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Abstract
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trast with the literature on the topic so far, we assume that the informed sellers make
the offers and signaling through prices is possible. We establish basic properties of
equilibria and discuss the standard two-type case and separating equilibria in detail.
We prove that market efficiency, measured by the maximum gains from trade possi-
ble in equilibrium, is invariant to trading frictions. Our analysis shows that screening
and signaling lead to markedly different trading outcomes in dynamic decentralized
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1 Introduction

Adverse selection is a feature of many dynamic decentralized markets, such as housing

markets and over-the-counter markets for certain types of financial products. When sellers

in such markets have both price setting ability and private information about the quality of

the products they sell, prices can be used to signal quality (see, e.g., [Bagwell and Riordan,

1991] and [Wolinsky, 1983]). Despite this possibility, the literature on dynamic decen-

tralized markets with adverse selection has focused on screening by mostly considering

models in which the uninformed buyers make the offers. Such focus is restrictive, though,

as it is known at least since Wilson [1980] that the outcome of trade in markets with adverse

selection can be sensitive to the price setting mechanism.

In this paper, we study signaling through prices in a dynamic decentralized market with

adverse selection. In our setting, informed sellers randomly match with and make price of-

fers to uninformed buyers. We provide a partial characterization of the equilibrium set and

analyze the standard two-type case and separating equilibria in detail. Similarly to a screen-

ing setting, delay in trade takes place in equilibrium if adverse selection is severe enough

to prevent trade from taking place at a single price. The intuition for this result is standard:

since owners of higher quality goods are endogenously more patient, delay in trade restores

trade by ensuring that owners of lower quality goods do not want to pool with owners of

higher quality goods and take longer to trade.1 In screening models of trade this implies

that a reduction in trading frictions, by reducing the opportunity cost of not trading, has a

negative impact on market efficiency. We show that, in the presence of signaling through

prices, trading frictions do not affect market efficiency. Overall, our results show that in

dynamic decentralized markets with adverse selection, market outcomes in the presence of

signaling differ substantially from market outcomes in the presence of screening.

We start in Section 2 by introducing the environment and defining equilibria. We con-

sider trade in a dynamic decentralized market with a constant inflow of buyers and sellers.

1The idea that delay restores trade under adverse selection goes back to Wilson [1980].
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Each seller can produce one unit of an indivisible good that is of one of finitely many types.

Sellers are privately informed about the type of the good they produce. Both the value of

the good to buyers and the cost of producing the good to sellers are strictly increasing in the

type of the good. Moreover, gains from trade are positive for each type of the good. At each

point in time, buyers and sellers in the market are randomly and anonymously matched in

pairs. Once matched to a buyer, a seller posts a price that the buyer either accepts or rejects.

If the buyer accepts, then trade takes place and the agents leave the market. Otherwise, the

match is dissolved and the agents remain in the market. Trading frictions are captured by

the agents’ discount factor, which determines the opportunity cost of not trading at a point

in time. We consider stationary equilibria in which behavior is time-invariant and the in-

flow of agents into the market matches the outflow. We do not impose restrictions on the

beliefs that buyers can have about the type of the good sold at off-equilibrium prices.

Signaling naturally leads to multiple equilibria. Nevertheless, we show in Section 3 that

all equilibria share certain features. A key property of all equilibria is that prices offered by

sellers are nondecreasing in the type of the good they produce. A consequence of this result

is that the number of prices at which trade can take place is finite. Another consequence of

the first result is that if adverse selection is severe enough to prevent sellers from posting

the same price, then the lowest type of seller posts a lower price than the highest type of

seller. In this case there will necessarily be delay in trade. We also establish in Section 3

that the set of equilibrium payoff vectors for equilibria in which the buyers’ payoff is zero

is invariant to trading frictions. This result, which we discuss in detail in the text, is at the

heart of our result that market efficiency is invariant to trading frictions.2

In Section 4, we analyze the two-type case when gains from trade are strictly increas-

ing in the type of the good and adverse selection is severe enough to prevent the (efficient)

pooling outcome — this is the case typically considered in the literature. We completely

determine the set of equilibrium payoff vectors and show that gains from trade are max-

2As it turns out, there exist equilibria in which the buyers’ payoff is positive. We briefly discuss their
properties at the end of Section 3.
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imized in the most efficient separating equilibrium, which features no delay in the trade

of the low-type good and a discount-factor independent delay in the trade of the high-type

good. This stands in sharp contrast to the case in which buyers make take-it-or-leave-it

offers to sellers. In the latter case, the equilibrium is such that gains from trade for both

types of the good decrease with a reduction in trading frictions and only gains from trade

of the low-type good are realized in the limit as trading frictions vanish.3

Separating equilibria capture in an intuitive way the idea that prices signal quality. In

Section 5, we characterize separating equilibria, which always exist, and show that in this

class of equilibria both the set of equilibrium payoff vectors and the set of possible values

of equilibrium gains from trade are invariant to trading frictions. Only considering sepa-

rating equilibria can be restrictive, though. We also show in Section 5 that with three or

more types of the good there can exist non-separating equilibria that Pareto dominate every

separating equilibrium even when adverse selection is severe enough to prevent pooling in

equilibrium. So, unlike in the two-type case, gains from trade need not be maximized in

the most efficient separating equilibrium. This begs the question of what can be said about

the efficiency properties of non-separating equilibria, a topic we consider in Section 6

Section 6 considers the general finite-type case. There, we show that market efficiency,

measured by the maximum gains from trade possible in equilibrium, is invariant to trading

frictions. The proof of this result has several parts. First, we show that gains from trade are

maximized in equilibria in which the buyers’ payoff is zero. This occurs as reducing buyer

payoffs increases the prices at which trade can trade place, relaxing the seller incentive-

compatibility constraints and allowing for a greater probability of trade for all types of the

good. Then, we show that randomization by sellers hurts gains from trade. Finally, we

show that gains from trade in equilibria in which the buyers’ payoff is zero and sellers do

not randomize equals average seller payoffs in the population. Our efficiency result then

follows from the result that the set of equilibrium payoff vectors for equilibria in which the

buyers’ payoff is zero is invariant to trading frictions.

3See Moreno and Wooders [2010] for a derivation of these results.
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Our analysis focuses on stationary equilibria. These equilibria implicitly assume that

the initial market configuration is such that the outflow of each type of seller matches the

inflow given equilibrium behavior. This begs the question of whether the outcomes of a

stationary equilibrium, i.e., the prices at which each type of good trades, the discounted

probabilities of trade at each of these prices, and the masses of each type of seller in the

market, are long-run outcomes of an equilibrium in which one does not impose stationarity

to begin with. In Section 7, we show that the answer to this question is positive for a class

of stationary equilibria that play a central role in our analysis, namely, the equilibria in

which sellers do not randomize and buyer payoffs are zero.4

Section 7 also discusses the robustness of our results to alternative specifications of the

environment. First, we discuss the timing of trade. In our environment, agents match at the

beginning of each period. We show that if new agents in the market have to wait one period

before getting the chance to trade, then a reduction in trading frictions linearly increases

gains from trade. This effect is due to a mechanical reduction in the cost of waiting for

the first trading opportunity. Then, we consider other notions of trading frictions. We show

that our main results survive when instead of discounting future payoffs agents exogenously

leave the market over time. We also consider within-period matching frictions by assuming

that in every period there exists a positive probability that agents in the market do not meet

a trading partner. We show that equilibrium gains from trade increase with a decrease in

trading frictions in the presence of within-period matching frictions. This is a consequence

of an easing of a technological constraint and is unrelated to adverse selection.

Section 8 concludes the paper and the Appendix contains omitted proofs and details.

Related Literature. The idea that prices can signal quality in the presence of adverse se-

lection is old. Wilson [1980], Wolinsky [1983], Milgrom and Roberts [1986], and Bagwell

and Riordan [1991] are seminal references. The literature on signaling through prices has

mostly considered static settings, though.5

4This class of equilibria includes separating equilibria as a special case.
5Ellingsen [1997] analyzes signaling through prices in a static adverse-selection market in which agents

trade an indivisible good. The static version of our setting includes Ellingsen’s setting as a special case.
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Equilibrium refinements have been developed for signaling games to reduce the equi-

librium multiplicity typical of these games by placing restrictions on the beliefs that agents

can form off the path of play. The most prominent of these refinements are the Intuitive

Criterion of Cho and Kreps [1987] and the D1 refinement of Banks and Sobel [1987]. We

take an agnostic view on the belief formation process off the path of play by not imposing

any equilibrium refinement in our analysis.6 As it turns out, the Intuitive Criterion does not

refine our equilibrium set while D1 reduces it to the set of separating equilibria.7

Existing models of dynamic decentralized trade in the presence of adverse selection,

see, e.g., Blouin [2003], Moreno and Wooders [2010], Camargo and Lester [2014], Chiu

and Koeppl [2016], Kim [2017], Choi [2018], and Kaya and Roy [2020] abstract from

signaling through prices by assuming that buyers make the offers.8 Our results show that

signaling through prices can increase market efficiency relative to screening and leads to

different implications for the relationship between market efficiency and trading frictions.

Many of the papers in the literature on dynamic centralized trading in the presence of

adverse selection, see, e.g., Hendel and Lizzeri [1999], Janssen and Roy [2002], Kurlat

[2013], and Fuchs and Skrzypacz [2015], assume that in every period all trades must take

place at the same price, thus ruling out a priori the possibility of a relationship between

prices and quality within a period. Janssen and Roy [2002] considers a related setting in

which a continuum of buyers and sellers trade one unit of an indivisible good in a dynamic

centralized market. In equilibrium, lower qualities trade first and all qualities eventually

trade. A key result in the paper is that as trading frictions vanish, the number of rounds of

trading necessary to trade all qualities of the good except the lowest diverge to infinity.

Models of competitive search with adverse selection differ from the above-mentioned

models of centralized trade with adverse selection by allowing for a contemporaneous rela-
6See Riley [2001] for a discussion of the different refinements used in the signaling literature and Mailath

et al. [1993] for a criticism of belief-based refinements in signaling games.
7Both results are straightforward extensions to our dynamic environment of results derived in Ellingsen

[1997]; see the Supplementary Appendix for a proof of these results.
8An exception is Inderst [2005], which considers trade of Rothschild-Stiglitz contracts in a stationary

market in which both sides of the market have the chance to propose a contract. It shows that the least-cost
separating contracts are always supported as an equilibrium outcome in the limit as trading frictions vanish.
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tionship between prices and quality in equilibrium.9 Guerrieri and Shimer [2014] considers

a dynamic competitive search model with adverse selection in which agents trade assets of

different qualities. In equilibrium, sellers of higher-quality assets signal quality by ac-

cepting a lower trade probabilities. Chang [2018] considers a dynamic competitive search

model with adverse selection and shows that the ability of prices to signal quality is re-

duced if sellers differ both in the quality of their goods and in their selling needs. We differ

from the literature on competitive search with adverse selection by not only considering

decentralized trade but also by not imposing belief refinements to constrain equilibria.10

Models of bargaining with common-value uncertainty also typically assume that the

uninformed party makes the offers.11 In such bargaining models, a reduction in discounting

reduces gains from trade by reducing the effectiveness of delay as a screening device for

the buyer. Gerardi et al. [2014] considers bargaining between a long-lived buyer and a

long-lived seller when the latter makes the offers. It shows that in the limit as discounting

vanishes the outcome of bargaining can be more efficient than when the buyer makes the

offers. So, as in our market setting, signaling through prices can increase efficiency.

2 Environment and Equilibria

We first describe the environment and then define equilibria.

2.1 Environment

Time is discrete and the horizon is infinite. There is a single indivisible good, which can

be of one of finitely many types. Let I = {1, . . . , N} with N ≥ 2 be the set of possible

9Guerrieri et al. [2010] is the seminal reference in the literature on competitive search models with adverse
selection. Gale [1992, 1996] develop static models of Walrasian trade with adverse selection in which a
relationship between prices and quality is possible in equilibrium.

10Guerrieri and Shimer [2014] and Chang [2018] impose the same refinement as Guerrieri et al. [2010].
In the one-dimensional case of Guerrieri and Shimer [2014], this refinement reduces the equilibrium set to
separating equilibria.

11See, e.g., Vincent [1989], Evans [1989], and Deneckere and Liang [2006] for models of bargaining
between long-lived agents, and Horner and Vieille [2009], Daley and Green [2012], Kaya and Kim [2018],
and Hwang [2018] for models of bargaining between a long-lived seller and a sequence of short-lived buyers.
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types of the good and denote a typical element of I by i. In each period, a mass one of

anonymous and infinitely-lived buyers and an equal mass of anonymous and infinitely-lived

sellers enter the market. The sellers can produce one unit of an indivisible good and are

privately informed about the type of the good that they can produce. Let fi be the fraction

of type i sellers in the set of sellers entering the market at each date, i.e., the fraction of

sellers who can produce the good of type i. The payoff to a buyer who buys the type-i good

at price p ≥ 0 is vi − p with vi ≥ 0. The payoff to a type-i seller who sells the good at

price p is p − ci with ci ≥ 0. The valuations vi and the (opportunity) costs ci are strictly

increasing in i. So, higher types of the good are associated with greater quality in the sense

that they are more desirable for both buyers and sellers. We assume that vi > ci for all i, so

that gains from trading are positive for all types of the good.12 Gains from trade need not

be increasing in the type of the good, though.

Trade takes place as follows. In each period, the buyers and sellers in the market are

randomly and anonymously matched in pairs. In each buyer-seller match, the seller posts a

price, which the buyer either accepts or rejects. If the buyer accepts, then trade takes place

at the posted price and the agents leave the market. Otherwise, the match is dissolved and

the agents remain in the market. All agents have a common discount factor δ ∈ (0, 1). This

discount factor represents the opportunity cost of not trading at a given point in time and is

a measure of trading frictions.

2.2 Equilibria

Given the anonymity and continuum-population assumptions, it suffices to describe aggre-

gate behavior and ensure that this behavior is consistent with individual rationality. We thus

follow Mas-Colell [1984] and define strategy profiles in terms of distributions of individual

behavior. We consider stationary equilibria in which the behavior of buyers and sellers is

time-invariant and the masses of buyers and each type of seller in the market are constant

12We can extend our analysis to the case in which gains from trading one or more types of the good are not
positive. In this case, case separating equilibria need not exist. We derive necessary and sufficient conditions
for equilibrium existence in our environment in the Supplementary Appendix.
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over time. In what follows, any measure on R+ is understood to be Borel, and so is any

subset of R+.

A strategy profile for the sellers is a list µ = (µ1, . . . , µN) of probability measures on

R+ such that µi(P ) is the mass of type-i sellers in the market who post a price p in the set

P ⊆ R+ once matched to a buyer. A strategy profile for the buyers is a Borel-measurable

function σ : R+ → [0, 1] such that σ(p) is the probability that a price p is accepted by a

buyer. A belief system for the buyers is a Borel-measurable function π : R+ → ∆N , where

∆N is the unit simplex in RN , such that πi(p) is the probability that buyers attach to the

event that they purchase a type-i good should they trade at price p.

Given a strategy profile σ for the buyers, the present-discounted expected lifetime pay-

off to the type-i sellers who post price p ≥ 0 as long as they are in the market is

Ui(p) =
σ(p)

1− δ(1− σ(p))
(p− ci) = θ(p)(p− ci); (1)

the term θ(p) is the discounted probability of trade at price p. The anonymity of sellers

implies that in equilibrium all type-i sellers must be indifferent between posting any price

in the support of the probability measure describing their price-posting behavior.

The average present-discounted expected lifetime payoff V to buyers depends not only

on the aggregate behavior of buyers and sellers, described by the strategy profile (µ, σ), but

also on the buyer’s belief system π and on the distribution of seller types in the market. Let

gi be the fraction of type-i sellers in the market and µ be the probability measure on R+

such that µ =
∑N

i=1 giµi; by construction, µ(P ) is the probability that a buyer receives a

price offer in the set P ⊆ R. Then

V =

∫
R+

( N∑
i=1

πi(p)(vi − p)

)
σ(p)dµ(p) +

(∫
R+

(1− σ(p))dµ(p)

)
δV. (2)

Since buyers are anonymous, their equilibrium payoffs are the same and equal to V .

Finally, given the pair (µ, σ) of strategy profiles for sellers and buyers, the probability

that a type-i seller in the market trades in a given period is Eµi
[σ] =

∫
R+

σ(p)dµi(p). So,
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in a stationary equilibrium the mass of type-i sellers in the market must be Mi such that

MiEµi
[σ] = fi. (3)

The fraction gi of type-i sellers in the market is then equal to Mi/
∑N

j=1 Mj .

We can now define stationary equilibria. Except in Section 7.1, when we allow non-

stationary behavior, we refer to stationary equilibria simply as equilibria.

Definition. A (stationary) equilibrium is a list
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
satisfying the

following properties.

1. Seller Optimality. For all i ∈ I, every price p in the support Si of µi maximizes

σ(p)(p− ci) + (1− σ(p))δUi.

2. Buyer Optimality. For all p ≥ 0, the probability of trade σ(p) maximizes

σ

( N∑
i=1

πi(p)vi − p

)
+ (1− σ)δV.

3. Rational Beliefs. The belief π(p) is given by Bayes’ rule for all p ∈ S =
⋃N

i=1 Si.

4. Consistency of Payoffs. The payoffs (Ui)i∈I are such Ui = Ui(p) for all p ∈ Si with

Ui(p) given by (1) and the payoff V satisfies (2) with gi = Mi/
∑N

j=1Mj .

5. Stationarity. The vector of masses (Mi)i∈I satisfy the stationarity condition (3).

Buyer and seller optimality require that buyers and sellers behave optimally given their

continuation payoffs. Payoff consistency implies that these payoffs are consistent with the

behavior of agents. Since agents have the option of not trading, it follows that V ≥ 0

and Ui ≥ 0 for all i ∈ I in any equilibrium. Stationarity implies that at any point in

time, the inflow of each type of seller in the market equals the outflow. Thus, all types of

good trade in equilibrium.13 Stationary also implies that the masses Mi are finite, so that
13In other words, for each i ∈ I, the measure µi assigns positive probability to the set {p ≥ 0 : σ(p) > 0}.
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in equilibrium the fraction of each type of seller in the market is positive. Rationality of

beliefs requires that buyer beliefs are given by Bayes’s rule for all prices in S, the set of

prices that sellers post in equilibrium. We impose no further restrictions on beliefs. By

being agnostic about the belief formation process for off-equilibrium prices, we place no

restrictions on the equilibrium set other than stationarity and Bayes’ rule.

For each δ ∈ (0, 1), the map σ 7→ σ/[1 − δ(1 − σ)] taking probabilities of trade into

discounted probabilities of trade is strictly increasing, and so invertible. Thus, we can also

describe buyer behavior by means of a Borel-measurable function θ : R+ → [0, 1] such that

θ(p) is the discounted probability of trade at price p. This fact is useful for our analysis.

An equilibrium is pooling if there exists p ≥ 0 such that Si ≡ {p}, i.e., all types of seller

post the same price in equilibrium. The case of interest is when adverse selection prevents

the pooling outcome. An equilibrium is separating if the sets S1 to SN are mutually dis-

joint. We say that an equilibrium is pure if the sets S1 to SN are singletons; separating

equilibria are a special case of pure equilibria. Pure equilibria play an important role in our

analysis of market efficiency.

We now define gains from trade. Given a strategy profile (µ, σ), gains from trade are

G =
N∑
i=1

fi
Eµi

[σ]

1− δ
(
1− Eµi

[σ]
)(vi − ci),

the average expected gain from trade in the entering population. The quantity G captures

the expected amount of time it takes for a good to trade and measures market efficiency.14

3 Basic Results

In this section, we first prove some useful auxiliary results, then establish basic properties of

equilibria, and conclude by showing that the set of equilibrium payoff vectors of equilibria

in which the buyers’ payoff is zero is invariant to trading frictions. This last result is key

14A conjecture given the quasi-linearity of preferences is that gains from trade equal V +
∑N

i=1 fiUi, the
average payoff of agents in the entering population. As we show in Section 6, this is not true in general.
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for our proof that trading frictions do not affect market efficiency.

3.1 Auxiliary Results

Consider a list
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
satisfying payoff consistency. Since an option

for type-i sellers is to offer the same price p′ ≥ 0 as long as they remain in the market, a

lower bound for their payoff is θ(p′)(p′ − ci). Given that Ui = θ(p)(p − ci) for all p ∈ Si

by payoff consistency, it then follows that a necessary condition for seller optimality is that

θ(p)(p− ci) ≥ θ(p′)(p′ − ci) for all p ≥ Si and p′ ≥ 0. The first result we establish is that

this condition is sufficient as well. The proof of Lemma 1 is in the Appendix.

Lemma 1. Suppose that the list
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
satisfies payoff consistency.

Then, seller optimality for type-i sellers is equivalent to θ(p)(p − ci) ≥ θ(p′)(p′ − ci) for

all p ∈ Si and p′ ≥ 0.

Equilibria in which buyer payoffs are zero are such that any price at which trade takes

place equals the expected quality of the good trading at this price. These equilibria play a

prominent role in our analysis. The next result is useful for establishing their existence.

Lemma 2. Suppose that E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
satisfies rationality of beliefs,

payoff consistency, and stationarity. Moreover, suppose that p =
∑N

i=1 πi(p)vi for all p ∈ S

with σ(p) > 0 and that for each i ∈ I, θ(p)(p − ci) ≥ θ(p′)(p′ − ci) for all p ∈ Si and

p′ ∈ S. Then, σ(p) and π(p) can be modified for p /∈ S so that E is an equilibrium.

Proof. Suppose that σ and π satisfy the assumptions in the statement; note that rationality

of beliefs, payoff consistency and stationarity only place restrictions on π(p) and σ(p) for

p ∈ S. Now set π(p) to be such that p =
∑N

i=1 πi(p)vi for all p /∈ S. Then, buyer optimality

holds regardless of σ. This, in turn, implies that for each p /∈ S, we can set σ(p) to be such

that no type of seller finds it optimal to post p.

We now establish a sufficient condition for seller optimality. Consider an equilibrium

with finite S. For each p ∈ S, let I(p) = {i ∈ I : p ∈ Si} be the set of seller types that
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offer p. Now for each p ∈ S with p < pmax = max{p′ : p′ ∈ S}, let p+ be the successor of

p in S. Seller optimality implies that if p ∈ S is such that p < pmax, then

θ(p+)(p+ − ci) ≤ θ(p)(p− ci) for all i ∈ I(p).

The next result we establish shows that if S is finite and certain conditions hold, then no

type of seller has an incentive to mimic the behavior of the other types of seller if for all

p ∈ S with p < pmax, the above local upward incentive-compatibility constraint is satisfied

with equality for the greatest element of I(p). This result is a consequence of the fact that

seller costs are increasing in their types. So, since (p− c)/(p+ − c) is strictly decreasing in

c for all c < p, the type of seller posting p < pmax that has the greatest incentive to deviate

and post p+ is the highest-type seller.15 The proof of Lemma 3 is in the Appendix.

Lemma 3. Consider a list
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
with S finite such that: (i) p ∈ S

and i ∈ I(p) imply that p ≥ ci, with strict inequality if p < pmax; and (ii) j ≥ i for all

i ∈ I(p) and j ∈ I(p′) with p′ > p. Now suppose that for all p ∈ S with p < pmax,

θ(p+) = θ(p)
p−max{ci : i ∈ I(p)}
p+ −max{ci : i ∈ I(p)}

. (4)

For each i ∈ I, it follows that θ(p)(p− ci) ≥ θ(p′)(p′ − ci) for all p ∈ Si and p′ ∈ S.

The condition that p ∈ S and i ∈ I(p) imply that p ≥ ci, with strict inequality if

i < N , is satisfied if all types of seller except possibly the highest obtain positive payoff.

The condition that j ≥ i for all i ∈ I(p) and j ∈ I(p′) with p′ > p implies that prices

offered by sellers cannot decrease with their types. As it turns out, both conditions and the

condition that S is finite hold in equilibrium. The next result follows immediately.

Corollary 1. Suppose that E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
satisfies rationality of beliefs,

payoff consistency, stationarity, and the assumptions of Lemma 3. Moreover, suppose that

π is such that p =
∑N

i=1 πi(p)vi for all p ∈ S with σ(p) > 0. Then, π(p) and σ(p) can be

set for p /∈ S so that E is an equilibrium.
15Standard arguments show that local upward incentive compatibility is sufficient for seller optimality.
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For each i ∈ I, let ηi be the measure on R+ such that ηi(P ) =
∫
P
σ(p)dµi(p) for all

P ⊆ R+. By construction, ηi(P ) is the probability that type-i sellers trade at a price in the

set P ⊆ R+ in a given period. The support S∗
i ⊆ Si of ηi is the set of prices at which the

type-i good can trade in equilibrium. The last auxiliary result we establish is relevant for

the two-type case and the case of separating equilibria.

Lemma 4. An equilibrium with p ∈ S∗
1 \

⋃N
j=2 S

∗
j satisfies p = v1, θ(v1) = 1, and V = 0.

The proof of Lemma 4 is in the Appendix. A sketch of the proof is as follows. Consider

an equilibrium with a price p that only type-1 sellers offer in equilibrium. First note that

the buyers’ payoff cannot be positive in such an equilibrium, otherwise type-1 sellers could

profitably deviate by posting a price slightly higher than p. Indeed, Bayes’ rule implies that

the expected value of the good to a buyer who purchases it at price p is v1, while for any

p′ > p the expected value of the good to a buyer who purchases it price p′ is at least v1. So,

because of discounting, buyers would be willing to trade at a price slightly higher than p

instead of having to wait for one more period to trade. Clearly, p = v1 if V = 0. Finally,

note that θ(v1) = 1, otherwise type-1 sellers could increase their payoffs by offering a price

slightly higher than v1, increasing their probability of trade discontinuously.

3.2 Basic Properties of Equilibria

As is well-know, signaling leads to multiple equilibria. Nevertheless, as we now show, all

equilibria share some common properties. The first of such properties is that seller payoffs

are strictly decreasing in seller types. The proof of Lemma 5 is in the Appendix.

Lemma 5. Consider an equilibrium. For all i, j ∈ I, j > i implies that Ui > Uj .

The intuition for Lemma 5 is standard in models of dynamic trade with adverse selec-

tion. Given that lower-type sellers have a lower opportunity cost of trading, they are able

to extract greater informational rents from buyers and obtain higher payoffs.16 Note from
16One can show that seller reservation values, given by ri = ci + δUi, are strictly increasing in i. Since

higher-type sellers have a greater opportunity cost of trading, they are only willing to trade at higher prices.
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Lemma 5 that Ui > 0 for all i < N . So, θ(p) > 0 for all p ∈ Si when i < N . Thus, except

possibly for the type-N sellers, in equilibrium all sellers make offers that are accepted with

positive probability by buyers, i.e., Si = S∗
i for all i < N . Type-N sellers can make offers

that are rejected with probability one by buyers only if UN = 0.

We now use a standard incentive-compatibility argument to establish our first main

property of equilibria, namely, that the prices that the different types of seller post in equi-

librium are nondecreasing in their types.

Proposition 1. Consider an equilibrium. For all i, j ∈ I, j > i implies that p ≤ p′ for all

p ∈ Si and p′ ∈ Sj .

Proof. Let i, j ∈ I be such that i < j. Seller optimality implies that

θ(p)(p− ci) ≥ θ(p′)(p′ − ci) and θ(p′)(p′ − cj) ≥ θ(p)(p− cj)

for all p ∈ Si and p′ ∈ Sj . Summing the two inequalities, we obtain that

(
θ(p′)− θ(p)

)
(ci − cj) ≥ 0.

Since cj > ci, it follows that θ(p) ≥ θ(p′) for all p ∈ Si and p′ ∈ Sj . We claim that

p′ ≥ p for all p ∈ Si and p′ ∈ Sj . Let p ∈ Si and p′ ∈ Sj . Then either θ(p′) > 0 or

θ(p′) = 0. Suppose first that θ(p′) > 0. Then p′ ≥ cj as Uj ≥ 0. This, in turn, implies that

p′ ≥ p, otherwise θ(p)(p − cj) > θ(p′)(p′ − cj), contradicting seller optimality. Suppose

now that θ(p′) = 0, which is possible only if j = N . We claim that p′ ≥ vN − δV . Indeed,

since p′ /∈ Sk for all k < N , as θ(p) > 0 for all p ∈
⋃N−1

k=1 Sk, Bayes’ rule implies that

πN(p
′) = 1. So, buyers reject p′ only if p′ ≥ vN − δV . Now observe that since θ(p) > 0

for all p ∈ Si, buyer optimality implies that p ≤
∑N

k=1 πk(p)vk− δV ≤ vN − δV ≤ p′.

A consequence of seller optimality is that θ(p) is strictly decreasing in p for p ∈ S∗.

Since Proposition 1 implies that higher-type sellers trade at higher prices, it then follows

that such sellers trade less frequently, remaining longer in the market. Hence, the steady-
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state distribution of seller types in the market dominates the distribution of seller types in

the population in the likelihood-ratio order. The proof of Corollary 2 is in the Appendix.

Corollary 2. In any equilibrium, the ratio gi/fi is nondecreasing in i.

Proposition 1 also implies that the sets S∗
i are finite. Indeed, if S∗

i is infinite, then there

exist two prices p and p′ with θ(p), θ(p′) ∈ (0, 1) at which only the type-i good trades.

Bayes’ rule then implies that a buyer who purchases the good at either of these two prices

assigns probability one to the good being of type i. However, since θ(p) and θ(p′) are

interior, the buyer must be indifferent between trading and not trading at these two prices,

which is possible only if p = p′. So, the set S∗ =
⋃N

i=1 S
∗
i of serious price offers is finite. In

fact, one can show that for each i ∈ I, there exists at most one price p ∈ S∗
i that is offered

only by type-i sellers. From this it follows that S∗ can have at most 2N − 1 elements. The

next result summarizes this discussion. Its proof is in the Appendix.

Corollary 3. In any equilibrium, the set S∗ is finite and has at most 2N − 1 elements.

A third consequence of Proposition 1 is that prices are non-negatively related to the

type of the good. We say that adverse selection is severe if v =
∑N

i=1 fivi < cN . It is easy

to see that if adverse selection is not severe, then all sellers pooling at a single price is an

equilibrium outcome.17 The next result shows that pooling is not an equilibrium outcome

when adverse selection is severe. In this case, the prices offered by sellers in equilibrium

necessarily reveal some information about the type of the good that they produce.

Proposition 2. Suppose that adverse selection is severe. In any equilibrium there exists

p ∈ S∗
1 such that p /∈ S∗

N .

Proof. Suppose, by contradiction, that S∗
1 ⊆ S∗

N . By Proposition 1, there exists p ∈ S∗
N

with σ(p) > 0 such that S∗
i = {p} if i < N . Bayes’s rule then implies that for all i < N ,

πi(p) =
Mi∑N−1

j=1 Mj + αNMN

,

17The list E = (µ, σ, π, (Ui)i∈I , V, (Mi)i∈I) such that µi({v}) = 1, σ(p) = 1 if p ≤ v and σ(p) = 0
otherwise, πi(p) ≡ fi, Ui = v − ci, V = 0, and Mi = fi is an equilibrium if v ≥ cN .
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where αN is the probability that a type-N seller posts p. Now note from the stationarity

condition (3) that Mi = fi/σ(p) if i < N and MN = fN/[αNσ(p) + (1 − αN)σ
′], where

σ′ < σ(p) is the probability of trade conditional on posting a price in S∗
N \ {p}. So,

πi(p) =
fi∑N−1

j=1 fj + αNσ(p)fN/[αNσ(p) + (1− αN)σ′]

for all i < N . Since πi(p) is strictly decreasing in αN for all i < N , it then follows that

N∑
i=1

πi(p)vi = vN +
N−1∑
i=1

πi(p)(vi − vN) ≤
N∑
i=1

fivi,

as vi < vN for all i < N . On the other hand, p ∈ S∗
N only if p ≥ cN . Thus,

N∑
i=1

πi(p)vi − p ≤
N∑
i=1

fivi − p < cN − p ≤ 0,

and buyers do not find it optimal to accept an offer of p, a contradiction.

Seller optimality implies that delay in trade happens if S∗ has two or more elements.

So, there exists delay in trade if adverse selection is severe. The intuition for this result is

standard. Since higher-type sellers are endogenously more patient than lower-type sellers,

given their greater opportunity cost of trading, a lower rate of trade at higher prices makes

trade at different prices incentive feasible: lower-type sellers prefer trading faster at a lower

price, making trade at a higher price attractive to buyers by implying that the quality of the

good is positively related to its price.

The above discussion suggests that, as in the case in which buyers make the offers,

reducing trading frictions should decrease equilibrium gains from trade. Indeed, by making

delay in trade less costly for all types of seller, a reduction in trading frictions should, in

principle, make delay in trade less effective in inducing lower-type sellers to trade at lower

prices. We will see that this is not the case: reducing trading frictions does not affect gains

from trade when sellers make the offers. This shows that screening and signaling have quite

different implications for the relationship between trading frictions and market efficiency.
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3.3 Equilibrium Payoff Vectors and Trading Frictions

We conclude this section by discussing the relationship between equilibrium payoff vectors

and trading frictions for equilibria in which the buyers’ payoffs are zero. As we later show,

these equilibria maximize market efficiency.

First note that Lemma 1 implies that the discount factor does not directly affect seller

optimality, as it depends only on discounted probabilities of trade. The discount factor also

does not directly affect buyer optimality in equilibria in which the buyers’ payoff is zero.

Intuitively, zero payoff for buyers implies that they are indifferent between trading at any

point in time (and not trading as well). Now observe that for each δ, δ′ ∈ (0, 1) with δ ̸= δ′

and σ ∈ [0, 1], there exists a unique σ′ ∈ [0, 1] with σ/[1− δ(1− σ)] = σ′/[1− δ(1− σ′)].

Together, these facts suggest that if for some discount factor δ there exists an equilibrium

with V = 0, then, by adjusting the probabilities of trade appropriately, for any discount

factor δ′ ̸= δ there exists an equilibrium with V = 0 in which the prices at which trade

takes place and the discounted probabilities of trade at these prices are the same as in the

original equilibrium, implying the same seller payoffs.

The problem with the above reasoning is that by changing trade probabilities to preserve

discounted probabilities of trade, the masses of each type of seller in the market change,

affecting buyer beliefs. Proposition 3 below shows that seller behavior can be adjusted

while keeping the prices at which trade takes place the same so as to keep buyer beliefs

unchanged. Proposition 3 shows that trading frictions do not affect the ability of sellers to

signal quality through prices in the sense that a finite set of expected qualities of the good

is a set of prices at which trade can take place for some discount factor if, and only if, it is

a set of prices at which trade can take place for all discount factors.

Proposition 3. Let E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
be an equilibrium with V = 0 when

the discount is δ. For any δ′ ∈ (0, 1) different from δ, there exists an equilibrium E ′ with

the same payoffs as E when the discount factor is δ′. Hence, the set of equilibrium payoff

vectors for equilibria with V = 0 is invariant to trading frictions.
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Proof (sketch). Let E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
be an equilibrium with V = 0 when

the discount factor is δ and let p1 to pK be the prices at which trade takes place in E.

Now let the discount factor be δ′ ̸= δ and consider E ′ =
(
µ′, σ′, π′, (U ′

i)i∈I , V
′, (M ′

i)i∈I
)

such that the prices at which trade takes place are p1 to pK and the strategy profile (µ′, σ′)

satisfies
σ′(pk)

1− δ′(1− σ′(pk))
=

σ(pk)

1− δ(1− σ(pk))

for all k ∈ {1, . . . , K} and

µ′
i({pk})σ′(pk)

Eµ′
i
[σ′]

=
µi({pk})σ(pk)

Eµi
[σ]

(5)

for all i ∈ I and k ∈ {1, . . . , K}; note that µ′
i({pk}) > 0 if, and only if, µi({pk}) > 0,

so that µ′
i and µi have the same support for each i ∈ I. We show in the Appendix that we

can choose µ′ in this way. Finally, suppose that U ′
i = Ui for all i ∈ I, V ′ = 0, the masses

(M ′
i)i∈I satisfy stationary, and π′(p) satisfies Bayes’ rule for all p ∈ {p1, . . . , pK}. Since

M ′
iµ

′
i({pk})

Miµi({pk})
=

σ(pk)

σ′(pk)

for all i ∈ I and k ∈ {1, . . . , K} by stationarity and (5), it follows that

π′
i(p

k) =
M ′

iµ
′
i({pk})∑N

j=1M
′
jµ

′
j({pk})

=
Miµi({pk})∑N
j=1Mjµj({pk})

= πi(p
k)

for all i ∈ I and k ∈ {1, . . . , K}. Given that pk =
∑N

i=1 πi(p
k)vi for all k ∈ {1, . . . , K},

we then have that pk =
∑N

i=1 π
′
i(p

k)vi for all k ∈ {1, . . . , K} as well. Hence, E ′ satisfies

rationality of beliefs, payoff consistency, and stationarity. By Lemma 2, we can then choose

σ′ and π′ for off-equilibrium prices so that E ′ is an equilibrium.

Proposition 3 does not apply to equilibria in which the buyers’ payoff is positive, as in

these equilibria at least one price at which trade takes place differs from the expected quality

of the good traded at this price. It turns out that such equilibria do exist.18 In the Appendix,

18Pooling equilibria with V > 0 trivially exist if adverse selection is not severe. In the Supplementary
Appendix, we provide an example of an equilibrium with V > 0 when adverse selection is severe.

19



we show that for any equilibrium with V > 0 there exist a price p ∈ S, δ > 0, and ε > 0

such that if p < p′ < p + δ, then
∑N

i=1 πi(p
′)vi + ε <

∑N
i=1 π(p)vi; that is, an increase

in the price of the good above the price p leads to a discontinuous drop in its expected

quality. We also show in the Appendix that for any equilibrium with V = 0, there exists

an equilibrium with the same payoffs and gains from trade for which such discontinuous

drops in the expected quality of the good do not exist. Hence, the set of equilibrium payoff

vectors for equilibria in which increases in price do not lead to discontinuous drops in

the expected quality of the good coincides with the set of equilibrium payoff vectors for

equilibria with V = 0, which is invariant to trading frictions.

4 Two-Type Case

Here, we study the case typically considered in the literature: the two-type case when gains

from trade are strictly increasing in the type of the good and adverse selection is severe.

In this case, we are able to determine the set of equilibrium payoff vectors and the most

efficient equilibrium.

Suppose that I = {1, 2}, vi > ci for all i, v2 − c2 > v1 − c1, and f1v1 + f2v2 < c2;

note that v1 < c2 a fortiori. By Proposition 2, there exists a price that is offered only by

type-1 sellers. Lemma 4 then implies that S∗
1 \ S∗

2 = {v1}, θ(v1) = 1, and V = 0. Thus,

by Proposition 3, the set of equilibrium payoff vectors is invariant to trading frictions. We

determine this set explicitly in what follows.19 Since S∗
1 \ S∗

2 = {v1} and θ(v1) = 1 imply

that U1 = v1 − c1, it suffices to determine the possible values for U2. By Proposition 1,

there are two cases to consider: S∗
1 ∩ S∗

2 empty or S∗
1 ∩ S∗

2 a singleton.

Consider first the case in which S∗
1 ∩ S∗

2 is empty. The proof of Corollary 3 shows

that S∗
1 and S∗

2 are singletons, and so S∗
1 = {v1}. We claim that S∗

2 = {v2}. Indeed, if

S∗
2 = {p′} for some p′ ≥ 0, then π2(p

′) = 1 by Bayes’ rule. So, v2−p′ = δV = 0 by buyer

optimality, as θ(p′) < 1 by seller optimality. Note that S∗
2 = {v2} and v2 > c2 imply that

19As it turns out, the assumption that v2 − c2 > v1 − c1 does not matter for the results in this section. We
maintain it since it is typical in the literature.
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U2 > 0. Hence, θ(v2) > 0 and S2 = S∗
2 . Since S1 = S∗

1 , the equilibria with S∗
1 ∩ S∗

2 = ∅

then correspond to separating equilibria. Now note that a type-2 seller has no incentive to

post v1 since v1 < c2. A type-1 seller has no incentive to post v2 if, and only if,

θ(v2) ≤
v1 − c1
v2 − c1

. (6)

Condition (6) is necessary for a separating equilibrium. Lemma 2 implies that (6) is also

sufficient.20 So, the set of equilibrium payoff vectors when S∗
1 ∩S∗

2 = ∅ is the set of vectors

(V, U1, U2) with V = 0, U1 = v1 − c1, and U2 ∈ (0, U2], where

U2 =
v1 − c1
v2 − c1

(v2 − c2).

The separating equilibrium in which the incentive-compatibility constraint (6) holds with

equality Pareto-dominates all other separating equilibria.

Now consider the case in which S∗
1 ∩ S∗

2 is a singleton. In this case, type-1 sellers

randomize between offering v1 and offering a higher price p ∈ [c2, v2) that is also offered

by type-2 sellers and accepted by buyers with positive probability; p = v2 is not possible

since, by Bayes’ rule, the expected quality of the good sold at price v2 would be smaller

than v2. We claim that type-2 sellers are worse off in this case. Indeed,

θ(p) =
v1 − c1
p− c1

,

as type-1 sellers are indifferent between offering p and v1. Then

U2 = θ(p)(p− c2) =
v1 − c1
p− c1

(p− c2).

Since U2 is strictly increasing in p, we have that U2 < U2 and the payoff of type-2 sellers

in an equilibrium with S∗
1 ∩ S∗

2 a singleton is smaller than their payoff in the most efficient

separating equilibrium. It follows that for all U2 ∈ [0, U2), there exists an equilibrium with

S∗
1 ∩ S∗

2 a singleton in which the seller’s payoff is U2.21 The following result summarizes.
20The equilibrium masses of type-1 and type-2 sellers are M1 = f1 and M2 = f2/σ(v2), respectively.
21See the Supplementary Appendix for a proof.
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Proposition 4. The separating equilibrium with (6) holding with equality Pareto-dominates

all other equilibria. The set of equilibrium payoff vectors is invariant to δ and given by

V = 0, U1 = v1 − c1, and U2 ∈ [0, U2].

We now discuss equilibrium gains from trade. Gains from trade in a separating equi-

librium are pinned down by the discounted probability of trade θ(v2) for type-2 sellers and

given by

G = f1(v1 − c1) + f2θ(v2)(v2 − c2),

which is the average population payoff f1U1+f2U2. So, the set of possible values for gains

from trade in separating equilibria is invariant to δ and equal to (f1(v1 − c1), G], where

G =

(
f1 + f2

v2 − c2
v2 − c1

)
(v1 − c1).

The most efficient separating equilibrium is the one maximizing the discounted probability

of trade for type-2 sellers.

It follows from Lemma 6 in Section 6 that equilibrium gains from trade are smaller than

the average population payoff when S∗
1 ∩ S∗

2 is a singleton and at least the type-1 sellers

randomize. The intuition for this result is as follows. By randomizing, type-1 sellers allow

type-2 sellers to trade at a higher rate than in a separating equilibrium. This happens at

the expense of a lower rate of trade for type-1 sellers, though. The resulting decrease in

gains from trade for the type-1 good more than offsets the increase in gains from trade for

the type-2 good. The wedge between gains from trade and average seller payoffs happens

because randomization by sellers does not reduce their payoffs.

Since any equilibrium in which S∗
1 ∩ S∗

2 is a singleton is Pareto-dominated by the most

efficient separating equilibrium, it follows from the results in the above paragraph that gains

from trade in any such equilibrium are smaller than the highest gains from trade possible

in separating equilibria. We then have the following result.

Proposition 5. The maximum equilibrium gains from trade are invariant to trading fric-

tions and equal to the maximum gains from trade in a separating equilibrium.
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To summarize, we established the following results in the two-type case when gains

from trade are positive and increasing in the type of the good and adverse selection is

severe: (i) the set of equilibrium payoff vectors is invariant to trading frictions; (ii) the most

efficient separating equilibrium Pareto-dominates and has higher gains from trade than any

other equilibrium; and (iii) the maximum equilibrium gains from trade are invariant to

trading frictions. The first result follows from the fact severe adverse selection implies that

V = 0. It turns out that this is not true with three or more types of the good.22 Regarding

the second result, we show in the next section that with three or more types of the good,

there exist non-separating equilibria that Pareto-dominate any separating equilibrium and

lead to higher gains from trade. In Section 6, we extend the last result to the N -type case.

Comparison with Buyer Take-it-or-Leave-it Offers. Moreno and Wooders [2010] char-

acterizes stationary equilibria in the case considered in this section when buyers make

take-it-or-leave-it offers to sellers.23 It shows that a unique equilibrium exists if δ is close

enough to one. In this equilibrium, expected gains from trade for both types of good de-

crease with δ, with the expected gain from trade for the type-2 good decreasing to zero as

trading frictions vanish (δ → 1). This is in stark contrast to the most efficient separating

equilibrium with seller offers. Moreover, given that the discounted probability of trade for

type-2 sellers is positive in any separating equilibrium with seller offers, any such equilib-

rium has the feature that gains from trade for both types of the good are higher than in the

unique equilibrium with buyer offers when δ is sufficiently close to one.

5 Separating Equilibria

In this section, we characterize separating equilibria and show that for such equilibria both

the set of equilibrium payoff vectors and the set of values of equilibrium gains from trade
22Lemma 4 implies that V = 0 in equilibria in which only type-1 sellers trade at the lowest price possible.

So, a necessary condition for equilibria with V > 0 is that type-2 sellers offer the lowest price at which trade
can take place with positive probability. Proposition 2 implies that this is not possible in the two-type case
when adverse selection is severe. In the Supplementary Appendix, we show that this is possible when N ≥ 3.

23Moreno and Wooders [2010] assumes that in any period buyers and sellers in the market match with
probability α ∈ (0, 1). Its equilibrium characterization extends to the case in which α = 1 without change.
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are invariant to trading frictions. We conclude by showing that separating equilibria can be

Pareto-dominated by and have lower gains from trade than non-separating equilibria when

there are three or more types of the good.

Our first result provides necessary conditions for a separating equilibrium. It extends

the characterization of separating equilibria in the two-type case to the general N -type case.

Proposition 6. The following holds in separating equilibria: (i) V = 0; (ii) Si = {vi} for

i < N and vN ∈ SN ; (iii) θ(v1) = 1 and θ(vi+1) ≤ θ(vi)(vi − ci)/(vi+1 − ci) for i < N .

Proof. By assumption, S∗
i ∩S∗

j = ∅ for all i ̸= j in I. The proof of Corollary 3 then implies

that S∗
i is a singleton for all i ∈ I. Since S∗

1 \
⋃N

j=2 S
∗
j = S∗

1 , it follows from Lemma 4 that

S∗
1 = {v1}, θ(v1) = 1, and V = 0. Given that V = 0, it then follows from Bayes’ rule and

buyer optimality that S∗
i = {vi} for all i > 1. Property (ii) is a consequence of the fact that

Si = S∗
i for all i < N , while (iii) is an immediate consequence of seller optimality.

Separating equilibria always exist. Indeed, consider E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
such that: (i) µi({vi}) = 1; (ii) θ(v1) = 1 and θ(vi+1) = θ(vi)(vi − ci)/(vi+1 − ci) for all

i < N ; (iii) πi(vi) = 1; (iv) Ui = θ(vi)(vi − ci); (v) V = 0; and (vi) Mi = fi/σ(vi). By

Corollary 1, we can choose π(p) and σ(p) for p /∈ {v1, . . . , vN} so that E is an equilibrium.

Since gains from trade are equal to
∑N

i=1 fiUi in separating equilibria, it follows from

Proposition 3 that for such equilibria both the set of equilibrium payoff vectors and the set

of possible values of equilibrium gains from trade are invariant to δ.

Corollary 4. The set of equilibrium payoff vectors and the set of values of equilibrium

gains from trade for separating equilibria are invariant to trading frictions.

We conclude this section by showing that when there are at least three types of the

good, there exist distributions of seller types in the entering population for which adverse

selection is severe, so that pooling equilibria do not exist, but for which all separating

equilibria are Pareto-dominated by and lead to lower gains from trade than a non-separating

equilibrium. Suppose that N = 3, (c1, c2, c3) = (0, 1, 4), (v1, v2, v3) = (1, 2, 5), and
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(f1, f2, f3) = (1/20, 9/20, 1/2); note that adverse selection is severe. It follows from (iii)

in Proposition 6 that the separating equilibrium with θ(v1) = 1,

θ(v2) =
v2 − c2
v2 − c1

=
1

2
, and θ(v3) = θ(v2)

v3 − c3
v3 − c2

=
1

8

Pareto-dominates all other separating equilibria. Seller payoffs are U1 = 1, U2 = 1/2, and

U3 = 1/8. Now consider the alternative equilibrium in which type-1 and type-2 sellers

pool by offering

p1 =
f1

f1 + f2
v1 +

f2
f1 + f2

v2 =
19

10

and type-3 sellers offer v3. Note that V = 0 in this new equilibrium. Set θ(p1) = 1 and

θ(v3) = θ(p1)
p1 − c2
v3 − c2

=
9

40
,

so that type-2 sellers are indifferent between offering p1 and v3 and type-1 sellers prefer

offering p1. Seller payoffs are now U1 = 19/10 > 1, U2 = 9/10 > 1/2, and U3 = 9/40 >

1/8. Gains from trade are higher as well, as the discounted probabilities of trade for all

goods are greater.

The intuition for why the above non-separating equilibrium Pareto-dominates all sepa-

rating equilibria is as follows. In order to induce separation between the type-1 and type-2

sellers, the discounted probability of trade for the type-2 seller has to be sufficiently small.

This, in turn, implies an even smaller discounted probability of trade for the type-3 seller.

However, when the distribution of seller types in the population is such that the fraction of

type-1 sellers is small enough, pooling them with the type-2 sellers benefits both types of

seller by allowing them to trade immediately at a price marginally smaller than v2. This

also benefits type-3 sellers by allowing a higher discounted probability of trade at price v3

without destroying the incentive of type-2 buyers to trade at the lower, pooling, price.24

24The logic of the above example can be generalized. In the Supplementary Appendix, we show that with
three or more seller types there exists an open set of distributions of seller types for which all separating
equilibria are Pareto-dominated by and have lower gains from trade than a non-separating equilibrium. This
result resembles the criticism of equilibrium refinements for signaling games by Mailath et al. [1993], which
points out that refinements often select Pareto-dominated separating equilibria.
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6 General Case

So far, we only considered the two-type case and separating equilibria. The maximum

gains from trade achieved by equilibria in these two cases is invariant to trading frictions.

These cases are restrictive, though. Indeed, except in the two-type case, there may be non-

separating equilibria that Pareto-dominate all separating equilibria and lead to higher gains

from trade. We now show that market efficiency is invariant to trading frictions also in the

general case. We do so by deriving a sequence of lemmas describing efficiency properties

of equilibria. The proofs of all these lemmas are in the Appendix.

First, we show that gains from trade in any equilibrium in which the buyers’ payoff is

zero is bounded above by average seller payoffs in the entering population, with equality

if, and only if, the equilibrium is pure.

Lemma 6. Consider an equilibrium with V = 0. Then G ≤
∑N

i=1 fiUi, with equality if,

and only if, the equilibrium is pure.

The next result shows that for any equilibrium with V > 0 there exists a more efficient

one with V = 0. To understand why, consider a non-pooling equilibrium with V > 0.25

Then, p =
∑N

i=1 πi(p)vi − δV <
∑N

i=1 πi(p)vi for every price p at which trade happens.

Since the maps p 7→ (p−ci)/(p−ci+1) are strictly increasing in p for p ≥ ci, increasing the

prices at which trade takes place, and so reducing buyer payoffs, relaxes the local upward

incentive-compatibility constraints for all types of seller. This, in turn, allows for higher

discounted probabilities of trade for all types of the good that trade at a price greater than

the smallest price at which trade takes place, leading to higher gains from trade.

Lemma 7. For any equilibrium with V > 0, there exists an equilibrium with V = 0 that

results in higher gains from trade.

Finally, we show that randomization by sellers hurts gains from trade if V = 0.

25The result is trivially true if the equilibrium with V > 0 is pooling.
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Lemma 8. For any equilibrium with V = 0, there exists a pure equilibrium with V = 0

that results in higher gains from trade.

We can now prove our main result.

Proposition 7. Let Wmax(δ) be the maximum equilibrium gains from trade when the dis-

count factor is δ. Then Wmax(δ) is invariant to δ.

Proof. Lemmas 7 and 8 imply that gains from trade are maximized when V = 0 and the

equilibrium is pure. Let E0 be the set of pure equilibria with V = 0. The set E0 is non-

empty since separating equilibria always exist. Now let G0 be the set of possible values

of equilibrium gains from trade for equilibria in E0. Since, by Lemma 6, G =
∑N

i=1 fiUi

for any equilibrium in E0, Proposition 3 implies that G0 is invariant to δ. Finally, for any

equilibrium, seller payoffs are Ui = θi(vi − ci), where θi is the discounted probability of

trade of the type-i good. Since the set Θ of possible vectors θ = (θ1, . . . , θN) of discounted

probabilities of trade is defined by a list of weak inequalities derived from the sellers’

incentive-compatibility constraints for trade, the set Θ is closed, and thus compact. So,

Wmax(δ) exists and is the same for every value of δ.

7 Stationarity Assumption and Alternative Specifications
of the Environment

In this section, we first address the question of whether the outcomes of stationary equilibria

are the long-run outcomes of equilibria in which one does not impose stationarity to begin

with. We then discuss the robustness of our results to alternative assumptions about the

timing of trade and to alternative forms of trading frictions.

7.1 Stationarity

The stationarity condition (3) assumes that for each i ∈ I, the initial mass of type-i sellers

in the market is the steady-state mass of type-i sellers. This begs the question of whether the
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outcomes of a stationary equilibrium—the prices at which trade takes place, the discounted

probabilities of trade at these prices, and the steady-state masses of each type of seller—

are the long-run outcomes of an equilibrium, in which behavior need not be time-invariant,

when the economy starts in some initial period with the entry of a first cohort of buyers and

sellers in the market. A stationary equilibrium for which this is not the case is not credible.

The notion of equilibrium extends naturally to the case in which one does not impose

stationary behavior and assumes that the economy starts in some initial period, which we

set to zero without loss, with the entry of a first cohort of buyers and sellers in the market.

We refer to such an equilibrium as a non-stationary equilibrium to distinguish it from a

stationary equilibrium. Informally, a non-stationary equilibrium is a sequence of strategy

profiles, buyer beliefs, payoff vectors, and vectors of seller masses such that: (i) in each

period t ≥ 0 sellers behave optimally given the acceptance behavior of buyers in period

t and seller continuation payoffs in period t + 1; (ii) in each period t ≥ 0 buyers behave

optimality given their beliefs in period t and their continuation payoffs in period t+1; (iii)

buyer beliefs satisfy Bayes’ rule for the prices offered on the path of play; (iv) payoffs are

consistent with individual behavior; and (v) the evolution of the mass of each type of seller

in the market is the one implied by the aggregate behavior of buyers and sellers when for

each i ∈ I the initial mass of type-i sellers is fi. A formal definition is in the Appendix.

Consider a stationary separating equilibrium E. Since in this equilibrium the masses of

each type of seller in the market do not matter for the determination of buyer beliefs, and

hence for buyer optimality, it is easy to see that E remains an equilibrium if one replaces

the stationary condition (3) with the law of motion for the masses of each type of seller in

the market implied by the behavior of buyers and sellers in this equilibrium when for each

i ∈ I the initial mass of type-i sellers is fi. Let pi and σ be, respectively, the price that

type-i sellers offer and the strategy profile for buyers in E. Moreover, let Mit be the mass of

type-i sellers in the market in period t ≥ 0. Then, Mi0 = fi and Mit+1 = fi+(1−σ(pi))Mit

for all t ≥ 0. Notice that limt→∞Mit = fi/σ(pi), which is the steady-state mass of type-i

sellers in E.
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The argument in the previous paragraph shows that for every stationary separating

equilibrium there exists a non-stationary separating equilibrium whose outcomes approach

the outcomes of the stationary separating equilibrium in the long-run; in fact, the non-

stationary equilibrium is such in every period the prices at which trade takes place and

the discounted probabilities of trade at these prices are the same as in the stationary equi-

librium. In the Appendix, we show that the same result holds for every pure stationary

equilibrium in which buyer payoffs are zero. In particular, the outcomes in the most effi-

cient stationary equilibria are the long-run outcomes of non-stationary equilibria.

7.2 Timing of Trade

In our environment, agents who enter the market get an opportunity to trade immediately.

Suppose, instead, that new agents in the market have to wait one period before they are

matched to a trading partner. This corresponds to the timing assumptions in continuous-

time models of trade; see, e.g., Kaya and Kim [2018] and Kim [2017]. It is immediate to

see that the definition of an equilibrium does not change. However, gains from trade are

now multiplied by δ. Thus, Proposition 7 implies that maximum equilibrium gains from

trade are linearly increasing in δ. The negative relationship between maximum gains from

trade and trading frictions is a direct consequence of the fact that new agents in the market

have to wait one period before getting the opportunity to trade.

The above result should be contrasted with corresponding results in Kaya and Kim

[2018] and Kim [2017], which consider continuous-time models of trade with adverse

selection in which buyers make take-it-or-leave it offers. They show that a reduction in

trading frictions has two opposing effects on market efficiency. The positive effect is the

direct, mechanical, effect discussed above. The negative effect is the indirect effect coming

from a reduction in the ability of buyers to screen sellers. As it turns out, the direct ef-

fect dominates the indirect effect, and a reduction in trading frictions increases equilibrium

gains from trade, albeit sublinearly. The linear relationship between trading frictions and

market efficiency in our setting is due to the absence of the indirect effect.
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7.3 Trading Frictions as Probability of Exit

An alternative way of describing trading frictions in our setting is to assume that instead

of discounting the future, agents who do not trade in a given period exogenously leave the

market with probability 1 − δ ∈ (0, 1).26 As in the baseline environment, an increase in δ

reduces trading frictions by reducing the opportunity cost of not trading.

The definition of an equilibrium is the same except that now the stationarity condition

is given by

Mi

(
1− δ + δ

∫
R+

σ(p)dµi(p)

)
= fi (7)

for all i ∈ I. Indeed, now a seller exits the market if either the seller trades, which happens

with probability
∫
R+

σ(p)dµi(p), or the seller does not trade but exits exogenously, which

happens with probability 1− δ conditional on the seller not trading.

It is immediate to see that the characterization of seller optimality given by Lemma 1

remains valid, and so do the other results in Section 3.1. However, the monotonicity of

seller payoffs is weak instead of strict. Indeed, as sellers can now exit the market without

trading, sellers of type i < N can obtain zero payoff. In the Supplementary Appendix, we

show that Ui ≥ Uj if j > i with Ui > Uj when S∗
j ̸= ∅ and that S∗

j = ∅ when Ui = 0.

Since payoffs for sellers of type i < N can now be zero, two or more types of seller

can make offers that are rejected in equilibrium. This, in turn, implies that monotonicity of

prices in seller types holds only for prices in S∗. Nevertheless, Corollaries 2 and 3 remain

true as their proofs rely only on the monotonicity of prices in S∗. Proposition 2 holds as

well. However, one cannot conclude from it that there are at least two prices at which

trade takes place when adverse selection is severe, as now type-N sellers need not trade in

equilibrium. Still, severe adverse selection rules out pooling and leads to delay in trade.

We now show that maximum equilibrium gains from trade are invariant to trading fric-

tions. We first show that Proposition 3 still holds. Let E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
be

an equilibrium with V = 0 when the discount factor is δ. We show in the Supplementary

26For papers that model trading frictions in this way, see McAfee [1993] and Lauermann [2013].
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Appendix that one can assume that the set S of prices that sellers post in E is finite. Now

let the discount factor be δ′ ̸= δ and consider the list E ′ =
(
µ′, σ′, π′, (U ′

i)i∈I , V
′, (M ′

i)i∈I
)

in the proof of Proposition 3 except that now the measures µ′
i are such that p ∈ S,

µ′
i({p})

(
1− δ′ + δ′σ′(p)

)
1− δ′ + δ′Eµ′

i
[σ′]

=
µi({p})

(
1− δ + δσ(p)

)
1− δ + δEµi

[σ]
; (8)

we show in the Supplementary Appendix that such measures exist. Then, π′(p) = π(p) for

all p ∈ S by (7). The rest of the proof is the same as in Section 3.

To finish, we show that we can adapt the proof of Proposition 7 to this case. As it turns

out, gains from trade in equilibria with V = 0 now always equal average seller payoffs

in the population; see the Supplementary Appendix for a proof of this. The proof that for

every equilibrium with V > 0 there exists an equilibrium with V = 0 with weakly higher

gains from trade is the same as before. Proposition 7 follows from these two observations.

Summarizing, modelling trading frictions as an exogenous exit probability alters some

of our results, but does not change the qualitative properties of the equilibrium set, includ-

ing the fact that market efficiency is invariant to trading frictions.

7.4 Within-Period Matching Frictions

We finish this section by discussing the case in which within-period matching is frictional

in the sense that in every period agents in the market are matched to a trading partner with

probability α ∈ (0, 1); now an increase in either α or δ reduces trading frictions. The

baseline environment with frictionless within-period matching corresponds to the case in

which α = 1.

The definition of an equilibrium remains the same except that agent payoffs are com-

puted differently and stationarity needs reformulation. The payoff to a type-i seller who

posts price p ≥ 0 in every period now equals

Ui(p) =
ασ(p)

1− δ(1− ασ(p))
(p− ci) = θ(p, α)(p− ci).
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The term θ(p, α) is the discounted probability of trade for this seller, which is strictly

increasing in both α and σ(p). The payoff to buyers is now defined recursively by

V =

∫
R+

( N∑
i=1

πi(p)(vi − p)

)
ασ(p)dµ(p) +

(∫
R+

(1− ασ(p))dµ(p)

)
δV.

Finally, the stationarity condition (3) is now given by

Miα

∫
R+

σ(p)dµi(p) = fi for all i ∈ I. (9)

We first show that the basic properties of equilibria in the baseline environment extend

to the case considered here without any change. The characterization of seller optimality

given by Lemma 1 remains valid with θ(p, α) in place of θ(p). From this, it follows that

Lemmas 2 and 3 and Corollary 1 remain valid. It is easy to see that Lemma 4 now holds

with θ(v1, α) = (1−δ+δα)−1α, the highest discounted probability of trade possible. Since

the stationarity condition (9) implies that
∫
R+

σ(p)dµi(p) is positive for all i ∈ I, so that

every type of seller trades in equilibrium, we have that Lemma 5 and Proposition 1 also

hold in this case. Likewise, Corollaries 2 and 3 and Proposition 2 remain valid.

We now consider the two-type case of Section 4 and show that a reduction in trading

frictions increases market efficiency. Lemma 4 and Proposition 2 imply that V = 0, p = v1

and θ(v1, α) = (1 − δ + δα)−1α, so that U1 = (1 − δ + δα)−1α(v1 − c1). As in the

baseline environment, there are two cases to consider: either S∗
1 ∩ S∗

2 is empty or S∗
1 ∩ S∗

2

is a singleton.

Consider first equilibria in which S∗
1 ∩ S∗

2 = ∅. It follows from the proof of Corollary

3 that both S∗
1 and S∗

2 are singletons, and so S1 = S∗
1 = {v1}. The same argument as when

α = 1 shows that S∗
2 = {v2}. Since v2 > c2 implies that U2 > 0, it then follows that

S2 = S∗
2 . Thus, equilibria with S∗

1 ∩ S∗
2 = ∅ again correspond to the separating equilibria.

Now note that a necessary condition for a separating equilibrium is that

θ(v2, α) ≤
α

1− δ + δα

v1 − c1
v2 − c2

.

32



As type-2 sellers have no incentive to post v1, the above condition on θ(v2, α) is also suffi-

cient by Lemma 2. So, the set of payoff vectors for separating equilibria is the set of vectors

(V, U1, U2) with V = 0, U1 = (1− δ + δα)−1α(v1 − c1), and U2 ∈
(
0, U2(α, δ)

]
, where

U2(α, δ) =
α

1− δ + δα

v1 − c1
v2 − c2

(v2 − c2).

The maximum equilibrium gains from trade for such equilibria are

G(α, δ) =
α

1− δ + δα

(
f1 + f2

v2 − c2
v2 − c1

)
(v1 − c1).

To conclude, an argument similar to the one of Section 4 shows that gains from trade in

equilibria in which S∗
1 ∩ S∗

2 is a singleton are smaller than in the most efficient separating

equilibrium.27 Thus, G(α, δ) is the maximum equilibrium gains from trade.

Note that now the maximum equilibrium gains from trade are strictly increasing in δ.

They are also strictly increasing in α. So, lowering trading frictions increases market effi-

ciency. The positive relationship between trading frictions and the maximum equilibrium

gains from trade is simply a consequence of an easing of a technological constraint, having

nothing to do with adverse selection per se. By assuming frictionless matching within a

period, we ignore this mechanical effect of a reduction in trading frictions, allowing us to

focus on the interaction between trading frictions and signaling.

8 Conclusion

We study trade in dynamic decentralized markets with adverse selection. In contrast with

the literature on the topic so far, we assume that the informed sellers make the offers, so

that signaling through prices is possible. We establish a partial characterization of the equi-

librium set and discuss the standard two-type case and separating equilibria in detail. We

also show that the maximum equilibrium gains from trade are invariant to trading frictions.

Overall, our results show that the trading protocol in dynamic decentralized markets with

27See the Supplementary Appendix for a proof of this.
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adverse selection has a substantive impact on their functioning, including their efficiency.

This calls for a better understanding of how the nature of the trading process in dynamic

decentralized markets with adverse selection affects trading outcomes in such markets.

Our analysis is fairly general in a number of ways. Unlike the environments typically

considered in the literature, we allow for any finite number of types of the good, as opposed

to just two, and do not impose that gains from trade are increasing in the type of the good;

as we discuss in the Supplementary Appendix, we can even account for the case in which

gains from trade are not necessarily positive for all types of the good. We also do not make

use of any refinements to constrain the equilibrium set. We, however, restrict attention to

stationary equilibria. The literature on dynamic trading with adverse selection that con-

siders non-stationary equilibria typically does so in settings with one-time entry of buyers

and sellers, which amounts to assuming that the vintages of the goods being traded are ob-

servable.28 Allowing for non-stationary equilibria in our setting significantly increases the

scope for equilibrium behavior. The analysis of non-stationary equilibria in the presence of

signaling through prices is left for future research.
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A Appendix

A.1 Proof of Lemma 1

Consider a list (µ, σ, π, (Ui)i∈I , V, (Mi)i∈I) satisfying payoff consistency. Fix i ∈ I and

suppose that seller optimality holds for type-i sellers. Since Ui = θ(p)(p − ci) for p ∈ Si

by payoff consistency and Ui ≥ σ(p′)(p − ci) + (1 − σ(p′))δUi for all p′ ≥ 0 by seller

optimality, it follows that if p ∈ Si and p′ ≥ 0, then

θ(p)(p− ci) ≥ σ(p′)(p′ − ci) + (1− σ(p′))δUi

≥ σ(p′)(p′ − ci) + (1− σ(p′))δ
[
σ(p′) + (1− σ(p′))δUi

]
≥

∞∑
k=0

(1− σ(p′))kδkσ(p′)(p′ − ci) = θ(p′)(p− ci).

Now suppose that θ(p)(p − ci) ≥ θ(p′)(p′ − ci) for all p ∈ Si and p′ ≥ 0 and fix p ∈ Si.

Then, since Ui = θ(p)(p− ci) = σ(p)(p− ci) + (1− σ(p))δUi by payoff consistency,

σ(p)(p− ci) + (1− σ(p))δUi ≥ σ(p′)(p′ − ci) + (1− σ(p′))δUi

for all p′ ≥ 0 if, and only if, Ui[1− δ(1− σ(p′))] ≥ σ(p′)(p′ − ci) for all p′ ≥ 0, which is

true by hypothesis. So, seller optimality holds for type-i sellers.

A.2 Proof Lemma 3

Let pmin = min{p′ : p′ ∈ S}. It follows from (4) that θ(p) = 0 for all p ∈ S if θ(pmin) = 0,

in which case the conclusion of the lemma holds trivially. Assume then that θ(pmin) > 0.

In this case, assumption (i) and (4) together imply that θ(p) > 0 for all p ∈ S and θ(p+) <

θ(p) for all p ∈ S with p < pmax.

First, we show that if p < pmax, then a type-i seller with i ∈ I(p) has no incentive to

post any price p′ > p in S. Fix p < pmax, i ∈ I(p), and let S+(p) = {p1, . . . , pK}, with

K ≥ 1, be the set of prices in S that are greater than p, ordered from lowest to highest.
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Suppose that there exists k ∈ {1, . . . , K} with θ(pk)(pk − ci) ≤ θ(p)(p− ci). Since

θ(p1) = θ(p)
p−max{cj : j ∈ I(p)}
p1 −max{cj : j ∈ I(p)}

≤ θ(p)
p− ci
p1 − ci

by (4) and the fact that (p−c)/(p1−c) is strictly decreasing in c for all c < p, the induction

hypothesis is true when k = 1. Now observe that

θ(pk+1)(pk+1 − ci)

= θ(pk+1)(pk+1 −max{cj : j ∈ I(pk)}) + θ(pk+1)(max{cj : j ∈ I(pk)} − ci)

≤ θ(pk+1)(pk+1 −max{cj : j ∈ I(pk)}) + θ(pk)(max{cj : j ∈ I(pk)} − ci)

= θ(pk)(pk −max{cj : j ∈ I(pk)}) + θ(pk)(max{cj : j ∈ I(pk)} − ci)

= θ(pk)(pk − ci);

the first inequality follows since θ(pk+1) < θ(pk) and max{cj : j ∈ I(pk)} ≥ ci by (ii)

whereas the second equality follows from (4). Thus, θ(pk+1)(pk+1 − ci) ≤ θ(p)(p− ci) by

the induction hypothesis, from which be obtain the desired result.

Now we show that if p > pmin, then a type-i seller with i ∈ I(p) has no incentive to

post any price p′ < p in S. Fix p > pmin and i ∈ I(p). First note that if p = pmax = cN

and i = N , then θ(p)(p − cN) ≥ θ(p′)(p′ − cN) for all p ∈ SN = {cN} and p′ ∈ S.

So, assume that either pmax > cN or i < N and let S−(p) = {p1, . . . , pK}, with K ≥ 1,

be the set of prices in S that are smaller than p, ordered from lowest to highest. Note

that p > cj for all i ∈ I with j ∈ I(p). Suppose that there exists k ∈ {1, . . . , K} with

θ(pk)(pk − ci) ≤ θ(p)(p− ci). Given that

θ(p) = θ(pK)
pK −max{ci : i ∈ I(p)}
p−max{ci : i ∈ I(p)}

≥ θ(pK)
pK − ci
p− ci

,

the induction hypothesis is true when k = K. Moreover, since θ(pk−1) > θ(pk) and

max{cj : j ∈ I(pk−1)} ≤ ci, a straightforward modification of the argument in the previ-

ous paragraph shows that θ(pk−1)(pk−1 − ci) ≤ θ(pk)(pk − ci). So, θ(pk−1)(pk−1 − ci) ≤

θ(p)(p− ci) by the induction hypothesis, and the desired result follows.
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A.3 Proof of Lemma 4

Consider an equilibrium with S∗
1 \

⋃N
j=2 S

∗
j ̸= ∅ and let p be a price in this set. Then

π1(p) = 1 by Bayes’ rule, so that v1 − p ≥ δV by buyer optimality. Let w1 = v1 − δV .

We claim that p = w1. Indeed, if p < w1, then
∑N

j=1 π(p
′)vj − p′ ≥ v1 − p′ > δV for

all p′ ∈ (p, w1), in which case type-1 sellers can profitably deviate by offering p′ ∈ (p, w1)

and increasing their payoff to p′ − c1 > p− c1 ≥ U1. Now note that if p = w1, then buyer

optimality implies that V = 0, so that p = v1. To conclude, observe that if θ(v1) < 1, then

type-1 sellers could profitably deviate by offering v1−ε with 0 < ε < (1−θ(v1))(v1− c1),

as such an offer would be accepted with probability one by a buyer.

A.4 Proof of Lemma 5

First note that Ui > 0 for all i < N , so that θ(p) > 0 and p > ci for all p ∈ Si if i < N .

Indeed, stationarity and UN ≥ 0 imply that there exists p′ ≥ cN in SN with θ(p′) > 0.

Then Ui ≥ θ(p′)(p′ − ci) > θ(p′)(p′ − cN) ≥ 0 by seller optimality and cN > ci. Now let

i, j ∈ I be such that j > i. We are done if j = N and UN = 0. So assume that UN > 0

and θ(p) > 0 and p > cN if p ∈ SN . Fix p ∈ Si and p′ ∈ Sj . Since θ(p′) > 0 and p′ > cj ,

Ui = θ(p)(p− ci) ≥ θ(p′)(p′ − ci) > θ(p′)(p′ − cj) = Uj;

the first inequality follows from seller optimality whereas the second inequality follows

from the fact that θ(p′) > 0 and ci < cj . This concludes the proof.

A.5 Proof of Corollary 2

Let i, j ∈ I be such that i < j. Since the map θ 7→ θ(1 − δ)/(1 − δθ) taking discounted

probabilities of trade into probabilities of trade is strictly increasing and Proposition 1

implies that p′ ≥ p for all p ∈ S∗
i and p′ ∈ S∗

j , it follows from (3) and gi/gj = Mi/Mj that

gi
gj

=
fi
fj

∫
R+

σ(p)dµj(p)∫
R+

σ(p)dµi(p)
≤ fi

fj
.

40



A.6 Proof of Corollary 3

We claim that the sets S∗
i contain at most one element not in S∗ \S∗

i . This is true for S∗
1 by

Lemma 4. Let 1 < i ≤ N and suppose, by contradiction, that there exist p, p′ ∈ S∗
i with

p < p′ and {p, p′} ∩ S∗
j = ∅ for all j ̸= i. Then θ(p) > θ(p′) > 0. Moreover, θ(p) < 1

since p > p1 for some p1 ∈ S∗
1 by Proposition 1. Now note that πi(p) = πi(p

′) = 1 by

Bayes’ rule. However, as θ(p) and θ(p′) are interior, buyer optimality implies that

vi − p =
N∑
k=1

πk(p)vk − p = δV =
N∑
k=1

πk(p
′)vk − p′ = vi − p′,

a contradiction. The result that S∗ has at most 2N − 1 elements now follows immediately

from the fact that S∗
i ∩ S∗

i+1 with i < N has at most one element by Proposition 1.

A.7 Proof of Proposition 3

We need to show that for each i ∈ I, there exists µi such that

µ′
i({pk})σ′(pk)

Eµ′
i
[σ′]

=
µi({pk})σ(pk)

Eµi
[σ]

for all k ∈ {1, . . . , K}. (A.1)

Fix i ∈ I and let γ, α ∈ RK be such that γk = σ′(pk) and αk = µi({pk})σ(pk)/Eµi
[σ] for

each k ∈ {1, . . . , K}; note that α1 + · · ·+ αK = 1. Now let T : RK → RK be such that

T (x) =

(
α1

γ1
⟨x, γ⟩, . . . , αK

γK
⟨x, γ⟩

)
,

where ⟨a, b⟩ is the scalar product of a, b ∈ RK . Then, T (x) = Ax, where A is the matrix

A =


α1

γ1
γ1 · · · α1

γ1
γK

... . . . ...
αK

γK
γ1 · · · αK

γK
γK

 .

We are done if we show that there exists x∗ = (x∗
1, . . . , x

∗
K) ∈ RK

+ with x∗
1 + · · ·+ x∗

K = 1

such that T (x∗) = x∗. Indeed, if µ′
i is such that µ′

i({pk}) = x∗
k for k ∈ {1, . . . , K}, then µ′

i
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satisfies (A.1). Since T is linear, it suffices to show that λ = 1 is an eigenvalue of A, and

so there exists x = (x1, . . . , xK) ∈ RK
+ \ {0} with T (x) = x, for x∗ = (x1 + · · ·+ xK)

−1x

is also such that T (x∗) = x∗.

Let I be the K ×K identity matrix and A0 be K ×K matrix given by

A0 =

 α1 · · · α1

... . . . ...
αk · · · αk

− I.

Since the determinant is a multi-linear operator defined on the rows and columns of a

matrix, the determinants of A − I and A0 coincide. Now let e = (1, . . . , 1) ∈ RK , ei be

the ith element of the canonical basis of RK , and vi = αie− ei. By construction, vi is the

ith row of A0. Given that v1 + · · · + vK = (α1 + · · · + αK)e− e = 0, the rows of A0 are

linearly dependent. So, its determinant is zero. This concludes the proof.

A.8 Equilibria with V > 0

Consider an equilibrium with belief system π. We say that the expected quality of the good

drops discontinuously with an increase in prices at p ≥ 0 if there exist δ > 0 and ε > 0 such

that
∑N

i=1 πi(p)vi −
∑N

i=1 πi(p
′)vi > ε for all p′ ∈ (p, p + δ). We say that an equilibrium

has a discontinuous drop in the expected quality of the good if there exists a price p such

that the expected quality of the good drops discontinuously with an increase in prices at p.

Proposition 8. An equilibrium with V > 0 has a discontinuous drop in the expected quality

of the good. Moreover, for any equilibrium with V = 0, there exists an equilibrium without

a discontinuous drop in the expected quality of the good resulting in the same payoffs and

gains from trade.

Proof. Suppose that E = (µ, σ, π, (Ui)i∈I , V, (Mi)i∈I) is an equilibrium with V > 0. By

assumption, there exists p ∈ S∗ with
∑N

i=1 πi(p)vi + δV > p. Now note that σ(p′) < 1 for

all p′ > p, otherwise seller optimality would be violated. Thus, p′ ≥
∑N

i=1 πi(p
′)vi + δV

for all p′ > p, otherwise buyer optimality would be violated. Let then ε > 0 be such that
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2ε =
∑N

i=1 πi(p)vi + δV − p and set δ = ε. Then, p < p′ < p+ δ implies that

N∑
i=1

πi(p)vi + δV > p′ + ε ≥
N∑
i=1

πi(p
′)vi + δV + ε.

Now suppose that E = (µ, σ, π, (Ui)i∈I , V, (Mi)i∈I) is an equilibrium with V = 0.

We show that we can change σ and π for off-equilibrium prices so that E remains an

equilibrium and there exists no discontinuous drop in the expected quality of the good;

such changes do not change payoffs and discounted probabilities of trade. It follows from

Corollary 3 that S∗ = {p1, . . . , pK}, with pk strictly increasing in k. Also note that p1 ≥ v1,

since V = 0 implies that p1 =
∑N

i=1 πi(p
1)vi ≥ v1. Now redefine σ(p) and π(p) for p /∈ S∗

as follows. Let p0 = v1; note that p0 = p1 if p1 = v1 and that p1 > p0 otherwise. For

p < p0, let π1(p) = σ(p) = 1. For p ∈ (pk, pk+1), with k ∈ {0, . . . , N − 1}, let

πi(p) =
p− pk

pk+1 − pk
πi(p

k) +
pk+1 − p

pk+1 − pk
πi(p

k+1) and σ(p) = 0.

Finally, for p > pK , let πi(p) = πi(p
K) and σ(p) = 0. By construction,

∑N
i=1 πi(p)vi is

continuous in p. It is straightforward to verify that buyer and seller optimality hold.

A.9 Proof of Lemma 6

Consider an equilibrium with V = 0. Since Ui = θ(p)(p− ci) for all p ∈ S∗
i ,

N∑
i=1

fiUi =
N∑
i=1

fi
∑
p∈S∗

µi({p})σ(p)
Eµi

[σ]
θ(p)(p− ci)

=
N∑
i=1

fi
∑
p∈S∗

µi({p})σ(p)
Eµi

[σ]
θ(p)(vi − ci) +

∑
p∈S∗

θ(p)σ(p)
N∑
i=1

fi
µi({p})
Eµi

[σ]
(p− vi).

Now note that since p =
∑N

i=1 πi(p)vi for all p ∈ S∗ by buyer optimality, stationarity and

Bayes’ rule together imply that

N∑
i=1

fi
µi({p})
Eµi

[σ]
(p− vi) =

N∑
i=1

Miµi({p})(p− vi) = 0.
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Moreover, as x 7→ x2/[1− δ(1− x)] is strictly convex, Jensen’s inequality implies that

∑
p∈S∗

µi({p})σ(p)
Eµi

[σ]
θ(p)(vi − ci) ≥

Eµi
[σ]

1− δ(1− Eµi
[σ])

(vi − ci)

for each i ∈ I, with equality if, only if, S∗
i is a singleton. The desired result now follows.

A.10 Proof of Lemma 7

Let E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
be an equilibrium with V > 0 and {p1, . . . , pK}

with K ≥ 1 and p1 < · · · < pK be the set of prices at which trade takes place in E. For

each k ∈ K = {1, . . . , K}, let qk =
∑N

i=1 πi(p
k)vi; note that qk is strictly increasing in k

by Proposition 1. Seller optimality implies that pk ≤ qk − δV for all k ∈ K, with equality

for k > 1 since θ(pk) < 1 for such values of k. Given that seller payoffs are nonnegative,

qk > max{ci : µi({pk}) > 0} for all k ∈ K.

Consider now the candidate equilibrium Ê =
(
µ̂, σ̂, π̂, (Ûi)i∈I , V̂ , (M̂i)i∈I

)
in which

the set of prices at which trade takes place is {q1, . . . , qk}, with θ̂(q1) = 1 and

θ̂(qk+1) = θ̂(qk)
qk −max{ci : µi({pk}) > 0}
qk+1 −max{ci : µi({pk}) > 0}

for all k < K. For each i ∈ I, let µ̂i be such that

µ̂i({qk})σ̂(qk)
Eµ̂i

[σ̂]
=

µi({pk})σ(pk)
Eµi

[σ]
for all k ∈ K. (A.2)

A straightforward adaptation of the proof of Proposition 3 shows that these measures exist.

Moreover, for each i ∈ I, let Ûi = θ̂(qk)(qk − ci) for the values of k with µ̂i(q
k) > 0;

the payoffs Ûi are well-defined given the definitions θ̂ and (µ̂i)i∈I . Finally, let V̂ = 0 and

suppose that the masses (M̂i)i∈I satisfy stationarity and the belief π̂(p) satisfies Bayes’ rule

for all p ∈ {q1, . . . , qk}. The same argument used in the proof of Proposition 3 shows that

π̂i(q
k) = πi(p

k) for all i ∈ I and k ∈ K, so that qk =
∑N

i=1 π̂i(q
k)vi for all k ∈ K. Thus,

Ê satisfies rationality of beliefs, payoff consistency, and stationarity. By Corollary 1, we

can choose σ̂ and π̂ for off-equilibrium prices so that Ê is an equilibrium.
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We claim that θ̂(qk) ≥ θ(pk) for all k ∈ K. Clearly, θ̂(q1) ≥ θ(p1). Now suppose, by

induction, that θ̂(qk) ≥ θ(pk) for some k < K. We claim that θ̂(qk+1) ≥ θ(pk+1), from

which the desired result holds. Indeed, note that

θ(pk+1) ≤ θ(pk)
pk −max{ci : µi({pk}) > 0}
pk+1 −max{ci : µi({pk}) > 0}

≤ θ̂(qk)
pk −max{ci : µi({pk}) > 0}
pk+1 −max{ci : µi({pk}) > 0}

≤ θ̂(qk)
qk − δV −max{ci : µi({pk}) > 0}
qk+1 − δV −max{ci : µi({pk}) > 0}

≤ θ̂(qk)
qk −max{ci : µi({pk}) > 0}
qk+1 −max{ci : µi({pk}) > 0}

= θ̂(qk+1);

the first inequality follows from seller optimality in E, the second inequality follows from

the induction hypothesis, the third inequality follows since pk ≤ qk − δV for all k ∈ K

with equality if k > 1, and the last inequality follows since qk+1 > qk.

To conclude, note that since σ̂(qk) ≥ σ(pk) for all k ∈ K, equation (A.2) implies that

Eµ̂i
[σ̂]µi({pk}) ≥ Eµi

[σ]µ̂i(q
k) for all i ∈ I and k ∈ K. Hence,

Eµ̂i
[σ̂] =

K∑
k=1

Eµ̂i
[σ̂]µi({pk}) ≥

K∑
k=1

Eµi
[σ]µ̂i(q

k) = Eµi
[σ]

for all i ∈ I, and gains from trade in Ê are higher than in E.

A.11 Proof of Lemma 8

We first prove the following auxiliary result.

Claim 1. Consider an equilibrium E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
and let I(p) be the

set of seller types that offer p ∈ S∗. If µi({p}) = 1 for the lowest type i in I(p), then

∑
i∈I(p)

πi(p)vi ≥
( ∑

i∈I(p)

fi

)−1 ∑
i∈I(p)

fivi.
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Proof. Fix p ∈ S∗ and let µi({p}) = 1 for i = imin = min{i′ : i′ ∈ I(p)}. Given that

Proposition 1 implies that µj({p}) = 1 for all imin < j < imax = max{i′ : i′ ∈ I(p)},

πi(p) =
Miµi({p})∑

j∈I(p) Mjµj({p})
≥ Mi∑

j∈I(p) Mj

for all i ∈ I(p) with i < imax. Since, by stationarity, Mi ≤ fi/σ(p) for all i ∈ I(p) with

equality if i < imax,

πi(p) ≥
fi∑

j∈I(p) fj

for all i ∈ I(p) such that i < imax. The desired result follows as

∑
i∈I(p)

πi(p)vi = vimax +
imax−1∑
j=imin

πj(p)(vj − vimax).

Consider an equilibrium E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
with V = 0. Buyer and

seller optimality imply that p =
∑N

i=1 πi(p)vi ≥ max{ci : p ∈ S∗
i } for all p ∈ S∗, with

strict inequality if p is smaller than the maximum of S∗. For each i ∈ I, let p
i

be the lowest

price at which type-i sellers trade in E. Now let S∗
min = {p ∈ S∗ : p = p

i
for some i ∈ I}

and write S∗
min = {p1, . . . , pM}, with p1 < · · · < pM . Consider then the partition {Îm}Mm=1

of I such that Îm = {i ∈ I : p
i
= pm}. By construction, Îm is the set of seller types for

which the lowest price at which they trade in E is the mth lowest element of S∗
min. Note

that max{ci : i ∈ Îm} ≤ pm for all m ∈ {1, . . . ,M}, with strict inequality if m < M .

Proposition 1 implies that if i, k ∈ Îm, then all j ∈ I with i ≤ j ≤ k is also an element of

Îm. Finally, let

qm =

( ∑
i∈Îm

fi

)−1 ∑
i∈Îm

fivi.

The above claim implies that qm ≥ pm for all m ∈ {1, . . . ,M}.

Consider now the list Ê =
(
µ̂, σ̂, π̂, (Ûi)i∈I , V̂ , (M̂i)i∈I

)
such that: (i) µ̂i({qm}) = 1 if

i ∈ Îm; (ii) θ̂(q1) = 1 and

θ̂(qm+1) = θ̂(qm)
qm −max{ci : i ∈ Îm}
qm+1 −max{ci : i ∈ Îm}

for all m ∈ {1, . . . ,M − 1};
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and (iii) rationality of beliefs, payoff consistency, and stationarity hold. Note that V̂ = 0.

Thus, Corollary 1 implies that we can choose σ̂ and π̂ for off-equilibrium prices so that Ê

is an equilibrium.

We claim that Ûi ≥ Ui for all i ∈ I. The result is true for i ∈ Î1 since Ûi = q1 − ci ≥

p1 − ci ≥ Ui. Now suppose, by induction, that there exists m ∈ {1, . . . ,M − 1} with

Ûi ≥ Ui for all i ∈ Îm and let imax(m) = max{i : i ∈ Îm}. Then i ∈ Îm+1 implies that

Ui = θ(pm+1)(pm+1 − ci)

= θ(pm+1)(pm+1 − ci)
pm+1 −max{ci : i ∈ Îm}
pm+1 −max{ci : i ∈ Îm}

≤ Uimax(m)
pm+1 − ci

pm+1 −max{ci : i ∈ Îm}

≤ Ûimax(m)
pm+1 − ci

pm+1 −max{ci : i ∈ Îm}

= θ̂(qm)(qm −max{ci : i ∈ Îm}) pm+1 − ci

pm+1 −max{ci : i ∈ Îm}

= θ̂(qm+1)(qm+1 −max{ci : i ∈ Îm}) pm+1 − ci

pm+1 −max{ci : i ∈ Îm}

= θ̂(qm+1)
qm+1 −max{ci : i ∈ Îm}
pm+1 −max{ci : i ∈ Îm}

(pm+1 − ci)

≤ θ̂(qm+1)(qm+1 − ci);

= Ûi;

the first inequality is a consequence of seller optimality in E, the second inequality follows

from the induction hypothesis, and the third inequality follows since pm+1 ≤ qm+1 and

the map p 7→ (p − ci)/(p − max{ci : i ∈ Îm}), with i ∈ Îm, is strictly increasing for

p ≥ max{ci : i ∈ Îm}. This establishes the claim.

The desired result now follows from the fact that Lemma 6 implies that gains from trade

in E are bounded above by
∑N

i=1 fiUi, whereas gains from trade in Ê are
∑N

i=1 fiÛi.
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A.12 Stationarity

In order to distinguish between stationary and non-stationary equilibria, here we use the

subscript ∞ to denote stationary equilibria. This choice of notation is consistent with the

idea of considering the outcomes of stationary equilibria as long-run outcomes of non-

stationary equilibria. We first present the definition of a non-stationary equilibrium.

Definition. Let E =
(
(µt)t≥0, (σt)t≥0, (πt)t≥0, (Uit)i∈I,t≥0, (Vt)t≥0, (Mit)i∈I,t≥0

)
be a list

where: (i) µt and σt are, respectively, strategy profiles for sellers and buyers in period t;

(ii) πt is a belief system for buyers in period t; (iii) Uit and Vt are, respectively, present-

discounted expected lifetime payoffs for type-i sellers and buyers in period t; and (iv) Mit is

the mass of type-i sellers in the market in period t. Then E is a non-stationary equilibrium

if it satisfies the following properties.

1. Seller Optimality. For all t ≥ 0 and i ∈ I, any p in the support Sit of µit maximizes

σ(p)(p− ci) + (1− σ(p))δUit+1.

2. Buyer Optimality. For all t ≥ 0 and p ≥ 0, the trade probability σt(p) maximizes

σ

( N∑
i=1

πi(p)vi − p

)
+ (1− σ)δVt+1.

3. Rational Beliefs. For all t ≥ 0, the belief πt(p) satisfies Bayes’ rule for p ∈
⋃N

i=1 Sit.

4. Consistency of Payoffs. Seller payoffs are such that for all i ∈ I and t ≥ 0,

Uit = σt(p)(p− c) + (1− δt(p))δUit+1 for all p ∈ Sit.

Buyer payoffs are such that for all t ≥ 0,

Vt =

∫
R+

( N∑
i=1

πit(p)(vi − p)

)
σt(p)dµt(p) +

(∫
R+

(1− σt(p))dµt(p)

)
δVt+1,

where µt =
∑N

i=1 gitµit and git = Mit/
∑N

j=1Mjt.
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5. Evolution of Seller Masses. The sequence (Mit)i∈I,t≥0 satisfies the law of motion

Mi0 = fi and Mit+1 = fi +

(
1−

∫
R+

σt(p)dµit(p)

)
Mit for all t ≥ 0.

We now define what it means for the outcomes of a stationary equilibrium to be the

long-run outcomes of a non-stationary equilibrium. For any stationary equilibrium E∞, let

S∗
i∞ be the set of prices at which type-i sellers trade and θi∞ be the discounted probability

of trade for such sellers. Furthermore, for any non-stationary equilibrium E, let S∗
it be the

set of prices at which type-i sellers trade in period t and θit be the discounted probability

of trade for type-i sellers who are in the market in period t.29 Finally, let dH(S, S ′) be the

Hausdorff distance of two subsets S and S ′ of R+.30

Definition. Let E∞ = (µ∞, σ∞, π∞, (Ui∞)i∈I , V∞, (Mi∞)i∈I) be a stationary equilibrium

and E =
(
(µt)t≥0, (σt)t≥0, (πt)t≥0, (Uit)i∈I,t≥0, (Vt)t≥0, (Mit)i∈I,t≥0

)
be a non-stationary

equilibrium. The outcomes of E∞ are the long-run outcomes of E if for all i ∈ I, we have

that limt→∞ dH(S
∗
it, S

∗
i∞) = 0, limt→∞ θit = θi∞, and limt→∞Mit = Mi∞.

We can now prove the following result, which generalizes the result derived in the main

text to the case of pure stationary equilibria in which the buyers’ payoff is zero.

Proposition 9. Let E∞ = (µ∞, σ∞, π∞, (Ui∞)i∈I , V∞, (Mi∞)i∈I) be pure stationary equi-

librium with V∞ = 0. There exists a non-stationary equilibrium E such that the outcomes

of E∞ are the long-run outcomes of E.

Proof. Let E∞ = (µ∞, σ∞, π∞, (Ui∞)i∈I , V∞, (Mi∞)i∈I) be a pure stationary equilibrium

with V∞ = 0. Now let E =
(
(µt)t≥0, (σt)t≥0, (πt)t≥0, (Uit)i∈I,t≥0, (Vt)t≥0, (Mit)i∈I,t≥0

)
be

such that µt ≡ µ∞, σt ≡ σ∞, πt ≡ π∞, Uit ≡ Ui∞ for all i ∈ I, Vt ≡ 0, and (Mit)i∈I,t≥0

is such that Mi0 = fi for all i ∈ I and

Mit+1 = fi + (1− σ∞(pi∞))Mit

29θit =
∑∞

s=0 δ
s
∏s−1

k=0(1− σit+k)σit+s, where σit is the trade probability for type-i sellers in period t.
30By definition, dH(S, S′) = max{supx∈S infx′∈S′ |x− x′|, supx′∈S′ infx∈S |x− x′|}.
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for all i ∈ I and t ≥ 0, where pi∞ is the price that type-i sellers offer in E∞, and so is also

the price that type-i sellers offer in E. We claim that E is a non-stationary equilibrium.

Since pi∞ =
∑N

j=1 πj∞(pi∞)vj =
∑N

j=1 πjt(pi∞)vj , we are done if we show that for all

i ∈ I and t ≥ 0,

πit(pi∞) =
Mit∑

j∈I∞(pi∞) Mjt

,

where I∞(pi∞) is the set of seller types offering pi∞ in E∞ and in E as well. Note that if

j ∈ I∞(pi∞), then
Mjt+1

Mit+1

=
fj + (1− σ∞(pi∞))Mjt

fi + (1− σ∞(pi∞))Mit

for all t ≥ 0. Given that Mj0/Mi0 = fj/fi, it then follows that Mjt/Mit = fj/fi for all

t ≥ 0. So,

πit(pi∞) = πi∞(pi∞) =
fi∑

j∈I(pi∞) fj
=

Mit∑
j∈I∞(pi∞) Mjt

.

Since S∗
it ≡ S∗

i∞ and θit ≡ θi∞ for all i ∈ I, we are done if limt→∞Mit = Mi∞ for all

i ∈ I. Note that for each i ∈ I, limt→∞ Mit = fi/σ∞(pi∞). Also note that the stationarity

condition (3) implies that Mi∞ = fi/σ∞(pi∞). This concludes the proof.
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B Supplementary Appendix (Not for Publication)

B.1 Equilibrium Refinements

Here we show that every equilibrium satisfies the intuitive criterion and that the set of

equilibrium payoff vectors for separating equilibria coincides with the set of equilibrium

payoff vectors for D1 equilibria. Although originally designed for static signaling games,

both refinements extend naturally to our dynamic environment. We begin by presenting

these refinements in our setting.

We start with some preliminary definitions. Given a belief π, a price p, and a payoff V ,

let

Σ(π, p, V ) = argmaxσ∈[0,1]

(∑
i∈I

πivi − p− δV

)
be the set of best replies for a buyer with belief π when the price is p and the buyer’s

continuation payoff is V . Now for each I ′ ⊆ I let ∆(I ′) be the set of buyer beliefs that

assign probability one to the event that the sellers’ type is in I ′ and define Σ(I ′, p, V ) to be

such that

Σ(I ′, p, V ) =
⋃

π∈∆(I′)

Σ(π, p, V ).

By definition, Σ(I ′, p, V ) is the set of possible best replies for a buyer when the buyer’s

belief has support in I ′, the price is p, and the buyer’s continuation payoff is V . Finally, let

Θ(I ′, p, V ) be the image of Σ(I ′, p, V ) under the map σ 7→ σ/(1 + δ(1 − σ)). Note that

Θ(I ′, p, V ) = {0} if p > maxi∈I′ vi − δV , Θ(I ′, p, V ) = {1} if p < mini∈I′ vi − δV , and

Θ(I ′, p, V ) = [0, 1] otherwise.

We now present the refinements in our setting. Given an equilibrium and p /∈ S, let

I∗(p) =
{
i ∈ I : Ui ≤ max

θ∈Θ(I,p,V )
θ(p− ci)

}
be the set of seller types that could gain by deviating to p. Also, for each i ∈ I∗(p), let

Di(p) =
{
θ ∈ Θ(I∗(p), p, V ) : Ui ≤ θ(p− ci)

}
.
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and D+
i (p) be the corresponding set when the inequality is strict. By definition, Di(p) is

the set of buyer best replies when buyer beliefs have support in I∗(p) that make a deviation

to p attractive to a type-i seller with i ∈ I∗(p), whereas D+
i (p) ⊂ Di(p) is the subset of

buyer best replies in Di(p) that make a type-i buyer with i ∈ I∗(p) strictly better off when

the buyer deviates to p.

Definition. The equilibrium E violates the intuitive criterion if there exists p /∈ S and

i ∈ I∗(p) such that Ui < minθ∈Θ(I∗(p),p,V ) θ(p − ci). The equilibrium E satisfies D1 if

πi(p) = 0 for every p /∈ S and i ∈ I∗(p) for which there exists j ̸= i with j ∈ I∗(p) and

Di(p) ⊆ D+
j (p).

We first show that the intuitive criterion does not refine the equilibrium set.

Proposition B.1. Every equilibrium satisfies the intuitive criterion.

Proof. Consider an equilibrium and suppose, by contradiction, that it fails the intuitive

criterion. Then there exist p /∈ S and i ∈ I∗(p) with Ui < minθ∈Θ(I∗(p),p,V ) θ(p − ci).

Since Ui ≥ 0, it follows that Θ(I∗(p), p, V ) = {1}, otherwise 0 ∈ Θ(I∗(p), p, V ) and

minθ∈Θ(I∗(p),p,V ) θ(p − ci) = 0. Hence, vi − δV > p. We claim that 1 ∈ I∗(p), so that

v1 − δV > p. For this, consider p′ ∈ S1 and p′′ ∈ Si. First note that θ(p′′)(p′′ − ci) = Ui <

p − ci by assumption. From type-i seller optimality, it also follows that θ(p′)(p′ − ci) ≤

θ(p′′)(p′′ − ci) < p − ci. Given that ci > c1, we then have that U1 = θ(p′)(p′ − c1) =

θ(p′)(p′ − ci) + θ(p′)(ci − c1) < p − c1, which implies the desired result. Now observe

that v1 − δV > p implies that U1 < v1 − δV − c1. This, however, contradicts type-1 seller

optimality, as buyers accept v1 − δV − ε for all ε > 0, and so U1 ≥ v1 − δV − c1.

We now show that the set of equilibrium payoff vectors for separating equilibria coin-

cide with the set of equilibrium payoff vectors for equilibria that satisfy D1. We start with

a useful result.

Lemma B.1. For any equilibrium, Di(p) ⊆ D+
j (p) if p /∈ S, i, j ∈ I∗(p), and i < j.
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Proof. Proposition 1 implies that there exist pi ≤ pj with Ui = θ(pi)(pi − ci) and Uj =

θ(pj)(pj − cj). Note that p > pj . Let θ ∈ Di(p), so that θ(pi)(pi − ci) ≤ θ(p − ci). The

desired result follows if we show that θ ∈ D+
j (p). There are two cases to consider. Either

θ < θ(pj) or θ ≥ θ(pj). In the second case, θ(p−cj) ≥ θ(pj)(p−cj) > θ(pj)(pj−cj) = Uj .

So assume that θ < θ(pj). Then,

θ(p− cj) = θ(p− ci) + θ(ci − cj)

≥ θ(pi)(pi − ci) + θ(ci − cj)

≥ θ(pj)(pj − cj) + (θ(pj)− θ)(cj − ci) > Uj;

the second inequality follows from type-i seller optimality. This concludes the proof.

The next result shows that only separating equilibria can satisfy D1.

Lemma B.2. An equilibrium satisfies D1 only if it is separating.

Proof. Consider a non-separating equilibrium. By assumption there exists p∗ ∈ S such

that at least two types of seller offer p∗ with positive probability. Let k > 1 be the highest

type of seller that offers p∗. Now consider p′′ /∈ S with p∗ < p′′ < vk − δV ; such a price

exists since buyer optimality implies that δV ≤
∑

i∈I πi(p
∗)vi − p∗ < vk − p∗. Note that

k ∈ I∗(p′′) as a buyer with belief π such that πk(p
′′) = 1 accepts p′′ with probability one.

This, in turn, implies that i ∈ I(p′′) for all type-i sellers with i < k. Now note that since

type-k seller optimality requires that θ(p′′) < 1, it must be that
∑

i∈I πi(p
′′)vi − δV ≤ p′′.

Hence,
∑

i∈I πi(p
′′)vi < vk, and so there exists j < k such that πj(p

′′) > 0. Since

Dj(p
′′) ⊆ D+

k (p
′′), the equilibrium violates D1.

We can now prove our main result concerning D1.

Proposition B.2. The set of equilibrium payoff vectors for separating equilibria coincide

with the set of equilibrium payoff vectors for equilibria that satisfy D1.
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Proof. Lemma B.2 implies that it is sufficient to prove that for any separating equilib-

rium there exists a separating equilibrium satisfying D1 that has the same payoffs. Let

E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
be a separating equilibrium. By Proposition 6, V = 0,

µi({vi}) = 1 for i < N , and µN({vN}) > 0. Now let E ′=
(
µ′, σ′, π′, (U ′

i)i∈I , V
′, (M ′

i)i∈I
)

be such that V ′ = 0 and µ′
i({vi}) = 1, σ′(vi) = σ(vi), π′(vi) = π(vi), U ′

i = Ui, and

M ′
i = fi/σ

′(vi) for all i. Then, E ′ satisfies rationality of beliefs, payoff consistency, and

stationarity. Also, no type of seller has an incentive to mimic the behavior of another

type of seller. By Lemma 2, we can then choose σ′ and π′ for off-equilibrium prices so

that E ′ is an equilibrium. To conclude, we show that we can do so in such a way that

E ′ satisfies D1. For each p /∈ {v1, . . . , vN} let σ′(p) = 1 if p < v1 and σ′(p) = 0 if

p > v1 and define π′(p) to be such that π′
1(p) = 1 if p < v1 and πi(p) = 1 if p > v1

and i = max{i ∈ I : vi < p}. Clearly, buyer optimality holds for off-equilibrium prices.

Moreover, since I∗(p) = max{i ∈ I : vi < p} for each p /∈ S ′ with p > v1, Lemma B.1

implies that E satisfies D1.

B.2 Equilibria with V > 0

Here, we provide an example of an equilibrium with V > 0 when N = 3 and adverse

selection is severe. Let f1 = f2 = f3 = 1/3 and suppose that c1 < v1 = 2, c2 = 2, v2 = 3,

and 3 < c3 < v3 = 4, so that adverse selection is severe. Consider a candidate equilibrium

with µ1({p1}) = µ2({p1}) = 1, µ3({p2}) = 1, θ(p1) = 1, and θ(p2) = (p1 − 2)/(p2 − 2),

where p1 < p2; we determine p1 and p2 below. Since σ(p2) < 1, buyer optimality implies

that p2 = 4− δV . Thus, V > 0 only if

p1 <
3∑

i=1

πi(p
1)vi − δV =

1

2
(v1 + v2)− δV =

5

2
− δV.

Let then p1 = 5/2 − δV − ξ, with ξ < 1/2 (otherwise p1 < 2). Straightforward algebra

shows that V = (1− δ)−1(g1+ g2)ξ, where gi is the fraction of type-i sellers in the market.

Since stationarity implies that Mi = fi/σ(p
1) = fi for i ∈ {1, 2}, it follows that g1 = g2.
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Let g denote the common value of g1 and g2. Given that stationarity also implies that

M3 =
f3

σ(p2)
=

f3(1− δθ(p2))

(1− δ)θ(p2)
=

f3(p
2 − 2− δ(p1 − 2))

(1− δ)(p1 − 2)
,

we then have that

g =
(1− δ)(p1 − 2)

2(1− δ)(p1 − 2) + p2 − 2− δ(p1 − 2)
=

(1− δ)(p1 − 2)

3(1− δ)(p1 − 2) + p2 − p1
. (B.3)

The right-hand side of (B.3) depends on g through the dependence of p1 and p2 on V .

We claim that for all ξ < 1/2, equation (B.3) has a unique solution in (0, 1/2) regardless

of δ. Indeed, since p2 − p1 = 3/2 + ξ, p1 − 2 = 1/2− δV − ξ, and V = (1− δ)−12gξ, we

can rewrite (B.3) as
1

g
= 3 +

3/2 + ξ

1/2− ξ(1− δ + 2δg)

Given that the right-hand side of the above equation is strictly increasing in g, this equation

has at most one solution. The desired result follows since the right-hand side of the above

equation evaluated at g = 1/2 is greater than 2 for all δ ∈ (0, 1).

To finish, note that for all δ ∈ (0, 1), we can take ξ sufficiently close to zero for p1 and

p2 to be such that p1 ∈ (2, 5/2) and p2 ≥ 3. By choosing buyer beliefs for off-equilibrium

prices appropriately, we can ensure that buyers find it optimal to reject offers in (p1, p2).

Also note that buyers reject offers greater than p2. So, seller optimality holds, as type-1

sellers have no incentive to post p2 and type-3 sellers have no incentive to post p1.

B.3 Equilibrium Payoffs in Two-Type Case for S∗
1 ∩ S∗

2 a Singleton

Here, we show that for all U2 ∈ [0, U2), there exists an equilibrium with S∗
1∩S∗

2 a singleton

in which the type-2 sellers’ payoff is U2. Suppose that S∗
1 ∩S∗

2 = {p} for some p ∈ [c2, v2).

Since the proof of Corollary 3 implies that S∗
1 and S∗

2 have at most two elements, it follows

that S∗
1 = {v1, p} and either S∗

2 = {p} or S∗
2 = {p, v2}. Indeed, if S∗

2 = {p, p′} with p < p′,

then π2(p
′) = 1 by Bayes’ rule, in which case p′ = v2 by buyer optimality. Given that S∗

2

collapses to {p} when µ2({p}) = 1, we can treat the case in which S∗
2 = {p} as a special
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case of the case in which S∗
2 = {p, v2}.

Since a type-1 seller must be indifferent between posting v1 and p, it must be that

θ(p) =
v1 − c1
p− c1

. (B.4)

In turn, this implies that if µ2({v2}) > 0, then

θ(v2) = θ(p)
p− c2
v2 − c2

=
v1 − c1
p− c1

p− c2
v2 − c2

, (B.5)

for a type-2 seller must be indifferent between posting any price in S∗
2 . Given that c2 > c1,

the ratio (p− c2)/(p− c1) is strictly increasing in p. So, θ(v2) given by (B.5) satisfies (6),

and type-1 sellers have no incentive to deviate and post v2. Note that we need p > c2 when

S∗
2 = {p, v2}, otherwise θ(v2) = 0. So, U2 > 0 and S2 = S∗

2 when S∗
2 is not a singleton.

However, we can have U2 = 0 and S∗
2 a strict subset of S2 when S∗

2 is a singleton. Indeed,

U2 = 0 when S∗
2 = {c2}, in which case the type-2 sellers can make offers that are rejected

in equilibrium. Since such equilibria are payoff equivalent to the equilibrium in which the

type-2 sellers offer c2 with probability one, we can assume that S2 = S∗
2 without any loss.

Now observe that buyer optimality and V = 0 imply that µ1({p}) and µ2({p}) must

satisfy

p =
M1µ1({p})

M1µ1({p}) +M2µ2({p})
v1 +

M2µ2({p})
M1µ1({p}) +M2µ2({p})

v2; (B.6)

stationarity implies that M1 and M2 depend on p through σ(p) = (1− δ)θ(p)/(1− δθ(p))

and σ(v2) = (1−δ)θ(v2)/(1−δθ(v2)) (the latter only when µ2({p}) < 1). Below, we show

that for each p ∈ [c2, v2) and µ2({p}) = 1− µ2({v2}) ∈ (0, 1], there exists a unique value

of µ1({p}) for which the pair (µ1({p}), µ2({p})) solves (B.6) and provide an expression

for this value.

For each µ ∈ [0, 1], let

α(µ) = µ

(
µ+ (1− µ)

σ(v2)

σ(p)

)−1

.

Note that α(µ) = 1 when µ = 1, in which case the value of σ(v2) does not matter for
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determining α(µ). We claim that

µ1({p}) =
(
1 + α(µ2({p}))

f2
f1

v2 − p

v1 − r1

)−1

α(µ2({p}))
f2
f1

v2 − p

v1 − r1

(
1 +

v1 − r1
p− v1

)
(B.7)

is the unique value of µ1({p}) for which the pair (µ1({p}), µ2({p}) satisfies (B.6). First

note that we can re-write (B.6) as

µ1({p}) = µ2({p})
M2(v2 − p)

M1(p− v1)
.

Since stationarity implies that

M1 =
f1

µ1({p})σ(p) + 1− µ1({p})
and M2 =

f2
σ(p)µ2({p}) + (1− µ2({p}))σ(v2)

,

it follows from straightforward algebra that

µ1({p})=µ2({p})
M2(v2 − p)

M1(p− v1)
= α(µ2({p}))

f2
f1

v2 − p

p− v1

[
µ1({p})+(1−µ1({p}))

p− r1
v1 − r1

]
,

where r1 = c1 + δ(v1 − c1). Solving the above equation for µ1({p}), we obtain (B.7).

The above argument shows that θ(p) and θ(v2) given by (B.4) and (B.5), respectively,

and µ1({p}) and µ2({p}) satisfying (B.6) with µ2({p}) ∈ (0, 1] are necessary for an equi-

librium with S∗
1 ∩ S∗

2 = {p}. By Lemma 2, these conditions are also sufficient. From

this it follows that the equilibrium payoff for the type-2 sellers when S∗
1 ∩ S∗

2 = {p} with

p ∈ [c2, v2) is

U2 = θ(p)(p− c2) =
v1 − c1
p− c1

(p− c2).

Since (p − c2)/(p − c1) is strictly increasing in p, we then have that U2 ∈ [0, U2). This

establishes the desired result.

B.4 General Results on Equilibrium Existence

We know from Section 2 that a pooling equilibrium exists if adverse selection is not severe.

We also know from the main text that separating equilibria always exist when gains from
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trading are strictly positive for all types. Here, we relax this assumption and present nec-

essary and sufficient conditions for equilibrium existence that hold regardless of whether

adverse selection is severe or not. In what follows, let I0 = {i ∈ I : vi < ci} be the set of

types of the good for which gains from trading are negative.

First note that the results in Section 3 depend only on the assumption that vi and ci are

strictly increasing in i, and so remain valid. We now state and prove our existence result.

Proposition B.3. An equilibrium exists if, and only if, vN ≥ cN and for all i ∈ I0, there

exists k > i such that
∑k

j=i fjvj ≥
∑k

j=i fjck, with strictly inequality if k < N .

The proof of the sufficiency part is constructive. In order to understand necessity, first

note that the type-N good must trade at price at least cN . Given that buyers do not trade

a price greater than vN , the type-N good cannot trade in equilibrium if vN < cN , which

violates stationarity. Now suppose that I0 is nonempty and consider a type i < N of the

good with vi < ci. Since the type-i good must trade at price ci or higher, this type of good

can only trade at some price p if higher types of the good also trade at price p. Let k > i

be the highest type of the good that can trade at price p. Then p ≥ ck and p > ck if k < N ,

as all types of seller except, possibly, the highest obtain positive payoff in equilibrium. On

the other hand, by Proposition 1, all types of the good between i and k must trade at price

p. So, the expected value of the good to a buyer who purchases it a price p is at most(∑k
j=i fj

)−1∑k
j=i fjvj , the average quality of the good conditional on its type being in the

set {i, . . . , k}. Hence, the type-i good can trade only if
∑k

j=i fjvj ≥
∑k

j=i fjck, with strict

inequality when k < N .

Proof of Proposition B.3. We first prove necessity. We know from above that vN ≥ cN is

necessary for existence. Now suppose that i < N belongs to I0 and consider an equilib-

rium. Let p be a price at which type-i sellers trade in this equilibrium. We can assume that

i is the lowest seller type in I(p), as the inclusion of lower types of seller in I(p) lowers

the expected value of the good to a buyer who purchases it at price p. Buyer and seller

optimality imply that
∑

j∈I(p) πj(p)vj ≥ p > ci, where the strict inequality follows since
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Ui > 0. So,
∑

j∈I(p) πj(p)vj ≥ p > vi, and there exists k > i with k ∈ I(p). Now note

that µi({p}) = 1, as Proposition 1 implies that type-i sellers can pool with higher types

only at a single price. The desired result follows from Claim 1 in the proof of Lemma 8

and the fact that p ≥ ck, with strict inequality if k < N .

We now prove sufficiency. We know that there exists a partition {Is}Ss=1 of I such that

ps :=

(∑
j∈Is

fj

)−1 ∑
j∈Is

fjvj ≥ max{ci : i ∈ Is}

for each s ∈ {1, . . . , S}, with strict inequality for all s < S. Consider the candidate

equilibrium E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
such that: (i) µi({ps}) = 1 if i ∈ Is; (ii)

θ(p1) = 1 and

θ(ps+1) = θ(ps)
ps −max{ci : i ∈ Is}
ps+1 −max{ci : i ∈ Is}

for all s ∈ {1, . . . , S−1}; and (iii) rationality of beliefs, payoff consistency, and stationarity

hold. Note that V = 0. By Corollary 1, we can then choose σ and π for off-equilibrium

prices so that E is an equilibrium. This concludes the proof of the proposition.

B.5 General Result for the Example from Section 5

Proposition B.4. Let N ≥ 3. There exists an open set of distributions of seller types

in the population for which adverse selection is severe and all separating equilibria are

Pareto-dominated by and have lower gains from trade than a non-separating equilibrium.

Proof. Consider a separating equilibrium with θ(vi+1) = θ(vi)(vi − ci)/(vi+1 − ci) for all

i < N and θ(v1) = 1 and let Ui be the seller payoffs in this equilibrium. Such equilibria

exist regardless of the distribution of seller types in the population and, by Proposition 6,

Pareto-dominate all other separating equilibria. Now consider a distribution of seller types

(f1, . . . , fN) such that fi > 0 for all i ∈ I and (f1 + f2)v2 + f3v3 + · · ·+ fNvN < cN , and

assume that the distribution of seller types in the population is (f ′
1, . . . , f

′
N) with f ′

1 = αf1,

f ′
2 = βf2, f ′

i = fi for i ≥ 3, α ∈ (0, 1), and β = 1 + (1 − α)(f1/f2). Notice that

f ′
1v1 + f ′

2v2 < (f1 + f2)v2, and so adverse selection is severe.
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Construct a new equilibrium as follows. Let p = (f ′
1v1 + f ′

2v2)/(f
′
1 + f ′

2) > v1 and

consider an equilibrium such that S1 = S2 = {p}, Si = {vi} for i > 2, θ(p) = 1,

θ(v3) = (p − c2)/(v3 − c2), and θ(vi+1) = θ(vi)(vi − ci)/(vi+1 − ci) for all i > 2. Since

V = 0 in this new equilibrium, its existence is ensured by Corollary 1. Seller payoffs are

U ′
1 = p − c1, U ′

2 = p − c2 and U ′
i = θ(vi)(vi − ci) for i ≥ 3. Notice that U ′

1 > U1. Also,

given that limα→0 p = v2, there exits α ∈ (0, 1) such that if α ∈ (0, α), then U ′
2 > U2

and θ(v3) is higher in the new equilibrium. This, in turn, implies that θ(vi) is higher in the

new equilibrium for all i ∈ {3, . . . , N}, implying U ′
i > Ui for i ≥ 3. So, as long as α

is sufficiently close to zero, the new equilibrium Pareto-dominates the original separating

equilibrium. It also has higher equilibrium gains from trade, as the discounted probabilities

of trade are higher for all types of the good. Clearly, the equilibrium construction is robust

to changes in (f1, . . . , fN).

B.6 Omitted Details from Section 7

We begin by providing the omitted details from the discussion of trading frictions as proba-

bility of exit. We then show that with within-period matching frictions it is still true that in

the two-type case with severe adverse selection gains from trade in equilibria with S∗
1 ∩ S∗

2

a singleton are smaller than gains from trade in the most efficient separating equilibrium.

Trading Frictions as Probability of Exit. We first show if j > i, then Ui ≥ Uj with

Ui > Uj if S∗
j ̸= ∅ and S∗

j = ∅ if Ui = 0. Fix i, j ∈ I with j > i. Then Uj = θ(p)(p− cj)

with p ∈ Sj . Since Ui ≥ θ(p)(p − ci) and cj > ci, we have that Ui ≥ θ(p)(p − cj) = Uj ,

with strict inequality if θ(p) > 0. So, Ui > Uj if S∗
j ̸= ∅ and Ui = 0 implies that S∗

j = ∅.

We now show for any equilibrium with S infinite there exists a payoff-equivalent equi-

librium with S finite. Consider an equilibrium E =
(
µ, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
in which

S is infinite. Let Ĩ = {i ∈ I : Si is infinite}. This set is nonempty by assumption. Since

S∗
i is finite for all i ∈ I, the set Si \ S∗

i is infinite for all i ∈ Ĩ, so that Ui = 0 for all

i ∈ Ĩ. For each i ∈ Ĩ consider a probability measure µ̃i such that µ̃i({p}) = µi({p}) for
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all p ∈ S∗
i and µ̃i({p′}) = 1 − µi(Si \ S∗

i ) for some p′ > vN . Now consider the candi-

date equilibrium Ẽ =
(
µ̃, σ, π, (Ui)i∈I , V, (Mi)i∈I

)
. Clearly, buyer and seller optimality

hold in Ẽ. Likewise, rationality of beliefs hold in Ẽ since the set of prices at which trade

takes place is the same as in E. Given that buyer optimality implies that σ(p′) = 0 for all

p′ > vN , it then follows that Eµi
[σ] = Eµ̃i

[σ] for all i ∈ Ĩ. Thus, stationarity also holds, so

that Ẽ is an equilibrium. By construction, payoffs in E and Ẽ are the same.

Next, we show that for each i ∈ I one can construct a measure µ′
i with support in the

finite set S satisfying (8). Let S = {p1, ..., pK} and define α, γ ∈ RK to be such that

αk =
µi({pk})

(
1− δ + δσ(pk))

1− δ + δEµi
[σ]

and γk = 1− δ′ + δ′σ′(pk); note that
∑K

i=1 αi = 1. Now let T : RK → RK be such that

T (x) =

(
α1

γ1
⟨x, γ⟩, . . . , αK

γK
⟨x, γ⟩

)
.

It is clear from the proof of Proposition 3 that the values of α and γ in T do not matter for

the proof that T has a fixed point in the unit simplex. This establishes the desired result.

Finally, we show that gains from trade in equilibria with V = 0 equal average seller

payoffs. Indeed, since V = 0 and (7) imply that

N∑
i=1

fi
∑
p∈S∗

µi({p})
σ(p)

1− δ + δEµi
[σ]

(vi − p) = 0

and (1− δ + δσ(p))Ui = σ(p)(p− ci) for all p ∈ S∗
i , we then have that

N∑
i=1

fiGi =
N∑
i=1

fi
∑
p∈S∗

µi({p})
σ(p)

1− δ + δEµi
[σ]

(p− ci)

=
N∑
i=1

fi
∑
p∈S∗

µi({p})
(
1− δ + δσ(p)

)
1− δ + δEµi

[σ]
Ui

=
N∑
i=1

fiUi.
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Within-Period Matching Frictions. We show that gains from trade in any equilibrium in

which S∗
1 ∩ S∗

2 = {p′} with p′ ∈ [c2, v2) are smaller than gains from trade in the most

efficient separating equilibrium. The same argument of Section 4 shows that S∗
1 = {v1, p′}

and either S∗
2 = {p′} or S∗

2 = {p′, v2}. Since the first case is a special case of the second

when p′ = v2, we assume that S∗
2 = {p′, v2} in what follows. Type-1 seller optimality

implies that

θ(p′, α) = θ(v1, α)
(v1 − c1)

p′ − c1
.

So, the payoff of type-2 sellers is

U2 = θ(v1, α)
(v1 − c1)

p′ − c1
(p′ − c2).

Note that U2 is strictly increasing in p′, and so U2 is bounded above by U2(α, δ), the highest

payoff possible for type-2 sellers in a separating equilibrium. Now consider equilibrium

gains from trade. The same argument as in the proof of Lemma 6 shows that

f1U1 + f2U2 = f1

[
(1− µ1({p′}))

Eµ1 [σ]
θ(v1, α)(v1 − c1) +

µ1({p′})σ(p′)
Eµ1 [σ]

θ(p′, α)(v1 − c1)

]

+f2

[
µ2({p′})σ(p′)

Eµ2 [σ]
θ(p′, α)(v2 − c2) +

(1− µ2({p′}))σ(v2)
Eµ2 [σ]

θ(v2, α)(v2 − c2)

]
.

Given that the map σ → ασ2(1 − δ + δασ)−1 is strictly convex, Jensen’s inequality then

implies that f1U1 + f2U2 > G. Thus, W < f1U1 + f2U2(α, δ) = G(α, δ).

62


