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Abstract

Firm characteristics are often missing. Our study is devoted to their recovery,
drawing on the informational content of other – observed – characteristics, their past
observation, and information from the cross-section of other firms. We adapt state-
of-the-art advances from natural language processing to the case of financial data
and train a large-scale machine learning model in a self-supervised environment.
Using the uncovered latent structure governing characteristics, we show that our
model beats competing methods, both empirically and in simulated data. Based on
the completed dataset, we show that average returns to many characteristic-sorted
long-short portfolios are likely lower than previously thought.
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1. Introduction

A large amount of economic research uses the combined database by the Center for

Research in Security Prices (CRSP) and Compustat for firm-level information. While

it is certainly the “gold standard of stock market databases”,1 the provided data is far

from complete. Figure 1 shows the evolution of missing values for a large set of 143 firm-

level characteristics from the dataset provided by Jensen, Kelly, and Pedersen (2021).

At the start of our sample in the 60s, an average of 51 characteristics – more than 35%

– are missing per firm×month observation. Despite this number declining considerably

in the following decades, the average firm still misses 12 characteristics today. While

missing data is not an issue per se, it matters how it is dealt with. Most studies to

date either drop observations with missing characteristics, or impute their cross-sectional

mean. Both approaches bias results if characteristics are not missing at random.

Our study is devoted to recovering missing firm characteristics, drawing on the informa-

tional content of other – observed – characteristics, past observations of characteristics,

and information from the cross-section of other firms. We adapt state-of-the-art ad-

vances from the field of natural language processing to the case of financial data and

train a large-scale machine learning model in a self-supervised environment. We use the

uncovered latent structure governing firm characteristics to recover missing entries and

show that our model comfortably beats competing methods, both empirically and in sim-

ulated data. We furthermore quantify the model’s uncertainty in its predictions. Based

on the completed dataset, we show that average returns to many characteristic-sorted

long-short portfolio are likely lower than previously thought.

1.1. Our Findings

Masked language models randomly flag a certain fraction of words in an input sentence

for reconstruction. The model consequently learns the context in which words are placed

in a sentence. We apply this idea to the case of missing firm characteristics and carefully

1https://www.crsp.org/files/Booth_Magazine_Winter_2011_CRSP_Index_Feature.pdf.
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Fig. 1. Distribution of Missing Firm Characteristics over Time.

The figure shows the distribution of the number of missing firm characteristics per observation for each
decade in our dataset. We use 143 firm level characteristics from the dataset provided by Jensen et al.
(2021) with common filters applied (cf. Section 3). The dashed red lines indicate the mean number of
missing characteristics per firm-month observation.

customize the model to match the task of recovering missing financial data. By asking

the model to reconstruct a certain set of masked characteristics, we force it to extract

a suitable context of information about other characteristics, their historical evolution,

and information from other firms, which uncovers the latent structure governing firm

characteristics. Our main building block is the attention mechanism used in the so-called

“Transformer” architecture popularized by Vaswani, Shazeer, Parmar, Uszkoreit, Jones,

Gomez, Kaiser, and Polosukhin (2017). Attention computes the similarity between a

target search query and internally-updated keys to a database. The resulting attention

matrix provides a direct mapping between a target characteristic and historical, as well

as cross-sectional information.

We apply our model to a large dataset from Jensen et al. (2021), which provides

information about 143 firm characteristics for the years of 1962 through 2020. To assure

that our model learns the latent structure governing firm characteristics in an optimal

environment, we train it using data of the most recent 15 years, for which the information
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set is most complete. We use firm characteristics, discretized to cross-sectional percentiles,

as input to the model. The discretization has several advantages: i) it allows the model

to explicitly deal with and learn from missing entries, ii) it deals with outliers and reduces

potential noise in the input data and iii) it produces a probability distribution across the

characteristic’s percentiles, which we can use to gauge the model’s uncertainty associated

with each prediction.

In an extensive simulation study we show that the proposed model setup can extract

information for various different processes governing the evolution of firm characteristics

in a single model and outperforms nested alternatives, which either discard information

about how characteristics evolved in the past or information about other characteristics.

The model accurately predicts masked entries for auto-regressive and cross-sectionally

dependent characteristics, as well as for characteristics governed by a combination of both

processes. Furthermore, we can show that the model accurately recovers the temporal

information patterns of autoregressive processes.

Our main metric to assess the model’s accuracy for a large panel of characteristics and

firms is the expected percentile deviation (EPD), which measures the average absolute

deviation from the true percentile. The expected percentile deviation amounts to 3.63

in the training and 4.67 in the testing sample. Separately considering accounting- and

market-based, as well as hybrid characteristics, which draw on both types of information,

we find that reconstructing the latter is easiest, but that the model performs well on each

type of characteristic. We find that the model’s accuracy is robust over time, as it is to

the degree of information provided for a target firm×month observation, measured by

the number of missing characteristics.

Zooming in on how well we can reconstruct individual characteristics, we find near

perfect reconstruction for age, market equity, or intermediate momentum ret 12 7,

among many others. The characteristics that the model struggles the most with are

those relying on daily data, as the model operates at the monthly frequency and is never

fed intra-month information. We can further show that the model’s estimations are
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unbiased.

A consideration of the model’s absolute accuracy is one thing. Investigating in how far

it outperforms competing approaches is potentially more informative. We compare our

model’s accuracy with nested cases, in order to investigate the importance of different

sources of information: historic, about other firm characteristics, or other firms. We

find that the inclusion of all three sources of information is vital for the model’s success,

almost doubling the performance of each nested model across accounting, market-based

and hybrid characteristics. We also show that imputing the cross-sectional mean, as

a simple benchmark proposed by for example Green, Hand, and Zhang (2017) yields

poor results. In fact, our model explains 88% of the variation of reconstructed firm

characteristics not already explained by the mean-imputation.

Our model’s architecture produces interpretable outputs and is not a black box.2 The

rigorous use of the attention mechanism allows us to trace the internal flow of information:

which input is required to reconstruct a target firm characteristic? Using groups of

accounting-, market-based and hybrid characteristics as the highest level of abstraction,

we show that the model primarily draws on information about characteristics of the same

group, but also benefits from the inclusion of the other characteristics. Clustering firm

characteristics by their informational content, for example, grouping those together that

deal with firm momentum or accruals, confirms these results.

The model comparison has highlighted the importance of incorporating past infor-

mation. Tracing how much weight is placed on past information, we can show that it

is mostly information about firm characteristics within the last year that is used in the

model’s predictions. This is in line with efficient and timely-updated information through

financial markets and adequate accounting and reporting standards.

The proposed model architecture puts us in the unique position of being able to quan-

tify the uncertainty attached with each prediction. This is in contrast to contempora-

2Explainable AI has recently garnered a lot of attention. See for example Lundberg and Lee (2017)
for a great attempt at interpretation. Attention is a way to keep the model interpretable internally, see
for example Lim, Arık, Loeff, and Pfister (2021) and Arik and Pfister (2019).
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neous research (e.g. Bryzgalova, Lerner, Lettau, and Pelger, 2022), which rely on point

estimates, as opposed to a probability distribution across percentiles. To quantify this

uncertainty, we use the insight that an uninformed guess produces equal probabilities

for all percentiles and use the Kolmogorov-Smirnov test statistic to show that the esti-

mated probability distribution significantly differ from a uniform assignment for 93.8%

of missing firm characteristics.

In an application to empirical asset pricing, we use the completed dataset and inves-

tigate how filling the gaps influences average returns of characteristic-sorted long-short

(L-S) portfolios. Incorporating the additional information pushes the returns of most L-S

portfolios towards zero. Across all 143 characteristics, the average change in the abso-

lute return spread amounts to a significant −1.27%, with a much larger impact on many

characteristics. We rule out that these results arise mechanically by sorting stocks based

on past information or wrongfully allocating stocks to the long or short portfolio after

imputation. At the same time, we can confirm that most factors survive the scrutiny of

this approach, adding to recent evidence by Jensen et al. (2021) that most findings in

financial research are indeed reproducible and carry over to unseen data.

We provide the completed dataset, including the recovered percentiles and estimates

for the raw firm characteristics, as well as the estimated probability distribution across

percentiles for future research.3

The remainder of the paper is organized as follows. Section 1.2 reviews the literature

and outlines our contribution. Section 2 details the machine learning model we propose

to impute missing firm characteristics. Section 3 describes the panel data used and the

estimation procedure. In Section 4, we provide a detailed simulation study showing the

efficacy of the model architecture in a fully controlled environment. Section 5 presents the

main empirical results and Section 6 discusses modeling uncertainty. Finally, in Section 7

we highlight the impact of accounting for missing firm characteristics in an asset pricing

application. We conclude in Section 8.

3The imputed firm characteristics can be downloaded from the first author’s website.
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1.2. Related Literature

Our paper contributes to the literature on dealing with missing information in financial

and accounting data. The issue is pervasive: Abrevaya and Donald (2017) hand-collected

data from four leading economic journals over a three-year window and claim that about

40 % of all published articles had to deal with missing data and roughly 70 % of those

simply dropped missing observations. This ad-hoc approach not only vastly reduces the

sample size, but also results in biased inference if data points are not missing at random.

It is straightforward to see that smaller firms provide less complete information – a direct

violation of this “missing-at-random” assumption. Another prominent way of dealing

with missing data is to impute the cross-sectional mean, which dates back to Wilks

(1932). The studies by Green et al. (2017), Kozak, Nagel, and Santosh (2020a), Gu,

Kelly, and Xiu (2020), Chen and Zimmermann (2020), and Gu, Kelly, and Xiu (2021) are

recent examples using this approach. Bali, Beckmeyer, Moerke, and Weigert (2021b) and

Bali, Goyal, Huang, Jiang, and Wen (2021a) also use this approach on joint stock-option

and stock-bond datasets, respectively. Afifi and Elashoff (1966) argue that imputing

the mean yields unbiased estimates if and only if the data follows a multivariate normal

distribution and the data is missing at random. Financial and accounting data likely

violates both assumptions, requiring the use of novel methods more apt at dealing with

the issue of missing firm characteristics.

A contemporaneous attempt at leveraging the informational content of missing firm

characteristics for the use in asset pricing studies is provided by Freyberger, Höppner,

Neuhierl, and Weber (2021). The authors propose an adjusted generalized method of

moments framework to find suitable estimates for missing characteristics. They base their

estimation on a pre-selected set of 18 characteristics, which are required to be observable

at all times, and impute missing characteristics by assuming that they hold explanatory

power for stock returns. As a fully cross-sectional approach, their method disregards

information about past observations of firm characteristics – as we will later see, an

important aspect for recovering missing firm characteristics. The objective we pursue in
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this study is different from that of Freyberger et al. (2021). Instead of imputing missing

characteristics that best help explain stock returns, we completely abstract from the asset

pricing perspective and impute the most probable unconditional values for missing entries.

In an application using the completed dataset, we can show that missing characteristics

indeed have an impact on characteristic-sorted long-short portfolio returns.

The two studies most closely related are by Cahan, Bai, and Ng (2022) and Bryzgalova

et al. (2022). Both studies rely on extracting a latent factor structure on panel data to

impute missing entries. Bryzgalova et al. (2022) have a similar objective as our study,

in that the authors, after examining cross-sectional and temporal missingness patterns

in a panel of 45 firm characteristics, propose an imputation method using latent fac-

tors estimated from observable characteristics. The authors thereby assume that a low

number of latent factors adequately explains the evolution of observed and missing firm

characteristics.

We deviate from Bryzgalova et al. (2022) in several important aspects: first, our model

requires no dimensionality reduction, i.e., we do not impose that each characteristic is

driven by the same set of latent factors. Instead, we allow the model to flexibly decide

for each firm×month observation, which observed characteristics are most informative to

impute missing values. This also facilitates the interpretation of the predictions, as we

are able to trace the model’s internal information flow. Second, we provide a full out-of-

sample test spanning 37 years, showing that the estimated structure between observable

characteristics and missing entries is stable over time. Third, we carefully account for im-

balances in the dataset, which arise because some characteristics are missing more often

than others. Not accounting for these imbalances will implicitly overweight information

from characteristics with a higher availability. Estimating latent factors on observed char-

acteristics will push these factors towards being more informative about characteristics

that are already most often available. Keep in mind that the objective of our study is to

impute missing characteristics. During the training phase, we therefore make sure that

the model is asked to reconstruct each characteristic the same number of times. Fourth,

we introduce nonlinearities and interaction effects between characteristics, of which cur-
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rent asset pricing research stresses the importance in explaining stock returns (Gu et al.,

2020; Chen and Zimmermann, 2020; Kozak, Nagel, and Santosh, 2020b). Fifth, we ob-

tain a probability distribution across percentiles of a characteristic, which puts us in the

unique position to directly quantify the uncertainty associated with each imputation.

Finally and most importantly, the differences in the modeling approach outlined above

lead to a better imputation performance on the 143 characteristics we consider, which

more than triples the 45 studied by Bryzgalova et al. (2022).

2. Machine Learning for Missing Characteristics

Our model architecture builds on recent advances from the computer science literature,

and applies state-of-the-art ideas from natural language, sequence, and image processing

to the question of how to deal with missing economic data. Specifically, we follow the

insights of BERT, proposed by Devlin, Chang, Lee, and Toutanova (2018), which has

grown to be one of the most renowned language models and is now an integral part of

Google’s search engine. BERT learns how words relate to one another in a self-supervised

fashion. By randomly masking words of an input sentence, BERT is required to come

up with a probabilistic assessment of how to reconstruct the masked words given the

remaining sentence as a context. In an analogous fashion, we extend BERT to predict

missing firm characteristics by leveraging the information content of observed charac-

teristics, past observations of characteristics, and information from the cross-section of

other firms. Characteristics are correlated across stocks, within a target stock, and over

time. To see this, consider the case of Apple. Given that Apple operates in the tech-

nology sector, it’s profitability will co-move with that of Microsoft. At the same time,

Apple’s valuation ratios, such as book-to-market and price-to-earnings, will also co-move

together. This correlation structure is dynamic and potentially highly complex and non-

linear. Our model is able to make use of this vast array of information in an interpretable

fashion, providing academics and practitioners alike unique insights into commonalities

in the space of firm characteristics and a simple way to deal with missing data.
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Fig. 2. Model Setup

The figure shows the first part of our model setup, the data preparation. The raw data for a target stock,
for example Apple, consists of a T ×F matrix, with T = 60 months of historical information about F =
143 characteristics (left panel). We first discretize the characteristics cross-sectionally into percentiles
(middle panel) and then randomly mask 20% of Apple’s characteristics at time t for reconstruction,
denoted by the special class “0” in the right panel.

2.1. Data Preparation

Figure 2 walks the reader through the first step of our model, which deals with preparing

the input dataset to a usable form.

Raw Data. The example in the Figure uses information about Apple to reconstruct

masked target characteristics in January of 2012, using a total lookback window of T = 60

months to draw information from. The input matrix of size T×F holds information about

the F = 143 characteristics of Apple between February 2007 and January 2012. When

estimating the model we apply the steps detailed herein for all stocks in the sample.

Cross-sectional Discretization. To simplify the task of reconstructing missing firm

characteristics, while at the same time retaining a high-degree of expressiveness and flex-

ibility, we employ a simple transformation to the input characteristics: instead of consid-

ering rank-standardized firm characteristics as a real number between [−1,+1] (Gu et al.,

2020), we cross-sectionally discretize (middle panel) each characteristic into percentiles,

yielding a total of 100 classes per characteristic.4 First and foremost increasing the ro-

bustness of the model fit and helping with possible overfitting by dealing with outliers

and reducing noise in the input characteristics, this approach has the added benefit of

providing a natural way for dealing with missing data: we add an additional class to each

4This approach is commonly used in gradient-boosted trees, such as XGBoost, which have recently
enjoyed considerable interest by financial economists. In a novel paper.
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characteristic, which captures the information of a missing input. We thereby allow the

circumstance that a certain characteristic is missing to provide potentially valuable infor-

mation to the model about why it is missing. Expressing characteristics as a real number

in contrast provides no direct way to denote a missing entry. Should we assign the cross-

sectional mean of “0” to missing entries? This will bias the model towards imputing the

cross-sectional mean – an undesirable property as the tails of the distribution are more

often than not the main point of interest. Another advantage of this discretization step

is that the model produces a probability distribution across a characteristic’s percentiles.

This allows us to quantify the modeling uncertainty associated with each predictions.

Masking for Reconstruction. In the next step, features masked for reconstruction

(right panel) are assigned class “0”. Predicting their percentiles using the information

available about other firm characteristics will be the objective of our model. We ran-

domly mask 20% of the available firm characteristics at time t, shown in Figure 2 as the

blue squares. This approach is known in natural language processing as masked language

modeling and follows Liu, Ott, Goyal, Du, Joshi, Chen, Levy, Lewis, Zettlemoyer, and

Stoyanov (2019). We apply it to the case of recovering ex-ante missing entries. During

this self-supervised stage, we have full knowledge of the true percentiles of masked char-

acteristics. In a subsequent out-of-sample evaluation phase, we use the estimated latent

structure to impute characteristics that were missing to begin with.

Note at this point that we repeat the masking step for a high number of iterations, 400

in our case. In each iteration, we mask a different set of characteristics per firm×month

observation. Therefore, each combination of masked characteristics is equally likely. The

model extracts a suitable context from the available information, where the availability is

changing from iteration to iteration. Thereby, the model learns to suitably impute missing

entries of firm characteristics by flexibly accommodating to the available information,

regardless of the dependence structure underlying missing information. Importantly,

whereas we randomly mask 20% of the available characteristics for reconstruction, this

does not require that entries of firm characteristics are missing at random. In contrast,
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the iterative learning algorithm makes the model robust to fluctuations in patterns of

missing information, which potentially vary over time and are stock-specific.

The model is flexible enough to understand the quarterly release cycle of accounting

variables. We therefore mask not only the values of these variables in month-t, but

also the two preceding months (t − 1 and t − 2). This step assures that the model

has no forward-looking information. During the estimation phase, we also assure that

the model reconstructs each characteristic an equal number of times by scaling the 20%

with the overall percentage of missing entries per characteristic in the training sample.

Table IA3.1 highlights that the degree of missingness varies substantially across charac-

teristics. Without this modeling choice, the model would invariably learn to reconstruct

well those characteristics that are most often available, simply because it sees them as

examples more often. As we later want to use the learned latent representation of how

firm characteristics relate to one another to recover ex-ante missing entries, we assure

that the model learns to do so for all characteristics, regardless of how often they are

missing in the training step.

2.2. Model Estimation

Figure 3 provides the second part of our model setup, dealing with the actual estimation

and choice of architecture. We extend the methodology proposed in Devlin et al. (2018)

to deal a) with financial data, and b) missing observations.

Embedding. First, we feed the discretized and masked characteristics through an em-

bedding. The embedding enables the model to leverage information about other stocks

in the universe, by pushing dissimilar stocks across the distribution of a target character-

istic away from each other, while keeping the ones that are similar close to one another

in vector space. It does so by expressing the percentiles of each firm characteristic as

D = 64-dimensional numerical vectors, which are shared across all stocks at time t.

This “lookup table” relates a percentile of a characteristic to a numerical representation,
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Fig. 3. Model Setup

The figure shows the second part of our model setup, dealing with the model estimation. The prepared
data from the steps outlined in Figure 2 is fed through an embedding stage, which represents the 100
percentiles of each characteristic as a D = 64-dimensional vector, which is learned across stocks. We
next weight the information from past time steps through temporal attention (top right) and then
interact input characteristics (bottom right), allowing the model to use information from all available
characteristics in the reconstruction of every target characteristic. In a final step, we obtain a probability
distribution across the 100 percentiles for each masked characteristic and use the percentile with the
highest predicted probability as the model’s estimate. We compare this with the true – observed –
percentile and update the model weights through stochastic gradient descent.

which is learned from the input data. While embeddings are useful in many ways, they

are especially so in the context of recovering missing entries of firm characteristics to

accommodate differences in how the distributional properties of observed characteristics

relate to missing entries. For example, Fama and French (1993) highlight that stocks

with high and low market capitalization have vastly different risk profiles. Analogously,

large and small stocks potentially differ in how to process information needed to recover

missing characteristics. The embedding accommodates these differences. The use of em-

beddings is standard in machine learning to deal with complex datasets (Huang, Khetan,

Cvitkovic, and Karnin, 2020; Somepalli, Goldblum, Schwarzschild, Bruss, and Goldstein,

2021; Lim et al., 2021; Gorishniy, Rubachev, Khrulkov, and Babenko, 2021).

Temporal Weighting. How does the historical evolution of firm characteristics help

us to reconstruct today’s values? To find an optimal weighting of information from past
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time steps, we heavily rely on the so-called attention mechanism, a machine learning

technique that allows the model to dynamically focus on the most important parts of

the input data, while fading out the rest. We also apply attention in the next step when

interacting information from the set of 143 input firm characteristics. The rigorous use of

attention in machine learning as a standalone technique was proposed by Vaswani et al.

(2017) and gave rise to the “Transformer” model type, which are by now the backbone

of many state-of-the-art models in natural language and sequence processing.

Attention computes how similar a tensor of search queries Q is to a tensor of keys K.

Both Q and K are linear transformations of the same x, which is the intermediate output

from the previous model step, WQ/Kx, where matrices WQ and WK are learned in the

estimation process. The reliance on the same inputs for both queries and keys gives rise

to the name “self-attention”. Using the resulting attention (comparison) matrix A(Q,K)

as weights, we compute an optimally-weighted combination of the values in tensor V,

which again is a linear transform of input x, V = WVx. Each entry of V is associated

with a certain entry of keys in K, analogous to how SQL lookups work. Different from

SQL lookups, however, which require that each query has a matching key in the database,

attention is a probabilistic lookup, such that the algorithm retrieves the most probable

keys for the query. In economics and finance this allows to answer questions such as

“how important is information about Apple’s book-to-market ratio from one year ago to

reconstruct today’s entries?” or “how important is information about Apple’s price-to-

earnings ratio to recover its book-to-market ratio?”

Mathematically, express attention as,

A(Q,K) = Norm

(
QKT

√
NA

)
, (1)

where NA denotes the number of units to attend to, so either T = 60 in the temporal

weighting step, or F = 143 when interacting characteristics. The resulting attention

matrix per firm-month observation is thus of size (NA ×NA). Norm is a normalization

function, which scales the attention matrix to row-wise sum to 1, with values between 0
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and 1, thereby mapping from Rd to probability space ∆d.5 We consider normalization

functions of the α-Entmax family (Peters, Niculae, and Martins, 2019):

α-entmax(x) = argmax
p∈∆d

p⊤z + HT
α(p), with (2)

HT
α(p) =


1

α(α−1)

∑
j

(
pj − pαj

)
, α ̸= 1.

−
∑

j pj log pj, α = 1.

(3)

We consider three different normalization functions, with varying degrees of imposed

sparsity in the attention matrices. α = 1 yields the common Softmax function, with no

sparsity imposed (i.e. pj > 0 ∀ j). Martins and Astudillo (2016) introduce Sparsemax

(α = 2), which aggressively pushes small weights towards zero. This is familiar to how

Lasso-regressions push the smallest coefficient to zero. To model moderate sparsity in

the attention matrices, we also consider α = 1.5, which we refer to as Entmax. We have

no prior on the degree of sparsity in the latent structure governing the evolution of firm

characteristics. We therefore let the data decide on the optimal degree of sparsity in both

the temporal and feature attention matrices, by tuning hyperparameter α.6

To increase the learning capacity, multiple attention heads – each with its own atten-

tion matrix and therefore flexibility to focus on different parts of the input data – are

commonly employed. We opt for a total of Nheads = 8 temporal and feature attention

heads per processing unit. Changing this has only a marginal impact on the outcome. We

follow Lim et al. (2021) and use interpretable multi-head attention (IMHA) throughout

the paper. It averages the attention matrices of each attention head before multiplying

it with a single learned value matrix V:

IMHA(Q,K,V) = HWH, where (4)

H =

 1

Nheads

Nheads∑
h=1

A
(
QWh

Q,KWh
K

)VWV. (5)

5Such that ∆d := {p ∈ Rd : p ≥ 0, ∥p∥1 = 1}.
6Results for this exercise are shown in Table IA2.1.

14

Electronic copy available at: https://ssrn.com/abstract=4003455



Here, matrices Wl ∈ RD×(D/Nheads) with l ∈ [Q,K] are head-specific weights for keys

and queries, and WV ∈ RD×D are the weights for values V, which are shared across the

heads. The weight-sharing for V allows us to directly interpret the attention weights in

terms of how important each characteristic and historic time step is in reconstructing

today’s characteristics.

Now that we have introduced the attention mechanism, we continue walking through

the model setup. We stress the equivalence between the attention mechanism and a

weighted sum of a possibly nonlinear function of inputs x. Let xi,l,e denote the internal

representation of Apple’s ith characteristic before temporal aggregation, measured at time

t − l. Subscript e denotes the eth value in the vector along the embedding dimension

of size D = 64, which we have described above. We leverage past information about

Apple’s characteristics by computing a weighted sum of all xi,·,e over lookback months

l ∈ [0, .., 59], where weights ωl are learned from the data itself, yielding intermediate

model output yi,e:
7

yi,e =
T=59∑
l=0

ωl (x) · f (xi,l,e) , (6)

where function f(·) follows Eq. (1). After the temporal weighting, we apply additional

nonlinear processing steps, which capture higher-order dependencies. These steps are

further described in Appendix IA1.

Interacting Characteristics. Other firm characteristics hold valuable information

about missing entries, which we incorporate into the model by employing the atten-

tion mechanism across the feature dimension. The model consequently learns to extract

the right share of information from each characteristic j ∈ F to reconstruct the percentile

of target characteristic i.

Let xi,e denote Apple’s ith characteristic after the temporal aggregation. The feature

attention now computes weights νi,j ∀ (i, j), expressing how much of characteristic j’s

7Where the lookback dimension is deflated.
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information is required to reconstruct an entry of characteristic i. As for the temporal

weights ωl from the previous step, weights νi,j depend on the intermediate model input

x and are therefore both stock- and time-specific:

yi,e =
F=143∑
j=1

νi,j (x) · f (xj,e) (7)

After these three steps the model has combined information about other stocks (em-

beddings), the past evolution of Apple’s own characteristics (temporal weighting), as well

as other firm characteristics of Apple (interacting characteristics).

Obtaining Probabilities. The final modeling steps takes the interacted and processed

characteristics and creates a probability distribution across the 100 percentiles for each of

the masked input characteristics. To do so, we first extend the 64-dimensional embedding

dimension to span the 100 percentiles:

y = WOx, with WO ∈ R(100×D) (8)

We then optionally apply additional nonlinear processing along that dimension, wherein

the optionality is governed by skip-gates described in Appendix IA1.1. Finally, we apply

a Softmax normalization (Eq. (2)), which transforms the model’s output to a probability

distribution over the percentiles.

3. Data, Training & Performance Metrics

Firm Characteristics We analyze the dataset studied in Jensen et al. (2021), which

contains monthly firm characteristics computed from CRSP and Compustat, for all stocks

trading on NYSE, NASDAQ, and AMEX. We focus on the 153 characteristics identified

by Jensen et al. (2021), from which we drop seasonal returns (Heston and Sadka, 2010),

which are more often missing than they are available. Similar to Gu et al. (2021), we
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require only a minimum set of filters in order to work on the largest possible dataset. For

a firm-month observation to be included, we require that it refers to common equity and

the firm’s primary security.

Our model extracts information about the likely value of a missing characteristic from

observed characteristics and their evolution through time. We therefore require that each

firm×month observation has valid information about at least 20% of the input character-

istics. We specifically do not dictate which characteristics have to be available, or which

are informative about missing entries of other characteristics, but rather let the data

speak for itself. This filtering step discards 0.2% of observations in the joint training and

validation sample, and 7.2% in the testing sample.8 We follow the standard procedure

in the literature and lag quarterly accounting data by three months and annual account-

ing data by half a year. In total, our data covers the period from July-1962 through

December-2020, for a total of 57 years, providing information about 143 characteristics

on 25,118 unique firms, for a total of more than 3.2 million firm-month observations.

Of the 143 characteristics, 47 are based on market information alone, 75 on accounting

information, and 21 are a hybrid that use information from both sources. Table IA3.1 in

the Internet Appendix provides a list of the characteristics used and how often they are

missing.

Training Routine As we are discretizing the input characteristics into percentiles, we

can formulate the problem of recovering firm characteristics as a multi-class classification.

The standard approach to solving these is by minimizing the cross-entropy loss, which

is the negative log-probability of the target class. To force the model to also get the

predictions right for characteristics that are harder to recover, we use the focal loss

8We have also estimated a model without this filter in a previous version of the paper. All results
shown in this version carry over to the unfiltered sample. However, requiring a minimum amount of
information for a given firm seems plausible in our opinion, if we want to leverage the information that
is available from these characteristics to recover entries that are not.
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proposed by Lin, Goyal, Girshick, He, and Dollár (2017):

FL(p) =
1

|p|
∑
c

−(1 − pc)
γ · log(pc), (9)

which reduces the influence of examples that the model classifies well already. Here,

pc denotes the predicted probability of the target percentile for masked characteristic c.

We optimize over the mean loss for all masked (and thus reconstructed) characteristics.

For this, we set γ = 25, which saturates estimated probabilities pc at around 20%.

This does two things: first, it forces the model to come up with good predictions for

all characteristics, instead of focusing on a few that are easiest to reconstruct. And

second, γ = 25 is lenient enough to accommodate different scales at which the input

characteristics operate. While most are represented as real numbers, which we then

discretize to percentiles, some characteristics, notably the f score by Piotroski (2000),

are discrete to begin with, ranging between 0 and 9. If γ is set to aggressively, the model

is forced to produce seemingly “random” predictions for f score. Instead, our choice of

γ = 25 strikes a balance between the two.

Figure 1 illustrates that the sample has grown considerably more complete in recent

years, with an average of 12/143 characteristics missing in the last decade, compared

to more than a third in the 60s. The more characteristics that are available to us,

the more information we are able to extract. As a consequence, we flip the common

train/validate/testing split and train the model using the most recent 15 years of data

(2006-2020) and validate the choice of hyperparameters in a five-year validation sam-

ple (2001-2005). The remaining 37 years (1962-2000) are used for out-of-sample tests

regarding the robustness of the model fit in never-before-seen data.

Optimization Neural networks are typically trained using stochastic gradient descent,

which uses a subset of the data in each iteration to evaluate the gradient and update

the model weights. The key parameter governing the success of this training procedure

is the learning rate, which controls the size of each step taken in the opposite direction
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of the gradient. We use the adaptive moment estimation algorithm (Adam), introduced

by Kingma and Ba (2014), that individually changes the learning rate for each model

parameter by estimating the first two moments of the gradient. To help Adam converge

to good solutions, we furthermore adopt the “OneCycle” learning rule by Smith and

Topin (2017), which starts with a very low learning rate (lr = 0.00001), which is then

increased for the first 30% of training epochs, up to a high number (lr = 0.005). This

ramp-up phase with a low learning rate helps Adam find good estimates of the moments

of the gradient, which aids the algorithm in making informed decisions for the epochs

with the higher learning rates. After the increase of the learning rate, we gradually

decrease it until the total number of training epochs is reached to refine the fit. We

set the maximum number of training epochs to 400.9 With a batch size B = 2400 and

a total of approximately 780,000 observations in the 15 years-long training sample, we

update the model parameters with stochastic gradient descent more than 130,000 times.

Training each hyperparameter-combination takes about a day on eight Nvidia Tesla A100

80GB GPUs. A list of the hyperparameters, their search ranges and optimal values is

given in Table IA2.1 in the appendix.

Regularization To assure that the latent structure found by the model carries over to

unseen data, we employ a number of regularization techniques: we include proper weight

decay for Adam (Loshchilov and Hutter, 2017), which adds a fraction of the L2 norm of

the model parameters to the loss function, forcing the model to choose small and conser-

vative parameters. amsgrad (Tran et al., 2019) adds theoretical convergence guarantees

to the ad-hoc effectiveness of Adam. During training, we furthermore randomly drop

the activation of connections in the model. This dropout helps the model find general

solutions (Srivastava, Hinton, Krizhevsky, Sutskever, and Salakhutdinov, 2014). Lastly,

we use layer normalization after each skip-connection. This assures that each processing

unit operates on roughly the same data range (Ba, Kiros, and Hinton, 2016). Layer nor-

malization tends to work better than batch normalization for sequence and time-aware

9Setting the maximum number of epochs to 750 or 1000 yields similar results.
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modeling tasks.

Performance Measures The way the model is fitted – that is by randomly masking

a fixed percentage of non-missing characteristics which we try to reconstruct – provides

us with a controlled environment to assess the model’s performance by quantifying its

accuracy in reconstructing observed percentiles.

The primary metric we propose to evaluate the model’s ability to reconstruct firm

characteristics follows the ROC curve (reveiver operating characteristic) – a staple in

machine learning research for evaluating classification problems. For that, we obtain

the sampling frequencies p of the model error |∆| as the absolute difference between the

observed class y and the model predicted class ŷ for the set of masked characteristics,

p(|∆| = k) = p(|y − ŷ| = k) where |∆| ∈ [0, 1, . . . , 99]. (10)

The cumulative distribution function p(|∆| ≤ k), for k ∈ [0..50], or ROC curve, then tells

us about the model’s true-positive rate for a given threshold of the allowed model error.

We also consider the average number of percentiles we deviate from the truth, which

we call expected percentile deviation (EPD):10

E [|∆|] =
99∑
k=0

p(|∆| = k) · k. (11)

A perfect model produces EPD = 0. Fully random predictions yield an EPD of 33.3̄.

EPD is a convenient way to summarize the information provided by the ROC curve in a

single number.

10EPD is directly linked to the area under the ROC curve, commonly used in machine learning (AU-
ROC), where EPD = 1−AUROC.
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4. Model Validation: A Simulation Study

As outlined in the previous sections, we have set up our model with explicit jobs assigned

to each building block. It is designed to include both temporal and cross-characteristic

information, while being fully agnostic about the underlying structure. We deliberately

rely on the capability of our model to extract this structural information on its own. To

showcase how well the proposed model learns about different types of processes governing

the evolution of firm characteristics, we set up a controlled environment in a simulation

study. To validate our model we ask the following questions: Is the model able to extract

the right information and and does it fail when there is none? Is the model able to extract

this information even if being simultaneously fed with multiple characteristics governed

by different processes?

Model variations Besides our full model architecture outlined in Section 2, we also

consider a number of nested models, which capture different dimensions of the input data.

We have noted that firm characteristics correlate over time, across assets, and between

different characteristics of the same firm.

To assess the importance of incorporating the temporal evolution of firm characteristics,

we consider two nested models: the first is restricted to information about the character-

istics masked for reconstruction, blending out all other information. At the same time,

we disallow the model to interact input characteristics, but add the embedding step. The

model may therefore dissect the cross-section of stocks per target characteristic and apply

different levels of processing for stocks in different percentiles of a target characteristic.11

The model is thus forced to reconstruct characteristics using only historical information,

capturing their autoregressive component. We call it the “Temporal model”. The second

model is given information about all F = 143 characteristics, but measured only at time

t, fully disregarding their temporal evolution. This is the underlying idea of the approach

11A simple example is to apply different levels of processing to large and small stocks, which differ in
many dimensions, not the least of which is the degree of missing information, which is systematically
higher for small stocks.
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proposed by Freyberger et al. (2021). We denote it as the “X-sectional model”.

In the last nested case (“no-self model”), we assess how important historic information

about the target (masked) characteristics are. We allow the model to incorporate infor-

mation about non-masked characteristics, as well as their historical evolution, but provide

no historic information about the masked characteristics themselves. Note that this is

a highly restrictive model setup, which assumes that we lack any (historic) information

about 20% of the input characteristics (those we have randomly masked).

Combined Processes The benefit of our model setup is that we can simultaneously

model characteristics with vastly different underlying processes. Characteristics may be

driven by an autoregressive process or rely heavily on cross-characteristic information, or

a blend of the two. The inclusion of a large number of characteristics, F = 143 in our

case, facilitates cross-learning effects, wherein one type of characteristic can be used in

the reconstruction of characteristics of another type.12 To see how our model manages to

simultaneously deal with characteristics driven by different types of processes, we simulate

three types of characteristics with different properties. The first set of characteristics c

follows an AR(12) process:

c
AR(12)
i,t = γi ·

12∑
k=1

wk · cAR(12)
i,t−k + εi,t (12)

where ε ∼ N (0, 1) and γ ∼ U(0.9, 1) denotes a high level of auto-correlation. We choose

exponentially-decaying weights wk,

wk = C · e−0.25·k k ∈ [1, 12], with C s.t.
12∑
k=1

wk = 1, (13)

The second set of characteristics is cross-sectionally dependent, following a multivariate

normal distribution (Freyberger et al., 2021):

cXS
i,t ∼ N (0, cov), (14)

12Empirical evidence of this is provided in Figure 11.
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where covi,j = 0.99|i−j|, for characteristics i and j.

Finally, the third set of characteristics combines the two cases from above:

ari,t = γi · ari,t−1 + ε′i,t (15)

cAR+XS
i,t = ωAR · ari,t +

(
1 − ωAR

)
· xsi,t, (16)

where ari,t governs the autoregressive component, ε′ ∼ N (0, 1), and xs ∼ N (0, cov),

with the same covariance matrix as above. ωAR denotes the relative weight of the AR-

component, which we set to 0.25.

We simulate a sample of 100 firms with 50 characteristics of each category for 25 years

of monthly data, of which we use 15 for training, and 5 for validation and testing, each.

We compare how well our model competes against the three nested cases outlined above

and the mean-imputation method commonly employed in the literature as a benchmark.

Table 1 shows the results. Overall, we find that our model manages to uncover the la-

tent structure governing all types of characteristics and all within a single model. Pooled

across all characteristics, we find that it by far produces the lowest EPD, showcasing

its flexibility. For autoregressive AR(12) characteristics, we find that it performs on par

with the temporal model, as well as the approach which simply imputes the last avail-

able percentile. Models with no information about the historic evolution of the masked

characteristics naturally fail in this setting (x-sectional and no-self model). For cross-

sectional (XS) characteristics, we find the best performance for our full model, as well

as the two other models with cross-sectional information, “X-sectional” and ”No-self”.

The last group of characteristics, which are governed by a combined auto-regressive and

cross-sectional process, are best identified by the full model. It is vital to include infor-

mation about the characteristics’ own historical evolution, the cross-sectional correlation

between them, and how this cross-sectional correlation varies over time. In summary,

the simulation study stresses the flexibility of our model setup in uncovering the latent

structure governing observable firm characteristics for a variety of underlying processes.

23

Electronic copy available at: https://ssrn.com/abstract=4003455



Table 1: Simulation: Model Comparison – Accuracy by Imputation Method.

The table shows the imputation accuracy measured by the expected percentile deviation defined in
Eq. (11) for the simulation study outlined in Section 4. We differentiate our model’s accuracy from
that of a cross-sectional model, which disregards temporal information and a temporal model, which
disregard information from other characteristics. The no-self model disregards all information on the
target characteristics but attends to information about other characteristics and their temporal evolution.
We further consider imputing masked features with the last time-series observation or with the cross-
sectional median as benchmarks. Results are shown for characteristics following an AR(12) process, a
one-factor cross-sectional model, or a combination of the two. The best performing model is highlighted
in bold for each case.

Expected percentile deviation

Full Training Validation Testing

All

Full model 5.58 5.57 5.58 5.59
X-Sectional model 20.94 20.94 20.94 20.94
Temporal model 12.54 12.53 12.54 12.54
No-self model 22.76 22.75 22.76 22.77
Last 20.38 20.38 20.38 20.38
Mean imputation 25.01 25.01 25.01 25.01

AR(12)

Full model 6.71 6.70 6.71 6.72
X-Sectional model 33.96 33.97 33.96 33.96
Temporal model 6.69 6.68 6.70 6.70
No-self model 40.50 40.48 40.50 40.51
Last 6.55 6.55 6.55 6.55
Mean imputation 25.01 25.01 25.01 25.02

XS

Full model 3.08 3.08 3.08 3.08
X-Sectional model 3.53 3.52 3.53 3.54
Temporal model 9.49 9.49 9.50 9.50
No-self model 2.84 2.84 2.84 2.84
Last 33.48 33.47 33.48 33.48
Mean imputation 25.00 25.00 25.00 25.00

AR(12) + XS

Full model 6.94 6.93 6.94 6.95
X-Sectional model 25.30 25.30 25.30 25.31
Temporal model 21.43 21.42 21.43 21.44
No-self model 24.94 24.93 24.93 24.95
Last 21.12 21.12 21.13 21.12
Mean imputation 25.01 25.01 25.01 25.01

Temporal Patterns The temporal attention mechanism enables our model to use in-

formation from lagged values within the specified look-back window with no prior restric-

tions on where to draw information from. This makes the model flexible, in a way that it

can theoretically accommodate all possible dependencies within the temporal evolution

of the characteristics space. Figure 4 shows the learned temporal attention weights. The
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Fig. 4. Temporal Attention Weights – Simulated AR(12) Process

The figure shows temporal attention weights for a simulated AR(12) process in the specified look-back
window of 12 month. Temporal attention weights measure how much information from each historical
time-step is incorporated in the final prediction of the model. In that sense, it is directly comparable to
the weights wk specified in Eq. (13) for the simulated AR(12) process. We added both the actual (i.e.
pre-specified) and the model predicted weight to the graph for comparison.

weights of the AR(12) process and the extracted temporal attention weights of the model

perfectly line up. The model is capable of exactly identifying the temporal dependencies

governing the evolution of these characteristics. Importantly, we find a weight of ≈ 0

placed on information from time t = 0. Despite being presented with contemporaneous

information about other characteristics, our model has learned to disregard it and instead

focus solely on the temporal evolution.

5. Reconstructing Firm Characteristics

In this section, we apply our model to real-world data and ask it to reconstruct a set of

randomly masked firm characteristics using the information embedded in other charac-

teristics and their historical evolution. We first assess how well the model performs in

an absolute sense: how far off are the predictions of the true percentile, across time, for

different characteristics, and for different levels of available information for a firm? We

then compare how well nested model cases, described in Section 3, fare against the full

model. This investigation allows us to highlight the importance of incorporating a vast

array of information from multiple dimensions when filling missing entries. Lastly, we

zoom into the model and understand how it comes up with its predictions by exploit-

ing the proposed architecture, which is fairly interpretable through the heavy use of the
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Fig. 5. Model Accuracy Curve.

The figure shows the cumulative distribution function of the model error |∆| defined in Eq. (10) for the
training, validation and testing sample. We also show the result for imputing the median for comparison.
Section 5.2 provides a detailed model comparison. The gray-shaded area denotes the outperformance
of our model compared to this ad-hoc method. The blue shaded area denotes the expected portfolio
deviation (EPD) defined in Eq. (11).

attention mechanism.

5.1. Model Performance

Figure 5 shows the resulting cumulative distribution function p(|∆| ≤ k), for k ∈ [0..50],

for the training, validation and testing samples (Eq. (10)). For a quarter of the cases in

the training sample, our model manages to recover the masked characteristic’s percentile

exactly. For comparison, we have also included the performance of using the common

mean- or median-imputation. Numerous studies use this approach to deal with missing

firm characteristics (Green et al., 2017; Gu et al., 2020, 2021). The gray area in Figure 5

directly denotes our model’s outperformance over this ad-hoc approach. Simply inferring

the characteristic’s mean is insufficient and disregards important variation in firm char-

acteristics. In fact, for about 77% of cases, the mean imputation produces a deviation of

more than a decile. Our model instead deviates by that much in fewer than one in ten

cases. We also find that our model’s performance is highly consistent and carries over

well to the validation and the ouf-of-sample testing data.

The blue area above the curve is the EPD defined in Eq. (11). In the out-of-sample
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Fig. 6. Model Accuracy over Time.

The figure shows the model’s accuracy as measured by the expected percentile deviation defined in
Eq. (11) over time for accounting- and market-based, as well as hybrid characteristics.

testing data, we achieve an EPD of 4.31. In other words, our model predictions are on

average off by less than five percentiles, which significantly outperforms simply imputing

the mean, with an EPD of 25. For the validation (training) sample, the EPD drops

slightly, to 4.03 (3.63). 13 These numbers of course differ vastly across characteristics,

each with differences in how hard they are to reconstruct, how often they are missing,

and when they are missing. We now investigate the reconstruction performance across

these dimensions.

Accuracy over Time. We first consider how well the model predictions stack up over

time. Preferably, the prediction quality should be unaffected by temporal progression.

At the same time, however, Figure 1 shows that the degree of missingness has decreased

considerably over time. Likewise, we use the most recent 15 (+5) years to train (+vali-

date) the model and its parameters. It is natural to assume some form of generalization

gap to unseen testing data, which in our case is also the data with the highest degree of

overall missingness.

While we do find evidence of better performance in recent years in Figure 6, the EPD

13We may also express the performance in a reconstruction R2 which amounts to 90.1% (89.2%,
86.7%) for the training (validation, testing) sample. A full comparison using this metric for our set of
143 characteristics is provided in Table A1 in the Appendix.
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is fairly stable over time and still low throughout the testing sample starting in 1973.

For better interpretability, we have split the EPD numbers for market, accounting and

hybrid characteristics, wherein hybrid characteristics use information from both sources

(an example is the book-to-market ratio). We find that the average performance for all

three groups of characteristics has improved slightly over time. For example, while the

EPD for hybrid characteristics is around 4 in the early years of our sample, it trends

downward to around 3 by the start of the validation sample and now stands at around

2 percentiles. The trends for the other groups are comparable. We find the best perfor-

mance for hybrid characteristics, which have a comparatively high availability, and the

worst for market characteristics, which generally vary the most. In fact, Figure IA5.1 in

the Internet Appendix highlights the percentile migration for the three types of charac-

teristics. Market-based characteristics fluctuate most from quarter to quarter. Still, the

EPD is at or below 5 for all groups, suggesting that our predictions are on average off by

less than five percentiles, even in the out-of-sample tests.14

This temporal stability shows that our model is able to pick up on, and ultimately

exploit, a strong latent structure governing the evolution of firm characteristics. The

slight increase in the EPD in the testing sample is likely not driven by shifts in this

structure, but rather by the higher degree of missing information for that period.

Accuracy by Available Information. We therefore investigate how well the model is

able to reconstruct characteristics when the degree of available information varies. To do

so, we sort each firm×month observation by the number of available characteristics and

compare the reconstruction performance across different missingness buckets. Figure 7

shows the results.

We find that the reconstruction error is increasing in the respective missingness buckets.

More cross-characteristic information allows the model to better pick up on interactions

with other firm characteristics and consequently achieve better predictions for the target

14Note that we employ a full out-of-sample test to assess how well our model’s predictions hold up in
data never used in its estimation. The sample accuracy would improve further had we decided to train
the model on the full dataset.
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Fig. 7. Model Accuracy as a Function of Available Information.

The figure shows the model’s accuracy measured by the expected percentile deviation defined in Eq. (11)
as a function of the number of missing characteristics per firm×month observation. We group observa-
tions into quintiles depending on how many characteristics are missing and show results separately for
the training, validation and testing sample.

characteristic. This effect, however, is fairly modest throughout. In fact, even for the

firm×month observations with 60-80% missing characteristics, we find an EPD of 6-7

percentiles, still achieving better-than-decile accuracy.

Accuracy by Characteristics. We have seen that the average prediction of char-

acteristics for firms with only few other characteristics is still precise. The lower the

missingness, however, the better the predictions tend to be. To follow up on this, we now

investigate the characteristics that we predict the best, and those that are hardest to pre-

dict. Figure 8 provides a breakdown of the ten characteristics with the lowest EPD and

the ten characteristics with the highest EPD. A complete list is provided in Table IA3.1.

We furthermore indicate the group that each characteristic belongs to.

Among the characteristics best reconstructed is age, which deterministically increases

by 1 each quarter, a behavior our flexible model architecture is able to identify. We can

also reconstruct certain market-based characteristics very well, with a EPD of near zero.

Notable examples are market equity (Banz, 1981), momentum in the form of ret 12 7

(Novy-Marx, 2012), and the dollar volume over the last half year dolvol 126d. We find

a distinct cluster of characteristics among those worst reconstructed. Six out of the ten
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Fig. 8. Model Accuracy by Characteristic.

The figure shows the model’s accuracy for the ten characteristics that the model reconstructs the best
and the worst, measured by the expected portfolio deviation defined in Eq. (11). A complete overview
can be found in Table IA3.1 in the Appendix. We further categorize characteristics into three groups,
accounting-, hybrid- and market-based.

characteristics use daily information in their construction. They rapidly change from

month to month – an evolution the model is not able to pick up on, because we never

feed it information at a higher frequency than monthly. Other characteristics that the

model has a hard time reconstructing are measures of earnings persistence ni ar1 and

the number of consecutive quarters with earnings increases ni inc8q. Overall, the EPD

for only two out of the 143 characteristics is above 20 percentiles, or in other words, less

than accurate to the quintile.

Unbiased Predictions. We have so far focused on absolute deviations from the true

percentile. While the predictions of our model are quite accurate, we want to understand

if any systematic biases exist in the reconstruction process. For this, Figure 9 shows

the median and 10 and 90% quantiles for the signed estimation error ∆ across different

percentiles for the true class.

The figure provides three interesting insights into the prediction process. First, the

median signed estimation error across all percentiles of the target characteristic is indis-

tinguishable from zero. In other words, the model’s predictions are unbiased. Second,

the 10th and 90th percentiles are fairly symmetric around the median. Interestingly,

the range in which the estimation errors fluctuate is smaller for percentiles in the tail
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Fig. 9. Signed Estimation Error for Different Target Percentiles.

The figure shows both the distribution of the signed estimation error with error bars indicating the 10%
and 90% quantile and the EPD as defined in Eq. (11) for different target percentiles.

of the distribution. Of course, for a true class of “0”, the model can only deviate by

predicting classes too high. However, this smaller fluctuation for the tail percentiles is

not only driven by the lower bound (positive deviations for classes 1–5 in Figure 9), but

also evident in smaller deviations in the other direction (negative deviations in Figure 9).

Third, this pattern is also found for EPD, which is generally smallest for tail percentiles.

5.2. Competing Approaches

The economic literature has come up with different ad-hoc methods for dealing with

missing firm characteristics. The simplest method restricts the analysis to a sub-sample

for which all information is available (Lewellen, 2015; Kelly, Pruitt, and Su, 2019). This

will not only bias the results if the missing-at-random assumption is violated but also

becomes infeasible if the number of characteristics considered is large. In light of the

multiple testing problem, this is however exactly what is needed, i.e. testing preferably

all possible characteristics simultaneously. To elaborate on the fact that this method

is infeasible when the number of characteristics is large, Figure 10 shows the remaining

sample size for characteristic sub-sets, when all observations are excluded for which any

characteristic is missing.
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Fig. 10. Sample Size when Excluding Observations with Missing Characteristics.

The figure shows the remaining sample size when firm×month observations are dropped if any charac-
teristic is missing, as a function of the number of characteristics included. We sort characteristics by
their overall availability and calculate the theoretical sample size for several subsets of these 143 charac-
teristics when all observations are dropped if any characteristic is missing. The full data set, obtained
from Jensen et al. (2021), comprises 3,390,240 observations with 143 characteristics.

For example, including only the 5 % (8) characteristics that are most often available

already decreases the sample size by 19 %. More importantly, if one were to use only

those observations for which 95% of the 143 characteristics are available, only eleven

percent of the sample would be left. This circumstance invariably leads to false inference,

considering that the amount of information available depends on a firm’s characteristic.

Larger firms typically have stricter reporting requirements, requiring them to reveal more

information and information of higher quality.

We now provide a comparison of our proposed model, the nested cases outlined in

Section 4, and the mean imputation as a benchmark for the three types of characteristics

considered (accounting, market, hybrid), as well as for the full set of 143 characteristics.

For all characteristics, imputing the mean has the worst performance with an EPD of

about 25.15 The full model instead performs much better with an EPD of 4.31 for the

entire sample – a 2-fold improvement over each of the nested cases. In fact, we find little

variation of the full-sample scores for any of the nested models. However, when consid-

15The maximum absolute deviation possible amounts to |∆| = 50 in this case. With characteristics
being uniformly distributed between [1, 100] the mean will theoretically amount to 50/2 = 25. As we
randomly mask 20% of characteristics for reconstruction, we observe a slight empirical deviation to this
theoretical EPD.
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Table 2: Model Comparison – Accuracy by Imputation Method.

The table shows the imputation accuracy measured by the expected percentile deviation defined in
Eq. (11). We differentiate our model’s accuracy from that of a cross-sectional model, which disregards
temporal information and a temporal model, which disregard information from other characteristics.
The no-self model disregards all information on the target characteristics but attends to information
about other characteristics and their temporal evolution. We further consider imputing masked features
with the cross-sectional median as the benchmark. Results are shown for market- and accounting-based,
as well as hybrid characteristics. The best performing model is highlighted in bold for each case.

Expected percentile deviation

Full Training Validation Testing

All

Full model 4.31 3.63 4.03 4.67
X-Sectional model 9.02 7.19 8.14 10.01
Temporal model 8.30 7.40 7.82 8.80
No-self model 8.38 6.66 7.52 9.31
Mean imputation 25.08 25.08 25.13 25.07

Accounting

Full model 4.10 3.42 3.89 4.45
X-Sectional model 9.56 7.73 8.81 10.52
Temporal model 7.99 7.13 7.63 8.45
No-self model 8.98 7.18 8.24 9.92
Mean imputation 24.75 24.74 24.67 24.77

Market

Full model 5.29 4.65 4.90 5.65
X-Sectional model 9.16 7.66 8.30 10.03
Temporal model 9.86 8.81 9.02 10.51
No-self model 7.91 6.66 7.16 8.63
Mean imputation 25.01 25.03 25.05 24.99

Hybrid

Full model 2.89 2.04 2.50 3.32
X-Sectional model 6.96 4.30 5.47 8.35
Temporal model 5.97 5.11 5.72 6.38
No-self model 7.43 4.92 5.92 8.76
Mean imputation 26.32 26.35 26.87 26.21

ering characteristic types individually, we do find slight differences between the models.

For example, the temporal model slightly outperforms both the cross-sectional and no-self

model for accounting and hybrid variables. For market variables instead, the temporal

model performs slightly worse with an EPD of 9.86, which is still a 2.5-fold improvement

over imputing the mean. Notably, the full model specifications consistently outperforms

the nested models for each characteristic type individually and across all characteristics.

Keep in mind that we reconstruct masked entries of all 143 characteristics in a joint model

and do not refit the models for only accounting or market-based characteristics.

33

Electronic copy available at: https://ssrn.com/abstract=4003455



5.3. Interpretability

We have so far highlighted that our model performs well in reconstructing percentiles

of firm characteristics, and highlighted the importance of incorporating the nonlinear

correlation structure between characteristics, between assets, and over time. We now

wish to understand the model’s internals: how does it come up with its predictions, which

information about other characteristics is important at which stage, and how important

is modeling the historical evolution of firm characteristics to the model’s success?

Feature Importance To assess which characteristics the model uses to reconstruct

missing entries of target characteristic c, we express the feature attention matrices de-

scribed in Section 2 as directed weights, wherein each row indicates how much information

about each characteristic is necessary to reconstruct a masked entry of c. We have three

levels of abstraction here. First, we can assess for each characteristic type (accounting,

hybrid, market) the importance of information about characteristics of the same type,

as well as the other two. Second, we follow Jensen et al. (2021) and cluster the 143

characteristics into twelve themes, such as “Accruals” or “Skewness”. With this, we

can understand how important characteristics in the “Size” group are for reconstruct-

ing “Value” characteristics. And finally, we can assess how much information is drawn

from each of the 143 characteristics to reconstruct a target characteristic c, which we will

highlight for the case of momentum.

Figure 11 provides this breakdown at the level of characteristic types. Since the

row-wise sum of the attention matrix is always 1, we can simply add up the values

for characteristics belonging to each of the three types.16 We also separately highlight

the importance of historical information about the characteristic itself. If each charac-

teristic was equally informative about all others, this self-importance would amount to

1/N = 1/143 ≈ 0.007.

16Diebold and Yılmaz (2014) estimate directed networks between firms using observable returns in a
VAR-framework. In their setup, the attention matrix would be the connectedness matrix. We are inter-
ested in the “From”-connectedness, i.e. how much the internal representation of a target characteristic
is influenced by the others.
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Fig. 11. Feature Importance by Characteristic Type.

The figure shows the average feature importance weights for information drawn from the target character-
istic itself (“Self”), as well as the joint importance of characteristics of each group, including accounting-
based, market-based, as well as hybrid characteristics. We also split the target characteristic by these
groups to show how the information flow changes. Note that the model has no information about these
groupings, they arise organically from the data. The feature attention per characteristic group naturally
sums up to one.

We find a high importance of same-group information: to reconstruct accounting-based

characteristics, information about other accounting-based characteristics is most impor-

tant. The same applies to market-based characteristics. As expected, reconstructing

hybrid characteristics requires a mix of all other characteristic types. Importantly, the

model places a high weight on the historical evolution of target characteristic c, from

3.6% for hybrid variables up to 5.3% for market-based characteristics. While we find a

high importance of same-group information, the weight placed on this information is far

below 100% for all characteristic types. This highlights both the benefits of including

as many characteristics as possible, as well as the tremendous flexibility of our modeling

approach in assessing and using this vast amount of information.

In Figure 12 we show how characteristics of different themes relate to one another.

Darker blue denotes a higher weight placed on characteristics of the respective theme.

Again, each row sums to one and denotes the average share of information drawn for each

of the twelve themes to reconstruct characteristics of a theme of interest. Using “Accru-

als” as an example, we find that same-group information is very important, but also

information about the profitability and quality of the firm, and its investment behavior.

In general, the attention weights are quite heterogeneous across themes of characteristics.
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Fig. 12. Feature Importance by Theme of Characteristic.

The figure shows the average feature importance weights for the twelve themes of characteristics identified
by Jensen et al. (2021). The feature importance weights row-wise sum up to one, such that each row
denotes how much information is required from each of the twelve groups to reconstruct a characteristic
of a certain theme.

The model also manages to identify clusters of characteristics. For example, characteris-

tics in the theme “Skewness” place a large emphasis on information about the riskiness

of the firm (theme “Low Risk”). The same applies to momentum-based characteristics.

We can, of course, also zoom in and understand how the reconstruction of individual

characteristics, in this case momentum, relies on information about other characteristics.

The results in Figure 13 show that to reconstruct momentum, the model uses past infor-

mation about momentum itself (ret 12 1), as well as other parts of momentum, such as

ret 9 1 and short-term reversal (ret 1 0).

Time Importance We explicitly account for the historical evolution of input char-

acteristics in a flexible fashion, such that the model may incorporate varying levels of

temporal information per target characteristic. Especially accounting-based characteris-

tics may benefit from this inclusion, given that they typically fluctuate little from quarter

to quarter. For example, Gonçalves (2021) models the evolution of a firm’s equity du-

ration using a vector autoregressive process with lag 1. But this inclusion may also

provide fruitful information for market-based characteristics. Keloharju, Linnainmaa,

and Nyberg (2021) have recently shown that it is not today’s value for firm characteris-
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Fig. 13. Most Important Information for Reconstructing Momentum

The bars in the figure denote the average feature importance weights for the ten most important charac-
teristics when reconstructing standard momentum (ret 12 1). The dots indicate the dispersion of these
weights across time and stocks.

tics that has explanatory power over returns, but rather a characteristic’s deviation from

its long-run mean. Table 2 shows how identifying both this long-run mean, as well as

how a characteristic fluctuates around this mean is beneficial when recovering missing

firm characteristics.

Table 3 provides the results. While we allow the model to incorporate information

from up to five historical years, we find overwhelming evidence that most information

is drawn from the past year. The mean attention put on this year amounts to 94.1%,

with comparatively little variation over time. The first percentile of how much weight

is placed on the most recent year still amounts to 82.8%. In contrast, the second year

receives on average about 3.7% of the total attention, with occasional spikes above 11.4%.

In line with this, tuning the hyperparameters for the model reveals a preference for

sparse temporal attention weights, using the EntMax normalization function outlined

in Eq. (2). Last year’s information is imperative when making informed predictions

of missing characteristics. Current and near-term values of firm characteristics already

incorporate most information necessary, highlighting the efficiency of modern financial

markets and financial reporting.

The model focuses primarily on most recent year, but the inclusion of this temporal
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Table 3: Temporal Attention Weights.

The table shows average temporal attention weights for each year in the specified look-back window of
5 years. Similar to feature importance weights, temporal attention weights measure how much informa-
tion from each historical time-steps is incorporated in the final prediction of the model. Quantiles are
calculated from the cross-section of firms for each month and consequently averaged across time. The
mean of temporal attention naturally sums up to one.

Quantiles

Mean 1 5 25 50 75 95 99

Full

Year-1 0.941 0.828 0.883 0.921 0.942 0.965 0.999 1.000
Year-2 0.037 0.000 0.000 0.021 0.036 0.049 0.076 0.114
Year-3 0.015 0.000 0.000 0.003 0.013 0.023 0.039 0.059
Year-4 0.006 0.000 0.000 0.000 0.003 0.010 0.021 0.033
Year-5 0.001 0.000 0.000 0.000 0.000 0.001 0.005 0.013

information is vital for its performance. Section 5.2 has highlighted that disregarding

how characteristics evolve through time severely impedes the model’s performance.

6. Recovering Missing Firm Characteristics

The objective of our study is to present a method to recover missing firm characteristics

and provide a completed data for future research. Naturally, these predictions are as-

sociated with uncertainty. The choice of predicting cross-sectional percentiles produces

a probability distribution across the percentiles of a target characteristic. We use this

probability distribution to quantify the uncertainty of each prediction – a feature unavail-

able to other imputation methods, such as the common mean-imputation or alternative

approaches proposed by contemporaneous studies.

Model Uncertainty. When reconstructing masked characteristics in the previous sec-

tion, we have full knowledge about the desired outcome and a direct way to assess the

quality of the reconstruction. Instead, when applying the model to missing entries we do

not. However, we can quantify the uncertainty associated with each prediction. “Good”

predictions have two properties: 1) reconstructing the characteristic generally works well

within the fully controlled environment of Section 5, i.e. it produces a low EPD, and 2)
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the estimated probability distribution across percentiles of a missing firm characteristic

is significantly different from an uninformed guess.

To address 2), we proceed in two ways: for an uninformed guess the model is unable

to produce a meaningful distribution across percentiles. In these cases, it approximately

defaults to a uniform distribution, predicting each percentile with equal probability. How-

ever, even if the model’s estimated probability distribution is statistically indistinguish-

able from a uniform distribution, the prediction may still correctly identify the true

percentile. We argue that the model’s predictions are internally consistent, whenever the

percentiles which are assigned the highest probabilities are in close proximity.

We apply the Kolmogorov-Smirnov test to formally assess if the estimated distribution

is significantly different from a uniform distribution (Massey Jr., 1951).17 Let FU(x)

denote the cumulative distribution function of a uniformly distributed random variable,

on the interval x ∈ [1, 100]. Likewise, let F c
M(x) denote the cumulative step-function

estimated by our model when generating the probability distribution across percentiles

for target characteristic c. Then, the Kolmogorov-Smirnov test statistic dc for the model

prediction is given by

dc = max
x

|FU(x) − F c
M(x)| (17)

In our case, F c
M(x) significantly differs form a uniform distribution at the 5 % significance-

level if dc exceeds dmax = 0.136 (Massey Jr., 1951).

Figure 14 shows the histogram of the Kolmogorov-Smirnov statistic for the pooled

set of filled entries of firm characteristics. For 93.8% of the recovered entries of firm

characteristics the model produces a probability distribution across the characteristic’s

percentiles that is significantly different from a uniform distribution.

For the remaining 6.2% of missing entries, we now analyze how far apart the percentiles

with the highest and next-highest assigned probability lie. In 58.6% of cases in which we

fail to reject the null of a uniform assignment across percentiles, the percentile with the

17Note that the Kolmogorov-Smirnov test likely underrejects the null hypothesis in our setting, given
that we discretize the input space to 100 percentiles. The test-statistic scales with

√
1/N , where N = 100

in our setting.
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Fig. 14. Model Confidence.

The figure shows a histogram of the recovery confidence of our model, measured by the Kolmogorov-
Smirnov test statistic. The test measures whether the probability distribution across all classes for each
recovered characteristic as predicted by our model is significantly different from a uniform distribution.
The dashed vertical line indicates the 5% confidence level. Based on this measure we find 93.8% of the
reconstructed characteristics to be predicted with confidence.

highest and the percentile with the next-highest probability are just one percentile apart.

In 69.1% of cases they differ by no more than five percentiles. In total, for only 1.9% of the

recovered missing entries the predicted probability distribution is indistinguishable from

a uniform distribution and the two classes with the highest assigned probability disagree

with regards to the general location of the true percentile. Of course other researchers

may want want to apply different benchmarks to identify recovered firm characteristics

with low model uncertainty. Hence, we provide the output probability distribution of our

model alongside each recovered characteristics to encourage future research on this topic.

Discussion One may argue that the model should produce a probability distribution

with a single peak – a predicted percentile with 100% probability associated. However,

this result, while theoretically appealing, is highly unrealistic empirically and in no way

expedient. For one, predictions depend on the observable characteristics of a firm. Small

changes in single input characteristics or in combinations of characteristics may lead to

vastly different predictions of missing characteristics. We require the model to take these

nuances into account and balance their informational content. Inevitably, this leads to

a dispersion in the probability distribution. At the same time, the input characteristics,
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even if observable, are measured with noise. This noise directly translates to uncertainty

in the model’s predictions. Lastly, we use the so-called focal loss, described in Section 3, to

force the model to also learn about reconstructing characteristics for which a reconstruc-

tion is harder. Above a certain probability threshold, assigning a larger probability to the

true percentile does not improve the estimation loss. In our case, the threshold amounts

to roughly 20%. We are in the unique position to quantify the model’s uncertainty and

believe it to be an important aspect of imputing missing firm characteristics.

Recovering Raw Firm Characteristics To recover missing firm characteristics, we

have considered the characteristic’s distribution, discretized to a fine-grid of percentiles.

Instead, many applications in Accounting, Management, and Marketing research require

the actual values, not just their cross-sectional distribution. We can back out reasonable

estimates for the raw characteristics, by interpolating between values of the characteristic

in the predicted percentiles observed for other firms.

We consider three methods to come up with estimates of raw firm characteristics. For a

given recovered percentile for the target characteristic, we first identify all firms that fall

within said percentile. Within this set, we then identify the firms which have the lowest

and highest value of the characteristic. The first method simply linearly interpolates

between these two edge points, and reports the “mid” value therein. The second and

third methods give the “mean” and “median” of all observed values within the respective

percentile instead. Revisiting the multitude of established results in economic research

using this completed dataset is beyond the scope of this paper. However, as an application

we test how the recovered firm characteristics influence factor premia in characteristic-

based asset pricing.

7. Application: Factor Portfolios in Finance

What is the impact of changes in the distribution of firm characteristics after filling in

missing values? The answer of course depends on the object of research and can be
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addressed in many different ways. For one attempt at providing an answer, we choose to

study the impact on high-minus-low factor portfolios, which are a common application of

this data in characteristic-based asset pricing and have been the cornerstone of financial

research since at the very latest Fama and French (1993).

We first sort stocks into deciles for a given characteristic. We then calculate the re-

turns for each decile portfolio, first discarding missing values (“Pre”), and then using

the completed data set with imputed values using our best-fit model (“Post”). Changes

in portfolio returns arise if the firms with recovered characteristics have different return

patterns than the average firm in the portfolio before recovering missing values. To fo-

cus on the outright changes arising due to a change in the portfolio decomposition after

imputing missing values, we consider equally-weighted returns. Using value-weights in-

variably masks part of the impact of missing values, as information for large stocks is

more complete and overall of better quality. We then form the zero-cost factor portfolio

as the difference between the highest and lowest decile portfolio. Note that we purpose-

fully separate the imputation of missing firm characteristics and the calculation of factor

returns. This is different from Freyberger et al. (2021), who impute firm characteris-

tics conditional on explaining stock returns. Instead, our approach is agnostic about

whether missing entries of firm characteristics should relate to return patterns and only

investigates this after the imputation.

Figure 15 shows the change in high-minus-low factor portfolio returns for the 20 char-

acteristics with the ex-post largest and smallest (signed) change in the factor premium

due to the inclusion of recovered firm-characteristics. The high-minus-low returns dis-

carding stock observations with a missing entry for the sorting characteristic are given in

black (“Pre”), whereas the red circles denote the returns after considering the impact of

imputed missing values (”Post”). A clear trend emerges: using the completed set of firm

characteristics pushes most high-minus-low spreads towards zero. Examples with large

changes in the average high-minus-low spreads are ebitda mev (pre: 10%, post: 5%),

the change in net-operating assets noa gr1a (pre: −18%, post: −11%), and long-term

momentum ret 60 12 (pre: −9%, post: −6%). A complete list can be found in the
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Fig. 15. Impact of Missing Observations on Factor Portfolio Returns.

The figure shows the change in high-minus-low factor portfolio returns for the 20 characteristics with the
ex-post largest and smallest (signed) change in the factor premium due to the inclusion of recovered firm-
characteristics. The premium without incorporating the information of imputed missing characteristics
is given in black (“Pre”), the premium after the inclusion of this information in red (“Post”). Blue data
points display the control which consists of all observations of the ”Pre”-group but using characteristic
values reconstructed by our model. This is to show that our model not mechanically drives down the
factor premia. A complete list of these changes is provided in Table IA4.1.

Internet Appendix Table IA4.1. Across all 143 characteristics, we find that the absolute

return spread decreases by an average of -1.27 % with a t-value of −8.04.

We investigate two potential issues, which may give rise to a mechanical reduction in

absolute return spreads: first, one may argue that even if high-minus-low return spreads

are correctly identified using the uncompleted dataset, through the imputation approach

some stocks will be wrongfully allocated to the high and low portfolio. Assuming that

returns are a monotonic function of the true portfolio, this will push down on the high-

minus-low return spreads after imputation. A first indication that this is less of a concern

using our model is shown in Figure 9: the reconstruction accuracy is generally highest

in the high and low portfolios. Another potential concern relates to the use of past

information about characteristics to impute today’s missing values. If the imputation

relies heavily on this past information, imputed values are potentially less informative
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about future returns.18. Baba Yara, Boons, and Tamoni (2020) investigates the use of

and predictive power of “old” information and generally finds that past characteristics

still generate large return spreads.

To address these points, we proceed as follows: we create a reconstructed data set which

reconstructs the observations of the uncompleted dataset, using our model, in the same

fashion as in Section 5: we randomly mask and reconstruct 20 % of the available input

characteristics. We repeat this step 25 times to ensure that ≥ 99% of characteristics have

been reconstructed. The resulting high-minus-low return spreads for this reconstructed

data set are also shown in Figure 15 as the blue circles (“Control”). The results clearly

show that there is no mechanical downward-bias induced by our model. Regression results

further support this evidence: high-minus-low return spreads using the reconstructed and

uncompleted dataset are statistically indistinguishable across all 143 characteristics.

The average impact on high-minus-low return spreads is large, and quite heterogeneous.

Some return spreads are barely impacted, others by a lot. Taken together, accounting

for missing entries of firm characteristics is important. A careful consideration of the

impact of missing firm characteristics is warranted and provides an additional hurdle for

newly proposed risk factors to pass: the factors should survive not only in the sample

in which they are available outright, but also using the extended sample including firms

with missing observations. In total we find that 6 of the 143 factor premia lose their

significance. Still, most factor premia that are significant before the imputation remain

significant thereafter, and others gain significance (see Table IA4.1). We have already

highlighted that our approach is agnostic about whether firm characteristics are infor-

mative about stock returns, in contrast to the study by Freyberger et al. (2021). The

described analysis therefore adds a new out-of-sample test for assessing the validity of

newly-found and existing risk factors. With this, we complement the recent debate on

whether financial research experiences a replication crisis (Harvey, Liu, and Zhu, 2016;

Jensen et al., 2021). Judging by the relative stability of most factor premia with re-

spect to the impact of missing values (in terms of their significance, not necessarily their

18We thank Andrea Barbon for pointing out this potential issue to us.
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magnitude), we would argue in favor of replicability in Finance.

8. Conclusion

A vast literature in empirical asset pricing uses observable firm characteristics as proxies

for differences in expected stock returns. However, firm characteristics are frequently

missing, some more often than others. Basing inference on the set of stocks for which

a target characteristic is available potentially biases the results due to variation in the

sample considered.

In this paper, we propose a comprehensive machine learning method, which borrows

from recent advances in natural language processing and adapts their insights to the

case of financial data to fill these missing entries. For this, we use three types of infor-

mation: about other characteristics of a target firm, how these characteristics evolved

over time, and from the cross-section of other firms. We show in a first step that the

proposed model vastly outperforms ad-hoc methods, such as imputing the cross-sectional

mean, but also more involved methods. We can also show that predictions are unbiased

and highlight that the inclusion of all three types of information is vital to the model’s

success. Second, we find that filling missing entries of one type of characteristic – market-

based, accounting-based, or hybrid – relies heavily on information about characteristics

of the same type, but that also including information about characteristics of the other

types improves the predictive performance. Third, our model setup allows us to explic-

itly quantify the uncertainty attached to each prediction. Fully uninformed predictions

will produce a uniform distribution across a target characteristic’s percentiles. We show

that in most cases the model’s predictions significantly differ from a uniform distribu-

tion. Finally, we use the completed dataset, i.e. a panel with imputed missing entries, to

investigate changes in average returns of common risk factors. For most characteristics,

absolute high-minus-low return spreads are lower using the completed dataset. We care-

fully assure that this is not driven by sorting on “old” information. Still, most return

spreads remain significant, adding another piece of evidence in favor of replicability in
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finance (Jensen et al., 2021). We have made the filled entries of firm characteristics, as

well as the associated modeling uncertainty available for future research.19

19The imputed firm characteristics can be downloaded from the first author’s website.
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Appendix A. R2 by Imputation Method

The following Table A1 shows the imputation accuracy by R2, which measures how much of the variation
in reconstructing masked characteristics a method can explain that is not already explained by imputing
the cross-sectional mean. As we discretize each characteristic into percentiles we calculate the R2 in the
following fashion:

R2
x = 1−

∑99
k=0 px(|∆| = k) · (k/100)2∑99
k=0 pMI(|∆| = k) · (k/100)2

(A1)

with subscript x indicating the current method being evaluated and MI standing for the Mean Imputation
method. We differentiate our model’s accuracy from that of a cross-sectional model, which disregards
temporal information and a temporal model, which disregard information from other characteristics.
The no-self model disregards all information about the target characteristics but attends to information
about other characteristics and their temporal evolution. We further consider imputing masked features
with the cross-sectional median as the benchmark. Results are shown for market- and accounting-based,
as well as hybrid characteristics. The best performing model is highlighted in bold for each case.

Table A1: Model Comparison – R2 by Imputation Method.

R2

Full Training Validation Testing

All

Full model 0.880 0.901 0.892 0.867
X-Sectional model 0.658 0.734 0.702 0.615
Temporal model 0.663 0.718 0.703 0.631
No-self model 0.696 0.766 0.739 0.656
Mean imputation 0.000 0.000 0.000 0.000

Accounting

Full model 0.879 0.902 0.889 0.867
X-Sectional model 0.602 0.682 0.638 0.559
Temporal model 0.652 0.707 0.685 0.620
No-self model 0.643 0.722 0.681 0.601
Mean imputation 0.000 0.000 0.000 0.000

Market

Full model 0.850 0.870 0.864 0.838
X-Sectional model 0.674 0.739 0.719 0.635
Temporal model 0.612 0.675 0.670 0.572
No-self model 0.737 0.785 0.772 0.708
Mean imputation 0.000 0.000 0.000 0.000

Hybrid

Full model 0.939 0.963 0.954 0.927
X-Sectional model 0.790 0.882 0.857 0.737
Temporal model 0.796 0.840 0.822 0.772
No-self model 0.771 0.862 0.843 0.718
Mean imputation 0.000 0.000 0.000 0.000
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Internet Appendix
(not for publication)

Recovering Missing Firm Characteristics with

Attention-based Machine Learning

Table of Contents:

1. Appendix IA1 provides a detailed account of the model setup, the individual sub-

networks used and how they. We also provide an illustrative fictitious example for

reconstructing Apple’s book-to-market ratio in January of 2012.

2. Appendix IA2 shows the hyperparameters, their search ranges in the Cowen-Rivers,

Lyu, Tutunov, Wang, Grosnit, Griffiths, Maraval, Jianye, Wang, Peters, et al.

(2020) Bayesian optimization and the final hyperparameter choice.

3. Appendix IA3 shows a list of the 143 firm characteristics used in the study, their

type (hybrid, market, and accounting), how often they are missing and how well

our model is able to reconstruct entries of said characteristic.

4. Appendix IA4 shows a list of how factor premia estimated using high-minus-low

portfolio spreads for each of the 143 firm characteristics changes using the initial

and completed samples.

5. Appendix IA5 shows a portfolio migration heatmap to visualize how the portfolio

allocation changes over time for different characteristic types.
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Appendix IA1. Model Setup in Detail

An Illustrative Example Consider a simple example to understand how we leverage

information from observed firm characteristics to recover those that are missing. Fig-

ure IA1.1 shows the actual quintiles for the Fama and French (2015) characteristics for

Apple in January of 2012. Assume that we wish to reconstruct Apple’s quintile for the

book-to-market ratio “B2M”. We first mask it by inserting a “0” as a special class captur-

ing characteristics masked for reconstruction. We then run this masked input through the

model, which produces a probabilistic mapping between Apple’s B2M and the other four

characteristics. Assume for this example that knowing about Apple’s market capitaliza-

tion and growth in total assets is most informative about recovering the book-to-market

ratio. The model consequently learns to place a higher weight on these characteristics

(45% on “Size” and 35% on “Inv”). In contrast, market-based information, such as Ap-

ple’s beta is less important for this task (weight of 5%). Using this mapping of how

informative a certain characteristic is to reconstruct B2M, the model then produces a

probability distribution across the five quintiles for B2M. If it places the highest weight

on the first quintile (in this example, 85%) we have successfully reconstructed Apple’s

book-to-market ratio using only information about Apple’s other characteristics mea-

sured at time t. In the full model, we also incorporate information about how Apple’s

characteristics have evolved through time.

IA1.1. Building Blocks

Before we discuss the model architecture in detail, we introduce the two central building

blocks used in our model: attention and gated skip connections. For a description of the

attention mechanism and its merits see Section 2.2 in the main text.

Gated Skip Connections Gated skip connections control the flow of information in

our model by dynamically adjusting the impact that each layer of (non)linear processing

has. In a standard fully-connected network, each input is fed through each processing

layer. There is no way to skip further processing for simpler, while retaining a high level

of processing for the most complex inputs. Instead, with skip connections, the model

learns the optimal degree of processing per input from the data itself. Specifically, we let

the model decide how much of each additional processing step to skip through weights ω:

ω(x) =
1

1 + e−Linear(x)
, (IA1)

where Linear(x) = Wx + b denotes a linear transformation of x. The output y of a

given processing block is then a weighted-average between raw input x and the processed
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Fig. IA1.1. Exemplary Workflow to Recover Firm Characteristics

The figure shows an example for how our model manages to leverage the information of other firm
characteristics to reconstruct a target characteristic, in this case Apple’s (ticker AAPL) book-to-market
ratio. We first set the characteristic to be reconstructed to a special “masked” token (0), and subsequently
ask the model to find an optimally-weighted representation of other firm characteristics to come up with a
predicted distribution over possible quintiles for Apple’s book-to-market ratio. We then compare the most
likely quintile with the actual value, and update the model’s parameters through gradient descent, which
allows the model to incrementally learn about how to extract information from available characteristics.
What is missing from this stylized example is that we also incorporate the historic evolution of firm
characteristics in the actual model.

input f(x):

y = ω(x) · f(x) + [1 − ω(x)] · x (IA2)

Skip connections have been used to improve the performance in many areas, most no-

tably in image processing, spawning the infamous ResNet (He, Zhang, Ren, and Sun,

2015). They not only allow for deeper models that generalize well to unseen data but

potentially also speed up the estimation. The particular choice of weighted skip con-

nection used for our model follows the “Highway Networks” by Srivastava, Greff, and

Schmidhuber (2015).

IA1.2. Model Setup

Figure IA1.2 schematically shows how the model learns to extract information from the

cross-section of firms, their characteristics and their historical evolution. The model

architecture consists of four main processing units shown in Figure IA1.2, which are
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Fig. IA1.2. Model Setup

The figure schematically shows how the model extracts information from the cross-section of firm char-
acteristics, as well as their historical evolution to predict the percentiles of characteristics masked for
reconstruction (by the token “0”). We first randomly mask a fixed percentage (20%) of input charac-
teristics for reconstruction, feed the characteristics through embeddings, a temporal attention network
(TAN) extracting information about the characteristics’ historical evolution, and multiple feature at-
tention networks (FAN), which extract information from other available characteristics. The last step
comprises a multi-layer perceptron (MLP), which generates an informed probability distribution of the
true percentile. We then compare how close the model’s predicted percentiles are to the ones actually
observed before masking them.

further detailed below: feature embeddings create a high-dimensional representation of the

percentiles of each input characteristic and push dissimilar firms along that characteristic

away from each other. The temporal attention network (TAN) extracts an optimally-

weighted average of the temporal evolution of firm characteristics, and feature attention

networks (FAN) create a mapping between missing and available characteristics of a

given firm. In the last step, we run these extracted connections through a multi-layer

perceptron (MLP), which estimates a probability distribution over the percentiles of each

characteristic we wish to recover.

Feature Embeddings The financial literature highlights stark differences between

stocks with small and large market equity in many aspects (Fama and French, 1993).

Recovering Apple’s book-to-market ratio using other characteristics may very well lead

to a different functional form than recovering Rite Aid Corp.’s book-to-market ratio. To

accommodate these differences across the range of a characteristic and to improve the

learning capacity of the model, we feed each input characteristic through its own embed-

ding. This is common in machine learning to deal with complex datasets (Huang et al.,

2020; Somepalli et al., 2021; Lim et al., 2021; Gorishniy et al., 2021). An embedding

is a learned lookup table that represents the percentiles of a target characteristic in a

D-dimensional space. Percentiles that are closer in vector space are expected to behave

similarly. For example, the model may learn that small stocks should receive different
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Fig. IA1.3. Temporal Attention Network

The figure shows the setup of the temporal attention network (TAN). We first feed the input through a
long-short-term memory network to add positional awareness. We then employ temporal interpretable
multi-head attention (IMHA), which extracts a matrix which optimally weights historical time steps.
The last step applies a linear fully-connected layer with nonlinear GELU activation function. Each step
is skipable in part or in full, through skip connections. We also apply dropout multiple times during
training, which increases the stability of the model during inference.

processing from large stocks, by pushing these stocks away form one another in vector

space. We choose an internal embedding size of D = 64, such that each of the 100 (+1

missing; +1 masked) classes per characteristic is represented by a 64-dimensional vector.

Embeddings have the added benefit of increasing the model’s internal learning capac-

ity, by adding a fourth “embedding” dimension, leaving the characteristics dimension

untouched, which increases the model’s interpretability.

Temporal Attention Network To extract temporal patterns across characteristics,

we use a simplified version of the temporal attention mechanism put forth by Lim et al.

(2021). We feed the input from the embedding layer through an initial long-short-term

memory (LSTM) network (see Figure IA1.3. The computation of the attention matrix

is permutation invariant. It therefore disregards the timing of when information was

received. To allow the model to understand that information from four years ago may

be less important than the same information obtained last month, we need to add a

time-positional encoding to the input. As in Lim et al. (2021), the LSTM serves this

purpose. LSTMs have been successfully used by Chen and Zimmermann (2020) to extract

macroeconomic states from a large data set of macroeconomic indicators. The effective

lookback ability of LSTMs is limited, however, a drawback that temporal attention solves

by explicitly attending to past information, without relying on gating mechanisms.

The time-encoded data is fed through the temporal IMHA unit with eight attention

heads, which extracts a weighted importance of past time step in the form of a temporal

attention matrix. We follow this up by a simple linear layer with a GELU activation

function. GELU has been introduced by Hendrycks and Gimpel (2016) and solves the

issue of vanishing gradients occasionally encountered by the standard ReLU.
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Fig. IA1.4. Feature Attention Network

The figure shows the setup of the feature attention network (FAN). We feed the input through a fea-
ture interpretable multi-head attention network (IMHA), followed by a linear fully-connected layer with
nonlinear GELU activation function. Each step is skipable in part or in full, through skip connections.
We also apply dropout multiple times during training, which increases the stability of the model during
inference.

Feature Attention Network After we have extracted an optimally-weighted temporal

representation of the input embeddings, we feed this intermediate data through six FANs.

This number follows the original Transformer study by Vaswani et al. (2017). Each FAN

creates a feature attention matrix, which tells us which characteristics the model uses to

reconstruct a given missing input. The use of multiple consecutive FANs helps the model

cover not only simple reconstructions, but also those that require more processing.

We feed the output of the feature IMHA with eight attention heads through a lin-

ear layer followed by a GelU, and allow for dynamic complexity control through skip-

connections.

Multi-Layer Perceptron The last processing unit in our model is a standard MLP.

MLPs combine a number of linear layers of varying sizes with activation functions. We

use a total of two linear layers, the first of which is followed by a GelU activation func-

tion. The last layer takes the internal representation of the input data and creates a

(B × F × G)-dimensional tensor, where G denotes the number of classes. We apply a

Softmax function to the last dimension to obtain a probability distribution p across a

characteristic’s percentiles for all firm-month observations in the batch of size B. We

then regard the most probable percentile as the predicted class and compare it with the

true (unmasked) percentile.
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Appendix IA2. Hyperparameters

The following Table IA2.1 shows the model’s hyperparameters, their search ranges and

the optimal values using a hyperparameter search with 64 trials and the Bayesian opti-

mization scheme outlined in Cowen-Rivers et al. (2020).

Table IA2.1: Hyperparameters for the Models Considered.

The table shows the hyperparameters and the boundaries from which they are randomly drawn to
optimize them for each model considered. Optimal hyperparameter values are shown in bold.

Model to fill missing firm characteristics

Batch size 2,400
Training months 180
Validation months 60
Testing months 402

min lr 0.00001
max lr 0.005
Weight decay 0.001
AdamW β1 0.9 Follows Liu et al. (2019)
AdamW β2 0.98 Follows Liu et al. (2019)
AdamW eps 1e−6 Follows Liu et al. (2019)
γ 2 FocalLoss parameter

Mask pct. 20% Char. to randomly mask for reconstruction
F 151 Number of characteristics
T 60 Number of lookback timesteps
N embedding 64 Internal model size
N IMHA 8 per step Number of attention heads

FAN steps 6 Number of consecutive FANs
FAN Normalization ∈ [Soft,Ent,Sparse]Max
FAN Dropout ∈ [0.0, 0.1, 0.3]
FAN Linear Dropout ∈ [0.0,0.1, 0.3]

TAN steps 6 Number of consecutive TANs
TAN Normalization ∈ [Soft,Ent,Sparse]Max
TAN Dropout ∈ [0.0, 0.1, 0.3]
TAN Linear Dropout ∈ [0.0, 0.1,0.3]

MLP dropout ∈ [0.0, 0.1, 0.3]
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Appendix IA3. Accuracy, Missingness and Model Con-

fidence

The following Table IA3.1 provides summary information about the model accuracy as
measured by the expected percentile deviation defined in Eq. (11) for each characteristic
separately. Characteristics are sorted from best to worst model accuracy. We further
include the missingness of each characteristic in the data set for all firm×month ob-
servations. ”sig. KS-Test” provides information on how many of the recovered firm
characteristic exhibit a significant - i.e. on the 5 % level - KS-statistic as defined in Sec-
tion 6, which is a measure of model confidence for the recovered firm characteristics. We
further classified characteristics in accounting (A), hybrid (H) and market (M) variables.

Table IA3.1: Missingness, accuracy and model confidence per characteristic.

Expected percentile deviation

Full Training Validation Testing Miss. [%] sig. KS-Test [%] Class

age 0.74 0.64 0.77 0.78 0.00 - H
market equity 1.26 0.90 1.15 1.42 0.48 99.86 M
rd5 at 1.28 0.93 1.33 1.50 73.83 98.66 A
ret 12 7 1.36 0.96 1.09 1.60 17.03 99.99 M
sale me 1.39 1.02 1.21 1.57 11.83 98.06 H
at me 1.41 1.04 1.24 1.60 11.44 99.92 H
dolvol 126d 1.44 0.93 1.18 1.71 10.69 99.40 M
rd sale 1.47 0.92 1.21 1.77 62.01 59.47 A
gp atl1 1.48 1.00 1.29 1.73 14.80 98.37 A
op atl1 1.50 1.03 1.27 1.74 14.75 56.36 A
ivol capm 252d 1.52 1.42 1.40 1.58 16.21 93.30 M
gp at 1.55 0.98 1.24 1.85 11.81 64.53 A
at turnover 1.62 0.94 1.16 1.99 12.74 99.59 A
op at 1.65 1.10 1.36 1.92 11.74 90.06 A
cop at 1.68 1.14 1.74 1.93 19.91 69.19 A
ebit sale 1.70 1.23 1.37 1.95 13.11 97.46 A
opex at 1.72 1.12 1.29 2.04 11.81 79.22 A
qmj 1.75 1.58 1.75 1.85 35.60 97.39 M
qmj prof 1.80 1.33 1.58 2.04 12.13 52.68 M
be me 1.84 1.44 1.83 2.01 14.21 83.90 H
corr 1260d 1.85 1.47 1.75 2.08 34.74 94.25 M
cop atl1 1.85 1.13 1.72 2.21 20.47 73.07 A
ebit bev 1.91 1.45 1.78 2.11 15.49 79.15 A
ope bel1 1.92 1.47 1.82 2.11 28.49 96.43 A
prc 1.97 1.25 2.28 2.21 0.48 99.19 M
ope be 1.99 1.37 1.71 2.26 25.25 94.91 A
debt me 2.00 1.55 1.68 2.23 11.70 98.70 H
ni be 2.03 1.32 1.52 2.41 14.29 88.88 M
sale bev 2.03 1.45 1.84 2.30 15.43 98.19 A
netdebt me 2.07 1.48 1.58 2.40 11.70 67.70 H
ret 12 1 2.08 1.58 2.07 2.31 17.10 99.96 M
mispricing perf 2.11 1.57 1.76 2.39 5.20 90.69 M
div12m me 2.12 1.78 1.47 2.36 7.69 95.73 H
ami 126d 2.13 1.21 1.62 2.69 16.35 93.35 M
ivol capm 21d 2.17 2.50 1.89 2.07 15.31 93.65 M

Continued on next page.
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Table IA3.1: Missingness, accuracy and model confidence per characteristic.

rd me 2.20 1.51 1.98 2.56 61.26 90.13 H
zero trades 252d 2.21 0.90 1.41 2.95 12.68 77.18 M
betabab 1260d 2.21 1.95 1.94 2.43 35.24 83.44 M
nncoa gr1a 2.29 1.80 2.25 2.50 23.42 85.25 A
qmj safety 2.30 1.82 1.97 2.56 8.56 47.44 M
at be 2.32 1.62 1.82 2.70 14.00 80.50 A
ivol ff3 21d 2.34 2.47 2.17 2.31 15.31 92.88 M
rvol 21d 2.36 2.24 2.12 2.47 15.31 80.59 M
bev mev 2.37 1.93 2.41 2.53 16.07 77.38 H
ret 9 1 2.47 1.80 2.34 2.79 15.17 99.83 M
o score 2.50 2.12 2.45 2.67 24.04 86.26 A
rmax5 21d 2.54 2.20 2.25 2.78 15.32 90.67 M
intrinsic value 2.60 2.31 2.85 2.67 35.16 91.89 H
niq at 2.63 2.05 2.32 2.99 29.13 99.70 A
ivol hxz4 21d 2.65 2.83 2.56 2.57 24.50 90.33 M
noa gr1a 2.66 2.11 2.43 2.94 24.38 79.12 A
ni me 2.68 1.66 1.91 3.25 11.60 73.75 H
capx gr3 2.70 2.38 2.75 2.87 35.12 99.36 A
ebitda mev 2.71 1.92 2.40 3.10 13.56 68.84 H
ncoa gr1a 2.77 2.62 2.91 2.80 21.98 77.72 A
ocfq saleq std 2.77 2.14 2.46 3.30 47.18 98.94 A
z score 2.82 2.24 2.92 3.05 25.61 89.57 A
mispricing mgmt 2.90 2.15 2.45 3.31 15.12 78.44 M
capex abn 2.93 2.45 3.21 3.12 36.68 97.46 A
eqnpo me 2.94 2.12 3.36 3.25 28.12 97.81 H
niq be 2.95 2.09 2.51 3.46 31.38 97.91 A
ret 6 1 2.96 2.18 2.80 3.34 13.18 92.44 M
ocf at 2.96 1.45 1.83 3.82 13.31 97.59 A
oaccruals at 3.01 1.86 2.43 3.67 19.83 95.51 A
sale emp gr1 3.02 2.46 3.06 3.27 25.91 98.95 A
emp gr1 3.03 2.79 3.19 3.12 29.45 92.86 A
capx gr2 3.08 2.76 3.21 3.21 29.70 98.18 A
ocf me 3.08 1.52 1.92 3.96 13.49 89.27 H
at gr1 3.11 2.44 2.93 3.43 14.42 84.86 A
sale gr3 3.17 2.71 3.13 3.39 26.84 94.85 A
eqnpo 12m 3.17 1.95 2.14 3.84 9.51 99.55 H
ret 3 1 3.35 2.54 3.10 3.76 11.13 91.59 M
noa at 3.36 2.11 2.64 4.01 23.92 80.26 A
eq dur 3.42 2.50 3.01 3.89 24.23 89.26 A
qmj growth 3.46 3.12 3.47 3.63 35.60 82.10 M
tangibility 3.48 2.31 2.95 4.03 21.64 77.50 A
lti gr1a 3.49 2.85 3.21 3.83 21.55 99.79 A
zero trades 126d 3.53 1.01 1.97 4.94 10.69 99.33 M
fnl gr1a 3.54 2.98 3.43 3.81 14.69 98.57 A
eqnetis at 3.56 2.56 3.50 4.04 27.74 80.60 H
inv gr1a 3.61 3.19 4.03 3.72 17.09 96.96 A
aliq at 3.63 2.12 3.64 4.27 22.73 85.54 A
kz index 3.67 3.25 3.75 3.83 24.04 68.33 A
sale gr1 3.69 2.92 3.27 4.10 16.66 74.75 A
eqpo me 3.76 3.08 4.81 3.90 31.77 89.60 H
taccruals at 3.80 2.16 2.72 4.78 20.36 93.34 A
chcsho 12m 3.87 2.44 2.62 4.66 8.57 100.00 H
cowc gr1a 3.91 3.35 3.74 4.18 23.51 91.93 A
niq be chg1 3.97 3.40 3.66 4.34 37.99 95.08 A
ni ivol 3.98 3.61 3.56 4.27 36.38 88.86 A

Continued on next page.
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Table IA3.1: Missingness, accuracy and model confidence per characteristic.

coa gr1a 4.04 4.04 4.16 4.02 22.95 79.82 A
aliq mat 4.07 2.76 4.03 4.62 28.06 97.05 M
inv gr1 4.14 3.89 4.29 4.20 32.18 72.40 A
nfna gr1a 4.25 2.50 4.10 5.04 14.69 98.47 A
be gr1a 4.27 3.65 3.83 4.61 18.81 83.94 A
turnover 126d 4.33 0.92 2.21 6.24 10.69 98.68 M
niq at chg1 4.35 3.87 4.09 4.66 35.07 89.56 A
rmax5 rvol 21d 4.36 3.83 3.83 4.75 19.88 85.68 M
fcf me 4.44 2.27 2.99 5.68 18.90 73.35 H
turnover var 126d 4.51 3.81 4.14 4.89 10.69 86.93 M
oaccruals ni 4.53 2.61 3.44 5.63 19.87 95.29 A
dolvol var 126d 4.55 3.70 4.19 5.00 10.69 88.35 M
sti gr1a 4.63 4.57 4.18 4.76 31.68 99.83 A
taccruals ni 4.69 3.03 3.35 5.73 20.42 72.45 A
beta 60m 5.01 4.91 3.23 5.40 26.26 99.89 M
netis at 5.01 3.54 4.51 5.80 27.75 94.65 H
cash at 5.06 3.11 3.88 6.08 12.44 75.18 A
capx gr1 5.08 4.43 5.06 5.39 24.37 95.77 A
dsale dinv 5.13 4.54 5.05 5.39 35.99 93.78 A
ppeinv gr1a 5.18 4.95 5.30 5.25 24.09 82.07 A
lnoa gr1a 5.34 4.58 6.52 5.50 25.93 64.71 A
col gr1a 5.39 4.55 5.19 5.78 21.63 97.16 A
zero trades 21d 5.56 3.22 3.97 6.89 9.22 58.61 M
rmax1 21d 5.80 4.85 4.67 6.51 15.32 75.93 M
ret 1 0 5.98 4.78 5.26 6.65 9.72 94.15 M
ocf at chg1 6.19 4.33 4.99 7.26 17.12 98.77 A
ret 60 12 6.29 5.92 6.65 6.41 41.62 81.40 M
debt gr3 6.39 5.72 6.42 6.68 33.92 72.94 A
ncol gr1a 6.83 6.29 7.14 7.00 22.50 97.99 A
dbnetis at 6.88 4.91 6.00 7.86 12.42 72.85 H
saleq su 6.90 6.44 7.24 7.07 35.95 96.84 A
resff3 12 1 7.20 6.86 6.65 7.45 19.23 97.74 M
saleq gr1 7.22 5.58 6.18 8.19 24.49 88.39 A
dsale dsga 7.33 5.93 6.47 8.15 34.26 71.73 A
dgp dsale 7.40 5.81 7.06 8.16 25.08 98.42 A
niq su 7.45 6.34 7.19 8.11 34.84 78.17 A
tax gr1a 7.63 7.45 7.13 7.79 15.30 54.93 A
pi nix 7.70 6.84 7.28 8.08 33.81 81.43 A
earnings variability 7.87 7.83 8.59 7.74 37.51 94.01 A
prc highprc 252d 8.00 6.57 8.09 8.67 16.23 88.54 M
iskew capm 21d 8.31 8.73 7.83 8.20 15.32 53.11 M
rskew 21d 8.72 7.96 7.84 9.28 15.32 81.25 M
resff3 6 1 9.27 8.30 8.59 9.82 19.32 83.13 M
f score 10.20 8.81 9.02 11.02 29.08 70.79 A
iskew ff3 21d 10.20 9.82 10.17 10.40 15.31 41.45 M
betadown 252d 10.35 9.10 9.28 11.19 17.45 70.80 M
ni ar1 10.72 10.89 11.16 10.55 36.38 83.38 A
ni inc8q 11.63 11.08 11.17 12.05 39.71 99.98 A
dsale drec 11.77 11.97 12.02 11.63 24.50 91.19 A
iskew hxz4 21d 12.03 11.51 12.13 12.27 24.50 27.51 M
bidaskhl 21d 12.15 12.62 12.33 11.89 13.86 99.97 M
beta dimson 21d 24.70 23.30 23.23 25.70 15.31 73.74 M
coskew 21d 29.16 27.65 28.60 30.01 15.31 31.10 M

Continued on next page.
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Table IA3.1: Missingness, accuracy and model confidence per characteristic.

Average 4.36 3.63 4.03 4.75 21.61 85.89
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Appendix IA4. Change in Factor Premia

The following Table IA4.1 reports changes in factor portfolio returns after the inclusion
of firms with previously missing values. Characteristics are sorted by the change in
the factor premium ∆HmL. We also provide the premium before (HmLPre) and after
(HmLPost) imputation. Column “Not sig.” equals “Y” whenever the factor’s premium
was significant before inclusion of missing observations, but is not significant thereafter.
This happens on 6 occasions. We note, however, that the total number of significant
factors is fairly constant at 113 before and 114 after imputation.

Table IA4.1: Change in Factor Premia.

HmLPre HmLPost ∆HmL Not sig.

f score 0.24 *** 0.16 *** −0.08 **
prc highprc 252d 0.04 - −0.03 - −0.07 ***
ebitda mev 0.10 *** 0.05 * −0.05 ***
cop at 0.18 *** 0.13 *** −0.05 ***
cop atl1 0.16 *** 0.11 *** −0.04 ***
saleq su 0.07 *** 0.03 ** −0.04 ***
zero trades 252d 0.14 *** 0.10 *** −0.04 ***
mispricing mgmt 0.20 *** 0.16 *** −0.04 ***
resff3 6 1 0.09 *** 0.05 *** −0.04 ***
eqnpo 12m 0.12 *** 0.09 *** −0.03 ***
nfna gr1a 0.10 *** 0.07 *** −0.03 ***
ocf at chg1 0.05 *** 0.02 * −0.03 ***
pi nix 0.01 - −0.02 ** −0.03 ***
ocfq saleq std −0.04 - −0.06 ** −0.03 **
aliq mat 0.13 *** 0.10 *** −0.03 ***
fcf me 0.11 *** 0.08 *** −0.03 *
ret 6 1 0.10 *** 0.07 ** −0.02 ***
ret 12 1 0.14 *** 0.12 *** −0.02 ***
rmax1 21d −0.15 *** −0.17 *** −0.02 **
qmj growth 0.06 *** 0.04 *** −0.02 *
tax gr1a 0.02 - −0.00 - −0.02 ***
iskew ff3 21d −0.02 ** −0.04 *** −0.02 ***
ni ar1 −0.01 - −0.03 *** −0.02 **
ret 3 1 0.06 ** 0.04 - −0.02 *** Y
o score −0.02 - −0.04 - −0.02 **
niq be chg1 0.10 *** 0.09 *** −0.02 **
op at 0.12 *** 0.11 *** −0.02 ***
be me 0.18 *** 0.16 *** −0.01 **
dsale drec 0.01 - −0.00 - −0.01 *
ocf at 0.12 *** 0.11 *** −0.01 **
ret 9 1 0.12 *** 0.11 *** −0.01 ***
rd5 at 0.06 * 0.05 - −0.01 - Y
betabab 1260d −0.05 - −0.07 ** −0.01 -
zero trades 126d 0.13 *** 0.12 *** −0.01 -
niq at chg1 0.08 *** 0.07 *** −0.01 *
niq at 0.09 *** 0.08 *** −0.01 -
ebit sale 0.05 - 0.04 - −0.01 *
dgp dsale 0.06 *** 0.05 *** −0.01 **
ncol gr1a −0.01 - −0.02 * −0.01 -
sale bev 0.10 *** 0.09 *** −0.01 *

Continued on next page.
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Table IA4.1: Change in Factor Premia.

niq su 0.10 *** 0.09 *** −0.01 **
rd me 0.24 *** 0.23 *** −0.01 -
at me 0.11 *** 0.10 *** −0.01 -
dsale dsga 0.01 - −0.00 - −0.01 -
ebit bev 0.06 * 0.05 - −0.01 * Y
ami 126d 0.08 ** 0.07 *** −0.01 -
cash at 0.04 * 0.04 - −0.01 ** Y
iskew capm 21d −0.05 *** −0.06 *** −0.01 -
at be −0.01 - −0.02 - −0.01 -
bev mev 0.15 *** 0.15 *** −0.01 -
coskew 21d −0.00 - −0.01 - −0.01 -
sti gr1a −0.03 ** −0.04 *** −0.01 -
op atl1 0.09 *** 0.08 *** −0.01 -
resff3 12 1 0.15 *** 0.15 *** −0.01 ***
bidaskhl 21d 0.02 - 0.02 - −0.01 -
eq dur −0.11 *** −0.11 *** −0.01 -
sale me 0.15 *** 0.15 *** −0.00 -
tangibility 0.09 *** 0.08 *** −0.00 -
ni ivol 0.00 - −0.00 - −0.00 -
dolvol 126d −0.12 *** −0.13 *** −0.00 **
ocf me 0.10 *** 0.10 *** −0.00 -
turnover var 126d 0.05 ** 0.04 ** −0.00 -
rmax5 21d −0.16 *** −0.16 *** −0.00 -
saleq gr1 −0.01 - −0.02 - −0.00 -
ret 12 7 0.11 *** 0.11 *** −0.00 *
rd sale 0.01 - 0.01 - −0.00 -
dsale dinv 0.05 *** 0.05 *** −0.00 -
ope bel1 0.06 ** 0.06 *** −0.00 -
market equity −0.16 *** −0.16 *** −0.00 -
qmj safety 0.05 * 0.05 * −0.00 -
mispricing perf 0.14 *** 0.14 *** −0.00 -
beta 60m −0.01 - −0.01 - −0.00 -
iskew hxz4 21d −0.03 *** −0.03 *** −0.00 -
age 0.01 - 0.01 - 0.00 -
prc −0.07 * −0.07 * 0.00 -
ni inc8q 0.01 - 0.01 - 0.00 -
ni me 0.05 - 0.05 - 0.00 -
lti gr1a −0.04 *** −0.04 *** 0.00 -
eqpo me 0.05 ** 0.05 *** 0.00 -
beta dimson 21d −0.03 - −0.03 - 0.00 -
col gr1a −0.05 *** −0.05 *** 0.00 -
eqnpo me 0.14 *** 0.14 *** 0.00 **
ni be 0.06 * 0.06 * 0.00 -
opex at 0.03 - 0.03 - 0.00 -
div12m me 0.02 - 0.02 - 0.00 -
niq be 0.12 *** 0.12 *** 0.00 -
debt me 0.01 - 0.01 - 0.00 -
ope be 0.07 ** 0.08 *** 0.00 -
rvol 21d −0.11 *** −0.11 *** 0.00 -
dbnetis at −0.10 *** −0.09 *** 0.00 **
rskew 21d −0.06 *** −0.05 *** 0.01 -
eqnetis at −0.15 *** −0.14 *** 0.01 *
gp at 0.09 *** 0.10 *** 0.01 *
gp atl1 0.04 * 0.04 ** 0.01 -
at turnover 0.04 *** 0.05 *** 0.01 *

Continued on next page.
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Table IA4.1: Change in Factor Premia.

kz index −0.04 ** −0.03 * 0.01 -
qmj prof 0.12 *** 0.13 *** 0.01 ***
dolvol var 126d 0.03 - 0.04 ** 0.01 *
zero trades 21d 0.06 * 0.07 ** 0.01 -
taccruals ni −0.04 *** −0.03 ** 0.01 -
capx gr2 −0.11 *** −0.10 *** 0.01 -
ret 1 0 −0.29 *** −0.28 *** 0.01 ***
z score −0.05 * −0.03 ** 0.01 -
netdebt me −0.08 *** −0.07 *** 0.01 ***
taccruals at −0.04 ** −0.03 * 0.01 ***
intrinsic value −0.04 - −0.03 - 0.01 -
sale gr3 −0.08 *** −0.07 *** 0.02 **
fnl gr1a −0.12 *** −0.10 *** 0.02 ***
sale emp gr1 −0.02 *** −0.01 - 0.02 *** Y
capx gr1 −0.10 *** −0.09 *** 0.02 **
inv gr1a −0.13 *** −0.12 *** 0.02 ***
capx gr3 −0.11 *** −0.09 *** 0.02 *
chcsho 12m −0.13 *** −0.11 *** 0.02 ***
capex abn −0.06 *** −0.05 *** 0.02 **
ivol hxz4 21d −0.11 *** −0.09 ** 0.02 ***
lnoa gr1a −0.14 *** −0.12 *** 0.02 ***
earnings variability 0.01 - 0.03 ** 0.02 ***
netis at −0.14 *** −0.12 *** 0.02 ***
corr 1260d −0.04 - −0.01 - 0.02 ***
betadown 252d −0.05 - −0.03 - 0.02 ***
sale gr1 −0.10 *** −0.07 *** 0.02 ***
turnover 126d −0.10 *** −0.08 ** 0.02 ***
ivol capm 252d −0.06 - −0.03 - 0.02 **
qmj 0.10 *** 0.13 *** 0.03 ***
ret 60 12 −0.09 *** −0.06 ** 0.03 **
aliq at −0.11 *** −0.08 *** 0.03 ***
be gr1a −0.12 *** −0.08 *** 0.03 ***
at gr1 −0.15 *** −0.12 *** 0.03 ***
nncoa gr1a −0.15 *** −0.11 *** 0.03 ***
oaccruals ni −0.12 *** −0.08 *** 0.03 ***
coa gr1a −0.12 *** −0.08 *** 0.04 ***
oaccruals at −0.11 *** −0.07 *** 0.04 ***
ivol ff3 21d −0.11 ** −0.07 * 0.04 ***
ncoa gr1a −0.14 *** −0.11 *** 0.04 ***
cowc gr1a −0.10 *** −0.05 *** 0.04 ***
emp gr1 −0.12 *** −0.08 *** 0.04 ***
inv gr1 −0.12 *** −0.08 *** 0.04 ***
noa at −0.17 *** −0.13 *** 0.05 ***
ivol capm 21d −0.11 ** −0.06 - 0.05 *** Y
ppeinv gr1a −0.17 *** −0.12 *** 0.05 ***
debt gr3 −0.10 *** −0.04 *** 0.05 ***
rmax5 rvol 21d −0.16 *** −0.11 *** 0.06 ***
noa gr1a −0.18 *** −0.11 *** 0.06 ***

Σ 113 114 89 6
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Appendix IA5. Portfolio Migration
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Fig. IA5.1. Portfolio Migration Heatmap

The figure shows how the portfolio allocation of characteristics of different types fluctuates from month
t to t + 6, i.e., over half a year. Darker shades of blue indicate that a migration from the portfolio on
the x-axis to the portfolio on the y-axis is more likely. We separately show the portfolio migration for
accounting and market-based, as well as hybrid characteristics. Note that the portfolio migration for
market-based characteristics is most dispersed.
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