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Abstract

The canonical infinite horizon framework with heterogeneous consumers, used in

macro and financial literature, lacks a preference-based index that consistently quan-

tifies the welfare impacts of economic policies. In particular, the classic money-metric

indices, equivalent as well as compensating variations, are not additive on the set of

policies, and predictions may depend on the assumed status quo or order in which

alternatives are implemented. This paper offers a positive result. We show that, for

arbitrary heterogenous von Neumann-Morgenstern preferences with a common dis-

count factor, the equivalent (compensating) variation is nearly additive and aggregates

as long as consumers are patient. As a result, the index gives consistent quantitative

welfare predictions for a wide variety of short-lived policies studied in the macro and

finance literature.
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1 Introduction

Imagine a policymaker designing an optimal stimulus package in response to an adverse eco-

nomic shock. The available alternatives often involve several policy variants that differ in

size, duration, targeted consumers, etc. How should a decision-maker quantify the welfare

impact of different scenarios? In the macroeconomic literature, the canonical framework to

study economic policies is a stochastic infinite-horizon model with heterogenous endowment

shocks Aiyagari (1994), Heathcote et al. (2009). This framework offers innumerable impor-

tant insights regarding an abstract economy in which consumers are subject to heterogeneous

income shocks. Unfortunately, the usefulness of this approach for real-world policymaking

is hampered by the fact that analyses are performed from the standpoint of mitochondrial

Eve. Policies are evaluated in terms of period-zero expected utility of a typical consumer,

whose multiple “selves” become heterogeneous only in subsequent periods after they receive

idiosyncratic shocks. When decision-makers implement policies, consumers already differ in

terms of wealth and preferences. As a result, at this stage, the ex-ante utility of the “orig-

inal consumer” is irrelevant for the policy decision. A welfare index that is appropriate for

evaluating policy interventions has to reflect the current state of an economy by taking into

account all the existing consumers’ heterogeneity.

Welfare economists consider normative analysis with heterogenous consumers a daunting

task as predictions require interpersonal comparisons of preferences of different individuals.

In this paper, we follow the money-metric tradition that quantifies social welfare as average

equivalent variation (or alternatively willingness-to-accept), Hicks (1939), McKenzie (1983),

McFadden (2004). In this literature, the welfare effect of a policy is given by a transfer of

numeraire (money) in status quo, which makes a consumer indifferent to the implementation

of the counterfactual policy itself. Social welfare is then an average of the effects in the

population of all individuals.

One of the main challenges in applying money-metric criterion to the standard infinite

horizon framework is that the index generates ambiguous predictions. Normative recom-

mendations involving several variants of a policy may depend on the assumed choice of the

status quo policy or order in which alternatives are implemented. Formally, the index is

not additive on a set of policies, Roberts (1980), Slesnick (1991).1 In this paper, we offer a

positive result: in a small open economy with heterogeneous consumers, under fairly general

conditions money-metric welfare is nearly additive for transient policies when consumers are

patient. As a result, the index unambiguously quantifies welfare impacts of variants for poli-

1A welfare index is additive if for any three policies p, p′, and p′′, of policy p′′ relative to p is equal to the

sum of the effects of policy p′ relative to p and policy p′′ relative to p′. Money-metric index satisfies this

property in the settings with quasilinear preferences, but it does not hold in the infinite horizon model with

strictly concave utilities.
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cies that are sufficiently short-lived. We derive a simple formula to calculate such welfare

effects and test our approximation in the context of Polish economy.

We consider a canonical infinite-horizon, small, open economy with complete markets.

We allow for (discounted) heterogenous von Neumann-Morgenstern preferences and Markov

endowments. Policies are modeled as perturbations to stationary prices and endowments

and, among others, can include technological and income shocks, sales and service taxes,

lump-sum transfers, subsidies, public spending, and social safety net programs. Our theorem

shows that each policy can be associated with a value of social surplus. The impact of a

policy relative to any alternative is then approximated well by the difference between the

corresponding surplus values. The accuracy of the approximation improves with a discount

factor, and it becomes exact in the limit with a discount factor equal to one.

For the intuition behind our approximation, consider two policies that affect fundamen-

tals in the initial period. In this period, the changes in savings induced by policies are

distributed over infinitely many subsequent periods. With a discount factor close to one,

finite differences in savings can have only a negligible impact on consumption in other pe-

riods. As a result, the marginal utility of money is nearly identical in the two scenarios.

The infinite horizon framework is indistinguishable in terms of equivalent variation from the

reduced-form, quasilinear one. In the latter model, however, equivalent variation is additive.

This mechanism has been effectively used in Bewley (1976) to establish the permanent in-

come hypothesis in the general equilibrium setting. Vives (1987) relied on a similar argument

to characterize income effects in individual markets. These classic results are not sufficient

to establish approximate additivity of equivalent variation due to the problem of the fallacy

of composition.2

Our results can be utilized in policymaking as follows. A discount factor is defined for a

prespecified unit of time (e.g., a year). By redefining a period as a shorter time unit (e.g., a

quarter or a month), one can make the value of the observed discount factor arbitrary close to

one. In this light, one can use our approximation method to make predictions with arbitrary

accuracy by restricting attention to policies with sufficiently short duration. In Section 4,

we apply this logic to the context of the Polish economy. We extract preference and income

distributions from the available micro-econometric data. We derive normative predictions for

different variants of a stimulus package and contrast them with the approximated additive

values. Our simulations suggest that, for the policies that affect the economy within the first

four (twelve) quarters, the approximation error is no greater than 1.5% (5%) of the total

welfare effect.

As a byproduct, our paper contributes to the literature on the aggregation of money-

metric welfare. One of the most celebrated results in welfare economics shows that average

2For the discussion, see, e.g., Mas-Colell et al. (1995), p. 89.
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equivalent variation depends on the distribution of endowments only though aggregate en-

dowment if and only if consumers’ preferences are in Gorman polar form, Gorman (1953).3,4

Extensive empirical studies strongly reject such preferences, Blundell et al. (2007), and Lew-

bel and Pendakur (2009). Our theorem provides an alternative justification for the aggre-

gation of money metric-welfare. In our framework, the surplus and hence limit equivalent

variation is not affected by income distribution. Thus, the aggregation of equivalent vari-

ation holds for arbitrary preferences when policies are short-term relative to the empirical

discount factor.

The rest of this paper is organized as follows. Section 2 explains the main idea within

a simple example. Section 3 states the approximation theorem, and Section 4 tests this

approximation in the context of the Polish economy. Section 5 concludes the paper.

2 Motivating Example

We first explain the key ideas in an example of an open economy with two consumers. Each

consumer i = 1, 2 maximizes preferences over infinite (deterministic) consumption streams,

represented by utility:

max
∞∑
t=0

βt
(cit)

1−θi − 1

1− θi
.

In each period the consumers faces budget constraints

s.t. cit + qt+1w
i
t+1 = wit + Aitl

i
t.

Prices of bonds qt+1 in each t are exogenously determined in international markets. A con-

sumer inelastically supplies one unit of labor lit = 1. Ait gives labor productivity, and wit is

wealth at the beginning of period t. The baseline economy is stationary: Labor productivity

is Ait = 2 for i = 1, 2, the price of a one-period bond is qt+1 = β for all t ≥ 0, and aggregate

output is Yt ≡
∑

i=1,2A
i
tl
i
t = 4. The considered economic policies perturb exogenous funda-

mentals in period zero. The welfare impact of policies is measured as an average equivalent

variation (a money-metric welfare, where “money” is a numearaire, here given by consump-

tion in period two)) We examine two important properties of the welfare index: additivity

and normative aggregation.

3Preferences are in Gorman polar form if they admit indirect utility representation that gives rise to

parallel Engel curves (lines), e.g., for homogenous CRRA preferences.
4The Gorman condition on preferences that results in aggregation of money-metric welfare is considered

as one of the central results in welfare economics. For example, McFadden describes it as “the most enduring

legacy of research” and compares it to Einstein’s formula E = mc2, see McFadden (2004).
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2.1 Additivity

We first test for the additivity of equivalent variation. For this, we consider two policies.

Under the factual policy p, the fundamentals are not affected by any shocks, meaning the

economy is stationary. For counterfactual policy, p′, period-zero productivity increases to

Ai′0 = 3 while international price adjusts to q′1 = 2. For the experiment, p → p′, equivalent

variation is given by a transfer of consumption in period one, which makes factual policy as

attractive as the counterfactual one. The index is denoted by EVp,p′ .

With the additive equivalent variation, a round trip, p → p′ → p, yields zero welfare

change (i.e., EVp,p′ +EVp′,p = 0). Motivated by this observation, we quantify non-additivity

as a difference between the two values in percentage terms:

Ad% ≡ |EVp,p
′ + EVp′,p|
|EVp,p′|

.

We call this measure an additivity gap.

Note that for policy experiment p → p′, an alternative index, compensating variation,

can be written as CVp,p′ ≡ −EVp′,p. Therefore, additivity gap also measures the percentage

difference between the two classic welfare indices. In particular, zero additivity gap implies

equality of compensating and equivalent variation. It follows that equivalent variation is

additive if and only if this property holds for compensating variation as well.

Table 1 reports the welfare effects and the additivity gap for identical homothetic prefer-

ences, θ1 = θ2 = 2. Note that the magnitudes of equivalent variation in the considered policy

experiments is not equal to each other, |EVp,p′| 6= |EVp′,p| and the additivity gap is non-zero.

Accordingly, the welfare index is not additive regardless of the value of the discount factor.

Table 1: Welfare effects for homogenous preferences

β 0.5 0.7 0.9 0.95 0.98 0.99 Limit

EVp,p′ 1.7778 1.0826 0.7663 0.7152 0.6882 0.6798 0.6715

EVp′,p -1.0000 -0.8335 -0.7167 -0.6932 -0.6800 -0.6753 -0.6715

Ad% 0.4375 0.2300 0.0648 0.0308 0.0120 0.0059 0.0000

Note: The table reports values for for risk aversion coefficients θ1 = θ2 = 2. The first

two rows report equivalent variations for counterfactual policy p′. The third row reports

the additivity gap.

We next look at the limit values of the welfare effects as the discount factor approaches

one. Although utilities achieved under the considered policies become unbounded, the equiv-

alent variations have well-defined limits, as reported in the last column of Table 1. Im-

portantly, such limits satisfy | limβ→1EVp,p′| = | limβ→1EVp′,p|, and the aggregation gap
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converges to zero.

This observation extends to arbitrary policies that affect fundamentals in period zero.

Indeed, the limits of welfare effects can be derived using the following simple formula. For

policy p, let surplus function be given by:

Sp =
Y0

2q1

+
1

2

∑
i=1,2

4
1

θi
θi

1− θi
(q1)

1−θi
θi − 2

1− θi
=

Y0

2q1

+ 4(1− 1
√
q1

), (1)

where Y0 and q1 are aggregate income and the price of the bond that pays in period one,

under assumed policy. For any policy experiment, p → p′, the limit equivalent variation is

given by the difference Sp′ − Sp. As a result, the equivalent variation in economy with the

two patient consumers is nearly additive.

2.2 Aggregation

We next examine the problem of aggregation of equivalent variation. This property holds

in a framework whenever social welfare effects are measurable with respect to aggregate

income; in other words, welfare is invariant to wealth redistribution. We test this hypothesis

by comparing the impact of the policy from the previous section, p→ p′, with an alternative

experiment, p→ p′′. Under policy p′′, the productivity of consumer one is A1′′
0 = 4, whereas

for the other consumer productivity is A2′′
0 = 2. Note that the two counterfactual policies

give rise to the same aggregate output: Y0 = 6. The policies differ, however, in how they

allocate income among consumers. Consequently, a potential welfare differential between

the policy experiments indicates lack of aggregation.

Table 2 reports values for homogenous preferences θi = 2 for i = 1, 2. The two scenarios

generate the same normative predictions. In particular, the aggregation gap, which quantifies

the departure from the aggregation benchmark,

Ag% ≡ |EVp,p
′′ − EVp,p′|
|EVp,p′ |

is zero for all β < 1.

Unfortunately, the aggregation does not hold for more general heterogenous preferences.

As Table 3 reveals, for risk aversion θ1 = 0.5 and θ2 = 5, the welfare effects in the two

experiments diverge, and the aggregation gap is nonzero. Indeed, it is well-known that

equivalent variation aggregates if and only if preferences are in Gorman polar form. Within

our parametric family of preferences Gorman condition is equivalent to identical CRRA

coefficient among consumers.

Importantly, regardless of the assumed values of risk aversion, the aggregation gap van-

ishes as the discount factor becomes one. Indeed, the surplus formula (1) and, hence, limits
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Table 2: Welfare effects for homogenous preferences

β 0.5 0.7 0.9 0.95 0.98 0.99 Limit

EVp,p′ 1.7778 1.0826 0.7663 0.7152 0.6882 0.6798 0.6715

EVp,p′′ 1.7778 1.0826 0.7663 0.7152 0.6882 0.6798 0.6715

Ag% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Note: The table reports values for risk aversion coefficients θ1 = θ2 = 2. The

first two rows report equivalent variations for counterfactual policies p′ and p′′,

respectively. The third row reports the aggregation gap.

of average equivalent variation are measurable with respect to aggregate income, suggesting

approximate aggregation of equivalent variation with sufficiently high β < 1.

Table 3: Welfare effects for heterogenous preferences

β 0.5 0.7 0.9 0.95 0.98 0.99 Limit

EVp,p′ 3.4549 1.9924 1.2619 1.1384 1.0728 1.0521 1.0320

EVp,p′′ 3.6635 2.0659 1.2765 1.1451 1.0752 1.0533 1.0320

Ag% 0.0604 0.0369 0.0119 0.0058 0.0023 0.0011 0.0000

Note: The table reports values for risk aversion coefficients θ1 = 0.5 and θ2 = 5.

The first two rows report equivalent variations for counterfactual policies p′ and

p′′, respectively. The third row reports the aggregation gap.

To summarize, our example shows that equivalent variation is not additive, and it aggre-

gates only in the instance of non-generic (Gorman) preferences. The model also indicates

that the classic welfare index acquires these two fundamental properties, even with heteroge-

nous risk aversion as consumers become patient. As a result, the equivalent variation can

be closely approximated with surplus when the discount factor is sufficiently high. More-

over, the surplus function depends exclusively on market-level data. In the next section,

we formalize this idea for arbitrary von Neumann-Morgenstern preferences and fundamen-

tal shocks. We derive the surplus formula for the limit welfare index that gives consistent

predictions in complex economic settings.
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3 General Small Open Economy

3.1 Framework

We now introduce the general framework of a small open economy. Consider an infinite-

horizon economy with i = 1, 2, ..., I consumers. Each consumer i has preferences over ran-

dom, strictly positive consumption flows ci = {cit}∞t=0, represented by the expected utility

function

U i
(
ci
)

= E

∞∑
t=0

βtui(cit). (2)

Instantaneous utility function satisfies standard assumptions; the function ui : R+ → R
is twice continuously differentiable, strictly increasing, strictly concave, and satisfies Inada

conditions. Preferences can be heterogeneous, with a discount factor common for all con-

sumers.5

Each consumer is endowed with one unit of time per period that can be used to produce

output. Individual output in period t is given by yit = Aitf
i(lit), where labor choice is

lit ∈ [0, 1]. Production function f i(·) is non-negative and strictly increasing. The process of

labor productivity is denoted by Ai = {Ait}t.
Consumers hedge productivity shocks by trading assets in international markets that

are dynamically complete. In the event after history ht = {s0, s1, ..., st}, a consumer faces

budget constraint:

cit + E(qt+1w
i
t+1|ht) ≤ wit + Aitf

i(li).

Random variable wit+1 is wealth in different states of the subsequent period, and qt+1 are

prices of the corresponding state-contingent claims.

Consumers enter period zero with no wealth. Fundamentals {Ait}t and {qt}t are mea-

surable with respect to an underlying Markov chain s = {st}t with finite state space

S = {0, 1, 2, ..., S}. For simplicity we assume that the transition matrix has real eigen-

values, and that the process has a unique stationary distribution with full support. We

denote the stationary distribution over state space S by s̄.

For the neutral policy (in the absence of shocks), the economy is stationary. In par-

ticular, there exist functions q : S → R++ and Ai : S → R++ for each i such that,

after history ht = {s0, s1, ..., st}, the price of contingent consumption in st+1 is given by

qst+1|ht = βq(st+1)/q(st), and the realization of the productivity of the consumer is Ai(st),

where st is the final state of history ht. This specification permits arbitrary correlations

of consumers’ productivities as well as correlations with international prices. The assumed

prices, standard in the literature, ensure that optimal consumption flows are martingales.

5Common discount factor is a technical assumption that allows us to avoid the complications related to

different speeds of convergence for various consumers.
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Economic policies are broadly defined as perturbations of consumers’ productivities and

international prices. Formally, a policy is represented by a tuple of random processes p =

(∆q, {∆Ai}i), adapted to the natural filtration of underlying process s. Note that admissible

policy shocks are history dependent: Under policy p, after history ht = {s0, s1, ..., st} the

price of contingent consumption for state st+1 is equal to

qst+1 |ht = β
q(st+1) + ∆q

ht+1

q(st) + ∆q
ht

> 0 (3)

where ht+1 = (ht, st+1). The price of consumption in period zero is q0 = 1/(q(s0) + ∆q
h0

).

Similarly, productivity of consumer i in event ht is perturbed to Aht = Ai(st) + ∆Ai

ht
> 0.

Formulation (3) does not impose any restrictions on considered policies; any positive

measurable price process can be written as a perturbation of some stationary Markov chain.

Using the example from Section 2, price processes for policy p′ is generated by function

q(st) = 1 and perturbations ∆q
h0

= −0.5 in the initial period and zero in all subsequent

periods. The next assumption restricts admissible policies to those for which perturbations

of fundamental vanish over time.

Assumption 1. (Vanishing perturbations) Consider policy p. There exist constants C > 0

and ∆ ∈ (0, 1) such that |∆q
ht
| ≤ C × (∆)t and |∆Ai

ht
| ≤ C × (∆)t for all period t, histories

ht, and i.

The collection of all policies that satisfy Assumption 1 is denoted by P .6

Following Hicks (1939) and the subsequent literature, we define money-metric welfare

as follows. Fix a consumption flow x that defines a numeraire. For policy experiment

p → p′, an equivalent variation EV i
p,p′ is a transfer of numeraire x, for which a consumer is

indifferent between policy p and the counterfactual one, p′, assuming current (i.e., p prices).

The aggregate index is then calculated as the sum of individual effects for all consumers,7

EVp,p′ ≡
1

I

∑
i

EV i
p,p′ .

We provide the formal definition of the welfare index in Appendix A.2.

6Price process consistent with Assumption 1 can be observed in a representative agent international

economy with preferences represented by a function of the form (2) and the endowment following a Markov

chain, potentially perturbed by shocks satisfying the assumption analogous to Assumption 1. Note that, in

this micro-foundation of prices, the assumed discount factor in international markets coincides with the one

from the considered small open economy.
7This is a slight generalization of the definition of money-metric welfare, as we allow for arbitrary nu-

meraire x. The standard definition is obtained by choosing x, for which market value at current pricing

kernel is equal to one.
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The money-metric index has been extensively used in the microeconometric and industrial

organization literature to measure the welfare impacts of different policies.8 Its attractiveness

stems from simplicity and interpretability in terms of consumers’ behavior. In particular,

welfare is not affected by monotonic transformations of utility functions; predictions do not

require the comparability of consumers’ utilities. In addition, welfare effects are expressed in

real terms (consumption flow x); hence, their values are invariant to price normalizations. As

a result, social welfare can be (potentially) inferred from consumers’ behavior (or its deriva-

tive, such as prices) in markets without ad hoc assumptions regarding individual utilities or

price levels.9 Finally, the index is Paretian; whenever a counterfactual policy improves the

welfare of all consumers, the equivalent variation is positive.

We conclude this section by showing that the welfare index is uniquely defined for an

arbitrary pair of policies.

Proposition 1. For any pair p, p′ ∈ P and discount factor β < 1, equivalent variation EVp,p′

exists and is unique.

Proof of Proposition 1: The proof is in Appendix A.2.

Consequently, the problem in which we examine the behavior of equivalent variation is well-

posed.

3.2 Approximation Theorem

We first define a surplus function consisting of two components; The first component captures

welfare gains/losses resulting from trade in international markets. The second component

reflects changes in consumers’ nominal income. For the first component, we define q̄ ≡ q(s̄)

and Āi ≡ Ai(s̄) as stationary price and productivity, respectively. Consider equality

E
[
q̄ui′−1(q̄λi)

]
= E

[
q̄Āif i(1)

]
, (4)

8The Hicksian notion of money-metric welfare was further developed by Samuelson (1948) and Hurwicz

and Uzawa (1971). The literature that adopts the criterion to make normative predictions is too large to

cite all relevant papers. For applications in the microeconometric literature see for example Deaton and

Muellbauer (1980), for discrete choice applications, see Diamond et al. (1974), Small and Rosen (1981),

McFadden (2004), and in the context of industrial organization problems see Berry et al. (1995), and the

literature that follows.
9Money-metric index (or more generally welfare criteria derived from ordinal consumer preferences) has

been sometimes criticized in the social choice literature using the following argument. Ordinal preferences

are not sufficiently rich to contain enough information to make conclusive judgments about social welfare,

as preferences ignore the intensity of consumers’ overall “pleasure,” Sen (1979). For the defense of the

money-metric criterion, see, e.g., McKenzie et al. (1983).
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where ui′−1 is an inverse of the marginal utility. Equation (4) has a unique solution, λ̄i, that

is strictly positive.10

Fix history ht = {s0, s1, ..., st}. Let c̄i(∆q
ht

) = ui′−1([q(st) + ∆q
ht

]λ̄i) be an optimal con-

sumption in event ht, assuming price perturbation ∆q
ht

and marginal utility of money λ̄i.

The trade component is given by:

strade(∆
q
ht

) ≡ 1

I

∑
i

(
ui(c̄i(∆q

ht
))

λ̄i
− (q(st) + ∆q

ht
)c̄i(∆q

ht
)

)
. (5)

For an individual consumer, the surplus is geometrically represented by the area under the

(λ̄-normalized) marginal utility and the price of consumption. The aggregate surplus is the

sum of such areas for all consumers. The second component is equal to nominal income:

sincome(∆
q
ht
,∆Y

ht) ≡ (q(st) + ∆q
ht

)×
Yht + ∆Y

ht

I
. (6)

For policy p, the approximate social surplus is given by a sum of the two components for all

date-events, normalized by the corresponding value for the neutral policy:

S(∆q,∆Y ) ≡
∞∑
t=0

E
[
strade(∆

q
t )− strade(0) + sincome(∆

q
t ,∆

Y
t )− sincome(0, 0)

]
. (7)

Assumption 1 implies that the surplus is finite for any p ∈ P . The formula is additive across

consumers and histories. It is also measurable with respect to market-level data: aggregate

output and prices of contingent claims.

Surplus equation (7) involves infinite sums; without appropriate normalization by neutral

policy, its value would be unbounded. Note that for policies that affect fundamentals in a

finite time, in periods after the effects take place, surplus values are zero and, hence, can be

dropped. As a result, for finite policies, the neutral-policy normalization can be ignored as

well. Indeed, in the example from Section 2, policies perturb fundamentals in period zero,

and formula (1) involves period zero surplus.

We are ready to state our theorem. Consider experiment p→ p′, where policies p, p′ ∈ P .

Pick welfare numeraire x = {xt}t that takes zero value in all events, in which perturbations

of prices for both policies are non-zero (i.e., xht∆
q
ht

= xht∆
q′

ht
= 0). We also require that the

limit present value (as β → 1) is positive and finite (i.e., v̄x ≡
∑∞

t=0E[qtxt] ∈ R++). If the

considered policies perturb prices after period zero, then the natural welfare numeraire is a

unit of consumption in period zero. Next we state the main result of the paper.

10The left-hand side of equation (4) is a continuous function strictly decreasing in λi with range R+. On

the right-hand side, the real number is strictly positive. It follows that a solution exists and is unique. Scalar

λ̄i gives the marginal utility of money—a Lagrangian multiplier in the optimization problem — for which

optimal consumption satisfies budget constraint in a steady-state, period-by-period.
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Theorem 1. Aggregate equivalent variation has an additive limit, measurable with respect

to aggregate income.

lim
β→1

EVp,p′ =
S(∆q′ ,∆Y ′)− S(∆q,∆Y )

v̄x
.

Proof of Theorem 1: The proof is in the Appendix.

For all policies in P , the limit of equivalent variation admits a surplus representation.

As such, the index is additive. Moreover, its magnitude is measurable with respect to

aggregate income. One can easily find the value of equivalent variations using the surplus

approximation.

We conclude this section by commenting on welfare numeraire. The choice of flow x

affects predictions only up to a normalization constant. The set of admissable x is restricted

in two ways. First, to eliminate the differential effects of shocks on the value of the numeraire,

it is zero in periods for which policies perturb prices. Furthermore, the present value of the

numeraire in the limit has to be bounded; otherwise, the numeraire would be infinitely more

preferred relative to the welfare impact, and welfare effects would vanish. Any numeraire

that takes non-zero values only in a finite number of periods satisfies this restriction. The

assumption, however, rules out stationary consumption flows.

4 Approximation in Practice

Our main result identifies a trade-off: One can achieve the desired prediction accuracy

by considering policies with a sufficiently short timespan relative to empirically observed

patience. In this section, we test this trade-off in the context of the stylized model of the

Polish economy.

We consider the Polish economy for three reasons. First, it is large enough to be regarded

as relevant. Moreover, Poland is well integrated within the EU markets, although its impact

on the European markets and, therefore, prices is relatively limited. This observation mo-

tivates the small open economy assumption. Finally, we test the approximation within the

context of a once-and-for-all intervention — namely a stimulus package of the EU during

the coronavirus response. As the external EU transfers fully fund the policy, we can ignore

the financing source, thereby simplifying the simulations.

The simple numerical framework is as follows. Consumers are heterogeneous in two

dimensions: productivity and risk aversion (CRRA preferences). We borrow the distribu-

tions of the respective parameters Ai and θi from the available micro-econometric data for

Poland.11 Risk aversion and productivity are independently distributed. Finally, a quarterly

11We borrow the productivity distribution from ?. For risk aversion, as a basis we use micro-data on

Poland’s risk-taking preferences from Falk et al. (2018). Note that the survey does not offer directly the
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discount factor is β = 0.9924, which corresponds to the annual value of 0.97, that is typically

assumed for the Polish economy.

We introduce uncertainty to our model via global and idiosyncratic shocks. The labor

markets can be in either a normal state or a slowdown. An individual consumer is employed

or unemployed. As a result, in each period, a consumer can be in one of four states: an

employed consumer during normal time (s = 1), an unemployed consumer during a normal

time (s = 2), an employed consumer during an economic downturn (s = 3), or an unemployed

consumer during economic downturn (s = 4). Furthermore, the price of consumption is

q(s) = 1 for all states, which is consistent with empirical values observed in actual markets.

We construct an empirical transition matrix for the four states from the Polish panel data

on the activity in the labor market.12 For the aggregate states, we first classify the Polish

labor market in different periods as being either in a normal state (N) or a recession, (R)

to approximate the empirical frequencies with which the labor market transitions between

the aggregate states. We then derive the transition matrices for the employment status from

the panel data by averaging individual probabilities, conditional on an aggregate state. A

slowdown in labor markets (R) elevates the probability with which a consumer becomes and

remains unemployed.

For the four-state Markov process, the matrix is obtained by element-wise multiplication

of an augmented transition matrix for the aggregate states. The block matrix consists of the

conditional probabilities of retaining and losing a job by an individual. Thus constructed

matrices yield an unconditional employment rate of 0.9161, which matches the average BAEL

rates in Poland.

In the experiment, we compared various recovery paths from the slowdown triggered

by the COVID-19 pandemic. To this end, we assumed that the labor market was initially

in a state of recession (R). Within each homogenous group of consumers, period zero’s

employment rate was equal to 0.94, the empirical value in January 2021 and the initial

beliefs were determined accordingly.

The factual policy is an economic recovery path without any intervention. In this sce-

nario, an employed worker’s productivity during regular times is reported in the first row

of Table 3. When a slowdown hits the economy, productivity is uniformly reduced by a

fraction, reflecting an estimated drop in real wages during economic downturns. The unem-

ployed worker receives a continual unemployment benefit, regardless of the aggregate state

of the economy. We assumed that his productivity is then 0.15. A counterfactual stimulus

package proposed by the EU aimed to preserve jobs, albeit at a lower productivity level. We

incorporate such a policy in our environment in a stylized way by introducing an additional

values of θi, but only relative deviations of risk aversion. We center the values of risk aversion around 2 - a

standard value of theta in macroeconomic studies of Polish economy with representative agent.
12BAEL - Population Economic Activity Research in Poland.
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state for a consumer, namely supported employed - referring to the ones who would become

unemployed in the absence of the stimulus package.

When a job protection policy is in place, consumers are either employed or move to the

supported employed state. We considered a variant of the policy in which the productivity

of these agents in this new state equalled 50% of their productivity in normal employment

states. Once the policy expires, the supported employed lose their benefit and become

unemployed in that period. For the counterfactual policy, we increased the benefit for

unemployed agents to a new constant value of 0.25. As the stimulus was financed from

the European budget, the policy’s costs were ignored in the analyses. We considered the

policy variants that last T = 1, 2, 4, 8, 12 quarters.

Table 4 reports equivalent variation for policies of different lengths. The table illustrates

the trade-off we posited in the introduction. For policies with a shorter time horizon, the

surplus approximation is more accurate. For policies that last less than one year, the error is

no greater than 1.5 percentage points, while this error increases to 5 percentage for policies

that last four years.

Table 4: Aggregated EV convergence

number of quarters

1 2 4 8 12

EV 0.0060 0.0163 0.0458 0.1250 0.2162

L 0.0060 0.0164 0.0465 0.1291 0.2272

[EV/L -1] ×100 0.00 -0.48 -1.41 -3.17 -4.82

Note: The first two rows of the table report the actual equivalent varia-

tion and the predicted limit value. The third row gives the difference in

percentage terms.

5 Discussion

This paper has demonstrated in the standard framework that average equivalent variation is

well-behaved when consumers are patient. In particular, the index is approximately additive,

and it aggregates. We next discuss some of the assumptions under which we established our

result.

In our analysis, we considered an exchange economy with exogenous endowments. Our

result straightforwardly carries over to more complex production economies, as long as the

resulting endogenous income flows satisfy the assumptions regarding endowments detailed

in this paper.
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Another strong assumption that we made in this paper is complete financial markets.

This assumption is technically very convenient; it allows us to recast recursive optimization

problems of each consumer as a static choice of a lifetime consumption flow subject given

a pricing kernel. Therefore we could utilize static optimization methods to characterize

equilibrium outcomes. Unfortunately, this analytical tool is not feasible in more realistic,

incomplete markets settings, in which optimal choices depend in a complex way on a span

of the available asset structure. Nevertheless, the additivity of the limit equivalent variation

relies on a simple and robust mechanism that operates under fairly general conditions. In

a separate note, we use numerical methods to demonstrate additivity in the polar economy

with an extreme form of market incompleteness, in which consumers trade riskless assets of

different maturity in period zero. We expect our additivity results to hold for a large class

of incomplete asset structures.13 We should emphasize that, in incomplete market settings,

aggregation results break down.
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A Appendices

Proof of Theorem 1: The proof of the theorem proceeds as follows. In Section A.1 we

reformulate the consumer’s problem as a static problem. We define equivalent variation and

demonstrate its existence in Section A.2. In the next two sections, we restrict attention

to policies that perturb fundamentals in finite time. In Section A.3, we define a reduced

form of a problem and demonstrate its equivalence in terms of observables to the infinite

horizon problem. In Section A.4, in the reduced form model we demonstrate convergence of

equivalent variation form model to the additive limit. Section A.5 shows absolute continuity

of the limit surplus function in the assumed policy horizon. Finally, Section A.5 extends the

result to all policies in P .

A.1 A static problem

In this section we recast the recursive problem of a consumer from Section 3.1 as a static

choice of a consumption flow ci = {cit}t, from the set of consumptions flows adapted with

respect to a natural filtration of s, i.e.,

X i ≡ {ci|cit > 0 for all t and U i(ci) ∈ R},

given endowments and prices of state contingent claims.

First observe that with no disutility of labor and non-satiated preferences, a consumer is

going to supply the maximal labor, lit = 1. Consequently, for each policy income is given by

endowment flow ei = {eit}t, for each history given by eiht ≡ (Ai(st) + ∆Ai

ht
)f i(1) > 0.

Consider an event followed by history ht = {s0, s1, ..., st}. In the recursive problem,

using a rollover strategy that relies on contingent claims, a consumer can transfer one unit

of consumption to this event, paying in terms of consumption in s0

Price(ht) = πs1qs1|s0 × πs2qs2 |s1 × ...× πstqst |st−1

= πs1|s0β
q(s1) + ∆q

h1

q(s0) + ∆q
h0

× πs2|s1β
q(s2) + ∆q

h2

q(s1) + ∆q
h1

× ...× πst|st−1β
q(st) + ∆q

ht

q(st−1) + ∆q
ht−1

= πhtβ
t
q(st) + ∆q

ht

q(s0) + ∆q
h0

.

where πht is the unconditional probability of event identified by ht. For all histories one can

normalize prices Price(ht) by factor 1/(q(s0) + ∆q
h0

). The recursive problem with dynamic

trading strategy is equivalent to a static choice of a lifetime consumption plan in period zero.

The process of state contingent prices ζ = {ζt}t for history ht is given by ζht ≡ q(st)+∆q
ht
> 0.

Note that for for history h0 the corresponding price is ζh0 = q(s0) + ∆q
h0
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It follows that under policy p, and with additional transfer of α units of welfare numeraire

x, consumer is effectively choosing from the budget constraint is given by

bip(c
i, β) ≡ E

∞∑
t=0

βtζt(c
i
t − eit − αxt) ≤ 0.

Budget set is a collection of measurable, strictly positive processes that satisfy budget con-

straint, i.e., Bi
p ≡ {ci|bip(ci, β) ≤ 0}. The recursive consumer’s problem is then equivalent to

a static problem

max
ci∈Bip∩Xi

E
∞∑
t=0

βtui(cit). (8)

In the rest of the appendix we use the static formulation of the problem. We also adopt the

following notation: for policy, p, and discount factor β, present value of flow ci is defined as

PV β,p(ci) ≡ E
∞∑
t=0

βtζtc
i
t.

For the welfare numeraire and the individual endowment we uses the following compact no-

tation: vx ≡ PV β,p(x) and ve
i ≡ PV β,p(ei), respectively. Observe that under Assumption 1

present value of endowment is an increasing sequence of sums, bounded from above and

consequently ve
i ∈ R++. Similarly, it is straightforward to show that for any policy p ∈ P

by Assumption 1 there exist scalars 0 < ζ < ζ and 0 < e < e such that for all periods t, all

histories ht and all consumers i, one has ζ < ζht < ζ and e < eiht < e.

A.2 Equivalent variation

We first state a definition of equivalent variation in terms of preferences. Then we reformulate

the definition using a utility representation. Consider an abstract problem of a consumer

with set of alternatives X i ⊂ RN , where N can be finite of infinite. Let Bi
p be a budget set

associated with factual policy p and let Ψi
p′ be the upper countur set of an optimal alternative

that is attained under the counterfactual policy p′. Equivalent variation is a minimal transfer

of welfare numeraire x ∈ X i, shifting Bi
p that allows to attain a bundle in Ψi

p′ . Formally, the

equivalent variation is a solution to the following problem:

EV i
p,p′ ≡ min

z∈Xi,α∈R
α, (9)

subject to z ∈ Ψi
p′ and z ∈ Bi

p + αx. We say that equivalent variation is attained at z̄ ∈ X i

if tuple (z̄, EV i
p,p′) is a solution to program (9). Note that equivalent variation is defined in

real terms (upper countur set and budget set) and hence it is not affect by normalization of

utility or prices.
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The consumer preferences considered in this paper admit a strictly monotone, continuous

utility representation and the budget sets are determined by linear inequality constraints.

In this instance equivalent variation can be simplified as follows. Define value function

V i(p, α) = max
ci∈Xi

E

∞∑
t=0

βtui(cit) s.t. E
∞∑
t=0

βtζtc
i
t ≤ E

∞∑
t=0

βtζt(e
i
t + αxt) = ve

i

+ αvx. (10)

For policies p, p′ equivalent variation is given by as a solution to the following equation

V i(p, EV i
p,p′) = V i(p′, 0). (11)

Next, we prove Proposition 1 by showing that equivalent variation is well defined for any

pair of policies p, p′ that satisfy our assumptions.

Proof of Proposition 1:

Step 1. In this step we characterize properties of function V i(p, ·). Derivative ui′ : R++ →
R++ is a continuous and strictly decreasing bijection, therefore its inverse ui′−1 is well-defined,

is continuous and strictly decreasing. The solution to program (10), if it exists, satisfies the

first order conditions in the standard Lagrangian problem. For an event identified by history

ht the first order condition with respect to consumption, βtπhtu
i′ (ciht) = πhtβ

tζhtλ
i, can be

equivalently reformulated as ciht = ui′−1(λiζht). Replacing the latter conditions in the budget

constraint implicitly defines scalar λi,

E
∞∑
t=0

βtζtu
i′−1(λiζt) = ve

i

+ αvx. (12)

The limit sum on the left hand side is well defined for any λi > 0 and β ∈ (0, 1), since the se-

quence is increasing in t and it is bounded from above by E
∑∞

t=0 β
tζui′−1(λiζ) =

ζui′−1(λiζ)

1−β <

∞. Moreover the limit sum is a strictly decreasing continuous bijection in λi, mapping

R++ → R++. Consequently equation (12) has a unique solution if and only if the constant

on the right hand side is strictly positive, or, in terms of parameter, α > −vei/vx. Given

strictly convex separable preferences, solution λi > 0, along with stochastic consumption flow

ci = {cit}∞t=0 defined as cit = ui′−1(λiζt) satisfy necessary and sufficient conditions for optimal-

ity. For policy p, solution is uniformly bounded from above by ūi′−1(λiζ) <∞ and from below

by ui′−1(λiζ) > 0. As a result, for any α > −vei/vx limit V i(p, α) = E
∑∞

t=0 β
tui(ui′−1(λiζt))

exists. Moreover, since V i(p, ·) is a sum of continuous bijections, and itself it is a continuous

bijection mapping (−vei/vx,∞) → (infci u
i(ci)/(1 − β),∞). Importantly, the target set is

independent of a particular policy.

Step 2. By the previous step V i(p′, 0) ∈ (infci u
i(ci)/(1 − β),∞). Since V i(p, ·) is a

bijection, its inverse exists and is a bijection as well. It follows that equation (11) has the

unique solution, given by EV i
p,p′ = V i,−1(p, V i(p′, 0)) ∈ (−vei/vx,∞). �
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A.3 Temporary policies.

Fix τ < ∞. In this and the next section we characterize equivalent variation for a set of

temporary policies Pτ ⊂ P , whose effects vanish after finite time τ , i.e., for which ∆q
ht

= 0

and ∆Ai

ht
= 0 for all t > τ , ht and i. We extend our characterization to all polices in P in

Section A.5.

We first introduce a reduced from of the static problem from Section A.1. For any wi ∈ R,

consider the following problem

vi(wi) ≡ max
{cit}∞t=τ+1

E

∞∑
t=τ+1

βtui(cit), s.t. E
∞∑

t=τ+1

βtζtc
i
t ≤ E

∞∑
t=τ+1

βtζte
i
t + wi (13)

Since by assumption prices and endowments after τ are the same for all considered policies,

function vi(·) is independent of a particular policy. The set of consumption flows that

satisfy budget constraint is empty, whenever borrowing constraint fails, i.e., wi ≤ wi ≡
−E

∑∞
t=τ+1 β

tζte
i
t. The next lemma shows the converse: the domain is non-empty, and the

solution is uniquely defined whenever the borrowing constraint is satisfied.

Lemma 1. Program (13) has a unique solution if and only if wi > wi.

Proof of Lemma 1:

We essentially follow the steps of the proof of Proposition 1. By Inada assumption

constraints cit > 0 are not binding for t > τ and the solution to the program is given by

the first order conditions in the Lagrangian problem. For each t and history ht optimal

consumptions satisfies ciht = ui′−1(λiζht) where shadow price λi can be derived from the

budget constraint (multiplied by constant 1− β):

η
(
β, λi

)
≡ (1− β)E

∞∑
t=τ+1

βtζtu
i′−1(λiζt) = (1− β)wi + (1− β)E

∞∑
t=τ+1

βtζte
i
t. (14)

For any fixed λi > 0, the left hand side is a limit of an increasing sequence bounded from

above, and, hence it is well defined and finite. Function η (β, ·), is a strictly decreasing

bijection, mapping R++ → R++. The right-hand side of the equality gives a real number.

Equation (14) has a solution if and only if the constant is strictly positive, or wi > wi.

Given strictly convex separable preferences solution λi > 0, along with random consumption

flow ci = {cit}∞t=τ+1 such that cit = ui′−1(λiζt) satisfy necessary and sufficient conditions of

optimality. �

For the set of policies truncated to the first τ periods the reduced-form problem consists

of three elements: consumption space, preferences and budget set correspondence defined

as follows. Consider consumption flows ci = (wi, {cit}τt=0) where {cit}τt=0 is a stochastic

process that satisfies the respective measurability conditions with respect to {s}τt=0. In the
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reduced-form model consumption space is X̃ i ≡ {ci|wi > wi and cit > 0 for t = 0, 1, ..., τ}.
Reduced-form preferences, over consumption flows in the reduced from are represented by

utility function

Ũ i(ci) ≡ vi(wi) + E

τ∑
t=0

βtui(cit). (15)

Finally, for policy p and a monetary transfer αvx, in the reduced form problem budget set

B̃i
p is derived from the constraint

b̃ip
(
ci, β

)
≡ wi + αvx + E

τ∑
t=0

βtζt(c
i
t − eit) ≤ 0. (16)

By ẼV
i

p,p′ we denote an equivalent variation in the reduced-form, expressed in monetary units

wi, or x̃ = (1, 0, ..., 0). We next demonstrate the sufficiency of the reduced-form problem for

equivalent variation in the infinite horizon model.

Lemma 2. Fix β ∈ (0, 1) and welfare numeraire x for which vx <∞. Equivalent variation

in the infinite horizon problem is well defined if and only if equivalent variation is well defined

in the reduced form. Moreover, the indices are related accordingly:

EV i
p,p′ =

ẼV
i

p,p′

vx
.

Proof of Lemma 2:

We demonstrate the lemma in three steps. We show the equivalence of the two repre-

sentations of the problem in terms of budget sets (Step 1), optimal choices (Step 2), and

welfare index (Step 3).

For a stochastic process ci = {cit}∞t=0 ∈ X i in the infinite horizon problem (henceforth

referred to as IH), define a corresponding reduction ci− ≡ (wici− ,
{
ci−t }τt=0

)
∈ X̃ i as follows:

wici− ≡ E
∑∞

t=τ+1 β
tζt(c

i
t − eit) is the value of consumption in periods after τ and ci−t = cit

for t = 0, 1, ..., τ . For a process ci = (wi, {cit}τt=0) ∈ X̃ i in the reduced form (RF) define its

extension ci+ ≡ {ci+t }∞t=0 ∈ X i as ci+t ≡ cit for t = 0, 1, . . . , τ while {ci+t }∞t=τ+1 is a solution to

Program (13) given wi.

Step 1. We first demonstrate the equivalence of the two representations in terms of

budget sets, shifted by vector αx.

Claim 1. Suppose consumption flow in IH satisfies ci ∈ X i ∩ (Bi
p + αx). Reduction ci− is

well-defined in RF and satisfies ci− ∈ X̃ i∩(B̃i
p+αvxx̃). Conversely, for ci ∈ X̃ i∩(B̃i

p+αvxx̃)

in RF, its extension, ci+, is well-defined and satisfies ci+ ∈ X i ∩ (Bi
p + αx).

Proof of Claim 1:
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Fix ci ∈ X i ∩ (Bi
p + αx) in IH. Since ci ∈ X i, for all t = 0, . . . , τ one has cit > 0 and

wici− ≡ E
∑∞

t=τ+1 β
tζt(c

i
t − eit) > −E

∑∞
t=τ+1 β

tζte
i
t = wi. Moreover, ci ∈ Bi

p + αx and hence

E
∑∞

t=0 β
tζt(c

i
t − eit − αxt) ≤ 0. This implies

wici− ≡ E

∞∑
t=τ+1

βtζt(c
i
t − eit) < E

τ∑
t=0

βtζte
i
t + αvx <∞.

Consequently wi < wici− <∞, and reduction ci− ∈ X̃ i is well-defined. Moreover,

wici− − αvx + E

τ∑
t=0

βtζt(c
i−
t − eit) = E

∞∑
t=0

βtζt(c
i
t − αxt − eit) ≤ 0

where the last inequality holds since ci ∈ Bi
p + αx. It follows that ci− ∈ B̃i

p + αvxx̃.

Next fix ci ∈ X̃ i ∩ (B̃i
p + αvxx̃) in RF. Since ci ∈ X̃ i, one has cit > 0 for t = 0, . . . , τ .

Moreover, wi > wi, and by Lemma 1 solution to Program (13) exists {ci+t }∞t=τ+1 that are

strictly positive. It follows that extension ci+ ∈ X i is well-defined. Moreover,

E
∞∑
t=0

βtζt(c
i+
t − eit − αxt) = E

∞∑
t=τ+1

βtζt(c
i+
t − eit)− αE

∞∑
t=0

βtζtxt + E
τ∑
t=0

βtζt(c
i
t − eit)

≤ wi − αvx + E
τ∑
t=0

βtζt(c
i
t − eit) ≤ 0,

where the last inequality holds by the fact that ci ∈ B̃i
p + αvxx̃. Therefore, the extension of

the consumption profile satisfies ci+ ∈ Bi
p + αx. �

Step 2. We next demonstrate the equivalence of the two formulations in terms of optimal

choices.

Claim 2. Suppose ci is optimal in IH on set Bi
p ∩ X i. Then reduction ci− is well-defined

and optimal on B̃i
p ∩ X̃ i in RF. Conversely, if in RF ci is optimal on B̃i

p ∩ X̃ i then ci+ is

well-defined and optimal on Bi
p ∩X i in IH.

Proof of Claim 2:

Let ci be optimal on set Bi
p ∩ X i in IH. Since ci ∈ Bi

p ∩ X i, by Step 1 reduction is

well-defined and ci− ∈ B̃i
p ∩ X̃ i. Suppose ci− is not optimal on this set. This implies that

there exists yi ∈ B̃i
p ∩ X̃ i strictly preferred to ci−. By Step 1 extension yi+ is well-defined

and satisfies yi+ ∈ Bi
p ∩X i. Finally,

U i(yi+) =
∞∑
t=0

βtui(yi+t ) = vi(wiyi) + E

τ∑
t=0

βtui(yit)

> vi(wici−) + E

τ∑
t=0

βtui(ci−t ) ≥ E

∞∑
t=0

βtui(cit) = U i(ci),
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where wiyi and wici− are the first components of vectors yi and ci−, respectively, and the

strict inequality holds by the fact that yi is strictly preferred to ci− in RF. This contradicts

optimality of ci on Bi
p ∩X i.

Let ci be optimal on set B̃i
p ∩ X̃ i in RF. Since ci ∈ B̃i

p ∩ X̃ i, by Step 1 extension is

well-defined and ci+ ∈ Bi
p ∩X i. Suppose ci+ is not optimal on this set. It follows that there

exists yi ∈ Bi
p ∩ X i strictly preferred to ci+. By Step 1 reduction yi− is well-defined and

satisfies yi− ∈ B̃i
p ∩ X̃ i. Finally,

Ũ i(yi−) = vi(wiyi−) + E

τ∑
t=0

βtui(yit) ≥
∞∑
t=0

βtui(yit)

> E

∞∑
t=0

βtui(ci+t ) = vi(wici) + E
τ∑
t=0

βtui(ciτ+1c
i
t) = Ũ i

(
ci
)

where the strict inequality holds by the fact that yi is strictly preferred to ci+ in IH. This

contradicts the optimality of ci on B̃i
p ∩ X̃ i in RF. �

Step 3. Finally, we demonstrate the equivalence of the frameworks in terms of equivalent

variation.

Claim 3. Suppose equivalent variation EV i
p,p′ in IH is attained on zi. Then in RF equivalent

variation is attained on zi− and satisfies ẼV
i

p,p′ = vx×EV i
p,p′. Conversely, if in RF equivalent

variation ẼV
i

p,p′ is attained on zi, then in IH equivalent variation is attained on zi+ and

satisfies EV i
p,p′(β) = ẼV

i

p,p′/v
x.

Proof of Claim 3:

Suppose in IH equivalent variation α ≡ EV i
p,p′ is attained on zi. By definition of equivalent

variation zi ∈ Bi
p + αx and zi ∈ Ψi

p′ ⊂ X i. By Step 1 reduction zi− ∈ X̃ i is well-defined and

it satisfies zi− ∈ B̃i
p + αvxx̃. Let oi ∈ Ψp′ be an optimal choice in IH under policy p′. By

definition of upper countur set, U i(zi) ≥ U i(oi). By Step 2 reduction oi− is well-defined and

optimal under p′ in RF. Then

Ũ i(zi−) = vi(wizi−) + E
τ∑
t=0

βtui(zi−t ) ≥ E
∞∑
t=0

βtui(zit)

≥ E

∞∑
t=0

βtui(oit) = vi(wioi−) + E

τ∑
t=0

βtui(oi−t ) = Ũ i(oi−).

Consequently zi− ∈ Ψ̃i
p′ in RF. It follows that (zi−, αvx) satisfy constraints of Program (9)

within RF. Suppose that (zi−, αvx) does not solve this program. It follows that there exists

zi′ ∈ Ψ̃i
p′ ⊂ X̃ i in RF satisfying zi′ ∈ B̃i

p + α′vxx̃ for some α′ < α. By Step 1, extension to
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IH of zi′+ ∈ X i is well-defined and satisfies zi′+ ∈ Bi
p +α′x. Next, let oi ∈ Ψ̃p′ be an optimal

choice in RF under policy p′. Then

U i(zi′+) =
∞∑
t=0

βtui(zi′+t ) = vi(wizi′) + E
τ∑
t=0

βtui(zi′t )

≥ vi(wioi) + E
τ∑
t=0

βtui(oit) =
∞∑
t=0

βtui(oi+t ) = U i(oi+),

and hence zi′+ ∈ Ψi
p′ in the IH problem. Thus (zi′+, α′) satisfies constraints of Program (9)

in IH and gives a smaller value, contradicting that (zi, α) is a solution to a minimization

problem. It follows that ẼV
i

p,p′ = vx × EV i
p,p′ .

Suppose equivalent variation ẼV
i

p,p′ is attained on zi in RF and let α ≡ ẼV
i

p,p′/v
x. By

the definition of equivalent variation, zi ∈ B̃i
p + αvxx̃ and zi ∈ Ψ̃i

p′ ⊂ X̃ i. By Lemma 1

extension zi+ ∈ X i is well-defined and satisfies zi+ ∈ Bi
p′ + αx. Let oi be an optimal choice

in RF under policy p′. By Lemma 2, extension oi+ is well-defined and optimal in IH under

p′ as well. Then

U i(zi+) = E
∞∑
t=0

βtui(zi+t ) = vi(wizi) + E
τ∑
t=0

βtui(zit)

≥ vi(wioi) + E
τ∑
t=0

βtui(oit) ≥ E
∞∑
t=0

βtui(oi+t ) = U i(oi+)

which implies that zi+ ∈ Ψi
p′ in IH. It follows that (zi+, α) satisfy constraints of Program

(9) in IH. Suppose that (zi+, α) is not a solution to the problem in IH. It follows that there

exists zi′ ∈ Ψi
p′ ⊂ X i satisfying zi′ ∈ Bi

p′ + α′x for some α′ < α. By Lemma 1, reduction

of zi′ to RF, zi′− ∈ X̃ i is well-defined and satisfies zi′− ∈ B̃i
p′ + α′vxx̃. Let oi be an optimal

choice in IH under policy p′. By Lemma 2, reduction oi− is well-defined and optimal in RF

under p′ as well.

Moreover,

Ũ i
(
zi′−
)

= vi(wizi′−) + E
τ∑
t=0

βtui(zi′t ) = E

∞∑
t=0

βtui(zi′t )

≥ E

∞∑
t=0

βtui(oi+t ) = vi(wioi) + E

τ∑
t=0

βtui(oit) = Ũ i(oi−),

hence zi′− ∈ Ψ̃i
p′ in RF. Thus (zi′−, α′vx) satisfied constraints of Program (9) in RF and

attains a smaller value than ẼV
i

p,p′ = αvx, contradicting that zi, ẼV
i

p,p′ is a solution in the

reduced form problem. It follows that EV i
p,p′ = ẼV

i

p,p′/v
x. �

The three claims jointly imply the result in Lemma 2. �
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Corollary 1. Fix β ∈ (0, 1). For any policies p, p′ ∈ Pτ equivalent variation in the reduced

form, ẼV
i

p,p′ problem is well-defined.

Proof of Corollary 1: In the infinite horizon problem pick x that pays one unit in τ + 1 and

zero otherwise. Note that vx = Eβτ+1ζτ+1 ∈ R++. By Proposition 1 equivalent variation is

well defined in IH. Then by Lemma 2 equivalent variation in the reduced form exists and is

equal to ẼV
i

p,p′ = EV i
p,p′ × vx.

A.4 Ordinal convergence

In this section we argue that the reduced form preferences (locally, on a compact box)

continuously transform into the quasilinear limits as consumers become patient. As a result

the indifference curves become aligned with the quasilinear ones. In the reduced form model

consider arbitrary compact box that gives a collection of measurable flows ci = (wi, {cit}τt=0)

defied as

X̃ i,b = {cit|wb ≤ wi < wb and cb ≤ cit ≤ cb for all t = 0, ..., τ},

where finite bounds satisfy wb < wb and 0 < cb < cb.

For β ∈ (0, 1) define weakly-better-than-ci correspondence, mapping Ψi : X i,b × [β, 1]⇒

X i,b as follows:

Ψi(ci, β) ≡ {ci′ ∈ X i,b|ci′ %iβ ci},

where preferences %iβ, for all β < 1 are represented by utility function (15). For β = 1

preferences %i1 are given by the quasilinear utility

Ũ i,Q(ci) = λ̄iwi + E
τ∑
t=0

ui(cit), (17)

where λ̄i > 0 solves equality (4).

Observe that for some values of a discount factors, one might have, wb < wi and the

reduced-form preferences, and hence, the weakly-better-than-ci correspondence might not

be well-defined on the entire domain. The next lemma shows that for sufficiently patient

consumers, the correspondence is well-defined. Moreover, the result demonstrates that the

preferences continuously transforms into the quasilinear ones.

Lemma 3. There exists threshold β ∈ (0, 1), such that weakly-better-than-ci correspondence

Ψi : X i,b × [β, 1]→ X i,b is well-defined and continuous on its domain (including at β = 1).

Proof of Lemma 3:

For considered policies fundamentals are not altered after period τ and so prices and

endowments follow the underlying Markov process. In particular, for any ht = {s0, s1, ..., st}
contingent prices and endowments are determined by a realization of a state in period t, i.e.,
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ζht ≡ q(st) and eiht = Ai(st)f
i(1). As a result, for all histories with the same last state are

equivalent in terms of contingent prices and endowments. Let π(t, s) be the unconditional

probability of all histories ht for which the realization of the Markov process in period t is

st = s (alternatively unconditional probability of state st = s in period t). For the considered

Markov chain, a transition matrix is diagonalizable with S independent eigenvectors and real

eigenvalues. The largest eigenvalue is equal to one, while other, possibly repeated, eigenvalues

m = 2, 3, ..., S satisfy |rm| < 1. It follows that the unconditional probability of s at t can be

written as π(t, s) = π̄s +
∑S

m=2 γm (rm)t vm,s where π̄s denotes the stationary probability of

state s, derived from the eigenvector with the largest eigenvalue, vm,s is the s element of an

eigenvector corresponding to rm and γm is a constant that expresses the initial distribution

in terms of eigenvector basis.

Step 1. We first show that the borrowing constrain is not binding on the box, for

sufficiently high discount factor. Consider the bound in the the borrowing constraint

wi ≡ −E
∞∑

t=τ+1

βtζte
i
t = −

∑
t≥τ+1

βt
S∑
s=1

π(t, s)q(s)Ai(s)f i(1)

= = −
∑
t≥τ+1

βt
S∑
s=1

[π̄s +
S∑

m=2

γm (rm)t vm,s]q(s)A
i(s)f i(1)

= −
∑
t≥τ+1

βtE(q̄Āif i(1))−
S∑

m=2

S∑
s=1

γmvm,sq(s)A
i(s)f i(1)

∑
t≥τ+1

(rmβ)t

= − βτ+1

(1− β)
E(q̄Āif i(1))−

S∑
m=2

rτ+1
m γmβ

τ+1 1

1− rmβ

S∑
s=1

vm,sq(s)A
i(s)f i(1).

By assumption Ai(s)f i(1) > 0 and q(s) > 0, for any s therefore E(q̄Āif i(1)) > 0 and the

first term in the equation converges to −∞ as β → 1. Since other eigenvalues are strictly

smaller than one, one has 1/ (1− rmβ) → 1/ (1− rm) < ∞ and therefore the second term

converges to a finite limit. It follows that limβ→1w
i = −∞ and there exists βw < 1 such that

for all β ∈ [βw, 1) the borrowing constraint is satisfied for all ci ∈ X i,b and correspondence

Ψi : X i,b × [βw, 1] ⇒ X i,b is well defined. In the next two steps we demonstrate that the

correspondence is continuous.

Step 2. In this step we give an auxiliary result in which we characterize the slope of the

value function vi(·). In terms of eigenvalues of the transition matrix, function η (β, λi) from
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(14) can be written as

η
(
β, λi

)
≡ (1− β)E

∞∑
t=τ+1

βtζtu
i′−1(λiζt) = (1− β)

∞∑
t=τ+1

βt
S∑
s=1

π(t, s)q(s)ui′−1(λiq(s))

= (1− β)
∞∑

t=τ+1

βt
S∑
s=1

[π̄s +
S∑

m=2

γm (rm)t vm,s]q(s)u
i′−1(λiq(s))

= (1− β)
∞∑

t=τ+1

βtE[q̄ui′−1(q̄λi)] + (1− β)
S∑

m=2

S∑
s=1

γmvm,sq(s)u
i′−1(λiq(s))

∑
t=τ+1

(rmβ)t

= βτ+1E[q̄ui′−1(q̄λi)] +
S∑

m=2

ωm

S∑
s=1

vm,sq(s)u
i′−1(λiq(s)),

where corresponding weights ωm are given by

ωm ≡ γm(rmβ)τ+1 1− β
1− rmβ

.

Since |rm| < 1, for m = 2, ..., S the weights are finite in a neighborhood of β = 1. Therefore,

the weights, as well as function η (β, λ) itself, are well-defined and differentiable with respect

to β in the neighborhood of β = 1. Similarly, for arbitrary value wi ∈ R the constant on the

right hand side of equality (14) can be written as

(1− β)wi + βτ+1E(q̄Āif i(1)) +
S∑

m=2

ωm

S∑
s=1

vm,sq(s)A
i(s)f i(1).

For β = 1 condition (14) reduces to E(q̄ui′−1(q̄λi)) = E(q̄Āif i(1)) and is independent

of initial wealth. By the arguments analogous to the ones in Lemma 1, this equation has

unique solution denoted by λ̄i. Moreover, since ui′−1(·) is strictly decreasing, the derivative

∂η(1, λ̄i)/∂λi = E(q̄2ui′−1(q̄λ̄i)) < 0 is non-zero. By the implicit function theorem there

exists threshold βw
i
< 1, a neighborhood of λ̄i, denoted by V and a continuous bijection

λw
i

: [βw
i
, 1]→ V such that λw

i
(β) is a unique solution to equation (14) for each β ∈ [βw

i
, 1].

Note that by continuity of this function limβ→1 λ
wi(β) = λw

i
(1) = λ̄i for arbitrary value wi,

i.e., the family of bijections λw
i
(·) for various wi has the same limit.

Step 3. Let β0, βwb , βwb be the thresholds from Step 2, derived for particular values of

wealth equal to 0, wb and wb respectively (recall that wb and wb are the bounds on wealth

that define box X i,b). Let functions λ0(·), λwb(·) and λwb(·) be the corresponding bijections.

Finally define β ≡ max{β0, βwb , βwb , βw} ∈ (0, 1) where the last element is defined in Step 1.

We next define a monotonic transformation of the reduced-form utility function, that

maps ˜̃U i : X i,b × [β, 1]→ R as follows. For β ∈ [β, 1) let function ˜̃U i(ci, β) ≡ Ũ i (ci)− vi(0)

where the latter utility function is defined in (15). For β = 1 function is given by ˜̃U i (ci, 1) ≡
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Ũ i,Q. Note that preferences represented by function ˜̃U i coincide with the ones represented

by Ũ i and hence the function defines correspondence Ψi.

We now show that the representation ˜̃U i(·, ·) is jointly continuous. Clearly, ˜̃U i (ci, β) is

jointly continuous for all ci, β ∈ X i,b × [β, 1) by the standard maximum theorem. Therefore

it suffices to verify joint continuity for the elements in the box for which β = 1. Consider

an arbitrary sequence {ci,h, βh}∞h=1 ⊂ X i,b × [β, 1] such that ci,h, βh → c̄, 1 ∈ X i,b × [β, 1].

By the envelope theorem, the derivative of the value function is given by the Lagrangian

multiplier ∂vi(0)/∂wi = λ0(β). Difference vi(wi)−vi(0) is strictly concave and it attains zero

at wi = 0. Hence, for any element of the sequence h = 1, 2, ... utility function is bounded

from above by

˜̃U i(ci,h, βh) ≤ max[λ0(βh)wi,h; λ̄iwi,h] + E

τ∑
t=0

(
βh
)t
ui(ci,ht ). (18)

For all β ∈ [β, 1] function λ0(β), is well-defined and continuous and hence limh→∞ λ
0(βh) =

λ0(limh→∞ β
h) = λ0(1) = λ̄i. It follows that both elements of the max function have the

same limit and limh→∞
˜̃U i
(
ci,h, βh

)
≤ λ̄iw̄ + E

∑τ
t=0 u

i(c̄it) = ˜̃U i (c̄i, 1).

By strict concavity of vi(·) for all values of wealth wi ∈ [wb, 0] value function satisfies

vi(wi)− vi(0) ≥ λwb(βh)wi, while for all wi ∈ [0, wb] one has vi(wi)− vi(0) ≥ λwb(βh)wi and

hence
˜̃U i(ci,h, βh) ≥ min[λwb(βh)wi,h;λwb(βh)wi,h; λ̄iwi,h] + E

τ∑
t=0

(
βh
)t
ui(ci,ht ) (19)

Each of the three elements of the min function has the same limit. Taking the limit gives

limh→∞
˜̃U i(ci,h, βh) ≥ λ̄iw̄i + E

∑τ
t=0 u

i(c̄it) = ˜̃U i (c̄i, 1). Limits of inequalities (18) and (19)

imply that limh→∞
˜̃U i
(
ci,h, βh

)
= ˜̃U i (c̄i, 1) and utility representation ˜̃U i is jointly continuous

on X i,b× [β, 1]. Since for all β ∈ [β, 1] preferences %iβ are strictly monotone and they admit

jointly continuous utility representation, by Lemma 1 in Weretka (2018) weakly-better-than-

ci correspondence Ψi : X i,b × [β, 1]→ X i,b is continuous. �

Define surplus function for consumer i as:

Si,τ (p) ≡
τ∑
t=0

E
[
ui(ui′−1(ζtλ̄

i))/λ̄i − ζtui′−1(ζtλ̄
i) + ζte

i
t)
]

(20)

Lemma 4. Fix τ < ∞. Consider arbitrary p, p′ ∈ Pτ . In the reduced problem with quasi-

linear preferences (17) equivalent variation is well-defined and given by

ẼV
i,Q

p,p′ = Si,τ (p′)− Si,τ (p) ∈ R.

Proof of Lemma 4:
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In Step 1 we show that for the quasilinear preferences represented by Ũ i,Q(ci) optimal

choice and equivalent variation on the unrestricted domain X̃ i,Q ≡ {ci|wi ∈ R and cit >

0 for all t ≤ τ} are well-defined. For policy p′, optimal choice ci′ is uniquely defined by the

necessary and sufficient conditions: consumption in the event after history ht is given by

ci′ht = ui′−1(λ̄iζ ′ht) and consumption of wealth is determined from budget constraint wici′ =

−E
∑τ

t=0 ζ
′
t(c

i′
t − ei′t ).

Next consider policies p and p′. Program (9) specializes to minzi,α α subject to two

constraints Ũ i,Q(zi) ≥ Ũ i,Q (ci′) and wizi−α+E
∑τ

t=0 ζt(z
i
t−eit) ≤ 0. With strictly monotone

preferences, both constraints must hold with equality. Solving the second equation for α and

plugging it into the objective function reduces the problem to

ẼV
i,Q

p,p′ = min
zi

wizi +
τ∑
t=0

Eζt
(
zit − eit

)
s.t. Ũ i,Q(zi) = Ũ i,Q(ci′). (21)

Solution to program (21), denoted by zi∗ is given by first order conditions: zi∗ht = ui′−1(λ̄iζht)

and wizi∗ = wici′ + 1
λ̄i
E
∑τ

t=0(ui(ci′t ) − ui(zi∗t )). Under Inada assumptions these conditions

define unique zi∗ ∈ X i,Q. Plugging zi∗, ci′ in objective function (21) gives

ẼV
i,Q

p,p′ = wici′ + E
τ∑
t=0

ui(ci′t )− ui(zi∗t ))

λ̄i
+

τ∑
t=0

Eζt
(
zi∗t − eit

)
= E

τ∑
t=0

ui(ci′t )− ui(zi∗t ))

λ̄i
− E

τ∑
t=0

[ζtc
i′
t − ζtzi∗t ] + E

τ∑
t=0

[ζ ′te
i′
t − ζteit],

= Si,τ (p′)− Si,τ (p).

�

Lemma 5. Fix τ < ∞. Consider arbitrary p, p′ ∈ Pτ . Equivalent variation in the reduced

form economy converges to the quasiliner limit

lim
β→1

ẼV
i

p,p′ = ẼV
i,Q

p,p′ .

Proof of Lemma 5: We restrict attention to discount factors from [β, 1] as defined in

Lemma 3. We verify sufficient conditions for the convergence of the equivalent variation

for individual agent (Assumptions 2-3 in Weretka (2018)) within the reduced-form problem.

First note that since τ <∞, and S <∞, a collection of all histories, ht such that t ≤ τ is fi-

nite. Consequently, box X̃ i,b can be reinterpreted as a subset of RN . The first order condition

is uniformly bounded partial derivatives of the budget constraint (16). For any history ht, one

has ∂b̃ip/∂c
i
ht

= πhtβ
tζht and ∂b̃ip/∂w

i = 1. Therefore, b ≥ ∂b̃ip/∂c
i
ht
≥ b and b ≥ ∂b̃ip/∂w

i ≥ b,

where bounds b ≡ max(1,maxht:t≤τ ζhtπht) < 0 and b ≡ min(1, (βi)τ minht:t≤τ ζhtπht) > 0 are

well-defined since τ <∞ and S <∞, and πht > 0 for all date-events ht. Thus, Assumption 2
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is satisfied. In the reduced-form representation for each β ∈ [β, 1], preferences are strictly

convex on the respective domains X̃ i. In Step 1, we demonstrated that optimal choice and

equivalent variation for the quasilinear model (β = 1) are well-defined. Fix arbitrary convex

box X i,b such that the optimal choice and equivalent variation point with quasilinear pref-

erences are in the interior. For policy p and β ∈ [β, 1] function b̃ip(·, β) is linear in ci, and

hence it is quasi-convex. Finally, by Lemma 5 correspondence Ψi : X i,b × [β, 1] → X i,b is

continuous. By Proposition 1 in Weretka (2018), equivalent variation in the reduced form

model satisfies limβ→1 ẼV
i

p,p′ = EV i,Q
p,p′ . �

We now specialize the results to truncations of policies. For a pair of policies p, p′ ∈ P
let EV i,τ

p,p′ be the equivalent variation for truncations of the policies to the first τ < ∞
periods, i.e., for periods t > τ perturbations for both policies are replaced by zero, i.e., the

endowments and prices follow the baseline Markov process. Consider x for which limβ→1 v
x ≡

v̄x ∈ R++.

Corollary 2. Fix τ <∞ and p, p′ ∈ P. Equivalent variation for truncations of p, p′ policies

(point-wise, given τ) converges to a finite limit, i.e.,

lim
β→1

EV i,τ
p,p′ = EV i,Q,τ

p,p′ /v̄
x ∈ R

where EV i,Q,τ
p,p′ is the equivalent variation in the quasilinear problem, for policies p, p′ truncated

to the first τ periods.

Proof of Corollary 2 : The result follows from Lemma 2 and 5, and the facts that truncations

of policies to the first τ periods are in Pτ .

A.5 Convergence for general policies

Our next lemma shows that the the welfare index derived for the truncated policies approx-

imates well equivalent variation EV i
p,p′ when τ is sufficiently high.

Lemma 6. Fix arbitrary β ∈ (0, 1). Equivalent variation derived for truncated policies

converges, i.e.,

lim
τ→∞

EV i,τ
p,p′ = EV i

p,p′ ,

uniformly for β ∈ (β, 1).

Proof of Lemma 6: Fix arbitrary ε > 0. Pick τ for which

∆τ

1−∆
C

[
1 +

ζ

ζ

ui′(c)

ui′(c)

1

β

]
c̄+ ē+ ζ̄ + C∆

v̄x
≤ ε (22)
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Since ∆ < 1, the corresponding τ exists and it does not depend on β. Consider arbitrary

β ∈ (β, 1).

Step 1. By ci denote a solution to problem (10) for policy p with transfer EV i
p,p′ , while ci,τ

is a solution for truncation of this policy pτ with transfer EV i,τ
p,p′ . Suppose that ci is weakly

preferred to ci,τ (For the reverse preferences the argument is symmetric.) Under policy pτ

net cost of consumption flow ci is given by

E
∞∑
t=0

βtζτt (cit − e
i,τ
t ) = E

∞∑
t=0

βtζt(c
i
t − eit) (23)

+ E
∞∑

t=τ+1

βtζτt (cit − e
i,τ
t )− E

∞∑
t=τ+1

βtζt(c
i
t − eit)

≤ EV i
p,p′v

x + E

∞∑
t=τ+1

βt
[
|∆ζ

t |cit + |∆ζ
t |eit + |∆e

t |ζt + |∆e
t∆

ζ
t

]
≤ EV i

p,p′ v̄
x +

C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆),

For all τ ′ ≥ τ flow ci is affordable given the transfer and by assumption it is preferred to

solution to V i(pτ , EV i,τ
p,p′). Consequently, by (22) one has

EV i,τ
p,p′ ≤ EV i

p,p′ + ε.

Step 2. We next prove the other inequality. Let ci′ be a solution to (10) for policy p′

with no transfer. Using the arguments form Step 1 one can show that under policy pτ ′ the

net cost of the flow cannot exceed

E
∞∑
t=0

βtζτ ′t (ci′t − ei′τt ) ≤ C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)

Consequently V i(p′τ , C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)/v̄x) ≥ V i(p′, 0). The difference in utility

V i(p, EV i
p,p′)− V̄ (pτ , EV i,τ

p,p′) = V i(p′, 0)− V i(p′τ , 0) (24)

≤ V i(p′τ , δ(τ))− V i(p′τ , 0)

≤ ui′(c)

ζ

C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)

is bounded, where the first equality follows from (11) the inequality from the previous obser-

vation and the last inequality from the fact that the marginal utility of a dollar is bounded

from above by ui′(c)/ζ. On the other hand, for policy p for any γ > 0 within the considered

range the difference in utility is

V i(pτ , EV i,τ
p,p′ + γ)− V i(pτ , EV i,τ

p,p′) ≥ γ
βui′(c)

ζ
v̄x. (25)
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Equating the two constants on the right hand sides of (24) and (25) gives

γ(τ) =
ζ

ζ

ui
′
(c)

βui′(c)

C∆τ

1−∆
(c̄+ ē+ ζ̄ + C∆)/v̄x (26)

for which V i(pτ , EV i,τ
p,p′ + γ(τ)) ≥ V i(p, EV i

p,p′). Applying the argument from Step 1 one can

show that the solution to problem (10) under policy pτ and transfer (EV i,τ
p,p′ + γ(τ))v̄x is

affordable under policy p with transfer (EV i,τ
p,p′ + γ(τ))v̄x + C∆τ

1−∆
(c̄+ ē+ ζ̄ +C∆) and it gives

higher utility than V̄ (p, EV i
p,p′). Consequently, by (22) one has

EV i
p,p′ ≤ EV i,τ

p,p′ + ε.

The inequalities derived in Steps 1 and 2 imply |EV i
p,p′ − EV

i,τ
p,p′ | ≤ ε for all β ∈ (β, 1). �

A.6 Concluding argument

The following equality concludes the proof:

lim
β→1

EVp,p′
(1)
=

1

I

∑
i

lim
β→1

EV i
p,p′

(2)
=

1

I

∑
i

lim
β→1

lim
τ→∞

EV i,τ
p,p′ (27)

(3)
=

1

I

∑
i

lim
τ→∞

lim
β→1

EV i,τ
p,p′

(4)
=

1

I

∑
i

lim
τ→∞

ẼV
i,Q,τ

p,p′

v̄x
(28)

(5)
=

limτ→∞
1
I

∑
i[S

i,τ (p′)− Si,τ (p)]
v̄x

(6)
=
S(∆q′,∆Y ′)− S(∆q,∆Y )

v̄x
(29)

In (27) equality (1) follows from the definition of the aggregate equivalent variation and

the sum law for limits, and equality (2) from Lemma 6. In (3) the interchange of limits is

justified by Moore-Osgood theorem along with Lemma 6 and Corollary 2. Equation (4) is

implied by Corollary 2 while (4) by follows from Lemma Lemmas 5 and the fact that policies

p, p′ truncated to the first τ periods are in Pτ . Replacing, prices and endowments from the

static model with the recursive counterparts gives gives (6). �

32


	Introduction
	Motivating Example
	Additivity
	Aggregation

	General Small Open Economy 
	Framework
	Approximation Theorem

	Approximation in Practice
	Discussion
	Appendices
	A static problem
	Equivalent variation
	Temporary policies.
	Ordinal convergence 
	Convergence for general policies
	Concluding argument


