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Abstract

We provide a comprehensive theory of conducting in-sample statistical inference

about receiver operating characteristic (ROC) curves that are based on predicted values

from a first stage model with estimated parameters (such as a logit regression). The

term “in-sample” refers to the practice of using the same data for model estimation

(training) and subsequent evaluation, i.e., the construction of the ROC curve. We show

that in this case the first stage estimation error has a generally non-negligible impact

on the asymptotic distribution of the ROC curve and develop the appropriate pointwise

and functional limit theory. We propose methods for simulating the distribution of the

limit process and show how to use the results in practice in comparing ROC curves.
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1 Introduction

Binary prediction or classification is a fundamental problem in statistics and machine learn-

ing with applications in many scientific disciplines including economics. The predictive

ability of statistical models used for binary classification is frequently evaluated through the

receiver operating characteristic (ROC) curve, designed to summarize the tradeoffs between

the probability of a true positive prediction (vertical axis) and a false positive prediction

(horizontal axis) as one combines a predictive index with a varying classification threshold.

Though its origins are in the signal detection and medical diagnostics literature, in recent

years ROC analysis has become increasingly common in financial and economic applications

as well (e.g., Anjali and Bossaerts 2014; Bazzi et al. 2021; Bonfim et al. 2021; Berge and

Jorda 2011; Kleinberg et al. 2018; Lahiri and Wang 2013; Lahiri and Yang 2018; McCracken

et al. 2021; Schularik and Taylor 2012 and many others).

While there is a large literature on the statistical properties of empirical ROC curves,

the standard distributional theory assumes that the signal or predicitive index used for

classification is either directly observed—it is “raw data”—or that it is a fixed function of

raw data. However, if the signal itself is generated from an underlying regression model

with estimated coefficients, conducting in-sample inference about ROC curves based on the

traditional theory can be highly misleading. For instance, Demler et al. (2012) point out that

the standard DeLong et al. (1988) test for comparing AUCs for different (but potentially

correlated) signals can lead to flawed inference if the signals come from nested models with

estimated coefficients.1 Similarly, Lieli and Hsu (2019) demonstrate that the asymptotic

normality results in Bamber (1975) are inappropriate for testing AUC=1/2 for models with

estimated parameters.

The central contribution of this paper is the development of a general functional limit

theory for the empirical ROC curve that takes the pre-estimation effect into account. Re-

garding the ROC curve as a random function defined over the [0,1] interval, we provide a

uniform influence function representation theorem, and show that the difference between the

1AUC stands for “area under [the ROC] curve”. It is an overall performance measure for binary prediction

models. AUC=1/2 corresponds to no predictive power.
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empirical and population ROC curves converges weakly to a mean zero Gaussian process

with a given covariance structure at the parametric rate. These results constitute a non-

trivial extension of the functional limit result in Hsieh and Turnbull (1996), who work under

the assumption that the observations available on the predictive index are i.i.d. conditional

on the outcome. (If the predictive index depends on coefficients estimated in-sample, this

assumption is no longer valid, as the parameter estimates depend on all data points.) Our

results not only allow for the construction of a uniform confidence band for the ROC curve

but also facilitate model selection through handling virtually any comparison between two

correlated ROC curves (e.g., testing dominance or partial dominance; testing the difference

between AUCs or partial AUCs, etc.) In terms implementation, we propose two methods to

simulate the limiting distribution of the empirical ROC curve, one of which is the weighted

bootstrap by Ma and Kosorok (2005). Although some type of bootstrap procedure would

be a natural way to approach the pre-estimation problem in practice even without a theory,

our results provide rigorous justification and guidance for doing this.

A second contribution of the theory developed in this paper is that it provides insight into

what determines the impact of the first stage estimation error on the asymptotic distribution

of the ROC curve. The derivatives of the true and false positive prediction rates with respect

to the first stage model parameters play a central role — if these gradients vanish at the

pseudo-true parameter values, then so does the estimation effect. Nevertheless, the gradients

also depend on the classification threshold and will not generally be negligible along the

entire ROC curve. For associated functionals, it is the gradient of the functional that drives

the estimation effect. Some functionals, e.g., the area under the curve, have the property

that they are maximal when the predictive index is given by p(X) = P (Y = 1|X), the

conditional probability of a positive outcome Y given the covariates X. For such functionals

the estimation effect is negligible when the first stage model is correctly specified for p(X) and

the first stage estimator converges at the root-n rate. Nevertheless, the first stage estimation

error will generally affect the asymptotic distribution under misspecification; thus, our results

facilitate robust inference.

There are additional technical contributions that are more subtle. In employing stan-
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dard empirical process techniques to derive our results, we make most of the fact that the

population and sample ROC curves are invariant to monotone increasing transformations

of the predictive index. This observation allows us to leverage powerful assumptions that

may seem restrictive at first glance. In particular, we use the assumption that the density

f0 of the predictive index conditional on Y = 0 is bounded away from zero to derive various

uniform approximations. The problem is that even if the individual predictors have densities

bounded away from zero (already a big if ), the predictive index may not share this property,

as it often involves a linear combination of the predictors.2 Nevertheless, one can always

find a strictly increasing transformation of the predictive index, say, the probability integral

transform, so that the post-transform f0 will be greater than some ε > 0 across the whole

support. What matters for the asymptotic theory is the properties of the likelihood ratio

f1/f0, which is invariant to monotone increasing transformations (here f1 is the conditional

density of the predictive index given Y = 1). In particular, uniform inference is possible

only for parts of the ROC curve that are generated by thresholds falling into some interval

[cL, cU ] over which f1/f0 is bounded and bounded away from zero.3 But given the properties

of the likelihood ratio, one is free to assume the theoretically most convenient scenario about

the individual density f0 that is achievable through monotone transformations, even if this

transformation is not implemented or even identified.

We must also point out some technical limitations of the paper. First, we do not allow for

serial dependence in the data, precluding time series applications such as the evaluation of

recession forecasting models. Nevertheless, our proofs rely mostly on high level conditions;

specifically, the asymptotically linear representation of the first stage estimator, the stochas-

tic equicontinuity of the empirical process defined by the (pseudo-true) predictive index, and

the uniform continuity of some derivatives. Given the availability of these conditions for sta-

tionary, weakly dependent time series, we conjecture that our representation results should

generalize to this setting with relatively straightforward modifications. However, simulating

2Think of the sum of two independent uniform[0,1] random variables or the central limit theorem for that

matter.
3That such an interval exists is a weak assumption; that it coincides with the support of f0 is a much

stronger one.
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the asymptotic distribution of the limiting process would require more complex procedures

and we do not pursue this extension here. Second, the predictive model evaluated at the

pseudo-true parameter values must have strictly positive variance. This is not an innocent

assumption in that it rules out a completely uninformative predictive model. For example,

our results are not suitable for testing the hypothesis that AUC=1/2; see Lieli and Hsu

(2019) for some specialized results in this very non-standard case. More generally, in us-

ing our results to compare two ROC curves, the difference of the two influence functions

evaluated at the pseudo-true parameter values must have strictly positive variance as well.

This condition can be violated when the first stage models are nested, and we are currently

working on some test procedures that are applicable in this scenario as well. Finally, we only

consider parametric estimators of p(X) as the first stage model; nonparametric estimators

that converge slower than the root-n rate are ruled out.

One might discount the practical relevance of our theoretical results discussed above

based on the fact that the first stage estimation problem can be avoided by conducting out-of-

sample evaluation. If the ROC curve is constructed over a test sample that is independent of

the training sample used to estimate the first stage model, then the asymptotic validity of the

standard inference procedures is restored. We acknowledge this point but offer two responses.

First, out-of-sample evaluation is costly: it leads to power loss in model comparisons and the

potential dependence of the results on the particular split(s) used. In fact, one could argue

that out-of-sample evaluation is a necessity forced on practitioners by the fact that it is often

very difficult to characterize analytically or in a practically useful way how goodness-of-fit

measures behave over the training sample so that one can compensate for overfitting. In

this case we do provide such a result. Second, apart from dealing with the pre-estimation

problem, our results provide a unified framework for conducting uniform inference, and

comparing ROC curves estimated over the same sample in virtually any way.

This work has ties to several strands of the statistics and econometrics literature. We have

already cited a number of classic works on the statistical properties of the empirical ROC

curve that maintain the assumption of a directly observed signal (Bamber 1975, DeLong

et al. 1988, Hsieh and Turnbull 1996). It is the last of these papers that is closest to
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ours; however, the pre-estimation effect is obviously missing from their framework and they

actually do not exploit their functional limit result for inference apart from re-deriving the

asymptotic normality result of Bamber (1975) for the empirical AUC. Instead, they focus on

estimating the ROC curve under an additional “binormal” assumption, i.e., when the signal

has a normal distribution conditional on both outcomes.

Pre-estimation problems have a long history in the literature; for example, Pagan (1984)

studied the distributional consequences of including “generated regressors” into a regression

model. As mentioned above, Demler et al. (2012) pointed out the relevance of the pre-

estimation effect in the context of ROC analysis. More generally, our work is related to papers

dealing with two-step estimators where the first step involves estimating some nuisance

parameter whose sampling variation potentially affects the otherwise well-understood second

stage. Abadie and Imbens (2016) is a relatively recent example in the context of matching

estimators.

The application of our results in testing for dominance relations and AUC differences

across ROC curves has similarities to stochastic dominance tests; see, e.g., Barrett and

Donald (2003), Linton, Maasoumi and Whang (2005), Linton, Song and Whang (2010) and

Donald and Hsu (2016). Some papers, such as Linton, Maasoumi and Whang (2005) and

Linton, Song and Whang (2010), even allow for generated variables in this context. Finally,

the paper speaks indirectly to the forecasting literature on the relative merits of in-sample vs.

out-of-sample model evaluation (e.g., Inoue and Kilian 2004, Clark and McCracken 2012).

The connection lies in the fact that we extend the scope of in-sample evaluation methods in

binary prediction.

The rest of the paper is organized as follows. Section 2 sets up the prediction framework

and introduces the ROC curve along with some of its basic properties. Section 3 discusses

the estimation effect in detail and presents pointwise (fixed-cutoff) asymptotic results. The

functional limit theory is contained in Section 4. In Section 5 we show how to use the abstract

results for conducting inference about the ROC curve; we discuss dominance testing, AUC

comparisons, etc. Section 6 presents Monte Carlo results highlighting the impact of first

stage estimation on the distribution of the ROC curve. Section 7 concludes.
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2 Making and evaluating binary predictions

2.1 Cutoff rules and the ROC curve

Let Y ∈ {0, 1} be a Bernoulli random variable representing some outcome of interest and X

be a k × 1 vector of covariates (predictors). We consider point forecasts (classifications) of

Y that are constructed by combining a scalar predictive index G(X) with a suitable cutoff

(threshold) c. More specifically, the prediction rule for Y is given by

Ŷ (c) = 1[G(X) > c], (1)

where 1[.] is the indicator function. The role of the function G : Rk → R is to aggregate the

information that the predictors contain about Y while the choice of c governs the use of this

information. With G and c unrestricted, (1) represents a very general class of prediction

rules.

In many binary prediction problems there is also a loss function `(ŷ, y) that describes

the cost of predicting Y = ŷ when the realized outcome is Y = y. If the decision maker’s

objective is to minimize expected loss conditional on X, the optimal choice of G and c is

determined as follows. Given the observed value of X, the optimal point forecast of Y solves

min
ŷ∈{0,1}

E[`(ŷ, Y )|X] = min
ŷ∈{0,1}

[
`(ŷ, 1)p(X) + `(ŷ, 0)(1− p(X))

]
, (2)

where p(X) = P(Y = 1|X) is the conditional probability of Y = 1 given X. Adopting

the normalization `(0, 0) = `(1, 1) = 0 and assuming `(0, 1) > 0 and `(1, 0) > 0, it is

straightforward to verify that the optimal prediction rule is given by

Ŷ ∗(c`) = 1[p(X) > c`], (3)

where c` = `(1, 0)/[`(0, 1) + `(1, 0)].4

Equation (3) reveals that the optimal predictive index is p(X) regardless of ` while the

optimal choice of c is fully determined by ` (specifically, by the relative cost of a false alarm

versus a miss). This simple observation motivates a two-step empirical strategy in binary

4In case p(X) = c`, which is often a zero probability event, the decision maker is indifferent between

predicting 0 or 1. The formula stated above arbitrarily specifies Ŷ = 0 in this case.
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prediction.5 First, one models and estimates p(X) using data on (Y,X); a common approach

is to specify a parametric model G(X, β) for p(X) and to estimate it by maximum likelihood

(logistic regression is a leading example). In the second step a point forecast is obtained

by combining the estimated conditional probability G(X, β̂) with a suitable cutoff, which

depends on the forecaster’s or forecaster user’s preferences. Thus, there is a separation

between the construction of the predictive index, representing the objective information

available to the forecaster, and the use of that information, governed by the loss function.

We will now define the population receiver operating characteristic (ROC) curve. Let

G(X, β) be a predictive index with a fixed value of the parameter β.6 Combined with a

cutoff c, the resulting prediction rule produces true positive predictions and false positive

predictions (false alarms) with the following probabilities:

TP (c, β) = P[Ŷ (c) = 1|Y = 1] = P[G(X, β) > c|Y = 1]

FP (c, β) = P[Ŷ (c) = 1|Y = 0] = P[G(X, β) > c|Y = 0],

where TP and FP stand for the rate of “true positive” and “false positive” predictions,

respectively. As the cutoff c varies, both quantities change in the same direction; in general,

TP can be increased only at the cost of increasing FP as well. The ROC curve traces out

all attainable (FP, TP) pairs in the [0, 1]× [0, 1] unit square, i.e., it is the locus{(
FP (c, β), TP (c, β)

)
: c ∈ R

}
.

Intuitively, the ROC curve is a way of summarizing the information content of G(X, β)

about the outcome Y without committing to any particular cutoff, i.e., loss function. The use

of such a forecast evaluation tool is particularly appropriate in situations in which there many

potential forecast users with diverse loss functions; see Lieli and Nieto-Barthaburu (2010).

It is also clear from the definition that the ROC curve is invariant to strictly monotone

transformations of G(X, β).

5See Elliott and Lieli (2013) for an alternative approach where the decision rule (3) is estimated in a

single step based on a specific loss function.
6The following definitions do not depend on the parametric structure and generalize immediately to

any predictive index G(X). We work with a parametric specification in anticipation of studying the pre-

estimation step.
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The ROC curve based on the true conditional probability function p(X) possesses some

optimality properties. To state these in a parametric modeling framework, we introduce the

following correct specification assumption.

Assumption 1 There exists some point β◦ in the parameter space B ⊆ Rp such that

G(X, β◦) = p(X) almost surely.

We state the following result.

Proposition 1 (i) Given Assumption 1, β◦ solves the following maximization problem for

any value of c:

max
β

[
(1− c)πTP (c, β)− c(1− π)FP (c, β)

]
,

where π = P(Y = 1).

(ii) Given Assumption 1, define F ◦c = FP (c, β◦). Then β◦ also solves the following

constrained maximization problem for any value of c:

max
β

TP (c, β) s.t. FP (c, β) = F ◦c

Remarks:

1. Part (i) is a consequence of the predictor (3) solving (2) for any given value of X. To

see this, note that by the law of iterated expectations and the monotonicity of the

expectation operator, Ŷ ∗(c`) also solves the unconditional expected loss minimization

problem minŶ EXY [`(Ŷ , Y )], where the minimization is over all random variables Ŷ

that are (measurable) transformations of X. It is easy to verify that E[`(Ŷ , Y )] can

be written as

[`(0, 1) + `(1, 0)] ·
[
c`(1−π)P(Ŷ = 1|Y = 0)− (1− c`)πP(Ŷ = 1|Y = 1)

]
+π`(0, 1),

which immediately implies the result.

2. Part (ii) is a consequence of part (i) and it means that for any given FP rate, it is the

ROC curve based on p(X) that achieves the largest possible TP rate. In other words,
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the ROC curve associated with p(X) weakly dominates any other ROC curve that is

constructed based on some index G(X).7

3. These results are not new; they have appeared in the ROC literature in alternative

formulations. See, e.g., Egan (1975) and Pepe (2003, Section 4).

2.2 The sample ROC curve and conventional inference

Throughout the paper we maintain the assumption that the available data consists of a

random sample. More formally:

Assumption 2 The sample {(Yi, Xi)}ni=1 consists of independent and identically distributed

observations on the random vector (Y,X) ∈ {0, 1} × Rk.

Given the sample and a fixed value of β, the empirical ROC curve is defined as the locus{
(F̂P (c, β), T̂P (c, β)) : c ∈ R

}
⊂ [0, 1]× [0, 1], where

T̂P (c, β) =
1

n1

n∑
i=1

1[G(Xi, β) > c, Yi = 1]

F̂P (c, β) =
1

n0

n∑
i=1

1[G(Xi, β) > c, Yi = 0],

and n1 =
∑n

i=1 Yi, n0 = n− n1.

The simplest type of inference about an ROC curve involves constructing (joint) confi-

dence intervals for TP (c, β) and FP (c, β) for one threshold c at a time and for fixed values

of the coefficient vector β. In this case one can use the CLT to arrive at the normal approx-

imations:

√
n[T̂P (c, β)− TP (c, β)]→d N

[
0, TP (1− TP )/π

]
(4)

√
n[F̂P (c, β)− FP (c, β)]→d N

[
0, FP (1− FP )/(1− π)

]
, (5)

7To see this, fix a false positive rate F0 ∈ [0, 1], and find the cutoff c0 that produces FP (β◦, c0) = F0

(for simplicity, assume that exact equality can be achieved). Let β′ be any other parameter value satisfying

FP (β′, c0) = F0. Proposition 1(i) implies

(1− c0)πTP (c0, β
◦)− c0(1− π)FP (c0, β

◦) ≥ (1− c0)πTP (c0, β
′)− c0(1− π)FP (c0, β

′)

so that TP (c0, β
◦) ≥ TP (c0, β

′).
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where TP is a shorthand for TP (c, β) (and similarly for FP). These results immediately

provide asymptotic confidence intervals for TP and FP, and a joint confidence rectangle is

also easy to construct due to the independence of T̂P (c, β) and F̂P (c, β); see Pepe (2003),

Section 2.2.2 for details.8

Furthermore, for fixed β one can apply the asymptotic normality results in Bamber (1975)

to conduct inference about the AUC, and the DeLong et. al. (1988) test for comparing the

areas under ROC curves based on different (but non-random) values of β. The nonparametric

functional limit result in Hsieh and Turnbull (1996) also applies.

3 In-sample inference: pointwise asymptotics

We will now develop a comprehensive theory of in-sample inference about individual points

on the ROC curve taking the pre-estimation effect into account. We present both analytical

results and results based on the weighted bootstrap. We start by describing the setup and

stating some technical conditions.

3.1 First stage estimation and technical assumptions

The sample {(Yi, Xi)}ni=1 now plays a dual role. First, it is used to construct an estimated

parameter vector β̂ = β̂n. Typically, β̂ consists of an intercept and slope coefficients from

some type of regression of Y on X (e.g., linear, logit or probit). Second, the same sample

is used to compute the predictive index values G(Xi, β̂), i = 1, . . . , n, and to construct

the empirical ROC curve as described in Section 2.2. We impose the following high level

condition on β̂.

Assumption 3 (i) Let β̂ be an M-estimator of β so that

β̂ ≡ arg max
β∈B

1

n

n∑
i=1

q(Yi, Xi, β).

8The two statistics are independent because they are computed from two disjoint sets of observations;

namely, the Y = 1 and Y = 0 subsamples.
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(ii) There is a point β∗ in the interior of the compact parameter space B ⊂ Rp so that

√
n(β̂n − β∗) =

1√
n

n∑
i=1

ψβ(Yi, Xi, β
∗) + op(1), (6)

where ψβ : R1+k+p → Rp is a given function withE[ψβ(Y,X, β∗)] = 0 and E‖ψβ(Y,X, β∗)‖2+ε <

∞ for some ε > 0. Furthermore, β∗ = β◦ under Assumption 1.

Assumption 3 states that β̂ is an M -estimator with an asymptotically linear represen-

tation, implying that β̂ is asymptotically normally distributed. The stated conditions do

not require the first stage model to be correctly specified for p(X); β∗ simply stands for the

probability limit of β̂, i.e., the pseudo-true value of the parameter vector. We nevertheless

assume that β̂ is consistent for β◦ under correct specification (Assumption 1). The reason for

allowing for misspecification is twofold. First, the first stage predictive model is often simply

an approximation of p(X), e.g., a linear regression. Second, as we will see, the estimation

effect can depend on whether or not the model is correctly specified.

Assumption 4 The empirical processes

(c, β) 7→
√
n(P̂0 − P0)1[G(X, β) ≤ c] and (c, β) 7→

√
n(P̂1 − P1)1[G(X, β) ≤ c]

are stochastically equicontinuous over R × B, where Pj denotes probability conditional on

Y = j and P̂j is the corresponding empirical measure in the Y = j subsample.

The stochastic equicontinuity requirement in Assumption 4 limits the complexity of the

model G(X, β) and plays an important role in handling the estimation effect. It holds,

for example, if G(X, β) = X ′β or G(X, β) = G(X ′β) with G bounded (see the definition

of a type I class in Andrews 1994). Apart from a small degree of added generality, we

state stochastic equicontinuity as a high level condition to make it more transparent what

is required for our results.

The final assumption states the differentiability of TP and FP with respect to the com-

ponents of β. Let ∇β denote the corresponding gradient operator and B∗(r) the open ball

with radius r > 0 centered on β∗.

Assumption 5 For any given cutoff c, the gradient vectors ∇βTP (c, β) and ∇βFP (c, β)

exist and are continuous over B∗(r) for some r > 0.
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As we will shortly see, the first stage estimation of β affects the asymptotic distribution

of the ROC curve through the derivatives presented in Assumption 5.

3.2 Theoretical illustration of the estimation effect

Let c be a given value of the cutoff; we want to conduct inference about the corresponding

point (FP (c, β∗), TP (c, β∗)) on the limiting ROC curve. To isolate the effect of the first

stage estimator β̂ on the asymptotic distribution of T̂P (c, β̂), we can write

√
n[T̂P (c, β̂)− TP (c, β∗)]

=
√
n[T̂P (c, β̂)− TP (c, β̂)] +

√
n[TP (c, β̂)− TP (c, β∗)]

=
√
n[T̂P (c, β∗)− TP (c, β∗)] +

√
n[TP (c, β̂)− TP (c, β∗)] + op(1), (7)

where the second equality is due to the fact that the process
√
n(T̂P −TP ) is stochastically

equicontinuous (Assumption 4), implying

√
n[T̂P (c, β̂)− TP (c, β̂)]−

√
n[T̂P (c, β∗)− TP (c, β∗)] = op(1),

given that β̂ →p β
∗. As β∗ is fixed and V ar[G(X, β∗)] > 0, the first term in equation (7)

has the asymptotic distribution given by (4) and the second term represents the effect of

estimating β∗. Does this term have a non-negligible effect on the asymptotic distribution of

T̂P (c, β̂), and if yes, how do we characterize it?

To address these questions, we can use Assumption 5 to expand the second term in (7)

around β∗ to obtain

√
n[T̂P (c, β̂)− TP (c, β∗)]

=
√
n[T̂P (c, β∗)− TP (c, β∗)] +

√
n∇βTP (c, β∗)(β̂ − β∗) + op(1). (8)

Equation (8) shows that the estimation effect is negligible whenever ∇βTP (c, β∗) = 0. How-

ever, as Proposition 1(ii) shows, this condition does not generally hold even if G(X, β) is

correctly specified (i.e., β∗ = β◦), because TP (c, β◦) solves a constrained (rather than uncon-

strained) optimization problem.9 Under misspecification Proposition 1(ii) does not apply,

9The first order conditions are ∇βTP (c, β◦) = λ∇βFP (c, β◦) for some scalar λ and FP (c, β) = F ◦c . The

Lagrange multiplier λ is generally non-zero, at least when TP (c, β◦) < 1.
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but of course there is still no general reason for ∇βTP (c, β∗) to vanish. Therefore, in either

case the asymptotic distribution of T̂P (c, β̂) and F̂P (c, β̂) will generally differ from that

stated under (4) and (5) because
√
n(β̂ − β∗) = Op(1).10

3.3 Pointwise inference based on analytical results

To describe the asymptotic distribution of T̂P (c, β̂) in more detail, we can further expand

the decomposition in (8) by substituting in the asymptotically linear (influence function)

representation of the two terms. Using the definition of T̂P (c, β∗) and Assumption 3, it is

straightforward to verify that

√
n[T̂P (c, β̂)− TP (c, β∗)] =

1√
n

n∑
i=1

{Yi
π

[
1(G(X, β∗) > c)− TP (c, β∗)

]
+∇βTP (c, β∗)ψβ(Yi, Xi, β

∗)
}

+ op(1)

≡ 1√
n

n∑
i=1

ψTP (Yi, Xi, c, β
∗) + op(1), (9)

where the definition of ψTP is enclosed by the braces on the previous line.

Of course, F̂P (c, β̂) has a corresponding asymptotically linear representation with influ-

ence function

ψFP (Yi, Xi, c, β
∗) =

1− Yi
1− π

[
1(G(Xi, β

∗) > c)−FP (c, β∗)
]

+∇βFP (c, β∗)ψβ(Yi, Xi, β
∗).

Stacking the influence functions as

ψ(Yi, Xi, c, β
∗) = [ψTP (Yi, Xi, c, β

∗), ψFP (Yi, Xi, c, β
∗)]′

and applying the multivariate CLT gives the asymptotic joint distribution of an individual

point (T̂P (c, β̂), F̂P (c, β̂)) on the sample ROC curve.

10Proposition 1(i) implies that under correct specification one can conduct inference about the linear

combination (1 − c)πTP − c(1 − π)FP without the need to consider the pre-estimation effect. This is

because the true value of β maximizes this linear combination and hence the corresponding gradient driving

the estimation effect vanishes. More generally, the estimation effect is negligible for a functional of the ROC

curve if (i) the ROC curve based on p(X) maximizes that functional and (ii) Assumption 1 holds.
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Proposition 2 Suppose that Assumptions 2 to 5 are satisfied. Then

√
n

T̂P (c, β̂)− TP (c, β∗)

F̂P (c, β̂)− FP (c, β∗)

 =
1√
n

n∑
i=1

ψ(Yi, Xi, c, β
∗) + op(1)→d N [0, E(ψψ′)] (10)

for cutoffs c for which E[ψ2
TP (Yi, Xi, c, β

∗)] > 0 and E[ψ2
FP (Yi, Xi, c, β

∗)] > 0.

Remarks

1. Using Proposition 2, it is easy to obtain the asymptotic distribution of any linear

combination aT̂P (c, β̂) + bF̂P (c, β̂).

2. Proposition 2 is a “pointwise” result in the sense that the cutoff c is assumed to be

fixed. It is straightforward to generalize the setup so that one can make joint inference

about points that are associated with a finite number of different cutoffs. One can

simply stack the values of the influence function ψ evaluated at these cutoffs and a

result analogous to (10) will continue to hold.

3. The variance condition E[ψ2
TP ] > 0 will generally hold for interior points TP (c, β∗) ∈

(0, 1) but fail for TP (c, β∗) ∈ {0, 1}. The same is true for FP .

We supplement Proposition 2 by some results that reveal the structure of ∇βTP and

∇βFP and facilitate their estimation. Let ∂j denote the partial derivative operator with

respect to the jth component of β.

Assumption 6 (i) G(X, β) is twice continuously differentiable (a.s.) w.r.t. β on B∗(r) for

some r > 0 with supβ∈B∗(r) |∂jjG(X, β)| ≤M (a.s.) for some M > 0.

(ii) The conditional density of G(X, β∗) given Y = 0, 1 exists. The conditional density of

G(X, β∗) given ∂jG(X, β∗) and Y = y also exists and is bounded uniformly by some M > 0

for almost all values of ∂jG(X, β∗), y = 0, 1, and all j.

(iii) E
[
|∂jG(X, β∗)|

∣∣Y = 1
]
<∞ for all j.

Proposition 3 Suppose that Assumptions 5 and 6 hold. Then:

∇βTP (c, β∗) = E
[
∇Gβ(X, β∗)

∣∣∣G(X, β∗) = c, Y = 1
]
f ∗1 (c), (11)
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where f ∗1 (c) is the conditional density of G(X, β∗) given Y = 1. If, in addition, Assumption 1

is satisfied (β∗ = β◦), then the expectation in equation (11) does not need to be conditioned

on Y = 1. The formula for ∇βFP (c, β∗) is analogous; it conditions on Y = 0 throughout.

Finally, we specialize Propositions 2 and 3 by imposing a logit first stage.

Assumption 7 Suppose that the first stage estimation consists of a logit regression of Y on

X and a constant so that G(X, β̂) = Λ(X̃ ′β̂), where Λ(·) is the logistic c.d.f., X̃ = (1, X ′)′

and β̂ is the maximum likelihood estimator.

Proposition 4 Suppose that Assumption 7 is satisfied. Then:

(a) ψβ(Yi, Xi, β) = A−1β Xi[Yi − Λ(X̃ ′iβ)], where Aβ = E{Λ(X̃ ′β)[1− Λ(X̃ ′β)]X̃X̃ ′}.

(b) The components of ∇βTP (c, β∗) are given by:

c(1− c)E
[
Xj

∣∣Λ(X̃ ′β∗) = c, Y = 1
]
f ∗1 (c), j = 0, 1, . . . , d, (12)

where X0 ≡ 1, Xj, j = 1, . . . , d is the jth component of X, and f ∗1 (c) is the conditional

density of Λ(X̃ ′β∗) given Y = 1.

Remarks:

1. The proofs of Propositions 3 and 4 are presented in Appendix B.

2. The existence of f ∗1 (c) requires that X has a continuous component and the corre-

sponding coefficient in β∗ is nonzero. This rules out X and Y being independent.

3. The expression for ψβ follows from formulas (12.16), (15.18) and (15.19) in Wooldridge

(2002) when specialized to the logit case.

4. One can estimate the unknown quantities in (12) nonparametrically to obtain a semi-

parametric estimator for ∇βTP (c, β∗). More precisely, expression (12) may actually

be estimated in a single step as

c(1− c) 1

n1h

∑
i:Yi=1

XjiK

(
Λ(X̃ ′iβ̂)− c

h

)
, (13)
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where K(·) is a kernel function and h is a bandwidth that may be chosen according to

Silverman’s rule of thumb.

5. Alternatively, if correct specification is assumed in the first stage (β∗ = β◦), then one

can estimate E[Xj|Λ = c, Y = 1] = E[Xj|Λ = c] by a kernel regression on the full

sample and f ∗1 (c) by a kernel estimator on the Y = 1 subsample.

3.4 Pontwise inference based on the weighted bootstrap

Here we provide an alternative method for making pointwise inference about the ROC curve

by utilizing the weighted bootstrap for M-estimators proposed by Ma and Kosorok (2005).

The main advantage of this approach is that it sidesteps the estimation of the gradient vectors

∇βTP (c, β∗) and ∇βFP (c, β∗). Furthermore, the method is similar to the simulation-based

procedure that we propose for functional inference in Section 4.

The weighted bootstrap employs a sequence of (pseudo) random variables as multipliers

to simulate the sampling variation of an estimator.

Assumption 8 Let {Wi}ni=1 be a sequence of i.i.d. (pseudo) random variables, independent

of the sample path {(Yi, Xi)}ni=1, with E(Wi) = 1 and V ar(Wi) = 1.

We first define the weighted bootstrap version of the first stage estimator of β:

β̂w = arg max
β∈B

1

n

n∑
i=1

Wi · q(Yi, Xi, β).

Given β̂w, the weighted bootstrap estimators of TP (c, β) and FP (c, β) are defined as

T̂P
w

(c, β) =
1∑n

i=1Wi · Yi

n∑
i=1

Wi · 1[G(Xi, β) > c, Yi = 1]

F̂P
w

(c, β) =
1∑n

i=1Wi · (1− Yi)

n∑
i=1

Wi · 1[G(Xi, β) > c, Yi = 0].

Assumption 9 Assume that

√
n(β̂w − β∗) =

1√
n

n∑
i=1

Wi · ψβ(Yi, Xi, β
∗) + op(1), (14)
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where β∗ and ψβ(Yi, Xi, β
∗) are given in Assumption 3.

Assumption 9 ensures that the weighted bootstrap is valid for the first stage estimator,

i.e., conditional on the data,
√
n(β̂w − β̂) has the same limiting distribution as

√
n(β̂ − β∗)

unconditionally.

Furthermore, by Theorem 2 of Ma and Kosorok (2005), the validity of the weighted

bootstrap for T̂P
w

(c, β̂w) follows from showing that (i) T̂P , F̂P , T̂P
w

and F̂P
w

can be rep-

resented as M-estimators and (ii) that these estimators are
√
n-consistent and asymptotically

linear.

Item (i) is verified by noting that

T̂P (c, β̂) = arg min
t∈R

1

n

n∑
i=1

Yi ·
(
1[G(Xi, β̂) > c]− t

)2
T̂P

w
(c, β̂w) = arg min

t∈R

1

n

n∑
i=1

Wi · Yi ·
(
1[G(Xi, β̂

w) > c]− t
)2
,

and similarly for F̂P and F̂P
w

. As for item (ii), Proposition 2 establishes the asymptotically

linear representation of (T̂P (c, β̂), F̂P (c, β̂)); essentially the same argument also yields

√
n

T̂Pw
(c, β̂w)− TP (c, β∗)

F̂P
w

(c, β̂w)− FP (c, β∗)

 =
1√
n

n∑
i=1

Wi · ψ(Yi, Xi, c, β
∗) + op(1).

Thus, we obtain the following result.

Proposition 5 Suppose that Assumptions 2-5, 8 and 9 are satisfied. Then, conditional on

the sample path of the data,

√
n

T̂Pw
(c, β̂w)− T̂P (c, β̂)

F̂P
w

(c, β̂w)− F̂P (c, β̂)

 =
1√
n

n∑
i=1

(Wi − 1) · ψ(Yi, Xi, c, β
∗)→d N [0, E(ψψ′)]

with probability approaching one for cutoffs c such that E[ψ2
TP ] > 0 and E[ψ2

FP ] > 0.

Remarks

1. In applications we suggest letting the weights Wi take the values 0 and 2 with equal

probability. The main reason is that with non-negative weights the weighted objective

function remains concave if the q(Yi, Xi, β) is concave in β. This makes it computa-

tionally easier to obtain β̂w.
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2. The weighted bootstrap estimator of the asymptotic variance-covariance matrix Ψ(c) ≡

E(ψψ′) can be constructed as follows. With a minor abuse of notation, let R̂w(c) =

(T̂P
w

(c, β̂w), F̂P
w

(c, β̂w))′ denote the ROC estimate from the wth bootstrap cycle,

w = 1, . . . ,W . Then one can estimate Ψ(c) by

Ψ̂W(c) =
n

W

W∑
w=1

(
R̂w(c)− R̂

w

(c)
)(
R̂w(c)− R̂

w

(c)
)′
, where

R̂
w

(c) =
1

W

W∑
w=1

R̂w(c).

We have that conditional on sample path with probability approaching one,

Ψ̂W(c)
p→w

1

n

n∑
i=1

ψ(Yi, Xi, c, β
∗)ψ(Yi, Xi, c, β

∗)′ + op(1),

where
p→w denotes probability limit under the law of the Wi’s. It follows that

lim
W→∞

Ψ̂W(c)
p→ Ψ(c).

4 In-sample inference: uniform asymptotics

To derive uniform results, we first express the ROC curve explicitly as a function over the

interval [0,1]. Let the inverse of the decreasing function c 7→ FP (c, β) be defined as

FP−1β (t) = inf{c : FP (c, β) ≤ t}, t ∈ [0, 1].

The more compact notation on the l.h.s. emphasizes that the inverse is taken with respect

to the cutoff c for a fixed value of β. Thus, is FP−1β (t) as the “first” (smallest) cutoff value

at which the false positive rate is equal to t or falls below t.11 Because 1 − FP (c, β) is the

c.d.f. of the conditional distribution of G(X, β) given Y = 0, an equivalent interpretation of

FP−1β (t) is that it is the (1− t)-quantile of this distribution.

We can now represent the ROC curve as a function that returns the true positive rate

associated with given false positive rate t:

R(t, β) = TP
(
FP−1β (t), β

)
, t ∈ [0, 1]. (15)

11Of course, if FP (c, β) is strictly decreasing and continuous in c, then FP−1
β (t) is the unique solution to

the equation FP (c, β) = t.
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For a given parameter value β, the sample ROC curve is defined by replacing TP (·, β) and

FP−1β (·) by sample analogs: R̂(t, β) = T̂P
(
F̂P

−1
β (t), β

)
, t ∈ [0, 1].

4.1 Additional technical assumptions for uniform inference

Our goal is to characterize the statistical behavior of the random function t 7→ R̂(t, β̂) over

the interval [0, 1]. This requires some additional assumptions.

Assumption 10 (i) The conditional distribution of G(X, β∗) given Y = 0 has compact

support [a0, b0] and probability density function f ∗0 (c) that is continuous (and hence bounded)

over [a0, b0] and satisfies inf{f ∗0 (c) : c ∈ [a0, b0]} ≥ δ for some δ > 0.

(ii) The conditional distribution of G(X, β∗) given Y = 1 has compact support [a1, b1]

and a probability density function f ∗1 (c).

(iii) There exits a subinterval [c0,L, c0,U ] ⊆ [a0, b0] such that f ∗1 (c)/f ∗0 (c) is continuous

(and hence bounded) over [c0,L, c0,U ] and satisfies inf{f ∗1 (c)/f ∗0 (c) : c ∈ [c0,L, c0,U ]} ≥ δ for

some δ > 0.

Assumption 10 merits careful discussion. An immediate practical implication of part (i)

is that the limiting model G(X, β∗) must depend on at least one continuous predictor in

a nontrivial way. For instance, if the model is based on a linear index, this rules out X

being completely independent of Y ; see Remark 1 after Proposition 4. Part (iii) implies

that supp(f ∗0 ) and supp(f ∗1 ) overlap, ensuring that the classification problem is nontrivial.

Nevertheless, the overlap does not need to be complete; we allow for applications in which

extreme values of the index are associated exclusively with one of the two outcomes.

From a technical standpoint, the main purpose of Assumption 10 is to facilitate uniform

inference by controlling the behavior of the likelihood ratio f ∗1 /f
∗
0 . In particular, f ∗1 /f

∗
0 is

required to be bounded and bounded away from zero on an interval [c0,L, c0,U ]. Our uni-

form influence function representation result for R̂(t, β̂) holds only for quantiles t satisfying

FP−1β∗ (t) ∈ [c0,L, c0,U ] or, equivalently, for t ∈ [FP (c0,U , β
∗), FP (c0,L, β

∗)]. While this repre-

sentation depends on f ∗1 and f ∗0 only through f ∗1 /f
∗
0 , the derivation of the result relies on

the additional condition that f ∗0 is bounded away from zero (Assumption 10(i)). This may

seem overly restrictive at first glance—for example, if G(X, β∗) = X ′β∗, then predictors with
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Figure 1: On the left panel, f∗0 , the blue curve, is the β(2, 3) pdf so that [a0, b0] = [0, 1] and f∗0 is not

bounded away from zero. f∗1 , the red curve, is β(3, 4) + 0.1 so that [a1, b1] = [0.1, 1.1]. The likelihood ratio

is zero below 0.1 and becomes unbounded just below 1. On the right panel, we apply the transformation

Φ = cdf of β(2, 3). f∗0 is now the uniform[0,1] density so that f∗1 transforms into the likelihood ratio.

Assumption 10(iii) is satisfied over, say, [c0,L, c0,U ] = [0.15, 0.9] so that uniform inference about R(t, β∗) is

possible over [FP (c0,U , β
∗), FP (c0,L, β

∗)] ≈ [0.004, 0.89].

unbounded support are ruled out. Furthermore, it is easy to see that even if all components

of X have densities bounded away from zero, their linear combinations will generally not

share this property.12 However, one can always find a monotone increasing transformation

Φ(·) such that the density of Φ[G(X, β∗)] conditional on Y = 0 is bounded away from zero,

e.g., one can use the probability integral transform to arrive at a uniform[0,1] density. At

the same time, such a transformation leaves the ROC curve as well as the range of the likeli-

hood ratio f ∗1 /f
∗
0 unchanged. Thus, the last part of Assumption 10(i) is simply a theoretical

normalization that does not need to be imposed on the data in practice (see Figure 1 for an

illustration).

Of course, Assumption 10 allows for scenarios in which [FP (c0,U , β
∗), FP (c0,L, β

∗)] =

12For example, consider the sum of two independent uniform [-0.5,0.5] random variables. The resulting

density is (1− |x|)1[−1,1](x), which tends to zero as x approaches −1 or 1.
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[0, 1], i.e., uniform inference is possible along the entire ROC curve. This is the case, for

example, if the “propensity score” function P (Y = 1|X = x) takes values from an interval

[δ, 1 − δ] for some 0 < δ < 1/2, which implies supp(f ∗0 ) = supp(f ∗1 ) and that (iii) holds

with [c0,L, c0,U ] = [a0, b0].
13 More generally, Assumption 10(iii) allows f ∗1 (c)/f ∗0 (c) to reach

zero or explode for cutoffs c outside the range [c0,L, c1,L]. For example, the likelihood ratio

vanishes as c approaches a0 from above whenever a0 < a1. In this case the lowest index

values imply Y = 0 and the ROC curve reaches the top of the unit square for some FP rate

below unity. Similarly, f ∗1 (c)/f ∗0 (c) may become unbounded as c approaches b0 from below.

This can easily happen when b0 < b1, i.e., the largest index values are associated exclusively

with the Y = 1 outcome. In this case the ROC curve has a positive vertical intercept at

FP = 0. Again, see Figure 1 for an example.

The next assumption is a strengthening of Assumption 5. These stricter conditions on the

gradient vectors ∇βTP (c, β) and ∇βFP (c, β) also play a key role in establishing a uniform

influence function representation for the sample ROC curve. Recall that B∗(r) denote the

open ball with radius r > 0 centered on β∗.

Assumption 11 Let C = [a1, b1]. ∇βTP (c, β) exits and is continuous over C × B∗(r) for

some r > 0 with sup(c,β)∈C×B∗(r) ‖∇βTP (c, β)‖ ≤ M for some M > 0. The same applies to

∇βFP (c, β) with C = [a0, b0].

4.2 Functional limit results

Letting c∗t = FP−1β∗ (t) ∈ [a0, b0] and ĉt = F̂P
−1
β̂ (t) ∈ [a0, b0], we start from a decomposition

of
√
n[T̂P (ĉt, β̂)− TP (c∗t , β

∗)] similar to (7). There are two added layers of difficulty. First,

13To see this, let fx(x) denote the density function of X. Note that

f0(c) =

∫
G(x)=c

(1− p(x))fx(x)dx∫
G(x)=c

(1− p(x))dx
and f1(c) =

∫
G(x)=c

p(x)fx(x)dx∫
G(x)=c

p(x)dx
.

It follows that

f0(c)

f1(c)
=

∫
G(x)=c

(1− p(x))fx(x)dx∫
G(x)=c

p(x)fx(x)dx

∫
G(x)=c

p(x)dx∫
G(x)=c

(1− p(x))dx
,

which is bounded below by δ2/(1− δ)2 and bounded above by (1− δ)2/δ2.
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functional results require uniform approximations to these terms as t varies over the [0, 1]

interval. Second, instead of being fixed, the cutoff is now estimated for any given value

of t. The sampling variation in ĉt contributes another non-trivial term to the asymptotic

distribution.

We express the centered and scaled empirical ROC curve as the sum of three terms:

√
n[R̂(t, β̂)−R(t, β∗)] =

√
n[T̂P (ĉt, β̂)− TP (c∗t , β

∗)]

=
√
n[T̂P (ĉt, β̂)− TP (ĉt, β̂)] +

√
n[TP (ĉt, β̂)− TP (ĉt, β

∗)]

+
√
n[TP (ĉt, β

∗) − TP (c∗t , β
∗)] (16)

The first term in equation (16) can be expanded similarly to the second equality in (7):

√
n[T̂P (ĉt, β̂)− TP (ĉt, β̂)] =

√
n[T̂P (c∗t , β

∗)− TP (c∗t , β
∗)] +R1n(t), (17)

where supt∈[0,1] |R1n(t)| = op(1). The uniform convergence of the remainder term is a con-

sequence of the stochastic equicontinuity of the process (c, β) 7→
√
n(T̂P (c, β) − TP (c, β)),

stated directly in Assumption 4, coupled with the fact that β̂ →p β
∗ (Assumption 3) and

supt∈[0,1] |ĉt − c∗t | →p 0 (Lemma A.5 in Appendix A). This last result makes use of Assump-

tion 10(i), which requires that the density f ∗0 be bounded away from zero on its compact

support.

The second term in equation (16) is due to the estimation of β and is again handled by

a standard mean value expansion:

√
n[TP (ĉt, β̂)− TP (ĉt, β

∗)] = ∇βTP (c∗t , β
∗)
√
n(β̂ − β∗) +R2n(t), (18)

where supt∈[0,1] |R2n(t)| = op(1). The uniformity of the approximation is ensured by Assump-

tion 11, which implies that ∇βTP (c, β∗) is uniformly continuous.

Finally, the third term in (16) arises because of the need to estimate the cutoff value

associated with a given false positive rate t; it therefore does not arise in the fixed-cutoff

setting. Starting with a mean value expansion of TP (ĉt, β
∗) around c∗t , one can write

√
n[TP (ĉt, β

∗)− TP (c∗t , β
∗)] = f ∗1 (c∗t )

√
n(ĉt − c∗t ) +R3n(t)

= f ∗1 (c∗t )
√
n[F̂P

−1
β̂ (t)− FP−1β∗ (t)] +R3n(t), (19)
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The remainder term R3n(t) converges in probability to zero uniformly over the interval{
t : c∗t ∈ [c0,L, c0,U ]

}
=
[
FP (c0,U , β

∗), FP (c0,L, β
∗)
]
,

where c0,L and c0,U are specified in Assumption 10(iii). The asymptotic distribution of the

process t 7→
√
n[F̂P

−1
β̂ (t) − FP−1β∗ (t)] can be analyzed in two steps: First, we establish an

asymptotically linear representation for the “base process” c 7→
√
n[F̂P (c, β̂) − FP (c, β∗)]

that holds uniformly in c (and implies a mean zero Gaussian limit process). Second, we

apply the functional delta method under the inverse functional φ(F ) = F−1 to characterize

the contribution of the term (19) to the asymptotic distribution of the empirical ROC curve.

Lemma 1 summarizes and completes the development of the approximations presented

in equations (17), (18) and (19).

Lemma 1 Suppose that Assumptions 2, 3, 4, 10 and 11 are satisfied. Then:

(i) supt∈[0,1]R1n(t) = op(1);

(ii) supt∈[0,1]R2n(t) = op(1);

(iii) supt∈T R3n(t) = op(1), where T =
[
FP (c0,U , β

∗), FP (c0,L, β
∗)
]
;

(iv) F̂P (c, β̂) admits asymptotically linear representation that holds uniformly in c:

√
n
(
F̂P (c, β̂)− FP (c, β∗)

)
=

1√
n

n∑
i=1

ψFP (Yi, Xi, c, β
∗) +R4n(t), (20)

where supc∈[a0,b0]R4n(c) = op(1);

(v) and, by the functional delta method,

√
n[F̂P

−1
β̂ (t)− FP−1β∗ (t)] = − 1

f ∗0 (c∗t )

√
n[F̂P (c∗t , β̂)− FP (c∗t , β

∗)] +R5n(t), (21)

where supt∈(0,1) |R5n(t)| = op(1).

Remarks

1. The proof of Lemma 1 is provided in Appendix B; it simply adds some technical details

to the arguments outlined in the main text.

2. The fact that f ∗0 (c) is bounded away from zero (Assumption 10(i)) plays a critical role

in ensuring that the remainder term R5n(t) associated with the delta method converges

to zero uniformly over the entire [0, 1] interval.
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Combining equations (16) through (21) with the influence function representations of
√
n[T̂P (c, β∗) − TP (c, β∗)] and

√
n(β̂ − β∗) yields the following proposition, which is the

central result of the paper.

Proposition 6 Suppose that Assumptions 2, 3, 4, 10 and 11 are satisfied. Define

ψR(y, x, t, β∗) = ψTP (y, x, c∗t , β
∗)− f ∗1 (c∗t )

f ∗0 (c∗t )
ψFP (y, x, c∗t , β

∗),

where c∗t = FP−1β∗ (t). Then:

(i) The empirical ROC curve admits an asymptotically linear representation that holds

uniformly over T =
[
FP (c0,U , β

∗), FP (c0,L, β
∗)
]
:

sup
t∈T

∣∣∣√n(R̂(t, β̂)−R(t, β∗)
)
− 1√

n

n∑
i=1

ψR(Yi, Xi, t, β
∗)
∣∣∣ = op(1), (22)

where c0,L and c0,U are chosen in accordance with Assumption 10(iii), i.e., f ∗1 /f
∗
0 is contin-

uous and bounded away from zero on [c0,L, c0,U ] .

(ii) The process t 7→ 1√
n

∑n
i=1 ψR(Yi, Xi, t, β

∗) is stochastically equicontinuous over T .

(iii) Therefore,

√
n(R̂n(t, β̂)−R(t, β∗))⇒ ΨhR(t) in the space L∞(T ),

where “⇒” denotes weak convergence, L∞(T ) is the space of bounded functions over T , and

ΨhR(·) is a zero mean Gaussian process defined on T with covariance kernel hR(t1, t2) =

E[ψR(Y,X, t1, β
∗)ψR(Y,X, t2, β

∗)].

Remarks

1. The precise notion of weak convergence employed in part (iii) is given by Definition

1.3.3 of van der Vaart and Wellner (1996).

2. Given the arguments leading up to Proposition 6, the proof of part (i) is practically

complete (technically, it still requires showing that the influence function representation

of
√
n[T̂P (c, β∗) − TP (c, β∗)] holds uniformly in c, but this is essentially covered by

Lemma 1(iv)). The proof of Part (ii) relies on Assumptions 4, 10 and 11. Part (iii)

follows immediately from parts (i) and (ii). Details are presented in Appendix B.
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4.3 Simulating the asymptotic distribution of the ROC curve

In order to employ Proposition 6 for statistical inference, we need a method to approximate

ΨhR(t), the distributional limit of the process
√
n(R̂n(t, β∗)−R(t, β∗)). To this end, offer two

methods: the weighted bootstrap as in Ma and Korosok (2005) and the multiplier bootstrap

as in Hsu (2016).

We first present the discussion of the weighted bootstrap. Define T̂P
w

(c, β̂w) and F̂P
w

(c, β̂w)

precisely as in Section 3.4 and let ĉwt =
(
F̂P

w

β̂w

)−1
(t). We can then construct the weighted

ROC curve and its estimated limit process as R̂w
n (t, β̂w) = T̂P

w
(ĉwt , β̂

w) and Ψ̂w
R,n(t) =

√
n(R̂w

n (t, β̂w)− R̂n(t, β̂)).

Proposition 7 Suppose that 2-5, and 8-10 are satisfied. Then, conditional on the sample

path of the data, Ψ̂w
R,n(·)⇒ ΨhR,2

(·) in the space L∞(T ) with probability approaching one.

Under the conditions of Proposition 6, one can apply the arguments in Theorem 2 of Ma

and Kosorok (2005) to show that Ψ̂w
R,n(t) also approximates the distribution of ΨhR,2

(t) in

the sense of Proposition 8. That is, conditional on the sample path of the data, Ψ̂w
R,n(t) ⇒

ΨhR,2
(t) with probability approaching one.

We now turn to the discussion of the multiplier bootstrap method that is based on

the conditional multiplier central limit theorem (see, e.g., van der Vaart and Wellner 1996,

Section 2.9). The method requires consistent estimation of the components of the influence

function ψR, uniformly in t. However, this estimation needs to be performed only once,

over the original data set, given that the method does not rely on successive resampling and

reestimation.

Let ψ̂β(y, x, β̂) denote the estimated influence function of β̂, where we replace any un-

known parameters or functions within ψβ with consistent estimators (note that this function

does not depend on t). We make the general assumption that the asymptotic variance-

covariance matrix of β̂ is consistently estimable using ψ̂β and the sample analog principle:

Assumption 12 Let V = E[ψβ(Y,X, β∗)ψβ(Y,X, β∗)′]. Then:

V̂n = n−1
n∑
i=1

ψ̂β(Yi, Xi, β̂n)ψ̂β(Yi, Xi, β̂n)′
p→ V.
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Let C = [c0,L, c0,U ]. We further assume that there exist uniformly consistent estimators

for ∇βFP (c, β∗), ∇βTP (c, β∗) and f ∗1 (c)/f ∗0 (c) on C. Here we state the existence of these

estimators as a high level assumption and provide concrete implementations and additional

assumptions in Appendix C.

Assumption 13 The estimators ∇βF̂P (c, β̂n), ∇βT̂P (c, β̂n), and f̂1(c)/f̂0(c) are Lipschitz

continuous in c on C which is compact and satisfy

sup
c∈C
‖∇βF̂P (c, β̂n)−∇βFP (c, β∗)‖ = op(1),

sup
c∈C
‖∇βT̂P (c, β̂n)−∇βTP (c, β∗)‖ = op(1),

sup
c∈C

∣∣∣∣∣ f̂1(c)f̂0(c)
− f1(c)

f0(c)

∣∣∣∣∣ = op(1).

In addition, the estimator ĉt is uniformly consistent for ct for t ∈ T .

We now present the multiplier bootstrap. Let U1, . . . , Un be i.i.d. random variables in-

dependent of the data with moments E[U ] = 0, E[U2] = 1, and E|U |2+δu < ∞ for some

δu > 0. For t ∈ [0, 1], we define the simulated stochastic process Ψ̂u
R,n(t) as

Ψ̂u
R,n(t) =

1√
n

n∑
i=1

Ui · ψ̂R(Yi, Xi, t, β̂), (23)

where

ψ̂R(y, x, t, β) = ψ̂TP (y, x, ĉt, β)− f̂1(ĉt)

f̂0(ĉt)
ψ̂FP (y, x, ĉt, β),

ψ̂TP (y, x, c, β) =
y

π̂

(
1[G(x, β) > c]− T̂P (c, β)

)
+∇βT̂P (c, β)ψ̂β(y, x, β),

ψ̂FP (y, x, c, β) =
1− y
1− π̂

(
1[G(x, β) > c]− F̂P (c, β)

)
+∇βF̂P (c, β)ψ̂β(y, x, β),

π̂ =
1

n

n∑
i=1

Yi.

The next result shows that the distribution of the simulated process Ψ̂u
R,n(t) approximates

that of the true limiting process ΨhR,2
(t) in large samples.
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Proposition 8 Suppose that Assumptions 2-5 and 10-13 are satisfied. Then, conditional

on the sample path of the data, Ψ̂u
R,n(·) ⇒ ΨhR,2

(·) in the space L∞(T ) with probability

approaching one.

The weighted bootstrap has the advantage that it does not require explicit estimation

of this function, but it is computationally somewhat more costly. On the other hand, the

proof of weighted bootstrap is less involved because the multiplier method relies heavily on

Assumption 13, i.e., the availability of uniformly consistent estimators for the components

of ψR. To obtain estimators satisfy Assumption 13 additional assumptions are needed and

in Appendix C, we provide estimators and additional assumptions so that Assumption 13

can be satisfied and we can apply multiplier method.

5 Applications to various inference problems

In this section, we provide some examples that we can apply the results in Section 4.

5.1 Uniform confidence bands

Let σ̂2
t denote a uniform consistent estimator for σ2

t , the asymptotic variance of
√
n(R̂n(t, β̂)−

R(t, β∗)) for t ∈ T . Later we will provide two estimators based on weighted bootstrap method

and analytic results. Let σ̂t,ε = max{σ̂t, ε} in which ε > 0 is a fixed and small number. We

are interested in a standardized version of confidence bands and by truncating σ̂t by ε, we

can make sure that we will not divide something close to zero when t is close to 0 or 1.

For a nominal significance level α and for τ`, τu ∈ T with τ` ≤ τu, let Ĉ1-sided
α and Ĉ2-sided

α

respectively denote the one- and two-sided critical values that satisfy

Ĉ1-sided
α = inf

a∈R

{
P

(
sup

t∈[τ`,τu]

Ψ̂w
R,n(t)

σ̂t,ε
≤ a

)
≥ 1− α

}
, (24)

Ĉ2-sided
α = inf

a∈R

{
P

(
sup

t∈[τ`,τu]

|Ψ̂w
R,n(t)|
σ̂t,ε

≤ a

)
≥ 1− α

}
. (25)

Here, Ĉ1-sided
α and Ĉ2-sided

α are, respectively, the (1 − α)th quantile of supt∈[τ`,τu] Ψ̂
w
R,n(t)

/
σ̂t,ε

and (1 − α)th quantile of supt∈[τ`,τu]
∣∣Ψ̂w

R,n(t)
/
σ̂t,ε
∣∣. Note that one can replace Ψ̂w

R,n(t) with

28



Ψ̂u
R,n(t) to construct Ĉ1-sided

α and Ĉ2-sided
α as well.

Once the critical values are constructed, we can also obtain one- and two-sided uni-

form confidence bands for R(t, β∗) over [τ`, τu]. Specifically, the one-sided (1 − α) uniform

confidence band is given by(
R̂n(t, β̂)− Ĉ1-sided

α

σ̂t,ε√
n
, +∞

)
, τ ∈ [τ`, τu] (26)

and the two-sided (1− α) uniform confidence band is(
R̂n(t, β̂)− Ĉ2-sided

α

σ̂t,ε√
n
, R̂n(t, β̂) + Ĉ2-sided

α

σ̂t,ε√
n

)
, τ ∈ [τ`, τu]. (27)

Implementation of Uniform Confidence Bands

We now provide a step-by-step implementation for constructing uniform confidence bands.

1. Obtain R̂n(t, β̂) from Section 4 and σ̂t,ε from Section 5.1 with t ∈ {τ`, τ`+0.01, . . . , τu}.

2. Draw i.i.d. pseudo random variables {W1, . . . ,Wn} where Wi’s are normal distributions

with mean and variance equal to one B times for, say, B = 1000. For each repetition

b = 1, . . . , B, calculate the simulated process Ψ̂w
R,n(t) according to (23).

3. For the one-sided case, store the maximum value of Ψ̂w
R,n(t)

/
σ̂t,ε over the grid of t values

set up in Step 1; that is, let Mb = maxt∈{τ`,τ`+0.01,...,τu} Ψ̂w
R,n(t)

/
σ̂t,ε for b = 1, . . . , B.

4. Rank the Mb values in an ascending order so that M(1) ≤ . . . ≤ M(B). Next, define

M(b(1−α)Bc) as the critical value Ĉ1-sided
α , where bac is the floor function returning the

largest integer not greater than a. The one-sided (1−α) uniform confidence bands for

{R(t, β∗) : t ∈ [τ`, τu]} are given by (26).

5. For the two-sided case, simply replace Ψ̂w
R,n(t)

/
σ̂t,ε in Step 3 with

∣∣Ψ̂w
R,n(t)

∣∣/σ̂t,ε and

repeat Step 4 for the critical value Ĉ2-sided
α . The two-sided (1− α) uniform confidence

band for {R(t, β∗) : t ∈ [τ`, τu]} is given by (27).

Uniformly consistent estimators for σ2
t

We consider two estimators here. First estimator is based on weighted bootstrap that is
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similar to Remark 2 after Proposition 5. Let Ψ̂w
R,n(t) denote the ROC estimate from the wth

bootstrap cycle, w = 1, . . . ,W . Then one can estimate σ2
t by

σ̂2
t =

n

W

W∑
w=1

(
R̂w
n (t, β̂w)− R̂

w

n (t, β̂w)
)(
R̂w
n (t, β̂w)− R̂

w

n (t, β̂w)
)′
, where

R̂
w

n (t, β̂w) =
1

W

W∑
w=1

R̂w
n (t, β̂w).

We have that conditional on sample path with probability approaching one,

σ̂2
t

p→w
1

n

n∑
i=1

ψ2
R(Yi, Xi, t, β

∗) + op(1),

where
p→w denotes probability limit under the law of the Wi’s. It follows that uniformly over

t ∈ [t`, tu],

lim
W→∞

σ̂2
t

p→ σ2
t .

The second estimator is based on analytic results. Recall that ψ̂R(Yi, Xi, t, β̂) is the esti-

mated influence function for R̂n(t, β̂) used in the multiplier bootstrap method. A uniformly

consistent estimator for σ2
t is given by

σ̂2
t =

1

n

n∑
i=1

ψ̂2
R(Yi, Xi, t, β̂)

and this is shown in the proof of 8.

5.2 ROC dominance test

For two predictive index models G1(X, β1) and G2(X, β2), we may want to test whether G1

has strictly better predictive power than G2 in the sense that the ROC curve associated

with G1 dominates the ROC curve associated with G2. What domination means is that for

any given false positive rate G1 delivers a higher true positive rate, i.e., the ROC curve for

G1 always lies above the ROC curve for G2. Any decision maker, regardless of their loss

function and their optimal cutoff, would then prefer model G1 over G2.
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Let R1(t, β
∗
1) and R2(t, β

∗
2) denote the ROC curves associated with G1 and G2, respec-

tively. The hypotheses that R1(t, β
∗
1) dominates R2(t, β

∗
2) can be formally stated as

H0 : R2(t, β
∗
2) ≤ R1(t, β

∗
1) for all t ∈ [0, 1],

H1 : R2(t, β
∗
2) > R1(t, β

∗
1) for some t ∈ [0, 1]. (28)

Our test for ROC dominance is similar to the test for first order stochastic dominance in

Barrett and Donald (2003) and Donald and Hsu (2016) except that we need to consider

the estimation effect of β̂ as in Linton, Massoumi and Whang (2005) and Linton, Song and

Whang (2010).

Let R̂j,n(t, β̂j) be the estimators for Rj(t, β
∗
j ) for j = 1, 2. Define ψj,R(Yi, Xi, t, β

∗
1) for

j = 1 and 2 as above. Let σ̂2
RD(t) denote a uniform consistent estimator for σ2

RD(t), the

asymptotic variance of
√
n(R̂2,n(t, β̂2) − R̂1,n(t, β̂1) − R2(t, β

∗
2) − R1(t, β

∗
1)). Let σ̂RD,ε(t) =

max{σ̂RD(t), ε} in which ε > 0 is a fixed and small number. Uniform consistent estimator

σ̂2
RD(t) can be obtained similar to σ̂2

t in Section 5.1, so we omit the details.

We define the test statistic as Ŝn =
√
n supt∈[0,1](R̂2,n(t, β̂2) − R̂1,n(t, β̂1))/σ̂RD,ε(t). De-

fine the weighted bootstrap process Ψw
RD,n(t) as Ψ̂w

R,n(t) =
√
n
(
R̂w

2,n(t, β̂w2 ) − R̂w
1,n(t, β̂w1 ) −

(R̂2,n(t, β̂2)− R̂1,n(t, β̂1))
)

and define the multiplier bootstrap process Ψu
RD,n(t) as

Ψ̂u
RD,n(t) =

1√
n

n∑
i=1

Ui · (ψ̂2,R(Yi, Xi, t, β̂2)− ψ̂1,R(Yi, Xi, t, β̂1)).

Under the least favorable configuration, we define the weighted bootstrap critical value

as

ĉn = sup
{
c
∣∣Pw

(√
n sup
t∈[0,1]

Ψ̂w
RD,n(t)

σ̂RD,ε(t)
≤ c
)
≤ 1− α

}
, (29)

with significance level α. The decision rule is

Reject H0 if Ŝn > ĉn. (30)

Then one can use Ψ̂u
RD,n(t) to construct critical value ĉn as well.

Similar to the stochastic dominance test literature, we can show that under the null

hypothesis the asymptotic size of a test with decision rule defined in (30) is less than or
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equal to α. That is, we can control the asymptotic size of our ROC dominance test well.

Also, under the fixed alternative, we have the test statistic converging to positive infinity and

the critical value converging to a finite number, so the test is consistent. Our test is based

on least favorable configuration, so it is conservative in that the asymptotic size is strictly

smaller than α unless R2(t, β
∗
2) = R1(t, β

∗
1) for all t ∈ [0, 1]. One can improve the power of

our test by using the recentering method in Hansen (2005), Donald and Hsu (201) which

is similar to the generalized moment selection method in Andrews and Soreas (2010), and

Andrews and Shi (2013), and the contact set approach in Linton, Song and Whang (2010).

In this paper, we do not adopt this approach but the extension is straightforward.

5.3 Comparing AUCs

Recall that AUC is defined as the integral of ROC curve from 0 to one. Following Section 5.2,

let R1(t, β
∗
1) and R2(t, β

∗
2) denote the ROC curves for two predictive index models G1(X, β1)

and G2(X, β2). Let AUCj =
∫ 1

0
Rj(t, β

∗
j )dt and its estimator be ÂUCj =

∫ 1

0
R̂j,n(t, β̂j)dt for

j = 1 and 2. Then it is true that

√
n(ÂUC2 − ÂUC1) =

1√
n

n∑
i=1

∫ 1

0

(ψ2,R(Yi, Xi, t, β
∗
2)− ψ1,R(Yi, Xi, t, β

∗
1)dt+ op(1)

and

√
n(ÂUC2 − ÂUC1)→dN [0,Va],

Va = E[
( ∫ 1

0

ψ2,R(Y,X, t, β∗2)− ψ1,R(Y,X, t, β∗1)dt
)2

].

To make inference, one can use a weighted bootstrap method to approximate the limiting

distribution of N [0,Va] or one can estimate Va analytically by

V̂a =
1

n

n∑
i=1

(∫ 1

0

(ψ̂2,R(Yi, Xi, t, β̂2)− ψ̂1,R(Yi, Xi, t, β̂1))dt
)2
.

For brevity, we omit the details here.

Remark

Suppose that G(X, β) is a correct specification for the propensity score function, P (Y =
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1|X), in that there exists β∗ such that G(X, β∗) = P (Y = 1|X) a.s. Then the estimation

effect of β∗ on the distribution of AUC is negligible. It is then true that when two predictive

predictive index models, G1(X, β1) and G2(X, β2), are both correctly specified for P (Y =

1|X), we have Va = 0, i.e., the limiting distribution of
√
n(ÂUC2 − ÂUC1) is degenerate.

To resolve this, we propose a new test that does not have this degeneracy issue by

introducing an extra randomness to the test following Hsu and Shi (2017). Let ξ̂n = (1 +

n1/4V̂a)−1 and by construction, we can see that if Va 6= 0, then ξ̂n
p→ 0 and if Va = 0, then

ξ̂n
p→ 1. Let the revised test statistic be

T̂xi =

√
n(ÂUC2 − ÂUC1) + ξ̂n · U√

V̂ + ξn
, (31)

where U ∼ N [0, 1] is independent of the observations. Then we can show that under the

null that AUC2 = AUC1, T̂xi
d→ N [0, 1].

6 Simulations: the relevance of the estimation effect

We now present a small Monte Carlo simulation to illustrate the theoretical discussion of

the estimation effect and the pointwise asymptotic results in Section 3. The data generating

process (DGP) is specified as follows. Let X = (X1, X2, X3)
′ be a 3× 1 vector of predictors

and X̃ = (1, X ′)′. The components of X are either independent N(0, 1) or unif[−.5, 1.5]

variables. The outcomes Y are generated according to the conditional probability function

p(X) = G(X, β◦) = G(X̃ ′β◦) with β◦ = (0, 0.5, 0.25, 1)′ and G ∈ {logit, cauchit}.

In the majority of the exercises we use a logistic link in the DGP (so that the logit first stage

is correctly specified), but we also conduct some simulations with a cauchit link (so that the

logit first stage is mildly misspecified).

Given a sample of observations and a cutoff c, we construct nominally 90% confidence

intervals for TP(c, β◦) and TP(c, β◦)− FP (c, β◦) in three different ways: (i) using the true

predictive index p(X) = G(X̃ ′β◦) with the conventional limit distributions (4) and (5); (ii)

using the estimated predictive index Λ(X̃ ′β̂) with the conventional limit distributions (so

that the estimation effect is ignored); (iii) using the estimated predictive index Λ(X̃ ′β̂) with
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the corrected limit distribution (10). We simulate 10,000 samples and compute the actual

coverage probability of these intervals.

Table 1 reports the results from this exercise for c ∈ {0.2, 0.33, 0.5, 0.67, 0.8} and n ∈

{200, 500, 5000}. The first message is that failing to account for the pre-estimation effect

can cause substantial distortions in the coverage probability of the conventional CIs. In

panels (A) through (D) the estimation effect can be seen by comparing the columns titled

“Conventional G(X̃ ′β◦)” and “Conventional Λ(X̃ ′β̂).” In the former case there is no esti-

mation effect and any deviation from the nominal confidence level of 90% is a small sample

phenomenon.14 Over the various cases, the estimation effect ranges from essentially zero to

as large as a 30 to 40 percentage point difference in coverage probability. In panel (E), the

comparison between the same two columns includes the estimation effect as well as some

“bias” due to the fact that the first stage logit regression is misspecified.

The theory presented in Section 3.2 gives insight into why the estimation effect is negli-

gible in some cases. In particular, consider the parameter TP − FP on panels (A) through

(C) with c = 0.5. As the predictors are independent standard normal variables and there

is no constant in the DGP, the symmetry of the logistic cdf gives π = P(Y = 1) = 0.5.

Therefore, when c = 0.5, TP − FP is a scalar multiple of (1 − c)πTP − c(1 − π)FP . As

explained in footnote 10, inference about this particular linear combination is not impacted

by the pre-estimation effect. This is clearly reflected in the estimation results. By contrast,

in panel (D) the predictor distribution is not symmetric around zero, so π 6= 0.5, and the

estimation effect is indeed present for TP − FP even when c = 0.5.

The second main message is that the proposed analytical correction works well in virtually

all the cases considered here. This includes panel (A), where the sample size is small,

and panel (E), where the first stage logit model is misspecified. Not surprisingly, under

misspecification the corrected CI can also fall somewhat short of the 90% confidence level,

but it still represents a large improvement over conventional inference.

14For example, for c = 0.2 the value of TP(c, β◦) is close to the upper bound 1, and the coverage probability

of the fixed-β CI is only 80% for n = 200.
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Table 1: Illustration of the estimation effect: actual coverage probabilities

Nominal 90% CIs for TP Nominal 90% CIs for TP-FP

True Conventional Corrected True Conventional Corrected

c value G(X̃ ′β◦) Λ(X̃ ′β̂) Λ(X̃ ′β̂) value G(X̃ ′β◦) Λ(X̃ ′β̂) Λ(X̃ ′β̂)

(A) n = 200, X1, X2, X3 ∼iid N(0, 1)

0.2 0.970 0.794 0.793 0.885 0.166 0.897 0.628 0.850

0.33 0.884 0.887 0.856 0.892 0.313 0.893 0.778 0.885

0.5 0.694 0.894 0.768 0.890 0.388 0.896 0.889 0.896

0.67 0.429 0.894 0.620 0.876 0.313 0.897 0.769 0.878

0.8 0.196 0.895 0.533 0.847 0.166 0.894 0.615 0.842

(B) n = 500, X1, X2, X3 ∼iid N(0, 1)

0.2 0.970 0.861 0.843 0.893 0.166 0.905 0.625 0.862

0.33 0.884 0.895 0.861 0.891 0.313 0.903 0.779 0.888

0.5 0.694 0.892 0.766 0.891 0.388 0.901 0.896 0.899

0.67 0.429 0.897 0.618 0.886 0.313 0.900 0.773 0.886

0.8 0.196 0.895 0.531 0.862 0.166 0.895 0.627 0.864

(C) n = 2500, X1, X2, X3 ∼iid N(0, 1)

0.2 0.970 0.893 0.857 0.901 0.166 0.902 0.630 0.885

0.33 0.884 0.898 0.863 0.899 0.313 0.899 0.779 0.899

0.5 0.694 0.899 0.779 0.902 0.388 0.901 0.902 0.899

0.67 0.429 0.898 0.633 0.896 0.313 0.894 0.776 0.896

0.8 0.196 0.895 0.545 0.881 0.166 0.898 0.630 0.885

(D) n = 500, X1, X2, X3 ∼unif [−0.5, 1.5]

0.5 0.934 0.889 0.515 0.876 0.117 0.888 0.628 0.855

0.67 0.671 0.897 0.595 0.904 0.257 0.894 0.897 0.926

0.8 0.304 0.899 0.378 0.862 0.182 0.894 0.675 0.899

(E) n = 500, X1, X2, X3 ∼iid N(0, 1), G=cauchit

0.2 0.963 0.878 0.841 0.879 0.157 0.899 0.602 0.862

0.33 0.862 0.902 0.626 0.657 0.339 0.898 0.701 0.858

0.5 0.702 0.898 0.769 0.898 0.404 0.896 0.890 0.895

0.67 0.476 0.901 0.494 0.814 0.339 0.903 0.701 0.857

0.8 0.194 0.895 0.523 0.861 0.157 0.899 0.601 0.858

Note: c is the cutoff; “True value” is the true value of TP (c, β◦) and TP (c, β◦)-FP (c, β◦). All other numbers

in the table are actual coverage probabilities. G(X̃ ′β◦) means using the true value of P(Y = 1|X) as the

predictive index; Λ(X̃ ′β̂) means pre-estimating the predictive index by a logit regression of Y on X̃ = (1, X ′)′.

The columns labeled “Conventional” report CIs based on the limit distributions (4) and (5). The columns

labeled “Corrected” report CIs based on (10), which accounts for the pre-estimation effect.
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7 Conclusions

We provided both pointwise and uniform asymptotic results that describe the distribution

of an empirical ROC curve based on a pre-estimated index. The core theory is complete.

Ongoing work consists of: (i) developing appropriate test procedures when the first stage

models are nested and the ROC influence functions are the same under the null; (ii) addi-

tional simulations that illustrate the small sample performance of the uniform asymptotic

results, the practical use of the tests, and the power gains afforded by in-sample inference.
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Appendix

A Auxiliary technical lemmas

Lemma A.1 [Stated in generic notation] Let X and Y be random variables such that: (i) |X| ≤M a.s. for

some M > 0; and (ii) the density fY of Y exists and fY ≤ C for some C > 0. Then

sup
a∈R
|P (Y + hX ≤ a)− P (Y ≤ a)| ≤ CMh

for all h > 0 sufficiently small.

Proof: As |X| ≤M , we can write

P (Y ≤ a− hM) ≤ P (Y ≤ a− hX) ≤ P (Y ≤ a+ hM)

⇔FY (a− hM)− FY (a) ≤ P (Y ≤ a− hX)− P (Y ≤ a) ≤ FY (a+ hM)− FY (a),

where FY is the cdf of Y . Using the mean value theorem to expand the lower and upper bounds in the

second inequality yields

−fY (a− λhM)hM ≤ P (Y ≤ a− hX)− P (Y ≤ a) ≤ fY (a+ θhM)hM,

where θ, λ ∈ [0, 1]. Given fY ≤ C,

|P (Y + hX ≤ a)− P (Y ≤ a)| ≤ hCM,

where the upper bound does not depend on a.

Lemma A.2 [Stated in generic notation] Let Y ∈ {0, 1} be a binary random variable and X a random

vector. Let p(X) = P (Y = 1|X). Then Y and X are independent conditional on p(X).

Proof: Let f and g be two bounded, continuous functions from R to R. We need to show that the conditional

expectation E[f(X)g(Y )|p(X)] factors. By the law of iterated expectations,

E[f(X)g(Y )|p(X)] = E
{
E[f(X)g(Y )|X]

∣∣ p(X)
}

= E
{
f(X)E[g(Y )|X]

∣∣ p(X)
}
, (32)

where E[g(Y )|X] = g(1)p(X) + g(0)[1 − p(X)]. This shows that E[g(Y )|X] = E[g(Y )|p(X)]. Substituting

back into (32),

E[f(X)g(Y )|p(X)] = E
{
f(X)E[g(Y )|p(X)]

∣∣ p(X)
}

= E[g(Y )
∣∣ p(X)]E

{
f(X)

∣∣ p(X)
}
,

which shows the claimed conditional independence.
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Lemma A.3 [Stated in generic notation] Let f(x) be a density supported on [a, b] with f(x) ≥ m > 0 for all

x ∈ [a, b]. Let F be the corresponding cdf and F−1 the corresponding quantile function. Let F̂n be a sequence

of non-decreasing random functions (such as the empirical cdf) satisfying supx∈[a,b] |F̂n(x) − F (x)| →p 0,

and define F̂−1
n (y) = inf{x : F̂n(x) ≥ y}. Then:

sup
y∈[0,1]

|F̂−1
n (y)− F−1(y)| →p 0.

Proof: The argument is lengthy and technical but entirely standard in the literature. It is omitted for

brevity.

Lemma A.4 Suppose that Assumptions 2, 3, 4, 10 and 11 are satisfied. Then:

(i) F̂P (c, β̂)− FP (c, β̂) = F̂P (c, β∗)− FP (c, β∗) +A1n(c) with supc∈[a0,b0] |A1n(c)| = op(n
−1/2)

(ii) FP (c, β̂)− FP (c, β∗) = ∇βFP (c, β∗)(β̂ − β∗) +A2n(c) with supc∈[a0,b0] |A2n(c)| = op(n
−1/2).

Proof: (i) Let νn(c, β) =
√
n[F̂P (c, β) − FP (c, β)]. Define δn = ‖β̂n − β∗‖ ≥ 0 and note that δn →p 0 by

Assumption 3. We can bound
√
nA1n(c) = νn(c, β̂)− νn(c, β∗) as

sup
c∈[a0,b0]

|
√
nA1n(c)| ≤ sup

c
|νn(c, β̂n)− νn(c, β∗)| ≤ sup

|c−c′|≤δn, ‖β−β′‖≤δn
|νn(c, β)− νn(c′, β′)|. (33)

By Assumption 4, the process νn(c, β) is stochastically equicontinuous w.r.t. (c, β), which means that for

any sequence of positive constants δn → 0, the last upper bound in (33) is op(1). It is not hard to show that

this remains true even when δn →p 0, but we omit this purely technical detail here (available on request).

(ii) Using a mean value expansion, we can write

FP (c, β̂)− FP (c, β∗) = ∇βFP (c, β∗)(β̂ − β∗) +A2n(c),

where A2n(c) = [∇βFP (c, β̈c)−∇βFP (c, β∗)](β̂ − β∗) and β̈c is on the line segment between β̂ and β∗ for

all c. Let δn = ‖β̂n − β∗‖ = op(1) and note that supc ‖β̂n − β̈c‖ ≤ δn. Using the Cauchy-Schwarz inequality,

we can bound
√
nA2n as

sup
c∈[a0,b0]

|
√
nA2n(c)| ≤ sup

c

∥∥∇βFP (c, β̈c)−∇βFP (c, β∗)
∥∥ · √n‖β̂ − β∗‖

≤ sup
c∈[a0,b0], β∈B∗(δn)

∥∥∇βFP (c, β)−∇βFP (c, β∗)
∥∥ · √n‖β̂ − β∗‖ = op(1)Op(1) = op(1),

where
√
n‖β̂ − β∗‖ = Op(1) by Assumption 3, and the supremum is op(1), because Assumption 11 implies

that ∇βFP (c, β) is uniformly continuous over [a0, b0]×B∗(s) for some s > 0.

Lemma A.5 Suppose that Assumptions 2, 3, 10 and 5 are satisfied. Then:

sup
t∈[0,1]

|ĉt − c∗t | = sup
t∈[0,1]

|F̂P
−1

β̂ (t)− FP−1
β∗ (t)| = op(1).
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Proof: Using Lemma A.4, we write

F̂P (c, β̂)− FP (c, β∗) = F̂P (c, β∗)− FP (c, β∗) +∇βFP (β∗, c)(β̂ − β∗) +An(c),

where supc∈[a0,b0] |An(c)| = op(1). Therefore,

sup
c∈[a0,b0]

|F̂P (c, β̂)− FP (c, β∗)| ≤ sup
c
|F̂P (c, β∗)− FP (c, β∗)|+ sup

c
|∇βFP (β∗, c)(β̂ − β∗)|+ op(1)

≤ sup
c
|F̂P (c, β∗)− FP (c, β∗)|+ sup

c
‖∇βFP (β∗, c)‖ · ‖β̂ − β∗‖+ op(1). (34)

Note that 1−FP (c, β∗) is the cdf of G(X,β∗) given Y = 0 and 1− F̂P (c, β∗) is the corresponding empirical

cdf. Hence, supc |F̂P (c, β∗)−FP (c, β∗)| = op(1) by the Glivenko-Cantelli theorem. Furthermore, the second

term in (34) is op(1) as well, since supc ‖∇βFP (β∗, c)‖ ≤ M by Assumption 11 and ‖β̂ − β∗‖ = op(1) by

Assumption 3.

Thus, we have shown that F̂ (c) ≡ 1 − F̂P (c, β̂) is a (non-decreasing) random function that converges

uniformly to the cdf F (c) ≡ 1 − FP (c, β∗). The associated density is f∗0 , which is bounded away from

zero on [a0, b0] by Assumption 10(i). Therefore, we can apply Lemma A.3 to conclude supt∈[0,1] |F̂−1(t) −

F−1(t)| = op(1) ⇔ supt∈[0,1] |F̂P
−1

β̂ (t) − FP−1
β∗ (t)| = op(1), given that F−1(t) = FP−1

β∗ (1 − t) and

F̂−1(t) = F̂P
−1

β̂ (1− t).

Lemma A.6 [Stated in generic notation] Let X be a continuous random variable such that (i) the support

of X is a compact and connected set [a, b]; and (ii) the density f is continuous on [a, b] with fx(c) ≥ M ·

min{c−a, b−c}K for all c ∈ (a, b) and for some finite natural number K. Then we have supt∈[0,1] |ĉt−ct|→p0

where ct is the t-th quantile of X and ĉt is the estimator for ct.

Proof: We show the case in which K = 1 and the proof for other cases is similar. Let F̂ (·) the be estimator

for the distribution function of X. Then supc∈[a,b] |F̂ (c) − F (c)| = OP (n−1/2) where F (·) denotes the

distribution function of X. Another thing is that if |F̂ (·)− F (·)| = h where h is small and if f(c) ≥ m > 0

on [a∗, b∗], then for all τ∗ such that a∗+h/m ≤ cτ∗ ≤ b∗−h/m, we have |ĉτ∗ − cτ∗ | ≤ h. To show this, note

that if f(c) ≥ m > 0 on [a∗, b∗], then |F (c1) − F (c2)| ≥ |c1 − c2| ·m for all c1, c2 ∈ [a∗, b∗]. Then it follows

that for all c̃ ≥ h/m,

F̂ (cτ∗ + c̃) ≥ F̂ (cτ∗ + c̃)− F (cτ∗ + c̃) + F (cτ∗ + c̃)− F (cτ∗) + τ∗

≥ −h+ c̃ ∗m+ τ∗ ≥ −h+ h/m ·m+ τ∗ = τ∗.

Similarly, it is true that F̂ (cτ∗ + c̃) ≤ τ∗. These two inequalities together imply that for all τ∗ such that

a∗ + h/m ≤ cτ∗ ≤ b∗ − h/m, we have

|ĉτ∗ − cτ∗ | ≤ h/m.

43



Under condition f(c) ≥M ·min{c− a, b− c}, we pick `n → 0 with (M · `n)−1 = o(n1/2). This implies that

the f(c) ≥ M · `n for all c ∈ [a + `n, b − `n]. It follows that for all τ such that a + 2`n ≤ cτ ≤ b − 2`n, we

have

|ĉτ∗ − cτ∗ | ≤ sup
c∈[a,b]

|F̂ (c)− F (c)| · (M · `n)−1 = Op(n
−1/2) · o(n1/2) = op(1).

For τ such that a ≤ cτ < a+ 2`n, we have

a ≤ ĉτ ≤ cτ + |F̂ (·)− F (·)| · (M · `n)−1

⇒ a− cτ ≤ Q̂τ − cτ ≤ |F̂ (·)− F (·)| · (M · `n)−1

⇒ |ĉτ − cτ | ≤ max{2`n, |F̂ (·)− F (·)| · (M · `n)−1} = op(1).

Similar result holds for τ such that b− 2` < cτ ≤ b. Then these imply that supτ∈[0,1] |ĉτ − cτ |
p→ 0.

B Proofs of propositions and lemmas in the main text

Proof of Proposition 3 Write TP (c, β) = 1 − P1[G(X,β) ≤ c], where P1 denotes probability

conditional on Y = 1. Let ej denote the jth unit vector with the same dimension as β. A second order

Taylor expansion gives

G(X,β∗ + hej) = G(X,β∗) +Gj(X,β
∗)h+Gjj(X,β

∗ + λhej)h
2,

where λ ∈ [0, 1]. Take any hn → 0. We want to compute the limit ∆ of

∆n =
1

hn

{
P1

[
G(X,β∗ + hnej) ≤ c

]
− P1

[
G(X,β∗) ≤ c

]}
,

as n→∞. Using the Taylor expansion above, we can write

∆n =
1

hn

{
P1

[
G∗ +G∗jhn +G

(n)
jj h

2
n ≤ c

]
− P1

[
G∗ ≤ c

]}
,

where G∗ = G(X,β∗), G∗j = Gj(X,β
∗) and G

(n)
jj = ∂jjG(X,β∗ + λnhnej) with λn ∈ [0, 1]. Using the law of

iterated expectations,

∆n = E1

{
P1

[
G∗ +G

(n)
jj h

2
n ≤ c−G∗jhn|G∗j

]
− P1

[
G∗ ≤ c|G∗j

]
hn

}

= E1

{
P1

[
G∗ ≤ c−G∗jhn|G∗j

]
− P1

[
G∗ ≤ c|G∗j

]
hn

+
P1

[
G∗ +G

(n)
jj h

2
n ≤ c−G∗jhn|G∗j

]
− P1

[
G∗ ≤ c−G∗jhn|G∗j

]
hn

}
(35)
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where E1 is expectations w.r.t. P1. By Assumptions 5(ii) and 5(iii), G
(n)
jj is a bounded random variable, and

the conditional density of G∗ given G∗j (and Y = 1) exists, and is also bounded, uniformly in G∗j . Thus,

applying Lemma A.1 gives

sup
a

∣∣∣P1

[
G∗ +G

(n)
jj h

2
n ≤ a|G∗j

]
− P1

[
G∗ ≤ a|G∗j

]∣∣∣ ≤ Kh2
n (36)

for some K > 0. This inequality, in turn, implies that the second term within the expectation in equation

(35) is O(hn). Therefore, we can write ∆n as

∆n = −E1

{
G∗j ×

P1

[
G∗ ≤ c−G∗jhn|G∗j

]
− P1

[
G∗ ≤ c|G∗j

]
−G∗jhn

+O(hn)

}
= −E1

{
G∗j × fG∗|G∗j (c− θG∗jhn|G∗j ) +O(hn)

}
,

where the second equality follows from the mean value theorem with fG∗|G∗j denoting the conditional density

of G∗ given G∗j (and Y = 1) and θ ∈ [0, 1].

Now, inequality (36) shows that the error term O(hn) is dominated in absolute value by a constant

multiple of hn. Furthermore, by Assumptions 5(iii) and 5(iv), fG∗|G∗j is bounded uniformly in G∗j and

E1|G∗j | <∞. This allows us to apply the dominated convergence theorem to conclude

∆ = lim
n→∞

∆n = −E1

{
G∗j × fG∗|G∗j (c|Gj)

}
.

Finally, note that

∆ = −E1

{
G∗j × fG∗|G∗j (c|G∗j )

}
= −

∫
tfG∗|G∗j (c|t)fG∗j (t)dt = −

∫
tfG∗j |G∗(t|c)fG∗(c)dt

= −E1

[
G∗j |G∗ = c

]
fG∗(c),

where fG∗j |G∗ is the conditional density of G∗j given G∗ (and Y = 1) and fG∗ is the density of G∗ (given

Y = 1). The last expression is equivalent to equation (11) in Proposition 3.

The the second part of Proposition 3 follows immediately from Lemma A.2 and observing that under

correct specification G(X,β∗) = G(X,β◦) = p(X).

Proof of Proposition 4 Setting G(X,β) = Λ(X̃ ′β), where X̃ = (1, X ′)′ and β = (β0, β1, . . . , bk)′, it

is straightforward to verify that

∂

∂βj
Λ(X̃ ′β) = Λ(X̃ ′β)[1− Λ(X̃ ′β)]Xj , j = 0, 1, . . . , k

with X0 ≡ 1. Taking expectations conditional on Λ(X̃ ′β) = c and Y = 1 gives

E

[
∂

∂βj
Λ(X̃ ′β)

∣∣∣Λ(X̃ ′β) = c, Y = 1

]
= c(1− c)E[Xj |Λ(X̃ ′β) = c, Y = 1]

According to the general formula (11), multiplying by f∗1 (c) = fΛ(c|Y = 1) gives the jth component of

∇βTP (c, β).
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Proof of Lemma 1 (i) Let νn(c, β) =
√
n[T̂P (c, β) − TP (c, β)]. We can then write R1n(t) =

νn(ĉt, β̂) − νn(c∗t , β
∗). Define δn = max

{
supt |ĉt − c∗t |, ‖β̂n − β∗‖

}
and note that δn →p 0 by Lemma A.5

and Assumption 3. We can bound R1n(t) as

sup
t
|R1n(t)| = sup

t
|νn(ĉt, β̂)− νn(c∗t , β

∗)| ≤ sup
|c−c′|≤δn, ‖β−β′‖≤δn

|νn(c, β)− νn(c′, β′)|. (37)

By Assumption 4, the process νn(c, β) is stochastically equicontinuous w.r.t. (c, β), which means that for

any sequence of positive constants δn → 0, the r.h.s. of (37) is op(1). It is not hard to show that this remains

true even when δn →p 0, but we omit this purely technical detail here (available on request).

(ii) We can write R2n(t) =
[
∇βTP (ĉt, β̈t)−∇βTP (c∗t , β

∗)
]√
n(β̂ − β∗), where β̈t is on the line segment

connecting β̂ and β∗ for all t. Set δn = max
{

supt |ĉt− c∗t |, ‖β̂−β∗‖
}

and note that δn →p 0 by Lemma A.5

and Assumption 3. Furthermore, note that supt ‖β̈t − β∗‖ ≤ δn. We can then bound R2n(t) as

sup
t∈[0,1]

|R2n(t)| ≤ sup
t

∥∥∇βTP (ĉt, β̈)−∇βTP (c∗t , β
∗)
∥∥√n‖β̂ − β∗‖

sup
|c−c′|≤δn, β∈B∗(δn)

∥∥∇βTP (c, β)−∇βTP (c′, β∗)
∥∥ ≤ √n‖β̂ − β∗‖ = op(1)Op(1) = op(1),

where
√
n‖β̂ − β∗‖ = Op(1) by Assumption 3, and the supremum is op(1), because Assumption 11 implies

that ∇βTP (c, β) is uniformly continuous over [a1, b1]×B∗(s) for some s > 0.

(iii) We can write R3n(t) =
√
n(ĉt − c∗t )[f∗1 (c̈t) − f∗1 (c∗t )], where c̈t is on the line segment connecting ĉt

and c∗t . Set δn = supt |ĉt − c∗t | and note that δn →p 0 by Lemma A.5. We can bound R3n(t) over T as

sup
t∈T
|R3n(t)| ≤

√
n sup

t
|ĉt − c∗t | sup

t
|f∗1 (c̈t)− f∗1 (c∗t )|

≤
√
n sup

t
|ĉt − c∗t | sup

c,c′∈[c0,L,c0,U ], |c−c′|≤δn
|f∗1 (c)− f∗1 (c′)| = Op(1)op(1) = op(1),

where
√
n supt |ĉt − c∗t | = Op(1) by the functional delta method (see part (v) below), and the supremum is

op(1), because Assumption 10 implies that f∗1 (c) is uniformly continuous over the closed interval [c0,L, c0,U ].

To see this, write f∗1 = (f∗1 /f
∗
0 )·f∗0 . The ratio f∗1 /f

∗
0 is continuous over [c0,L, c0,U ] by Assumption 10(iii). The

density f∗0 is continuous over [a0, b0] ⊇ [c0,L, c0,U ] by Assumption 10(iii). Therefore, f∗1 is also continuous

over the compact interval [c0,L, c0,U ], which means that it is uniformly continuous.

(iv) Using Lemma A.4, we write

√
n[F̂P (c, β̂)− FP (c, β∗)] =

√
n[F̂P (c, β∗)− FP (c, β∗)] +∇βFP (β∗, c)

√
n(β̂ − β∗) +An(c),

where supc∈[a0,b0] |An(c)| = op(1). But

√
n[F̂P (c, β∗)− FP (c, β∗)] =

1√
n

n∑
i=1

1− Yi
1− π̂

[
1(G(Xi, β

∗) > c)− FP (c, β∗)
]

=
1√
n

n∑
i=1

1− Yi
1− π

[
1(G(Xi, β

∗) > c)− FP (c, β∗)
]

+Bn(c),
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where

Bn(c) =

(
1

1− π̂
− 1

1− π

)
· 1√

n

n∑
i=1

(1− Yi)
[
1(G(Xi, β

∗) > c)− FP (c, β∗)
]
.

Clearly, E
{

(1− Yi)[1(G(Xi, β
∗) > c)− FP (c, β∗)]

}
= 0, so supc |Bn(c)| is of the form op(1) ·Op(1) = op(1).

Furthermore, by Assumption 3,

√
n(β̂ − β∗) =

1√
n

n∑
i=1

ψβ(Yi, Xi, β
∗) + op(1),

where the remainder term does not depend on c at all. It follows that the asymptotically linear representation

of F̂P (c, β̂) holds uniformly over c ∈ [a0, b0].

(v) By Assumption 10, the function c 7→ FP (c, β∗) is a survivor function with compact support [a0, b0]

and a continuous density f∗0 (c) that is bounded away from zero on [a0, b0]. By, for example, Lemma 3.9.23

of van der Vaart and Wellner (1996), the inverse map φ(F ) = F−1 is Hadamard differentiable at FP (·, β∗)

(tangentially to C[a0, b0]) and the Hadamard derivative is the map φ′FP (h) = h(FP−1
β∗ )/f∗0 (FP−1

β∗ ). The

functional delta method (e.g., Theorem 3.9.4 of ibid.) then gives

√
n[F̂P

−1

β̂ (t)− FP−1
β∗ (t)] = φ′FP

(√
n
[
F̂P
(
·, β̂
)
− FP

(
·, β∗

)])
+R5n(t)

=
1

f∗0 (c∗t )

√
n[F̂P β̂(c∗t )− FPβ∗(c∗t )] +R5n(t),

where supt∈(0,1) |R5n(t)| = op(1) because f∗0 is bounded away from zero on [a0, b0] (see Example 3.9.24 of

ibid.)

Proof of Proposition 6 (i) The uniformity of the influence function representation for
√
n[R̂(t, β̂)−

R(t, β∗)] follows from: equations (16) through (21), the uniform asymptotic negligiblity results stated in

Lemma 1, and the fact that the influence function representation of
√
n[T̂P (c, β∗) − TP (c, β∗)] holds uni-

formly over c ∈ [a1, b1] ⊇ [c0,L, c0,U ]. The proof of this last fact is similar to the proof of Lemma 1(iv) and

is omitted.

(ii) We write ψR,n(t) ≡ 1√
n

∑n
i=1 ψR(Yi, Xi, t, β

∗), ψTP,n(c) ≡ 1√
n

∑n
i=1 ψTP (Yi, Xi, c, β

∗), ψFP,n(c) ≡
1√
n

∑n
i=1 ψFP (Yi, Xi, c, β

∗), and λ(c) = f∗1 (c)/f∗0 (c) so that

ψR,n(t) = ψTP,n(c∗t )− λ(c∗t )ψFP,n(c∗t ).

Let δn > 0 be an arbitrary sequence with δn → 0. We need to show that supt,t′∈T, |t−t′|≤δn |ψR,n(t) −

ψR,n(t′)| →p 0 (see Andrews 1994 for various equivalent definitions of stochastic equicontinuity).

First note that |c∗t − c∗t′ | ≤M |t− t′| for some M > 0 because f∗0 is bounded away from zero on [a0, b0].

Hence, |t− t′| ≤ δn implies |c∗t − c∗t′ | ≤Mδn ≡ δ′n. Next we write

ψR,n(t)− ψR,n(t′) = ψTP,n(c∗t )− ψTP,n(c∗t′)− λ(c∗t )[ψFP,n(c∗t )− ψFP,n(c∗t′)]− ψFP,n(c∗t′)[λ(c∗t )− λ(c∗t′)]
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so that for t, t′ ∈ T and c, c′ ∈ [c0,L, c0,U ],

sup
|t−t′|≤δn

|ψR,n(t)− ψR,n(t′)| ≤ sup
|c−c′|≤δ′n

|ψTP,n(c)− ψTP,n(c′)| + sup
c
|λ(c)| sup

|c−c′|≤δ′n
|ψFP,n(c)− ψFP,n(c′)|

− sup
c
|ψFP,n(c)| sup

|c−c′|≤δ′n
[λ(c)− λ(c′)|.

The argument can be completed by showing the stochastic equicontinuity of the processes ψFP,n(c) and

ψTP,n(c) and exploiting the uniform continuity of λ(c) over [c0,L, c0,U ] (Assumption 10(iii)). For illustration,

here we show the stochastic equicontinuity of ψFP,n(c).

Define

ν∗n(c) =
1√
n

n∑
i=1

1− Yi
1− π

[
1(G(Xi, β

∗) > c)− FP (c, β∗)
]

Assumption 4 implies that ν∗n(c) is stochastically equicontinuous over [a0, b0]. We can write

sup
|c−c′|≤δ′n

∣∣∣ 1√
n

n∑
i=1

ψFP (Yi, Xi, c, β
∗)− 1√

n

n∑
i=1

ψFP (Yi, Xi, c
′, β∗)

∣∣∣ ≤ sup
|c−c′|≤δ′n

|ν∗n(c)− ν∗n(c′)|

+ sup
|c−c′|≤δ′n

‖∇βFP (c, β∗)−∇βFP (c′, β∗)‖ ·
∥∥∥ 1√

n

n∑
i=1

ψβ(Yi, Xi, β
∗)
∥∥∥ (38)

Then sup|c−c′|≤δ′n |ν
∗
n(c) − ν∗n(c′)| = op(1) by stochastic equicontinuity and sup|c−c′|≤δ′n |∇βFP (c, β∗) −

∇βFP (c′, β∗)| = op(1) because c 7→ ∇βFP (c, β∗) is uniformly continuous over [a0, b0] (and hence over

[c0,L, c0,U ]) by Assumption 11. Finally, the central limit theorem implies ‖n−1/2
∑n
i=1 ψβ(Yi, Xi, β

∗)‖ =

Op(1) under Assumptions 2 and 3. Hence, the r.h.s. of inequality (38) is of the form op(1) + op(1)Op(1) =

op(1), which means that the process c 7→ 1√
n

∑n
i=1 ψFP (Yi, Xi, c, β

∗) is stochastically equicontinuous.

(iii) The multivariate central limit theorem implies that the finite dimensional projections of the process

t 7→ 1√
n

∑n
i=1 ψR(Yi, Xi, t, β

∗) converge in distribution to multivariate normal vectors with covariance ma-

trices corresponding to hR. Coupled with stochastic equicontinuity, this is sufficient (and necessary) for the

weak convergence of the whole process in L∞(T ) to a Gaussian process with the given finite dimensional dis-

tributions; see, e.g., van der Vaart and Wellner (1996, Ch. 1.5). Finally, the process t 7→
√
n[R̂(t, β̂)−R(t, β∗)]

has the same limit distribution because of part (i).

Proof of Proposition 7 The proof follows the same steps that we discussed after Lemma 1 to show

Proposition 6 and we omit the details.

Proof of Proposition 8 We first claim that {ψ̂TP (Yi, Xi, ĉt, β̂) : t ∈ T , 1 ≤ i ≤ n, n ≥ 1} is

manageable in the sense of Definition 7.9 of Pollard (1990). Note that {Yi/π̂
(
1[G(x, β) > c] − T̂P (c, β)

)
:

c ∈ C, 1 ≤ i ≤ n, n ≥ 1} is a Type I class of functions as in Andrews (1994), so it is manageable w.r.t.

{2|Yi|/π̂ : 1 ≤ i ≤ n, n ≥ 1}. In addition, {∇βT̂P (c, β̂)ψ̂β(Yi, Xi, β̂) : c ∈ C, 1 ≤ i ≤ n, n ≥ 1} is

manageable w.r.t. {M |ψ̂β(Yi, Xi, β̂)| : 1 ≤ i ≤ n, n ≥ 1} for some large M > 0 because it is a Type II
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class of functions given that ∇βT̂P (c, β̂) is Lipschitz continuous in c and bounded above by Assumption 13.

Then by Theorem of Andrews (1994), {ψ̂TP (Yi, Xi, ĉt, β̂) : t ∈ T , 1 ≤ i ≤ n, n ≥ 1} is manageable w.r.t.

{2/π̂ + M |ψ̂β(Yi, Xi, β̂)| : 1 ≤ i ≤ n, n ≥ 1}. Similarly, {ψ̂FP (Yi, Xi, ĉt, β̂) : t ∈ T , 1 ≤ i ≤ n, n ≥ 1} is

manageable w.r.t. {2/(1 − π̂) + M |ψ̂β(Yi, Xi, β̂)| : 1 ≤ i ≤ n, n ≥ 1}. By Assumption 13, f̂1(c)/f̂0(c) is

Lipschitz continuous in c and bounded above, so it is true that {ψ̂R(Yi, Xi, t, β̂) : t ∈ T , 1 ≤ i ≤ n, n ≥ 1} is

manageable.

Next, given Assumption 13, it is straightforward to see that

1

n

n∑
i=1

ψ̂R(Yi, Xi, t1, β̂)ψ̂R(Yi, Xi, t2, β̂)
p→ hR(t1, t2)

uniformly over t1, t2 ∈ T . Then, these are sufficient to show Proposition 7.

C Uniformly consistent estimation of ψR

We give estimators that satisfy Assumption 13. We focus on the case where t` = 0 and tu = 1 so that

C = [a0, b0] because the results for other cases are similar.

Let h denote a bandwidth that depends on sample size n and K(u) a kernel function.

Define primary estimators ∇βF̃P (c, β̂), ∇βT̃P (c, β̂), f̃1(c) and f̃0(c) as

∇βF̃P (c, β̂) =
1

π̂

1

nh

n∑
i=1

∇βG(Xi, β̂) · Yi ·K
(G(Xi, β̂)− c

h

)
,

∇βT̃P (c, β̂) =
1

1− π̂
1

nh

n∑
i=1

∇βG(Xi, β̂) · (1− Yi) ·K
(G(Xi, β̂)− c

h

)
,

f̃1(c) =
1

π̂

1

nh

n∑
i=1

Yi ·K
(G(Xi, β̂)− c

h

)
,

f̃0(c) =
1

1− π̂
1

nh

n∑
i=1

(1− Yi) ·K
(G(Xi, β̂)− c

h

)
.
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The final estimators are defined as

∇βF̂P (c, β̂) =


∇βF̃P (a0 + h, β̂) if c ∈ [a0, a0 + h],

∇βF̃P (c, β̂) if c ∈ [a0 + h, b0 − h],

∇βF̃P (b0 − h, β̂) if c ∈ [b0 − h, b0],

∇βT̂P (c, β̂) =


∇βT̃P (a0 + h, β̂) if c ∈ [a0, a0 + h],

∇βT̃P (c, β̂) if c ∈ [a0 + h, b0 − h],

∇βT̃P (b0 − h, β̂) if c ∈ [b0 − h, b0],

f̂1(c) =


f̃1(a0 + δn) if c ∈ [a0, a0 + δn],

f̃1(c) if c ∈ [a0 + δn, b0 − δn],

f̃1(b0 − δn) if c ∈ [b0 − δn, b0],

f̂0(c) =


f̃0(a0 + δn) if c ∈ [a0, a0 + δn],

f̃0(c) if c ∈ [a0 + δn, b0 − δn],

f̃0(b0 − δn) if c ∈ [b0 − δn, b0].

(39)

It is well known that the estimator ∇βT̃P (c`,0, β̂) is in general inconsistent around the boundary points

a0 and b0. Therefore, we modify ∇βT̃P (a0, β̂) around the boundary points to obtain uniformly consistent

estimators for ∇βFP (c, β∗). This method is also used in Donald, Hsu and Barrett (2012), and Donald and

Hsu (2014). Same comment applies to ∇βF̃P (c, β̂), f̃0(c) and f̃1(c). Note that we introduce another δn for

f̃0(c) and f̃1(c) and this is needed to account for the fact that f̂0(c) is in the denominator and we need to

control its convergence more carefully. We make the following assumptions on K(u) and h.

Assumption 14 Assume that K(u) is non-negative and has support [−1, 1], K(u) is symmetric around 0 and

is continuously differentiable of order 1, and the bandwidth h satisfies h→ 0, nh4 →∞ and nh/ log n→∞

when n→∞.

Assumption 15 For any given value of x, G(x, β) is twice continuously differentiable w.r.t. β on B∗(r) for

some r > 0 with supβ∈B∗(r),x∈X |∂jjG(x, β)| ≤M almost surely for some M > 0.

Assumption 16 The conditional distribution of G(X,β∗) given Y = 0 has compact support [a0, b0] and a

twice continuously differentiable probability density function f0(c) > 0 satisfying that f0(c) ≥M · (min{c−

a0, b0 − c})K for some positive integer K.

Assumption 17 The conditional distribution of G(X,β∗) given Y = 1 has compact support [a1, b1] which

is a subset of [a0, b0] and a twice continuously differentiable probability density function. In addition,

supc∈[a0,b0] |f1(c)/f0(c)| ≤M for some M > 0.

Assumption 18 Let δn > 0, δn → 0 and δnn
ι →∞ for any ι > 0.
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Lemma 2 Suppose that Assumptions 2, 3, 14, 15, 16, 17 and 18 hold. Then the estimators defined in (39)

satisfy Assumption 13.

Proof of Lemma 2 The proof for uniform consistency of ∇βF̂P (c, β̂), ∇βF̂P (c, β̂), f̂0(c) and f̂1(c)

follows the same arguments in Donald, Hsu and Barrett (2012), and Donald and Hsu (2014), so we omit it

for brevity. We focus on the uniform consistency of f̂1(c)/f̂0(c). Note that under Assumption 14, we have

sup
c∈[a0+δn,b0−δn]

|f̂0(c)− f0(c)| = op(n
−1/4).

By Assumption 16, we have f0(c) ≥ MδKn for all c ∈ [a0 + δn, b0 − δn] and it follows that uniformly over

[a0 + δn, b0 − δn]

f̂0(c)

f0(c)
= 1 +

f̂0(c)− f0(c)

f0(c)
→p 1

because∣∣∣ f̂0(c)− f0(c)

f0(c)

∣∣∣ ≤ op(n
−1/4)

MδKn
= op(1)

by Assumption 18. Next, uniformly over [a0 + δn, b0 − δn]

f̂1(c)

f̂0(c)
=
f̂1(c)

f0(c)
· f0(c)

f̂0(c)
=
f̂1(c)

f0(c)
+ op(1) =

f1(c)

f0(c)
+
f̂1(c)− f1(c)

f0(c)
+ op(1) =

f1(c)

f0(c)
+ op(1).

because (f̂1(c)− f1(c))/f0(c) = op(1). Finally, by the fact that f1(c)/f0(c) is continuous on [a0, b0] and

δn → 0, it follows that

sup
c∈[a0,b0]

∣∣∣∣∣ f̂1(c)

f̂0(c)
− f1(c)

f0(c)

∣∣∣∣∣ = op(1).

Finally, Lemma A.6 shows that supt∈T |ĉt − ct| = op(1).
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