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mechanisms are more fair by stability : whenever the old mechanism does
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fair by counting the blocking students: the old mechanism always has at
least as many blocking students as the new mechanism. Most of the results
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1. Introduction

In the past two decades, there has been a wave of reforms of matching
systems around the world, ranging from college admissions systems in Chinese
provinces, secondary public school admissions systems in multiple districts in
Ghana, to public school admissions systems in multiple cities in the US and the
UK. In this paper, we discuss the motives behind these reforms and evaluate
their results.

The old matching systems were criticized because they were vulnerable to
gaming and were unfair. The most vivid example is, perhaps, the 2007 major
reform in England, which covers 146 local school admissions systems. Ac-
cording to the Secretary of State, Alan Johnson, the aim of the reform was
to “ensure that admission authorities – whether local authorities or schools –
operate in a fair way” (School Admissions Code, 2007). Among other things,
the reform prohibited the practice of giving “priority to children according to
the order of other schools named as preference by their parents,” known as the
first-preference-first principle. According to this principle, a student who ranks
a school higher in her list receives a higher admission priority at this school
compared to the students who rank this school lower. Before the reform, as
many as one-third of the schools in England used this principle.

In 2009, the Chicago authorities implemented a similar reform in their Se-
lective High School admission system. They replaced the so-called Boston
mechanism that used the first-preference-first principle for each school, ar-
guing that, due to this principle “high-scoring kids were being rejected simply
because of the order in which they listed their college prep preferences” (Pathak
and Sönmez, 2013). The same Boston mechanism has also been used for col-
lege admissions in several provinces in China. It raised similar complaints. For
example, one parent said: “My child has been among the best students in his
school and school district. He achieved a score of 632 in the college entrance
exam last year. Unfortunately, he was not accepted by his first choice. After
his first choice rejected him, his second and third choices were already full. My
child had no choice but to repeat his senior year” (Chen and Kesten, 2017; Nie,
2007). In 2003, more than 3 million students, representing half of the annual
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intake, were matched to significantly worse colleges than what their grades
allowed (Wu and Zhong, 2020).

These examples illustrate an unfairness issue with the old mechanisms: they
can induce a matching with a so-called blocking student, that is, a student who
prefers a school over her matching while at least one seat at this school has
been assigned to a student with a lower priority (or even left empty). The
blocking student desires and deserves this seat, yet she has not been assigned
to it. A matching with no blocking student is called stable and is viewed as a
fair outcome as they eliminate “justified envy" (Abdulkadiroğlu and Sönmez,
2003).1

Another reason why the old mechanisms induced matchings with blocking
students are ranking constraints: each student was allowed to rank-list only
a limited number of schools, typically between 3 and 5 (Pathak and Sönmez,
2013). Even in New York, where the ranking constraint is 12, around 25%
of students report a complete list of 12 schools, while only 5% report 9, 10,
or 11 schools, suggesting that 20% of the students in New York could not
list all acceptable schools (Abdulkadiroğlu et al., 2009). Students who missed
all their listed schools but could have been admitted to unlisted schools will
be dissatisfied with the admissions system and deem it unfair. In this paper,
we consider all blocking students, whether it concerns listed schools for which
admissions authorities can verify priority violation or unlisted schools which
lead to dissatisfaction (see Calsamiglia et al., 2010).

Perhaps surprisingly, the new mechanisms are also unfair as each of them
might induce a matching with a blocking student. We show, however, that the
new mechanisms are more fair compared to the old alternatives by using the
two fairness criteria.

The first fairness criterion is based on the set-inclusion of instances with
stable outcomes. One mechanism is more fair by stability than a second
mechanism if it induces a stable matching whenever the second mechanism
induces a stable matching, and the reverse is not true for some instances.

1In general, the relation between stability and fairness is more nuanced, see Romm et al.
(2020).



4

Reforms From To
more fair

by stability?
more fair

by counting?

Arbitrary
priority

Common
priority

Arbitrary
priority

Common
priority

UK(54), 2007/11 FPF k GSk
not

comparable∗,∗∗ more not
comparable∗,∗∗

not
comparable∗,∗∗

Chicago, 2009
UK(4), 2007 βk GSk more more∗ not

comparable∗,∗∗
not

comparable∗,∗∗

Chicago, 2010
Ghana, 2007/08
UK(2), 2010

GSk GSk+1 more∗∗ more∗,∗∗ more∗∗ more∗,∗∗

China(13), 2001/12 β Ch(e) more more not
comparable∗,∗∗

not
comparable∗,∗∗

Table 1. Comparison of the matching mechanisms by fairness criteria.

Notes: Each row represents a comparison of the mechanism in the third column to the
mechanism in the second column according to one of the two fairness notions. Asterisks ∗
and ∗∗ show which results are robust in strategic settings (see Section 4 for details.) The
complete list of the the UK local matching systems and Chinese provinces that underwent
the reforms can be found in Pathak and Sönmez (2013) and in Chen and Kesten (2017),
respectively.

Our main results using this criterion support that most of the reforms have
adopted matching mechanisms that are more fair by stability (see Table 1,
column 4). For example, in China, this is true for half of its provinces (Chen
and Kesten, 2017). In Chicago, the mechanism adopted after the 2009 reform
is more fair by stability than the one previously used (Theorem 1); the one
adopted after the 2010 reform is also more fair by stability than the mechanism
adopted in 2009 (Theorem 2).

The only exception is the 2007 reform in England — in the districts where
some but not all schools used the first-preference-first principle. For each of
these districts, there are instances where the matching was stable under the old
mechanism but is not stable under the new mechanism (Example 1). However,
we restored the result when schools in such a district have a common priority
order, e.g., based on students’ grades or a single lottery (see Table 1, column
5; Proposition 1).
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The second fairness criterion is stronger than fairness by stability and is
based on counting the number of blocking students. A mechanism ismore fair
by counting (the number of blocking students) than a second mechanism if
for each instance the second mechanism has at least as many blocking students
as the first mechanism, and sometimes strictly more.2

Our main result for this criterion supports few reforms (see Table 1, columns
6,7). Broadly, these reforms involve extending ranking constraints in the Gale-
Shapley mechanism (Theorem 4). This took place in Chicago (2010), in Ghana
(2007, 2008), in Newcastle (2010), and in Surrey (2010) (Pathak and Sönmez,
2013). For all other reforms, this criterion is too strong. We show that after
these reforms the number of blocking students may increase (Examples 3 and
4).

Note that so far we have considered fairness separately from strategic issues,
which is standard in the literature as certain mechanisms are not stable under
truthful reporting, yet are stable in equilibrium (e.g., Abdulkadiroğlu and
Sönmez, 2003; Ergin and Sönmez, 2006; Chen and Kesten, 2017). Yet, each
of the mechanisms that we study also might give students an incentive to
misreport their preferences. This poses a serious methodological difficulty on
how to measure the unfairness induced by the first-preference-first principle
and more generally by manipulable mechanisms. On the one hand, when
students truthfully report their preferences, the set of blocking students is
well understood but does not necessarily represent the blocking students of the
expected outcomes. On the other hand, when students are well sophisticated,
the outcome typically does not exhibit any blocking pair. To address this
difficulty, we develop two settings.

In the first setting, some students are sophisticated and best respond while
others are truthful (as in Pathak and Sönmez, 2008).3 In the second setting,
all students are semi-sophisticated. In these settings, unfairness arises from
the inability of some students to best respond. We show that many of our
2To our knowledge, this criterion has been first used by Roth and Xing (1997). Niederle
and Roth (2009), Eriksson and Häggström (2008) and Dogan and Ehlers (2020a) count the
number of blocking pairs, which does not allow comparisons in our setting (see Remark in
section 3).
3König et al. (2019) study this setting experimentally by assuming that some students report
truthfully and allowing others to misreport.
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results are robust to these new settings (see the asterisk icons in Table 1). We
present this argument in section 4.

We also find a strong logical relationship between stability and manipula-
bility. Under the constrained Gale-Shapley mechanism, the stability of the
outcome at any instance implies non-manipulability at this instance; while
for the constrained Boston mechanism it is reversed: manipulability implies
instability (Corollary 1 and Figure 1). For the constrained serial dictator-
ship mechanism the two concepts are equivalent: its outcome at any instance
is stable if and only if the mechanism is not manipulable at this instance
(Proposition 3).

A more subtle relationship between stability and manipulability can be seen
in the reform in England. After this reform, the mechanisms in most school
districts did not become less manipulable (Bonkoungou and Nesterov, 2021)
and they did not become more fair by stability either (Example 1 below).
However, the reform was successful according to the following criterion: if the
reform disrupted fairness — by producing an unstable matching while it would
have been stable before the reform — the new matching is not vulnerable to
gaming (Proposition 4).
Related literature. Apart from the papers studying the reforms men-

tioned earlier (Pathak and Sönmez, 2013; Chen and Kesten, 2017; Bonkoungou
and Nesterov, 2021) and papers that count blocking agents and blocking pairs
(Roth and Xing, 1997; Niederle and Roth, 2009; Eriksson and Häggström,
2008) there has been recent literature interested in various ways of comparing
mechanisms by fairness.

Among the strategy-proof and Pareto efficient mechanisms, the Gale’s Top
Trading Cycles mechanism (Shapley and Scarf, 1974) is among the most fair
by stability when each school has one seat (Abdulkadiroğlu et al., 2020). This
result also holds for other fairness comparisons, such as the set of blocking
students (Dogan and Ehlers, 2020b) and the set of blocking triplets (i, j, s) –
student i blocking the matching of school s with student j (Kwon and Shorrer,
2019). The result holds for any stability comparison that satisfies few basic
properties (Dogan and Ehlers, 2020b).
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Among the Pareto efficient mechanisms, the Efficiency Adjusted Deferred
Acceptance mechanism (EADA) due to Kesten (2010) is among the most fair in
terms of blocking pairs and blocking triplets (Dogan and Ehlers, 2020a; Tang
and Zhang, 2020; Kwon and Shorrer, 2019). Independent from the present
work, Dogan and Ehlers (2020a) also use the fairness by counting criterion to
show that among efficient mechanisms EADA is not the most fair by counting,
unless the priority profile satisfies few acyclicity conditions.

The first paper that studied the constrained mechanisms is Haeringer and
Klijn (2009). They study the stability of the Nash equilibrium outcomes of the
game induced by these mechanisms. The most important insight is that the
Nash equilibrium outcomes of the constrained Boston mechanism are all stable,
while the Nash equilibrium outcomes of the constrained Gale-Shapley may not
all be stable.4 Besides, the Nash equilibrium outcomes of the constrained Gale-
Shapley are a subset of the Nash equilibrium outcomes of any constrained Gale-
Shapley with a longer list. Therefore, when the Nash equilibrium outcomes
of the constrained Gale-Shapley with a longer list are all stable, the Nash
equilibrium outcomes of the constrained Gale-Shapley with a shorter list are
also stable.

The rest of the paper is organized as follows. Section 2 introduces the model
and the mechanisms. Section 3 presents the fairness comparisons and section 4
extends them to strategic settings. Section 5 studies the relationship between
stability and manipulability. We present most of the proofs in the appendix.

2. Model

In a school choice model (Balinski and Sönmez, 1999; Abdulkadiroğlu and
Sönmez, 2003), there is a finite and non-empty set I of students with a generic
element i and a finite and non-empty set S of schools with a generic element
s.

Each student i has a strict preference relation Pi over S ∪ {∅}, where
∅ represents the outside option for this student. For each student i, let

4Ergin and Sönmez (2006) showed that the Nash equilibrium outcomes of the unconstrained
Boston mechanism are stable.
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Ri denote the “at least as good as” relation associated with Pi.5 School s is
acceptable to student i if s Pi ∅; and it is unacceptable to student i if
∅ Pi s. The list P = (Pi)i∈I is a preference profile. Given a proper subset
I ′ ( I of students, we will often write a preference profile as P = (PI′ , P−I′)

to emphasize the components for the students in I ′.
Each school s has a strict priority order �s over the set I of students, and

a capacity qs (a natural number indicating the number of its available seats).
The list �= (�s)s∈S is a priority profile and q = (qs)s∈S is a capacity
vector. We extend each priority order �s of school s to the set 2I of subsets
of students and assume that this extension is responsive to the priority order
�s over I as follows. The priority order �s of school s is responsive (Roth,
1986) if

• for each i, j ∈ I and each I ′ ⊂ I \{i, j} such that |I ′|< qs− 1, we have,
(i) I ′ ∪ {i} �s I ′, and (ii) I ′ ∪ {i} �s I ′ ∪ {j} if and only if i �s j and
• for each I ′ ⊂ I such that |I ′|> qs, we have ∅ �s I ′.

The tuple (I, S, P,�, q) is a school choice problem or simply a problem.
We assume that there are more students than schools, that is, |I|> |S|. The
set of students and the set of schools are fixed throughout the paper, and we
denote the school choice problem by the triple (P,�, q).

A matching µ is a function µ : I → S ∪ {∅} such that for each school
s, |µ−1(s)|≤ qs. We say that student i is matched under µ if µ(i) 6= ∅ and
unmatched under µ if µ(i) = ∅.

Let (P,�, q) be a problem. A matching µ is individually rational under
P if for each student i, µ(i) Ri ∅. A pair (i, s) of a student and a school blocks
the matching µ under (P,�, q) if s Pi µ(i) and either there is a student j such
that µ(j) = s and i �s j or |µ−1(s)|< qs. Student i is a blocking student
for the matching µ under (P,�, q) if there is a school s such that the pair
(i, s) blocks µ under (P,�, q). A matching µ is stable at (P,�, q) if it is
individually rational under P and has no blocking student.

A mechanism ϕ is a function which maps each problem to a matching.
For each problem (P,�, q), let ϕi(P,�, q) denote the component for student
i. A mechanism ϕ is individually rational if for each problem (P,�, q) the

5That is, for each s, s′ ∈ S ∪ {∅}, s Ri s
′ if and only s Pi s

′ or s = s′.
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matching ϕ(P,�, q) is individually rational under P . A mechanism ϕ is stable
if for each problem (P,�, q) the matching ϕ(P,�, q) is stable at (P,�, q).

2.1. Mechanisms. We are interested in the mechanisms that were used either
before or after the reforms. We first describe the unconstrained versions.

Gale-Shapley. Gale and Shapley (1962) showed that for each problem, there
exists a stable matching. In addition, there is a student-optimal stable match-
ing, which is a matching that each student finds at least as good as any other
stable matching. For each problem (P,�, q), this matching can be found via
the Gale and Shapley (1962) student-proposing deferred acceptance algorithm.

• Step 1: Each student applies to her most-preferred acceptable school (if
any). If a student did not rank any school acceptable, then she remains
unmatched. Each school s considers its applicants at the first step
denoted as I1

s and tentatively accepts min(qs, |I1
s |) of the �s-highest

priority applicants and rejects the remaining ones. Let A1
s denote the

set of students whom school s has tentatively accepted at this step.
• Step t>1: Each student, who is rejected at step t − 1, applies to her
most-preferred acceptable school among those which have not yet re-
jected her (if any). If a student does not have any remaining acceptable
school, then she remains unmatched. Each school s considers the set
At−1
s ∪ I ts, where I ts are its new applicants at this step, and tentatively

accepts min(qs, |At−1
s ∪ I ts|) of the �s-highest priority applicants and

rejects the remaining ones. Let Ats denote the set of students whom
school s has tentatively accepted at this step.

The algorithm stops when no student is rejected and thus each student is
either accepted at some step or has been rejected by all of her acceptable
schools and is unmatched. The tentative acceptances become final at this
step. Let GS(P,�, q) denote the obtained matching.

Serial Dictatorship. When schools have the same priority order, we call the
Gale-Shapley mechanism the serial dictatorship mechanism.6 Let SD(P,�, q)

6This is a slight abuse of our definition since the domain of a mechanism is the set of all
problems — including problems where schools have different priorities.
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denote the matching assigned by the serial dictatorship mechanism to the
problem (P,�, q).

First-Preference-First. The schools are exogenously divided into two disjoint
subsets Sfpf and Sep such that Sfpf ∪ Sep = S. The set Seq is a set of equal-
preference schools and Sfpf is a set of first-preference-first schools. The
First-Preference-First mechanism (FPF) assigns to each problem (P,�, q), the
matching GS(P, �̂, q) where �̂ is obtained as follows: the priority order of each
equal-preference school is maintained intact while the priority order of each
first-preference-first school is adjusted according to the rank that students have
assigned to this school. Formally, the priority profile �̂ is obtained as follows:

1. for each equal-preference school s ∈ Sep, �̂s =�s and
2. for each first-preference-first school s ∈ Sfpf , �̂s is defined as follows. Let

I1(s) be the set of students who have ranked school s first under P , I2(s) the
set of students who have ranked school s second under P , and so on. Note
that we count the ranking of ∅ as well.

• For each `, k ∈ {1, . . . , |S|+1} such that ` > k and each students i, j
such that i ∈ Ik(s) and j ∈ I`(s), i �̂s j.
• For each k ∈ {1, . . . , |S|+1} and each i, j ∈ Ik(s), i �̂s j if and only if
i �s j.

Let FPF (P,�, q) denote the matching assigned to the problem (P,�, q) by
the First-Preference-First mechanism.

Boston. Until 2005, the Boston public school system was using an immedi-
ate acceptance mechanism called the Boston mechanism (Abdulkadiroğlu and
Sönmez, 2003). This mechanism assigns to each problem (P,�, q), the match-
ing as described in the following algorithm.

• Step 1: Each student applies to her most-preferred acceptable school (if
any). Each school s, considers its applicants at the first step denoted
as I1

s and immediately accepts min(qs, |I1
s |) of the �s-highest priority

applicants and rejects the remaining ones. For each school s, let q1
s =

qs −min(qs, |I1
s |) denote its remaining capacity after this step.

• Step t>1: Each student who is rejected at step t−1, applies to her most-
preferred acceptable school among those which have not yet rejected
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her (if any). Each school s considers its new applicants I ts at this
step and immediately accepts min(qt−1

s , |I ts|) of the �s-highest priority
applicants and rejects the remaining ones. For each school s, let qts =

qt−1 −min(qt−1
s , |I ts|) denote its remaining capacity after this step.

The algorithm stops when every student is either accepted at some step or
has applied to all of her acceptable schools. Let β(P,�, q) denote the matching
assigned by the Boston mechanism to the problem (P,�, q).

Remark. In the (algorithm of the) Boston mechanism, students applying to
the same school at each step have assigned the same rank to it. Therefore,
students applying to a school at a given step of the algorithm rank this school
higher than those applying to it at any step after. In particular, no student
could be rejected by a school while another student, who has assigned a lower
rank to it, is accepted by this school. Thus, the Boston mechanism is a first-
preference-first mechanism where every school is a first-preference-first school.
This result follows from the Proposition 2 of Pathak and Sönmez (2008).

Constrained mechanisms. Haeringer and Klijn (2009) first observed that in
practice matching mechanisms often have ranking constraints and students
are allowed to report only a limited number of schools. This means that
schools that are listed below a certain position are not considered. Formally,
let k ∈ {1, . . . , |S|} and let student i have x acceptable schools. The truncation
after the k’th acceptable school (if any) of the preference relation Pi is the
preference relation P k

i with min(x, k) acceptable schools such that all schools
are ordered as in Pi. Let P k = (P k

i )i∈I . The constrained version ϕk of the
mechanism ϕ is the mechanism that assigns to each problem (P,�, q) the
matching ϕ(P k,�, q). That is, ϕk(P,�, q) = ϕ(P k,�, q).

Note that the constrained Gale-Shapley mechanism is stable at the reported
preference, but not under the true preferences.

Chinese parallel. Chen and Kesten (2017) describe a parametric mechanism
that many Chinese provinces have been using. The parameter e ≥ 1 is a natu-
ral number. For each problem (P,�, q), the outcome is a sequential application
of constrained GS. In the first round, the matching is final for students who
are matched under GSe(P,�, q), while unmatched students proceed to the
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next round. In the next round, each school reduces its capacity by the number
of students assigned to it in the last round, each matched student replaces
her preferences with a preference relation where she finds no school acceptable
and the unmatched students (in the previous round) are matched according to
GS2e for the reduced capacities and the new preference profile. The process
continues until either no school has a remaining seat or no unmatched student
finds a school with a remaining seat acceptable. Let Ch(e)(P,�, q) denote the
matching assigned by the mechanism to (P,�, q).7

3. Comparison of Mechanisms

In this section we compare mechanisms according to two criteria: fairness
by stability and fairness by counting.

3.1. Fairness by stability. Our starting point is a comparison according to
the set inclusion of the problems where mechanisms are stable.

Definition 1 (Chen and Kesten, 2017). Mechanism ϕ′ is more fair by sta-
bility than ϕ if

(i) at each problem where ϕ is stable, ϕ′ is also stable and
(ii) there exists a problem where ϕ′ is stable but ϕ is not.

This criterion is less demanding in the sense that it does not take into ac-
count the problems where mechanisms produce unstable outcomes. However,
it does not explain many changes that followed the 2007 reform in the UK
as the constrained First-Preference-First mechanism is not comparable to the
constrained Gale-Shapley mechanism according to this criterion. We demon-
strate this in the following example.

Example 1. Let I = {i1, . . . , i7} and S = {s1, . . . , s5}. Let school s3 be the
only first-preference-first school. Let (P,�, q) be a problem where each school
has one seat and the remaining components are specified as follows. (The sign
... indicates that the remaining part is arbitrary.)

7This definition of the Chinese parallel mechanisms is given only for the symmetric version
where each round has the same length e. See Chen and Kesten (2017) for details.
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Pi1 Pi2 Pi3 Pi4 Pi5 Pi6 Pi7 �s1 �s2 �s3 �s4 �s5
s1 s1 s4 s1 s2 s1 s5 i4 i5 i3 i1 i7

s2 s3 s3 s2 s1 s2 s1
...

... i1 i6
...

s3 ∅ ∅ s3 s3 s5 s2 i2 i3

s4 ∅ ∅ s3 ∅ ...
...

∅ s4

∅
The outcomes of the constrained First-Preference-First FPF 4 and the con-

strained Gale-Shapley GS4 at (P,�, q) are as follows:

FPF 4(P,�, q) =

(
i1 i2 i3 i4 i5 i6 i7

s4 ∅ s3 s1 s2 ∅ s5

)
,

GS4(P,�, q) =

(
i1 i2 i3 i4 i5 i6 i7

s3 ∅ s4 s1 s2 ∅ s5

)
.

The matching FPF 4(P,�, q) is stable.8 However, the matching GS4(P,�, q)
is not stable. Indeed, the pair (i6, s4) blocks this matching because student i6
is unmatched and finds school s4 acceptable, but student i3 is matched to s4

while i6 �s4 i3.
The intuition is that the constraint in GS shortened the chains of the re-

jections needed to reach a stable matching in the Gale-Shapley algorithm. For
example, student i3 is temporarily matched to school s4 at some step of the
algorithm. At the student-optimal stable matching for (P,�, q), school s4 is
assigned to student i1. However, we need an application of student i1 at that
school to displace student i3 from s4. This does not occur under GS4 because
no student initiates the rejection chain. However, under FPF 4, the applica-
tion of student i2 at school s3 causes the rejection of student i1 at s3 (student
i2 has ranked it higher than i1 and school s3 is a first-preference-first school).
This is the rejection needed to reach the student-optimal stable matching.

In this example, we illustrate how the constrained GS mechanism has short-
ened the chains needed to reach a stable matching. It is well known that
8Note that this matching is both the student-optimal and the school-optimal stable match-
ing.
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this type of chains lead to unambiguous welfare losses (in terms of Pareto
efficiency): each student in the chain is worse off, all other students are un-
affected (Kesten, 2010).9 However, under the Boston mechanism, (where all
schools are first-preference-first schools) there is no such chain. The following
result is an implication of this fact.

Theorem 1. Suppose that there are at least two schools and let k > 1. The
constrained Gale-Shapley mechanism GSk is more fair by stability than the
constrained Boston mechanism βk.

Similarly, when schools have a common priority order, there is no such chain
in the Gale-Shapley mechanism. We restore the result for this case.

Proposition 1. Suppose that there are at least two schools and at least one
first-preference-first school. Let k > 1 and suppose that schools have a common
priority. The constrained serial dictatorship mechanism SDk is more fair by
stability than the constrained First-Preference-First mechanism FPF k.

The constrained GS with shorter and longer lists mechanisms can also be
compared according to this criterion. However, the intuition for this result is
different. When the constrained Gale-Shapley with shorter lists is stable, the
restriction has no effect on the outcome.

Lemma 1. Let (P,�, q) be a problem and k > 1. Then GSk(P,�, q) is stable
if and only if GSk(P,�, q) = GS(P,�, q).

Then, when the constraint in GSk does not affect the outcome, longer con-
straints like GSk+1 will not affect the outcome either.

Theorem 2. Suppose that there are at least three schools and let k > `.
Then, the constrained Gale-Shapley mechanism GSk is more fair by stability
than GS`.

Finally, we consider the Chinese mechanisms. These mechanisms are known
to be comparable in terms of fairness by stability, but only in case one tier
is a multiple of another (Chen and Kesten, 2017). We present this result for
completeness.
9These chains are initiated by the so-called interrupters. These are students who initiate
chains of rejections that return to them (Kesten, 2010).



15

Theorem 3 (Chen and Kesten, 2017). For each M,M ′ ∈ N such that M ′ =

mM for some m ∈ N, the Chinese mechanism Ch(M ′) is more fair by stability
than Ch(M).

3.2. Fairness by counting. In this section we present the results for a stronger
comparison criterion: the number of blocking students. With this criterion,
the mechanisms can be compared at each problem (even where both induce
unstable outcomes).

Definition 2. An individually rational mechanism ϕ′ is more fair by count-
ing (the blocking students) than an individually rational mechanism ϕ if

(i) for each problem, there are at least as many blocking students of the
outcome of ϕ as there are of the outcome of ϕ′, and

(ii) there is a problem where there are more blocking students of the outcome
of ϕ than the outcome of ϕ′.

Fairness by counting is stronger than fairness by stability considered earlier.
If a mechanism ϕ′ is more fair by counting than ϕ, then for each problem
where ϕ induces a stable matching, i.e., there is no blocking student, ϕ′ also
necessarily induces a stable matching. Our main result with this concept is
a strengthening of the comparison between different constraints of the Gale-
Shapley mechanism (Theorem 2).

We illustrate the intuition using the example below.

Example 2. Let I = {i1, . . . , i5} and S = {s1, . . . , s4}. Let (P,�, q) be a
problem where each school has one seat, and the remaining components are
specified as follows.

Pi1 Pi2 Pi3 Pi4 Pi5 �s1 �s2 �s3 �s4
s1 s1 s2 s3 s3 i3 i2 i1 i5

s2 s2 s1 s1 s4 i1 i4 i5
...

s3 s3 s3 s2
...

...
...

...
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Let us compare the mechanisms GS2 and GS1. We have

GS2(P,�, q) =

(
i1 i2 i3 i4 i5

∅ s2 s1 ∅ s3

)
where student i1 is the unique blocking student for the matching under (P,�, q).
Indeed, i1 is unmatched, finds s3 acceptable and has a higher priority at s3 than
i5. Let us shorten the reported list only for student i2. Then,

GS2(P 1
i2
, P−i2 ,�, q) =

(
i1 i2 i3 i4 i5

s1 ∅ s2 ∅ s3

)
.

As a result of this replacement, there are three types of students, given their
status in the previous matching. First, student i2 — who was matched —
became a blocking student. Second, student i1 — who was a blocking student
— is not a blocking student for the new matching. Finally, student i4 is a new
blocking student.

The intuition of this result is that by shortening the schools listed by student
i2, she is worse off while the other students are weakly better off. First, she is
a blocking student for the new matching. Second, student i1 is not a blocking
student for the new matching, though she was a blocking student for the old
matching. But a new blocking student appears so that there are two blocking
students in total.

This turns out to be true in general. When a student shortens the list, the
set of blocking students changes, but the size of this set never decreases. By
sequentially applying this argument to all students, we get the following result.

Theorem 4. Suppose that there are at least two schools and let |S|> k > ` ≥ 1.
The constrained Gale-Shapley mechanism GSk is more fair by counting than
GS`.

Next, we show that the other comparisons do not extend to this stronger
criterion. The first example shows that the constrained Boston mechanism is
not comparable to the constrained GS.
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Example 3 (Constrained Boston and GS). Let n ≥ 7, I = {i1, ..., in} and
S = {s1, . . . , s5}. Let (P,�, q) be a problem where each school has one seat
and the remaining components are specified as follows.

Pi1 Pi2 Pi3 Pi4 Pi5 . . . Pin−1 Pin �s, s∈S
s1 s2 s3 s1 s1 s1 s1 s4 i1
...

...
... s4 s2 s2 s2 s5 i2

s5 s3 s3 s3
... i3

... s5 s5 s5 i4

∅ ∅ ∅ i5
...
in

The outcomes of β3 and GS3 for this problem are specified as follows:

β3(P,�, q) =

(
i1 i2 i3 i4 i5 . . . in−1 in

s1 s2 s3 s5 ∅ . . . ∅ s4

)
and

GS3(P,�, q) =

(
i1 i2 i3 i4 i5 . . . in−1 in

s1 s2 s3 s4 ∅ . . . ∅ s5

)
.

Let us compare the number of blocking students for the two matchings. On
one hand, student i4 is the only blocking student for β3(P,�, q). Indeed,
the pair (i4, s4) blocks β3(P,�, q) under (P,�, q). On the other hand, stu-
dents i5, . . . , in−1 are all blocking students of GS3(P,�, q) because they are
unmatched, each of them prefers school s5 to being unmatched, and has higher
priority than in under �s5. Since n ≥ 7, there are at least two blocking students
of GS3(P,�, q). Therefore, there are more blocking students of GS3(P,�, q)
than β3(P,�, q). Under Theorem 1, there is a problem where GS3 is stable
but not β3.

Next, the symmetric Chinese parallel mechanisms are also not comparable
in terms of fairness by counting.

Example 4 (Chinese parallel). We consider Example 3. Consider the Chi-
nese mechanisms Ch(1) = β and Ch(3) and note that for the problem (P,�, q)
specified in that example, Ch(1)(P,�, q) = β3(P,�, q) and Ch(3)(P,�, q) =
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GS3(P,�, q). According to the conclusion in Example 3, there are more block-
ing students for Ch(3)(P,�, q) than Ch(1)(P,�, q). According to Chen and
Kesten (2017), there is a problem where Ch(3) produces a stable outcome but
Ch(1) does not.

The overall rankings with respect to the two criteria are presented in Table
1.

Remark. Dogan and Ehlers (2020a) compare mechanisms by the inclusion of
the blocking pairs and blocking students. However, these criteria are stronger
than fairness by counting (if the set of blocking pairs or blocking students
shrinks, so does the number of blocking students) and will lead to negative
results for our comparisons. To see this, consider Example 3. In this example,
(i5, s5) is a blocking pair for SD4(P,�, q) but not β4(P,�, q). In addition,
(i4, s4) is a blocking pair for β4(P,�, q) but not SD4(P,�, q).

For the comparison between different constrained Gale-Shapley, consider Ex-
ample 2. There, (i1, s3) is a blocking pair for GS2(P,�, q) but not GS1(P,�
, q). In addition, (i2, s2) is a blocking pair for GS1(P,�, q) but not GS2(P,�
, q).

4. Fairness in strategic settings

So far we evaluated the fairness of the outcomes of mechanisms when stu-
dents report their preferences truthfully. This approach is standard starting
with the seminal paper by Abdulkadiroğlu and Sönmez (2003), but it has a lim-
ited interpretation since the mechanisms in question also incentivize students
to misreport their preferences.

We face the following methodological difficulty. On the one hand, when
students sincerely report their true preferences, the set of blocking students
is well understood but does not necessarily represent the blocking students of
the expected outcomes.

On the other hand, when students are well sophisticated, potential blocking
students may misrepresent their preferences such that the expected outcome
does not exhibit any blocking pair. For example, in a game induced by the
Boston mechanism, all equilibrium outcomes are stable (Ergin and Sönmez,
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2006; Haeringer and Klijn, 2009), but students are very unlikely to reach an
equilibrium outcome even in lab settings (Featherstone and Niederle, 2016).
Thus, models of complete truthfulness and complete sophistication are both
not conclusive.

To address this difficulty, we introduce a new method of studying the fair-
ness of mechanisms. The general principal is that some students are not well
sophisticated to best respond and thus report truthfully; and we study whether
the mechanisms are fair to these students. We propose two settings. In the
first setting, some students are completely sincere, while others are completely
sophisticated. In the second setting, all students are semi-sophisticated: they
are truthful but avoid very competitive schools, that are obviously infeasible
and will be filled immediately by students of the highest priority.

We check if the results from the previous section are robust to this analysis.
Note that the negative results (denoted as “not comparable” in Table 1) remain
true in these settings.

4.1. Sincere and Sophisticated: reforms in Chicago. We use the reforms
in Chicago as an illustration. The Chicago selective high school system called
for a reform in the middle in their admissions process in 2009 and initiated
another reform in 2010. The admission to each of these schools is very com-
petitive. Each school uses a common priority based on students’ composite
scores. Prior to 2009, the school board was using the Boston mechanism with
a ranking constraint of 4 schools. In 2009, they replaced this mechanism with
the serial dictatorship with the same ranking constraint. A year after, they
maintained the serial dictatorship rule but extended the ranking constraint to
6 schools. According to the Chicago school board, the motivation was that
“high-scoring kids were being rejected simply because of the order in which they
listed their college prep preferences” in the Boston mechanism, which suggests
that some students couldn’t figure out the optimal play so as to avoid losing
their high priorities.

Following Pathak and Sönmez (2008), we consider a model with sincere
students and sophisticated students. Let N denote the set of sincere students
and M the set of sophisticated students such that N ∪M = I and N ∩M = ∅.
Sincere students always report their preferences truthfully while sophisticated
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students may strategically misreport their preferences. The idea is to measure
unfairness with respect to the set of blocking students among sincere students.

Any mechanism ϕ and a pair (�, q) induce a normal form game such that
the students are the players, the strategies are the preference reports and the
outcome function is ϕ(.,�, q). Let (ϕ, P ) denote the game induced by ϕ.
A strategy profile P ′ = (PN , P

′
M) is a Nash equilibrium of the game (ϕ, P )

if for each sophisticated student i ∈ I, there is no strategy P ′′i such that
ϕi(P

′′
i , P

′
−i,�, q) Pi ϕi(P ′,�, q).

We first consider the 2009 reform. We begin by describing the equilibrium
outcome in a game induced by a constrained Boston mechanism.

Lemma 2. Let k > 1 and suppose that some students are sincere while others
are sophisticated. For any problem where schools have a common priority,
the constrained Boston mechanism βk has a unique Nash equilibrium outcome
where sincere students play truthfully and sophisticated students best respond.

The proof is constructive and rests on an important argument by Pathak and
Sönmez (2008). Indeed, the authors show that the Nash equilibrium outcomes
of the Boston mechanism are equivalent to the set of stable matchings with
respect to some modified economies. These modifications are changes in the
priorities such that every sincere student is ranked below every sophisticated
student at every school that the sincere student did not rank first. The priority
among sincere students are adjusted such that students who rank a school
higher receive higher priority. Except for these changes the priorities stay the
same as the original ones. Let �̂ denote the priority profile obtained. The
outcome can be produced in two steps as follows:

Step 1: students are matched according to the serial dictatorship mechanism
for the problem (P 1

N , PM ,�, q). Let N ′ ⊂ N be the subset of sincere
students who are unmatched and q′ the profile of remaining capacities.

Step 2: the unmatched students N ′ are matched according to the Gale-
Shapley mechanism for the augmented economy (P k

N ′ , �̂, q′).
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The full proof of the lemma is a straightforward adjustment to consider the
constraint. A result without sincere students is available in Haeringer and
Klijn (2009).10

Let us consider the 2010 reform. Recall that the school board has maintained
the serial dictatorship mechanism but extended the ranking constraint from 4
to 6 schools. As it turns out, the game under the constrained serial dictatorship
mechanism also has a unique Nash equilibrium outcome.

Lemma 3. Let k > 1 and suppose that there are sincere students and sophis-
ticated students. For any problem where schools have a common priority, the
constrained serial dictatorship mechanism SDk has a unique Nash equilibrium
outcome (where sincere students play truthfully and sophisticated students best
respond).

The proof of this result is constructive. It consists of showing that the
matching SD(P k

N , P−N ,�, q), where the constraint only applies to sincere stu-
dents, is the unique Nash equilibrium outcome of the game. The reason is that
this is the unique stable matching under (P k

N , P−N ,�, q) and every sophisti-
cated student who is part of a blocking pair with a school can obtain a seat
at this school by ranking it first and picking it at her turn.

Proof. Let (PN , P
′
−N) be a Nash equilibrium of the game (SDk, P ) where sin-

cere students report truthfully PN and sophisticated students report P ′−N .
We claim that SDk(PN , P

′
−N ,�, q) is stable at (P k

N , P−N ,�, q). Clearly,
under the constrained profile, there is no blocking pair involving a sincere
student. Suppose that there is a blocking pair (i, s) where i is a sophisticated
student. Then at least one seat of s is either unassigned or has been assigned
to a student with lower ranking according to the order in which students
pick schools. Then at i’s turn, school s still has a seat available. Let P s

i be a
preference relation where i has ranked school s first. Then at her turn, student
i will pick school s under (P k

N , P
s
i , P

′
−(N∪{i})). This contradicts the assumption

that (PN , P
′
−N) is a Nash equilibrium of the game (SDk, P ).

10The detail of the proof is available upon request.
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Next SDk(PN , P
′
−N ,�, q) is individually rational under P . Clearly, it is

individually rational to each sincere student. If it is not individually ratio-
nal to a sophisticated student i under Pi, then she has ranked under P ′i a
school s that is unacceptable under Pi and to which she is matched to under
SDk(PN , P

′
−N ,�, q). Student i is better reporting a preference relation where

she finds no school acceptable. This contradicts the fact that (PN , P
′
−N) is a

Nash equilibrium of the game (SDk, P ).
Since schools have the same priority order, there is a unique stable matching

under (P k
N , P−N ,�, q), and thus the Nash equilibrium is unique. �

The game under the constrained serial dictatorship mechanism can be in-
terpreted as if the constraint applies only to sincere students. When the con-
strained Boston mechanism has a stable Nash equilibrium outcome, then no
sincere student loses her priority to a sophisticated or another sincere student.

Proposition 2. Let k > 1 and suppose that there are more than k schools,
and schools have a common priority. In equilibrium, the constrained serial
dictatorship mechanism SDk is more fair by stability than the constrained
Boston mechanism βk.

Proof. Let (P,�, q) be a problem and suppose that the unique Nash equilib-
rium outcome µ of the game (βk, P ) is stable at (P,�, q). Then every sincere
student i finds the school that she is matched to under µ (if any) accept-
able under P k

i . Therefore, µ is stable at (P k
N , P−N ,�, q) and thus µ is the

unique Nash equilibrium outcome of the game (SDk, P ), which is also stable
at (P,�, q).

The proof of Theorem 1 presents a problem where SDk is stable and βk is
not. �

A more restrictive constraint creates more blocking students.

Theorem 5. Let k > ` > 1 and suppose that there are sincere students, who
play truthfully, and sophisticated students, who best respond. For any problem
where schools have a common priority, the Nash equilibrium outcome of the
constrained serial dictatorship mechanism SD` has at least as many blocking
students as the Nash equilibrium outcome of the constrained serial dictatorship
mechanism SDk.
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Next we consider another setting, where all students can behave strategically
but to a limited extent.

4.2. Semi-sophisticated: reforms in Ghana and UK. The school boards
of the admissions system in Ghana and UK have called for a reform in 2007
and 2010, respectively. A year later, the school board of the admissions system
in Ghana pursued its reform. These reforms consisted of extending the ranking
constraint of schools under the Gale-Shapley mechanism.

Haeringer and Klijn (2009) show that in the constrained Gale-Shapley mech-
anism, students cannot do better than to select some acceptable schools and
ranking them according to their true preferences. In an experiment, Cal-
samiglia et al. (2010) study how subjects elaborate their strategic choices un-
der ranking constraints. They show that, in experiment, a higher proportion
of subjects preserve their relative rankings for the first three schools that they
have listed, in accordance with Haeringer and Klijn (2009). They also test and
show that a significantly higher proportion of students lower the position of
more competitive schools in their reports. Specifically, in their experiment, the
student’s behaviour is affected by the presence and the position of a so-called
district school, where the student is among the top priority students.

Motivated by these observations, we consider a model in which each stu-
dent is sophisticated but only to a limited extent. Informally, we assume that
students respond by dropping schools that are obviously infeasible, but other-
wise behave truthfully. More formally, we say that a student is guaranteed her
first choice s if she is among the qs-highest priority students. If there are at
least qs students who are guaranteed their first choice s then s is competitive.
All students behave strategically by dropping competitive schools from their
reports but list the remaining schools according to their true preferences.

Let (P,�, q) be a problem. We say that a profile P ′ of strategies is a Nash
equilibrium of the game (GSk, P ) with semi-sophisticated students if students
behave strategically by dropping competitive schools, that is

• every student i who is guaranteed her first choice reports truthfully:
P ′i = Pi,
• every other student i drops competitive schools when the constraint is
binding:
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– if there are at most k acceptable schools under Pi or all acceptable
schools under Pi are competitive then P ′i = Pi. Otherwise,

– student i reports as acceptable only schools that are not com-
petitive and reports them according to her true ranking: every
competitive school that is acceptable under Pi is not acceptable
under P ′i and all schools s, s′ that are not competitive and that
are acceptable under Pi are also acceptable under P ′i , and s P ′i s′

if and only if s Pi s′.

Note that a student does not need to drop all competitive schools from her
acceptable schools: she keeps dropping the schools as long as the constraint
remains binding. For example, a student may drop some competitive schools
from her acceptable schools even though she did not drop any competitive
school from her top k acceptable schools. In this case, the top k acceptable
schools of the strategy P ′i is the same as the top k acceptable schools of Pi.
Consider the following example.

Example 5. Let I = {1, 2, 3} and S = {s1, s2, s3} and suppose that each
school has one seat. We specify a problem (P,�, q) as follows:

P1 P2 P3 �s1 �s2 �s3
s1 s1 s2 1 2 3

s2 s2 s1 2 3 1

s3 s3 s3 3 1 2

Student 1 is guaranteed her first choice school s1. Under the mechanism GS2,
students 2 and 3 are constrained and drop s1 from their acceptable schools. The
Nash equilibrium of the game (GS2, P ) is the strategy profile P ′ where student
2 and 3 rank s2 first and s3 second. The outcome is the student-optimal stable
matching.

In the setting with semi-sophisticated students we are able to extend the
comparison of the constrained GS with respect to fairness by counting (The-
orem 4).
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Theorem 6. Let k > ` > 1 and suppose that students are semi-sophisticated
and behave strategically by dropping competitive schools but are sincere other-
wise. For any problem, the Nash equilibrium outcome of GS` has at least as
many blocking agents as the Nash equilibrium outcome of GSk.

This result implies the results for fairness by stability and for the case of
common priorities as special cases (see Table 1). Overall, most of the compar-
isons remain true within at least one of the two settings.

5. Stability and manipulability

In this section, we will elucidate the relation between blocking students and
manipulating students, i.e., those who may benefit from misrepresenting their
preferences to the mechanisms. We provide the definitions below.

Definition 3. Let ϕ be a mechanism.
(i) Student i is a manipulating student of ϕ at (P,�, q) if there is a

preference relation P̂i such that

ϕi(P̂i, P−i,�, q) Pi ϕi(P,�, q).

(ii) The mechanism ϕ is not manipulable at (P,�, q) if there is no manip-
ulating student of ϕ at (P,�, q).

It turns out that there is a strong relation between blocking students and
manipulating students for the constrained Boston mechanism and the con-
strained Gale-Shapley mechanism. Interestingly, these relations for the two
mechanisms are reversed.

Theorem 7. Let (P,�, q) be a problem and k > 1. Then,
(i) every blocking student of the outcome βk(P,�, q) of the constrained

Boston mechanism is a manipulating student of βk at (P,�, q) and
(ii) every manipulating student of the constrained Gale-Shapley mechanism

GSk at (P,�, q) is a blocking student of GSk(P,�, q).

These results have important implications for the relation between manip-
ulability and stability. To see this, suppose that there is no manipulating
student for the constrained Boston mechanism βk at (P,�, q). Then, under
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βk not manipulable

βk stable

GSk stable

GSk not manipulable

Figure 1. Set inclusion of
problems for GSk and βk.

GSk stable
GSk not
manipulable

GSk+1 stable GSk+1 not
manipulable

Figure 2. Set inclusion
of problems for GSk and
GSk+1.

part (i) of this theorem, there is no blocking student of βk(P,�, q). Since βk

is individually rational, then βk(P,�, q) is stable. Suppose now that there is
no blocking student for GSk(P,�, q). Since GSk is individually rational, this
means that GSk(P,�, q) is stable. Then, there is no manipulating student for
GSk. We summarize these results in the following corollary and in Figures 1
and 2.

Corollary 1. Let (P,�, q) be a problem and k > 1. (i) Suppose that the
constrained Boston mechanism βk is not manipulable at (P,�, q). Then,
βk(P,�, q) is stable.

(ii) Suppose that the constrained Gale-Shapley mechanism GSk(P,�, q) is
stable. Then, GSk is not manipulable at (P,�, q).

Note that there are problems where the reverse of each of these results does
not hold. See Example 6 below for the constrained Gale-Shapley mechanism.
To see a counterexample of the reverse of the case (i), consider a problem
(P,�, q) where students have a common ranking of schools, have ranked k

schools acceptable and where each school has one seat. Then, βk(P,�, q) is
stable. However, the student who has received her third ranked school is better
off top ranking the school she has ranked second as her top choice.

An implication of the latter results is a manipulability comparison intro-
duced by Pathak and Sönmez (2013). Under part (i) of Corollary 1, when the
constrained Boston mechanism is not manipulable then it is stable. By The-
orem 1, the constrained Gale-Shapley mechanism is also stable. By part (ii)
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of Corollary 1, the constrained Gale-Shapley mechanism is not manipulable.
This is the comparison established by Pathak and Sönmez (2013).

Corollary 2. (Pathak and Sönmez, 2013). Let (P,�, q) be a problem, k > 1

and suppose that the constrained Boston mechanism βk is not manipulable at
(P,�, q). Then, the constrained Gale-Shapley mechanism GSk is not manip-
ulable at (P,�, q).

Another implication is for the serial dictatorship mechanism. The manipu-
lation strategy under the constrained GS is to include an unlisted acceptable
school in the list. But when the constrained GS is stable, all the seats of such
a school are assigned to higher priority students, and such a manipulation
does not help. This implies that constrained serial dictatorship mechanism is
non-manipulable and stable for the same set of problems.

Proposition 3. Let (P,�, q) be a problem and k > 1. The constrained serial
dictatorship mechanism SDk is stable if and only if it is not manipulable at
(P,�, q).

In general, the constrained Gale-Shapley mechanism may be unstable while
not manipulable. We illustrate this in the following example.

Example 6. Let I = {i1, . . . , i4} and S = {s1, . . . , s4}. Let (P,�, q) be a
problem where each school has one seat and the remaining components are
specified as follows.

Pi1 Pi2 Pi3 Pi4 �s1 �s2 �s3 �s4
s1 s1 s2 s3 i1 i4 i3

...
... s2 s3 s2

... i3 i2

s3
...

... i2 i4

∅ i1 i1

Let us consider the constrained Gale-Shapley mechanism GS2. We have

GS2(P,�, q) =

(
i1 i2 i3 i4

s1 ∅ s2 s3

)
.

This matching is not stable at (P,�, q) because student i2 is unmatched, finds
school s3 acceptable while student i4 is matched to it and i2 �s3 i4. We claim
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that GS2 is not manipulable at (P,�, q). Only student i2 could benefit from
misrepresenting her preferences to the mechanism GS2 because each of the
other students is matched to her most-preferred school. Let P s3

i2
be a preference

relation where student i2 has ranked only school s3 acceptable. Then,

GS2(P s3
i2
, P−i2 ,�, q) =

(
i1 i2 i3 i4

s1 ∅ s3 s2

)
,

that is, student i2 remains unmatched even by ranking school s3 first. (It is easy
to verify that any other manipulation also leaves i2 unmatched.) Therefore,
GS2 is not manipulable at (P,�, q). The intuition is that this ranking initiates
a chain of rejections which returns to this student. Student i2 becomes a so-
called “interrupter” when she ranks school s3 first (Kesten, 2010).

We also establish another direct corollary of Theorem 7 with two additional
results. We show that when switching from constrained Boston to constrained
GS, or when extending the list in the constrained GS, the mechanism becomes
more fair by stability and less manipulable.

Corollary 3. Let (P,�, q) be a problem.
(i) Let k > 1 and suppose that the constrained Boston mechanism βk is

stable at (P,�, q). Then, the constrained Gale-Shapley mechanism GSk is
stable and not manipulable at (P,�, q).

(ii) Let k > ` > 1 and suppose that the constrained Gale-Shapley mecha-
nism GS` is stable at (P,�, q). Then, the mechanism GSk is stable and not
manipulable at (P,�, q).

Finally, we partially restore the comparisons for the First-Preference-First
mechanism. Although the constrained First-Preference-First mechanism and
the constrained Gale-Shapley mechanism are not comparable via manipulabil-
ity (Bonkoungou and Nesterov, 2021) and via fairness by stability (Example
1), there is a surprising interplay between the two concepts.

Proposition 4. Let (P,�, q) be a problem and k > 1. If the constrained First-
Preference-First mechanism FPF k is stable at (P,�, q), then the constrained
Gale-Shapley mechanism GSk is not manipulable at (P,�, q).
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This result helps to evaluate the reforms in England, where FPF k was
replaced by GSk. Even though for some problems the reform may increase
manipulability (GSk could be manipulable at a problem but not FPF k) or
decrease fairness (by stability) separately, it cannot be unsuccessful in both
dimensions. Namely, if at some profile (P,�, q), FPF k is stable (while GSk

might not be stable), then GSk is not manipulable at (P,�, q) and there was
no “increase” of manipulability due to the reform.

To sum up the results of this section, stability and manipulability are logi-
cally related, and the relationship depends on the mechanism.

6. Conclusions

In response to objections, many school districts around the world have re-
cently reformed their admissions systems. The main reason for these objections
was that the mechanisms were unfair and manipulable. Yet, the mechanisms
remained unfair and manipulable even after the reforms. We showed that many
reforms led to more fair matching mechanisms, first by relying on stability and
second by counting and comparing the number of the blocking students. Most
results remain true in strategic settings, where either some students are so-
phisticated while others are sincere, or all students are sophisticated but to a
limited extent. Finally, we discover the inherent relationship between fairness
and manipulability of the mechanisms in question.

The reforms concern essentially two major changes. First, they kept the
constraint on the number of schools that each student is allowed to report but
replaced the immediate acceptance procedure in the Boston mechanism (or a
hybrid between Gale-Shapley and Boston mechanism) with the Gale-Shapley’s
student-proposing deferred acceptance procedure. Second, some school dis-
tricts kept using the Gale-Shapley mechanism but extended the number of
schools that each student is allowed to report.

Overall, our results provide a new justification for the reforms, complement-
ing the existing ones. Pathak and Sönmez (2013) were the first to observe these
reforms and proposed a way to explain them using a notion of manipulabil-
ity that compares mechanisms according to the inclusion of instances where
they are not vulnerable to gaming. These results were further strengthened
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for other mechanisms and other vulnerability criteria (Chen and Kesten, 2017;
Decerf and Van der Linden, 2020; Dur et al., 2021; Bonkoungou and Nesterov,
2021). Mostly, the reforms made the systems both less vulnerable to gaming
and more fair, but some reforms achieved at least one goal. Our results help
better understand and evaluate these reforms and possibly help to advocate
similar reforms in the future.
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Online Appendix: Proofs

We organize the appendix according to the logical order in which the re-
sults are related. To simplify the exposition, we divide the appendix in three
subsections. In each subsection, we order them such that later results rely on
proofs of earlier results.

We first present a lemma from the literature that will be useful throughout
the appendix. This result is known as the rural hospital theorem.

Lemma 4 (Rural hospital theorem, Roth, 1986). Let (P,�, q) be a problem,
ν and µ two stable matchings. Then,

(i) the same set of students are matched under ν and µ and
(ii) each school is matched to the same number of students under ν and µ.

Appendix A: Proof of Theorem 1 and Propositions 1, 3, 4.

Proposition 4: Let (P,�, q) be a problem and k > 1. If the constrained First-
Preference-First mechanism FPF k is stable at (P,�, q), then the constrained
Gale-Shapley mechanism GSk is not manipulable at (P,�, q).

Proof. We first establish two claims.
Claim 1: Suppose that student i is matched to school s under GSk(P,�, q)

and let P s
i be a preference relation where she has ranked only school s as an

acceptable choice. Then, she is matched to school s under GSk(P s
i , P−i,�, q).

Suppose that GSki (P,�, q) = s or GSi(P k,�, q) = s. As shown by Roth
(1982), GSi(P k,�, q) = s implies that GSi(P s

i , P
k
−i,�, q) = s. Since k > 1,

the truncation of P s
i after the k’th acceptable school is nothing but P s

i . Thus,
GSki (P s

i , P−i,�, q) = s.
Claim 2: Suppose that student i can manipulate GSk at (P,�, q). Then she

is unmatched under GSk(P,�, q).
This result follows from Pathak and Sönmez (2013).
We are now ready to prove the proposition. Let (P,�, q) be a problem and

suppose that µ = FPF k(P,�, q) is stable at (P,�, q). Under Claim 2, every
matched student under GSk(P,�, q) cannot manipulate GSk at (P,�, q). It
is then enough to show that no unmatched student under GSk(P,�, q) has
a profitable misrepresentation. Because GSk is individually rational, under
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Claim 1, we further need to restrict ourselves to manipulation by top ranking
a school first. Since µ is stable at (P,�, q), we claim that it is also stable at
(P k,�, q). Since GSk is individually rational, we need to check that there is
no blocking pair. Suppose, to the contrary, that a pair (i, s) is a blocking pair
for µ under (P k,�, q). Then, s P k

i µ(i) and either (i) school s has an empty
seat under µ or (ii) there is a student j such that µ(j) = s and i �s j. Note
that s P k

i µ(i) implies that s Pi µ(i). Therefore, (i, s) is also a blocking pair
for µ under (P,�, q). This conclusion contradicts our assumption that µ is
stable at (P,�, q).

Therefore, µ is stable at (P k,�, q). Since GS(P k,�, q) is the student-
optimal stable matching under (P k,�, q),

(1) for each student i, GSi(P k,�, q) Rk
i µ(i).

In line with Lemma 4, the same number of students are matched under µ
and GS(P k,�, q). Let i be a student and s a school and suppose that i is
unmatched under GS(P k,�, q) and that s Pi GSi(P k,�, q). Then, student i is
also unmatched under µ. Thus, s Pi µ(i) = ∅. Because µ is stable at (P,�, q),
this implies that every student in µ−1(s) has higher priority than i under �s.
Let P s

i denote a preference relation where i has ranked only school s acceptable.
Since µ is stable at (P k,�, q), it is also stable at (P s

i , P
k
−i,�, q). Under Lemma

4, the set of matched students is the same at all stable matchings. Thus,
student i is also unmatched under GS(P s

i , P
k
−i,�, q). Then, under Claim 1,

there is no strategy P ′i such that GSki (P ′i , P−i) = s. Thus, the mechanism GSk

is not manipulable at (P,�, q).
�

Theorem 1: Suppose that there are at least two schools and let k > 1. The
constrained Gale-Shapley mechanism GSk is more fair by stability than the
constrained Boston mechanism βk

Proof. The Boston mechanism is a special case of the First-Preference-First
mechanism when every school is a first-preference-first school. Let (P,�, q)
be a problem and suppose that βk(P,�, q) is stable at (P,�, q). As stated
in equation 1, each student finds the outcome GSk(P,�, q) at least as good
as βk(P,�, q) under P k. We also know that the Boston mechanism is Pareto
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efficient, that is, for each problem there is no other matching that each student
finds at least as good as its outcome (Abdulkadiroğlu and Sönmez, 2003).
Therefore, the matching βk(P,�, q) = β(P k,�, q) is Pareto efficient under
P k. Thus, GSk(P,�, q) = βk(P,�, q) and consequently, GSk(P,�, q) is stable
at (P,�, q).

We construct a problem where GSk is stable but not βk. Since there are
at least two schools and more students than schools, let s1, s2 be two distinct
schools and i1, i2 and i3 three students. Let (P,�, q) be a problem where each
school has one seat and the remaining components are specified as follows.

Pi 6=3 P3 �s∈S
s1 s2 i1

s2 s1 i2

∅ ∅ i3
...

Since k ≥ 2, GSk(P,�, q) = GS(P,�, q) is stable at (P,�, q). However, the
matching

βk(P,�, q) =

(
i1 i3 i 6= 1, 3

s1 s2 ∅

)
is not stable because the pair (i2, s2) blocks it under (P,�, q).

�

Proposition 1: Suppose that there are at least two schools and at least one
first-preference-first school. Let k > 1 and suppose that schools have a common
priority. The constrained serial dictatorship mechanism SDk is more fair by
stability than the constrained First-Preference-First mechanism FPF k.

Proof. Let (P,�, q) be a problem where schools have a common priority order
and suppose that FPF k(P,�, q) is stable at (P,�, q). Under equation 1, each
student finds the outcome SDk(P,�, q) at least as good as FPF k(P,�, q)
under P k. With a common priority order, there is a unique stable matching
under (P,�, q) which is also Pareto efficient under P . Therefore, because
FPF k(P,�, q) is stable at (P,�, q), we have FPF k(P,�, q) = SD(P,�, q).
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Next, every student who is matched under SD(P,�, q) is matched to one of
her top k-ranked acceptable schools. Therefore, SD(P,�, q) = FPF k(P,�, q)
is also Pareto efficient under P k. Thus, equation 1 implies that SDk(P,�, q) =

FPF k(P,�, q) and consequently, SDk(P,�, q) is stable at (P,�, q).
We can adapt the example provided in the proof of Theorem 1 to show that

there is a problem where SDk is stable but not FPF k. �

Lemma 1: Let (P,�, q) be a problem and k > 1. Then GSk(P,�, q) is stable
if and only if GSk(P,�, q) = GS(P,�, q).

Proof. The “if” part is straightforward because GS(P,�, q) = GSk(P,�, q) is
the student-optimal stable matching under (P,�, q).

The “only if” part. Suppose that GSk(P,�, q) is stable at (P,�, q). We
show that GSk(P,�, q) = GS(P,�, q). Let N = {i ∈ I|GSi(P,�, q) = ∅}
denote the set of students who are unmatched under GS(P,�, q).

Step 1 : For each i ∈ N , GSi(P,�, q) = GSi(P
k,�, q).

This follows from the assumption that GS(P k,�, q) is stable at (P,�, q)
and part (i) of Lemma 4.

Step 2 : For each i ∈ I \N , GSi(P,�, q) = GSi(P
k,�, q).

Let i ∈ I \N . Because GS(P,�, q) is the student-optimal stable matching
under (P,�, q), we have

(2) GSi(P,�, q) Ri GS
k
i (P,�, q).

Note that for each student j ∈ N , the preference relation Pj can be inter-
preted as if she has extended her list of acceptable schools from P k

j . As shown
by Gale and Sotomayor (1985), when a subset of students extend their list of
acceptable schools, none of the remaining students are better off. Therefore,

(3) for each student j ∈ I \N, GSj(P k
N , P−N ,�, q) Rj GSj(P,�, q).

Because GS is individually rational under P , under equation 3, every stu-
dent in I \N is also matched under GS(P k

N , P−N ,�, q). Next, since GS(P k,�
, q) is stable at (P,�, q), by assumption, Lemma 4 implies that the same set of
students are matched under both GS(P,�, q) and GS(P k,�, q). Therefore, i
is also matched under GS(P k,�, q). Next, note that the students in I \N have
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extended their list of acceptable schools under (P k
N , P−N) from P k. Then, at

the end of the Gale-Shapley algorithm for the problem (P k,�, q), each of the
students in I \ N is accepted by a school. The school that each of them has
listed below the school that has accepted her at this step of the algorithm and
how she has ranked them do not affect the outcome of the algorithm. Thus,

GS(P k,�, q) = GS(P k
N , P−N ,�, q).

This equation and equation 3 imply that GSi(P k,�, q) Ri GSi(P,�, q). Since
the preference relation Pi is strict, this relation and equation 2 imply that

GSi(P
k,�, q) = GSi(P,�, q).

Finally, by Step 1 and Step 2, the matching is the same for each student under
GSk(P,�, q) and GS(P,�, q), the desired conclusion. �

Proposition 3: Let (P,�, q) be a problem and k > 1. The constrained serial
dictatorship mechanism SDk is stable if and only if it is not manipulable at
(P,�, q).

Proof. As shown by Bonkoungou and Nesterov (2021), SDk is not manipulable
at (P,�, q) if and only if SDk(P,�, q) = SD(P,�, q). Suppose that SDk(P,�
, q) is stable. Then, according to Lemma 1, SDk(P,�, q) = SD(P,�, q) and
thus SDk is not manipulable at (P,�, q). Suppose that SDk is not manipulable
at (P,�, q). Then, SDk(P,�, q) = SD(P,�, q) and thus stable. �

Appendix B: Proof of Theorems 2, 4, 5, 6.

Let ¯̀ = (`i)i∈I and k̄ = (ki)i∈I be such that for each i ∈ I, ki ≥ `i > 1. For
each preference profile P , let P ¯̀

= (P `i)i∈I be such that the constraint that
applies to student i is `i. We also define P k̄ = (P ki)i∈I .

Lemma 5. Let N be a subset of students and µ = GS(P
¯̀
N , P

k̄
−N ,�, q). Any

blocking student for µ under (P,�, q) is unmatched.
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Proof. We prove the lemma by the contradiction. Suppose, to the contrary,
that some student i is a blocking student for µ = GS(P

¯̀
N , P

k̄
−N ,�, q) under

(P,�, q) such that µ(i) = s for some school s. Then, there is a school s′ such
that s′ Pi µ(i) and either (i) |µ−1(s′)|< qs′ or (ii) there is a student j such that
µ(j) = s′ and i �s′ j. Let define x as follows:

x =

`i if i ∈ N

ki otherwise

Since µ(i) = s, school s is one of the top x acceptable schools under Pi. Thus
s′ P x

i µ(i) = s. This relation, together with the case (i) or (ii) imply that
the pair (i, s′) blocks the matching µ under (P

¯̀
N , P

k̄
−N ,�, q). This conclusion

contradicts the fact that µ is stable at (P
¯̀
N , P

k̄
−N ,�, q).

�

We next formulate a lemma, Lemma 6, that will be useful for the proof of
two theorems. Let N ( I be a proper subset of students and i /∈ N . Let
¯̀ = (`i)i∈I and k̄ = (ki)i∈I and P̂ = (P

¯̀
N , P

k̄
−N ,�, q). For simplicity, let `i = `

and ki = k. We define two matchings as follows:

µ =: GS(P̂ ,�, q)

and,
ν =: GS(P `

i , P̂−i,�, q).

Lemma 6. There are at least as many blocking students for ν as for µ under
(P,�, q).

Proof. Let n be the number of blocking students for µ under (P,�, q). We
show that there are at least n blocking students for ν under (P,�, q).

Let us first show that every student other than i finds ν at least as good as
µ under P̂ . To see this, note that student i has extended her list of acceptable
schools under P̂i = P k

i from P `
i . As shown by Gale and Sotomayor (1985),

after this extension no student, other than i, is better off. That is,

(4) for each student j 6= i, ν(j) R̂j µ(j).
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We divide the rest of the proof into two cases. In the first case, student i is
unmatched under µ. For this case, we will show that any blocking student for
µ under (P,�, q) is also a blocking student for ν under (P,�, q). In the second
case, student i is matched under µ. We will show that either µ = ν (in case
student i is also matched under ν), or i is a blocking student for ν.

Case I: Suppose that student i is unmatched under µ, that is, µ(i) = ∅.

We first show that ν(i) = ∅. Suppose, to the contrary, that ν(i) = s, for
some school s. Then s is one of the top ` acceptable schools of student i under
Pi. Since k > `, school s is also one of the top k acceptable schools under
P̂i = P k

i . Therefore,

GSi(P
`
i , P̂−i,�, q) = s P̂i µ(i) = GSi(P̂ ,�, q) = ∅.

This relation shows that student i is better off misrepresenting her preference
to the Gale-Shapley mechanism, contradicting the fact that this mechanism is
not manipulable (Dubins and Freedman, 1981; Roth, 1982). Therefore, ν(i) =

µ(i) = ∅. This equality together with equation 4 imply that each student finds
the matching ν at least as good as µ under P̂ . Because µ = GS(P̂ ,�, q) is
stable at (P̂ ,�, q), it is also stable at (P `

i , P̂−i,�, q). To see this, note that
student i is unmatched under µ and that for each school s such that s P `

i µ(i),
school s does not have an empty seat under µ and every student in µ−1(s) has
higher priority than i under �s. Since ν = GS(P `

−i, P̂−i,�, q) is also stable at
(P `
−i, P̂−i,�, q), under Lemma 4, we have the following conclusion.
Conclusion: (a) the same set of students are matched (unmatched) under ν

and µ and (b) every school is matched to the same number of students under
both ν and µ.

Let us now prove that every blocking student for µ under (P,�, q) is also a
blocking student for ν under (P,�, q). Let j be a blocking student for µ under
(P,�, q). There are two cases.

Case I.1: j = i
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Then, there is a school s such that s Pi µ(i) and either (i) school s has an
empty seat under µ or (ii) there is a student j′ such that µ(j′) = s and i �s j′.

Consider the case (i) where school s has an empty seat under µ. Then,
under part (b) of the previous conclusion, s has an empty seat under ν. Since
ν(i) = ∅, i is a blocking student for ν under (P,�, q).

Consider the case (ii) where there is a student j′ such that µ(j′) = s and
i �s j′. Without loss of generality, suppose that school s does not have an
empty seat under µ. Then, under part (b) of the previous conclusion, school s
does not have an empty seat under ν. Suppose that ν(j′) = s. Since ν(i) = ∅
and i �s j′, then the pair (i, s) blocks ν under (P,�, q) and i is a blocking
student for ν under (P,�, q). Suppose that ν(j′) 6= s. Since |ν−1(s)|= qs,
there is j′′ ∈ ν−1(s) \ µ−1(s). Under equation 4,

s = ν(j′′) P̂j′′ µ(j′′).

Since µ = GS(P̂ ,�, q) is stable at (P̂ ,�, q) and µ(j′) = s, then j′ �s j′′.
Because �s is transitive, i �s j′ and j′ �s j′′ imply that i �s j′′. Since
s Pi ν(i) = ∅, the pair (i, s) blocks ν under (P,�, q) and i is a blocking
student for ν under (P,�, q).

Case I.2: j 6= i

There is a school s such that s Pj µ(j) and either (i) school s has an empty
seat under µ or (ii) there is a student j′ such that µ(j′) = s and j �s j′.
As shown in Lemma 5, because student j is a blocking student for µ under
(P,�, q), we have µ(j) = ∅.

Let us consider the case (i). Under Lemma 4, student j is also unmatched
under ν and school s has an empty seat under ν. Thus, j is a blocking student
for ν under (P,�, q).

Second, consider (ii) where there is a student j′ such that µ(j′) = s and
j �s j′. If ν(j′) = s, then (j, s) is a blocking pair for ν under (P,�, q) and j is
a blocking student for ν under (P,�, q). Without loss of generality, suppose
that |µ−1(s)|= qs and ν(j′) 6= s. According to part (b) of the above conclusion,
|ν−1(s)|= qs. Then, there is a student j′′ ∈ ν−1(s) \ µ−1(s). Because µ(i) = ∅,
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we have j′′ 6= i, and by equation 4,

s = ν(j′′) P̂j′′ µ(j′′).

Since µ is stable at (P̂ ,�, q) and µ(j′) = s, then this equation implies that
j′ �s j′′. Because �s is transitive, j �s j′ and j′ �s j′′ imply that j �s j′′.
Since s Pj ν(j) = ∅, then the pair (j, s) blocks ν under (P,�, q) and j is a
blocking student for ν under (P,�, q).

In conclusion, every blocking student for µ under (P,�, q) is also a blocking
student for ν under (P,�, q). There are n blocking students for ν under
(P,�, q).

Case II: Student i is matched under µ.

If student i is also matched under ν = GS(P `
i , P̂−i,�, q), then ν = µ. To

see this, let ν(i) = s for some school s. School s is one of the top ` acceptable
schools of student i under Pi. The Gale-Shapley mechanism is invariant to
the modification of the preferences of the students for the part below their
outcomes. We know that P k

i is one such modification of P `
i below school s.

Thus, ν = µ. We now consider the case where i is not matched under ν.
Suppose that student i is unmatched under ν. The strategy of the proof is

to show that i is a blocking student for ν under (P,�, q) and that there are
also at least n−1 other blocking students for ν under (P,�, q). We depict the
flow of these students in Figure 3.

Step 1: Student i is a blocking student for ν under (P,�, q).

Recall that we assumed that student i is matched under µ = GS(P̂ ,�, q),
where P̂ = (P

¯̀
N , P

k̄
−N ,�, q) and i /∈ N . Let s = µ(i). School s is one of the top

k acceptable schools under Pi. Since ν(i) = ∅, if school s has an empty seat
under ν, then clearly the pair (i, s) blocks ν under (P,�, q) and i is a blocking
student for ν under (P,�, q). Suppose that |ν−1(s)|= qs. Since µ(i) = s and
ν(i) = ∅, there is a student j ∈ ν−1(s) \ µ−1(s). By equation 4,

s = ν(j) P̂j µ(j).
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Since µ is stable at (P̂ ,�, q) and µ(i) = s, we have i �s j. Therefore, the pair
(i, s) blocks ν under (P,�, q) and i is a blocking student for ν under (P,�, q).

matched studentsunmatched students

blocking students

student i

≤1 student

Figure 3. Case II: flow of students across matched, unmatched, and
blocking status, from µ to ν: at most one student can leave the
blocking status to the matched status; student i left the matched
status to the blocking status, and no student can leave the blocking
status and remain unmatched.

Step 2: Every blocking student for µ under (P,�, q) who is unmatched under
ν is also a blocking student for ν under (P,�, q).

Let j be a blocking student for µ under (P,�, q) and suppose that she is
unmatched under ν. There is a school s such that s Pj µ(j) and either (i)
school s has an empty seat under µ or (ii) there is a student j′ such that
µ(j′) = s and j �s j′. In addition, because j is the blocking student of µ
under (P,�, q), by Lemma 5, we have µ(j) = ∅.

Let us consider the case (i) where school s has an empty seat under µ. We
also show that s has an empty seat under ν. Assume otherwise. Then, there
is j′ ∈ ν−1(s) \ µ−1(s). We know that student i is unmatched under ν. Thus,
j′ 6= i. Under equation 4, s = ν(j′) P̂j′ µ(j′). This contradicts the fact that µ
is stable at (P̂ ,�, q) because s has an empty seat under µ. Therefore, s has
an empty seat under ν. Then the pair (j, s) blocks ν under (P,�, q) and j is
a blocking student for ν under (P,�, q).
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Let us now consider the case (ii) where there is a student j′ such that
µ(j′) = s and j �s j′. If school s has an empty seat under ν, then because
student j is unmatched under ν, she is a blocking student for ν under (P,�, q).
Suppose that school s does not have an empty seat under ν. If ν(j′) = s then
the pair (j, s) blocks ν under (P,�, q) and j is a blocking student for ν under
(P,�, q) because ν(j) = ∅ and j �s j′. Suppose that ν(j′) 6= s. Because
school s does not have an empty seat under ν, there is j′′ ∈ ν−1(s) \ µ−1(s).
Since student i is unmatched under ν, we have j′′ 6= i. By equation 4, we
have s = ν(j′′) P̂j′′ µ(j′′). Since µ is stable at (P̂ ,�, q), the equation and the
fact that µ(j′) = s imply that j′ �s j′′. Because �s is transitive, j �s j′ and
j′ �s j′′ imply that j �s j′′. Since s Pj ν(j) = ∅, then the pair (j, s) blocks ν
under (P,�, q) and j is a blocking student for ν under (P,�, q).

Step 3: Every student but i who is matched under µ is also matched under
ν.

Suppose that for some student j 6= i and some school s, µ(j) = s. Under
equation 4, we have ν(j) R̂j µ(j) = s. Since µ is individually rational under
P̂ , ν(j) 6= ∅.

Step 4: There are at least n blocking students for ν under (P,�, q).

Let j be a blocking student for µ under (P,�, q) who is not a blocking stu-
dent for ν under (P,�, q). Then, j is matched under ν. Otherwise, according
to step 2, she is also a blocking student for ν under (P,�, q). We prove, more
generally, that there are at most one student who is unmatched under µ but
matched under ν. To do that, we compare for each school the number of
students matched to it under µ and ν.

Let s be a school. Suppose that it does not have an empty seat under µ.
Then, we have |ν−1(s)|≤ |µ−1(s)|= qs. Suppose now that s has an empty seat
under µ. Suppose that there is j′ ∈ ν−1(s) \ µ−1(s). Then, because student i
is unmatched under ν, j′ 6= i. By equation 4,

s = ν(j′) P̂j′ µ(j′).
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This contradicts the fact that µ is stable at (P̂ ,�, q) because school s has an
empty seat under µ. Thus, there is no student matched to school s under ν
but not under µ. Therefore, |ν−1(s)|≤ |µ−1(s)|. We conclude that no school
is matched to more students under ν than under µ. Thus,

(5)
∑
s∈S

|ν−1(s)|≤
∑
s∈S

|µ−1(s)|.

By step 3, all students, but student i, who are matched under µ are also
matched under ν. Therefore, the set of students who are matched under ν
consists of the following students:

• the students who are matched under µ, except student i and
• the students who are unmatched under µ but matched under ν.

Let x denote the number of the students who are unmatched under µ but
matched under ν. Then, we have∑

s∈S

|ν−1(s)|=
∑
s∈S

|µ−1(s)|−1︸ ︷︷ ︸
number of students

matched under µ and ν

+ x,

where the first two expressions on the right-hand side indicate that we sub-
tracted student i from those who are matched under µ. By rearranging this
equation, we get ∑

s∈S

|ν−1(s)|−
∑
s∈S

|µ−1(s)|= x− 1 ≤ 0,

where the inequality follows from equation 5. Thus, there is at most one
student who is unmatched under µ but matched under ν. According to Lemma
5, all blocking students for µ under (P,�, q) are unmatched under µ. Then,
there is at most one blocking student for µ under (P,�, q) who is matched
under ν. In assent with this result together with step 2, there is at most one
blocking student for µ under (P,�, q) who is not a blocking student for ν under
(P,�, q). Among the n blocking students for µ under (P,�, q), at most one
of them is not a blocking student for ν under (P,�, q). Therefore, excluding
student i, there are at least n−1 blocking students for ν under (P,�, q). Since
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student i is also a blocking student for ν under (P,�, q), there are at least n
blocking students for ν under (P,�, q).

�

Lemma 7. Let k̄ = (ki)i∈I and ¯̀ = (`i)i∈I be such that for each i ∈ I,
ki ≥ `i > 1. For each problem, the constrained Gale-Shapley mechanism
GS

¯̀ has at least as many blocking students as the constrained Gale-Shapley
mechanism GS k̄.

Proof. The proof relies on Lemma 6, which is the main part for proving the
lemma.

Let (P,�, q) be a problem. The proof strategy is to start from GS(P k̄,�, q)
and replace the preference relations in P k̄ one at a time, with a preference
relation in P

¯̀ for the corresponding student until we get GS(P
¯̀
,�, q). We

prove the theorem by showing that the number of blocking students is not
decreasing after each replacement.

To prove the lemma we apply Lemma 6 sequentially. Let n be the number
of the blocking students for GS(P k̄,�, q) under (P,�, q). For simplicity, let
I = {1, 2, . . . , |I|}. Under Lemma 6, there are at least n blocking students for

µ1 = GS(P
¯̀

1 , P
k̄
−1,�, q)

under (P,�, q). By the same lemma, compared to µ1, there are at least n
blocking students of the matching

µ2 = GS(P
¯̀

{1,2}, P
k̄
−{1,2},�, q)

under (P,�, q). With a repeated replacement of the remaining components
of P k̄ with their counterparts in P ¯̀, we draw the conclusion that there are at
least n blocking students for GS(P

¯̀
,�, q) under (P,�, q). �

Theorem 4: Suppose that there are at least two schools and let |S|> k >

` ≥ 1. The constrained Gale-Shapley mechanism GSk is more fair by counting
than GS`.
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Proof. The theorem is a particular case of Lemma 7 in which for each student
i, ki = k and `i = `. Under this lemma, for each problem, GS` has at least as
many blocking students as GSk.

Finally, we describe a problem where the outcome of GS` has more blocking
students than the outcome of GSk. Let (P,�, q) be a problem where each
school has one seat, each student has k acceptable schools and such that
students have a common ranking of schools. Then, GSk(P,�, q) = GS(P,�
, q). Thus GSk(P,�, q) is stable at (P,�, q). Let s be the school that students
have ranked at the k’th position starting from the top. Since there are more
students than schools and k > `, at least one student is not matched under
GS`(P,�, q) and no student is matched to school s even though every student
prefers it to being unmatched. Then, there is at least one blocking student
for GS`(P,�, q). Therefore, there are more blocking students for GS`(P,�, q)
than GSk(P,�, q) under (P,�, q). �

Theorem 2: Suppose that there are at least three schools and let k > `.
Then, the constrained Gale-Shapley mechanism GSk is more fair by stability
than GS`.

Proof. Suppose that GS`(P,�, q) is stable at (P,�, q). Then, there is no
blocking student for it under (P,�, q). According to Theorem 4, there is
no blocking student for GSk(P,�, q) under (P,�, q). Since GSk(P,�, q) is
individually rational under P , then it is stable at (P,�, q).

We described an example in the proof of Theorem 4 where there is a blocking
student (pair) for GS` but not GSk. Since GSk and GS` are individually
rational, at this problem GSk is stable but not GS`. �

Theorem 5: Let k > ` > 1 and suppose that there are sincere students, who
play truthfully, and sophisticated students, who best respond. For any problem
where schools have a common priority, the Nash equilibrium outcome of the
constrained serial dictatorship mechanism SD` has at least as many blocking
students as the Nash equilibrium outcome of the constrained serial dictatorship
mechanism SDk.
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Proof. Let (P,�, q) be a problem and N the set of sincere students. Under
Lemma 3, the matchings SD(P `

N , P−N ,�, q) and SD(P k
N , P−N ,�, q) are the

unique Nash equilibrium outcomes of the games (SD`, P ) and (SDk, P ), re-
spectively. Under Lemma 7, the matching SD(P `

N , P−N ,�, q) has at least as
many blocking students as the matching SD(P k

N , P−N ,�, q). �

Lemma 8. Let ` > 1 and suppose that students are semi-sophisticated and
drop competitive schools but are sincere otherwise. Let (P,�, q) be a problem
and P ′ a Nash equilibrium of the game (GS`, P ). For each student i, let ri
denote the number of competitive schools that she has dropped but prefers to
at least one of the top ` acceptable schools she has listed under P ′i . Then the
outcome GS`(P ′,�, q) is the matching GS(P k̄,�, q) where for each student i,
k̄i = `+ ri.

Proof. Note that under the matching GS(P k̄,�, q), no student is matched to
a competitive school that she has removed under P ′ because those schools are
assigned to students who did not remove any school and who have ranked
them first and have highest priority.

We prove that GS(P ′`,�, q) = GS(P k̄,�, q). The idea of the proof is to
start from P k̄ and sequentially replace the preference relations in P k̄ with
preference relations in P ′`. Note that under P ′`, student i has removed ri

competitive schools from her acceptable schools compared to P k̄
i . Note also

that there is no school which is not competitive and that student i has listed
among the top ` acceptable schools under P ′i but is among the top k̄i acceptable
schools under Pi. Let N ( I be a proper subset of students. For simplicity, let
P̂ = (P ′`N , P

k̄
−N). Kojima and Manea (2010) show that when a student removes

some schools that she did not receive under the Gale-Shapley mechanism, then
no other student is worse off as a result. Let i /∈ N . For each student j 6= i,

(6) GSj(P
′`
i , P̂−i,�, q) R̂j GSj(P̂ ,�, q).

Now note that µ = GS(P ′`i , P̂−i,�, q) is stable at (P̂ ,�, q). This is because
only student i and a school that she has listed under P k̄

i but removed from her
acceptable schools under P ′i can be a blocking pair for this matching. However,



48

all seats of such a school have been assigned to students who have higher
priority than i. Because the matching GS(P̂ ,�, q) is the student optimal
stable matching under (P̂ ,�, q), for each student j ∈ I,

(7) GSj(P̂ ,�, q) R̂j GSj(P
′`
i , P̂−i,�, q).

By equations 6 and 7, for each student j 6= i, GSj(P̂ ,�, q) = GSj(P
′`
i , P̂−i,�

, q). In addition, we know that when a student removes some schools that
she did not receive in the Gale-Shapley mechanism from her acceptable set of
schools, then her outcome does not change. Therefore, GSi(P ′`i , P̂−i,�, q) =

GSi(P̂ ,�, q). Since we have considered all students, we have

GS(P̂ ,�, q) = GS(P ′`i , P̂−i,�, q).

Without loss of generality, let I = {1, 2, . . . , n}. Consider first N = ∅. Then,
we have

GS(P ′`1 , P
k̄
−1 �, q) = GS(P k̄,�, q).

Next, let N = {1}. Then we have

GS(P ′`{1,2}, P
k̄
−{1,2} �, q) = GS(P ′`1 , P

k̄
−1 �, q) = GS(P `,�, q).

We repeat this argument until we replace all preference relations and get

GS`(P ′,�, q) = GS(P k̄,�, q).

�

Theorem 6: Let k > ` > 1 and suppose that students are semi-sophisticated
and behave strategically by dropping competitive schools but are sincere other-
wise. For any problem, the Nash equilibrium outcome of GS` has at least as
many blocking agents as the Nash equilibrium outcome of GSk.

Proof. The proof relies on Lemma 8 above. This lemma stipulates that the
equilibrium outcome is equivalent to the outcome of Gale-Shapley for some
particular individual restrictions.

Let (P,�, q) be a problem. First every student who is guaranteed her first
choice underGS` is also guaranteed her first choice underGSk because k > ` >

1. Let P ′ and P ′′ be the Nash equilibria of the games (GS`, P ) and (GSk, P ),
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respectively. Let i be a student, r′′i the number of competitive schools that she
has dropped under P ′′i but prefers to a school she has listed among the top k
acceptable schools. Similarly, let r′i denote the number of competitive schools
that she has dropped under P ′i and prefers to at least one of the schools she
has listed among the top ` acceptable schools under P ′i . We next show that
r′′i + k ≥ r′i + `. We consider two cases:

Case 1: r′′i > 1. Then, there are more than k acceptable schools under Pi
such that they are not all competitive. Thus student i has listed only schools
which are not competitive under P ′′i . Since ` < k, there are also more than `
acceptable schools under Pi such that they are not all competitive. Student i
will list only schools that are not competitive among the top ` and k acceptable
schools under P ′i and P ′′i respectively. Suppose that student i has dropped a
competitive school s under P ′i that she prefers to a school s′ she has listed
among the top ` acceptable schools under P ′i . Since k > `, student i has listed
school s′ among the top k acceptable schools under P ′′i . Therefore, she has
dropped s under P ′′i and prefers it to school s′. Thus, r′i ≤ r′′i . Since ` < k, we
have r′i + ` < r′′i + k.

Case 2: r′′i = 0. This means that student i did not drop any competitive
school that she prefers to a school listed among the top k acceptable schools
under P ′′i . There are three cases: (i) either all her acceptable schools under Pi
are competitive or (ii) there are at most k acceptable schools under Pi or (iii)
all her top k acceptable schools under Pi are not competitive. In cases (i) and
(iii) student i will not drop any competitive school that she prefers to a school
she has listed among the top ` acceptable schools under P ′i . Therefore r′i = 0

and r′i + ` < r′′i + k. In the case (ii) the number of schools that student i could
drop and list under P ′i cannot exceed the number of acceptable schools under
Pi. Therefore, r′i + ` ≤ r′′i + k. In either case, we have r′i + ` ≤ r′′i + k.

Under Lemma 8 the Nash equilibrium outcome of the game (GS`, P ) is the
matching GS(P

¯̀
,�, q) where for each student i, ¯̀

i = ` + r′i and the Nash
equilibrium outcome of the game (GSk, P ) is GS(P k̄,�, q) where for each
student i, k̄i = k + r′′i .

Since for each student i, k̄i ≥ ¯̀
i, under Theorem 4, GS(P

¯̀
,�, q) has at least

as many blocking students as GS(P k̄,�, q) under (P,�, q).
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�

Appendix C: Proof of Theorem 7 and Corollary 1.

Theorem 7: Let (P,�, q) be a problem and k > 1. Then,

(i) every blocking student of the outcome βk(P,�, q) of the constrained
Boston mechanism is a manipulating student of βk at (P,�, q) and

(ii) every manipulating student of the constrained Gale-Shapley mechanism
GSk at (P,�, q) is a blocking student of GSk(P,�, q).

Proof. Part (i). Let i be a student and suppose that she is a blocking student
of µ = β(P k,�, q). There is a school s such that the pair (i, s) blocks µ under
(P,�, q). Then, we have s Pi µ(i) and either (a) school s has an empty seat
under µ or (b) there is a student j such that µ(j) = s and i �s j. We claim
that student i did not rank school s first under Pi. Otherwise, school s has
rejected student i at the first step of the Boston algorithm under (P k,�, q).
This is because k > 1 and the top ranked schools are considered under βk. This
contradicts the assumption that school s has an empty seat or has accepted
student j and i �s j. Let P s

i be a preference relation where i has ranked school
s first. Since s has an empty seat under βk(P,�, q) or has accepted student j
and i �s j, there are less than qs students who have ranked school s first under
P k and have a higher priority than i under�s. Therefore, βi(P s

i , P
k
−i,�, q) = s.

Since s Pi µ(i), then i is a manipulating student of βk at (P,�, q).
Part (ii). We prove this part by contradiction. Suppose that student i is

a manipulating student of GSk at (P,�, q) but is not a blocking student for
µ = GSk(P,�, q) under (P,�, q). By Claim 2 above, i is unmatched under
GSk(P,�, q). Let s be a school such that s Pi µ(i). Then, |µ−1(s)|= qs and
every student in µ−1(s) has higher priority than i under �s. Let P s

i be a
preference relation where i has ranked only school s as an acceptable school.
Since µ is stable at (P k,�, q), it is also stable at (P s

i , P
k
−i,�, q). This follows

from the fact that µ(i) = ∅ and that every student in µ−1(s) has a higher
priority than i under�s. According to Lemma 4, the set of unmatched students
is the same under µ and GSk(P s

i , P
k
−i,�, q). Thus, i is also unmatched under
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GSk(P s
i , P

k
−i,�, q). According to Claim 1, there is no misreport by which i

is matched to s. Since s has been chosen arbitrarily, i is not a manipulating
student of GSk at (P,�, q). This conclusion contradicts our assumption that
student i is a manipulating student of GSk at (P,�, q). �

Corollary 1: Let (P,�, q) be a problem and k > 1.

(i) Suppose that the constrained Boston mechanism βk is not manipulable
at the problem (P,�, q). Then, βk(P,�, q) is stable.

(ii) Suppose that the constrained Gale-Shapley mechanism GSk is stable at
the problem (P,�, q). Then, GSk is not manipulable at (P,�, q).

Proof. We prove (i) by the contraposition. Suppose that βk(P,�, q) is not
stable at (P,�, q). Since βk is individually rational, there is a pair (i, s) of a
student and a school which blocks βk(P,�, q) under (P,�, q). Following (i) of
Theorem 7, student i is a manipulating student of βk at (P,�, q). Thus, βk is
manipulable at (P,�, q).

We now prove part (ii) by the contraposition. Let GSk be stable but ma-
nipulable at (P,�, q). Then, by Theorem 7, there is a manipulating student
who is a blocking student of GSk(P,�, q).

�


