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Abstract

Accounting for general forms of unobserved heterogeneity is crucial when studying

consumer demand, as neglect or misspecification might introduce substantial biases in

the analysis. In this paper, we set-identify the distribution of exact consumer surplus

from cross-sectional data when unobserved heterogeneity is essentially unrestricted.

Knowledge of this distribution allows to study how the welfare gains (or losses) in-

duced by price changes affect different sections of a population, something obfuscated

by standard measures of welfare. Our approach exploits the information in the mo-

ments of demand, conditional on prices and income, thereby departing from the stan-

dard practice of obtaining identification through quantiles. In particular, we use the

insight that cross-sectional data is informative about the average income effect at ev-

ery given demand bundle. Our results can also be used to develop tests for stochastic

rationalizability.
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1 Introduction

There are many settings in which it is essential to measure the impact of price changes on

individual welfare. Price changes are ubiquitous in the economy and may occur through tax

reforms, trade liberalization, or supply-side shocks.

In most cases, only (repeated) cross-sectional data on consumer demand is available to

researchers. If individuals would have homogeneous preferences, standard tools could be

used to calculate welfare directly from the data, given sufficient variation in prices and in-

come. Hausman (1981) and Vartia (1983) provide analytical and numerical tools to calculate

consumer surplus directly from the observed demand function.

In practice, however, individuals likely have heterogeneous preferences.1 To accurately

measure changes in welfare, it is crucial to account for this heterogeneity. Consider, for

example, a scenario in which a carbon tax increases the price of gasoline. The welfare effects

of this price change depend on her idiosyncratic willingness to substitute away from the use

of gasoline or cars. By assuming the existence of a representative consumer, researchers may

underestimate the actual cost of the tax by imposing a uniform rate of substitution across

individuals. Moreover, it obfuscates the distributional consequences of the reform, which

might be severely skewed.

Inferring the welfare impact of price changes under general forms of preference hetero-

geneity is challenging. If individuals’ preferences are idiosyncratic, so is their demand. This

significantly reduces the informational content of demand data since individuals are observed

only once. More specifically, only a single point of every individual’s demand function is

recorded in cross-sectional data, and the heterogeneity renders it difficult to compare these

points across individuals. This creates a matching problem: one may infer the marginal dis-

tribution of gasoline consumption before and after the price change, but one cannot match

what people consumed earlier to what they consume now, which makes welfare analysis

difficult.

In this paper, we study what can be learned about the welfare implications of price

changes from cross-sectional data. We improve upon existing approaches by taking infor-

mation on the distribution of income effects into account.2 Income effects play a crucial

role in analyzing welfare, as consumer surplus is calculated from compensated instead of

uncompensated demands. Akin to the Slutsky equation, knowledge of income effects allows

to infer one type of demand from the other.

More specifically, we exploit that cross-sectional data is informative about the average

1Allowing for heterogeneous preferences is thought to be important in empirical applications since tradi-
tional microeconometric models typically only explain a small part of the variation in consumer demand.

2Hausman and Newey (2016) also conduct welfare analysis under general forms of unobserved hetero-
geneity, but their approach does not rely on the distribution of income effects, which results in non-sharp
bounds.
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income effect at every given bundle.3 These averages deliver first-order information on the

compensated demands of the individuals located at these bundles, which can improve welfare

estimates significantly. The latter is especially true when the analyst has no accurate a priori

knowledge of the magnitude of the income effect, which leads to wide bounds with current

methods.

By studying the moments of demand, conditional on prices and income, we characterize

the informational content of demand data. Besides average welfare, our results also allow

us to set-identify the distribution of welfare under unrestricted, unobserved heterogeneity.4

This enables the distributional assessment of price changes. In particular, we derive approx-

imations for all moments of exact consumer surplus in terms of the moments of demand.

As a methodological contribution, we derive a theoretical relationship between the mo-

ments of demand and the Slutsky equation. In doing so, we depart from the standard practice

of obtaining identification and conducting welfare analysis through the quantiles of demand

(e.g., see Dette, Hoderlein, and Neumeyer (2016)). Exploiting Slutsky symmetry, we show

that the nth and (n+ 1)st moments of demand suffice to identify the first-order deviation of

the nth moment of exact consumer surplus when we series expand it as a function of price

changes.5

We improve upon Hausman and Newey (2016), who set-identify the average equivalent

variation by imposing uniform bounds on individuals’ income effect. While their method is

robust in setups where preference heterogeneity is substantial, it can lead to wide bounds

and makes any policy decision difficult. This is especially true when the analyst has no

accurate a priori knowledge of the magnitude of the income effect.

Firstly, we derive a second-order approximation for the entire distribution of the equiva-

lent variation, where the former only develop expressions for the average. This facilitates a

more complete analysis of the distributional consequences of price changes. Unlike Hoderlein

and Vanhems (2018), we do not assume demand to be monotonic in scalar-valued unobserved

heterogeneity.

Second, if price changes are small, we show that our bounds on the average equivalent

variation are strictly tighter. Our error terms are of third order importance, whereas those

previously developed are second order. Our bounds have the most empirical bite when

demand is convex in prices. Instead of relying on uniform bounds, which are unobserved

in the data, we use conditional moments to inform us of some features of the distribution

3This result draws parallels with Hoderlein and Mammen (2007), who establish that local average struc-
tural derivatives are identified in nonseparable models.

4Notice that, from the viewpoint of the analyst, welfare changes are stochastic because individual prefer-
ences cannot be observed.

5Perhaps surprisingly, we find that even just the first and second moments of demand carry empirical
content derived from utility maximization and can provide tight estimates of average welfare changes. This
finding is in stark opposition to the first conditional moment of demand, which locally carries no empirical
content. For a detailed review, see Rizvi (2006).
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of income effects. Our results also suggest that the non-identification result generally holds

but has limited empirical consequence. If two models are observationally equivalent, their

welfare effects cannot be too far from each other in a way that we can quantify.

Third, the use of moments clarifies the informational content of panel data. More pre-

cisely, we characterize what can be learned from repeated observations, also elucidating the

exact nature of the identification problem when analyzing cross-sectional data and what

additional information is required to point-identify the distribution of exact surplus.

Fourth, our approach can also be employed in settings where researchers do not observe

the entire demand distribution but only some coarse moments. This is especially useful in

the many-good case and could, in principle, be used in settings where data is scarce and

entire conditional quantile demands are hard to estimate.

The results developed in this paper are also useful to test stochastic rationalizability.6 In

the two good case, we can characterize rationalizable cross-sectional distributions of demand

locally via a condition on several equations. Our method is computationally feasible once the

moments are estimated and allows for an analytic characterization of rationality, in sharp

contrast to the current results. We also use it to construct a computable semi-decidable

test of rationality. With more than two goods, we can test the negativity of compensated

demand but not symmetry.

To illustrate our results’ empirical feasibility and usefulness, we present an application

on gasoline demand. [TBA]

Related literature A long tradition in economics aims to estimate consumer surplus

(or equivalent variation) from cross-sectional demand data. Most approaches solve a first-

order differential equation in uncompensated demand. Hausman (1981) provides analytical

solutions for several well-studied demand systems, and Vartia (1983) presents efficient al-

gorithms. Combining these results with nonparametric demand estimation, Hausman and

Newey (1995) obtain results for a flexible, representative demand function.

Our estimates also improve the approaches taken in Foster and Hahn (2000), Blundell,

Browning, and Crawford (2003), and Schlee (2007), which treat unobserved heterogeneity as

a regression error term and compute average equivalent from mean demands. These papers

construct first-order approximations of welfare using mean demand, which our second-degree

approximations improve upon. The most related to our approach is Schlee (2007), which

gives assumptions under which equivalent variation of mean demand acts as a bound for

average equivalent variation. Blundell, Browning, and Crawford (2003) show that if the

idiosyncratic preference component in the demand equation is multiplicatively separable in

preference type and the price-income pair, the EV of mean demand is a first-order approxi-

6See McFadden and Richter (1991); McFadden (2005) for a thorough treatment of stochastic rationaliz-
ability.
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mation to the average EV. We differ from the above approaches by using approximations of

compensating incomes; instead, we directly approximate compensated demands.

More recently, Hausman and Newey (2016) set-identify average consumer surplus when

unobserved heterogeneity is unrestricted by imposing uniform bounds on individuals’ income

effect. They show that this average is not point-identified from cross-sectional data with a

counterexample. Alternatively, Hoderlein and Vanhems (2018) derive the entire distribution

of welfare effects under the assumption that demand is monotonic in scalar unobserved

heterogeneity. In this case, the conditional quantile functions coincide with the true demand

functions, such that point-identification is ensured. However, this is a somewhat restrictive

and untestable assumption.

Alternatively, Kang and Vasserman (2022) provide bounds on welfare when only a few

aggregate demand bundles are observed. They also assess the additional power that assump-

tions on the curvature of demand provide.

Finally, results in the context of discrete choice are obtained by Dagsvik and Karlström

(2005), de Palma and Kilani (2011), and Bhattacharya (2015, 2018). The latter shows that

the distribution of the equivalent variation can be written as a functional of uncompensated

choice probabilities, even when unobserved heterogeneity is essentially unrestricted. This

immediately implies that this distribution is nonparametrically point-identified from cross-

sectional data. However, if choice is ordered, identification breaks down due to a lack of

relative price variation in the data.7

From a broader perspective, our results are also related to the literature that derives

observable restrictions on demand. In the multi-good case, Hoderlein and Stoye (2014, 2015);

Dette, Hoderlein, and Neumeyer (2016), derive and test restrictions on marginal quantiles

of demand. In a very related exercise, Hoderlein (2011) uses techniques very similar to ours

to bound the proportion of individuals in a population who could satisfy rationality.

Focusing on aggregate demand, Hildenbrand (1983, 1994); Härdle, Hildenbrand, and

Jerison (1991) impose restrictions on the variance of demand which guarantee that market

demand obeys the so-called law of demand. In a similar setting, Grandmont (1987, 1992);

Quah (1997) also find restrictions that guarantee the law of market demand and thus local

stability of Walrasian equilibrium. We tackle the inverse problem; rather than putting re-

strictions on the fundamentals to discipline market demand, we observe the variance directly

and see if we can test market demand directly for utility maximization.

We also view our results as a simple rebuke of the Sonnenchshein-Mantel-Debreu the-

orem. This theorem, stemming from Sonnenschein (1973) and then extended by Debreu

(1974); Mantel (1974), suggested that rationality imposes no aggregate demand restrictions.

We find that this is true only if only the first moment of demand is observable. If any

7Since continuous choice under a linear budget constraint can be seen as a limiting case of ordered discrete
choice, this finding is consistent with the non-identification result in Hausman and Newey (2016).
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other information on higher moments is available, rationality does have empirical content

highlighting the fragility of the above claims.

Finally, from a methodological perspective, our results draw parallels with Hoderlein and

Mammen (2007), who establish that local average structural derivatives can be recovered

from quantiles in nonseparable models. Nonidentification of the higher-order terms of the

distribution of surplus is akin to nonlinear transformations of the local average structural

derivative not being identified.

Outline of the paper The remainder of this paper is organised as follows. Section 2

provides some motivating examples. In Section 3, our conceptual framework is laid out.

Sections 4 and 5 presents the main results for small and large price changes, respectively. In

Section 6, we derive the connection between conditional moments and individual rationality.

Section 7 discusses estimation and implementation. In Section 8, we illustrate our results

through an application on gasoline demand, using data from the U.S. National Household

Transportation Survey. Finally, Section 9 concludes. Appendix A contains technical condi-

tions omitted in the main text. In Appendix B, we extend our main results to economies

with only finitely many people.

2 Individual demand and welfare

What can be learned about an individual’s welfare from demand data? If only two price-

quantity bundles are observed, a revealed preference argument can provide signs for the

change in welfare.8 However, if the individual’s entire demand function is known, much

more can be said.

Figure 1 illustrates the link between individual demand and welfare. For a single con-

sumer, both uncompensated demand q and compensated demand h are shown.9 Exact

consumer surplus for a price change from p0 to p1 is equal to p0abp1, which is a surface

between the vertical axis and compensated demand. Note that due to the presence of the

income effect, this differs from inexact consumer surplus p0cbp1. In this case, calculating

welfare based on uncompensated demand is biased downwards.

Hausman (1981) described the change in consumer surplus as a differential equation and

showed that this can be solved analytically for commonly studied demand systems. However,

when income effects differ across a population, this approach does not linearize. We can

have 2 average demands which look identical, but the sum of the compensated demands of

individuals can vary. This causes an identification problem when the analyst only has access

8For example, see the tabulations in Vartia and Weymark (1981).
9As the good is assumed to be normal, compensated demand is steeper than the associated uncompensated

demand.
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Figure 1: Consumer demand and welfare

to cross-sectional data. This problem was formalized in Hausman and Newey (2016), who

show that the average exact consumer surplus is not identified from cross-sectional demand

distributions. We circumvent this problem by considering an approximation of this quantity

as a power series of price deviations.

Interestingly, we find that the coefficient of the second-order term is something that is

linear in observable cross-sectional data, whereas the third-order term is not. This allows us

to generate second-order estimates for welfare that are better than those previously known.

Further we are able to zero in on the cause of the non-identification problem.

As the following example illustrates, it turns out that even the conditional variance

contains considerable information about the average welfare when prices change.

Example 1. Consider a simple economy with a population of individuals with Cobb-Douglas

preferences over two goods. We focus on the demand for good 1, fixing the price of good 2 to

unity. The population has measure one and is further divided into three types of individuals:

• type ω1 (with measure δ/2) only consumes good 1, i.e. qω1(p, y) = y/p;

• type ω2 (with measure δ/2) only consumes good 2, i.e. qω2(p, y) = 0; and

• type ω3 (with measure 1− δ) has equal weights on both goods, i.e. qω3(p, y) = y/p.

Notice that while average demand does not depend on δ,

M1(p, y) =
δ

2

y

p
+
δ

2
0 + (1− δ) y

2p
=

y

2p
,
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the variance of demand is increasing in this parameter,

M2(p, y) =
δ

2

(
y2

p2

)
+
δ

2
0 + (1− δ)

(
y2

4p2

)
= (1 + δ)

(
y2

4p2

)
.

Now consider an exogenous change in the price for good 1, and let ∆p = p1−p0. Straight-

forward calculations show that average exact consumer surplus is equal to

E[∆CS] =
δ

2

y∆p

p0

+ (1− δ)y

[(
1 +

∆p

p0

) 1
2

− 1

]
. (1)

A simple linear approximation to the change in average inexact consumer surplus yields

E[∆CS] ≈M1(p0, y)∆p =
y∆p

2p0

.

Alternatively, a quadratic approximation of inexact consumer surplus yields the more precise

E[∆CS] ≈M1(p0, y)∆p+
∆p2

2
DpM1(p0, y) =

y∆p

2p0

− y∆p2

4p2
0

.

Our more sophisticated local approach, however, gives

E[∆CS] ≈M1(p, y)∆p+
∆p2

2

(
DpM1(p, y) +

1

2
DyM2(p, y)

)
=
y∆p

2p
+

(δ − 1)y∆p2

4p2
,

which coincides with the first two terms of the power expansion of average exact consumer

surplus in Equation (1). In the following section, we will show that this property is true in

general.
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Figure 2: Approximations to exact consumer surplus

Figure 2 provides a graphical illustration of these approximations. For a fixed value of δ,
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Figure 2a shows the difference in performance between our estimate and those based on un-

compensated demand. We find that our approximation outperforms the existing approaches

for modest price changes. Figure 2b shows the impact of the degree of heterogeneity on our

approximation.

3 Conceptual framework

Our conceptual framework allows for unrestricted, unobserved heterogeneity in individuals’

preferences. For ease of exposition, we suppress all observed individual characteristics in

the notation, as all results in this paper can be thought of as being conditional on these

covariates.

3.1 Consumer demand and individual heterogeneity

We consider the standard model of utility maximization under a linear budget constraint.

Let Ω denote the universe of preference types and let F (ω) denote the distribution of these

preference types in the population. Every preference type ω can be thought of as a different

individual who has idiosyncratic preferences over bundles of l goods q ∈ Q = Rl
+. These

preferences are assumed to be representable by a smooth, strongly quasi-concave utility

function uω : Q → R. Note that this formulation of preferences is very general, as it allows

the latter to differ arbitrarily across individuals. Prices p ∈ P ⊂ Rl
+ and income y ∈ Y ⊂ R+

are assumed to be positive; we call a pair b = (p, y) a budget set.

Individual demand functions qω : P × Y → Q arise from individuals maximizing their

utility subject to a linear budget constraint,

qω(b) = arg max
p.q≤y:q∈Q

uω(q).

These demand functions satisfy homogeneity of degree zero and Walras law,

qω(αp, αy) = qω(b), ∀α ∈ R+,

p · qω(b) = y,

for all budget sets. For every demand function qω(b), there exists a compensated (or Hick-

sian) demand function hω(p, u) : P × R→ Q defined as

hω(p, u) = arg min
q∈Q

{p · q|uω(q) ≥ u}.
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As is well known, the Slutsky equation

Dpq
ω(b) = Dph

ω(p, u)−Dyq
ω(b)qω(b)ᵀ

provides a link between both demand functions.10

The indirect utility function vω : P × Y → R is defined as

vω(b) = max
p.q≤y:q∈Q

uω(q),

i.e. the utility level obtained with budget b, while the expenditure function eω(p, u) :

P × R→ Y is defined as

eω(p, u) = min
u≤uω(q):q∈Q

p.q,

i.e. the minimum amount of income needed to achieve utility level u at prices p.

We will assume that preference types are distributed independently of budget sets in the

population. Intuitively, this can be thought of as prices and income being randomly assigned

across preference types, giving rise to “treatment groups” with different budget sets. It is

precisely this exogenous variation that will enable us to recover the impact of price changes

on individual welfare from observational cross-sectional data.

Assumption 1 (budget set exogeneity). The distribution of unobserved heterogeneity F (ω)

is independent of prices and income:

F (ω | b) = F (ω).

The exogeneity of budget sets is a strong but standard assumption in the literature on

nonparametric identification of demand and welfare (e.g. see Hausman and Newey (2016);

Blomquist, Newey, Kumar, and Liang (2021)). Indeed, to the best of our knowledge, there

are no theoretical results that allow for general forms of endogeneity in the presence of un-

restricted, unobserved heterogeneity. Some forms of endogeneity, however, can be mitigated

by using a control function approach (see Section 7).

3.2 Welfare and deadweight loss

Our main object of interest is equivalent variation (or exact consumer surplus), which quan-

tifies the impact of price changes on individual welfare.11 It measures the minimum amount

of additional income an individual needs to receive before the price change to be equally

10Dp and Dy denote the derivative operator with respect to prices and income, respectively.
11We focus on equivalent variation (instead of on compensating variation) because this measure allows

comparing different reforms, as it is measured in baseline prices.
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well-off as after the price change. Formally, for a price change from p0 to p1, it is defined as

EV ω(p0,p1, y) = eω(p1, v
ω(p1, y))− eω(p0, v

ω(p1, y))

= y − eω(p0, v
ω(p1, y)).

Deadweight loss, which is a popular measure of economic efficiency, is defined as equiva-

lent variation minus the tax receipts

DWLω(p0,p1, y) = EV ω(p0,p1, y)−∆p · qω(p1, y),

where ∆p = p1 − p0.

3.3 Conditional moments of demand

Integrating out the unobserved preference heterogeneity, we can express the nth (non-central)

conditional moment of demand as

Mn(b) =

∫ ( n⊗
k=1

qω(b)

)
dF (ω | b)

=

∫ ( n⊗
k=1

qω(b)

)
dF (ω),

(2)

in which
⊗

represents the Kronecker product and where the second equality follows directly

from Assumption 1.12 Since these conditional moments are essentially conditional expecta-

tion functions, they are nonparametrically identified from cross-sectional data. Note that in

the two-good case, expression (2) simplifies to

Mn(b) =

∫
qω(b)ndF (ω),

since then it suffices to consider scalar demand. It is clear from a preliminary inspection

that the conditional moments inherit the following two conditions:13

Mn(αp, αy) = Mn(b), ∀α ∈ R+,

p ·M1(b) = y.

We define a moment sequence as the (possibly infinite) sequence {Mi(b)}ni=1 of moments

of demand of length n. We say that a sequence {ai(b)}ni=1 is rationalizable if there exists a

12In the remainder of the paper, we will assume that all moments considered exist and are finite.
13Chiappori and Ekeland (1999b) show that these are the only restrictions on mean demand (i.e. M1).
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universe of preference types Ω and a probability measure dF (ω) over these types such that

ai(b) =

∫ ( i⊗
k=1

qω(b)

)
dF (ω), ∀i,

and for all ω ∈ Ω, qω is a rational demand function.

4 Small price changes

This section demonstrates how the results developed above can be used to estimate the

distribution of welfare changes in response to price changes. We show that the moments

of this distribution can be approximated up to second order from the observed conditional

moments of demand.

Before proceeding to the main results, the following lemma establishes a relation between

income effects and the moments of demand.14

Lemma 1. Suppose Assumption 1 holds. For every n ∈ N+, it holds that

E[(qω(b0))nDyq
ω(b0)] = (n+ 1)−1DyMn+1(b0).

Derivatives of observable moments with respect to income are related to the income effect

terms that occur in many of our results. In particular, for n = 1 the lemma establishes a

relation between the income effect term in the Slutsky equation and the conditional variance

of demand.

Second-order approximation For clarity of exposition, we first consider the two-good

case. Observe that by Shephards’ lemma,

Dpe
ω(p, u) = hω(p, u),

we can write the equivalent variation in terms of Hicksian demand,

EV ω(p0, p1, y) =

∫ 1

0

hω(π(t), vω(b0))dπ,

14A full exploration of the informational content of the moments. of demand is postponed to Section 6.
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for some price path π : [0, 1]→ P . Without loss of generality, we will assume the path to be

linear, i.e π(t) = p0 + (p1 − p0)t = p0 + t∆p, such that15

EV ω(p0, p1, y) = ∆p

∫ 1

0

hω(p0 + t∆p, vω)dt,

where vω = vω(b0).

A series representation of Hicksian demand around ∆p = 0 gives

hω(p0 + t∆p, vω) = hω(p0, v
ω) +

∞∑
n=1

(t∆p)n

n!
Dpnh

ω(p0, v
ω),

such that

EV ω(p0, p1, y) = ∆pqω(b0) +
∞∑
n=1

(∆p)n+1

(n+ 1)!
Dpnh

ω(p0, v
ω). (3)

Retaining only on the first two terms, we get that

EV ω(p0, p1, y) ≈ ∆pqω(b0) +
(∆p)2

2
[Dpq

ω(b0) + qω(b0)Dyq
ω(b0)] .

Using Lemma 1, integrating out unobserved preference heterogeneity gives

E[EV ω(p0, p1, y)] ≈ ∆pM1(b0) +
(∆p)2

2

[
DpM1(b0) +

1

2
DyM2(b0)

]
.

This expression shows that the first moment of the equivalent variation is identified up to

the second order from the conditional mean and variance functions.

Using an analogous derivation, we can also derive a second-order approximation for higher

moments of welfare changes,

E[EV ω(p0, p1, y)n] ≈ (∆p)n
(
Mn(b0) +

∆p

2

[
DpMn(b0) +

n

n+ 1
DyMn+1(b0)

])
.

These findings are summarized in the following theorem.

Theorem 1. Suppose Assumption 1 holds. Then the second-order approximation of the nth

moment of the equivalent variation only depends on the nth and (n+1)th conditional moment

of demand. It can be written as

E[EV ω(p0, p1, y)n] ≈ (∆p)n
(
Mn(b0) +

∆p

2

[
DpMn(b0) +

n

n+ 1
DyMn+1(b0)

])
.

Remark 1. By a straightforward application of the mean value theorem, we can write

15The integral is path independent due to Slutksy symmetry.
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average welfare as

E[EV ω(p0, p1, y)n] = ∆pM1(b0) +
(∆p)2

2

(
DpM1(b0) +

1

2
DyM2(b0)

)
+

(∆p)3

6
DppE[hω(p, y)],

for some intermediate point p ∈ [p0, p1]. If Hicksian demand is convex in prices, the second-

order approximation yields a lower (upper) bound when ∆p > 0 (∆p < 0).16

Higher-order approximations To obtain higher-order approximations for average wel-

fare, it is clear from the series representation in Equation (3) that we need to be able to

express {E[Dpnh
ω(p, vω)]}∞n=2 in terms of observable quantities. We now argue that this is

impossible when only cross-sectional data is available.

Differentiating the identity hω(p, u) = qω(p, eω(p, u)) twice with respect to price, we get

Dp2h
ω(p, vω) = Dp2q

ω(b) +Dph
ω(p, vω)Dyq

ω(b) + qω(b)2Dy2q
ω(b) + 2qω(b)Dp,yq

ω(b)

= Dp2q
ω(b) + [Dpq

ω(b) + qω(b)Dyq
ω(b)]Dyq

ω(b) + qω(b)2Dy2q
ω(b) + 2qω(b)Dp,yq

ω(b),

where the second equality follows from the Slutsky equation. Elementary calculations give

that

E[Dp2h
ω(p, vω)] = Dp2M1(b) +

1

2
Dp,yM2(b) +

1

3
Dy2M3(b)− E[qω(b)(Dyq

ω(b))2], (4)

in which all terms, except for the last, are directly observable quantities. We extend this to

higher-order approximations in the following lemma.

Lemma 2 (generalized Slutsky condition). Let Cn(b) = E[qω(b)(Dyq
ω(b))n | x]. We have

that

E[Dpnh
ω(p0, v

ω)] = Bn(b0)− Cn(b0)

where Bn(b0) is an known function of identifiable objects.

Proof. We have

Dpnh
ω(p, u) = Dpn [qω(p, eω(p, u))] =

n∑
s,t:s+t=0

[Dps,ytq
ω(p, eω(p, u))]Bn

s,t

16Convexity includes the common linear demand specification qω(b) = ω1 − ω2p− ω3y where (ω1, ω2, ω3)
varies across the population.
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with (exponential) Bell polynomials

Bn
s,t = n!

∑
s,t∈Kn

s,t

∞∏
j=1

1

sj!tj!

(
Dpjp

j!

)sj (Dpje
ω(p, u)

j!

)tj
= n!

∑
s,t∈Kn

s,t

∞∏
j=1

I[j = 1 or sj = 0]
1

sj!tj!

(
Dpje

ω(p, u)

j!

)tj

where the sum is over

Kns,t =

{
s, t :

∞∑
j=1

j(sj + tj) = n and
∞∑
j=1

[
sj

tj

]
=

[
s

t

]}

the set of tuples that exhaust the combinatorial division of n items into s and t groups.

(Note that these tuples are in fact solutions to a Diophantine equation.)

We also have that

Dpn,ym [qω(b)r] =
n+m∑

s,t:s+t=0

r!

(r − s− t)!
qω(b)r−s−tBn,m

s,t

with bivariate Bell polynomials

Bn,m
s,t = n!m!

∑
(sj ,tj)∈Kn,m

s,t

∞∏
j1,j2:j1+j2=1

1

sj1 !, tj2 !

(
Dpj1yj2q

ω(b)

j1!j2!

)sj1+tj2

where the sum is now over two dimensional tuples

Kn,ms,t =

{
s, t :

∞∑
j1,j2:j1+j2=1

[
j1

j2

]
(sj1 + tj2) =

[
n

m

]
and

∞∑
j1,j2:j1+j2=1

[
sj1

tj2

]
=

[
s

t

]}
.

Elementary combinatorial calculations lead to the claimed statement.

Proposition 1 below shows that the terms {Cn(b)}∞n=2 are not identified from cross-

sectional data. Hence, the higher-order approximations of the average equivalent variation

are also not identified. This fully characterizes the nature of the identification problem in

recovering the average equivalent variation.

Proposition 1. Suppose Assumption 1 holds. Then {Cn(b)}∞n=2 is not nonparametrically

identified from cross-sectional data.

Proof. We show nonidentification of {Cn(b)}∞n=2 by means of a counterexample. Suppose
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individual demand is linear in price and income

qω(b) = ω1 − p+ ω2y,

and let ω1 ∼ U(0, 1), and Pr[ω2 = 1/3] = Pr[ω2 = 2/3] = 1/2. Hausman and Newey (2016)

show that for y < 3, an observationally equivalent specification is the quantile demand

q̃ω̃(b) =

−p+ I[y < 6ω̃](y/2 + ω̃) + I[y ≥ 6ω̃](y/3 + 2ω̃), ω̃ ≤ 1/2,

−p+ I[y < 6(1− ω̃)](y/2 + ω̃) + I[y ≥ 6(1− ω̃)](2y/3 + 2ω̃ − 1), ω̃ > 1/2,

where ω̃ ∼ U(0, 1).

For a budget set (p, y) = (1, 2), elementary calculations show that

Cn(1, 2) = E[(ω1 − p+ ω2y)ωn2 | p = 1, y = 2]

= (E[ω1]− 1)E[ωn2 ] + 2E[ωn3 ]

= −1/4[(1/3)n + (2/3)n] + [(1/3)n+1 + (2/3)n+1]

= 1/12(1/3)n + 5/12(2/3)n

(5)

holds for the original demand specification. However, after differentiating the quantile de-

mand with respect to income, we obtain

q̃ω̃(b)(Dy q̃
ω̃(b))n |p=1,y=2=

I[1/3 < ω̃]ω̃(1/2)n + I[1/3 ≥ ω̃](−1/3 + 2ω̃)(1/3)n, ω̃ ≤ 1/2,

I[2/3 > ω̃]ω̃(1/2)n + I[2/3 ≤ ω̃](−2/3 + 2ω̃)(2/3)n, ω̃ > 1/2,

such that

C̃n(1, 2) = (1/3)n
∫ 1/3

0

(−1/3 + 2ω̃) + (1/2)n
∫ 1/2

1/3

ω̃ + (1/2)n
∫ 2/3

1/2

ω̃ + (2/3)n
∫ 1

2/3

(−2/3 + 2ω̃)

= 1/6(1/2)n + 1/3(2/3)n.

(6)

Expressions (5) and (6) are only equal for n = 1. Since two observationally equivalent models

generate different results for n ≥ 2, the latter are not nonparametrically identified.

Remark 2. The unidentified terms can be given an intuitive interpretation. Using the law

of iterated expectations, we can write

Cn(b) = E [qω(b)E[(Dyq
ω(b))n | b, qω(b)] | b] .

This highlights that the nth term is equal to the (non-centered) covariance between demand
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and the nth moment of the income effect at that bundle. Failure to identify the third-order

approximation of average welfare is therefore due to cross-sectional data being uninformative

about how the variance of the income effect changes across demand bundles. The same holds

for the higher order approximations, mutatis mutandis.

Remark 3. Identification of these covariances requires knowledge on the joint distribution

of demand and income effects, but cross-sectional data only delivers the associated marginal

distributions. However, note that the unobserved terms could in principle be obtained from

panel data with as little as two periods, given that sufficient intertemporal variation in

income is present. We leave further consideration of the informational content of panel data

to future research.

It is no coincidence that in the counterexample in the proof of Proposition 1, C1(b) is

identical for the two observationally equivalent models. Direct application of Theorem 2.1 in

Hoderlein and Mammen (2007) shows that the quantiles of demand identify the local average

structural derivative. Specifically, it holds for every quantile τ that

E[Dyq
ω(b) | x, qω(b) = q̃(τ | x)] = Dy q̃(τ | x),

i.e the average derivative at bundle q̃(τ | x) is equal to the derivative with respect to income

along the associated quantile demand. Again using the law of iterated expectations, we can

write

C1(b) = Eτ [q̃(τ | x)Dy q̃(τ | x) | x] ,

which is nonparametrically identified because it is the (non-centered) covariance of two es-

timable objects. Moreover, they also argue that nonlinear transformations of the local av-

erage structural derivative are not identified, which is similar to the nonidentification result

we obtained in Proposition 1.

4.1 Many-goods case

We now analyze the distribution of the equivalent variation in the case where there are more

than two goods. Analogously with the two-goods case, the following approximation holds,

EV ω(p0,p1, y) ≈ ∆p · qω(b0) +
1

2
∆p · [Dpq

ω(b0) + qω(b0)Dyq
ω(b0)] ·∆p (7)

but now we have vectors and matrices instead of scalars. Intergrating over types, we get

E[EV ω(p0,p1, y)] = ∆p ·M1(b0) +
1

2
∆p · [DpM1(b0) + (DpM1(b0))ᵀ +DyM2(b0)] ∆p.
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For higher moments, this approximation is slightly more involved,

EV ω(p0,p1, y)n =

[
∆p · qω(b0) +

1

2
∆p · [Dpq

ω(b0) + qω(b0)Dyq
ω(b0)] ∆p

]n
= [∆p · qω(b0)]n

+
n∑
i=1

(∆p · qω(b0))n−i−1 {∆p · [Dpq
ω(b0) + qω(b0)Dyq

ω(b0)] ·∆p} ((qω(b0) ·∆p))i

=
1

2
∆p(∗∗)

{
1

n

[∑
(symmetrized moment derivative)

]
+

n

n+ 1
DyMn+1

}
where (∗∗) represents a generalized k tensor form.

Remark 4. Akin to Hausman (1981), if the price of only one good changes, it is clear from

Equation (7) that this only requires knowledge on the income effects for that specific good.

This might simplify the analysis considerably in the presence of many goods.

Remark 5. When the prices of all goods change, the second order approximation for average

welfare requires the estimation of the entire variance-covariance matrix, which might be

burdensome. It is possible, however, to bound the off-diagonal elements of this matrix

from the marginal conditional variances. In particular one can impose the following three

restrictions:

[M2(b)]ij = [M2(b)]ji

p ·DyM2(b) = DyM2(b) · p = 0

[M2(b)]ij ≤
√

M2(b)]iiM2(b)]jj

Note that the Cauchy Schwarz inequality ensures that the off-diagonal elements have bounded

support, even if we only observe the diagonal elements.

4.2 Link with sufficient statistic approach

TBA

5 Large price changes

In this section, we improve upon the second-order linear approximation, by exploiting the

nonlinear structure of the problem. This is especially useful when the underlying demand

functions are highly nonlinear in prices. Hausman and Newey (2016) assume the income

effects to be linear and independent of prices, and constant across individuals. We show that
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this does not exploit all information that is available in cross-sectional data.

5.1 Nonlinear approach

Following Hausman (1981), consumer surplus can also be expressed in terms of the solution

to a nonlinear differential equation. In particular, taking derivatives of both sides of

sω(t) = y − eω(π(t), vω(b1)), t ∈ [0, 1],

with respect to t, together with Shephard’s lemma, gives the first-order differential equation

Dts
ω(t) = −qω(π(t), y − sω(t))Dtπ(t), t ∈ [0, 1], (8)

with endpoint condition sω(1) = 0. It then holds that EV ω(p0, p1, y) = sω(0).

However, there is an insurmountable problem with this approach when it comes to aggre-

gating in a heterogeneous population. For ease of exposition, let us consider the simplest case,

namely the one with constant income effects: i.e. qω(p(t), y − sω(t)) = qω(p(t), y) − αsω(t).

We therefore have that

Dts
ω(t) = −[qω(π(t), y)− αsω(t)]Dtπ(t), t ∈ [0, 1],

which is a first-order linear ODE, and can be solved analytically giving us

EV ω(p1, p2, y) = ∆p

∫ 1

0

qω(p0 + t∆p, y) exp(−αωt∆p)dt

=

∫ p1

p0

q(π(t), y) exp(−α(p1 − p0))Dtπ(t)dt.

This formula directly illustrates the problem: when looking at aggregate data, the income

derivatives are additive, and the EV is also additive, the but the dependence of EV on the

income effects is non linear, leading to identification problems.

We now illustrate our approach by approximating the EV as follows

EV (p0, p1) = a0(p0 − p1) + a1(p0 − p1)2 + a3(p0 − p1)3

for the specific case we consider above, we can find the constants we want, to do this, we

first choose the linear price path of the form π(t) = p1 + t(∆p) where ∆p is p1 − p0. The

expression for the EV now reduces to

EV (p0, p1) = ∆p

∫ 1

0

q(π(t), y) exp(−α∆p)dt
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We can now expand the integrand as

EV (p0, p1) = ∆p

∫ 1

0

q(π(t), y)

[
1− α∆p+

1

2
α2(∆p)2...

]
dt

= ∆p

∫ 1

0

q(π(t), y)− (∆p)2

∫ 1

0

αq(p(t), y) + o(∆p)3

further notice that Dyq = α implies∫ 1

0

αq(p(t), y) =

∫ 1

0

q(π(t), y)Dyq(π(t), y) =

∫ 1

0

Dy(q(π(t), y))2

which is interesting because differentiating with respect to income does linearize to a large

population, so on the aggregate we can say that

E
[∫ 1

0

Dy(q(π(t), y))2

]
= Dy

∫ 1

0

E[(q(π(t), y]))2]dt

where E[q(π(t), y)2] is just the second moment which is observable with aggregate data. This

elads to the following formula

EV (p0, p1) =

∫ 1

0

q(π(t), y)− (∆p)2

2

∫ 1

0

DyE[(q(π(t), y]))2]dt

= CS(p0, p1)− (∆p)2

∫ 1

0

DyM2(p(t)) + o(∆p)3

(9)

We show that even if this setup is generalized to allow for unrestricted assumptions on income

effects, the second order term is identified by the second moment of demand.

5.2 Carleman linearization

We now generalize these insights in a unified framework. Suppose that individual demand

is analytic in income such that it can be expanded as follows around t = 1

qω(p(t), y − s(t)) =
∞∑
k=0

aωk (t)(s(t))k.

Note that the function aωk (t), which can vary very flexible with prices, can be recovered by

taking the kth derivative with respect to income, evaluated in t = 1

aωk (t) = Dk
yq
ω(p(t), y − s(t))|t=1.
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The expectations of these function are identified from the data

E[aωk (t)] = Dk
yE[qω(p(t), y − s(t))]|t=1.

Plugging this in the FOD equation in Expression (8), we can write that

Dts(t) = −
∞∑
k=0

aωk (t)(s(t))k.

Note that it holds that

Dt(s(t))
k = k(s(t))k−1Dts(t)

= k(s(t))k−1

n∑
l=0

ak(t)(s(t))
k

= k

n∑
l=0

al(t)(s(t))
l+k−1.

For notational convenience, define sk(t) = s(t)k for all k. This gives us the (potentially)

infinitely dimensional system of linear FOD equations,

Dt



s0(t)

s1(t)

s2(t)

s3(t)
...


=



0 0 0 0 . . .

a0(t) a1(t) a2(t) a3(t) . . .

0 2a0(t) 2a1(t) 2a2(t) . . .

0 0 3a0(t) 3a1(t) . . .
...

...
...

...
. . .





s0(t)

s1(t)

s2(t)

s3(t)
...


,

or more compactly

Dts(t) = A(t)s(t).

The approach represents the single nonlinear FOD equation by an infinite number of linear

FOD equations. This representation is known as Carleman linearization.17 Linearization

techniques are instrumental in studying what can be recovered from cross-sectional data, as

its results aggregate well across the population.

Remark 6. Note that the approximation of Hausman and Newey (2016) to the Hausman-

Vartia differential equation can be seen as a special case of our approach. Let qω(p(t), y −
17See Kowalski and Steeb (1991) for a detailed technical overview on Carleman linearization.
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s(t)) = aω0 (t) + a1s(t) and consider the two-dimensional subsystem

Dt

[
s0(t)

s1(t)

]
=

[
0 0

aω0 (t) a1

][
s0(t)

s1(t)

]
.

Since we have that that s0(t) = 1, this system simplifies to the single first-order differential

equation

Dts1(t) = aω0 (t) + a1s1(t),

which has the explicit solution

s1(t) = − exp(a1t)

∫ 1

t

exp(−a1τ)aω0 (τ)dτ,

such that

s(0) = s1(0) = −
∫ 1

0

exp(−a1τ)qω(p(τ), y)dτ.

In fact, we can do away with the assumption that the income effect is constant across

individuals and prices. Let qω(p(t), y− s(t)) = aω0 (t) + aω1 (t)s(t). Analogous arguments as in

Remark 6 give

s(0) = s1(0) = − exp

(
−
∫ 1

0

aω1 (τ)dτ

)∫ 1

0

exp

(∫ 1

τ

aω1 (σ)dσ

)
qω(p(τ), y)dτ.

Comparison with Hausman and Newey (2016) We now have a brief discussion

comparing our results to the non identification results provided in Hausman and Newey

(2016). They use known uniform bounds on income effects to bound average surplus using

average demand. In particular, it is shown that for known constants b and b such that

b ≤ Dyq
ω(p, y)∆p ≤ b, it holds that eb ≤ E[EV ω] ≤ eb with

eb = ∆p

∫ 1

0

E[qω(p0 + t∆p, y)] exp(−b∆pt)dt.

This can be written as

∆p

∫ 1

0

E[qω(b0) +Dpq(b0)t∆p, y)](1− b∆pt)dt

and collecting first and second order terms, we get

∆p

∫ 1

0

E[qω(b0)] + ∆p(Dpq(b0)− bqω(b0))tdt ≈ ∆pE[qω(b0)] +
(∆p)2

2
(Dpq(b0)− bqω(b0))
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such that aggregating over individuals gives us

∆pM1 +
(∆p)2

2
(DpM1(b0)− bM1(b0))

which should be corrected to

(∆p)2

2
(DpM1(b0) +

1

2
DyM2(b0))

to account for the second-order effects. This gives us the “correction” term

(∆p)2

2
(bM1(b0)− 1

2
DyM2(b0)).

This immediately leads to the following proposition, which improves the bounds of Hausman

and Newey (2016) for the expected EV at one side (in most cases this will be the lower bound).

Proposition 2. Let the income effect be bounded, b ≤ Dyq
ω(p, y)∆p ≤ b, for known

constants b and b. The average EV is bounded as follows:

eb + max

{
0,

(∆p)2

2
(bM1(b0)− 1

2
DyM2(b0))

}
≤ E[EV ω] ≤

eb + min

{
0,

(∆p)2

2
(bM1(b0)− 1

2
DyM2(b0))

}

The following example illustrates the significant improvement that can be achieved when

using the information from the higher conditional moments.

Example 2. Again consider the linear specification from Proposition 1. The first three

conditional moments of this model are given by:

M1(b) = 1/2− p+ 1/2y

M2(b) = 1/3 + p2 − p+ 5/18y2 + 1/2y − py

M3(b) = 1/4− p3 + 3/2p2 − p+ 1/6y3 + 5/12y2 + 1/2y + 3/2p2y − 5/6py2 + 3/2py.

For a price change from p0 = 0.10 to p1 = 0.11 and at income y = 3/4 we calculate the

average consumer surplus.

Suppose the econometrician knows that the income effects are uniformly bounded as

between minus one and one: −0.1 = b ≤ Dyq
ω(p, y)∆p ≤ b = 0.1. Then the income effect
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bounds are as follows:

7.328 10−3 ≤ E[EV ω(0.1, 0.2, 0.75)] ≤ 7.810 10−3.

In contrast, our second-order approximation gives

E[EV ω(0.1, 0.2, 0.75)] ≈ 7.720 10−3.

Higher moments Suppose we are looking for the second moment, under the same as-

sumptions as Hausman and Newey (2016). We can do this by studying the solution of

Dt

s0(t)

s1(t)

s2(t)

 =

 0 0 0

a0(t) a1 0

0 2a0(t) 2a1


s0(t)

s1(t)

s2(t)

 .
[TBA]

6 Conditional moments and rationality

In this section, we study rationality of a population of consumers and the conditional mo-

ments of demand.

In the case for where the analyst can observe not conditional moments but condi-

tional quantile demand functions, this problem has been studied by Dette, Hoderlein, and

Neumeyer (2016) and Hausman and Newey (2016). We expand the analysis by considering

moments instead of quantiles. For clarity of exposition, we first consider the two-goods case,

as the notation for the many-goods case is more involved.

6.1 Two-goods case

In settings with only two goods, it suffices to consider scalar demand, as one of both goods

can be interpreted as the numeraire.

Claim (Hurwicz and Uzawa (1971)). Let qω(b) be a demand function, symmetry and neg-

ative semidefinitess of the slutsky matrix is necessary and sufficient for a demand function

to locally be generated by utility maximization.

Further, because we are in the 2 good case, can we can treat demand as a scalar, symmetry
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always holds. Therefore the only observable restriction on demand q is that

Dpq
ω(b) + qω(b)Dyq

ω(b) < 0 (10)

for every preference type and budget set.

We now try to convert this expression and write it in terms of the conditional moments,in

order to do this we use a technique we repeatedly exploit in this paper. Notice that multi-

plying both sides of the above equation by qω(b)n−1 for some n ∈ N+, we get that

0 ≥ qω(b)n−1Dpq
ω(b) + qω(b)nDyq

ω(b)

= n−1Dpq
ω(b)n + (n+ 1)−1Dyq

ω(b)n+1.
(11)

Interestingly, this expression can be written as a sum of the derivatives of conditional mo-

ments, allowing us to integrate over all preference types.

0 ≥
∫ [

n−1Dpq
ω(b)n + (n+ 1)−1Dyq

ω(b)n+1
]
dF (ω)

= n−1

∫
Dpq

ω(b)ndF (ω) + (n+ 1)−1

∫
Dyq

ω(b)n+1dF (ω)

= n−1DpMn(b) + (n+ 1)−1DyMn+1(b),

(12)

where the inequality follows from the Slutsky equation being pointwise negative, the first

equality is due to the linearity of the integral operator, and the second equality follows from

changing the order of integration and differentiation and the definition of the conditional

moments.18

This gives us a restriction for every two consecutive moments in our sequence. However,

for a demand system to be rationalizable, the slutsky term must be negative at each quan-

tile. (Dette, Hoderlein, and Neumeyer (2016)). Luckily, we can appeal to the density of

polynomials in C0(R) to prove point-wise negativity of the slustky term. However for this,

we first need introduce some notation.

Definition 1 (Mononial translation). For any monomial ξn, define its translation as

Γ(ξn)(b) =

∫
ω∈Ω

[Dpq
ω + qωDyq

ω] ξn

= (n+ 1)−1DpMn+1 + (n+ 2)−1DyMn+2

(13)

By the discussion we have had above, any monomial translation must be negative. This

now allow us to state our first theorem characterizing rationalizable moment sequences.

18We assume the conditions for the dominated convergence theorem hold.
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Definition 2 (Polynomial Translation). For any π(b) =
∑
aix

i define its translation by

breaking it up into monomials and adding back the results

Γ(π(b)) =
∑

aiΓ(xi)

Theorem 2. In the case of two goods, a demand distribution can be generated by a rational

population if and only if any polynomial which is positive in the support of the distribution

has a negative translation.

Proof. The if part simply follows from any polynomial transformation being a sum of mono-

mial transformations, thus requiring negativity. For the only if part, Hausman and Newey

(2016) shows that negativity of the quantile demand function characterizes rationalizability.

Now suppose our condition held, but some quantile contradicted negativity.

This would mean that there is some quantile τ , and some quantile demand q̃(τ | x) such

that

Dpq̃(τ | b) + q̃(τ | b)Dy q̃(τ | b) > 0

We can pick a sequence of polynomials {πn}∞n=1 such that

lim
n→∞
{πn} → δb(τ |p,I).

Therefore, we have that

lim
n→∞
{Γ(πn)} → [Dpq̃(τ | b) + q̃(τ | b)Dy q̃(τ | b)] > 0

which means at some finite n negativity must contradicted. This would contradict our

assumption, hence proving the above theorem.

A semi-decidable test Let Q[X] be the set of polynomials over the rational numbers.

Further define

Q+[X] = {p ∈ Q[X] | x ≥ 0 =⇒ p(x) ≥ 0}

Or simply the set of all polynomials which are positive in the positive x axis. We know from

basic analysis that Q[X] and hence Q+[X] must be countable. Therefore, we can pick an

enumeration of Q+[X] refer to it as {pi}∞i=1.

Now conduct the following procedure

1. At step n compute the the polynomial translation Γ(pn). If Γ < 0 move to step (n+1)

2. If Γ > 0 reject the distribution.

Theorem 3. No rationalizable distribution is ever rejected and all non rationalizable distri-

butions are eventually rejected.
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Proof. The first part follows trivially from the argument in the previous section and rational-

ity implies negativity of all translations. For the second part, again by the above argument

the system is not rationalizable, there is some polynomial p which has a positive translation,

as {pi}∞i=1 is indeed an enumeration there must be some n where pn has a positive translation,

leading to rejection.

The case with three moments Firstly observe that the restrictions are only on monomial

translations of conditional moments. In the case where only the zeroeth and first monomial

translation can be computed(or equivalently the first 3 moments can be observed) we only

have to deal with linear polynomials which makes testing for rationality much simpler.

Theorem 4. Let the support of demand at price p and income y be 0 ≤ qmin ≤ qmax ≤ I
p

in terms of the first 2 translations, only 4 polynomials need be checked for negativity, these

are:-

1

x

−qmin + x

qmax − x

in our langauge this tranlates to

Γ(0) < 0

Γ(1) < 0

−qminΓ(0) + Γ(1) ≤ 0

qmaxΓ(0)− Γ(1) ≤ 0

meaning that in additon to monomial negativity we only need to check

qmaxΓ(0) ≤ Γ(1) ≤ qminΓ(0)

6.2 Many-goods case

We now consider the case where we have multiple goods, in this case there are two distinct

observable restrictions of rationality.

Claim. Let qω(b) be a function which satisfies homogeneity and Walras’ law it is (locally)

rationalizable if and only if the matrix S(b) = Dpq
ω(b) + qω(b)(Dyq

ω(b))ᵀ is symmetric
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and negative semidefinite.

Notice that symmetry means that

Dpjq
ω
i (b) + qωi (b)Dyq

ω
i (b) = Dpiq

ω
j (b) + qωj (b)Dyq

ω
j (b).

Now let us consider the variance of demand, M2(b), in which the (i, j)th element is E[qωi (b)qωj (b) |
b]. However, E[qωi (b)qωj (b) | b] = E[qωj (b)qωi (b) | b] or in other words, the moments of a

random vector are symmetric. This symmetry, represents a loss of “degrees of freedom”

available to the analyst.

Claim. Consider a sequence with the first two moments, {M1(b),M2(b)}, in contrast with

the two-goods case, the matrix E[S(b) | (b)] is not point identified.

Proof. The non-identification hinges on the second term qω(b)(Dyq
ω(b))ᵀ because indeed the

first term is identified. But as we discussed above the analyst observes M2(b) or equivalently

E [qω(b)(Dyq
ω(b))ᵀ +Dyq

ω(b)qω(b)ᵀ] if there are two demand models where

∀ω ∈ Ω qω(b)(Dyq
ω(b))ᵀ +Dyq

ω(b)(qω(b))ᵀ

is identical, they would generate the same two moments.

This shows that if we remain agnostic about rationality, the Slutsky equation is not

identified from the first two moments of demand. However, interestingly, if we assume that

individuals satisfy Slutsky symmetry, this exactly identifies the Slustky terms, giving us just

enough restrictions. This leads to the following theorem.

Theorem 5. Consider a sequence with the first two moments, {M1(b),M2(b)}. If indi-

viduals obey Slutsky symmetry, there always exists a demand system such that the matrix

E[S(b) | b] is point identified.

Proof. The proof proceeds very simply. We know that

DyM2(b) = E [qω(b)(Dyq
ω(b))ᵀ +Dyq

ω(b)qω(b)ᵀ] ,

we also know from Slutsky symmetry that

Dpq
ω(b) + qω(b)(Dyq

ω(b))ᵀ = Dpq
ω(b) +Dyq

ω(b)(qω(b))ᵀ,
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which implies that

E[Dpq
ω(b)− (Dpq

ω(b))ᵀ] = E[qω(b)(Dyq
ω(b))ᵀ −Dyq

ω(b)(qω(b))ᵀ].

Adding fetches us

E[Dpq
ω(b)− (Dpq

ω(b))ᵀ] +DyM2(b) = 2E[qω(b)(Dyq
ω(b))ᵀ].

adding this to the fact that E [Dpq
ω(b)] is identified gives us the Slutsky matrix.

Remark 7. Specifically, this means that symmetry is untestable from the first two moments,

because there is always a symmetric demand model which rationalizes the first two moments.

Also,

E [S(b) | b] =
1

2
[DpM1(b) + (DpM1(b))ᵀ +DyM2(b)]

However, we can test for negative semi-definiteness of the population, this gives us the

following lemma.

Lemma 3. Consider a sequence with the first two moments, {M1(b),M2(b)}. If this is

rationalizable

P(b) = DpM1(b) +
1

2
DyM2(b)

must be NSD.

Proof. This follows because the average Slutsky matrix we identified above must by NSD

and P(b) + P(b)ᵀ = S(b). Which means for the slutsky matrix to be NSD this must be

too.

Higher moments Much like in the two-goods case, we have very similar restrictions for

higher moments. The difference is that the monomial translation for any moment is now a

tensor form.

Theorem 6. For any n > 0 the following n+ 1 tensor form is negative semidefinite.

n−1DpMn + (n+ 1)−1DyMn+1

Notice that the form is n + 1 because differentiating a k form with respect to price

increases the order of the form.
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Remark 8 (magnitude independence). Notice that the decomposition does not depend

on the exact magnitude of the variance but only its rate of change. This independence leads

to 2 fundamental properties.

1. If there is any additively separable error in observations of demand data that we use to

compute the variance, there is no effect on the restrictions. This observation provides

a potential reason for using these restrictions even if micro-level data is available.

2. None of the results in this paper depends on “positivity” or the constraints that arise

from the variance being close to zero and Chebyshev type tail inequalities.

Remark 9 (openness). Because our tests are simply tests of negative semidefinitess and

not of symmetry, any small perturbation of a finite and rationalizable moment sequence is

itself finite and rationalizable. This is in stark contrast to symmetry.

6.3 Statistical constraints

[TBA]

7 Estimation

[TBA]

8 Empirical application

[TBA]

9 Concluding remarks

We introduce a novel methodology to compute and study the welfare changes which are

caused by changes in price. In order to do this, we introduce the moments of cross-sectional

demand as useful estimands to conduct counterfactual exercises in applied welfare analysis.

Furthermore, we demonstrate that these moments can also be used to test rationality of

aggregate data. In specific it can be used to confirm if individuals obey Slutsky symmetry.
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Appendix
“Individual Heterogeneity and the Distribution of Welfare”

A Regularity conditions

Demand qω needs to be infinitely differentiable in b for all b ∈ P × Y . This is ensured by

the following condition.

Assumption A.1. Individuals’ preferences are continuous, strictly convex, and locally non-

satiated. The associated utility functions uω are infinitely differentiable everywhere.

The following condition ensures that the dominated convergence theorem holds. This

allows us to interchange limits and integrals.

Assumption A.2. There exists a function g such that for all b ∈ P × Y and n,m ∈ N it

holds that ‖vec(Dpn,ymqω(b))‖ ≤ g(ω) with
∫
g(ω)dF (ω) <∞.

Finally, we require that all moments exist.

Assumption A.3. For all n ∈ N, it holds that

E

[∣∣∣∣∣
(

n⊗
k=1

qω(b)

)∣∣∣∣∣
]
<∞.

B Mean demand and the income effect

We first give a brief account of the disappearance of restrictions that apply to individual

demand on aggregation. It is well known from Slutsky (1915) that a demand function arises

from utility maximization if and only if it satisfies negative semi-definiteness and symmetry

of the substitution matrix.

However, these restrictions do not survive when there is a population of individuals. To

demonstrate this, we describe a theorem from Geanakoplos and Polemarchakis (1980) about

testable restrictions “at a point”.

Theorem 7. Let the analyst observe an individual demand x(p,I) and the Jacobian of x, call

it J(p,I) at one price income pair (p,I), this Jacobian and demand is rationalizable if and

1



only if there exists a vector v ∈ Rl and a matrix K ∈ Rn2
such that.

J = K − vxᵀ

and

1. K(p, I) is symmetric and negative semidefinite.

2. K(p, I) has rank (l-1) and pK = Kp = 0

Refer to the subspace of vectors orthogonal to x(p, I) as [x(p, I)]⊥, And the Jacobian of x as

Dpx(p, I)

The above theorem can be restated by as can be restated as follows

∀V ∈ [x(p, I)]⊥, V ᵀDpx(p, I)V ≤ 0

and

∀V ∈ [x(p, I), p]⊥, V ᵀDpx(p, I)V < 0

The problem is that when we sum the demands of individuals, the individual demands

need not be co-linear. Thus, the subspaces where the Jacobian is negative semi-definite

are different. Given enough individuals, the intersection of these subspaces may be empty.

Formally,
n⋂
i=n

[qω(p, I)]⊥ = φ

This problem causes the structure rationality places on individual demand to break down

when aggregated.

In this vein, the following result was first demonstrated by Sonnenschein (1973), and then

generalized by Diewert (1977) and Mantel (1975).

Theorem 8. Let X̂(p, I) be any function that satisfies Walras’ law and homogeneity. At

a point (p, I) it “looks like” a mean demand function, meaning, there exist l individual,

rationalizable demand functions (x1(p, I)...xl(p, I)), such that:-

1. 1
n

∑
x(p, I) = X̂(p, I)

2. 1
n

∑
Dpq

ω(p) = DpX̂(p, I)

This theorem encapsulates the spirit of what we referred to in our intro as SMD theory. It

shows that an analyst observing market demand ”at a point” can never falsify the hypothesis

of utility maximization. This problem occurs mainly because of the misbehaviour of ”income

effects,” as all observable restrictions are placed on the substitution matrix. Andreu (1983)

2



then showed that abstracting from non-negativity considerations allows one to extend the

same result to finite price demand data.

We state one final result from Chiappori and Ekeland (1999a) which significantly gen-

eralizes this theorem to a small open set around a point; however, this requires that the

observed mean demand to be analytic.

Theorem 9. Consider some open set U ∈ Rl
+ ×R and an analytic mapping X̂ : U → Rl

+

which satisfies Walras’ law and homogeneity. For all (p, I)inU there exist n rationalizable

individual demand function (x1, ...xn) such that:-∑
qω(p, I) = X̂(p, I)

for all p In some convex neighbourhood V of p

This last theorem ends our short review of the main negative results in the specific market

demand case we consider. We now state our main results and show how the (sample) variance

rids us of the income effect problem.

B.1 Results for a finite population

Claim. Suppose there are finitely many people {1, ...n} and demand functions {x1, ...xn}
Let µ(p, I) = 1

n

∑n
i=1 xn(p, I) and

σ2(p, I) = 1
n

∑n
i=1 xn(p, I)xᵀn(p, I)− µ(p, I)µ(p, I)ᵀ. The following relationship holds

1

n

n∑
i=1

Dph(p, u) =
1

2

[{
Dpµ+

∂µ

∂I
µᵀ

}
+

{
Dpµ+

∂µ

∂I
µᵀ

}ᵀ]
+

1

2

∂σ2

∂I

This claim shows the simplest version of our results because the left hand side matrix

can be tested for negative semi definiteness and rank.
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