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Abstract

The analysis of many economic phenomena requires partitioning societies into groups,
gathering individuals sharing the same circumstances of birth like gender, birthplace,
cohort, ability or parental background, and studying the extent at which these groups
are distributed with different intensities across relevant ordered outcomes, such as in-
come, health or cognitive score levels. When the groups are similarly distributed,
their members could be seen as having equal chances to achieve any of the attain-
able outcomes. Otherwise, a form of dissimilarity prevails. We frame dissimilarity
comparisons of multi-group distributions defined over ordinal outcomes by showing
the equivalence between axioms underpinning information criteria, basic transforma-
tions of the data regarded to as unambiguously preserving or reducing dissimilarity
and a new empirical test based on sequential dominance conditions. Mainstream
approaches related to intergenerational mobility, equality of opportunity, discrimina-
tion and the analysis of distance between distributions are shown to be embedded
within the dissimilarity model that we characterize. An application to Swedish data
highlight the usefulness of the criteria to identify the intergenerational distributional
consequences of a large education reform which took place in the 1960s.
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1 Introduction

Many economic phenomena are concerned with situations in which individuals are parti-

tioned into different social groups on the basis of characteristics they share in common.

In this paper, we are interested in comparing conditional bivariate distribution, in which

one attribute is ordinal (the outcome) and the other is categorical (the group label). Each

distribution specifies the proportions of each group that attain each of a finite number of

ordered outcomes.

For instance, discrimination analysis is concerned with the way in which groups, defined

along the lines of gender or race, attain different wage levels or occupations ordered by social

prestige with different intensities. Health or educational inequality arises when the chances

of attaining each one of the ordered outcomes (such as self-assessed health or standardized

test scores) differ across individuals with different characteristics (such as by location,

socio-economic status, demographics). Transition matrices, specifying the probability of

achieving a given percentile in the child’s income distribution conditionally on the percentile

of departure in the parents’ income distribution, are used to asess intergenerational mobility.

A transition matrix displays low mobility when the distributions are highly dissimilar. More

broadly, in analyzing unfair inequality, the focus is not much on the inequality in outcomes

realized by people with similar traits that fall beyond individual responsibility, but rather

on differences across groups defined by different traits.

Figure 1 depicts an empirical example of unfair inequality. Each panel reports the

distribution of 32 groups, defined on the basis of gender, ability, place of birth and parental

education, across population income vingitiles estimated from a representative sample of

the Swedish population born 1948 and 1953.1 Black and gray circles in each graph identify

cumulative distributions conditional on group belonging, distinguishing those treated by

a large compulsory education reform (the treatment group) and those who were not (the

1The data, from Meghir and Palme (2005), are described in Section 5.
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(a) Control group, matrix C
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(b) Treatment group, matrix T

Figure 1: Cumulative frequencies across income percentiles, by circumstances group and
treatment status.

Note: Authors’ computations based on Meghir and Palme (2005) data. Groups formed by interacting

information on parents education, gender, ability and location. Gray dots are for groups gathering women.

Gray lines allow to recollect each groups distribution. The gray squares correspond to averages of groups

distributions by realization.
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control group). There are 20 outcomes and 32 groups in both examples. Figure 1 portraits

a comprehensive perspective about unfair inequality in both treatment and control groups,

with some groups attaining worst income realizations with larger intensity than others.

Some groups even suffer a disadvantage compared to others across all percentile, arguably

a strong violation of fairness. This is the case, for instance, for the groups gathering

women (black dots) as opposed to men (gray dots). In both panels of the figure, a form of

dissimilarity prevails.

This paper investigates a criterion for ranking cumulative bivariate distributions by

the extent of dissimilarity they display. The criterion can be used, for instance, to com-

pare distributions in the treatment and control groups of Figure 1, and to conclude about

whether dissimilarity in distributions (capturing unfair inequalities) has been reduced by

effect of the intervention. We provide an axiomatic characterization of a robust dissim-

ilarity criterion for ranking multivariate distributions of groups across ordered (but not

necessarily cardinal) classes of realizations. The criterion is robust in the sense that it

gathers agreement on the ranking of configurations for a variety of different perspectives

about dissimilarity. The dissimilarity criterion induces a partial order of configurations.

There is widespread agreement in the literature about what constitutes perfect inter-

generational mobility or lack of discrimination. These are situations in which the groups

are similarly distributed across the attainable outcomes. The relevant notion of similarity

dates back to the work of Gini (1914), where it is argued that two (or more) groups are

similarly distributed whenever “the overall populations of the two groups take the same

values with the same frequency.”2 In this case, groups are equally represented in each class,

albeit groups may take on different outcomes with different intensity. Conversely, the case

of maximal dissimilarity occurs when the groups membership can be identified from the

knowledge of the class of outcomes. This is always the case when groups are ordered by

2See Gini (1914, p. 189) and XXX Andreoli and Zoli for a discussion about similarity.
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stochastic dominance and their distributions are not overlapping, i.e. the highest realiza-

tion achieved by any of the groups is always smaller than the lowest realization achieved

by any other group which is better off.

We resort to an axiomatic model to rationalize comparisons of the configurations in-

between the similarity and maximal dissimilarity cases. Consider again Figure 1. Visually,

overall dissimilarity comes down to the extent of heterogeneity in groups cumulative fre-

quencies at any ordered outcome. Reducing dissimilarity would require to reduce hetero-

geneity. If the distribution were similar, all dots in the graphs would overlay the average

distribution (gray squares). We argue that dissimilarity always decreases whenever im-

provements of the situation for a proportion of the group experiencing low realizations

with higher frequency is counterbalanced by a deterioration of the situation for an equal

proportion of the group experiencing high realizations with higher frequency. This sequence

of displacements is compounded into an exchange transformation.

The main result of the paper is a dissimilarity analog of the fundamental theorems in

the measurement of inequality and risk (see Hardy, Littlewood and Polya 1934, Marshall,

Olkin and Arnold 2011, Gajdos and Weymark 2012, Andreoli and Zoli 2020), The main

theorem shows the equivalence between (i) the unanimity in ranking configurations for all

dissimilarity orderings consistent with the effects of exchange transformations as well of op-

erations that unambiguously preserve dissimilarity, (ii) a representation of the partial order

through dissimilarity indices, (iii) the majorization condition which relates dissimilarity to

the extent of inequality in groups cumulative frequencies across all outcomes and (iv) an

implementation criterion which generalizes the orthant orders for bivariate distributions.3

The theorem complements XXX Andreoli Zoli, which offers a characterization for robust

dissimilarity comparisons when classes are categorical and non-ordered. Our main result

3Landmark contributions introducing orthant orders are Epstein and Tanny (1980), Tchen (1980),
Dardanoni (1993) and (see also Ch. 6.G, Shaked and Shanthikumar 2006). Claim (iv) extends the orthant
order criterion to bivariate distributions where groups are not ordered according to an exogenous label and
their distributions cannot be ordered by stochastic dominance.
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is also shown to rationalize and to generalize to the multi-group setting a variety of sparse

and apparently unrelated results on the measurement of discrimination4, unfair inequality5

(often assuming that groups distributions are ordered by stochastic dominance), intergen-

erational mobility6 (assuming that groups labels are exogenously ordered) and distance

between distributions7 (limited to the case with two groups).

The rest of the paper is organized as follows. Section 2 provides the setting, while

axioms and the main results are in Section 3. The criteria related to dissimilarity are

discussed in Section 4. Section 5 outlines an application of the dissimilarity criterion to

evaluate the implications of the Swedish education reform on unfair inequality. Section 6

concludes. Proofs are collected in Appendix A, whereas Appendix B provides an algorithm

to implement the empirical dissimilarity criterion.

2 Dissimilarity comparisons preserving ordinal infor-

mation

2.1 Definition

We outline a dissimilarity criterion for population cumulative distributions (cdf) of a car-

dinal or ordinal attribute. Let Xi ∼ Fi indicate a random variable distributed as Fi, which

is the population cdf for group i defined over the domain x ∈ R. We consider the case in

which the dissimilarity between distributions F1, F2 has to be compared with dissimilarity

4For a formal treatment based on discrimination curves, see Gastwirth (1975), Dagum (1980), Butler
and McDonald (1987), Jenkins (1994), Le Breton, Michelangeli and Peluso (2012) and Fusco and Silber
(2013). Lefranc, Pistolesi and Trannoy (2009) and Roemer (2012) refer more explicitly to equality of
opportunity.

5See Lefranc et al. (2009) and Roemer (2012), who refer more explicitly to equality of opportunity.
Andreoli, Havnes and Lefranc (2019), ? and ? resort on distance-based criteria to evaluate dissimilarity
between distributions of a cardinal attribute and use this criterion to evaluate the opportunity equalizing
effect of public policies.

6Dardanoni (1993) and Van de gaer, Schokkaert and Martinez (2001) discuss the robust ordering of
(intergenerational) mobility matrices where both groups and achievements (respectively, the distribution
of departure and that of destination) are ordered.

7See Shorrocks (1982) and Ebert (1984).

7



x

1

F (x) F (F
−1

(p))

F (x)100

p

p′

p p′

F1(x)F2(x)

G1(x)G2(x)F (x)

G(x)

Figure 2: The dissimilarity criterion, based on cdf (F1, F2) and (G1, G2) (left panel) and
their representations preserving ordinal information (right panel).

among distributions G1, G2. These comparisons should preserve exclusively the ordinal

information underlying these distributions, which can be related, for instance, to funda-

mental heterogeneity unobservable to the researcher (Athey and Imbens 2006). We use

random variables Ui ∼ F̃i to represent the extent of unobserved heterogeneity.

Figure 2 outlines the evaluation problem concerning pairs of cdfs F1, F2 and G1, G2, pic-

tured on the left-hand side of the figure. In the example, we care about robust assessments

of dissimilarity in (F̃1, F̃2). An intuitive criterion is to focus on gaps between distributions:

we conclude that (G̃1, G̃2) displays at most as much dissimilarity as (F̃1, F̃2) whenever

|G̃1(u)− G̃2(u)| ≤ |F̃1(u)− F̃2(u)|, ∀u ∈ [0, 1]. (1)

However, we only observe (F1, F2) and (G1, G2). Each pair of cdfs displays dissimilarity,

but the two pairs are not readily comparable: they do not even share the same domain of

realizations. In order to compare the two distributions, we link each pair to a reference

distribution F and G, plotted in gray on the graph. The two distributions lie in-between

F1, F2 and G1, G2 but G(x) 6= F (x) at any x.
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Consider an onto function F : R 7→ [0, 1] mapping F (x) = F (F1(x), F2(x)). We require

F to satisfy some desirable properties, such as consistency, symmetry (which introduces

a form of anonymity with respect to groups weights) and monotonicity (ruling out dis-

tributions that are not identified over the entire domain of realizations).8 A meaningful

representation of F consistent with these desirable properties is F (x) = 1
2

∑2
i=1 Fi(x) for

any x ∈ R, which is denoted the average groups distribution in the population. This func-

tion is continuous and invertible, such that for any fractional rank p ∈ [0, 1], x = F
−1

(p). If

we further assume that observable realizations and unobservable heterogeneity are related

by the mapping x = h(u), with h a monotonic increasing transformation h, then we can

recover the unobservable F̃i as follows:

F̃i(u) := Pr[Ui ≤ u] = Pr[Ui ≤ h−1(x)]

= Pr[h(Ui) ≤ x] = Pr[Xi ≤ F
−1

(p)]

= Fi(F
−1

(p))

In Figure 2, we project quantiles of F
−1

(p) and, at any of these quantiles, we identify levels

(F1(F
−1

(p)), F2(F
−1

(p))) corresponding to all fractional rank p ∈ [0, 1]. Levels correspond-

ing to distributions F1, F2 and G1, G2 are identified respectively by black circles and boxes

symbols. The dissimilarity criterion (1) is identified by the condition:

|G1(G
−1

(p))−G2(G
−1

(p))| ≤ |F1(F
−1

(p))− F2(G
−1

(p))|, ∀p ∈ [0, 1].

The gaps in cumulative groups frequencies are identified by the vertical distance between

each pair of distributions at given level p. Gaps in each pair of distributions are evaluated at

quantiles of the reference distributions F and G. The right-hand side of Figure 2 provides

8Consistency requires that F (F (x), . . . , F (x)) = F (x). Symmetry requires instead that
F (Fπ1(x), . . . , Fπd(x)) = F (x) for any permutation πi of the label of the groups. Monotonicity requires
that F (F1(x), . . . , Fd(x)) < F (F1(x) + ε1, . . . , Fd(x) + εd), ∀εi ∈ [0, 1] small enough and ∃i: εi > 0.
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a convenient and equivalent representation of the dissimilarity criterion, which consists

in analyzing that the dispersion of distributions (G1(G
−1

(p)), G2(G
−1

(p))) is smaller than

that between distributions (F1(F
−1

(p)), F2(F
−1

(p))) (measured on the vertical axis) at any

proportion p (on the horizontal axis).

The latter representation is useful for a variety of reasons. First, with two distributions,

the dissimilarity criterion can be readily compared with gap curve dominance conditions,

introduced by Andreoli et al. (2019) in the context of robust unfair inequality analysis.

The gap curve dominance criterion is based on quantile gaps at any p. In the left-hand side

panel of figure 2, relevant quantiles in each pair of distributions are identified by crosses.

Evaluations in gap curve dominance are subject to the cardinalization of the scale, whereas

any monotonic increasing transformation of distributions F1, F2 and G1, G2 does not modify

the right-hand side of the figure.

Second, the criterion in (1) can be generalized to the multi-groups setting with d dis-

tributions. We conclude that (G̃1, . . . , G̃d) displays less dissimilarity than (F̃1, . . . , F̃d)

whenever the heterogeneity across distributions (G1(G
−1

(p)), . . . , Gd(G
−1

(p)) is smaller

than that of distributions (F1(F
−1

(p)), . . . , Fd(F
−1

(p)) for any p ∈ [0, 1], where F (x) =∑d
i=1 Fi(x) and G(x) =

∑d
i=1 Fi(x) whereas in general F (x) 6= G(x) for at least some

x. Visually, each of the d distribution can be represented in the space on the right-hand

side panel of figure 2, and dissimilarity assessed by looking at compositional differences at

any proportion p. In this paper, we characterize on normative grounds both the choice

of the average group distribution and the adoption of a robust criterion for evaluating

heterogeneity in distributions that is related to uniform majorization.

Third, the dissimilarity criterion for population distributions Fi can be readily imple-

mented by knowledge of the empirical counterparts F̂i estimated from random samples of

the underlying populations. Owing to the linearity of the cdf estimators and of F , the law

of large numbers allows to conclude that F̂i(F̂
−1

(p)) converges in probability to Fi(F
−1

(p))

10



for any p and for every i.

Lastly, the dissimilarity criterion can be extended to distributions defined over dis-

crete, ordered outcomes, cardinal or not (for instance education or standardized test scores

achievements). In this situation, the graph of the distributions F1, . . . , Fd would be only

right continuous, since the underlying distribution forms probability masses over a finite

number of realizations. Under an arbitrary assumption about the continuity of the aver-

age population distribution F across realizations, the graphs of Fi(F
−1

(p)) is well defined

across all the domain of p. Hence, the graph on the right-hand side panel of figure 2 still

provides a valid representation of the test.

In the following section, we provide an empirical setting for analyzing dissimilarity on

the basis of discrete distributions of outcomes that are ordered. Whether these outcomes

are cardinal or not is irrelevant for performing dissimilarity assessments, insofar ordinal

information is preserved.

2.2 Notation

We compare distribution matrices of size d× n, depicting sets of distributions (indexed by

rows) of d ≥ 1 groups across n ≥ 2 disjoint non-ordered categories (indexed by columns).

We develop dissimilarity comparisons of distribution matrices with a fixed number d of

groups and a variable number of classes. These matrices are collected in the set

Md :=

{
A = (a1, . . . , aj, . . . , anA

) : aj ∈ [0, 1]d,

nA∑
j=1

aij = 1 ∀i, for nA ≥ 2

}
,

where aij is the proportion of group i observed in class j. The column vector aj collects

the proportions of all groups in class j. The distribution matrices in Md are hence row

stochastic, meaning that matrix A ∈ Md represents a collection of d elements of the unit

simplex ∆nA . We interpret the rows of A as distributions of groups frequencies.

The cumulative distribution matrix
−→
A ∈ Rd,nA

+ is constructed by sequentially cumulating

11



the elements of the classes of A, so that −→a k :=
∑k

j=1 aj. Figure 1 reports information on

the empirical cdf of 32 groups defined over 20 classes, which can be organized into 32× 20

matrices
−→
C (for the control group) and

−→
T (for the treatment group).We use j and k to

denote classes of a distribution matrix.

The following numerical example, which we recurrently use in the paper, represents the

distribution matrix A ∈M2 and its cumulation
−→
A:

A =

 0.4 0.1 0.3 0.2

0.1 0.4 0 0.5

 and
−→
A =

 0.4 0.5 0.8 1

0.1 0.5 0.5 1

 . (2)

Here, for instance, a13 = 0.3 indicates that the frequency of group one in class three is 30%,

while −→a 13 = 0.8 indicates that the cumulative frequency of group one achieving realizations

smaller or equal than those in class three is 80%.

Furthermore, let group h dominates group ` whenever −→a hj ≤ −→a `j for all classes j =

1, ..., n, with a strict inequality (<) holding for at least a class.9 That is, ` is over-represented

at the bottom of the realizations domain compared to h. This makes ` the disadvantaged

group.

We follow the convention of using boldface letters to indicate column vectors, so that ij

is a column vector corresponding to column j of an identity matrix In of size n, 1n =
∑

j ij

is the column vector with n entries all equal to 1 and similarly 0n := (0, . . . , 0)′, where the

superscript denotes transposition. We denote Pn the set of n× n permutation matrices.

2.3 The empirical dissimilarity criterion

Let p ∈ [0, 1] indicate a proportion of the average of the cumulative distributions across

groups associated to a distribution matrix A ∈Md, with pj = 1
d
1td ·−→a j for j = 1, . . . , n. Let

−→a i(p) for each group i be the onto function on [0, 1] such that −→a i(pj) = −→a ij for any class

9A strong version of stochastic dominance requires instead that −→a hj < −→a `j holds for all classes j =
1, . . . , n− 1.
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j of the distribution matrix, with −→a i(0) = 0 and −→a i(pn) = 1. All in-between proportions

p ∈ [pj−1, pj], j = 1, . . . , n, are a solution to the functional equation p = 1
d

∑
i
−→a i(p)

for every group i. When p = pj for any j, the solution to the equation is −→a ij. When

p ∈ [pj, pj+1], the solution is obtained by interpolating linearly outcomes −→a ij and −→a ij+1

with a parameter common to all groups.10

Plotting the solutions to the equation across levels p ∈ [0, 1] gives a piecewise linear

graph on [0, 1]. The underlying functional representation of this graph is −→a i(p) for every

group i. In compact notation we write −→a (p) = (−→a 1(p), . . . ,
−→a d(p))

t. In Figure 3, we

report in gray the cumulative distribution functions collected in vector −→c (p) for the control

municipalities and
−→
t (p) for the treatment municipalities. The dissimilarity criterion we

apply in this empirical setting to evaluate whether unfair inequality has been reduced

by effect of the Swedish education reform consists in assessing whether
−→
t (p) 4U −→c (p)

p ∈ [0, 1].

On more general grounds, the dissimilarity empirical criterion is informative about

dissimilarity in the population. If A is estimated from a random sample from F1, . . . , Fd

then the law of large numbers leads to conclude that:

−→a (pj) −→p
(
F1(F

−1
(pj)), . . . , Fd(F

−1
(pj))

)
, j = 1, . . . , n.

The convergence takes results from linearity of the operators involved. Convergence extends

to all p ∈ [0, 1] when XXXX

We characterize axiomatically the dissimilarity ordering.

10To identify the interpolating parameter, let define −→a (p) = (−→a 1(p), . . . ,−→a d(p))t such that −→a (pj) =−→a j . For p ∈ [pj−1, pj ] the functions satisfy−→a (p) = −→a j−1 + λaj with λ ∈ [0, 1] implicitly defined by
p = pj−1 +λ 1

daj = (1−λ)pj−1 +λpj . The scalar λ = (p− pj−1)/(pj − pj−1) is the interpolating parameter
that we use.
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3 Characterization

3.1 Dissimilarity orders

The cases of perfect similarity and maximal dissimilarity can be formalized in matrix no-

tation. A perfect similarity matrix S represents a situation in which the distributions of all

groups coincide across classes and can be represented by the same row vector s′ ∈ ∆n. A

maximal dissimilarity matrix D represents instead situations where each class is occupied

at most by one group and each group occupies separate classes. In compact notation:

S :=


s′

...

s′

 and D :=


d′1 . . . 0′nd

...
. . .

...

0′n1
. . . d′d

 . (3)

In the first case, S, all groups are equally represented with the same intensity in each

class. Conversely, in the second case, D, it is possible to forecast the group occupying each

class. This is the case because the distributions of the groups d′1 ∈ ∆n1 , . . . ,d′d ∈ ∆nd do

not overlap across classes. 11 In this situation, not only groups are ordered by stochastic

dominance (a condition that describes violations of equality of opportunity, as in Roemer

(1998), Lefranc et al. (2009) and Andreoli et al. (2019)), but the highest realization achieved

by any of the groups is always smaller than the lowest realization achieved by any other

group which is better off.

This paper investigates the possibility of ordering distribution matrices according to

the dissimilarity they display. A dissimilarity ordering is a complete and transitive binary

relation 4 on the setMd with symmetric part ∼, that ranks B 4 A whenever B is at most

as dissimilar as A.12 Given A ∈ Md, any dissimilarity ordering should rank S 4 A 4 D

11This condition represents the case in which group identity and realizations display the highest degree
of connectivity, a condition regarded to in Gini (1914) and subsequent literature (see Bertino, Drago,
Landenna, Leti and Marasini 1987) as the maximal dissimilarity scenario.

12For any A, B, C ∈ Md the relation 4 is transitive if C 4 B and B 4 A then C 4 A and complete

14



for any perfect similarity matrix S and for any maximal dissimilarity matrix D. There are

infinitely many matrices that can be represented as S and D in (3). They are all regarded

as equivalent representations of perfect similarity or of maximal dissimilarity, the focus

being on differences across group distributions and not on the degree of heterogeneity in

the distribution of each group across realizations. The condition d ≤ n is, nevertheless,

necessary for D to exist. If A is such that d > n, then it can display some dissimilarity (as

in the examples we use in the introduction), but not maximal dissimilarity.

3.2 Axioms

We outline axioms that establish the behavior of any relevant dissimilarity ordering when

data are transformed in ways that unambiguously preserve or reduce dissimilarity. We

study first the exchange transformations within a restricted domain of matrices where all

groups are ordered according to stochastic dominance. Unless the distributions of groups

h and ` coincide, if h dominates ` then there must exist a class k where −→a hk <
−→a `k such

that a`k > 0. When this is the case, dissimilarity can be reduced through an exchange

operation, consisting in an upward movement of a small enough proportion ε > 0 of group

`, over-represented at the bottom of the realizations domain, from class k to any other

class k′ > k associated with better realizations. This change is counterbalanced by a

downward movement of an equal proportion ε of group h from class k′ to k. By “small

enough” we mean that, after the exchange, the dominance relations between all groups

(and, notably, between h and `) are preserved. This bears two consequences. First, the

amount ε exchanged should, at most, compensate the disadvantage of ` in every class, but

it should never swap the ranking of ` and h. Second, the transfer should not induce a

re-ranking of ` and h with respect to the other groups. These conditions are made explicit

in the definition of axiom E.

if either A 4 B or B 4 A or both, in which case B ∼ A.

15



Axiom E (Exchange) For any A, B ∈Md with nA = nB = n where group h dominates

group ` and k′ > k, if B is obtained from A by an exchange transformation such that (i)

bhk = ahk + ε and bhk′ = ahk′ − ε, (ii) b`k = a`k − ε and b`k′ = a`k′ + ε, (iii) bij = aij in all

other cases, (iv) ε > 0 so that if −→a ij ≤ −→a i′j then
−→
b ij ≤

−→
b i′j for all groups i 6= i′ and for

all classes j, then B 4 A.

Only a subset of matrices in Md can be compared (i.e., transformed one into the

other) through exchange operations. We identify this class through the property of ordinal

comparability.

Definition 1 (Ordinal comparability) The matrices A, B ∈ Md are ordinal compa-

rable if (i) etd ·A = etd ·B, (ii) all groups are ordered according to stochastic dominance in

A and B, and (iii) the order of the groups is the same in A and B.

Condition (i) above has two implications. First, ordinal comparable matrices must

have the same size, that is nA = nB = n. Second, the average distribution across groups,

denoted for matrix A by the n-dimensional row vector 1
d
etd ·A, should coincide for matrices

A and B, that is 1
d
etdaj = 1

d
etdbj for any class j.

Every exchange operation preserves the number of the classes of a distribution matrix

along with its average distribution across groups, and does not produce re-ranking of the

distributions of the groups, as required by conditions (ii) and (iii) in the definition of

ordinal comparability.

Consider first the possibility of relaxing condition (i) in the definition of ordinal com-

parability (Definition 1). The axioms IEC and SC introduce operations that reshape the

number and size of the classes of a distribution matrix without affecting dissimilarity.

Axiom IEC (Independence from Empty Classes) For any A, B, C, D ∈Md and

A = (A1,A2), if B = (A1,0d,A2) , C = (0d,A) , D = (A,0d) then B ∼ C ∼ D ∼ A.

The IEC axiom places the emphasis on dissimilarity originated from non-empty columns
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of a distribution matrix. If A and B differ only because of |nA − nB| empty classes in one

of the two matrices, then the dissimilarity in A should be regarded to as an equivalent

representation of that in B. Adding or eliminating an empty class changes the number of

classes without affecting the average distribution across groups.

The second transformation increases the number of classes by splitting proportionally

(the groups densities in) a class into two new classes. This transformation requires to

replicate one column of a distribution matrix and then to scale the entries of the original

and of the replicated columns by the splitting coefficients β ∈ (0, 1) and 1−β, respectively.

This operation guarantees that the resulting distribution matrix is row stochastic and that

the degree of proportionality of the groups frequencies in the new columns coincides with

that in the original column. In the schooling segregation example, splitting a school would

require to randomly allocate its students population into two smaller institutes, so that

ethnic proportions in the two new institutes are not altered.

Axiom SC (Independence from Split of Classes) For any A,B ∈ Md with nB =

nA + 1, if ∃ j such that bj = βaj and bj+1 = (1 − β)aj with β ∈ (0, 1), while bk = ak

∀k < j and bk+1 = ak ∀k > j, then B ∼ A.

The SC axiom highlights that dissimilarity arises from the disproportionality of the

groups composition in some classes. A split transformation increases the number of classes

and modifies the shape of a distribution matrix, but it does not alter the proportionality of

the groups. For this reason, it is regarded to as dissimilarity preserving. A finite sequence

of split of classes and insertion/elimination of empty classes can then be used to extend the

degree of comparability in terms of axiom E to matrices that satisfy conditions (ii) and

(iii) in Definition 1, but not condition (i). An example clarifies this point.

Consider the distribution matrix A′, obtained from A by merging, element by element,
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the classes two and three as follows:

A′ =

 0.4 0 0.4 0.2

0.1 0 0.4 0.5

 and
−→
A ′ =

 0.4 0.4 0.8 1

0.1 0.1 0.5 1

 . (4)

In both matrices A in (2) and A′ the groups are ranked according to stochastic domi-

nance, but the average distributions across groups differ. Hence, condition (i) in Definition

1 does not hold and the two matrices cannot be compared exclusively on the basis of

exchange operations. Matrix A′, however, can be transformed by splitting its third class

according to proportions 5/8 and 3/8, and then eliminating its second class, which is empty.

These operations reshape matrix A′ size and the corresponding average distribution across

groups, so that the new matrix is ordinal comparable to A, which can be now obtained by

exchanging a proportion ε = 0.15 of the two groups as follows:

A =

 0.4 0.25− ε 0.15 + ε 0.2

0.1 0.25 + ε 0.15− ε 0.5

 . (5)

All dissimilarity orderings consistent with axioms IEC, SC and E agree that A 4 A′, even

though A and A′ are not ordinal comparable.13

If the focus is on the departure from similarity and not on what group dominates the

others, then any permutation of the distributions of the groups should not affect dissimilar-

ity. The axiom IPG would shift the focus from the label of the groups to their distributions,

thus extending comparability to matrices where all groups are ordered by stochastic dom-

inance, but their labels do not coincide across matrices.

Axiom IPG (Independence from Permutations of Groups) For any A, B ∈Md,

if B = Πd ·A for a permutation matrix Πd ∈ Pd then B ∼ A.

13The example illustrates that dissimilarity evaluations based on the axiom E could be incompatible
with the implications of axiom IPC. As argued in Section 3.2, in fact, when the classes of A and of A′

can be permuted one should rather conclude in favor of the opposite ranking A′ 4 A, which holds for all
orderings consistent with axioms IPC, IEC, SC and MC.
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One additional implication of the axiom is that the cumulative distributions of the

groups should be treated symmetrically in dissimilarity assessments, meaning that both

positive and negative gaps between the distributions contribute equally to measured dis-

similarity.

The implications of IPG can be strengthened by assuming that if the cumulative dis-

tributions of two or more groups coincide in a class, then any permutation of the name of

these groups from that class onward should lead to a new distribution matrix exhibiting

the same degree of dissimilarity. This concept is formalized through the Interchange of

Groups (I) axiom.

Axiom I (Interchange of Groups) For any A, B ∈ Md with nA = nB = n,

if ∃Πh,` ∈ Pd permuting only groups h and ` whenever −→a hk = −→a `k, such that B =

(a1, ..., ak,Πh,` · ak+1, ...,Πh,` · anA
), then B ∼ A.

According to axiom I, if the cumulative distributions of at least two groups coincide in

class k of A, then an interchange of these groups from class k + 1 onward reproduces the

effect of a permutation of the labels of these groups. When the distributions of the groups

can be ordered according to strong stochastic dominance, similarity is clearly violated but

axiom I cannot apply. When, instead, the distributions of the groups can be ordered by

a weaker form of stochastic dominance (or when there is no dominance relation at all)

the gaps in cumulative group distributions compensate (or reverse) in at least one class,

thus indicating a less clear violation of similarity. In these situations, axiom I postulates

that cases of weak dominance and non-dominance that could arise after the application of

interchange transformations are sources of indifference in terms of dissimilarity.

Consider matrix A′′ below, obtained from A in (2) by interchanging the labels of the
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groups from class three onward, so that

A′′ =

 0.4 0.1 0 0.5

0.1 0.4 0.3 0.2

 with
−→
A ′′ =

 0.4 0.5 0.5 1

0.1 0.5 0.8 1

 . (6)

The gaps in the cumulative distributions of the groups in
−→
A ′′ and

−→
A are of the same

magnitude but of different sign. According to axiom I, the two matrices should be regarded

as equally dissimilar. The axiom emphasizes dissimilarity that arises from the extent, and

not from the sign, of these gaps. It also allows to compare the gaps of the cumulative

distributions of the groups in matrix
−→
A ′ in (4), which always have the same sign, with

those in matrix
−→
A ′′, whose sign changes across classes.

Axioms IEC, SC, IPG have been introduced in XXX Andreoli zoli and are maintained

in our setting. These axioms validity rests on the fact that outcomes realizations are

not cardinal. XXX Andreoli introduced an axiom setting independence with respect to

permutations of the classes. This axiom is irrelevant when outcomes are ordinal. Finally,

XXX Andreoli study the merge of classes operation, which consists in merging, distribution

by distribution, proportions of the groups across subsequent classes to generate a new class

of larger size. The axioms MC posits that any merge of classes operation cannot increase

dissimilarity. Axiom MC may lead to counterintuitive evaluations when classes are ordered:

in fact, a merge operation could level differences in groups frequencies in correspondence

of some realizations that could compensate for disadvantages by some of these groups at

lower realizations.14 Exchange operations, instead, are robust to these critics. Axioms E

and I are new and exploit information obtained by cumulating groups frequencies across

ordered realizations.

14As an example, consider merging classes two and three of A might have a counterintuitive impact on
dissimilarity. This transformation moves 10% of the population of the disadvantaged group 1, along with
40% of the population of group 2, from class two to three, thus leading to the new configuration A′ in

(4). Though the transformation improves the situation of both groups, the cumulative distributions in
−→
A′

move apart and the gap between the two distributions does not “compensate” anymore in class two.
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3.3 Dissimilarity indices and majorization conditions

Additional notation. Let p ∈ [0, 1] indicate a proportion of the average of the cu-

mulative distributions across groups associated to a distribution matrix A ∈ Md. The

proportion associated to cumulative distributions in class j is pj, with pj = 1
d
etd · −→a j. Any

proportion p ∈ [pj−1, pj] (with p0 = 0) can be obtained by splitting class j of A into classes

j′ and j′ + 1 so that, after the split, pj = pj′+1 and p = pj′ . Every such split operation

carries also consequences for the cumulative distribution of each group. Denote −→a i(p) the

onto function on [0, 1] which gives the cumulative proportion of group i that would be

observed in class j′ if class j were split into classes j′ and j′ + 1 as above. There is a

function −→a i(p) for each group i. The function is such that −→a i(pj) = −→a ij for any class j

of the distribution matrix, with −→a i(0) = 0 and −→a i(pn) = 1. All in-between proportions

p ∈ [pj−1, pj], j = 1, . . . , n, are a solution to the functional equation p = 1
d

∑
i
−→a i(p) with

−→a i(p) continuous and piecewise linear on [0, 1] for every group i.15 For ease of exposition,

distribution functions are organized in a vector −→a (p) = (−→a 1(p), . . . ,
−→a d(p))

t
at proportion

p, with −→a i(p) defined as above.

There are two key advantages from representing for each group i its cumulative distribu-

tion by the function −→a i(.). The first advantage is that any dissimilarity ordering satisfying

SC and IEC considers a distribution matrix A and the associated functions −→a i(.) for all

i = 1, . . . , d as equivalent representations of the data.16 The second advantage is that every

distribution matrix admits a representation through the cumulative distribution functions

of the groups. We argue that any two distribution matrices that are not ordinal compa-

rable can always be compared by focusing on the dispersion of the distribution functions

15More formally, the vector of functions −→a (p) = (−→a 1(p), . . . ,−→a d(p))t is such that −→a (pj) = −→a j for every
class j = 1, . . . , nA. For p ∈ [pj−1, pj ] the function also satisfies −→a (p) = −→a j−1 + λaj with λ ∈ [0, 1]
implicitly defined by p = pj−1 + λ 1

daj = (1 − λ)pj−1 + λpj . The scalar λ = (p − pj−1)/(pj − pj−1) can
be interpreted as the split parameter β in the definition of the SC axiom. The function ai(p) is then
continuous in p and piecewise linear for every group i.

16As argued in the previous footnote −→a (p) is obtained by applying split transformations to the distri-
bution matrix A ∈ Md. For any p, any sequence of these transformations will lead to the same −→a (p).
Moreover, adding or eliminating empty classes does not affect −→a (p).
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(a) Control group

(b) Treatment group

Figure 3: Cumulative groups distributions, by treatment status.

Note: Authors’ computations based on Meghir and Palme (2005) data. Groups formed by interacting

information on parents education, gender, ability and location. Piecewise linear gray curves are the graphs

of the cumulative group distributions c(p) (control) and t(p) (treatment). Black dots identify elements of

the ordinal comparable matrices
−→
C∗ and

−→
T∗.

−→a 1(p), . . . ,
−→a d(p) at every proportion p ∈ [0, 1].
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Consider again the example discusses in the introduction. Original data can be orga-

nized in distributions matrices T (for the treatment group) and C (for the comparison

group) is size 32× 20. The corresponding distribution functions
−→
t (p) and −→c (p) are repre-

sented through piecewise gray lines in Figure 3. These figures are obtained by reporting the

intercepts of the groups distributions in Figure 1 at any proportion p ∈ [0, 1] of the average

population distribution, also represented on the same figure (by gray square symbols). The

dissimilarity criteria we analyze allow to conclude about the policy effect by confronting

matrices T and C on the basis of their representations
−→
t (p) and −→c (p).

Majorization A first concern of this paper is to establish a majorization condition which

represent the notion of robust dissimilarity evaluations outlined above. Consider A,B ∈

Md with cumulative groups distributions −→a (p) and
−→
b (p) respectively. The criterion of

dissimilarity reduction that we analyze consists in evaluating the extent of dispersion in

cumulative groups distributions in −→a (p) and
−→
b (p) at proportions p ∈ [0, 1] of the average

population distribution. B is as most as dissimilar as A if the proportions of the groups

adding up to the bottom p100% of the average of the cumulative distributions across groups

in A (i.e −→a (p)) are unambiguously more dispersed than the corresponding proportions in

B (i.e.
−→
b (p)), for any p ∈ [0, 1]. It is standard in the literature on economic inequality

to represent the relation “unambiguously more dispersed than” by resorting on uniform

majorization conditions for d−dimensional vectors (Kolm 1969, Cowell 2000, Marshall et al.

2011, Andreoli and Zoli 2020), denoted 4U .17 The robust dissimilarity criterion is a rather

demanding condition: it requires to verify that uniform dominance holds at any percentile

p of the average population distribution, that is
−→
b t(p) 4U −→a t(p) for all p ∈ [0, 1].

17For any pair of vectors at,bt ∈ M1 with at · ed = bt · ed, b majorizes a, denoted b 4U a, if and
only if b ∈ conv{Πn · a : |Πn ∈ Pn}. Following Marshall et al. (2011), theorems 1.A.3 and 2.B.2, this
condition is necessary and sufficient to guarantee that any element of b can be obtained through a sequence
of fundamental inequality reducing (Pigou-Dalton) transfers applied to elements of a.
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Indices. A second concern of the paper is about measurement of dissimilarity. We inves-

tigate the possibility of measuring dissimilarity by a linear rank-dependent evaluation func-

tion Dw(A), which is an average, taken over all proportions p, of the inequality displayed

by vectors −→a (p). Inequality is measured itself as a weighted average, were realizations

−→a i(p) are weighted by the function wi(p). This function is non-decreasing in i at any p

and it is assumed to be bounded and continuous in p almost everywhere. The set of all

weighting functions satisfying these properties is denoted W . For any w ∈ W let

Dw(A) :=

∫ 1

0

d∑
i=1

wi(p)
−→a (i)(p)dp, (7)

where −→a (i)(p) is the i-th smaller element of vector −→a (p). The index can be interpreted

as the average degree of dispersion of the cumulative distributions of the groups. The

shape of the weighting function wi(p) allows to address the extent of sensitivity of the

index to heterogeneity in groups composition at any proportion p. All weighting functions

are restricted so that
∑

iwi(p) = 0 for all p, which guarantee to focus on distributional

concerns. Under these constraints, any exchange transformation of the data reduces the

dispersions in the groups cumulative distributions, hence dissimilarity.18 Furthermore, the

index can be normalized to 0 when perfect similarity is reached.

Yaari (1987) and Weymark (1981) have outlined a particular parametric class of weight-

ing functions belonging to W , denoted the single-parameter S-Gini weights, which gener-

alize the Gini inequality index.19 XXX AAberghe et al XXX have derived different gener-

alizations of the rank-dependent measures of inequality which also include the Gini index

a special case. All these weighting schemes can be used to construct parametric measures

of dissimilarity. A robust dissimilarity evaluation requires agreement on Dw(B) ≤ Dw(A)

18Every exchange transformation originates a rank-preserving progressive transfer (Fields and Fei 1978)
of cumulated frequencies of these groups in at least one class. Every such transfer implies a reduction in
the heterogeneity of groups cumulative distributions.

19Following notation in Maccheroni, Muliere and Zoli (2005), the discrete counterpart of the S-Gini
weights is obtained by setting wi(p) = 1

p

(
1− ((1− i−1

d )k − (1− i
d )k)

)
for k a positive integer. When

k = 2, the weights coincide with those of the Gini inequality index.
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for all weighting schemes w ∈ W .

3.4 Main result and discussion

We characterize the dissimilarity partial orders induced by the intersection of the dis-

similarity orderings (Donaldson and Weymark 1998) satisfying desirable properties. The

following theorem shows equivalences between the dissimilarity partial order characterized

by the dissimilarity axioms, the dissimilarity dominance criterion based on uniform ma-

jorization, and the representation based on rank dependent dissimilarity measures. The

three conditions establish robust and equivalent representation of the dissimilarity partial

order. Nonetheless, comparisons based on these criteria cannot be empirically tested. The

theorem offers an equivalent implementable condition which is empirically tractable.

Theorem 1 For any A, B ∈Md the following statements are equivalent:

(i) B 4 A for every ordering 4 satisfying axioms E, SC, IEC, IPG and I.

(ii) Dw(B) ≤ Dw(A) for all w ∈ W.

(iii)
−→
b t(p) 4D −→a t(p) for all p ∈ [0, 1].

(iv) There exist A∗,B∗ ∈Md ordinal comparable that are obtained from A and B respec-

tively through elimination of empty classes, split of classes, interchanges and permu-

tation of groups operations, such that
∑h

i=1

−→
b ∗(i)j ≥

∑h
i=1
−→a ∗(i)j for all h = 1, . . . , d,

j = 1, . . . , n∗.

Exchange transformations are related to correlation-decreasing transfers, (see Epstein

and Tanny 1980, Tchen 1980, Atkinson and Bourguignon 1982). E combines distance in

cdfs and correlation reduction as two equivalent perspectives. But when combined with I,

the focus shift from correlation to distance.
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The criterion displays similarities with orthant tests investigated in the stochastic orders

literature (see Ch. 6.G in Shaked and Shanthikumar 2006). Tchen (1980) has proposed

an orthant test to analyze concordance in matrices with fixed margins, where the order

of the groups is fixed exogenously but group distributions are not necessarily ordered by

stochastic dominance (the underlying welfare order has been developed in Atkinson and

Bourguignon 1982). Differently from Tchen’s result, claim (ii) holds when groups are

endogenously ordered by stochastic dominance relations. Hence, we face more constraints

than Tchen in showing that sequential majorization can be decomposed into a series of

exchange transformations that preserve the order of the groups, which is a reasonable

and normatively appealing feature in dissimilarity analysis (but not necessarily in other

situations). We develop on this observation in the proof of Lemma 2 in Appendix A.1.

Claim (iv) can also be related to the orthant order introduced by Meyer and Strulovici

(2013) to assess supermodularity in matrices with different class margins. They decompose

the dominance condition implied by the orthant test into operations that are different

(and weaker) than the exchange transformations, but that are meaningful to characterize

supermodular stochastic orderings of interdependence between the rows of a distribution

matrix.

Axioms SC, IEC and I extend the validity of the dissimilarity model to the classMd of

distribution matrices. The main result of this section shows that for any pair of distribution

matrices A and B that are not ordinal comparable, there always exists a pair of matrices A∗

and B∗ that are ordinal comparable and such that the groups in A∗ and B∗ display the same

cumulative distribution functions observed in A and B, respectively. Then, A∗ and B∗ can

be obtained from A and B through operations of splits of classes, insertion/elimination of

empty classes and groups interchanges. Every dissimilarity ordering consistent with axioms

IEC, SC and I concludes that A∗ ∼ A and B∗ ∼ B.

There are of many equivalent pairs of distribution matrices A∗ and B∗ that can be
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obtained in this way. For any such pair, B∗ 4 A∗ for every dissimilarity ordering consistent

with axiom E. By transitivity, B 4 A must hold for the subset of orderings satisfying

axioms IEC, SC, I and axiom E. Claim iv) shows that the dissimilarity partial orders are

implemented by testing sequentially Lorenz dominance20 on each class j = 1, . . . , n∗ of

ordinal equivalent matrices A∗ and B∗ that are equivalent, in terms of dissimilarity, to A

and B. In Appendix B we discuss an algorithm that allows to retrieve ordinal comparable

matrices making from any pair of data matrices.

4 Related orders

4.1 Mobility and equality of opportunity

An increasingly popular notion of inequality, alternative to inequality of outcomes, is that

of inequality of opportunity (Roemer 2012). According to this theory, outcomes are gener-

ated by individual effort (gathering all dimensions upon which people have full control and

responsibility), by circumstances (such as the background of origin), and by the interaction

of these two. Inequality of opportunity criteria account for the implications of the unequal

distribution of circumstances on the distribution of some relevant outcome. In the context

of income opportunities, some authors21 have suggested to use as benchmark the coun-

terfactual fair income distribution (representing the income distribution that would have

occurred if the implications of the circumstances on income were eliminated). Inequality

of opportunity stems from the dissimilarity in the distribution of the actual income shares

across the entire population and the distribution of the counterfactual (fair) income shares

in the same population. Theorem 1 hints on the possibility of using Zonotopes inclusion to

20Recall that for any pair of vectors a,b ∈ Rd+, b Lorenz dominates a if and only if
∑h
i=1 b(i) ≥

∑h
i=1 a(i)

∀h = 1, . . . , d, with equality holding for h = d (see Marshall et al. 2011).
21For a review, see Ramos and Van de gaer (2016).
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test inequality of opportunity for income, and provides a consistent measurement frame-

work. Other contributions have stressed the importance of inequality of opportunity in

dimensions other than income, such as education, health or wellbeing. In these cases,

inequality of opportunity arises when groups, defined by circumstances, are dissimilarly

distributed across attainable ordinal realizations. Theorem 1 provides the foundations for

its measurement.

Dardanoni (1993) investigates the social welfare ordering induced by sequential ma-

jorization in the context of income mobility. Dardanoni explores situations in which groups

and classes respectively denote the income levels in the distribution of departure and in

that of destination, and hence coincide across distribution matrices. The social welfare

functions proposed by Dardanoni could be related to the indices Dw.22 Claim (??) repli-

cates the mobility orthant order in Dardanoni (1993) when income levels in the underlying

mobility matrix are chosen to represent quantiles of the distributions of departure and of

destination. With this specification, in fact, groups and classes are equally and uniformly

weighted. Theorem ?? then extends Dardanoni’s result by showing that agreement in social

welfare evaluations of mobility can always be traced down to the existence of a sequence of

elementary exchange transformations. Each exchange transformation reduces dissimilarity

across the rows of the mobility matrix by improving the mobility prospects (i.e., shifting

probability mass towards higher income quantiles of the distribution of destination) for

those individuals starting at the bottom quantiles of the distribution of departure and by

deteriorating the mobility prospects of those at the top quantiles in the distribution of

departure. Theorem ?? applies as well to mobility assessments in which the distribution of

departure and that of destination differ. This occurs, for instance, when the distribution

22In Dardanoni (1993) the weights wij coincide with the product of normative weights, associated with
the income levels of departure, and utility evaluations, attached to the income levels in the distribution of
destination. The social welfare evaluations are weighted by the equilibrium (ergodic) income distribution
probabilities, while in our case the groups (indicating information on the distribution of departure) always
receive uniform weights, and the classes (indicating information on the distribution of destination) are
weighted according to the actual average distribution across groups.
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of departure is given in terms of income deciles and that of destination in terms of income

centiles. In this situation, the index Dw provides an appropriate metric for social welfare.

In more general cases, claim (iv) and the criterion in Dardanoni (1993) do not match.

If groups identify percentiles of the parental income distribution, while classes corre-

spond to percentiles of the children income distribution, then any distribution matrix rep-

resents an intergenerational mobility matrix, where both groups and classes are ordered. If

the mobility matrix is monotone23, the dissimilarity model presented in Section 4 provides

implementable criteria for assessing changes in mobility across percentiles in the distri-

bution of destination, provided that a perfectly mobile society could be described as one

where the distribution of children incomes is independent from that of the parents incomes

(as in Shorrocks 1978, Stiglitz 2012, Kanbur and Stiglitz 2016). For any pair of monotone

mobility matrices with fixed margins both for rows and columns, the dissimilarity criterion

in Theorem 1 coincides with the test of the orthants (Tchen 1980, Dardanoni 1993).24 If

margins differ, the dissimilarity order extends mobility comparisons, and can be tested

through Path Polytopes inclusion. This is an important aspect for empirical research,

where in many cases the parental income distribution can only be observed with a degree

of precision that is smaller (for instance, in deciles) than that of the distribution of children

income (for instance, in percentiles). These cases could not be compared within the mo-

bility framework, although they could be compared in terms of the dissimilarity criteria in

Theorem 1. If the mobility matrices are non-monotone, the dissimilarity criterion imposes

stronger conditions than the traditional mobility test.25

23In a monotone matrix, the group in row i + 1 stochastic dominates the group in row i, for any i. If
group distributions are suitably rearranged, every pair of ordinal comparable distribution matrices can be
interpreted as monotone matrices with given marginals.

24After proportions of the groups have been cumulated first by row and then by column, the test of the
orthants requires to verify that the entries of the resulting matrix expressing higher mobility are nowhere
smaller than the entries of the resulting matrix expressing lower mobility. Given that the matrices are
monotone with fixed margins, they satisfy ordinal comparability and the test coincides with the Lorenz
dominance criterion in statement (iv) of Theorem ??.

25Empirical evidence suggests, however, that monotonicity of mobility matrices is unlikely to be rejected
by the data (Dardanoni, Fiorini and Forcina 2012).
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Figure 4: Path Polytopes of matrices A (light grey area) and A′ (dark grey area), with
matrix B Monotone Path (dashed line in panel (b)).

4.2 The geometry of dissimilarity

We introduce a geometric criterion for dissimilarity analysis which is based on the Path

Polytope representation of distribution matrices. The Path Polytope PP (A) ⊆ [0, 1]d of a

matrix A ∈Md is the convex hull of the permutations of a Monotone Path MP (A) ⊆ [0, 1]d

with respect to the d-dimensional hypercube diagonal. The Monotone Path MP ∗(A) is

a graphical piecewise-linear arrangement of nA segments starting from the origin of the

positive orthant, and sequentially connecting the points with coordinates given by the

columns of
−→
A, up to the point with coordinates ed (see Ziegler 1995). Formally:

MP (A) :=
{−→a (p) : p ∈ [0, 1]

}
.

The order of the vertices of the Monotone Path, denoted vj ∈MP ∗(A) with j = 0, 1, . . . , nA,

coincides with the one of the classes of A, so that vj = −→a j, v0 = 0d and vnA
= A·enA

= ed.

In compact notation,

MP (A) := {z : z ∈ conv {Πd · p} , Πd ∈ Pd, p ∈MP (A)} ,

30



where the conv operator denotes the convex hull of all permutations of each point p along

the Monotone Path. As the order of A’s classes is given, MP ∗(A) is unique and by

construction identifies a unique Path Polytope. A distribution matrix displaying some

dissimilarity originates a Path Polytope that lies in PP (D) and shares the same reference

diagonal PP (S), where D and S are, respectively, maximal dissimilarity and the perfect

similarity matrices.

Consider the Monotone Path of A in (2). It is represented by a thick solid line in Figure

4(a). This line connects four points marked with different symbols, their coordinates being

given by the values of the cumulative frequencies of the groups in
−→
A classes. In comparisons

involving two groups distributions, the Monotone Path identifies for each proportion of

group one the corresponding proportion of group two achieving similar or worse realizations.

For every point along the Monotone Path, there exists a corresponding point obtained as

its permutation. For instance, the point with coordinates (0.4, 0.1)t, marked by a white dot

in the figure, defines a symmetric point with coordinates (0.1, 0.4)t. The Path Polytope

PP (A) is identified by the grey area in the figure, delimited by the Monotone Path and

by its symmetric counterpart (around the diagonal).

Any Path Polytope could represent more than one distribution matrix. In fact, transfor-

mations such as splitting classes, insertion/elimination of empty classes and interchanges,

if applied to matrix A do not affect the graph of PP (A).26 Nonetheless, exchange trans-

formations have consequences for the shape of the Path Polytope. The next corollary

shows that the ordering of distribution matrices induced by the inclusion of Path Poly-

topes provides an equivalent representation of the dissimilarity partial order characterized

in Theorem 1.

Corollary 1 For any pair of matrices A,B ∈ Md,
−→
b t(p) 4D −→a t(p) for all p ∈ [0, 1] if

26Every point p ∈MP (A) comprised between the Monotone Path vertices vj−1 and vj can be written
as p = −→a j−1 + λaj with λ ∈ [0, 1], which defines a split operation of class j. Furthermore, if class j is
empty, then vj−1 = vj .
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and only if PP (B) ⊆ PP (A).

The Path Polytope inclusion criterion provides a graphical account of the dissimilarity

dominance condition. Consider, for instance, the matrices A in (2) and A′ in (4). As

shown in Figure 4(b), Z∗(A) ⊆ Z∗(A′). The two distribution matrices are not ordinal

comparable and, according to claim (iv), sequential majorization has to be verified at ev-

ery proportion p of the respective average distribution across groups. Every proportion p

identifies an isopopulation (hyper)plane intersecting the Path Polytopes. The inclusion test

is verified if the intersection of the Path Polytope of the more dissimilar distribution and

any isopopulation hyperplane includes27 the area originated from the intersection of the

Path Polytope of the less dissimilar distribution and the same isopopulation hyperplane.

For instance, gaps among the cumulative distributions of groups 1 and 2 in A perfectly

compensate at proportion p100% = 50%, while a gap in the cumulative distributions of

the groups persists in A′. Theorem 1 allows to conclude that A′ displays unambiguously

more dissimilarity than A, despite the former being obtained from the latter by a merge

transformation. This example further highlights that dissimilarity evaluations of distri-

bution matrices with ordered classes may be inconsistent with, and deserves a different

treatment from, dissimilarity evaluations involving categorical outcomes. This distinction

is mirrored in the potential inconsistencies in rankings of distribution matrices produced

by Path Polytope and Zonotope tests.

Furthermore, the Path Polytope inclusion partial order is the natural multi-group exten-

sion of the dominance tests based on non-intersecting interdistributional Lorenz curves (at

order zero) proposed by Butler and McDonald (1987) and often employed in discrimination

analysis. This is discussed in the following section.

27That is, the extremes points of the intersection are more dispersed in the sense of Lorenz. In fact, a
cross-section of the Path Polytope originates the so-called “Kolm triangles” representations of the Lorenz
curve, as in Kolm (1969).
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4.3 Discrimination

Consider now the situation in which groups are distributed over ordered outcomes. The

Monotone Path generated by the distributions of two groups coincides with the graph of the

concentration curve of these distributions (Mahalanobis 1960, Butler and McDonald 1987).

When the distribution of one group stochastic dominates the distribution of the other

group, the Monotone Path always lies below the unit square diagonal. Its graph delimits a

discrimination curve (Le Breton et al. 2012). For instance, the groups in matrix A in (2)

are distributed so that group 2 stochastic dominates group 1. Their discrimination curve

coincides with the lower boundary of the Path Polytope Z∗(A) in Figure 4(a).

For any pair A,B ∈M2 in which group 2 stochastic dominates group 1 in both matrices,

Z∗(B) ⊆ Z∗(A) always indicates that the discrimination curve of B lies nowhere below

the discrimination curve of A. This dominance criterion is related to robust evaluations

of statistical discrimination (Gastwirth 1975) and affluence (Dagum 1980). Theorem 1

delivers three contributions on this literature. First, the theorem shows that every robust

discrimination assessment based on non-intersecting discrimination curves is supported by

the existence of a finite sequence of dissimilarity preserving transformations and of exchange

transformations. Hence, discrimination analysis bears similarities with other orderings,

but it is inconsistent with the prevailing notions of segregation and inequality (based on

merge operations). Second, the theorem points out that the Path Polytopes inclusion order

extends the discrimination curve analysis to the multi-group setting.28 Third, the theorem

reveals a simple interpretation of multi-group discrimination: it coincides with the extent

of the dispersion in the composition of groups making up the bottom p100% of the average

of the cumulative distributions across groups.

28The properties of the associated class of indicators that can be used to assess multi-group discrimination
are also provided.

33



4.4 Distance between distributions

The dissimilarity model for ordered classes can be related to the measurement of the dis-

tance between two or more distributions. This approach could be informative when distri-

bution matrices depict distributions of the groups across the realizations of an observable

outcome (for instance wages or test score achievements) that is monotonically and increas-

ingly, but not necessarily linearly, related to a latent variable of interest (such as skills)

(Athey and Imbens 2006, Bonhomme and Sauder 2011). Theorem 1 would help identifying

the effects of an hypothetical educational policy, whose objective could be to reduce the

dissimilarity in skills of children experiencing different family backgrounds, by focusing on

the dissimilarity in observed wages and test scores achievements of the children treated by

the policy. The dissimilarity model allows to single out the policy effect without recurring

on ad hoc parametric restrictions on the relation between observable outcomes and the

unobservable policy objective.

We maintain in this section that the classes of a distribution matrix delimit a partition

of a continuous domain of realizations X ⊆ R, such that each class k of the matrix A

is connected with an interval of realizations and adjacent classes always indicate adjacent

intervals. This is the case, for instance, if A’s classes identify groups frequencies at given

wage intervals or test scores achievements. We also assume that these frequencies are

uniformly distributed within each interval. Under these conditions, a distribution matrix

is an equivalent representation of the histograms of the distributions of the groups.

Let denote group i cumulative distribution by Fi(x). It gives the cumulative proportion

of group i members achieving a realization that is smaller than or equal to x ∈ X . The

graph of Fi(x) is piecewise linear, continuous and non-decreasing over X . The kinks in the

graph correspond to the upper bounds of the intervals of the partition of X delimited by

A’s classes. Denoting by xj this realization, then Fi(xj) = −→a ij.

In a multi-group setting, there are d distributions, denoted F1, . . . , Fd. The average of
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the distributions across all groups evaluated at realization x is F (x) = 1
d

∑d
i=1 Fi(x). The

dissimilarity of F1, . . . , Fd can be measured by the vertical distance (according to some

metric) between these cumulative distributions evaluated at F
−1

(p) ∈ X , which is the p-th

quantile of F (.).

When d = 2, a natural metric for the distance is
∣∣∣F1(F

−1
(p))− F2(F

−1
(p))

∣∣∣. An aggre-

gate distance indicator D(F1, F2) could then be the average of these differences:

D(F1, F2) :=

∫ 1

0

∣∣∣F1(F
−1

(p))− F2(F
−1

(p))
∣∣∣ dp, (8)

which is a measure belonging to the class identified in claim (iii) of Theorem 1.29 After a

change in variable, the index rewrites:

D(F1, F2) :=

∫
X
|F1(x)− F2(x)| dF (x). (9)

The distance D(F1, F2) can be readily compared to measures of distance between distri-

butions of a continuous variable that have been developed in the literature (Shorrocks

1982, Ebert 1984), the most intuitive one being the Manhattan distance DM(F1, F2) :=∫
X |F1(x)− F2(x)| dx. Compared to these distances, D(F1, F2) is invariant to monotone

transformations of the scale of X . This has implications for the policy evaluation example

above. In fact, according to D(F1, F2), the distance between group-specific skills distri-

butions coincides with the distance between group-specific distributions of wages and of

test score achievements. The distance D(F1, F2) thus allows to use observable informa-

tion on wages and test scores to identify the policy effects without assuming linearities of

skills effects in the wage and test score functions. On the contrary, alternative distance

metrics that aggregate gaps in cumulative distribution functions of the groups based on

observable outcomes could mechanically magnify actual skills gaps across groups (if, for

29Suppose that distribution F2 stochastic dominates distribution F1. In this case, it is sufficient to set
w2(p) = −1 and w1(p) = 1 ∀p in (7) to obtain D(F1, F2).
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instance, wages and test-scores are more volatile than skills), thus leading to biased policy

evaluations.

The distanceD(F1, F2) has also other desirable properties. Its upper bound isD(F1, F2) =

1 when F1 and F2 do not overlap (i.e., the Path Polytope coincides with the unit square), a

situation identifying maximal dissimilarity. The minimum is D(F1, F2) = 0 and is achieved

whenever F1 = F2. These bounds follow from the next equivalence:

Corollary 2 D(F1, F2) is proportional to the area of the Path Polytope PP (A).

For any A,B ∈ M2, the condition Z∗(B) ⊆ Z∗(A) is therefore sufficient (but not

necessary) for D(FB
1 , F

B
2 ) ≤ D(FA

1 , F
A
2 ).

Extensions of the distance index to d ≥ 3 can be obtained from (9) by assuming that

the distance is measured by an average of the inequality within each class weighted by

the overall population distribution across these classes. Let Id : [0, 1]d → [0, 1] be an

onto function representing an inequality indicator consistent with the Lorenz criterion and

such that I2(F1, F2) = |F1 − F2|. The multi-group distance index is D(F1, . . . , Fd) :=∫
X Id(F1(x), . . . , Fd(x))dF (x). Compared to the family of indicators discussed in statement

(iii) of Theorem ??, D(F1, . . . , Fd) can be used to rank any pair of distribution matrices

irrespectively from their number and size of classes, since it is invariant to splits and

insertion/elimination of empty classes.

5 Application: Education reforms and the intergen-

erational transmission of advantage

5.1 Data and estimation

We investigate the implications a large scale education reform on unfair inequality in long-

term outcomes. We focus on the Swedish education reform, which increased compulsory
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mean sd min max count
Outcome variable

Annual income (ln) 7.439 0.549 0.029 10.68 203,155
Controls and treatment definition

Income year 90.42 3.433 85 96 203,155
Cohort 1953 0.464 0.499 0 1 203,155
Always treated municipality 0.213 0.410 0 1 203,155
Always control municipality 0.167 0.373 0 1 203,155
Treatment == 1 0.561 0.496 0 1 203,155

Circumstances
Female 0.486 0.500 0 1 203,155
Father education:

Primary 0.822 0.383 0 1 203,155
Vocational 0.078 0.268 0 1 203,155
Secondary 0.064 0.245 0 1 203,155
Higher 0.036 0.187 0 1 203,155

High ability 0.511 0.500 0 1 203,155
Urban 0.168 0.374 0 1 203,155

Table 1: Table of descriptives for the using sample

education duration, abolished streaming after grade six and introduced a uniform national

curriculum. The reform was gradually introduced across a selected (albeit non-randomized)

group of Swedish municipalities in 1949 until 1962. Afterwards, the reform was gradually

extended to the universe of municipalities. Meghir and Palme (2005) provides an exhaustive

description of the reform, the identification strategy and the data.30 In this section, we

investigate the implications of the reform for the distribution of unfair inequality in income

acquisition among treated and non-treated children.

The sample we use, from Meghir and Palme (2005), covers about 10% of the Swedish

population born in 1948 and 1953.31 The sample gathers longitudinal data for about 18,000

boys and girls born in 1948 and 1953, for which income during adulthood is observed in 1985

through 1996, gathering a total of 203,155 observations. Summary statistics are available

in Table 1.

30Literature has focused on the average effects of the reform on earnings (Meghir and Palme 2005,
?), education (Holmlund 2008), mortality (Lager and Torssander 2012) and health (Meghir, Palme and
Simeonova 2018).

31Anonymized data are accessible online.
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The cohort 1948 roughly corresponds to the group of students which were already

completing compulsory education in the early stages of the implementation of the reform in

1962, and thus were experiencing the old compulsory education system in their municipality

of residence. The cohort 1953 gathers instead students who were entering secondary school

when the reform was already in place in most of Sweden.

Our exercise consists in comparing dissimilarity in the income opportunities of those

that born in the post-implementation period in municipalities that are exposed to the re-

form (the treatment group) with the dissimilarity displayed by the remaining units. The

outcome of interest is given by vingitiles of the sample income distribution residuals, ob-

tained after regressing log yearly income on a income year indicators, cohort, municipality

and county fixed effects and municipality and cohort trends.32 We separate observations

into treatment and control groups. 56.1% of the sample units are in the treatment group.

For each of them, we outline the distributions across the income vingitiles of 32 mutually

exclusive groups, gathering observations with similar gender (two categories), father edu-

cation (four categories), ability score collected in school (two categories) and being born

in Stockholm, Gotheborg or Malmo. Data for both treated and control groups can be

organized into 32 × 20 matrices, denoted respectively T and C (T,C ∈ M32). The black

and gray dots in Figure 1 represent elements of the matrices
−→
T (panel b) and

−→
C (panel a).

5.2 Results

We use matrices T and C to test about the impact of the large-scale Swedish compulsory

school reform on unfair inequality, originating from the intergenerational implications of

circumstances determined at birth (father’s education, gender, place of residence and abil-

ities) on income opportunities (captured by the position each units occupies on the sample

32Following Meghir and Palme (2005) and Holmlund (2008), identification rests on the quasi-random
assignment of the reform across municipalities. By netting out fixed effects and trends in log income we
make pre and post reform cohorts income profiles comparable. Differences in incomes across cohorts of
those living in municipalities that switch treatment status over the period considered (about 65% of the
sample) identifies the effect of interest.
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Figure 5: Dominance test for T 4 C.

Note: Authors’ computations based on Meghir and Palme (2005) data. Average population distributions

for matrices T∗ and C∗ are reported on the horizontal axis. Claim iv) in Theorem 1 is implemented: the

figure reports differences in Lorenz curves of cumulative groups distribution at given intercepts.

distribution of income). We resort on the notion of dissimilarity between distributions

(circumstances) across ordered classes of realizations (income vingitiles in the sample) as a

way to empirically elicit the extent of unfair inequality in the treatment and control group.

We test the relation T 4 C to gather evidence about the unfair inequality-reducing effect

of the reform.

We use the empirical criterion outlined in claim iv) of Theorem 1 to test T 4 C. As

shown in Figure 1, T and C are not ordinal comparable. We use dissimilarity preserving

operations to obtain the 32 × 493 matrices T∗ = (t1, . . . , t493) and C∗ = (c1, . . . , c493),

T∗,C∗ ∈ M32, that are ordinal comparable. The elements of matrices
−→
C∗ and

−→
T ∗ are

represented by black dots in panels a) and b) respectively in Figure 3. We use these data

to implement the criterion iv). For each class j = 1, . . . , 493 (corresponding to a fraction pj
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of the average population distribution) and h = 1, . . . , 32 of these matrices we compute the

quantity
∑h

i=1

−→
t ∗(i)j−

∑h
i=1
−→c ∗(i)j and report its coordinate on the vertical axis of Figure 5.

This quantity is the difference between Lorenz curves of vectors
−→
t ∗j and −→c ∗j and is positive

in the large majority of the comparisons, except for central percentiles of the sample income

distribution. This graph provides a formal test for the conclusions one can draw comparing

panels a) and b) of figures 1 or 3, that is, that the distance between groups’ distributions is

smaller in the treatment group compared to the control group, albeit distributions appear

more polarized along the lines of gender. As a consequence, the dominance criterion is not

satisfied and we cannot conclude in favor of T 4 C. This does not exclude, however, that

consensus over the changes in dissimilarity can be reached for some interesting parametric

families of dissimilarity indices.

Figure 6 reports the levels of the S-Gini family of inequality indices of groups cumulative

frequencies, measured at any share of the average groups distributions, for the treatment

(solid lines) and control groups (dashed lines). The parameter k expresses increasing in-

equality aversion. The graph provides compelling evidence that dissimilarity in groups

distribution is smaller in the treatment groups compared to the comparison group. After

aggregating these assessments into the dissimilarity index Dk (a version of the index in

7 where the weighting function w ∈ W is parametrized by the S-Gini weights), we find

robust evidence that the schooling reform has reduced dispersion in earnings profiles: the

differences Dk(T) − Dk(C) are always positive for reasonable selections of the inequality

aversion parameter.33

33Differences Dk(T)−Dk(C) take values 0.215− 0.241 for k = 2, 0.317− 0.35 for k = 3, 0.373− 0.413
for k = 4 and 0.407− 0.454 for k = 5.
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Figure 6: Comparing distributions by mean of S-Gini indices at selected proportions of the
average groups’ cdfs.

Note: Authors’ computations based on Meghir and Palme (2005) data. Average population distributions for

matrices T∗ and C∗ are reported on the horizontal axis. The figure reports the estimator for
∑32
i=1 wit

∗
(i)(p)

and
∑32
i=1 wit

∗
(i)(p) for selected p ∈ [0, 1], where wi is the S-Gini weighting function (parametrized by

k = 1, . . . , 5.

6 Concluding remarks

A large and sparse literature on segregation, discrimination, mobility, inequality and dis-

tance measurement has proposed criteria for ranking multi-groups distributions according

to the dissimilarity they exhibit. The theorems presented in the paper establish the founda-

tion of the dissimilarity model, which provides an organized and integrated measurement

framework for the aforementioned phenomena. For empirical purposes, the interesting

result is that the existence of dissimilarity preserving and/or reducing transformations

mapping one configuration into another can be tested upon Zonotopes and Path Polytopes

inclusion. The two geometric tests can be seen as multidimensional generalizations of the
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segregation, discrimination and concentration curves, and can lead to relevant applications

in policy evaluation analysis.

For instance, a policymaker interested in reducing ethnic segregation of students across

schools located in a given school district, might propose a portfolio of policy measures, none

of which has to do with more “elementary” transformations such as splitting, merging, per-

muting schools or adding empty schools. Nonetheless, these “elementary” transformations

might still be targeted as obviously segregation-preserving/reducing. If the “complex” pol-

icy measures reshape the students distribution across schools in a way that is consistent with

the existence of sequences of more “elementary” transformations, then the policymaker can

safely conclude that his de-segregation objective has been achieved. The policymaker can

conclude that such sequence exists upon verification of the Zonotopes inclusion empirical

test, based on the available data. Routines are made available to facilitate this task.

The same procedure applies to the analysis of dissimilarity with ordered classes. In

these cases, the policymaker can use the Path Polytope inclusion criterion to assess prob-

lems of ethnic-based discrimination in different dimensions, such as earnings, accessibility

to health, educational achievements or standardized test scores. This test is useful in situ-

ation where comparability issues are at stake. It might occur, for instance, when assessing

whether ethnic-based labor market discrimination is stronger in terms of workers’ earn-

ings or in terms of their determinants, such as the education and the skills of the workers

(measured though standardized test scores). If the Path Polytope inclusion criterion is not

rejected, then the policymaker can conclude on the existence of finite sequence of dissimi-

larity preserving and dissimilarity reducing exchange operations mapping one distribution

matrix into another. Routines implementing the Path Polytope inclusion test are also made

available.

There might be cases where Zonotopes or Path Polytopes inclusion is rejected by the

data. Making use of dissimilarity indices in the classes discussed in the two theorems,
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it is possible to produce conclusive evaluations of the changes in dissimilarity that are

consistent with the implications of the “elementary” transformations. Evaluations based

on one or few dissimilarity indicators, however, are not robust and can always be challenged

on the perspective offered by alternative measures. The complete characterization of the

dissimilarity indicators presented in the paper is left for future research.
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A Proofs

A.1 Preliminary results

We develop a rank-preserving version of Tchen’s (1980) algorithm to show that the se-

quential majorization in claim (??) of Theorem 1 is always supported by the existence of

a finite sequence of exchange transformations mapping the distribution matrix A into the

less dissimilar one B. The algorithm applies to ordinal comparable matrices, a subset of

the matrices with fixed marginals analyzed in Tchen (1980). As a consequence, Tchen’s

algorithm is not appropriate in our setting because it does not guarantee that the rank

of the groups is preserved at every step of the algorithm. Therefore conditions (ii) and

(iii) of Definition 1 might be violated by Tchen’s algorithm, while this is not the case for

consistency by the result in Theorem 1.

Additional notation. We focus here on ordinal comparable matrices, where the order

of the groups coincides with the one of the rows, so that group i dominates group i − 1,

for any i. That is, for A ∈ Md,
−→a ij ≤ −→a i−1 j, ∀i, j. Moreover, let (x, y) identify the

cell corresponding to row x and column y of a distribution matrix, with x ∈ {1, . . . , d}

and y ∈ {1, . . . , n}. The lexicographic order on {1, . . . , d} × {1, . . . , n} that we consider

is denoted by (x, y) < (x′, y′) if y < y′ or if y = y′ and x > x′. We also use i ∈ [x, x′]

to denote i ∈ {x, . . . , x′|x < . . . < x′}. Furthermore, the doubly cumulative distribution

matrix of A is denoted by
−→−→
A, with

−→−→a ij =
∑

x≥i
−→a xj. Using this compact notation, the

Lorenz dominance criterion rewrites
−→−→
B ≥

−→−→
A.

Strategy of the proof. The algorithm is built in two steps that are illustrated respec-

tively in Lemma 1 and Lemma 2. The first step of the algorithm delimits the building blocks

of the analysis by developing a rank-preserving version of Tchen’s algorithm (see Theorem

1 in Tchen 1980), from where the notation is taken. Given two ordinal comparable matrices
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H, H′ ∈Md with two elements hij and h′ij satisfying hij < h′ij, and such that
−→−→
H ≤

−→−→
H′ and

−→−→
h xy =

−→−→
h′ xy for all (x, y) < (i, j), Lemma 1 will identify the sequence of transfers of groups

population masses that, when applied to H, leads to matrix H′ by leveling the difference

h′ij − hij in cell (i, j). This result is achieved through a finite sequence of M steps. Each

step identifies a matrix Km with m ∈ {1, . . . ,M}, where
−→−→
H ≤

−→−→
Km ≤

−→−→
Km+1 ≤

−→−→
H′ with

element kmij such that hij < kmij ≤ h′ij. The Lemma 1 guarantees that every matrix Km is

transformed into Km+1 through a finite sequence S of transfers of equal magnitude that

delimits a chain of exchange transformations. The construction of the algorithm guaran-

tees that the rank of the groups is always preserved throughout the sequence reducing the

quantity h′ij − hij.

Given two ordinal comparable distribution matrices A,B ∈ Md such that
−→−→
A ≤

−→−→
B ,

the second step of the algorithm develops the sequences of transfers of groups masses

transforming A into B in a way that preserves, at each step of the sequence, the ranking

of the groups. The first sequence, indexed by q ∈ {1, . . . , Q}, identifies the cells of A that

have to be transformed into the corresponding cells of B. The sequence starts in q = 1 with

cell (d, 1) and moves according to the lexicographic order, from any cell (i, j) to (i− 1, j) if

i > 2 or to (d, j + 1) if i = 2, and so on.34 At each step q of the sequence the gap bij − aij

in (i, j) has to be eliminated before moving to step q + 1. In order to preserve the rank of

the groups in class j, however, groups i − 1, i − 2, ... should remain dominated by i when

shifting from Aq to Aq+1. The transformations that guarantee this no-reranking condition

should sequentially transfer mass to groups i− 1, i− 2, ... before affecting group i in class

j. This subsequence is indexed by p ∈ {1, . . . , P}. The two sequences together induce

transfers that are bounded and guarantee:

−→−→
A ≤ . . . ≤

−→−→
Aq =

−→−→
Aq,1 ≤ . . . ≤

−→−→
Aq,p ≤

−→−→
Aq.p+1 ≤ . . . ≤

−→−→
Aq,P =

−→−→
Aq+1 ≤ . . . ≤

−→−→
B .

34This is so because, by ordinal comparability, a1j and b1j are determined by the remaining d−1 elements
of aj and bj .
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By construction, P is finite. In fact, the matrices Aq,p and Aq,p+1 can be considered as H

and H′ in the first step of the algorithm. Thus, Aq,p+1 is obtained from Aq,p exclusively

through a finite sequence of exchange operations. Extending this reasoning, also B is

obtained from A exclusively through a finite sequence of exchange operations, which will

prove Lemma 2.

First step of the algorithm. For any pair H,H′ ∈Md of ordinal comparable matrices

with hij < h′ij,
−→−→
H ≤

−→−→
H′ and

−→−→
h xy =

−→−→
h′ xy for all (x, y) < (i, j), consider the sequence of

matrices Km with m ∈ {1, . . . ,M} where K1 = H. Let K and K′ denote two consecutive

matrices in this sequence. Lemma 1.1 in Tchen (1980) identifies the operations mapping

K into K′ ∈ Md that preserve the monotonicity of K (i.e., that guarantee that
−→
k ′ij ≤

−→
k ′ij+1, ∀i, j). These transformations can be represented by a subsequence of matrices Ks

with s ∈ {1, . . . , S} leading to K′ from K. We present a version of this subsequence that

is also rank-preserving (i.e., that guarantees that
−→
k ′ij ≥

−→
k ′i+1 j,∀i, j).

We first show that the subsequence of matrices Ks exists, is finite and is related to

exchange operations. For a given cell (i, j), set a row i∗ such that i∗ < i and ki∗j > 0, and

consider K satisfying the following conditions:

kij < h′ij and
−→−→
k xy =

−→−→
h′ xy for all (x, y) < (i, j), (10)

δ = min

{−→
k i−1 j −

−→
k ij,
−→
k i∗j −

−→
k i∗+1 j,

1

2
(
−→
k i∗j −

−→
k ij)

}
> 0. (11)

Condition (10) is as in Tchen (1980), while condition (11) is new. It secures that there

is enough mass that can be moved from cell (i∗, j) and added to (i, j) so that the rank of

the groups is preserved. Given K, define the sequence S(K,H′|i∗) := (xs, ys)s∈{1,...,S} by
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setting

x1 = i

y1 = min {c|c ≥ j + 1, kic > 0}

xs = max {r|i∗ < r < i, krc > 0 for some j < c < ys−1}

ys = min {c|c ≥ j + 1, kxsc > 0}

if s < S, while (xS, yS) = (i∗, j). This sequence is nonempty with xS = i∗ < xS−1 < . . . <

x1 = i and y1 > y2 > . . . > yS = j, and leads to K′.

Define K1 = K and Ks as the distribution matrix obtained from Ks−1 where at most

a mass ∆ > 0 is subtracted from (i, ys−1) and (xs, ys) and added to (xs, ys−1) and (i, ys).

The mass ∆ that can be moved should coincide with the smallest quantity between (i)

h′ij − kij (the quantity that should be compensated), (ii) the frequency of group xs in class

ys (this guarantees the monotonicity), (iii) the gap between the cumulative distributions of

group i and group i− 1, and (iv) the gap between group xs and group xs + 1. These two

latter conditions guarantee that the rank of the groups is preserved by the transfer. When

xs = i− 1, at most half of the gap
−→
k xsj −

−→
k ij can be transferred. By construction of the

sequence, at every step s kxsy = 0 ∀xs, ∀y ∈ [ys, ys−1 − 1]. Thus, conditions (iii) and (iv)

are always satisfied when (11) holds. Altogether these conditions give:

∆ := min

{
h′ij − kij, min

S(K,H′|i∗)
{ksxs,ys}, δ

}
. (12)

Lemma 1 Let K satisfy conditions (10) and (11), there exists K′ ∈Md obtained from K

through a sequence of exchanges, such that
−→−→
K′ ≤

−→−→
H′ and k′ij = kij + ∆, with ∆ > 0 as in

(12).

Proof Consider S(K,H′|i∗) defined as above and let K1 = K. For s = 1 a mass ∆ is
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subtracted from (i, y1) and (x2, y2) and added to (i, y2) and (x2, y1), thereby representing

an exchange transformation. In fact, by definition (12) this quantity must be lower than kiy1

and kx2y2 , which guarantees that
−→
k iy1 −∆ ≥ 0 and

−→
k x2y2 −∆ ≥ −→k x2+1 y2 . This operation

leads to K2. Then, a mass ∆ is subtracted from (i, y2) (x3, y3) and added to (i, y3) and

(x3, y2) giving K3. By (12), also this operation is supported by an exchange transformation.

The last step of this sequence involves moving mass from (i∗, j) to (i, j) where ki∗j > 0 by

definition. Recall that i ≥ 2, hence i∗ always exists. To show that
−→−→
Ks ≤

−→−→
H ′ for any s,

assume by recurrence that
−→−→
Ks−1 ≤

−→−→
H ′. For (x, y) < (i, ys), k

s
xy = ks−1xy . By definition, ∆ is

such that the order of groups i and i− 1 is preserved, hence ksiys > ks−1iys
and
−→−→
k s
iys >

−→−→
k s−1
iys

while
−→−→
k s
iys <

−→−→
k s
i−1 ys . Moreover, ksxy = ks−1xy for x ∈ [xs + 1, i− 1] and y ∈ [ys, ys−1], hence

−→−→
k s
xy >

−→−→
k s+1
xy . Finally, ksxsys < ks−1xsys and

−→−→
k s
xsys =

−→−→
k s−1
xsys , as well as

−→−→
k s
xys−1

=
−→−→
k s−1
xys−1

for

x ∈ [xs, i]. Combining these conditions, the required result is obtained. Q.E.D.

Under (10) and (11), the iteration of the sequence S(K,H′|i∗) in Lemma 1 might lead

to three alternative outcomes. (i) The iteration might identify a transfer ∆ = h′ij−kij such

that k′ij = h′ij, in which case K′ = KM = H′ and the sequence is completed. Alternatively

∆ < h′ij − kij, then K′ 6= H′ and Lemma 1 must be reiterated. (ii) In this case, if

δ > h′ij − kij the rank-preserving constraints are not binding, so that ∆ = kxs ys , where

(xs, ys) ∈ S(K,H′∗). If the condition holds starting from K = K1 = H, then it should also

hold in all the following steps, since it indicates that there is enough mass in cell (i∗, j)

to level the difference h′ij − hij and preserve the groups rankings. Lemma 1 introduces

the sequence S(K1,H′∗) leading to K2. A second iteration of the lemma would give the

sequence S(K2,H′∗) leading to K3, and so on. Generally, repeated iterations of the lemma

lead to a sequence of distribution matrices Km, m ∈ {1, . . . ,M} where h′ij−km+1
ij < h′ij−kmij .

Each of these matrices is supported by a sequence S(Km,H′∗) so that if ∆ = kmxsys for

some (xs, ys) ∈ S(Km,H′∗), then S(Km+1,H′∗) must contain all the points of S(Km,H′∗)

except from (xs, ys). Hence the former develops on a larger set of cells than the latter.
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The sequence finally converges to kMij = h′ij given that S(Km,H′∗) is a strictly increasing

sequence on a finite range, indicating that it is always possible to move from K to H′ in a

finite number M of steps.

Finally, (iii) if instead δ < h′ij − kij the iteration of Lemma 1 does not guarantee that

H′ is reached, because the rank-preserving constraint becomes binding at some point. This

can be avoided by suitably redefining i∗. Next result in Lemma 2, presented in the second

step of the main algorithm, will show how to iteratively construct matrices H and H′ where

either situation (i) or (ii) can occur.

Second step of the algorithm. The goal of the second step is to develop a sequence

of rank-preserving transfers of groups masses mapping A into B whenever
−→−→
B ≥

−→−→
A. Every

transfer of mass is constructed in such a way that Lemma 1 always applies. Thus, each

transfer breaks down into a finite number of exchange transformations.

Lemma 2 For A,B ∈ Md satisfying ordinal comparability, (i) B is obtained from A

through a finite sequence of exchange transformations if and only if (ii)
−→−→
B ≥

−→−→
A.

Proof (i) ⇒ (ii). Suppose that B is obtained from A by an exchange transformation

involving classes k and k′ > k. Then there exists ε > 0 such that
−→
b hj = −→a hj + ε and

−→
b `j = −→a `j − ε with

−→
b ij = −→a ij for all groups i 6= h, ` and for all classes j such that

k ≤ j < k′, while
−→
b j = −→a j for all other classes. Consider first k′ = k + 1. If h = ` + 1

then ε ≤ 1
2
(−→a `k −−→a `+1 k). If h > ` + 1 then ε ≤ min {(−→a `k −−→a `+1 k), (

−→a h−1 k −−→a hk)}.

These conditions define a rank-preserving progressive transfer (RPPT) applied in the space

of cumulative groups frequencies. If k′ > k + 1, the exchange transformation originates a

sequence of RPPT εj across classes k ≤ j < k′. Setting ε = minj{εj} guarantees that
−→
b j

is obtained from −→a j though a RPPT, ∀j = k, . . . , k′ − 1. Every RPPT induces Lorenz

dominance (Fields and Fei 1978), hence (ii) holds.

(ii) ⇒ (i). Let
−→−→
B ≥

−→−→
A. For a given (i, j) consider a matrix Aq ∈ Md that is ordinal
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comparable to A, with q ∈ {1, . . . , Q} where A1 = A and
−→−→
Aq ≤

−→−→
B such that

−→−→a q
xy =

−→−→
b xy

for all (x, y) < (i, j) and aqij < bij. The sequence indexed by q identifies cells of A. We

now develop a sequence of transformations that guarantees to obtain Aq+1 ∈Md from Aq

satisfying
−→−→
A ≤

−→−→
Aq+1 ≤

−→−→
B ,
−→−→a q+1

xy =
−→−→
b xy for all (x, y) < (i, j) and aq+1

ij = bij. There are

two distinct cases where different sequences of transformations apply.

Case (a). For any class j, denote i∗ = max{r|r < i, aqrj > 0, −→a q
rj >

−→a q
ij}, which defines

an interval [i∗ + 1, i]. Consider the case where −→a q
xj = −→a q

ij for all x ∈ [i∗ + 1, i]. To avoid

re-rankings of the groups in [i∗+ 1, i], consider adding recursively mass to groups in class j

starting from the group in position i∗+ 1 and sequentially moving to the group in position

i. The whole procedure defines a subsequence p ∈ {1, . . . , P} of transformations of Aq,

denoted Aq,p with Aq,1 = Aq, where Aq,2 is obtained only by letting −→a q,2
i∗+1 j = −→a q,1

i∗+1 j +

∆ij(i
∗) and −→a q,2

i∗j = −→a q,1
i∗j −∆ij(i

∗), then Aq,3 is obtained only by letting −→a q,3
i∗+2 j = −→a q,2

i∗+1 j

and −→a q,3
i∗j = −→a q,1

i∗j − 2∆ij(i
∗), and for a general p the matrix Aq,p is obtained only by letting

−→a q,p
i∗+p−1 j = −→a q,p−1

i∗+p−2 j and −→a q,p
i∗j = −→a q,1

i∗j − (p− 1)∆ij(i
∗) until p reaches i− i∗ + 1, where

∆ij(i
∗) = min

{−→
b ij −−→a q

ij,
1

i− i∗ + 1

(−→a q
i∗j −−→a q

ij

)}
. (13)

The sequence then has reached cell (i, j), giving by construction
−→−→
Aq,1 ≤

−→−→
Aq,p−1 ≤

−→−→
Aq,p ≤

−→−→
B . If −→a q,p

ij =
−→
b ij, the sequence is completed and p = P . Otherwise −→a q,1

i∗j−(i−i∗)∆ij(i
∗) =

−→a q,p
i∗+1 j = . . . = −→a q,p

ij <
−→
b ij. In this case then reset i∗′ < i∗ and reiterate the sequence of

transfers of mass ∆ij(i
∗′). The index of the sequence moves further to p+ 1 where Aq,p+1 is

obtained only by letting −→a q,p+1
i∗′+1 j = −→a q,p

i∗′+1 j + ∆ij(i
∗′) and −→a q,p+1

i∗′j = −→a q,p
i∗′j −∆ij(i

∗′) which

gives
−→−→
Aq,p ≤

−→−→
Aq,p+1, and so on. By construction, this sequence develops on a finite number

P of steps leading to −→a q,P
ij =

−→
b ij.

Case (b). Alternatively, there exist (at least one) groups in the interval [i∗ + 1, i] that

have no mass in class j, but their cumulative distributions differ from the one of group
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i. Define ĩ := max{r|r ∈ [i∗ + 1, i], −→a q
rj >

−→a q
ij, a

q
rj = 0}. The group occupying position

ĩ delimits the interval [̃i + 1, i] with ĩ + 1 ≤ i. To avoid re-rankings, consider adding

recursively mass in class j to the groups in [̃i + 1, i], starting from the group occupying

position ĩ + 1 and sequentially moving to the group in position i. In a finite number

of iterations, these transfers can either compensate the gap
−→
b ij − −→a q

ij, thus leading to

Aq+1, or increase groups masses in class j until the cumulative distributions of the groups

in [̃i + 1, i] end up coinciding with the one of group ĩ. The whole procedure defines a

subsequence p ∈ {1, . . . , P} of transformations of Aq, denoted Aq,p with Aq,1 = Aq, where

Aq,2 is obtained only by letting −→a q,2

ĩ+1 j
= −→a q,1

ĩ+1 j
+ ∆ij(i

∗, ĩ) and −→a q,2
i∗j = −→a q,1

i∗j − ∆ij(i
∗, ĩ),

and for a generic step p the matrix Aq,p is obtained only by letting −→a q,p

ĩ+p−1 j = −→a q,p−1
ĩ+p−2 j

and −→a q,p
i∗j = −→a q,1

i∗j − (p− 1)∆ij(i
∗, ĩ) until p reaches i− ĩ+ 1, where

∆ij(i
∗, ĩ) = min

{−→
b ij −−→a q

ij,
−→a q

ĩj
−−→a q

ĩ+1 j
,

1

i− ĩ
(−→a q

i∗j −−→a q
i∗+1 j

)}
. (14)

The second and the third quantities in ∆ij(i
∗, ĩ) define the rank-preserving constraints of

groups i∗ and ĩ. The sequence then has reached cell (i, j), giving by construction that
−→−→
Aq,1 ≤

−→−→
Aq,p−1 ≤

−→−→
Aq,p ≤

−→−→
B . If −→a q,p

ij =
−→
b ij, the sequence is completed and p = P .

Otherwise, at least one of the following constraints is binding:

−→a q,p

ĩj
= −→a q,p

ĩ+1 j
= . . . = −→a q,p

ij <
−→
b ij, (15)

−→a q,p
i∗j − (i− ĩ)∆ij(i

∗, ĩ) = −→a q,p
i∗+1 j. (16)

If (15) holds but (16) does not hold, then the rank-preserving constraint for group ĩ is

binding. In this case, the algorithm proceeds by resetting ĩ to ĩ′ ∈ [i∗, ĩ− 1]. The sequence

updates to p + 1 and generates a new matrix Aq,p+1. If ĩ′ > i∗, the sequence continues

following the procedure outlined above, using transfers of mass ∆ij(i
∗, ĩ′) defined in (14), to

obtain Aq,p+1 only by letting −→a q,p+1

ĩ′+1 j
= −→a q,p

ĩ′+1 j
+ ∆ij(i

∗, ĩ′) and −→a q,p+1
i∗j = −→a q,p

i∗j −∆ij(i
∗, ĩ′),
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and so on. Otherwise, if ĩ′ = i∗ then the sequence proceeds as in Case (a) using the transfers

of mass ∆ij (̃i
′) in (13) to obtain Aq,p+1 only by letting −→a q,p+1

ĩ′+1 j
= −→a q,p

ĩ′+1 j
+ ∆ij (̃i

′) and

−→a q,p+1

ĩ′j
= −→a q,p

ĩ′j
−∆ij (̃i

′). If, instead, (16) holds but (15) does not hold, i.e. −→a q,p

ĩj
> −→a q,p

ĩ+1 j
,

then reset i∗ to i∗′ < i∗ and iterate again the sequence outlined above on the interval

[̃i + 1, i] while setting the feasible transfer to ∆ij(i
∗′, ĩ). Finally, if both constraints are

binding, both i∗ and ĩ must be reset and the algorithm is iterated. In all these situations,

the order of transfers gives that
−→−→
Aq,p+1 ≥

−→−→
Aq,p by construction.

We now motivate that any given step of the algorithm leading from Aq,p to Aq,p+1 can

be decomposed into a finite sequence of exchange transformations, so that P must be finite

as well. For any given Aq,p associated with cell (i, j), the step p identifies a cell (x, j)

where aq,p+1
xj = aq,pxj + ∆, where ∆ is defined either by (13) or by (14), depending on the

prevailing case. Set Aq,p = H, denote with H′ a matrix such that
−→−→
h′ zy =

−→−→a q,p
zy for all

(z, y) < (x, j) and h′xj := aq,p+1
xj > aq,pxj . Thus H and H′ satisfy condition (10). The two

matrices also satisfy condition (11) as a consequence of the transfers identified in the three

cases outlined above. Furthermore h′xj is defined such that, given i∗, the rank-preserving

constraint is never binding, i.e. δ > aq,p+1
xj − aq,pxj . The conditions in Lemma 1 apply,

indicating that there exists a finite sequence m ∈ {1, . . . ,M} with K1 = H = Aq,p and

with M finite, such that
−→−→
k M
zy =

−→−→a q,p
zy for all (z, y) < (x, j) and kMxj = aq,p+1

xj , thereby giving

KM = H′. It is now sufficient to set Aq,p+1 = KM to be sure that Aq,p+1 is obtained

from Aq,p through a finite sequence of exchange transformations. So it is every step of the

sequence {1, . . . , P}, through which we conclude that P must be finite as well, and that

Aq+1 = Aq,P with aq+1
ij = bij is obtained from Aq only through exchange transformations.

The proof of the lemma follows by iterating the algorithm outlined above, based on

Lemma 1. First set A1 = A and (i, j) = (d, 1) to obtain A1,P where the sequence of

transformations grants
−→−→
A1,P ≤

−→−→
B and a1,Pd1 = bd1; then set A2 = A1,P and (i, j) = (d−1, 1)

to obtain A2,P with
−→−→
A2,P ≤

−→−→
B , a2,Pd1 = bd1 and a2,Pd−1 1 = bd−1 1; and so on.
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Q.E.D.

A.2 Proof of Theorem 1.

Proof We show that (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒(i).

(i) ⇒ (ii). All dissimilarity orderings consistent with split of classes, insertion/deletion

of empty classes and interchange transformations agree that A∗ ∼ A and B∗ ∼ B.

Moreover, all dissimilarity orderings consistent with exchange transformations agree that

B∗ 4 A∗. The intersection of these orderings is thus characterized by axioms E, SC, IEC,

I, and by transitivity leads to the relations B ∼ B∗ 4 A∗ ∼ A giving B 4 A.

(ii) ⇒ (iii) ⇒ (iv). The proof is derived by analogy with Lemma ??. There, the

evaluations are taken by looking at separate classes, here they are taken at separate levels

of p ∈ [0, 1].

(ii) ⇒ (iii). Note that by construction the index Dw is invariant with respect to split of

classes, insertion/deletion of empty classes and interchange transformations and therefore

satisfies axioms SC, IEC and I. Apply an exchange transformation of amount ε > 0 from

group ` to h with ` > h involving adjacent classes j and j + 1 of matrix A. The change in

Dw generated by this transformation is obtained as a weighted average of the associated

changes in −→a (`)(p) and −→a (h)(p) weighted respectively by w`(p) and wh(p). Let pj := 1
d
etd ·−→a j

denote the proportion of population occupying the first j classes. By construction −→a (`)(p)

and −→a (h)(p) are affected by the exchange transformation only for p ∈ (pj−1, pj+1). The

population mass ε is transferred from group h to group ` uniformly in the interval (pj, pj+1)

and in opposite direction, still uniformly, in the interval (pj−1, pj]. As a result the change

in Dw is
∫ pj
pj−1

[wh(p)− w`(p)] ε p−pj−1

pj−pj−1
dp +

∫ pj+1

pj
[wh(p)− w`(p)] ε pj+1−p

pj+1−pj dp ≤ 0, given that

wh(p)−w`(p) ≤ 0 for all p by assumption. Thus the index is consistent also with axiom E

and claim (iii) holds.

(iii) ⇒ (iv). Recall that condition (iv), that is −→a t(p) 4D −→b t(p) for all p ∈ [0, 1], can
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be rewritten as
∑h

i=1

−→
b (i)(p) ≥

∑h
i=1
−→a (i)(p) for all h = 1, . . . , d and for all p ∈ [0, 1]

where by construction
∑d

i=1

−→
b (i)(p) =

∑d
i=1
−→a (i)(p). We show that if claim (iv) does not

hold then also claim (iii) should not hold. Suppose that there exists a q ∈ (0, 1) and

a group h∗ ∈ {1, 2, . . . , d − 1} such that the condition in claim (iii) is violated, that

is
∑h∗

i=1

−→
b (i)(q) <

∑h∗

i=1
−→a (i)(q). Then by continuity of

−→
b (i)(p) and of −→a (i)(p) with re-

spect to p it also holds that there exists an interval (qL, q
H) such that q ∈ (qL, q

H) where∑h∗

i=1

−→
b (i)(q)−

∑h∗

i=1
−→a (i)(q) < 0 for all q ∈ (qL, q

H). Denote ∆(i)(p) :=
−→
b (i)(p)−−→a (i)(p),

then the condition can be rewritten as
∑h∗

i=1 ∆(i)(q)< 0 for all q ∈ (qL, q
H).

Set wi(p) = 0 for all p /∈ (qL, q
H). It follows thatDw(B)−Dw(A) =

∫ qH
qL

∑d
i=1wi(p)∆(i)(p)dp.

Let wi(p) = 1− d/h∗ for all p ∈ (qL, q
H) and i = 1, 2, ..., h∗ and wi(p) = 1 for all p ∈ (qL, q

H)

and i = h∗+1, ..., d, so that
∑d

i=1wi(p) = 0. Then
∑d

i=1wi(p)∆(i)(p) =
∑d

i=1 ∆(i)(p)− d/h
∗·∑h∗

i=1 ∆(i)(p). Recalling that by construction
∑d

i=1 ∆(i)(p) = 0 it follows that

Dw(B)−Dw(A) = −d/h∗ ·
∫ qH

qL

h∗∑
i=1

∆(i)(p)dp.

Given that
∑h∗

i=1 ∆(i)(q)< 0 for all q ∈ (qL, q
H), it follows that Dw(B)−Dw(A) > 0, thereby

violating claim (iii).

(iv) ⇒ (v). From Theorem A.2 in Marshall et al. (2011, p.30), statement (iv) implies

that

conv{Πd ·
−→
b (p) : Πd ∈ Pd} ⊆ conv{Πd · −→a (p) : Πd ∈ Pd} (17)

for every p ∈ [0, 1], where the conv operator indicates the convex hull. Recall that, by

construction, {−→a (p) : p ∈ [0, 1]} = MP ∗(A) and similarly for MP ∗(B). Hence, the

inclusion condition in (17) defined across all p’s coincides with Z∗(B) ⊆ Z∗(A) given the

definition of the Path Polytope Z∗(·).

(v) ⇒ (i). Starting from A and B and making use of the information embedded in

Z∗(A) and Z∗(B) we will construct the associated A∗ and B∗ and prove claim (i). In order

54



to construct matrix A∗ we will consider a set of cross sections of the Path Polytope Z∗(A).

Denote a cross-section of Z∗(A), generated by an isopopulation hyperplane set at level

p = 1
d
ed · p, by the set conv{Πd · p : Πd ∈ Pd}, where p lies on the edge of Z∗(A). We

consider two sets of Path Polytope cross-sections associated with different proportions p of

the average cumulative distributions across groups.

(i) The first set corresponds to all cross-sections delimited by A’s classes. In this case

the set of vectors p coincides with the vertices of A in MP ∗(A) that is −→a j for all j or

their permutations such that ∃Πd ∈ Pd for which Πd · p = −→a j. We define the first set as

S1 := {pj : pj = 1
d
etd · −→a j, j = 1, . . . , nA} with nA denoting the number of classes of A.

(ii) To identify the second set, we consider MP ∗(A) and we identify all vectors pj ∈

MP ∗(A) where it occurs a re-ranking of the proportions of the groups across A’s classes.

Define the indices j = 1, . . . , ncA associated with points pj ∈MP ∗(A) that are comonotonic,

i.e., such that for every group i and index j, the element pij of pj is ordered with respect to

any other element pi′j of pj, i 6= i′, in the same way as the element pij+1 of pj+1 is ordered

with respect to the element pi′j+1 of pj+1, that is, such that pij ≥ pi′j → pij+1 ≥ pi′j+1 for

all i, i′ ∈ {1, 2, . . . , d}.

To identify this set, start with j = 1 and set p1 = −→a 1, then for j = 2 derive

p2 := argmaxp{etd · p : p ∈MP ∗(A), etd · p > etd · p1, p is comonotonic to p1}.

If all group distributions are ordered in matrix A and there does not exist a pair of groups

i, i′ where (strict) re-ranking occurs, then p2 = −→a nA
= ed and ncA = 2. Else, if re-

ranking occurs along MP ∗(A) starting from p1, then p2 denotes the vector in MP ∗(A)

immediately preceding the vectors where (strict) re-ranking takes place and p2 is such

that 1 > etd · p2 > etd · p1. We can then reiterate the procedure to derive p3.
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Recursively, step j of the algorithm would give

pj = argmaxp{etd · p : p ∈MP ∗(A), etd · p > etd · pj−1, p is comonotonic to pj−1},

with the sequence ending after a finite number ncA of steps. The set of associated proportions

of the average distribution across groups is denoted S2 := {pj : pj = 1
d
etd · pj, pj ∈

MP ∗(A), j = 1, . . . , ncA}.

Consider now the union of the sets derived in cases (i) and (ii), giving SA = S1 ∪

S2 := {pj : j = 1, . . . , n∗A}, where proportions are ordered such that pj < pj+1 ∀j and

nA ≤ n∗A ≤ nA + ncA.

An analogous procedure identifies a set of proportions SB := {pj : j = 1, . . . , n∗B} from

Z∗(B). The union of the sets SA and SB is denoted S = SA ∪ SB := {pj : j = 1, . . . , n∗}

where proportions are ordered such that pj < pj+1 ∀j, with max{n∗A, n∗B} ≤ n∗ ≤ n∗A + n∗B,

p1 = 1
d

min{a1, b1} and pn∗ = 1.

We consider the sequence of indices j = 1, . . . , n∗ and the associated pj to derive the

partitions of the n∗ classes of the two ordinal comparable matrices A∗ and B∗ obtained

from A and B. These operations will not affect the shape of the Path Polytopes of A and

of B, respectively.

To see this, consider first matrix A. Note that for every pj ∈ S there exists a pAj ∈

MP ∗(A) such that pj = 1
d
ed·pAj . The vector pAj can be obtained from the vectors associated

to the classes of A through splits and elimination/insertion of empty classes. For instance,

if pAj is such that 1
d
etd · −→a k < pj <

1
d
etd · −→a k+1 for a class k of A, then it can be re-written

as pAj = −→a k + λak+1 by construction of the Monotone Path upon which pAj lies. In this

case, λ ∈ (0, 1) can be interpreted as a split parameter.

The sequence of vectors pA1 , . . . ,p
A
n∗ displays comonotonic elements. The condition

of comonotonicity is defined for adjacent vectors in the sequence. However, the condition

might not hold if it is applied to any pair of non-adjacent vectors. In fact, it is possible that
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∃j such that pAj is not comonotonic to pAj+k for k ≥ 2. Define, hence, a sequence of vectors

zA1 , . . . , z
A
n∗ obtained by independently permuting the elements of each vector in pA1 , . . . ,p

A
n∗

so that all these vectors become comonotonic to pA1 . We then obtain zA1 = pA1 , and zA2 = pA2

by construction, and derive a set of permutation matrices Πj
d ∈ Pd so that zA3 = Π3

d ·pA3 is

comonotonic with zA2 (and also with zA1 ), zA4 = Π4
d ·Π3

d · pA4 is comonotonic with zA3 (and

therefore also with zA2 and zA1 ), and so on, so that in general zAj = (Πj
d ·Πj−1

d · . . . ·Π3
d) ·pAj

is comonotonic with zAj−1, . . . , z
A
1 for j = 1, . . . , n∗. The vectors zA1 , . . . , z

A
n∗ identify either

vertices or points along the edges of Z∗(A).

Define the matrix
−→
A∗ := (zA1 , . . . , z

A
n∗), that by construction of the vectors zAj satisfies

the properties of a cumulative distribution matrix. The underlying distribution matrix is

denoted A∗ := (∆zA1 , . . . ,∆zAn∗) where ∆zAj := zAj − zAj−1 ≥ 0d with zA0 := 0d such that

∆zA1 = zA1 = pA1 . The definition of A∗ clarifies that the group permutations mapping

points pAj into zAj can be associated with a sequence of interchange of groups transforma-

tions applied to A∗. According to the definition of Axiom I, in fact, one can construct the

sequence of the interchange of groups permutation matrices by considering the matrices

(Πj
d ·Πj−1

d · . . . ·Π3
d) for j = 3, 4, . . . , n∗− 1 where each generic matrix Πj

d that involve per-

mutations of more than two groups could be decomposed itself into a sequence of matrices

involving only permutations of two groups.

Define in a similar way the sequence zB1 , . . . , z
B
n∗ and the matrix B∗ := (∆zB1 , . . . ,∆zBn∗),

where zBj is either a vertex or lies along the edges of Z∗(B). By construction, the group

distributions in matrix A∗ and in matrix B∗ are ordered by stochastic dominance, and the

order of the groups coincides in both matrices up to an independent permutations of the

rows of the matrices. Furthermore, 1
d
etd ·A∗ = 1

d
etd ·B∗. Hence the following claim holds:

Claim A: A∗ and B∗ are ordinal comparable matrices obtained from A and B respec-

tively through operations of split of classes, insertion/elimination of empty classes and

interchange of groups transformations.
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Moreover, these matrices are such that Z∗(A∗) = Z∗(A) and Z∗(B∗) = Z∗(B). Thus,

Z∗(B) ⊆ Z∗(A) in claim (v) implies Z∗(B∗) ⊆ Z∗(A∗), that is

conv{Πd ·
−→
b ∗j : Πd ∈ Pd} ⊆ conv{Πd · −→a ∗j : Πd ∈ Pd},

for all j = 1, . . . , n∗. According to Marshall et al. (2011) Theorems 1.A.2 and 2.B.2, this

condition is equivalent to
−→
b∗tj Lorenz dominates

−→
a∗tj for all j = 1, . . . , n∗. This latter

condition is considered in Lemma ??, as claim (iv). According to the equivalence between

claims (iv) and (i) in Lemma ?? it follows that B∗ can be obtained from A∗ through a

finite sequence of exchange transformations, which combined with claim A presented above

gives claim (i) and concludes the proof.

Q.E.D.

A.3 Proof of Corollary 1

Proof easy Q.E.D.

A.4 Proof of Corollary 2

Proof For A ∈ M2, denote the boundaries of the Path Polytope PP (A) by φ(p) =

F2(F
−1
1 (p)) and ψ(p) = F1(F

−1
2 (p)). The two boundaries delimit areas with respect to

the diagonal expressing perfect similarity, that are denoted Aφ =
∫ 1

0
|p− φ(p)| dp and

Aψ =
∫ 1

0
|p− ψ(p)| dp, respectively. The two Path Polytope boundaries are symmetric with

respect to the diagonal, and by construction φ(p) and ψ(p) satisfy φ ◦ ψ(p) = p = ψ ◦ φ(p)

at any p. Building on this, we express the two areas as Aφ =
∫
X |F1(x)− F2(x)|dF1(x) by

changing the variable of integration to p = F1(x) and Aψ =
∫
X |F2(x)− F1(x)|dF2(x) by

changing the variable of integration to p = F2(x). From this it is possible to write half of
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p6 = 1O p6 = 1Op1 p2 p3 p4 p5 p1 p2 p3 p4 p5

1 1

−→a 1(p) −→a 2(p)

−→a 3(p)
−→
b 3(p)

−→
b 2(p)

−→
b 1(p)

Figure 7: Cumulative distributions for three groups

the area of the Path Polytope (equal to Aφ + Aψ) as

1

2
(Aφ + Aψ) =

∫
X
|F1(x)− F2(x)| d1

2
(F1(x) + F2(x)) = D(F1, F2).

Q.E.D.

B Implementation

This section describes a procedure to obtain ordinal comparable matrices, that employs

dissimilarity preserving operations exclusively. The relation with cumulative distributions

representations is also discussed. The cumulative distribution functions of matrices A,B ∈

M3 are pictured in figure 7. Share of the average population distribution p are reported

on the horizontal axis, whereas cdfs corresponding to any p ∈ [0, 1] are on the vertical axis.

Each distribution is identified by a specific marker, corresponding to groups proportions

in different classes of the underlying distribution matrices. In the example, nA = 3 and

nB = 4.
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