergodic, and I can use The-
orem 5 to characterize the agents’ pseudo-true 1-state model and their forecasts. The perceived
persistence, perceived noise, relative attention, and relative sensitivity are, respectively, given by
a*=a,n =0,p* = (H'VH):H Ve, and g* = (H'VH)Z H'Ve,, where V = (I — F2)"1% is the
variance-covariance matrix of f; and e; denotes the first coordinate vector.'?

Agents’ forecasts take a particularly simple form if H is the identity matrix, and so, y;; = fi
fori = 1,...,n. Then p* and g* are both multiples of the first coordinate vector e;, and agents’

198ee the proof of Lemma A.3 for a derivation.
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forecasts simplify to

Etl*[yl,t+s] = aiylt =k [yl,t+s];
EM[y1ms] =0 Vi#l

That s, the agents’ forecast of the most persistent element of the vector of observables coincides
with its rational-expectations counterpart. But agents forecast every other element of the vector
of observables as if it were i.i.d.

The example illustrates that agents exhibit a form of persistence bias. They forecast the most
persistent component of the vector of observables as accurately as under rational expectations
butdo so at the expense of missing the dynamics of other observables. The intuition for the result
is easiest to see when the most persistent true state is close to being unit root. Then doing a poor
job of tracking the most persistent state would lead to persistent mistakes in agents’ forecasts.
The persistence of these mistakes would make them costly from the point of view of KLDR min-
imization. Therefore, any pseudo-true model tracks the state close to unit root as best possible,
even if doing so results in errors in forecasting the other states.

The absence of perceived noise is the other important feature of pseudo-true 1-state models
when the true process is exponentially ergodic. It leads agents’ forecasts to adjust rapidly in light
of new information. It also leads to path-independent forecasts: The time-¢ forecasts depend on
the agents’ observation history only through the value of the observable at time ¢.

One can generalize Example 1 by relaxing the assumption that matrices F and X are diagonal
and allowing for non-Gaussian innovations. The following theorem provides a set of sufficient
conditions for the process to be exponentially ergodic:

Theorem 6. Consider a true process P that can be represented as
fi=Ffi-1+¢€
ye=H'f,
where f; € R™, ¢, ~ WN(0,%), F € R™™ s a convergent matrix, and H € R™". Suppose the

(6)

variance-covariance of f; is normalized to be the identity matrix. If H is a rank-m matrix and

|IBE ||, = |1Fll2, where]| - ||, denotes the spectral norm, then the process is exponentially ergodic.

The assumption that the process has a representation of the form (6) is almost without loss
of generality. By the Wold representation theorem, any mean zero, covariance stationary, and
purely non-deterministic process can by approximated arbitrarily well by a process with a repre-
sentation of the form (6). That the variance-covariance of f; is identity is without loss of generality
as well. It can always be arranged to hold by an appropriate normalization of f;.?°

The assumption on matrix F rules out a severe form of defectiveness by guaranteeing that the

largest eigenvalue of the symmetric part of F coincides with the largest singular value of F. It is

20See Lemma A.3 of the appendix and its proof for how this can be done.
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satisfied if F is diagonal or symmetric, for example. However, the assumption required for the
result is much weaker than symmetry.

The most consequential assumption of the theorem is the requirement that H is a rank-m
matrix. This assumption requires the vector of observables, y;, to be rich enough to fully reveal
the vector, f;, of latent factors. The assumption can thus be seen as a complete information
assumption: If agents observe an observable of the form (6) with a full-rank matrix H, then they
have enough information to forecast the observable as well as in the full-information rational-
expectations benchmark—even if they fail to do so due to their misspecified models. The follow-

ing proposition shows that this assumption, in general, cannot be dispensed with:

Proposition 1. Consider a true process P that can be represented as in (6) for some f; € R™, €; ~
N(0, %), diagonal divergent matrix F € R™™, diagonal matrixX € R"™"™ and matrix H € R™",
If the representation in (6) is minimal and m > n = 1, then the s-period ahead forecast of agents
who use pseudo-true 1-state models is given by

Etl* [yt+s] — a*S(l _ T]*) Z a*TT]*Tyt—T
=0

forsomea* € (-1,1) andn* € (0, 1).

The class of exponentially ergodic processes constitutes a subset of the class of stationary
ergodic processes. However, the true processes that arise in the applications of Section 5 are
all exponentially ergodic.

3.4 Pseudo-True d-Dimensional Models

I next investigate whether and how the results from the d = 1 case generalize to the d > 1 case.
The forecasts of agents who use d-state models take a form similar to equation (4): Given a d-
state model 6 = (A, B, Q, R), agents’ s-period ahead forecast is given by

E{[yivs] = B'AT! Y (A= KB)'Kyrs, @)
7=0

where K € R js the Kalman gain matrix, which depends on (4, B, Q, R).?!

Equation (7) is valid
for any d-state model 6, not just the pseudo-true ones.

To characterize the forecasts under pseudo-true models, one needs to find the (A, B, Q, R)
matrices that minimize the KLDR from the true process and the implied Kalman gain K. This is
a hard problem that involves minimizing a non-convex function over the 2nd-dimensional non-
compact manifold of d-state models ©,. While the problem can be simplified further, finding an
analytical solution to the problem seems an unlikely possibility even for n = 1.

I instead solve the easier problem of minimizing the KLDR over a subset ©, of ©,. I say model

0 = (A, B,Q, R) is Markovian in observables (m.i.o.) if A — KB’ = 0, where K is the Kalman gain

21See equations (A.2) and (A.3) in the proof of Theorem 2 for the definition of K.
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matrix corresponding to model 6 and 0 € R%*“ is the matrix of zeros. I let
0,={0=(AB,Q,R) €0,:A-KB =0} C0O,.

denote the set of m.i.o. d-state models. The time-¢ forecasts of an agent using a model 6 €
0, only depend on the realized value of the vector of observables at time ¢ (and not its past
realizations)—hence, the name Markovian in observables. Any model 6 € 0, also features rapid
adjustment and path independence in agents’ forecasts.

Model 8* € B, is a pseudo-true m.i.o. d-state model if KLDR(8*) < KLDR(6) forall € ©,. Ilet
@Z denote the set of pseudo-true m.i.o. d-state models. The models in @:, have several appealing
theoretical properties. They satisfy a version of the linear-invariance result of Theorem 2, and
they have similar Bayesian and quasi-maximum-likelihood learning foundations as (general)
pseudo-true d-state models. Perhaps most importantly, the following corollary of Theorem 5
shows that constraining agents to m.i.o. models is without loss under some conditions:

Corollary 1. If the true process is exponentially ergodic, then any pseudo-true 1-state model is
m.i.o.

The result shows that—at least in the one-dimensional case—the set of pseudo-true models is
a subset of the set of m.i.o. models when the true process is exponentially ergodic. Whether this
result continues to hold for d-state models with d > 1 remains an open question. However, I can
still make progress by taking the restriction to m.i.o. models as an assumption and characterizing
the set of pseudo-true m.i.o. d-state models and the corresponding forecasts:

Theorem 7. Suppose the lag-1 autocovariance matrix, I'y, is symmetric. Then the s-period ahead

forecast of agents who use pseudo-true m.i.o. d-state models is given by

“[Yr4s] Z a;” q;p;’ ye, 8)

whereay, ..., a;, are the d eigenvalues of Cy largest in magnitude (with the possibility that some of
thea:' s are equal), u; denotes an eigenvector corresponding to a; normalized such that uju; = 1,
p; —F u,,q —qu,

The result shows that the insights from the analysis of single-state models, to a large extent,
carry over to d-state models. In particular, agents who are restricted to m.i.o. d-state models
exhibit a form of persistence bias. They focus on perfectly forecasting the d most persistent ele-
ments of the vector of observables at the expense of the other elements. Moreover, the perceived
noise in the vector of observables is zero, as was the case in the 1-state case with an exponentially
ergodic true process.

3.5 Second Moments

The results of this section so far were concerned with the conditional first moments of pseudo-
true d-state models. I end the section by presenting two results on the subjective second mo-
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ments when agents use pseudo-true d-state models. The first result characterizes the agents’

perceived variance-covariance of the vector of observables under pseudo-true 1-state models.

Theorem 8. Given any pseudo-true 1-state model 0*, the subjective variance-covariance of the
vector of observables, Var'* (y,), coincides with the true variance-covariance matrix, Iy.

Agents do not misperceive the unconditional volatility of the vector of observables. Neither
do they misperceive the unconditional means. Instead, it is the conditional expectations and
volatilities that deviate from the corresponding values under rational expectations. The result
is a direct consequence of the assumptions that (i) agents can entertain any stationary 1-state
model and (ii) fit their models to data by minimizing the KLDR. That agents can entertain any 1-
state model allows them always to match the true volatility of the observables by an appropriate
choice of matrices (A, B, Q, R). The fact that agents fit their models by minimizing the KLDR (or
equivalently by Bayesian updating or maximume-likelihood estimation) means that it is optimal
(from the point of view of maximizing fit) to match the volatility of the observable.

I can prove a weaker version of this result for d-state models:

Theorem 9. Suppose the first autocovariance matrix, 'y, is symmetric. Then given any pseudo-true
m.i.o. d-state model 6*, the subjective variance-covariance of the vector of observables, Var® (y;),
coincides with the true variance-covariance matrix, 1.

Agents who are constrained to use m.i.o. d-state models uncover the true variance-covariance
matrix of the observable as long as the true process is sufficiently regular. This conclusion is a
consequence of the fact that the set of m.i.o. models O is invariant under linear transformations.
Thus, for any T, the set of m.i.o. models contains a subjective model 6 such that Vare( ye) = Io.
KLDR minimization leads the agents to settle on such a subjective model.

4 Implications for Behavior

I next study how the bias in the agents’ forecasts, which results from their use of simple models,
affects their decisions in a reduced-form linear framework. I consider a population of identical
agents whose time-t best responses take the following form:

(o]

Z ﬁsC,st

s=1

Xy = b/)/t + E; ) 9

where y; € R"is as before the vector of observables, E; [ -] denotes the agents’ subjective forecasts,
b,c € R" are vectors of parameters capturing agents’ preferences, and g € (0, 1) is a discount
factor.

The best response in equation (9) nests various decisions such as consumption decisions in
the permanent income hypothesis or price setting in the new-Keynesian model. In the next sec-
tion, I further develop the implications of the general framework in the context of three canonical
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models in macro: the new-Keynesian model, the real business cycle model, and the Diamond-
Mortensen-Pissarides model.
Throughout this section, I assume that the true process for y; € R” has the following repre-

sentation:
fi=Ffi-1+e€, e ~N(O02),
’ (10)
,Vt =H fi’y
where f; € R™ is a set of latent factors, F = diag(ay, ..., an) is a diagonal matrix with 1 > |a;| >
laz| > --- > |am| > 0 as its diagonals, H € R™" is a rank-m matrix, and £ = diag(o?, ..., 03) is

a diagonal positive definite matrix. There are m “shocks,” fi, ..., fi,, which follow independent
AR(1) processes, such that observables are linear functions of the shocks. The assumption that
the economy is driven by independent AR(1) shocks does not play a substantial role in my anal-
ysis, but it allows me to study impulse response functions in a way that is consistent with the
literature.

I can use the characterization results of Section 3 to find the agents’ pseudo-true forecasts
when they are constrained to use m.i.o. d-state models.?> Agents’ actions are then found by
substituting for their subjective forecasts in equation (9):

Proposition 2. Suppose agents’ best responses are given by (9), and the true process is as in (10).
The actions of agents who have rational expectations and those who use pseudo-true m.i.o. d-state
models with d < m are given, respectively, by

m ’
a
xFE = (b+ E ”BIBHTe,-e{HC) Vi,
ic1

1—(;!,‘
d @ !
dx 1 ’
X =|b+ izgl mHTeieiHc) Y

where H' € R™™ denotes the Moore-Penrose pseudo-inverse of H, and e; € R™ is theith standard
coordinate vector.

Agents’ time-¢ optimal actions are linear functions of the time-¢ value of the vector of observ-
ables. This simple observation has an important consequence: By the linear invariance result,
agents’ pseudo-true models, forecasts, and actions are all the same whether or not they observe
the actions of other agents. Moreover, each agent’s expectations of other agents’ actions are con-
sistent with the agent’s expectations of the observable and other agents’ best-response functions.

The proposition indicates that agents’ actions take similar forms whether they have rational
expectations or use pseudo-true models; the only difference between the two is in the upper
limit of the sum over i. Agents’ actions when they forecast using a pseudo-true d-state model
can be obtained from their actions under rational expectations by setting @; = 0 for i > d. This
observation leads to the following equivalence result:

22By Theorems 1, 5, and 6, the restriction to m.i.o. models is without loss, at the very least, whend = 1 and d > m.
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Corollary 2 (observational equivalence). Suppose agents’ best responses can be represented as in
(9). When the true process is given by (10), actions of an agent who uses pseudo-true m.i.o. d-state
models with d < m are identical to those of an agent with rational expectations in an economy

where the true processes is given by (10) with ags1 = -+ = a;y, = 0.

Agents who are constrained to simple models behave as if they ignored the dynamics of all,
but the most persistent, shocks hitting the economy. They treat the less persistent shocks as
if they were i.i.d. when forming their expectations. This persistence bias is at the heart of the
framework’s implications for agents’ behavior. In the remainder of this section, I argue that per-
sistence bias leads to a dampening of the response of the economy to shocks, low-dimensional
behavior of the economy, and additional co-movementbetween various forward-looking actions

of agents.

4.1 Stickiness and Dampening

Ignoring the dynamics of some shocks makes agents’ forecasts and actions “sticky.” Changes in
the current value of an i.i.d. observable does not have any information about the future value of
the observable. Therefore, agents who treat a shock as i.i.d. do not update their expectations in
response to changes in the value of the shock. The stickiness of expectations translates into the
stickiness of the agents’ forward-looking actions.

I use the diagnostic tool of impulse-response functions (IRFs) to characterize the extent of
stickiness in agents’ actions. The IRF of agents’ actions to an innovation in the jth shock is given
by the profile {dx;,./de:},. For agents who use pseudo-true m.i.o. d-state models withd < m
and agents who have rational expectations, the IRFs are given, respectively, by

d g pg'H'e;
—xRE =p'H'eja’ + —=——La'*!,
dfjt 7 17 1 - aj,Bj Y
d "H'e;
—x% = b'H'ejal + ba?”]l{j < d},
dEjt J 1- ajﬁj Y
———

direct response .
expectational response

where 1{j < d} isoneif j < d and is zero otherwise.

The IRF of actions can be decomposed into the sum of two terms: the direct response of
actions and the response resulting from changes in expectations. For agents who use simple
models, the direct response is identical to the direct response under rational expectations. This
is a direct result of the fact that agents perfectly observe the realization of the observable at any
point in time. The expectational response for constrained agents takes one of two forms. For
the d most persistent shocks, the response is again the same as in rational expectations. For the
remaining shocks, the expectational response is zero because agents ignore the dynamics of the

shock when they form their forecasts.
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When the direct and expectational responses have the same sign, the net effect of constraining
agents to use simple models is a dampening of their responses to shocks:

Proposition 3. Suppose agents’ best responses are given by (9), and the true process is as in (10). If
b’'H'’e; and g'H'eja; have the same sign, then for allt,

d

dx RE
—-—X < |5
’dejt t+7 dejt t+7

)

with the inequality strict ifd < j < m, where x®F and x? denote actions of agents with rational

expectations and those who use pseudo-true m.i.o. d-state models, respectively.

4.2 Low-Dimensional Dynamics and a Main Shock

The forward-looking actions of agents who are constrained to use simple models have low di-
mensional dynamics: An econometrician who analyzes those actions will conclude that the ac-
tions are driven by a small number of shocks. To make this statement precise, I consider agents
who take a number of purely forward-looking actions, with the jth such action taking the follow-

ing form:

Xjr = Et ) (11)

(o]
S 7
D Bicivis
s=1

where c; € R" is a vector of parameters, and g; € (0, 1) is the effective discount factor for the jth
decision. Note that equation (11) is simply the best response in (9) with b, the parameter captur-
ing the contemporaneous effect of observables on the action, set to zero. The restriction to purely
foreword-looking actions is a matter of convenience; the conclusions will be approximately true
if the actions are sufficiently forward-looking (i.e., if 8; ~ 1 or b; = 0 for all j).

Proposition 2 still characterizes the actions of agents who are constrained to use d-state mod-
els. But I can express the actions more conveniently in terms of the vector of shocks:

d a,-ﬁjc]fH’ei

dx _ .
Xjr = Z 1 - a;pj Jit-

i=1
It is immediate from this expression that agents’ actions only respond to the d most persistent
shocks. Consequently, an econometrician who analyzes the dynamics of agents’ actions will
conclude that the economy is driven by d shocks. This conclusion is independent of the specifics
of agents’ preferences, technology, or market structure. It holds both in partial equilibrium and
in general equilibrium, as the analysis in Subsection 4.4 will make clear.

Angeletos, Collard, and Dellas (2020) find that a “main business cycle chocks” explains the
bulk of movements in macroeconomic aggregates at business cycle frequencies. My analysis
suggests that this finding should not come as a surprise: There is always a main shock—as long as
decisions are sufficiently forward looking and agents use simple models. Butin general, the main
shock is an endogenous index whose composition depends on the primitives of the economy
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such as preferences, technology, market structure, the stochastic properties of the shocks that
hit the economy, as well as the parameters of policy rules.??

4.3 Co-movement

The low-dimensional dynamics of agents’ actions also lead to additional co-movement between
their different choices. One can measure the extent of co-movement using different metrics,
perhaps the most commonly used one being the correlation. The following proposition shows
that constraining agents to use one-dimensional models leads to additional co-movement in
their choices:

Proposition 4. Consider actions j and k, both of the form (11). Suppose the true process is as in
(10) withm > 1. Then

1+ 1
‘Corr (sz ,xkt)

RE _RE
> ‘Corr (xjt » Xier ) ‘ ,
with the inequality strict for generic parameter values.

The result is intuitive in light of what came before. Forward-looking decisions of agents who
are constrained to use 1-state models only respond to the most persistent shock in the economy.
Therefore, their various actions co-move perfectly with each other, and the correlation between
the actions is generically one in absolute value. Under rational expectations, in contrast, the co-
movement between different actions is imperfect (except for knife edge cases).?*

4.4 Partial Equilibrium vs General Equilibrium

I conclude this section by arguing that the implications of the general framework are largely
unchanged in a general equilibrium setting where the laws of motion for observables depend
on agents’ actions. I consider a stylized general equilibrium (GE) economy in which observables
are linear functions of exogenous shocks and agents’ actions. Specifically, I assume that, in equi-
librium, the vector of observables, y;, can be written as

yCE = H'f, + gxCE, (12)

where f; € R™ is the vector of shocks, H € R™" is a rank-m matrix, and g € R™ is a vector
that parameterizes the strength of the GE feedback from agents’ actions to the observable. The
agents’ best-response functions are, as before, given by (9):

[s¢]

xSE = b'yCE 4 E, Z Sc'ySEL (13)
s=1

231n the simple economies considered in this section, where there are no endogenous variables, the main shock is identical to the most
persistent shock hitting the economy. In the applications considered in the next section, however, the composition of the main shock also
depends on the other primitives of the economy.

240ne might guess that a similar result holds when agents are constrained to use d-state models with 1 < d < m. But this guess turns out

to be incorrect: It is always possible to find actions j and k for which Corr (xft*, x,‘f;‘) =0 and Corr (x]%E, x,‘?tE) +#0.
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I continue to assume that shocks follow m independent AR(1) processes:
ﬁ :Fﬁ—1+6t) €t NN(O) 2)) (14)

where F = diag(ai,...,an) and £ = diag(s?,...,03). Equations (12)-(14) together with the
specification of agents’ subjective expectations fully characterize the (general) equilibrium of the
economy.

I contrast this economy with a partial equilibrium (PE) economy in which

wE=H'f, (15)
DBy
s=1

and f; follows (14). Note that the PE economy is nothing more than the model I studied so far in

PE _ 1.7, PE
X =b'y,

Vi +E ) (16)

this section.

The term “partial equilibrium” is inspired by the following hypothetical scenario: Suppose
we considered the economy described by equations (12)—(14) but ignored the fact that agents’
actions affect the observable, which in turn affect agents’ actions, and so on. Then the response
of the GE economy to shocks would be described by equations (15)—(16).

My next result establishes an observational equivalence between the GE and PE economies:

Proposition 5 (general equilibrium). Consider the general equilibrium economy (12)—(14) and
the partial equilibrium economy (14)—(16), and suppose that, in each economy, agents use pseudo-
true m.i.o. d-state models to forecast the observable. If

d
T (Xkﬁ T ’ ’
H=H|I-|b+ ———H'eye, Hc ,
1= S 2tgrain) )
then the linear equilibria of the two economies are observationally equivalent.

Several remarks are in order. First, the result is a corollary of the linear invariance result (The-
orem 2) and the fact that agents’ actions are linear in the observable, established in Proposition
2. Second, the proposition covers the rational-expectations case by setting d = m. Third, when
B = 0, the effect of going from PE to GE is to amplify the response of observables to shocks, as
measured by matrix H’, by the GE multiplier (I — gb’)~!. When g > 0, the multiplier has an
additional term, which captures the general equilibrium effect of the updating of expectations
by agents.

Last but not least, the distinctions between exogenous and endogenous variables, on one
hand, and PE and GE, on the other, are largely inconsequential in this framework. Agents’ expec-
tations of endogenous variables are consistent with their expectations of exogenous variables
and the structural equations of the economy, the GE economy is just the PE economy with a
linearly transformed H matrix, and agents’ expectations in the GE economy are just linear trans-
formations of their expectations in the PE economy.
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However, this conclusion relies on the assumption that the economy does not have any en-
dogenous state variable.?® This assumption (together with the linearity of the economy) turns
all general equilibrium restrictions into linear intratemporal relationships between variables—
exactly the kinds of relationships agents can comprehend. When the economy has endogenous
variables, on the other hand, constraining agents to simple models could lead to behave differ-
ently in GE due to a subtle feedback between the agents’ model of the economy and the econ-
omy'’s law of motion. In the next section, I illustrate this point in the context of the real business
cycle model and the Diamond-Mortensen-Pissarides model.

5 Applications
5.1 The New-Keynesian Model

As the first application of the general framework, I study the standard three-equation new-

Keynesian model.?%

5.1.1 Primitives

The primitives of the economy are completely standard. Time is discrete, preferences are time
separable, and discounting is exponential. There is a measure of household with separable pref-
erences over the final good and leisure. In each period, households decide how much to con-
sume and how much to save in a nominal bond, which is in zero net supply. Households also
make labor-supply decisions taking the wage as given. The consumption good is a CES aggregate
of a continuum of intermediate goods. Intermediate goods are produced by monopolistically
competitive firms using a technology linear in labor. Intermediate-good producers are subject
to a Calvo-style pricing friction. Markets for labor, the final good, and the nominal bond are
competitive.

The economy is subject to technology shocks that move the natural rate of interest and cost-
push shocks that affect the intermediate goods producers’ desired markups. The nominal in-
terest rate is set by a central bank. The exact rule followed by the central bank is irrelevant for
my analysis. Rather, equilibrium outcomes will depend only on the statistical properties of the
interest rate process (such as its serial correlation and its correlation with other aggregate ob-

servables).?’

251 say that a state variable is endogenous if its dynamics are endogenous, i.e., determined in equilibrium. For example, shocks are not
endogenous state variables, but the capital stock is.

26Technically speaking, the economy will be a two-equation new-Keynesian economy, described by the dynamic IS curve and the Phillips
curve. The Taylor rule will play no role in my analysis.

27The Taylor principle is not necessary for equilibrium uniqueness in my setup. The sunspot equilibria in the new-Keynesian model
require agents to observe payoft-irrelevant common “sunspots.” I restrict the set of variables that can appear in the vector of observables
to be payoff relevant, thus ruling out sunspot equilibria. This is one advantage of explicitly specifying the list of observables on which
agents can condition their forecasts.
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5.1.2 Log-linear temporary equilibrium

It is well known since Preston (2005) that recursive equilibrium equations that relate aggregate
variables (e.g., the aggregate Euler equation) may not be valid away from rational expectations.
Instead, one needs to separately characterize each agent’s optimal behavior using only relation-
ships that are respected by the agent’s expectations.

My analysis of the new-Keynesian model thus proceeds in two steps. The first step is to charac-
terize the temporary equilibrium relationships, which impose individual optimality and market
clearing conditions but not rational expectations.?® The second step is to supplement the tem-
porary equilibrium with the model of expectations formation and characterize the resulting (full)
equilibrium.

The first step of the analysis is standard. I therefore omit the details of the derivation and use
the log-linearized temporary equilibrium relationships as my starting point.?® These temporary-

equilibrium conditions are given by

A 2 - ]-_ A 2 o ~
Ze=-o(ip-1]")+ El Z,Bs ( 'me — 0 (lges = T)hs) — —nm) , (17)
s=1 ’6 ’B
i = KXy + pe + Elf Z(ﬁé)s (Kft+s + Tipes + ,Ut+s) ) (18)
s=1

where %, i;, and #; denote the log-deviations of output gap, (gross) nominal interest rate, and
inflation rate, respectively, from their steady state values, § is the discount factor, o is the elastic-
ity of intertemporal substitution (EIS), ¢ is the Calvo parameter, « is a composite parameter that
determines the steepness of the Phillips curve, r/” denotes the technology shock that moves the
natural rate of interest, and g, is the cost-push shock. E/* and Etf denote subjective expectations
of households and firms, respectively.

I assume that the vector (i, r/’, u:)’, of nominal interest rate, technology shock, and cost-push
shock, follows a mean-zero stationary and exponentially ergodic process.’° This assumption
allows me to use Theorem 5 to characterize the set of pseudo-true 1-state models.

28The idea of temporary equilibrium goes back to the writings of Hicks (1939) and Lindahl (1939). It has been extensively developed
in the context of Arrow—-Debreu economies by Grandmont (1977, 1982). See Woodford (2013) for a discussion of temporary equilibria in
the context of modern monetary models and Farhi and Werning (2017) for an application in the context of a heterogeneous-agent new-
Keynesian economy.

2nterested readers can find the details of this derivation, among other places, in Angeletos and Lian (2018) and Gati (2020).

30The new-Keynesian literature often assumes that nominal interest rate follows a Taylor rule, which sets the rate as a linear function
of output gap and inflation rate plus a monetary policy shock. As long as shocks follow a stationary and exponentially ergodic process,
the standard specification leads to a process for (#;, 1, j1;)’ that is stationary and exponentially ergodic—both in the rational expectations
equilibrium and in the equilibrium in which agents are constrained to use simple state-space models. My reduced-form specification of the
interest rate process is thus observationally equivalent to the standard specification. But the reduced-form specification has the advantage
of allowing the model to be calibrated without taking a stand on which part of changes in interest rate are systematic and which parts are
due to pure monetary policy shocks. It also enables me to study the effects of forward guidance in a theoretically coherent way. These
pluses come at the expense of precluding counterfactual analyses with respect to the parameters of the Taylor rule.
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5.1.3 Subjective expectations and equilibrium

For simplicity, [ assume that households and firms face identical constraints on the models they
can entertain, and so, end up with identical subjective expectations. Every agent knows the
steady-state values of every variable. The agents’ time-¢ information set is given by the history
{¥:}r<: of vector y; = (%, fi, iy, r', u;)’, consisting of time-7 log-deviations of output, inflation,
and interest rate from their steady-state values, as well as realizations of every shock. Instead of
imposing rational expectations, [ assume agents are constrained to use one-dimensional state-
space models of the form (1) to forecast y.

The equilibrium definition is straightforward. An equilibrium consists of a stochastic process
P for {y; }; and amodel 6" for agents such that (i) P is derived from market clearing conditions and
optimal behavior by households and firms given subjective model 6%, and (ii) 6* is a pseudo-true
1-state model given the stochastic process P. Following my earlier work (Molavi, 2019), I refer to
this equilibrium notion as constrained rational expectations equilibrium.

Finding an equilibrium involves solving a fixed-point equation. I can do this in the context of
the new-Keynesian model using pen and paper via a guess-and-verify method. I focus on linear
equilibria, in which %, and 7; are linear functions of i, r/’, and :.3! In such an equilibrium, the
y: vector contains two redundant elements (which are linear combinations of other elements of
y:). Therefore, agents’ forecasts of y can be obtained by first finding their forecasts of some three-
dimensional vector f that spans the subspace spanned by y and then using the linear invariance
result to find their forecasts of y.

Itake f; = (&, 7i;, i)’ as my basis for the subspace spanned by y;. This choice of f; has two
advantages over the more natural choice of the vector of shocks. First, it considerably simplifies
the algebra involved in finding the equilibrium. Second, it makes the estimation of the model
more straightforward. By Theorem 5, agents’ model of any vector f; depends on the autocovari-
ance matrices of f; at lags zero and one. When f; consists of output gap, inflation, and interest
rate, those autocovariance matrices have readily available empirical counterparts. Estimating
autocovariance matrices of shocks, on the other hand, is a much harder tasks that requires a
strategy to identify the unobservable shocks.

The following proposition summarizes the equilibrium characterization:

Proposition 6. Suppose the shocks in the new-Keynesian model are stationary and exponentially
ergodic, agents are constrained to use 1-state models, and their time-t information set consists of
the history of vector y, = (%, iz, ir, I ug)" for v < t. In the constrained rational expectations
equilibrium,

. 1

e 1= pxYx = Pa(Yn + K7x)

31The existence and generic uniqueness of a linear equilibrium follows from the guess-and-verify argument. My method for finding an
equilibrium is silent on whether there are other, non-linear equilibria.

[y (pile + prpte) = (1 = yapa) (G — 1], (19)
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T = T+ K .i+ 1- —o(K+ v, f_rn , (20)
= 1C DeYx — Pr(Yn + K72) [(Y Ye)Pils + ( YxPx) bt ( YxPx) (1t / )]
where
v = a(gy — oqr), @21
Yﬂ = aﬁqﬂ) (22)

Ty is the variance-covariance matrix of (X, 7i;, iy), C1 is the corresponding lag-one autocorrelation

matrix, a is the eigenvalue of Cy largest in magnitude, u is the corresponding eigenvector normal-
=l 1

izedsothatu'u=1,p = (px, pr, pi)’ = IJu, and q = (qx, Gr, g;)' = ISu.

The proposition provides an explicit characterization of the equilibrium given autocovariance
matrices of the vector f; = (%, #;, iy)’. Although f; contains output gap and inflation rate, which
are endogenous objects, the characterization is still useful. One can directly measure the au-
tocovariance matrices of f; in the data and use the measured values together with values for g,
o, 0, and « to find the response of the economy to interest rate changes as well as technology
and cost-push shocks. Furthermore, in equilibrium, there is a one-to-one mapping between
autocovariance matrices of f; and autocovariance matrices of the shocks. Therefore, setting the
autocovariance matrices of f; to their empirical counterparts is equivalent to choosing the shock
process to target the empirical autocovariance matrices of f;.

One can use the result to think about optimal monetary policy. The new-Keynesian model
has the so-called “divine coincidence” property under rational expectations: Without cost-push
shocks, the central bank faces no trade-off between its dual goals of zero output gap and stable
inflation. A similar property holds for some parameter values when agents are constrained to
use one-dimensional models: The economy features divine coincidence when p; = 0, i.e., agents
put zero weight on the nominal interest rate when forming their forecasts, and when g, = 0,
i.e., agents’ inflation expectations are insensitive to their estimate of the state of the economy.
However, these are both knife-edge cases. The following corollary of Proposition 6 establishes
that there is generally a trade-off between output and inflation stabilization:

Corollary 3 (failure of divine coincidence). Suppose the shocks in the new-Keynesian model
are stationary and exponentially ergodic, agents are constrained to use 1-state models, and their
time-t information set consists of the history of vector y, = (&;, fi;, i, 1, u.)’ for t < t. For generic
values of parameters B, o, 8, and x and autocovariance matricesTy andT, the central bank cannot
simultaneously achieve zero output gap and zero inflation, even when the cost-push shock is zero.

The central bank is thus limited in what it can achieve with conventional monetary policy,
even abstracting from the effective lower bound on the nominal interest rate. I proceed by study-
ing if and how forward guidance can help.
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5.1.4 Forward guidance

I consider an economy that has been operating without forward guidance for a long time and
study how implementing forward guidance then affects output and inflation. This is a good
description of where the U.S. economy was in 2009, in the aftermath of the Global Financial
Crisis. Consistent with this story, I end my sample in the fourth quarter of 2008 when taking
the model to the data.

[ assume that agents continue to forecast using a 1-state model that is pseudo true in an equi-
librium without forward guidance even as they see forward guidance. This assumption captures
the following scenario. Agents have lived in a new-Keynesian economy without forward guid-
ance for a long time and have had ample opportunities to learn the equilibrium relationships.
However, since agents can only entertain 1-state models, instead of learning the true model, they
have settled on a pseudo-true 1-state model. Agents are then confronted with forward guidance
for the first time. The key assumption is that agents do not immediately abandon their model;
rather, they continue to rely on the model they had before the switch to the forward-guidance
regime, even though the model may not be pseudo-true under the new regime.

The fact that agents have a fully specified model for the stochastic process of y allows me to
study the effects of forward guidance in an internally consistent way. I model forward guidance
as a credible announcement in period ¢ by the central bank that the nominal rate will follow path
{f+1, b2, - . ., rs7} going forward.

The announcement augments agents’ time-¢ information set to include {i;,1, 142, . . ., irs7} (in
addition to {y;}.<). Therefore, the agents’ time-¢ forecasts under forward guidance are the con-
ditional expectations E}* [] = Etl* [-Hy:}r<es Iraly bra2s - -+, o] But agents’ forecasts are Markovian
in observables by Theorem 5 and the assumption that the true process is exponentially ergodic.
Therefore, E}*[-] = EX[|yr, ir41, B2, - - - ita]-

On the other hand, since agents use linear-Gaussian state-space models, their forecasts are
linear functions of the variables in their information set. In particular, for any observable { €
(%, 7,1, 1", 1}

Etl* [Cres] = E™ [Cras|fes it+1» it+2; ceey it+T] = Z(szZ;in wr,
where wr = (§, i1, - -+, bt+1) ) Zgs0r = BV [(450)], and 2,0, = EV[wrw!]. Note that the covari-
ance matrices that show up in the agents’ forecasts of { are subjective covariance matrices which
depend on the agents’ subjective model. But the subjective model is just the pseudo-true 1-state
model, which is fully characterized by Proposition 6.

The response of the economy to forward guidance takes a relatively simple form. Substituting
for the agents’ forecasts in (17) and (18) and simplifying the resulting expression, I obtain

T
s _ (D)% (T) .n (T) (1)
Xt = afxi Iy +Qyy' 1 + afxu M + afxis ltts)
s=1
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where a’s are constants that depend on the parameters (a, p, g) of the agents’ pseudo-true model
and constants g, o, §, and k. The expressions for a’s can be found in Appendix C.1.

The a’s have intuitive interpretations: a,; and a,; are the current interest rate elasticities of
output and inflation, respectively, whereas ay; and a,;, are the elasticities of output and inflation
with respect to the s-period ahead interest rate. Note these elasticities change with the duration
T of central bank’s guidance. That is, committing to a zero interest rate in period ¢ + s is not the
same as the central bank not making any announcement about period ¢ + s’s interest rate. The
(T) superscript in the above expressions is to emphasize this point.

The expressions for a’s are rather cumbersome and hard to interpret, so I instead calibrate the
model and numerically study the effects of forward guidance.

5.1.5 Calibration and Estimation

The model has few parameters. I calibrate the model at a quarterly frequency. Following Gali
(2015)’s textbook, I set § = 0.99, 0 = 1, § = 3/4, and x = 0.172. I choose the first two autocovari-
ance matrices of the vector (i, r/’, u:)" of nominal rate, technology shock, and cost-push shock to
match the first two autocovariance matrices of f; = (%, 7, i;)’. Since there is a one-to-one map-
ping between the two sets of autocovariance matrices, I can perfectly match the autocovariance
matrices of f;.

I estimate the empirical autocovariance matrices of f; using the post war pre Global Financial
Crisis U.S. data. For %, I use the percentage difference between real GDP and Potential Output
in period ¢; for 7;, I use the percentage change in GDP Deflator; and for i;, I use the Effective Fed
Funds Rate. The resulting time series are stationary, so I do not filter them. The sample period is
from the first quarter of 1955 to the fourth quarter of 2008.

The estimated (lag-one) autocorrelations of interest rate, technology shock, and cost-push
shock are given, respectively, by p; = 0.954, p,» = 0.955, and p, = 0.925, whereas the corre-
sponding standard-deviations are given by o; = 3.30, o,» = 5.67, and 0, = 0.315. However, the
estimated shocks are not independent AR(1) processes. See Appendix C.2 for the full estimated
autocovariance matrices at lags zero and one, in which I also show that the estimated process is
exponentially ergodic.

There are no free parameters for agents’ expectations. Agents’ models, beliefs, and forecasts
are all pinned down by structural parameters §, o, §, and x and the stochastic process of the
shocks. The agents’ pseudo-true 1-state model, in equilibrium, is described by

a” =0.985,
py = 0.022,
p,=-042,
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pi =-0.014,

qy = 0.53,
q, =-2.3,
q; =-2.5,

where a* denotes the perceived persistence, p* is the relative attention vector, and g* is the rela-
tive sensitivity vector.

Agents perceive the subjective state, i.e., “the state of the economy,” as highly persistent. Their
estimate of the state of the economy is highly sensitive to changes in inflation, but it does not
respond much to output or interest rate. High output makes agents optimistic about the state of
the economy, while high inflation and high interest rate make them pessimistic. Finally, agents’
forecasts of inflation and interest rate move considerably with their estimate of the state of the
economy, but not so much for output.

5.1.6 Results

Figure 1 plots the impulse response functions to an expansionary interest-rate shock. The rate
is cut by 100 basis points on impact and follows an AR(1) process with persistence parameter
pi = 0.954—the estimated (lag-one) autocorrelation of interest rate in the data. The responses
of output and inflation rate are both smaller by about a factor of two than their corresponding

responses under rational expectations.3?
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Figure 1. Impulse Response Functions to an Expansionary Interest-Rate Shock

Constraining agents to low-dimensional models makes their expectations sticky. This sticki-
ness dampens the response of their forecasts to changes in the interest rate. Since the economy
is almost purely forward looking, the stickiness of agents’ forecasts translates into a dampening
of the response of agents’ actions to the interest rate cut. This is the mechanism behind the
dampening of the response of aggregate variables to the shock.

A similar mechanism is at play in reducing the impact of forward guidance on output and
inflation. Figure 2 plots the responses of output and inflation to a 100 basis point cut in the

current nominal rate combined with an announcement by the central bank that the nominal rate

32See, for instance, Figure 3.1 of Gali (2015). Note, however, that under rational expectations, the shock being considered is typically a
“pure monetary policy shock,” i.e., a shock to the unsystematic part of the nominal interest rate. Here, in contrast, the shock is a shock to
the nominal interest rate itself. So my impulse response functions are not directly comparable to those of Gali (2015).

30



will be kept at —1% for T quarters. The figure plots the response at the time of announcement
as the duration of guidance, T, is varied. The response of output to a 100 basis point rate cut
accompanied by a promise to keep the rate low for another quarter is almost 50% higher than
the response to a rate cut without any guidance.
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Figure 2. The Power of Forward Guidance

But the central bank quickly runs out of ammunition. Promising to keep the rate low for
two quarters (instead of one) increases the response of output only by about 9%. Promising to
keep the rate low for 20 quarters is only 50% more stimulative than promising to keep it low for
one quarter. Likewise, the response of inflation to forward guidance remains relatively flat as T
increases.

The key to understanding Figure 2 is understanding the solution to the filtering problem
agents solve to incorporate forward guidance in their forecasts. Agents first use the announced
path for the interest rate to estimate the path of the subjective state and then use this estimate
to forecast future values of payoff-relevant variables. Therefore, the extent to which forward
guidance influences agents’ forecasts is a function of the sensitivity of their estimate of the
subjective state to changes in the interest rate—p; is exactly this parameter. The fact that p;
is small in equilibrium implies that agents’ estimate of the subjective state is not too sensitive
to changes in expected interest rate. Furthermore, since the subjective state is mean reverting
with a perceived persistent a* < 1, information about far future is discounted by agents when
they form their expectations. The upshot is that the filtering of information through a one-
dimensional model reduces the sensitivity of agents’ forecasts to forward guidance.

5.2 The Real Business Cycle Model

For my second application, I consider the textbook real business cycle (RBC) model.

5.2.1 Primitives

Preferences, technology, and market structure are standard. Households value consumption and
labor according to the per-period utility function

1- 1+¢

1
v n
1

c
u(c,n)—1 _1”/1+(p’

31



where ¢ denotes consumption, n denotes labor, o is the elasticity of intertemporal substitution
(EIS), ¢ is the inverse Frisch elasticity of labor supply, and v is a constant that determines the
steady-state working hours. The consumption good is produced by a measure of competitive

firms by combining labor and capital according to the Cobb-Douglas production function
0, = a;n%k}™°,

where o, denotes output, a; is total-factor productivity (TFP), and k; denotes the capital stock at

the beginning of period z. TFP follows a first-order autoregressive process inlogs: d; = log a;, and
d[ = Pdt—l + €;. (23)

In every period, households choose consumption, labor supply, and the next period’s capital
stock subject to the following flow budget constraint:

kivi = =06+r1)k + wens — ¢y,

where § denotes the depreciation rate of capital, r; is the rental rate of capital, and w; is the wage
rate. Finally, market clearing determines investment:

it = 0t — Cy¢.

5.2.2 Log-linear temporary equilibrium

As is common in the literature, I log-linearize the model around a steady state in which d; = 0,
oo =o,w =w, 1 =r1,n =n,iy =ik = k,and ¢, = c. The usual aggregate Euler equation
may not hold away from rational expectations. I instead start by characterizing the temporary
equilibrium relations, which impose individual optimality and market clearing conditions but
not rational expectations. The log-linearized temporary-equilibrium conditions are given by

O¢ = ar + aky + (1 — @) Ay, (24)
Wy = ar + a(ky — ), (25)
#=rd+ (1= a)r(fe — k), (26)
1 1
flt = —lj/[ - —é[, (27)
7] (o)
i=26, - Ze, (28)
1 1
ke = (1= 8)ki—1 + 611, (29)
¢ = %12[ + xf + x iy + (x - Bo) Z B E;[fras] + x¢ Z B°E;[Wy4s], (30)
s=1 s=1
where
(1-a)r c -
=(1-f)|———+—-| .
x=(1-p) ( P o
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and E;[-] denotes the subjective forecast of households. The details of this derivation can be

found in Online Appendix D. Equations (23)—(30) fully characterize the equilibrium of the econ-

omy once the subjective expectations are specified.

5.2.3 Subjective expectations and equilibrium

I find the equilibrium once imposing rational expectations (RE) and once assuming that house-
holds are constrained to d-state models. In both cases, I assume that households know the
steady-state values of every variable and perfectly observe the vector y; = (a;, 6;, Wy, Tt, 7z, i, K,
¢;) of log-deviations from the steady state.

Where the two cases differ is in how households model log-deviations from the steady state.
Under RE, the households’ model of y; coincides with the observable’s true, equilibrium stochas-
tic process. When households are constrained to d-state models, on the other hand, they believe
that y; follows a d-dimensional model of the form (1) and use a pseudo-true d-state model to
forecast the future values of y.

The equilibrium definition when households use pseudo-true d-state models is straightfor-
ward. An equilibrium consists of a stochastic process P for y; and a model 6* for households
such that (i) P is derived from market clearing conditions and households’ optimal consumption,
labor supply, and investment behavior given their subjective model 6*, and (ii) 6* is a pseudo-
true d-state model given the stochastic process P.

The rational-expectations equilibrium has a 2-state representation. Therefore, agents con-
strained to d-state models with d > 1 recover the true process, and the equilibrium given d-
state models with d > 1 coincides with the rational-expectations equilibrium. This observation
highlights the fact that constraining agents to d-state models represents the only deviation from
the full-information rational-expectations benchmark. Furthermore, the constraint is slack as
longasd > 1.

Finding an equilibrium involves solving a fixed-point equation. The rational-expectations
equilibrium can be found using existing techniques. In Online Appendix D, I discuss how one can
find the equilibrium in the case where households use pseudo-true d-state models with d = 1.
In the same appendix, I also provide a more formal definition of equilibrium.

5.2.4 Calibration

The exogenous parameters of the model are calibrated as follows. A period represents a quarter.
The quarterly discount rate is set to § = 0.99. The EIS and the Frisch elasticity of labor supply are
both set to one. The depreciation rate is set to § = 0.012 and the capital share of outputto a = 0.3.
TFP has a persistence parameter of p = 0.95. I set the standard deviation of TFP innovations to
one.
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Note thatd is the only extra free parameter relative to the full-information rational-expectations
version of the model. Once one chooses a value for d, the expectations are fully pinned down by
the primitives of the economy (as in the benchmark). Moreover, the d-state equilibrium nests
the RE equilibrium by setting d > 1.

5.2.5 Results

Figure 3 plots the impulse response functions to a one percent increase in TFP. The responses
for the case where households have rational expectations are in dashed green and for the case
where agents use pseudo-true 1-state models are in solid red. Every variable except for the rental
rate of capital is measured in log changes from its steady state value; the rental rate of capital
is measured in percentage point changes from its steady state value. The variable labeled the
“state of the economy” is defined as the households’ nowcast, Z;, of the subjective state, z;, in
their subjective model of the economy. Since the scale of z; is not identifiable either to the agents

or the econometrician, the scale of Z; is intrinsically meaningless.
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Figure 3. Impulse Response Functions to a TFP Shock

The state of the economy at time ¢ can be expressed as a linear combination of the time-¢
values of the capital stock and TFP, with the weights determined endogenously in equilibrium:*3

2, =0.947k, + 0.0534;.

The state of the economy is much more sensitive to changes in the capital stock than to changes
in TFP. This can also be seen in the impulse response functions: The state of the economy co-

moves almost perfectly with capital.

33As previously mentioned, the magnitude of ; is irrelevant. I normalize 2, to have 2; = pik; + pad; with |pi| + |pa| = 1.
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The fact that the state of the economy inherits the dynamics of the capital stock is a mani-
festation of the persistence bias. In equilibrium, the capital stock is more persistent than TFP,
as can be seen from the impulse response functions. Therefore, the households’ nowcast of the
subjective state moves almost one-for-one with changes in the capital stock.

Consumption, in turn, inherits the dynamics of the state of the economy. Since g is close to
one in my calibration, consumption is almost purely forward looking. Therefore, it moves in
tandem with changes in the households’ forecasts, which in turn, move one-for-one with their
nowcast, Z;, of the subjective state. In equilibrium,

¢ = 0.089k; + 0.0887; + 0.009110;, + 0.841%,.

That is, consumption is much more sensitive to changes in the state of the economy than to the
current prices and quantities.

The upshot is that consumption co-moves with the capital stock. The (unconditional) corre-
lation of consumption and the capital stock is 0.999 when households use pseudo-true 1-state
models; in contrast, it is 0.956 when households have rational expectations. Even though con-
sumption is an almost purely forward-looking variable, it is anchored to the most persistent
backward-looking variable in the economy: capital.

The fact that consumption is anchored to capital dampens the initial response of consump-
tion to TFP shocks. The response of consumption on impact when households use a pseudo-
true 1-state model is 83% smaller than the corresponding response under RE. The consumption
response in the 1-state case continues to be smaller than the RE response for sixth quarters after
impact. But as the 1-state economy builds up its capital stock, the households’ view of the state of
the economy improves and their consumption increases. At some point, consumption in the 1-
state economy overshoots its RE counterpart. The model thus provides a parsimonious account
of the hump-shaped response of consumption to TFP in empirical studies.?* Moreover, the ini-
tial underreaction and the subsequent overshooting of consumption increases its unconditional
volatility relative to the RE benchmark and raises the cost of business cycles.

5.3 The Diamond-Mortensen-Pissarides Model

I next study how the predictions of the standard labor search and matching model change when
agents are constrained to use simple models. I do so in the context of the stochastic version
of the Diamond-Mortensen-Pissarides (DMP) model in discrete time. I start by describing the
primitives of the economy.

5.3.1 Primitives

There is a continuum of workers and firms in the economy. The mass of workers is normalized

to one, whereas the mass of firms is determined by free entry. Workers and firms are both risk

34For a meta-analysis of the response of aggregate variables to technology shocks, see Ramey (2016, pp. 135-151).
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neutral and discount future at rate . A worker matched with a firm generates a, units of output
in each period, whereas an unemployed worker produces b < 1 units. [ assume thata; — b = (1 -
b) exp(d,), where 4, is a shock to labor productivity net of home production. This specification
of labor productivity guarantees that a; > b for all ¢, so it is always efficient for workers to be
employed at firms.

Unemployed workers and firms randomly match in a frictional labor market. A matching
function determines the rate at which unemployed workers meet firms. Each unemployed
worker finds a job in period ¢ with probability p, = p6!~%, and each vacancy is filled with
probability g, = u6;%, where 6; = v;/u; denotes market tightness, i.e., the ratio of the number
of vacancies to the unemployment rate, and p and a are parameters of the matching function.
Each job is destroyed in each period with probability s; = s exp($;), where §; is a separation shock.
Firms incur a cost k per period (measured in the units of output) for maintaining a vacancy.

Wages are determined through Nash bargaining between a worker and a firm, with the threat
point of the worker the value of unemployment, the threat point of the firm the value of an un-
filled vacancy (which will be zero in equilibrium), and the worker’s bargaining power equal to
0.

[ assume that net labor productivity and separation rate shocks follow the autoregressive pro-

ar\ _(pa 0 (a1
(§t) B (0 Ps) (§t—1) +En (31)

where ¢, ~ N(0,%). This specification allows for labor productivity and separation rate to be

cess

correlated, as is the case in the data.

5.3.2 Temporary equilibrium

The recursive equations that characterize the solution to the DMP model may not hold away
from rational expectations. I instead start by characterizing the temporary-equilibrium rela-
tions, which hold under arbitrary expectations. I assume that firms and workers use models with
the same number of states, and so, end up with the same subjective expectations in equilibrium.
Market tightness and wage then satisfy the following equations:3°

) 7-1
91? = %Et Z ﬁT (1 - St+k)(at+r - wt+r)] , (32)
=1 k=1
00 -1
w; = 8a;+ (1= 8)b+ 6E | Y B[ [ (1 = sei) (@rsr — wisa)
=1 k=0

7-1

-(1-90)E (1 =S4k = Prak)(Wrar = b) | . (33)

>
=1

35Nash bargaining only determines the total value delivered to workers and firms each and not the timing of the payoffs or the wage rate.
To determine the wage, I assume that workers and firms both take the future expected wages as given and adjust the current wage to split
the surplus according to the Nash bargaining solution.

k=0
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The unemployment rate follows the first-order difference equation
ur = w1+ S-1(1 — 1) = ,Uetl__laut—l- (34)

Equations (31)—(34) together with the specification of the subjective expectations fully character-
ize the equilibrium. The derivation of these equations and other omitted calculations from this
subsection can be found in Online Appendix E. To simplify the numerical computations, I log-
linearize the temporary equilibrium of the economy around a steady state in whicha;, =1 > b
and s; = s.

5.3.3 Subjective expectations and equilibrium

I solve the model once under rational expectations and once assuming that agents are con-
strained to 1-state models. In both cases, I assume that every agent knows the steady-state
value of every variable and perfectly observes the vector y, = (a, §;, 0,, 0y, G, pr, Gr, w;) of log-
deviations from the steady state. Agents constrained to 1-state models believe that y, follows a
1-state model of the form (1) for some 6 = (A, B, Q, R) and use a pseudo-true 1-state model to
forecast the future values of y.

Equilibrium is defined as in the previous applications. It consists of a stochastic process P for
y: and a model 6* for the agents such that (i) P is derived from the agents’ optimal behavior given
their subjective model 6*, and (ii) 6* is a pseudo-true 1-state model given the stochastic process
P. A more formal definition can be found in Online Appendix E.

5.3.4 Calibration

The model is calibrated as follows. Each period corresponds to a month. The discount factor is
setto f = 0.99. I set the mean of the separation rate to s = 0.035, so jobs last for about 2.5 years
on average. The steady-state job-finding probability is set to p = 0.4 per month. The elasticity
parameter of the matching function is set to a = 0.72. The workers’ bargaining power is set to
the same value: § = 0.72. Setting 6 = a ensures that the Hosios condition is satisfied. I set the
persistence parameter of the shock to p, = 0.96 for labor productivity and p; = 0.90 for separation
rate. I normalize the steady-state output per worker to a = 1. The flow payoff to workers from
unemployment is set to b = 0.4.36

The impulse response functions are independent of the volatility of the shocks and their cor-
relation when agents have rational expectations—but not when they are constrained to one-
dimensional models. I set the correlation of labor productivity and separation rate shocks to
—0.4 and the ratio of the standard deviation of labor productivity to that of separation rate to ten.
These choices ensure that the (pairwise) correlation coefficients between labor productivity, sep-
aration rate, and the unemployment rate are broadly consistent with the data in Shimer (2005).

36These parameter values are all consistent with the calibration in Shimer (2005). Others, such as Hagedorn and Manovskii (2008), rely
on values of b closer to one to amplify the response of unemployment to labor productivity shocks.
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Finally, I normalize the standard deviation of labor productivity to one. The results that follow

do not depend on this normalization.

5.3.5 Results

Figures 4 and 5 plot the impulse response functions to a one percent increase in labor productiv-
ity and separation rate, respectively. The responses for the case where households have rational
expectations are in dashed green and for the case where agents use pseudo-true 1-state models
are in solid red. Variables are all measured in log changes from their steady state values. As in
the previous application, the variable labeled the “state of the economy” is defined as the agents’
nowcast, Z;, of the subjective state, z;. Since the scale of z; is notidentifiable either to the agents or
the econometrician, the scale of Z; is intrinsically meaningless. However, the two panels plotting
the response of Z; to labor productivity and separation rate shocks use the same scale, so the
responses of the state of the economy are comparable across the two shocks.

The state of the economy at time ¢ can be expressed as a linear combination of the time-¢
values of the unemployment rate, labor productivity, and separation rate with the weights deter-

mined endogenously in equilibrium:3”

zr = —-0.8124; +0.0104; — 0.1775;. (35)

The state of the economy is almost five times more sensitive to changes in the unemployment
rate than to changes in separation rate, and it barely responds to changes in labor productivity.

Since the shocks are significantly correlated with each other, the mapping from the persis-
tence of the shocks to their weights in the expression for Z; is not as simple as in the RBC applica-
tion. Rather, the relative attention vector p, which determines the weights different variables get
in the determination of the state of economy, depends on the joint dynamics of the unemploy-
ment rate, labor productivity, and the separation rate in the way that is fleshed out in Theorem
5. Those dynamics, in turn, are determined in equilibrium as a function, among other things, of
the attention vector, p.

The key to understanding the economy’s response to labor productivity shocks is the observa-
tion that current productivity has no direct effect on the agents’ decisions. The only interesting
decision in the DMP model is the firms’ vacancy-creation decision, which together with the cur-
rent unemployment rate, fully determines market tightness through equation (32). Market tight-
ness and the exogenous separation rate, in turn, determine next period’s unemployment rate
through equation (34). Current productivity appears nowhere in these equations; it is only the
firms’ forecasts of future productivity that enters the dynamics of market tightness, job-finding

rate, and unemployment. In fact, in equilibrium,

6, = 2.762,,

37] normalize 2, to have 2, = pulls + pady + psS With |py | + |pal + Ips| = 1.

38



1.04 -

N RE 0.2 1

S~ 0.4 1
0.5 1 .
—— 0.1
= 0.2
00— 0O ————————————
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
labor productivity job finding rate wage

0.0 r~——

0.5 1 —-0.1 A

0.0 - —0.2 1 01

0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
vacancies unemployment rate state of the economy

Figure 4. Impulse Response Functions to a Labor Productivity Shock

ﬁt = 07742[

That is, market tightness and job-finding rate are perfectly correlated with the state of the econ-
omy.

This property of the DMP model leads to a form of complementarity in the agents’ relative
attention to different observables, which, in equilibrium, dampens the response of the economy
to labor productivity shocks. Suppose firms reduce the weight they assign to labor productivity
when forming their estimate of the current state of the economy. This makes their forecasts less
sensitive to current labor productivity and dampens the effect of labor productivity on unem-
ployment fluctuations. This, in turn, reduces labor productivity’s weight in the agents’ estimate
of the state of the economy under a pseudo-true model. In equilibrium, labor productivity re-
ceives little weight in the agents’ forecasts and has a small impact on the dynamics of vacancies,
job-finding rate, and unemployment.3?

The economy’s response to a separation rate shock is perhaps even more subtle. Under ratio-
nal expectations, an increase in separation rate foreshadows an increase in the unemployment
rate. The increase in the unemployment rate is beneficial to would-be employers: A higher un-
employment rate means a slacker labor market and a higher job-filling rate. This makes it more
likely that a firm will recoup the cost of creating a vacancy, thus leading to an increase in the
number of vacancies through the free-entry condition. This dynamic is behind the counterfac-
tual positive correlation between the number of vacancies and the unemployment rate in a DMP
model with only separation rate shocks.

Constraining agents to low-dimensional models turns this dynamic on its head. By equation
(35), an increase in separations lowers the agents’ nowcast of the state of the economy both
directly and indirectly, through the resulting increase in unemployment. The deterioration in

38Note that the wage is highly sensitive to labor productivity even when agents rely on pseudo-true 1-state models. This is due to the fact
that labor productivity has a direct effect on the current wage, as can be seen in equation (33).
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Figure 5. Impulse Response Functions to a Separation Rate Shock

the firms’ nowcast lowers their expectation of returns to posting a vacancy. This decrease is
large enough (at least, in the current calibration) to overturn the effect of the increase in the
job-filling rate. As a result, firms post fewer vacancies, causing an even bigger increase in the
unemployment rate.

The recession that follows an increase in separations in the 1-state version of the model has a
Keynesian flavor. The increase in separations and the resulting increase in unemployment make
firms pessimistic. They respond by slowing their recruiting activities, which, in turn, exacerbates
the unemployment problem, darkening the outlook further, and so on. The result is an ineffi-
ciently deep and long recession.

The inability of the standard DMP model in generating realistic unemployment fluctuations
in response to realistic productivity and separation shocks is known as the Shimer puzzle after
Shimer (2005). The Shimer puzzle has lead to a large literature, which aims to resolve the puzzle
by modifying the DMP model or Shimer’s calibration of it. The exercise in this subsection sug-
gests a novel path forward. It shows that constraining agents to use simple models allows even
the most basic DMP model to exhibit significant amplification, propagation, and co-movement

in response to separation shocks, bringing its behavior more in line with what is in the data.
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A Proofs

Proof of Theorem 2

As a preliminary step, I fix an arbitrary d-state model 6 = (A, B, Q, R) for the agents and compute
their forecasts and the KLDR of their model from the true process. If the support of P does not
coincide with W, the support of the true process, then KLDR(68) = +co. In what follows, I assume
that P? is supported on ‘W.

The Kullback-Leibler Divergence Rate.  Since the entropy rate of the true process is finite, the KLDR
of 6 from the true process is given by

1
KLDR(6) = lim -E [-log f?(y1,..., )] + constant.

On the other hand, by stationarity,

lim %[E [~log f*(y1,.... 7)] = WM E [~1og £ (ilye-v,-... )] = E [=1og fO(yraalyis...)] -
Therefore, to compute the KLDR, I only need to compute the subjective distribution of y,,; under
model 0 conditional on the history of observations {y;, y;-1, ... }.

Let E?[] denote the agents’ subjective expectation given model 0 and conditional on the his-
tory {y:}'_ .., and let Var?(-) denote the corresponding variance-covariance matrix. Let 2, =
E?[z:41] denote the agents’ subjective conditional expectation of the subjective state. I can ex-
press z; recursively using the Kalman filter:

% =(A-KB')Z;.1 + Ky, (A.1)
where K € R is the Kalman gain defined as
K=A3.B(B'3.B+R)’, (A.2)

the dagger denotes the Moore-Penrose pseudo-inverse, £, = Var?(z,,,) is the subjective condi-
tional variance of z;,1, which solves the following (generalized) algebraic Riccati equation

$.=A(8-SB(BEB+R) BE) 4+ Q, (A.3)
and A’ denotes the transpose of matrix A.39 Solving equation (A.1) backward, I get

=) (A= KB)'Kyir.
7=0

The agents’ subjective conditional expectation of y;,; can be written in terms of their conditional
expectation of z;,:

Etg [yie1] = B,Ete [zi41] = B’ Z(A — KB')'Ky;—s.
7=0

398ee, for instance, Chapter 4 of Anderson and Moore (2005). Note that I allow for the possibility that P? is supported on some
proper subspace ‘W of R”, in which case B’$, B + R might not be invertible. The Moore-Penrose pseudo-inverse is then the appropriate
generalization of matrix inverse in the expression for the Kalman gain.
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Likewise, the conditional variance of y;,; can be expressed in terms of the conditional variance
Of Zt+1:
2, = Var? (y;s1) = B'S,B+R. (A.4)

More generally, the agents’ s-period ahead forecast of the vector of observables is given by

E[Yr4s] = BAVE? [241] = B’AS™! Z(A — KB Ky_s. (A.5)
7=0

The Kullback-Leibler divergence rate is thus equal to

KLDR(0) = - %log det” (£]) + g log (27) + %tr (£5m0)

I o, e l & e
-t (z;cb,r;) -t (z}rrcpg)
7=1 7=1
1 (o] [o0] . ,
+3 Z Z tr (Z;QDSFT_SCIDT) + constant, (A.6)

1l
—

s=1 7=1
where I = E[y,y/_,] denotes the lag-I autocovariance matrix for the vector of observables under
the true process, ®; = B’(A- K B’)™" 1K, and the constant contains terms that do not depend
on 6. The matrix if, denotes the Moore-Penrose pseudo-inverse of iy and det*(i;,) denotes its
pseudo-determinant. These objects are the appropriate counterparts of the matrix inverse and
the determinant for the case when ‘W does not equal R", and so, the subjective model 0 is de-

generate.

Proof of Theorem 2. Let 77 denote the dimension of vector y, = Ty, let W denote the linear
subspace of R” defined as W = {7 € R" : j = Ty forsome y € W}, let ©, denote the set of
d-state models when the vector of observable is 7; € R”, let Ia:]i{(é) denote the KLDR of model
6 € ®, from the true process P = P o T7!, and let @Z denote the set of models §* € ®, such that
KLDR(#*) < KLDR(9) forall § € 8.

I first show that W is the support of any distribution in the set £ o T~! of distributions over
{#:};2_ induced by £ and T as well as the support of any distribution in the set 5;. Note that
there always exists a d-state model 6 for which KLDR(0) < co—one such model is the one accord-
ing to which y; isi.i.d. over time and has a variance-covariance matrix that coincides with the true
variance-covariance matrix, I'y. Therefore, for any pseudo-true d-state model, the KLDR is finite.
Thus, any process P € P is supported on ‘W, and so, any process P € P o T~! is supported on
W. On the other hand, since the true distribution P is supported on ‘W, the induced distribution
P = P o T!is supported on ‘W. Consequently, by the above argument, any distribution P € 5;
is also supported on W. Therefore, I can restrict my attention to models 6 € O, such that P? is
supported on ‘W and models 6 € 6, such that Plis supported on W.

For any model 0 = (4, B,Q, R) € O, define the model T(0) € ©, as T(0) = (A, BT’,Q, TRT’).
I next show that IfL\DiR(T(H)) = KLDR(#0), up to an additive constant that does not depend on
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6. Fix some model 0 € ©,. Let$, = Varf (z:+1) denote the subjective conditional variance of the
subjective state under model 6, and let 3, = VartT(e) (z:+1) denote the corresponding conditional

variance under model T(0). Matrices £, and £, solve the following Riccati equations:

poe

A (iz ~$.B(B'5,B+R) B’iz) A +0Q, A7)

M)

= = = ¥ =
L=A (zz _$,BT’ (TB’ZZBT' + TRT’) TB’ZZ) A +0. (A.8)

Since matrix T has fullrank, T* = (T’'T)"'T and T'T = I. Therefore, EZ = 3,. Next, let K denote the
Kalman gain given model 0, and let denote K denote the Kalman gain given model T(6). Note
that i

& = AS BT’ (TB’iZBT’ + TRT’) - KT,
Let®, = B'(A-KB’)"" 1K given model 6, and let ®, denote the corresponding matrix given model

T(0). Note that
&, =TB'(A-KT'TB)" KT = T®,T".

Finally, let iy = Varf (vr+1) denote the subjective conditional variance of y;,; given model 6, and
lets, = VartT(G) (¥r+1) denote the corresponding conditional variance given model T'(6). Note that

2, =TB'S,BT'+TRT' =TZS,T’.

One the other hand, I; = E[j,7,_,] = TE[y:y:1]T’ = TT;T’. Therefore, by equation (A.6),
p— 1 e 1 et
KLDR(T()) = - 5 logdet’ (T* Z;TT) + glog (2m) + 5 tr (TT Z;T'TFOT’)

. 1 — .
tr (TT'Z)T,TTTqDTTTTF;T’) -3 S (TT’Z;TTTFTT’TT’cD;T’)

=1

DN =

[ 1M

+
N —

S (T""i}T"‘TcDSTTTrT_ST’T""cb;T’) + constant.

=1

I
—

N

The fact that T'T = I implies that the above expression is equal to KLDR(0), up to an additive
constant that does not depend on 6.

Likewise, for any model 6 = (4, B, Q,R) € O, define T-1(9) = (A, BT"',Q, T*RT') € ©,. By
an argument similar to the one in the previous paragraph, KLDR(T~'(8)) = KLDR(), up to an
additive constant that does not depend on 6.

Therefore, the mapping T defines an isomorphism between the set of models ©, and the set of
models &,: Any model € ©, can be identified with a model T () € O, such that the KLDR of P?
from the process P is equal to the KLDR of P”(®) from the process P o T-!, and any model § € 0,
can be identified with a model T-1() € ©, such that the KLDR of P79 from the process P is
equal to the KLDR of PY from the process P o T~1. This conclusion immediately implies that the
set of pseudo-true d-state models given the true process P is identified with the set of pseudo-
true d-state models given the true process P o T~!. That is, @Z ={T(0): 0 € ©}}.
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It only remains to show that P7(®) = P9 o T-! for any model 0 € ©,. Since PT®) and P% o T~! are

both zero mean, stationary, and normal distributions over {j;};2__, it is sufficient to show that

—oc0?

the autocovariance matrices of j; are identical at all lags under the two distributions. But this
follows the definitions of distributions P7(® and P? o 771, O

Proof of Theorem 3
Before establishing the theorem, I state and prove a useful lemma:

Lemma A.1. Model 6 = (A, B, Q, R) is a pseudo-true d-state model given true autocovariance ma-
trices {I}}; ifand only ifA=M,B=D'N"',Q=1-M (I -D'D)M’,andR = N~' (I - DD’) N1,
where M, D, and N are, respectively, a d x d convergent matrix, a n x d diagonal matrix with
elements in the [0, 1] interval, and an n x n invertible matrix that maximize

1 ’ 1 ’ S ’ -1 I NTIT
- 5 logdet (NN') + 5 tr (N'ToN) ~ D ((M (I -D'D)" ' MD'N r,ND)

7=1

+ i i tr (D (M (I = D'D))*"* MD'N'T,_.NDM’ ((I — D'D) M")""* D’) . (A.9)

s=1 7=1

N —

|
L

. FESIA
Proof. 1can assume without loss of generality that £, is invertible.*° I start by expressing %2 B,

as its singular value decomposition:

L1 1
$2BS} =UDV/,

where U € R™" and V € R are orthogonal matrices, and D € R is a rectangular diagonal

1oLzl
matrix with singular values of 27 BZ,” on the diagonal. Note that
A1 ~ -1 AL
VD'DV' =%ZB(B'Y,B+R) B'X%.

Since R is a symmetric positive semidefinite matrix and V is orthogonal, diagonal elements of D

are weakly smaller than 1 (strictly so if R is not singular). Next define

= S §
M=VT1EZAS2V.

Then,
A= EZ%VMV—Ii?, (A.10)
B=$7? VD’U’iy% , (A.11)
K=5 VMD’U’iJ:Tl , (A.12)
and so

AL =
KB =3$!VMD'DV'S?,

40This is due to the fact that any d-state model with a singular £, is observationally equivalent to a d’-state model with d’ < d.
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A

®, =%

1 =t
2UD(M (I-D'D))" " MD'U'S?.

N
I can further reduce the number of parameters in the agent’s model by transforming >,? using
the orthogonal matrix U. Define

Al
N=37U.

Azl
Note that since Zy2 is symmetric,

UN'=NU' =32,

y
SO
$,'=NU'UN’=NN’,
and
A = S §
tr (z;lro) — tr (zyz Tos)? ) — tr (UN'ToNU’) = tr (N'ToN) .
On the other hand,
N =t =
tr (zy—lcp,r;) — tr (zyz UD (M (I - D'D))"" MD'U’S; r;)
— tr ((M (I -D'D))™ MD’NT;ND) ,
and

tr (i;lcbsr,_sqn;) — tr (D (M (I = D'D))*"* MD'N'T,_.NDM’ ((I — D'D) M")"™* D’) .
Therefore, the KLDR can be expressed in terms of matrices M, D, and N as
KLDR(0) = KLDR(M, D, N) + constant,

where, with some abuse of notation, I let

KLDR(M, D, N) = — % log det (NN') + % tr (N'ToN) - Y tr ((M (I-D'D))" MD’NT;ND)

=1

+ i i tr (D (M (I - D'D))*" ' MD'N'T,_.NDM’ ((I — D'D) M")""} D’) .

s=1 7=1

N —

(A.13)

Any non-singular matrix N has a unique decomposition as N = i;?l U, where i?l is a symmetric
positive definite matrix and U is a orthogonal matrix.*! On the other hand, for any positive
definite matrix £, there exists a positive definite matrix R that satisfies the Riccati equation (A.3).
Therefore, minimizing KLDR(6) with respect to 0 is equivalent to minimizing KLDR(M, D, N)
with respect to M, D, and N subject to the constraints that M is a convergent matrix, D is a

41 This is known as the polar decomposition of matrix N.
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rectangular diagonal matrix with diagonal elements in the interval [0, 1], and N is a non-singular
matrix.

Next I show how given a tuple (M, D, N) that minimizes KLDR(M, D, N) one can find the cor-
responding parameters (4, B, Q, R) of the representation in (1). Let T = ié V. Then, by Equation
(A.10),

A=TMT™. (A.14)

Substituting for iy in equations (A.11) and (A.4), I get

B=(T"YYD'N7!, (A.15)
R=NYU-DD)NL (A.16)

Substituting in (A.3) for A from equation (A.10) and for B from the above equation, I get

Q=%.-A(8. - S.B (BB +R) " BE) A4
A AL Azl /. AL 1y . zL AL
=5, —$IZyMVIS2 (zz _ 52 VD’DVZZZ) $ZyMIVIS?
~ AL A1
=%, -32VM (I -D'D)M'V 52,

Therefore,
Q=T(I-M(I-D'D)M')T’. (A.17)

While (M, D, N) are pinned down by the minimization of the Kullback-Leibler divergence, T is
not identified. However, for any non-singular T and T # T, the models described by (M,D,N,T)
and (M, D, N, T) are observationally equivalent.*? Therefore, without loss of generality, I can set
T = I to get to the following representation:

A=M,
B=D'N},
Q=I-M(I-D'D)M’,
R=NY({1-DD)N".
This completes the proof of the lemma.
For future reference, I also compute several other objects under the above representation. The

matrix of Kalman gain is given by
K=MD'N". (A.18)

The subjective forecasts can then be found by substituting for A, B, and K in (A.5):

E?[y1s] = N ' DM Z (M (I - D'D))" MD'N'y,_,. (A.19)
7=0

428ee, for instance, Gevers and Wertz (1984).
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The subjective variance of y;,; conditional on the information available to the agents at time ¢ is

given by
$,= (NN,
The unconditional subjective variance of y is given by
Var’(y) = B'Var’ (2)B + R,
where Var(z) solves the discrete Lyapunov equation
Var?(z) = Avar?(z)A’ + Q.

Solving the above equation forward, I get

Varf(z) = I + Z M'D'DM’".

7=1

Therefore,

Var’(y) = B’ Z ATQAB+R=N"Y I+ Z DM'D’'DM’*D’| N1,

7=0 =1

I can now establish Theorem 3.

Proof of Theorem 3. Let M, D, and N be asin Lemma A.1. When d = 1, then
M=a

forsomea € [-1,1] and
dy
0
D = . = dl el
0
for some d; € [0, 1], where e; denotes the first coordinate vector. Define
n=1-d,

1
SEF&N.

(A.20)

Then KLDR, defined in (A.9), can be written as a function of a, n, and S, with slight abuse of

notation:
]' /7 ]' 7 1 /7 !
KLDR(a,n,T) = - 2 logdet (SS’) + 2 tr (S’S) - Eels Q(a, n)Sey,

where

Qa,n) = a(l-n) Y (an)'T7 (T +THTF —a*(1=n)® > > (an) ™" °T7 T Ty .

=1 s=1 =1
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I can simplify the second term of Q(a, n) further:

00 0 o1 1 00 00 4 o o
Z Z(an)s+r—2I‘02 rr—sroz — Z Z (aﬂ)s+T_ZF02 (FT—S + I‘;—s) FOZ + Z(an)Z(s—l)I

s=1 =1 s=1 7=s5+1 s=1

= Z 21(6“7)2(8—1)“'1‘0%1 (Fr + f;) F(;Tl + Z(an)Z(s—l)I
=1

=1 s=1

- (i( n)20- 1>) (I+Z(an) T2 (T, + )T )

s=1
- - -1
=1 aznz (I+an;(a17) F (F +F)F )
Therefore,

az(l—n)zl (1-n)(1-a’n)
+
1-a?n? 1-a?n?

Qa,n) = - Z arn’™ 1r2 (T; + T )r2. (A.21)

By Lemma A.1, minimizing the KLDR with respect to A, B, Q, and R is equivalent to minimizing
KLDR(M, D, N) with respect to M, D, and N. But for any a, 1, and S, one can construct a corre-
sponding M, D, and N. Therefore, I can instead minimize KLDR(a, 1, S) with respect to a, n, and
S.

I first minimize KLDR(a, n, S) with respect to S taking a and 7 as given. The first-order opti-
mality condition with respect to S is given by

S =8 ~ee;S'Q(a,n),

which implies that
S’'S—ee;T'Q(a,n)S =1. (A.22)

Therefore, for any solution to the problem of minimizing KLDR(a, 1, S),
n=tr(l) =tr(8’S) —tr (e1e;S’'Q(a,n)S) =tr (S’S) — e;S'Q(a, n)Se;.
So, minimizing KLDR(a, 1, S) respect to a, n, and S is equivalent to solving the following program:
max  det (S(a,n)S"(a,m),

where ) ) )
S(a,n) € argmin ) logdet (SS’) + 3 tr (S’S) - ze{S’Q(a, n)Sey. (A.23)
S

I proceed by first characterizing S(a, n). Note that the necessary first-order optimality conditions
for problem (A.23) are given by the matrix equation (A.22).

Claim 1. For any matrix S that solves equation (A.22), the necessary first-order optimality condi-
tion for problem (A.23),
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(l) Sel = !

u,

(i) S 'er = V1 -Au,
(iii) S8’ =1 + A uu’,

where A is an eigenvalue of the real symmetric matrixQ(a, n) and u is a corresponding eigenvector

normalized such thatu'u = 1.

I return to proving the claim toward the end of the proof. Equation (A.22) in general has
multiple solutions, with each solution corresponding to alocal extremum of problem (A.23). The
global optimum of problem (A.23) is given by the solution to equation (A.22) that results in the
largest value for det(SS’). But by part (iii) of Claim 1, det(SS’) = (1 — A)~.. Thus, for any pseudo-
true 1-state model, a and n maximize A< (Q(a, n)) and S satisfies parts (i)—(iii) of Claim 1, with
A = Amax(Q) and u = umax(Q) the corresponding eigenvector.

I next find the parameters A, B, Q, and R representing the a, n, and S that minimize KLDR(a,
1, S). First, note that

M =a,

D= 1—1]91,
;1

N=TZS.

The representation in Lemma A.1 is thus given by

A=a,

B=+1- neis—lré,

Q=1-a%,

R= rés-l’ (I-(1-mnee;) s—lro%.
By Claim 1 and the argument above,

€187 = V1 = Anax ()1 (),

STV = (887! = I — Amax(©Q) tmax (Q) Uy (Q).

Thus,
B = AT 1) (1~ Ammax() tfnan (DT,
and
R= r% (1 = Amax(Q) tmax(Q) gy () T2 — (1= 1) (1= Amax(2) T2 Ui () Ul (T2
=T¢ [I - (1 =0+ NAmax(Q)) tmax(Q) Ufnay ()| TE.
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__1
Finally, note that M = a, D = /1 —ne;, and N =T} S. Therefore, by equation (A.19), the subjec-

tive forecasts are given by
1 FUE
El[Yeas] = a*(1 = mTZS L ere]S'TY Z an Y. (A.24)
=0
Using Claim 1 to substitute for the optimal S, I get

1 B
EP [yes] = @* (1 = )T thmax (Q)tfnax (DT > a™n"yi,
7=0

where umax(Q) is a unit-norm eigenvector of Q with eigenvalue Anax(Q). The theorem then fol-
lows by the definition of p and q. O
Proof of Claim 1. The first-order optimality condition with respect to S is given by

S'S —e1e]S'QT = 1. (A.25)
Multiplying the transpose of the above equation from right by e; and from left by $’~1, I get

Se; — QSe; = 8" ey. (A.26)
On the other hand, multiplying equation (A.25) from left by S and from right by S~1, I get

SS’ =1 +Seje]S'Q. (A.27)

By the Sherman—Morrison formula,
glg-l_p_ Sel’e{S’Q
1+e/5'QSe;
Multiplying the above equation from right by Se;, I get

1

S ey = —————Se. A.28
T Tveisase, ! (A.28)
Substituting for $'le; from the above equation in (A.26) and rearranging the terms, I get
e;§'QSe;
QSe; = (A.29)

17 e,
1+e/SQSe; "

That is, Se; is an eigenvector of Q. Let A denote the corresponding eigenvalue and let u =
Se1/+/e;S’Se;. Then equation (A.29) implies

Ae(S’Sey
~ 1+2e/S'Se;’

I separately consider the cases A # 0 and A = 0. If A # 0, then
e/S'Se; = (1-1)71,
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and so

1
Sey = u.
1-1
Equation (A.28) then implies that
S’ le; = V1 -y,

and equation (A.27) implies that

A
=1 ’
SS +1_/1uu

If A = 0, then equation (A.26) implies that Se; = S’ e;, and so, Se; and S’~'e; are both multiples

of u. Furthermore, e{S‘lsel = eje; = 1. Therefore, Se; = S’~le; = u. On the other hand, equation
(A.27) implies that SS’ = I. This completes the proof of the claim. O

Proof of Theorem 4

I first prove a useful lemma about the spectral radius of autocorrelation matrices when the true
process is stationary ergodic:

Lemma A.2. For a stationary ergodic process with autocorrelation matrices {C;};, the spectral
radius of autocorrelation matrices satisfies p(C;) < 1 for anyl with the inequality strict forl = 1.

Proof. Let A; denote an eigenvalue of C; largest in magnitude and let u; denote the corresponding

B
eigenvector normalized such that uju; = 1. Define the process wt(l) = uT

. . . 1 . . . D .
stationary ergodic, so is a)lf ) for any /. Furthermore, since Iy is non-singular, the process wt( ) is

¥: € R. Since y; is

non-degenerate for any /. I first show that A; is the autocorrelation of the process wt(l) at lag [.
Note that

W D7 Ry 0R = R, o (LI R
Elw, wt—l] —ulro [E[yty[_l]l“o ul—ulFO 1“11“0 ul_ull“o — FO u = u,Ciu; = Ay.

Furthermore,
1

-1 -1 a4
[E[a)t(l)wfl)] = w Ty E[yy/ 1Ty u = wT? Tol'y” wy = wjuy = 1.

Therefore, since wlfl) is stationary,

Elo?0?]

p(C) = | = ——L <1

(D) (D
[w; w; ]

Next, toward a contradiction suppose that p(C;) = 1. Then wt(l) is perfectly correlated with
(1 (1

-1 t
degenerate. O

w, 7, and so, with wﬁ} for every [, contracting the fact that w, ~ is stationary ergodic and non-

I can now prove the theorem.
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Proof of Theorem 4. Define

C(a,n) = Z a'n™'c,. (A.30)

7=1

Then

a?(1-m? 2(1-n(-a’n
1 - a?n? 1-a?n?
where Amax(C(a, n)) denotes the largest eigenvalue of C(a, n). To simplify the exposition, I prove

AmaX(Q(a’ T])) = - Amax(c(ar 77))» (A.31)

theresultunder the assumption that the largest eigenvalue of C(a, n) is simple at the point (a*, n*)
that maximizes Amax(C(a, n)).*® The partial derivatives of Amax(Q(a, 7)) with respect to a and 5
are given by

Omax(Q(a,m) _ —2a(1-m)* _4dan(l - n)?

Amax(C)
s @)’ ()
2(1-n( -a®n) , oC
* 1 - a’n? umax(c)ﬁumax(c); (A.32)
0Amax(Q(a, n)) _ 2a%(1 -n)(1 - a?n) i 2 (1 +a*n®+a*(1-4n+ 1]2)) A (€)
on (1 _ a2n2)2 (1 _ a2n2)2 max
20-p(-d’p) , . 0C
* 1— a’n? Umax(C) an Umax(C), (A.33)

where umax(C) denotes the eigenvector of C with eigenvalue Anax(C), normalized such that
Unax(C)umax(C) = 1, and

oC
- Z TaT_ITIT_IC-[,

iIC
— =) (1-Da'n"2¢,.
on TZ:;
Note that
, oC , oC

for any a and 1.

Leta* and n* bescalarsinthe [-1, 1] and [0, 1] intervals, respectively, that maximize Amax(Q(a,
n)). I separately consider the cases n* = 1 and n* < 1. If * = 1, then B = 0 in the representation
in the proof of Theorem 3 and so the pseudo-true 1-state model is i.i.d.

In the rest of the proof, I assume that n* < 1 and show that this implies a* # 1—by a similar
argumenta* # —1. Toward a contradiction, suppose a* = 1. Setting a = 1 in the partial derivatives
of Amax(Q(a, n)), I get

0Amax(Q(a, n))
oa

2

_2(1-n)
- 2

a=1 (1 - 1]2)
43The argument can easily be adapted to the case where the largest eigenvalue of C(a*,7*) is not necessarily simple by replacing the

gradient of Amax (C(a, n)) with its subdifferential and replacing the usual first-order optimality condition with the condition that the zero
vector belongs to the subdifferential.

) oC
[—1 = 20Amax(C) + (1 - nz)umax(C)gumax(C) ,
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0Amax(Q(a, n))
on

_2(1-n)?

=1 (1-12)°

) oC
1 = 2Amax(C) + (1 — nz)umax(@%umax(m ,

where C = C(1,n) and its partial derivatives are computed at a = 1. Multiplying the second
equation above by 1 and subtracting from it the first equation, I get

0Amax(Q(a, n)) _ 0Amax(Q(a, n))

677 a=1 da a=1
—n)2 0 0
= —?il Z))Z 1+n+(1-n) (Tluﬁlax(c)ium‘“(c) a ur'naX(C)éumax(C))}
-1
)2
) % [1+7- (-1 Amax(C)]

where in the second equality I am using identity (A.34). Therefore,

0Amax(22(a, 1)) 0Amax(Q(a, n)) 2(1 - 1])2 )
da a1 on azl‘m(“"—ﬂ—n Mmax(C(l,n))).
Note that
(o] 00 1
Amax(C(1,m) < > 0 Amax(Co) < Y 0™ = i
=1 =1

where the inequality is by Lemma A.2. Therefore,

20-n? 2(1-n)*
(1-n2)° (1-n2)°

On the other hand, by the optimality of a* = 1 and n* < 1,

(1+7= (1= ) max(C(1L,m)) < (L+n-1-m)=0.

0Amax(Q(a, n)) <0.
on a*=1,n=n"
Thus,
0Amax(Q(a, n)) <0,
oa as=1,n=n*
a contradiction to the assumption of optimality of a* = 1 and n* < 1. This proves that a* < 1 and
establishes the stationarity of the 1-state model with a = a* and n = n*. O
Proof of Theorem 5

Let A denote the eigenvalue of C; largest in magnitude.** If p(C;) = 0, then p(C;) = 0 and so
p(C;) = O0forall 7 > 1. Since C, are symmetric matrices, this implies that C; = O forall 7 > 1.

Therefore,
a?(1 - n)?

A Q(a, = - .
max( (a 77)) 1 _ aznz

44The proof does not assume that A is unique. I allow for the possibility that A and A’ = -1 are both eigenvalues of C; and |A| = || = p(Cy).
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The above expression is maximized by setting (1 — n)a = 0. Therefore, by Theorem 3, for any
pseudo-true 1-state model, E? [y.+5] = a*(1-n)gp’ 320 a"n"y,—r = 0. Onthe otherhand, if p(C)) =
0, then A = 0. Therefore, the theorem holds in the case p(C;) =0

For the rest of the proof, I assume p(C;) > 0. Define

2 _ )2 _ —
f(a, ) =_ (1 77) + 2(1 77)(1 a 77) Z |a|‘[ T— lp(cl)‘r

— a2
_ a2(1—17)2 +2(1—n)(1—a n) Ialp(Cl)
1 - a%n? 1-a?n?>  1-nlalp(C1)’

where in the second equality I am using the fact that p(C;) < 1. The function f(a, n) has two
maximizers given by (a*,7") = (-p(C1),0) and (a*,77") = (p(Cy), 0) with the maximum given by
f* = p(C1)%. 1establish the theorem by showing that Ama(Q(a,n)) < f(a,n) for all a and 7,
Amax(Q(A,0)) = F(4,0) = 7, and Amax(Q(=1,0)) < f(=1,0) = f with the inequality strict if
—A is not an eigenvalue of C;. This establishes that (a*,n*) = (A,0) is the unique maximizer of
Amax(Q(a, n)) if =1 is not eigenvalue of C, and that (a*,n*) = (1,0) and (a*, n*) = (-A,0) are the
only maximizers of Apmax(Q(a, n)) if A and —A are both eigenvalues of C;.
As the first step in doing so, I show that for all 2 and ¢,

Amax (a"Cr) < |al"p(C1)",
by considering four disjoint cases: If a < 0 and Ain(C;) < 0, then
Amax (a"Cr) = a"Amin(Cr) = |a]” [Amin(C)| < al"p(C1)".
Ifa < 0and Apin(C;) > 0, then
Amax (a"Cr) = a"Amin(Cr) <0 < |a|"p(C1)".
Ifa > 0 and Apax(C;) < 0, then
Amax (a'Cr) = a"Amax(Cr) < 0 < |a|"p(C1)".
Finally, if a > 0 and Anax(C;) > 0, then
Amax (a"Cr) = a"Amax(Cr) = |al” [Amax(Cr)| < |al"p(C1)".

S0 Amax (a*C;) < |a|"p(Cy)T regardless of the values of a and the eigenvalues of C;. Therefore,
A ia‘[n‘r—lc < inT—lA (aTC ) < in‘[—llaltp(cl)‘r — |a|p(cl)
max )= max L) = - nlalp(Cy)’
7=1 7=1 =1

where the first inequality is using the fact that n™! > 0 for all 7 > 1 and Weyl’s inequality.

Consequently,
Amax(Q(a,m)) < f(a,n) < p(C1)°
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for any a, n such that (|a|, n) # (p(Cy),0).
I finish the proof by arguing that Apnax(Q(A,0)) = p(C1)? and Ama(Q(=1,0)) < f(=1,0) =
p(C1)? with the inequality strict if —A is not an eigenvalue of C;. To see this first note that

—a? + 2alymin (C if a<0,
Amax(Q(a, 0)) = —a* + 2Amax(aCy) = min(C1)
~a® +2aAmax(C1) if a>0.
Thus, 2
max Amax(Q(a,0)) = { min( 1)2 . [Amin(C1)| > Amax(C1)
ae[-1,1] Amax(C1) if [ Amin(C1)| < Amax(C1),
and
{Amin(C1)} if  [Amin(C)| > Amax(C1),
arg MaX Aumax((@0)) = 1 (min(C1): Amax(C)} 3 Amin(C)| = Amax(C)
{Amax(C1)} if |Amin(C1)| < Amax(C1).

Since C; is a symmetric matrix, the eigenvalues of C; are all real and so
—Amin(C1) if  [Amin(C1)| > Amax(C1),
p(C1) = .
/lmax(cl) if Mmin(Cl)' < Amax(cl)-
This establishes that, in any 1-state constrained rational model, n = 0, a = A, and

Q(a,n) = —A*I + 2AC;.

By Theorem 3, u is an eigenvector of Q(a, n) with eigenvalue Amax(Q(a,n)) = A2 and u'u = 1.
Therefore, u is also an eigenvector of C;, but with eigenvalue A. This completes the proof of the
theorem. O

Proof of Theorem 6
I first prove a useful lemma, which offers a canonical representation of matrices C;:*

Lemma A.3. Suppose {C;}; are the autocorrelation matrices of an n-dimensional stationary er-
godic process that can be represented as in (6) with f; € R™. There exists a convergent m X m
matrix F with ||F||, < 1, and a semi-orthogonal m x n matrix H such that

(A.35)

Conversely, for any positive integers m > n, m X m convergent matrix F with ||F|l, < 1, and

semi-orthogonal m x n matrix H, there exists an n-dimensional stationary ergodic process with

autocorrelation matrices {C;}; of the form (A.35), which can be represented as in (6).*°

45Versions of this result have previously appeared in the control and time-series literatures. For early examples, see Ho and Kdlman (1966)
and Akaike (1975).
46Matrix H € R™" is semi-orthogonal if H'H = I, where I denotes the n x n identity matrix.
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Proof. Recall that I have assumed (without loss of generality) that the true process is non-
degenerate, i.e., E[y;),] is invertible. Invertibility of E[y;y,] requires m > n, an assumption I
maintain throughout the first part of the proof. Given representation (6), the autocovariance

matrices are given by
I, =Eny | =HFE[fiuf. | H=HFVH,
where V = E [ f;f/] is the unique solution to the following discrete-time Lyapunov equation:
V =FVF +3. (A.36)

Therefore,
. o (H'FWVH+HVF'H
C;=(H'VH)? 5

(H'VH)? .

Matrix V is positive semidefinite; it is positive definite if the representation in (6) is minimal.*’
Without loss of generality, I assume that that is the case. Define

W = (H'VH)? H'V?,
F=V7FV?,

Then
(A.37)

,(F+F!
C=H H.

Note that since F is a convergent matrix, so is . Substituting F = VZFVzin equation (A.36), I get
1-FF =VZ3VZ.

Therefore, since X is positive semidefinite, the spectral radius of FF" is weakly smaller than one.
This implies that ||F||2 < 1. On the other hand,

H'H=(H'VH)?Z H'VH (H'VH)? =1.

That is, H is a (full-rank) semi-orthogonal matrix. This proves the first part of the theorem.

I next argue that given a convergent matrix F € R”*™ with ||F||, < 1 and a semi-orthogonal
matrix A € R”¥" with m > n, there exists a stationary ergodic process such that the correspond-
ing autocorrelation matrices are given by (A.37) with F = Fand H = H. Given any such Fand H, let
F=F,H =MH,and X = I - FF. The solution to the Lyapunov equation (A.36) is then given by V = I.
Therefore, F = F = Fand H = [(’(1) = = [, where in the last equality I am using the assumption
of semi-orthogonality of H. By construction, then the autocorrelation matrices of the process (6)
with matrices F, H, and X as above are given by (A.37) with F = Fand H = H. O

47See, for instance, Akaike (1975).
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Proof of Theorem 6. [ assume without loss of generality that the representation in (6) in minimal.

P+
C,=H H,

By Lemma A.3 then,

2

where H’ = (H’VH)_71 H’V%, F= V_TlFV%, andV =E [ftft’] is the variance-covariance of f;. Note
that since the variance-covariance of f; is normalized to be the identity matrix, V = I, F = F,
and H = H. Recall that vector y; does not contain any redundant observables (which are linear
combinations of other observables). This assumption, together with the assumption that H is a
rank-m matrix, ensures that H is an invertible m x m matrix. Therefore, by Lemma A.3, H = H is
an orthogonal matrix. Thus,

":l I}:/l ﬂ:l ﬂ:/l Fl F/l
jers o) )

2 2

for all 1. But since the spectral radius of a symmetric matrix equals its spectral norm,

Fl+ F! Fl 4+ F! | TR T
= < —||F —‘F":Fl SFZ. A.
e =3I g, = e < v (239
Therefore,
p(C) < Il
On the other hand, by equations (A.38) and (A.39),
F+F
p(Cy) = H =IFll2,
2
where the second equality is by assumption. Thus,
p(C) < [IFlly = p(C)',
and the process is exponentially ergodic. O

Proof of Proposition 1
[ first state and prove a useful lemma:

Lemma A.4. Suppose C, has a unique and simple eigenvalue A with |A| = p(Cy) > 0 and let u
denote the corresponding eigenvector normalized to haveu’u = 1.*8 Ifu’Cou > p(Cy)?, then the
agents’ forecasts in any pseudo-true 1-state model are given by (4) with a tuple (a*, n*, p*, q*) such
thatn* > 0.

Proof. Define C(a, n) as in the proof of Theorem 4. As in the proof of Theorem 4, I present the ar-
gument under the assumption that the largest eigenvalue of C(a, n) is simple at the point (a*, n*)

48The assumption that A is unique and simple is not necessary for the result. The result generalizes to arbitrary matrices C; with p(C1) # 0
by replacing v’ Cou with the maximum of u’Cou over all unit-norm eigenvectors u of C; with eigenvalues A such that |A| = p(Cy).

57



that maximizes Amax(C(a, n)).* 1 start by proposing a candidate solution to problem of maxi-
mizing Amax(Q(a, n)) at which n = 0 and argue that the candidate does not satisfy the necessary
first-order optimality conditions. Setting n = 0 in equations (A.32) and (A.33), I get
0Amax(Q2(a, 1))
oa

0Amax(Q2(a, n)))
on

= —2a + 2u],,(aC)Crumax(aCy),
n=0

=2a? - 2(1+ az)ﬂlmax(aCl) + 2a2ur’nax(aC1)C2umax(aC1),
n=0

where I am using the fact that C = aC; when n = 0. Any solution to 0Amax(Q(a, n))/dal,—o
0 satisfies @ = A, where A = Anin(C1) if Amax(C1) < 0, A = Amax(C1) if Amin(C1) > 0, and A
{Amax(C1), Amin(C1)} otherwise. Evaluating 1.1 (Q(a, n)) ata = A and n = 0, I get Apmax(Q2(A, 0))
A2. Therefore, for the solution (a,n) = (A,0) to the first-order condition dAmax(Q(a, n))/da = 0

to be a maximizer of Amax(Q(a, 1)), it must be the case that A is the eigenvalue of C; largest in

m

magnitude and u = umax(aCy) is a corresponding eigenvector normalized such that u’u = 1.
Substituting in the expression for dAmax(Q(a, 1)) /0n|,-0, I get

677 a=A,n=0

= 20(C1)? (W Cou = p(C1)?) > 0,

where the inequality follows the assumption that u’C,u > p(C;)2. This implies that the pair n =
0 and a = A does not constitute a local maximizer of Ahax(Q(a, n)). Since this pair is the only
candidate with n = 0 that satisfies the first-order conditions, in any pseudo-true 1-state model,
n > 0. This establishes the lemma. O

Proof of Proposition 1. Let o2 denote the variance of y;. By the argument in the proof of Lemma
A.3, the lag-/ autocorrelation of y; is given by

where F = VZFV2, H' = ([I-I]’V[H])_71 H'Vz, and V is the solution to the discrete-time Lyapunov
equation (A.36). Since F and X are diagonal matrices, so is V. Therefore, F = F. On the other
hand, by Lemma A.3, H is a semi-orthogonal matrix. Therefore, H'H = 1, and so,

m

l

C = Z wia;,
i=1

1
where w; = Hl.2 >0, >, w; =1, and q; is the ith diagonal element of F. That is, Cll is equal to the
weighted /-norm of the vector (a, ..., a;;) with weights w = (wy, ..., wy).
Since the representation in (6) is minimal, w; > 0 forall i, and all @; are distinct. If that were not

the case, there would exist some 1 < m such that C; = ¥, ;@' for some non-negative weights

495ee footnote 43 for how the argument can be generalized.
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i; that sum up to one and some &; € (-1, 1). Consider the process P represented as in (6) with
F = diag(ay,...,@m), €& ~ N(0,2), X =1-FF,andH = o diag(\/w_, ..., VD). By the argument
in the proof of Lemma A.3, P has the same autocorrelation matrices as P. Moreover, both P and
P are mean-zero and normal and both have variance 2. Therefore, P and P are observationally
equivalent, a contradiction to the assumption that the representation I started with was minimal.

Next, note that, by the generalized mean inequality, Ci > C) forall I > 2, where the strictness
of the inequality follows the facts that w; > 0 for all i and all ; are distinct. In particular, u’'Cou =
Co > C12 = p(C1)?, where I am using the fact that y, is a scalar. Thus, by Lemma A.4, n* > 0. To see
why n* < 1, recall that by Theorem 3, the (a*, n*) pair maximizes

Q(ar 77) ==

a*(1-n)? 2(1-nQQ-a’n < 0
T 2o + - a2 Z a'n” C;.
7=1

ButQ(a,1) =0 < Cl2 = Q(Cy, 0). Therefore, n* = 1 cannot be part of the description of a pseudo-
true 1-state model. Finally, a* € (1, 1) by Theorem 4. The proposition then follows Theorem 3 by
noting that g*p*’ = 1 whenever y; is a scalar. O

Proof of Theorem 7

I first find a transformation y; = Ty, of the vector of observables such that T is invertible and
ol -1
I 1T} is diagonal. Since matrices I and I'; are both symmetric and Iy is non-singular, I'y and
I'1 can be diagonalized simultaneously by a real congruence transformation. Note that since I';
is symmetric,

N S N R
1“11“0 = EI’O (1“1 +1“1) FO = C1
is symmetric. Therefore, there exists a diagonal matrix A, with the eigenvalues of C; as its diago-

nal elements, and an orthogonal matrix U such that C; = UAU’. Define
;1
T=UTZ.

It is easy to verify that TTyT’ = [ and TT, T’ = A. The autocovariance matrices of y; = Ty; are
given by fl = E[y,y/_,] = TIyT". In particular, fo =1,T; = A, and so 1:(;71 flf(?l = A. To simplify the
exposition, in the rest of the proof I assume that the eigenvalues of C; are distinct. The argument
when C; has repeated eigenvalues is similar but slightly more involved.

I next find the pseudo-true m.i.o. d-state models given the vector of observables y; and then
transform the model back using the linear invariance result to find the pseudo-true m.i.o. d-state
models given observables y;. By Lemma A.1, the KL divergence and the agents’ forecasts can be
represented in terms of matrices M, N, and D of the transformed model as in (A.13) and (A.19).
LetS = féﬁ = N and use the restriction to the set of m.i.o. models to set D = D = (I 0)’. The
expression for the KLDR in (A.13) then simplifies to

1 1 _ 1 — _
KLDR(0) = — 5 logdet (88') + 5 tr(§'S) ~ tr (MD's'asD) + S (MD's'SDM’) + constant.
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I begin by ignoring the constraint that M is a convergent matrix and showing that the solution
to the relaxed problem is also a solution to the original problem. For the relaxed problem, the

necessary first-order optimality conditions with respect to S and M are given by

I=8'S—SANSDMD’ — S’ASDM'D’ +S’'SDM’'MD’, (A.40)
D’S’ASD = MD’S’SD. (A.41)

I proceed by first characterizing the set of all solutions for S and M to these optimality conditions.
Given any such solution, the KLDR is given by —log det (SS’) /2 + constant. Therefore, if there are
multiple solutions to equations (A.40) and (A.41), the optimal solution is the one with the largest
value of logdet (SS’).

In the next step, I write S = (S; Sz) where S; € R and S, € R ("9 Equation (A.40) then

can be written as
I 0)_ $iS1 5182\ _(SjAS1 SjAS M 0) _(S]AS S{AS, MO0
(0 1) = 18181 8582 ~\sias sias:/ {0 o] T\s;AS S;AS:) o0 o

N Sisl 5]',52 M'M 0
8251 5282 0 0

_ (sisl sisz) _ (s;Aslg 0) _ (s;Aslz\z' 0) .\ (s;slAi'Az 0) '
S5 5582) \s;asiM o) \s;asiM7 o) TS iM'M 0
This implies
S;S1 — S{AS1M — S{ASIM’ + S]S1M'M =1, (A.42)
S;S2 =0, (A.43)
SyASIM + S;ASI M = 0, (A.44)
8385 =1. (A.45)

Likewise, equation (A.41) can be written as
S{AS; = MS]S;. (A.46)
Equation (A.45) implies that S, is a full-rank matrix. On the other hand, since §’S = (51081 (I))

is invertible, S is also a full-rank matrix. Define X = §;S; and Z = S{AS;. Note that since A is
invertible and S; is full rank, X and Z are both invertible. On the other hand, since S; and S, are
both full rank, (A.43) implies that the image of S is the same as the null space of S;. Therefore,
equation (A.44) implies that ASIZ\7 + ASIZ\7 " = §1Y for some matrix Y, and so,

ZM +ZM' = XY. (A.47)
Moreover, equations (A.42) and (A.46) can be written as

X-ZM-ZM +XM'M =1, (A.48)
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7 = MX. (A.49)
Solving for M from (A.49) and substituting in (A.48), I get
X=1+7ZX"'Z. (A.50)

Therefore, since X and Z are full rank, X is a real symmetric matrix with all its eigenvalues strictly
larger than one. Combining (A.47) and (A.48), I get

X-XY+XMM =1,

and so
Y=I+MM-X"

Since the eigenvalues of X are strictly larger than one, Y is a positive definite, and thus invertible,

matrix. Since A is symmetric, Z is also symmetric. Therefore, (A.47) implies
M+M' =Z7'Xy.
Since X, Y, Z are all invertible, sois M + M". Consequently,
— -1
AS1 = S1Y (M + M') .

Since Y and (M + M ")~1 are full rank matrices, this implies that the image of S; is an invariant
subspace of A. Therefore, the image of S; is spanned by d standard coordinate vectors.
Without loss of generality, assume that the elements of y; are ordered such that the range of S;

is spanned by the first d coordinate vectors ey, .. ., e4. In such coordinates, S; can be written as
S
()
where S;; € R%* is an invertible matrix. Therefore,

X =8]8 = S{,S11,
Z = S{;A1S11,

where A = (1})1 /?2), and A is a d x d diagonal matrix. Substituting in (A.50), I get

-1
811811 =1+ S{1A1511 (511511) S{lAlsn =1+ S{IA%SH,

and so,
Si(1-n3) su=1.

Multiplying the above equation from left by Si; and from right by S;7 (I — A7)™!, I get

susj, = (1- Af)_1 . (A.51)
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Therefore,
logdet (SS’) =logdet (S’S) =logdet (S;S1) = logdet (S;,;S11) =logdet (511S;;) = —logdet (I —A%) .

Thus, minimizing the KLDR requires the range of S; to be spanned by eigenvectors py, ..., pg of
A corresponding to the d eigenvalues of A largest in magnitude.
It only remains to compute matrices A, B, Q, R. Note that matrix § can be written as

_(S11 Si2
S_(O 522)'

Therefore,
(X 0) _srs = (SpSn ) SnSie )
0 I S 511 512512 + 522822
Since S1 is an invertible matrix, the above equation implies that S1> = 0 and S;, S22 = I. Therefore,

since Sz; is a symmetric invertible matrix, S5, =S, 1 .Ican now find 4, B, Q, R:

A=M =S;;M8), 7

1
ro-172 _ -1
D'sT'TE = (S} 0),
Q=I-M(I-D'D)M’ =1,

R=S"1'(1-DD)S!= (8 (I)) .

oo 0
Il

I can use the above expressions to compute the forecasts of y;. Equation (A.19) implies
=~ s 71 ’ / - =~ A} 0) -
Ef [Jeas] = (51(1, ) SALSH T (S 0 = ( 0 0) Vi-
Using y; = Ty, for all ¢ in the above equation, I get
A O A} O
EO[ypss] =T (0 0) Ty, = U(O O)Ul"zyt—l“ UDUCSUDUFO Ve

Using the definition of U, I can simplify the above expression to
d
Ef [Yees] = ZFZ AS“T() Yoo

where 1; the ith largest eigenvalue of C; and u; is the corresponding eigenvector normalized such
that u/u; = 1. The theorem then follows the definitions of a;, p;, and g;. O

Proof of Theorem 8
-1
Setting M =a, D =+/1 -ne;,and N = [/ Sin equation (A.20), I get

1
IS,

1
Var’(y) =I? [I +

T2 [az(l —-n)? - (1 - 2a’n+ aznz) )L] uu’

where a, 7, 1 = Amax(Q(a,n)), and u are as in Theorem 3. Substituting for Anax(Q(a, n)) from
equation (A.31) in the above equation, I get

2(1-n)(1 - a®n)
(1-a?)(1-a?n?)

1 1
Var*(y,) =TZ I+ (a2(1 —n) —(1-2a’n+ aznz)/lmaX(C)) uu'|TE.  (A52)
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Let a* and n* be scalars in the [-1, 1] and [0, 1] intervals, respectively, that maximize Amax(Q(a,
n)). I separately consider the cases n* = 1 and n* < 1. If p* = 1, then the right-hand side of
equation (A.52) is equal to I.

Next suppose n* < 1. By the argument in the proof of Theorem 4, the first-order optimality
condition with respect to a must hold with equality at a = a* and n = n* < 1. Setting A max(Q(a,
n))/0a = 0 and multiplying both sides of the equation by a*, I get

2a*2(1 _ n*)z . 461*21’]*(1 _ n*)Z
(1 _ a*zn*Z)Z (1 _ a*zn*Z)Z

_2(-n)A-a”n)
1-— a*Zn*Z

Amax(C)

2(1-n)(1-a*?y) , , aC
1-— a*zn*z n umax(c)%umax(c)- (A.53)

Amax(C) +

Setting * = 0 in the above equation, I get a*? = Apax(C). Setting a*? = Amax(C) in equation (A.52)
then establishes that Var*(y;) = Iy in the case where n* = 0.

Finally, I consider the case where n* € (0,1). Then additionally the first-order optimality
condition with respect to n must hold with equality. Setting 0Amax(Q(a, n))/0n = 0, multiplying
theresulting equation by n*, solving for n*u/,,.(C) % Umax(C), and substituting in equation (A.53),
I get

20*2(1 _ n*)Z .\ 4a*2n*(1 _ 1’]*)2
(1 _ a*zn*2)2 (1 _ a*zn*2)2
_2(1-n)(1-a’y)
1= a*Zn*Z

Amax(c)

202y (1= n")(1 - a*y")
(1 _ a*zn*Z)z
20 (1 +atn? ya?(1 - 4n* + 77*2))

+ (1 B a*zn*z)z Amax(C).

/lmax(c) -

Simplifying the above expression leads to

Combining the above identity with equation (A.52) implies that Var*(y,) = Iy and finishes the

proof of the theorem. O

Proof of Theorem 9

Define T as in the proof of Theorem 7 and let y;, = Ty;. Then by the argument in the proof of
Theorem 7, Ty = I and T; = A, where A is a diagonal matrix with the eigenvalues of C; as its
diagonals. Furthermore, any pseudo-true m.i.o. d-state model 6 = (4, B, Q, R) given observable
¥ satisfies

A= SilAlsil_l»
B=(s;{ 0),
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M QL

=1,

(00

=(o 7).

where Sy; is d x d matrix that satisfies $115], = (I- A%)_l, and A; is a d x d diagonal matrix
containing the d largest eigenvalues of C;. On the other hand, equation (A.20) implies

v < 3 00 (4) B (%) Ssiat snsia s (st 01+( )
7=0

(0 o +(0 7)1

Therefore, Var®(y) = T-'Var’ ()17t = (1'1)"! = O

Proof of Proposition 6

I first show that in a linear equilibrium r” and p; can be written as linear functions of %;, 7;,
and i;. Suppose r/' and p; can be written as linear functions of %;, 7;, and i;. Then by the linear
invariance result, agents’ forecasts are the same whether they observe vector f; = (%, 7, iy)’ or
vector y;, consisting of all the observables. Furthermore, since shocks follow an exponentially
ergodic process and f; is an invertible linear transformation of the vector of shocks, f; follows an
exponentially ergodic process as well. Therefore, by the linear invariance result and Theorem 5,

. 1-6. s o . A
Etl Z IBS ( ﬁxt+s -0 (lt+s - rtn+s) - EJTHS)] = YxZt» (A.54)

= Y, (A.55)

L~ . 1-6,
Etl Z(ﬁé)s (th+s + Tan + ,U«t+s)
| s=1

where y, and y, are constants that are to be determined in equilibrium, 2, = p’f; is the agents’
time-r estimate of the subjective state, and p = (py, px, pi)’ is the relative attention vector. Sub-
stituting in (17) and (18) and collecting terms, I get

O'rtn :)2;4'0';[ - 'Yx (px-’zt"'pnﬁt*'piit) , (ASG)
I-l'l’ = ﬁ'[ - KXA'[ — ’y;-[ (px)?t + Pnﬁt + pii:[) . (A57)

These expressions verify my guess that r/” and y; can be written as linear functions of %;, 7;, and
I

Inextfind constants y, and y,. Using the linear invariance result to substitute for o7/% ; and g4
from the above equations in (A.54) and (A.55) and using Theorem 5 to characterize the resulting
subjective expectations, I get

L

_Bntﬂ 1-ap

dﬁ (_6anqu + (1 - 6Y7rpn)qn - 5%1]91'6]:') 3
1-apé o

(& (- A 1- - )dx = BYePidi
AN ( Bt (1)~ % )]:a« PYeP)ds = (0 + PYepx)dx ~ PYePidi) ,
=1

LS

e 1-6 .
Etl Z (th+s +— 5 = T4s + Ut+s)
| s=1
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where a is the perceived persistence, and g = (qx, g, qi)’ is the relative sensitivity vector. The
above equations give two linear equations for the two unknowns y, and vy;,.. The solution is given

by
Yx = a(qx — 0qy),
Yz = aPqn,

where I am using the fact that p’q = 1. Finally, solving equations (A.56) and (A.57) for x; and 7;
results in equations (19) and (20). O

B Weighted Mean-Squared Forecast Error

The agents’ time-f one-step-ahead forecast error given model 6 is defined as

e (0) = Y1 — Et‘9 [Vi+1],

where EY denotes the agents’ subjective expectation conditional on their information at time ¢
and given model 0. The weighted average of mean-squared forecast errors given the symmetric
weight matrix W € R is defined as

MSEw (6) = E [e/(0)We(6)] .

Instead of assuming that the agents uses a model that minimizes the KLDR, one can assume that
the agents make their forecasts using the model 6 that minimizes MSEyy (6) for some matrix W.

Using the mean-squared forecast error as the notion of fit has two disadvantages relative to the
KL divergence. First, the choice of matrix W introduces additional degrees of freedom when the
observable is not a scalar. Second, the minimizer of weighted mean-squared errors is in general
not invariant to linear transformations of the vector of observable (unless if the weight vector W
is transformed accordingly).

Let 6 denote a pseudo-true d-state model, and let 2; denote the implied subjective variance

of y;+1 conditional on the agents’ information at time ¢.
Proposition B.1. IfW is set to be the inverse of 5%, then 0* € arg mingee, MSEy (0).

The proposition establishes that mean-squared error minimization coincides with KLDR
minimization under the appropriate choice of the weighting matrix w.

C Details of the NK Application (For Online Publication)
C.1 Forward Guidance

By the linear invariance result, agents’ expectations respect any intratemporal linear relation-
ships that hold in the equilibrium without forward guidance. In particular, by equations (A.56)
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and (A.57),
UEl*[rt’?q-s] =E" [Xr4s] + UEI*[it+s] — Yx (prl* [Xres] + anl* [Ares] + piEl* [it+s]) )
EY [peas] = ™ [itas) = KEY [frvs] = Yo (DB [Ras] + PaBY s + piE i1

Substituting in (17) and (18), I get

* [ 1- ~ » o , " > ,
Etl ﬁs ( ﬁxt+s -0 (lt+s - rtris) - _7Tt+s) = Etl Z ﬁsvfo.S R (C.1)
[ s=1 ‘B .B =1
Etl* i(ﬁ5)s (KJACt+s + —1 _ 57%t+s + ,Ut+s) = Etl* i(ﬁ5)sv;[ft+s , (C.2)
L s=1 0 s=1

where vy, v, € R3 are vectors that satisfy

; 1 . . R
vofe = E [(1 — BYyxpx) X — (0 + Byxpa) i — ,BYxpilt] )
7 1 A A 2
Unff = 5 [_5anxxt +(1- 57/7[’771)”1? - 5Yﬂpilt] .
On the other hand,
E} [firs] = Zpor gt o, 0T, (C.3)
where wr = (f/, its1, ..., lar)’ € R, 2, = EY[ fiss0)], and 2y, 0, = E¥[wr o) ]. Therefore,
Etl* Z SU;CfHSI = WJET‘UT’

[ s=1

E;* Z(IB(S)SUJ/IJCHS] = Yar0r-

[ s=1

where v, 7, w,r € R¥*T are vectors defined as

Vir = (Yep Vi Yixiy)' = 3 (Z ﬁszﬁwf) Zoror (C4)
s=1
r ’ r_ S s -1
Yar = (%f» Yriys oo Ynig) = Uy (Z(ﬂ6) Zfsz) ZwTwT’ (C.5)
s=1
and vy r = (W, Yar, Wi)’ a0d Y p = (W, Won, W)’ are vectors in R3. Therefore,
- -
" 1-6. 2 (2N , s
Etl ﬂs ( ﬁxt+s -0 (lt+s - r;:.s) - _”t+s) = wxfﬁ + Z Wxigle+s)
| s=1 ﬁ ﬁ s=1
[ & 1-6 L
Etl* Z(ﬁ5)s (KJACHS + Tﬁns + ,Ut+s) = U’;Tfft + Z Wi lras-
| s=1 s=1

Substituting in equations (17) and (18), I get

T

A 2 n A A 2 2

Re==0 (i = 1) + xRt + Yn Ay + Yily + E Wi lr+s)
s=1
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T
Ty = KXp + Wt + YnxXp + Ynn Tl + Yrilp + Z Yri, Itts.

s=1
The above equations can be solved for %; and #; to get,
T
~ 0 n A
Xt = Qxjly + Qxply + Axp b + Z Axi lr+s)
s=1
T
iy = il + armrtn + Anp s + Z Agi Itvs
s=1

for some constants that depend on the v'’s.
It only remains to compute v, r and y,r. I first compute the elements of X, ,,. By the law of
iterated expectations and Theorem 5,

EY[fisf/1 = E¥ [EV[fussl f1f)] = ¥ [a’qp’fif}] = a’qp'To.
Next consider elements of the form E'*[ fi,sir..]. If s < 7, then
El* [ﬁ‘+sit+‘r] = El* [ft+sEl*[ft+T|ft+s]] = El* [ft+sar_sqip’fl+s] = ar_sqiEl* [.ﬁ+sf;:;_s] p= aT_SCIiFOP-

Likewise, if s > 7, then

EY[frasirre] = EY [iac EY [fras| five]| = BV [€)fiar@® TGP’ fiaz| = @° G’ E™ [ firsfius| € = a* "qp'Toe;,
where e; is the coordinate vector that selects element i; of vector f; = (6;, s, i;), i.e., i; = e]f;.
Finally, if s = 7, then

E" [ﬁ+sft+r] = El*[ﬁﬂft/ﬂei] =Toe;.
I next compute the elements of Z,,,,, . First, note that

E™[fif/1 =Ty,
and
El* [ﬁ,fﬁr] — El* [ﬁlEl*[ft#rlft]] — El* [arqip,ftﬁl] — a‘rqip/ro.
Finally, if 7 < 7/, then
El*[ft+rit+r’] =E" [ft+TEl*[it+T’|ﬁ+T]] = E™ [e;ftwar’_rqip,ftﬂ] = dT’_TCIiP'Foei,

and
EY[irsriree] = e]EY [frscflir]ei = €/Toe;.

Putting everything together, I get

o aqilop a’qTop ... a'qTop
aq,-p’l“o elfl“oe,- aqip’l“oei . ClT_lqip’F()ei
Zorwr = azqip’l’o aqip'Toe; elfl“oe,- e ClT_Zqip'F()ei . (C.6)
aqu‘p'l_'o aT‘lqip’Foei aT‘ZqipToei - elffoe,-
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and

(asqp’l"g Tve; agqilop azqil“op aT‘lq,-FOp) ifs=1,
(a*qp'To a*~lqp'Toe; ... aqp'Toe; Toe; aqilop ... a'*qTop) ifl<s<T,
Z S
fewr (a*qp'To a*lqp'Toe; ... aqp'Toe; Toe;) ifs=T,
(a*qp'To a*lqp'Toe; ... a*Tqp'Toe;) ifs>T.
(C.7)
Therefore,
Zﬁszfsz
s=1
00 &) -1 00
Z(Z(dﬁ)sqp'ro ﬁroei+zds_1ﬂsqp'Foei ZGT_S,BSCIiFOP"'ﬁTFoeH Z as_TﬁquToei)
s=1 s=2 s=1 s=T+1
, 2 3 Ta_aT T+, T .
= (afzzﬁro ﬁroei + aﬁﬁ’;/l;oel a,BCIiFOP +,52FOei + aﬁﬁ’;[l;oel . (a' B 5_2)%%}9 +'BT1"'Oei + ap 1_Q{fﬁr0€t
Likewise,
N dqp'Ty 8)2qp'Toe; "B6—(B6)"a)qiT 8™ gp'Toe
DO Ty = (BT porye; + WO (P OGN 4 (5) T 4 WU T0er)
s=1

Given the expressions for X, ;, 2 e B L0 and 252, (B6)°2 s, w,, one can use (C.4) and (C.5) to
find w7 and v, .

C.2 Estimation

I choose the variance-covariance and lag-one autocovariance of s; = (i, /', us)’ to match the
variance-covariance and lag-one autocovariance of f; = (&, 7y, i;)’. The estimated values are

given by
10.9 16.4 0.200
Els;s/]=(164 321 -0.0827|,
0.200 -0.0827 0.0994
and

104 16.2 0.155
Els;s,_]=|150 307 -0.146].
0.302 0.129 0.0920.
Figure C.1 plots p(C;) in solid red and p(C; )’ in dashed green, where p(C;) denotes the spectral
radius of the lag-1 autocorrelation matrix of f;.°° The figure verifies that the estimated process is

exponentially ergodic, and so, the agents’ pseudo-true model is described by Theorem 5.

50The result would be identical if I instead used the autocorrelation matrices of s;. This is a corollary of the linear invariance result.
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Figure C.1. Test of Exponential Ergodicity

D Details of the RBC Application (For Online Publication)
D.1 Temporary Equilibrium

The (log-)linearized temporary-equilibrium conditions are given by

P = @ + ak, + (1 - a) iy, (D.1)
Wy = ar + alk, — i), (D.2)
o =ra; + (1 —a)r(i; — k), (D.3)
iy = %wt - ai(pat, (D.4)
= %yt - %ct (D.5)
kr = (1= 8)ki1 + 8iy1, (D.6)
ar = pas-1 + €, D.7)
Cr = Et[Cri1] — 0BE[Fria], (D.8)

where 7; denotes the first-order deviation of the rental rate of capital from its steady-state value
and the remaining hatted variables are log-deviations from the corresponding steady-state
values. The Euler equation (D.8) may not hold away from rational expectations if ¢; denotes
the aggregate consumption,; it is valid under arbitrary expectations only if ¢; denotes individual
consumption. However, the individual consumption Euler equation can be combined with
the households’ intertemporal budget constraint and the transversality condition to obtain an
aggregate consumption function that is valid under arbitrary expectations. The log-linearized
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household budget constraint is given by:

r(l-a)
a

f= (1= 6+1)k + 71+ (u?t+ﬁt)—%ét.

Substituting for labor supply in the budget constraint, I get

Ld-od+er . ((A-ar c).
ap W ( ao lc)

~ 1.
kt+l Ekt + T

where I am using the fact that 1 — § + r = g~!. Multiplying the above equation by ¢, summing
over t, and taking subjective expectations of both sides, I get

[o¢]

((1 —a)’" ) Zﬁ E;[Cras] = l Z (Et Fros] + (A=) + (p)rE[[ t+s]) .

ao@ ,B ap
Define
B (1-a)r c -1
X=(1—ﬁ)( w0 +E) )
[ = 1-a)(1+¢@)r
= o .

Then the above equation can be written as

(o]

1 . (o) oo
Z Giss] = g+ ) B Elfens] +¢ ) B Erlibiss]. (D.9)
s=0 s=0

s=0

On the other hand, the Euler equation implies

Ei[Cies] =Cr+ 0P Z E;[Frae].

=1

Therefore,

(o] oo (o] S
D B Ells] = ) e+ By, Y B Elfr]
s=0 s=0 s=1 =1
1 R [s¢] [s¢] R
e LACCOWNIE
1 BoO O o
=1 _IBCH' 1-p ;ﬁ E¢[7t4q]
Combining the above with equation (D.9), I get
G = gt + 10+ (= $0) 3 BBl + 1€ 3 BB [101ss) (D.10)
s=1 s=1

D.2 Constrained Rational Expectations Equilibrium

Suppose households use a pseudo-true 1-state model to forecast the wage and the rental rate of
capital. Define w; = (o, 7i;, Wy, 1y, ¢, i), fi = (kt, as)’yand & = (f/, w;)’. Letv € R8 be a vector that
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satisfies
v = (x — Bo) 1y + xCuy.

Then equation (D.10) can be written as

61’ = %]2[ + Xf[ + )(Cli/; + Z ﬁsU/Et[€t+S]'

s=1
Suppose & = T f; for some full-rank matrix T—I later verify that this is indeed the case. Then by
the linear-invariance result,

& = %’er + e+ x iy + ) BV TE [ fias]-

s=1
The households’ forecasts of f; when they use model 6 is given by (4). This can be written recur-

sively as

E[fiss] = @*(1 = n)Zuq, (D.11)
Z = angi +p'f; = anzi—1 + piks + pady, (D.12)

where Z; denote the households’ estimate of the subjective state at time ¢. Therefore,

. N . . ap(l- PN
ct=%kt+xn+x(wt+€(_—wm’”qzt- (D.13)

I guess that = 0 in equilibrium and later verify this guess. Solving for z; from (D.12) and substi-
tuting in (D.13), I get

6[ = (%'F'Yk) ]2[+Xft+xcwt+'}’aa[, (D14)
where
ap
- "Tap, D.15
Y= 7o s Taps (D.15)
a ’
Ya = 1 —ﬁaﬁv Tqpa,. (D.16)

Equations (D.1)-(D.5) and (D.14) can be solved for w; as a function of f;. This verifies the guess
that ¢; = (f/, /)’ = Tf; and leads to an expression for matrix 7. In particular,

I = Wk]et + Yady,
for some ;. and v,. Substituting for #;_; from above in (D.6), I get
k= (1—-6+6wi)ki—1 + 0wad_y. (D.17)

I can now describe the constrained rational expectations equilibrium. Equations (D.7) and
(D.17) can be written in vector form as

fr = F(ye, Ya) fi-1 + €. (D.18)
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An equilibrium is given by tuples (Yer Ya) and (a*,n* p*, q*) such that (i) (a*,n* p*, qg*) is the
pseudo-true 1-state model given the true process (D.18) where y; = y; and y, = v, (ii) y; and y,
are given by equations (D.15) and (D.16) for a = a*, p = p*, and g = g%, and (iii) n* = 0.

Finding an equilibrium requires solving a fixed-point equation. I start with a candidate (y,
Ya> ), with n = 0. The candidate defines a true process as in (D.18). This process in turn leads
to a pseudo-true 1-state model (4, 7, p, §). Such a pseudo-true 1-state model, in turn, defines
a (Y&, 72) pair through equations (D.15) and (D.16). I solve for the equilibrium by numerically
minimizing the Euclidean distance between tuples (y«, 74, 7) and (yk, v4, n) over the set of all (yy,

Ya) pairs. The fixed-point turns out to satisfy 7 = n = 0, verifying my earlier conjecture.

E Details of the DMP Application (For Online Publication)
E.1 Non-Linear Equilibrium

I start with the workers’ problem. Let U; and V; denote the time-t value to a worker of unem-
ployment and employment, respectively. Those random variables solve the following Bellman
equations:

Ui =b+BE [pVie1 + (1 = p) U], (E.1)
Vi = w + BE; [s:Up + (1 = s0) Vi ], (E.2)
where b denotes the workers’ flow payoff from being unemployed, w; denotes the wage rate, and

p: = u6}~* denotes the job-finding probability, with 6, the labor market tightness and p and «

parameters of the matching function. Subtracting U; from V;, I get

Vi-Ur=w;—b+BE [(1 -5 —p)(Vis1 = U] . (E.3)
Define :
I
Mo = [ (= stk = Pro)- (E.4)
k=0

Solving (E.3) forward, I get

VimUr=wi = b+ E | D B AL (Wier = b) | - (E.5)

=1
This equation is valid under arbitrary expectations.
I consider the firms next. Let J; denote the time-¢ value to a firm of a job. It solves the following
Bellman equation:
Je = ar — wy + PE[(1 = s¢) Jra].

Solving the equation forward, I get

(o8]

Jo=ai—w+ B | ) BN (G - wi) | (E.6)

=1
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where
7-1

M= [ ] =500, (E.7)
k=0
Free entry by firms implies
0=—-k+ BE/q:Ji+1], (E.8)

where g; = p6; % is the probability of filling a vacancy in each period. Substituting for J; in (E.8)
from (E.6), I get

0F =SB\ D" B ALy (e = wiao) | (E.9)
7=1
Equation (E.9) determines tightness as a function of the firms’ expectations of wage and labor
productivity.
The wage rate is determined by Nash bargaining. Under Nash bargaining,
Jr _ Vi - U;
1-6 5

where § denotes the workers’ bargaining power. Combining the above equation with (E.5) and
(E.6) and solving for w,, I get

w; = 8a;+ (1= )b+ 0E; | - BM . (arr = wisr) | = (1= 8)E;

=1

> BN (Wer = D) | . (E.10)
=1

The unemployment rate follows the first-order difference equation

U = U1+ S-1(1 = upm1) — prorug. (E.11)

E.2 Steady State

I first consider a steady state in whicha; = 1 > b, w; = w, 6; = 0, s; = s, and agents have perfect
foresight. Equation (E.10) implies that in the steady state,

(1-6)(w-b)  6(1-w)

1-(1-s-p) 1-p-s)

Therefore,
po 80 -BA-s-p)+(1-6)1-B1-5)b
1-p(1-s-dp) '
Equation (E.6) implies that the value of a job to a firm is constant in the steady state:

1
]t-]—m(l-lﬂ).
Equation (E.8) and the definition of g; imply
o1
ko« BJ’

The steady-state unemployment rate satisfies

l—u_

s =p.

u
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E.3 Log-Linear Model

I next log-linearize the model around the steady state. Log-linearizing (E.4) and (E.7), I get

-1
A = 1_s_»p p L (PDr+k + S8t+k)
f 1 -1
At iar = 11— ngﬁk
=0
Log-linearizing p, = u6}~%, 1 get
pr=(1-a)b

Log-linearizing (E.9),

Bt E; Zﬁ (I-s)"" 1(( b)'ud - ﬂwtﬂ"'wiml,tﬂ)] .

akfe T qkoe AL

Substituting for u/(k0%), 1 get

S L (1-b . wo, 1-w-
Z,BT 1(l -5 l( o] Q7 — a—]wt+r+a—]/11+l,t+r)] .
=1

ét:Et

The term involving A canbe simplified further:

,t+T1
00 o0 s -2
Z :BT_I(I - S)T_l/lnl,tﬂ =- Z ﬂr_l(l - S)T_l 1—s St+1+k
7=1 7=2 k=0
:_SZSZ+1+IC Z B’ 1(1 3)1—2
k=0 T=k+2
= —W Z BT = 5)" e
Define
(o BsQ-w)
S 1-p(1-s)
Then,
b =Lk iﬂ"l(l—s)"l((l—b)& — Wil — (§ )] (E.12)
r — (X] t +7 +1 +7 . .
7=1

Log-linearizing (E.10),

ww; = 6(1 - b)a, + 6L, Zﬂ (1=$)"((1 = b)arsr — Wiy + (1 - W)ﬂtm)

7=1

S B =5 =) (0= D)y, + i

=1

- (1-90)E (E.13)

74



and A/

The terms involving A% £ 14T

F 4T can be simplified further:

iﬁ’(l—s—p)’l?’m——iﬁ A=s=-p)'y—— Z(ppt+k+35t+k)
7=1

=

1
-B Z (PPr+k + SSt+k) Z (B(1-s— p))r—l

k=0 T=k+1

p N k koo R
_l—ﬁ(l—s—p);ﬁ (L=s—=p)" (PPr+k + SSt+k) -
;ﬁT(l—S)Tﬂ,{t_H: WZﬁk 1_S)kSt+k
Define
_ B -8)(w-b)
Y160 -s-p)

Then, (E.13) can be written as
wiw; = 6(1 - b)at +(sy =008 +px(1- a)H[

+ E; Zﬁr(l =) (06(1 = b) sy — OWWp4r — 5C§t+r)]

| 7=1

“E | Y B (=5 = p)" (1= O)wibper = pr(1 - @)Br - sx§m)] . (E.14)
[ 7=1

Finally, log-linearizing (E.11),
Uy=01-s-p)t1—(1- “)Pét—l +pSi-1. (E.15)

E.4 Rational Expectations Equilibrium

I guess and verify that under rational expectations 6, = Yoads + YosSr and wiy = Yialr + YisSt.
Substituting in (E.12) and (E.14), I get

=1 ﬁpia(l -s) = l;; ", - = ,Bpis(l =) CZM‘@’
and
wity = [6(1—b) + py(1 - a)ypa + - ‘5"“(11_‘[;;221—_11; Yua) |
+ '1 fspgff:(l p) oy (PA = @Yoa = (1= 0)Yuwa) | &
R 6¢+px(1—a)yes - ﬁ(spf(_lﬁp:()iz_z)m”] §
| T2 1 - @y s - (1= 01
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These equations validate the guess and yield four linear equations for the four unknowns yg,,
Yos,» Ywa>» and Y5, which can be solved given values for the exogenous parameters. The rational-
expectations equilibrium is then described by (31) and (E.15) with 0, = 5,4, + v, 5;, 6, = Yo, +
Yot and (v;., Yoo Ywa Yus) the solution to the above linear equations.

E.5 Constrained Rational Expectations Equilibrium

I next consider the equilibrium where agents are constrained to use pseudo-true 1-state models.
I guess (and later verify) that, in equilibrium,

A

Or = Woully + Woals + WosSs,

WWr = Yyuls + Ywalr + YisSt-

Using the linear-invariance result to substitute for 0,.. and W,,, in (E.12) and (E.14), I get

~ 1 s A R )
0, = a_]E’ ; B = )" (1 = b — Wuwa)lrer — Vulissr — (( + wws)stﬂ)‘ , (E.16)
and

ww; = px(1 — a)youtis + (6(1 = b) + px(1 — @)Woa)dr + (sy — 6+ px(1 — a)yys)$;

+E; Z ﬁr(l - S)T(6(1 -b- Wwa)dﬁr - 51//wuat+r -0(C+ st)§t+r)‘
=1

L 7=

FE | D BT (1= 5= p) (px(1 = @)you — (1= 8) Y flss

+E | D B (=5 =p)"(px(1 = @)¥pa — (1 = 6)Ywa)irs
| 7=1

+E | Y BT (=5 = p) (px(1 - @)yips — (1= 8)yus +sx>§t+,] . (E.17)
| 7=1

The agents’ forecasts are given by equation (4). I guess that n = 0 in equilibrium and later verify
this guess. Given the guess,

E; [ﬁt+‘r] = aTCIupulzt + aTqupadt + aTqups§t;
Et [&t+1’] = aTqapu ﬂt + dTCIaPaflt + arqaps§tr
E;[8t47] = a"qspully + A" Gspads + a’ qsps$;.
Using the linear-invariance result to substitute for E;[#i;.], E[ds+-], and E;[$:.] in (E.16) and

(E.17) and collecting terms verifies the guess that 0 = Woully + Woady + WosSe and w; = iy +
Wwady + Wys$S; and leads to the following linear equations for vy, Woa, Wos, Ywu> Ywa, and Wys:

— apu 1_17_'(//11/(,1 _ u’wu _ C"“st
1-apB(1l-ys) al Ga al u al

You qs| (E.18)
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_ apa l_b_u’wa _ U’wu _ C+st

Yoa = l—aﬁ(l—s)( aJ a aJ u aJ qs); (Elg)
_ aps 1-b- '(//wa _ u’wu _ C+u/ws

Yos = l—aﬁ(l—s)( aJ a aJ u aJ %), (EZO)
o1 aps(L—=S)Pu 1 _ _ _

Ywu = px(1 — @)y, + 1-ap(1-ys) [(1 =6 = Ywa)Ga — Vwudu — ({ + Yuws)gs]

N aB(l-s-p)pu
1-ap(l-s-p)
ap(l—-s—p)pu [
I-ap(l-s-p)

Ywa =6(1=Db) +px(1l - a)yg, +

[(px(1 - a)yoa — (1 = O)Wwa)qa + (Px(1 — a)Wou — (1 — 6)Wwu)qul

(px(1 = a)yes — (1 = 6)Yus +$x)qs] (E.21)
aPféd(l —s)pa

1-ap(l1-ys)
lafi(alﬁ;f—_spzp]j) [(Px(1 = O)Woa — (1 = 6)Ywa)qa + (PX(1 = @)Pou — (1 = 8) V) qu]

ap(l-s—p)pa [
1-ap(l-s-p)

[(1 = b = Ywa)da — Vwuqu — ({ + Wws)gs]

(px(1 = a)yos — (1 = O)Wuws + $X)Gs] (E.22)

apBo(l - s)ps
1-—ap(l-ys)

(px(1 = a)yoq — (1 = 6)Ywa)qa + (Px(1 — @) you — (1 = 6)Yuwu)qul

Yws =SY — 00 +px(1 —a)yys + [(1 =D = Ywa)Ga — YwuGu — ({ + Yws)gs]

aﬁ(l_s_p)ps [
I-ap(l-s-p)
ap(l—s—p)ps [
1-ap(l-s-p)

I can now describe the constrained rational expectations equilibrium. Given 0 = wyy, i, +

(px(1 = a)yos — (1 = 6)Wus + $X)qs] - (E.23)

Woadr + WpsS;, equations (31) and (E.15) can be written in vector form as

fr = F(Wou, Woa, Wos) fi-1 + €. (E.24)

An equilibrium is then given by tuples (v, v, ,, W5 Wi Ve Vi) and (a*, n*, p*, g*) such that
() (a*,n*, p*, g*) is the pseudo-true 1-state model given the true process (E.24) with vy, = (9
Yoa = W, and wes = wy, () (¥}, V5, Voo Yw Vwa Vws) SOlves (E.18)-(E.23) given a = a”,
p=p* q=q* and (iii) n* = 0.

Finding an equilibrium requires solving a fixed-point equation. I start with a candidate (yy,,
Woa, Wos, M), With n = 0. The candidate defines a true process as in (E.24). The process leads
to a pseudo-true 1-state model (a, 7, p, §). Such a pseudo-true 1-state model, in turn, defines a
(Wou, Woa, Pps) pair through equations (E.18)—(E.23). I solve for the equilibrium by numerically
minimizing the Euclidean distance between pairs (9,,, ¥oa, Wos, 1) and (Yo, Yoa, Wos, ) over the
set of all (ywou, Yoa, Wos) tuples. The fixed-point turns out to satisfy 7 = n = 0, verifying my earlier
conjecture.
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