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Abstract

The length of patents is a key policy tool for innovation and long-run growth, but causal
empirical evidence on its effects is scarce. This paper empirically exploits an anticipated
policy change that generated quasi-experimental variation in US patent length across tech-
nical fields. A difference-in-difference analysis identifies two empirical facts. First, news of
a future patent term extension causes a drop of R&D and innovation until policy implemen-
tation. Second, the drop continues even after implementation of the new, longer, term. I
provide direct empirical evidence that the latter effect is driven by a technology disclosure
externality. The drop in innovation at news induces a lower disclosure of novel knowledge
through patents, which hinders subsequent ability of other innovators to lean from recent ad-
vances when they research ideas for new projects in the same field. Once controlling for the
externality, the direct effect of longer patent length on innovation is positive, and the short-
run elasticity of innovation to patent length is around 3. Theoretically, the paper proposes
a semi-endogenous growth model in which i) research and development activity is split in
two distinct steps, and ii) research productivity increases with more frequent disclosure of
new knowledge through patents. Thanks to the novel R&D structure, the model can repli-
cate the empirical facts. A structural estimation implies a long-run elasticity of US innovation
to patent length of +0.35. Normatively, a 28-years patent length—–longer than the 20-years
status quo—–wouldmaximizewelfare in the absence of policy anticipation. However, due to
disclosure externalities, anticipation would lower the benefits of the 28-years term, as output
would decline in the short run, as seen in data.
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1 Introduction
What is the effect of patent length on innovation and welfare? Historically, this question has
attracted a lot of attention from economists and industry, and now a new debate has arisen
regarding patents for Covid vaccines (see, e.g., Gross and Sampat (2021)). This centrality
originates from the fact that patents and their length are a critical policy tool for promoting
innovation and long-run productivity growth. Therefore, it is surprising that in all devel-
oped countries the patent term is set according to international standards or a simple rule
of thumb, rather than being based on empirical economic and welfare considerations.1 Part
of the reason is that economic research has so far provided no clear answers regarding the
optimal patent length and its effects.

The primary welfare trade-off has been clear since Nordhaus (1967): A longer patent
length increases welfare by inducing more innovation and higher productivity, but it im-
poses a larger deadweight loss on consumers because monopolistic distortions last longer.
Nevertheless, models of optimal patent length suggest policies that range from zero (Boldrin
and Levine (2013)) to infinity (Gilbert and Shapiro (1990)). However, quantitative evalua-
tion of the previous trade-off in the data is difficult: Empirical evidence on the effect of patent
length on innovation, R&D, and welfare is limited, mainly due to the scarcity of variation in
this specific policy tool over time and across countries (Budish, Roin and Williams (2016)).
More general evidence regarding the strength of patent rights is wider but also inconsistent.
Most papers find that patents have a positive impact on innovation (e.g., Budish, Roin and
Williams (2015), Moscona (2021)), but Galasso and Schankerman (2015) show that patent
protection may even actually harm technical advancement in specific sectors, by blocking
cumulative innovations.

This paper studies the positive and normative implications of patent length by combin-
ing causal empirical evidence with a new quantitative model. Empirically, it causally esti-
mates the dynamic impact of an anticipated patent term change on innovation, R&D effort,
and welfare, and documents a technology disclosure externality based on the pace of exist-
ing projects’ development to subsequent research productivity. The paper proceeds to de-
velop and estimate a structuralmodel of semi-endogenous growthwith novel characteristics,
which builds on the empirical facts and offers new theoretical insights. Finally, this paper is
the first, to the best of my knowledge, to quantitatively evaluate the welfare trade-offs that
originate from a change in patent length using a structural model that is tightly linked to the

1For example, the patent term in theUSwas introduced in 1790 and set to 14 years after the grant date, in line
with English law. In turn, the English termwas based on the expected training period of two sets of apprentices,
as reported by Nordhaus (1969), and not on any welfare considerations. In 1861, the US patent term was
changed to 17 years, and Nordhaus (1969) reports that this change was the result of a political compromise.
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data.
The empirical analysis relies on a dynamic difference-in-difference (DiD) specification

that exploits the quasi-experimental variation of effective patent length across technical fields
(4-digit IPC classes).2 This variation originates from a policy–the Agreement on Trade Related
Aspects of Intellectual Property Rights (henceforth TRIPs), which is a chapter of the Uruguay
Round Agreements of the General Agreement on Tariffs and Trade (henceforth GATT)–that
changed the term of a US patent from 17 years after the grant date to 20 years after the
application date, and thus caused it to conform to other jurisdictions. The identification re-
lies on the fact that patents classified in different technical fields are examined by different
units within the US Patent Office (USPTO), and these units differ in terms of congestion and
the technical difficulty of examination. As a result, the average pending period–the time
from application to grant–varied markedly across fields before the policy. Because the TRIPs
shifted the starting date of the patent term from grant to application and because patent-
related monopoly is enforceable only starting from the date of the grant, the interaction of
the term change with heterogeneity in the average pending period generated considerable
variation in effective protection time across fields. Several analyses support the exogeneity
of the preexisting heterogeneity: It is unrelated to preexisting heterogeneous trends in in-
novation across fields, does not endogenously respond to the policy, and is orthogonal to
other TRIPs-related changes in the US innovation environment. Therefore, policy-induced
variation in patent length allowsme to causally estimate the impact of effective patent length
on R&D effort and innovation as measured by patents, citation-weighted patents, and patent
value.

Anticipation is the other crucial aspect of the policy change. The lawwas formally passed
in December 1994 and became fully effective in June 1995, but subsection 2.1 discusses at
length–based on official documents, research papers, and newspaper articles–the fact that
the US business community had known the content of the policy change since at least 1992,
which I take to be the policy “news” date. Therefore, the empirical analysis relies on two
shocks: A “news” shock at the end of 1992 and an implementation shock in June 1995.

My analysis highlights two key empirical facts. First, news of a future patent length in-
crease induces a reduction of R&D and innovation before implementation of the new, longer
term. Second, R&Dand innovation continue to be negatively affected by the policy, even after
implementation of the longer patent term. The data provide suggestive evidence that the lat-
ter negative effect is temporary. The paper proceeds to empirically investigate the economic
mechanisms that drive the DiD estimates.

2Data sources for the main analysis are PATSTAT, the NBER Patent Database, and Kogan et al. (2017).
The firm-level analysis also relies on COMPUSTAT and the sectoral analysis on the NBER CES Manufacturing
Database.
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The data support the argument that a dynamic technological spillover drives the post-
implementation fall in innovation in technological fields that are subject to a patent term
increase. Because innovators build on recent technologies to produce new ones, the drop in
innovation upon news of a future patent term increase–the first fact–implies a lower ability to
subsequently generate new projects that are technologically related to or inspired by recent
advances in the same field.

Several empirical analyses corroborate this interpretation. First, the observed drop in in-
novation before implementation generates a stronger negative impact onpost-implementation
innovation in fields in which the degree of new patents’ technological dependence on previ-
ous patents in the same field is higher. I measure technological dependence using patents’
backward citations.3 Second, I document that fields that experience a fall in innovation be-
fore implementation–as a consequence of the news of a future patent term increase–reduce
the intensity with which they rely on previous technologies from the same field. The latter
effect is observed to occur with a delay of approximately 4 years from the negative reaction
of innovation to the policy news. I relate this delay to lags in knowledge diffusion based on
the fact that patents are published only after being granted–which requires 2 years from ap-
plication, on average–and to research gestation lags on new projects, which are documented
by Pakes and Schankerman (1986) to be around 2 years. Because completed projects and
patent documents carry greater and more detailed informational content than undeveloped
ideas, ongoing projects’ slower pace of development decelerates the diffusion of technical
knowledge to other innovators, which reduces their ability to produce new technologically
related ideas. Also, I show that this effect mainly occurs between firms rather than within
firms, whichmotivates interpretation of the effect as a spillover.4 The estimates allow to infer
the elasticity of cumulative future innovation to current innovation shocks, which is 0.997.

I also investigate other structural forces that may explain the negative relationship be-
tween patent length and post-implementation innovation outcomes. The effect does not seem
to be driven by i) an adjustment of patenting strategy–e.g., a defensive breakup of patent ap-
plications in fields losing protection–or ii) a fall in competition in fields gaining protection
as a result of discouraging new entrants, lower competitive pressure on incumbents, or the
blocking effect induced by the stronger patent rights available for current innovators.

Next, I turn to interpretation of the first empirical fact. Innovation and R&D fall upon
3The preferred measure of within-field technological dependence is the share of patents classified in a spe-

cific field that have at least one backward citation by the patent applicant to another patent classified in the
same technical field.

4I also document that the intensity of direct citations from post-implementation innovations to pre-
implementation innovations in the same technical field decreases in fields experiencing a positive patent term
change. Finally, I use COMPUSTAT firm-level data to show that firms that are ex ante technologically close to
other firms whose R&D effort falls due to the policy news invest less in R&D after policy implementation.
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news of a future patent term increase. Economically, news of a future longer term implies
that a patent application filed before implementation of the new regime provides relatively
shorter protection than a patent application filed afterward. This opens the door to two op-
posing interpretations of the empirical fact. First, innovators like a longer patent length,
and therefore they reduce their innovative effort upon hearing the news in order to finish
projects and file applications after implementation of the change, when they can profit from
the longer term. Second, innovators may reduce innovation upon hearing the news because
they anticipate that a longer patent term will have a harmful effect on innovation after im-
plementation. Previous literature links the potential negative effect of patent protection on
innovation to i) new innovators’ lower ability to compete away incumbents, whosemonopoly
is protected by stronger patent rights, or ii) to lower effort by incumbents, who face weaker
competitive pressure. However, I find that the policy does not impact measures of competi-
tion, and the average quality of incumbents’ patents does not suggest their use for defensive
purposes. Hence, while I cannot definitively rule out this narrative, I do not find empirical
support for it.

Therefore, I focus on the first interpretation: Innovators slow the development of their
existing projects at the news because they want to obtain longer protection after implemen-
tation of the longer term. Assuming that completing ongoing projects rapidly is costly, in
normal times innovators set the optimal pace of development by trading-off the benefits of
gaining monopolistic profits sooner against the higher costs of being fast. The news of a fu-
ture patent term extension increases the benefits of being relatively slower: Innovators save
on costs and may file a patent application under the new, more favorable, regime. After the
policy implementation, the policy-induced incentive to be slower on development ends, but
we expect that the longer patent length affects the incentives to generate new projects. The
latter effect of the policy is difficult to isolate from the reduced-form DiD estimates, because
the technology disclosure spillover depresses innovation in fields that gain protection after
the policy implementation.

To empirically test this channel, I revisit the main DiD analysis and control for the im-
pact of the technological spillover, which is proxied by average flow of patents in the same
field in the previous four years. The first empirical fact is unaffected: The news of a future
patent term extension decreases patenting before the policy implementation. While the ex-
ternality has no effect during the pre-implementation phase, it becomes the main driver of
innovation in the post-implementation period. The policy-induced drop in patenting in a
given field between the news and the policy implementation generates a sizable reduction
of patenting in the same field after implementation. Once the effect of the spillover is con-
trolled for, the estimated coefficients quarter-specific direct effect of a change in patent length
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becomes positive after implementation. This confirms that the externality can fully account
for the reduced-form negative relationship between patent length and innovation after im-
plementation. Moreover, the estimate post-implementation effects imply that the short-run
elasticity of patenting to patent length is 3.

Overall, the paper’s empirical evidence highlights the crucial role of anticipation and tech-
nological externalities to determine the response of innovation to changes in patent length.
Moreover, interpretation of the results stresses the importance of separately considering the
roles of existing projects’ development and research for new projects in the innovation pro-
cess. The latter responds to long-run incentives to produce new ideas, while the former
captures short-run intertemporal incentives to transform ideas into products. This theoreti-
cal distinction is crucial–together with anticipation and technology disclosure externalities–
to correctly predict the dynamic response of innovation to the policy quasi-experiment ob-
served in the data. Consistently, I show that standard models of R&D-based endogenous
growth, where research and development are implicitly collapsed in a single activity, would
not replicate the causal empirical evidence of the first part of the paper.

Therefore, I propose a new structural model to quantify the normative trade-offs away
from the status quo, and to estimate key elasticities such as the elasticity of long-run inno-
vation to patent length. I start from the variety-expansion semi-endogenous growth model
of Jones (1995), adapted to allow finite patent length along the lines of Lin and Shampine
(2018), and I formalize a new structure for the innovation process. The first novelty is that
research and development are explicitly modeled as distinct activities.5 Research is compet-
itive and produces new ideas. An idea is abstract, and it can be privately stored by the firm
that generates it. Subsequently, firms invest in development–i.e., in turning the stock of ideas
into actual products with specific characteristics and detailed technological content. If firms
are successful in the development process, they obtain a patent that grants the rights of ex-
clusive economic exploitation of the new product for the finite patent length of T periods.
Because abstract ideas cannot be patented, innovators can obtain patents only after develop-
ment activity has ended. The second novelty is that the productivity of research activity is a
(positive) function of the average pace of development in the economy–i.e., of how rapidly
abstract ideas become products and generate detailed patent documents from which other
innovators can learn. This introduces an externality from the average pace of development
to subsequent research productivity, and it formalizes the technology disclosure spillover
documented in the data.

Thanks to the new structure of R&D, the model can replicate the empirical facts. First,
5The mathematical structure is analogous to Comin and Gertler (2006), but its interpretation is different,

which I show to be crucial to replicate the empirical facts.
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upon news of a future patent term increase, firms slow their development of existing ideas
into patented products–i.e., intermediate capital varieties. In normal times, firms trade-off
the convex costs of the pace of development against the desire tomore quickly obtain a patent
and the relatedmonopolistic profits. News of a future patent lengthening increases the value
of an existing project, because it discounts the higher value of a future patent. However, the
news only mildly affects the value of a current patent, because the longer patent term is not
yet in effect. Since the benefits of obtaining the patent sooner decrease but cost convexity is
unaffected, the optimal pace of development falls until implementation. Second, after policy
implementation, the technology disclosure externality translates the slower pace of develop-
ment at the news into lower subsequent research productivity, with a delay related to knowl-
edge diffusion and the development lags documented in the data. This temporarily hinders
research investment and causes the observed temporary drop in innovation, thus matching
the second empirical fact. However, research productivity gradually recovers, because after
implementation of the policy the pace of development returns to its pre-news level. In the
long run, innovation and total R&D effort increase: A longer patent length leads to higher
patent and project values. The latter increases research effort and promotes the creation of
ideas for new varieties.

I estimate the structural parameters of the model using generalized method of moments
to match the causally identified evidence on innovation and R&D effort. Themodel’s param-
eters imply a mild convexity of development intensity costs but severely decreasing returns
to research investment. The structural model also allowsme to estimate that a 1% permanent
increase in patent length increases long-run innovation flow by 0.35%.

Finally, I use the estimated model to quantitatively evaluate the normative trade-offs and
the output consequences of patent term changes. The first trade-off is analogous to Nord-
haus (1967) and relates to the steady state. At the current policy, long-run productivity gains
from a longer patent term largely outweigh the welfare cost of larger monopoly distortions.
Therefore, a patent length much longer than the current status quo of 20 years would induce
higher output and consumption in the long run. However, the second trade-off arises from
the transitional dynamics generated by an unanticipated implementation of a new patent
length. Productivity gains from a longer patent length require upfront R&D investment,
which must be financed by reducing consumption in the short run. This happens because
technological improvements are slow to achieve, and the presence of development lags drives
this mechanism. The short-run consumption loss renders a longer patent length less desir-
able than its value from a steady-state perspective: I estimate that a patent term of 28 years
would maximize the time-zero utility of the representative agent in the absence of policy
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anticipation.6 Unanticipated implementation of the new term would increase consumption
and output by 0.5% and 1.6% of the status quo levels, respectively.7 Lastly, I consider what
the effect of implementation of the 28-year patent term would be in the presence of antic-
ipation. As documented in the empirical part of the paper, the combined action of policy
anticipation, intertemporal development incentives, and powerful spillovers imply that the
anticipated implementation of the longer term generates perverse negative effects on output
and innovation in the short-run. Consistently, I find that all output gains would be dissi-
pated with an anticipation of 5 months, and that with a 1-year anticipation the economy
would suffer an output loss of 1%.

Structure of the paper After relating these findings to the literature, the remainder of the
paper is organized as follows. Section 2 illustrates the policy, the identification strategy, and
the data. Section 3 shows the main empirical facts. Section 4 empirically investigates the
economic mechanisms driving the results and identifies the technology disclosure external-
ity. Section 5 presents the model, and Section 6 describes its structural estimation. Section
7 quantifies the normative trade-offs and studies the welfare impact of changes in patent
length under different settings. Section 8 concludes.8

1.1 Connection to the literature
The scarcity of empirical evidence on the effect of patent length on innovation and R&D is
likely due to the lack of variation in policies. The most recent empirical paper investigating
this issue is Budish, Roin and Williams (2015), which documents that in the pharmaceuti-
cal sector R&D is disproportionately directed towards treatments with shorter clinical trials,
which imply a longer effective protection time. However, the paper cannot disentangle the
relative importance of the policy variable, i.e. the finite patent term, vs. firms’ preference
for projects in which the return from investment is quicker. Other papers examine more
comprehensive measures of patent protection strength (Lerner (2009), Moser (2005), Moser
and Voena (2012), Sakakibara and Branstetter (2001), Schankerman and Schuett (2017),
Moscona (2021)), but not patent length specifically. This paper instead uses one source of
variation due to a major policy change and exploits the heterogeneity in its impact across
fields.

6The baseline estimate is 28 years, but this figure falls to 23 if the model includes the possibility that patents
would block subsequent innovations with some probability. Both figures would be longer than the current 20
years status quo.

7Sectoral data on productivity (total factor productivity, henceforth TFP) and prices confirm the quantifi-
cation of welfare trade-offs implied by the model. As in the model, the implied static pass-through of TFP
gains into higher consumer welfare is high at around 0.83. In addition, I find that consistent with the model,
productivity and welfare gains are slow to achieve.

8Appendix A andDdescribe the data, Appendix B and E report additional empirical results, andAppendix
C and F include further theoretical results.
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Abrams (2009) is the paper closest to my empirical analysis. It uses the same quasi-
experimental variation in patent length to examine its effects on innovation outcomes. How-
ever, the two papers differ in terms of the assumed timing of the policy and in terms of
econometric specification, thus coming to divergent results. Abrams (2009) i) assumes that
the policy was unanticipated until its formal signing in December 1994, ii) employs a two-
periods DiD specification that compares innovation outcomes across fields in a narrow win-
dow of data (6, 12, or 24 months) before and after the implementation shock of June 1995,
and iii) includes in the specification a field-specific linear trend to remove heterogeneous
long-run innovation patterns independent from the policy. On the contrary, this paper pro-
vides documental evidence that the content of the policy was known by the business sector
before the formal implementation of the policy and it examines the impact of both news and
implementation shocks. Considering potential anticipation is crucial: If innovation reacts
to the news, the level of innovation just before implementation–taken as the baseline of the
DiD–would be itself affected by the policy change. Hence, a two-periods DiD specification
comparing outcomes just before and after implementation would give confounded estimates
of the impact of the patent term change, because it could not separately isolate the news ef-
fect. Section 3 shows that this is the case. Therefore, I take as a reference level for the DiD
exercise the field-specific level of innovation before the policy news, and I employ a multi-
period DiD specification that allows to capture quarter-specific effects of the treatment on
the outcome variable (in deviations from the pre-news baseline level). The rich specification
allows to formally document the absence of correlation between the treatment and heteroge-
neous trends in innovation across fields (pre-trends) before the policy news.9 In addition, it
allows to flexibly and separately capture the effect of the news shock and of the implemen-
tation shock on innovation. Finally, relative to Abrams (2009), this paper also explores the
impact of patent length on R&D, and it identifies a new spillover in the data. Theoretically,
it develops a structural semi-endogenous growth model with novel features, which is used
to investigate the normative implications of patent length.

The model extends Jones (1995) and it models finite patent length along the lines of Lin
and Shampine (2018). However, it radically changes the key characteristics of the endoge-
nous R&D block, distinctly modelling research and development activities and embedding a
new spillover from the latter to the former. The 2-stages structure of the innovation process is
mathematically similar to Comin and Gertler (2006), but the interpretation of the two stages

9The formal analysis of pre-trends highlights that the estimation of the regression in deviations from a
field-specific linear trend fitted on a narrow window of data–as in Abrams (2009)–violates the parallel trends
assumption underlying the DiD exercise. Appendix B.1 provides detailed evidence on how the setting used in
the present paper is less prone to obtaining confounded estimates, and it shows how the results of the two pa-
pers can be reconciled once Abrams (2009)’s specification is modified to satisfy the parallel trends assumption.
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is different. I discuss in section 5 that this difference is crucial for rationalizing the empiri-
cal evidence. In addition, differently from the several theoretical papers that try to examine
the normative implications of patent length (Nordhaus (1967), Gilbert and Shapiro (1990),
Klemperer (1990), Futagamia and Iwaisako (2007)), this paper tightly links the model to
causally-identified empirical evidence. This allows to credibly estimate the key structural
parameters of the model and to conduct normative analysis.

Finally, the paper contributes to the large empirical and theoretical literature on inno-
vation related spillovers, which include: Knowledge accumulation spillovers, at the core
of Romer (1990), and recently re-examined by Bloom et al. (2020) and Aghion and Jar-
avel (2015); spillovers from basic to applied research (Akcigit, Hanley and Serrano-Velarde
(2020)); geographic spillovers (Moretti (2020), Lychagin et al. (2016)); externalities at the
inventor level (Bell et al. (2019), Akcigit et al. (2020)); and spillovers in the technological
space (Bloom, Schankerman and Van Reenen (2013), Moretti, Steinwender and Van Reenen
(2019)). This paper documents and models a novel externality channel from development
intensity to subsequent research productivity.

2 Description of policy variation and data
This section describes the key terminology used in the paper, the sources of policy variation
employed for identification, and the sources of data.

The application date is the day in which an applicant files an application for a patent at the
US Patent Office (USPTO). The grant date is the day in which the USPTO issues the patent,
by publishing a document that grants to the applicant(s) the rights of exclusive economic
exploitation of the invention. The pending period is the time elapsing between the application
date and the grant date. By statutory patent term, I mean the time between the first day in
which the legal patent term formally starts to elapse and the last day of legal protection. By
effective patent term or effective protection time, I mean the time between the first and the last
day in which the patent owner can in practice enforce its monopoly power on the invention.

2.1 The TRIPs and its news
The estimation of the impact of effective patent length on innovation and R&D exploits a
change in the US patent term from 17 years after the grant date to 20 years after the ap-
plication date. The adjustment was motivated by the adoption in the US system of the The
Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPs), the intellectual prop-
erty chapter of the Uruguay Round of negotiations of the GATT, spanning from 1986 to 1994.
Among other things, the TRIPs implied for the US patent system the adoption of the stan-
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dard patent length already in place in virtually any other developed country.10 The formal
ratification occurred through the Uruguay Round Agreements Act (URAA) of December 8,
1994 and the new regime became fully effective on June 8, 1995.

Previous literature (Abrams (2009)) assumes that the policy change was fully unantici-
pated and it motivates this assumption by arguing that the adoption of the Uruguay Round
agreements remaineduncertain until theURAAwas signed, as documented by several news-
paper articles. However, several sources and official documents provide evidence that the
precise terms of the future patent term change were known long before the formal adoption
of the URAA. First, the US business sector was directly involved in the negotiation process
since the start of the Uruguay Round, in 1986. Morgese (2009) and Matthews (2002) report
that theUSAdvisory Committee on Trade Policy andNegotiations (ACTPN) includedmem-
bers of the business sector such as the CEOs of IBM and Pfizer, and crucially contributed to
shape the position of the US delegation within the TRIPs group. Second, the adjustment of
the US patent term was explicitly mentioned for the first time at the end of 1991, in a final
draft for the whole Uruguay Round circulated by the GATT Director-General.11 In addition,
Montalvo (1996) examines the steps that finally led to the patent term change included in
the TRIPs and reports that "the first step towards this revolutionary change to domestic patent law
occurred in August 1992, when the Advisory Committee on Patent Law Reform issued a report to the
Secretary of Commerce recommending adoption of a twenty-year term beginning from the filing date
of the first complete United States application".12 The cited report was jointly signed by a num-
ber of representatives of the business community and explicitly referred to the patent term
change mentioned by the 1991 draft.13 Finally, early academic articles on law journals exam-
ined several aspects of the TRIPs draft (Reichman (1993), Martin and Amster (1994), Doane
(1994)) and the potential patent term change was also mentioned by the press.14 Therefore,
the business and the legal communities surely knew about the content of the negotiations
and could anticipate the nature of the potential policy changes.

As to the uncertainty about the adoption of the policy, one of the main obstacles toward
10The Uruguay Round Agreements Act (URAA) introduced three main changes to US patent law. The

first was the patent term change examined in this paper. The second was a no discrimination rule for foreign
inventors. The third was the introduction of provisional applications. More generally, the TRIPs broadened the
patentable subject matter in developing countries and increased protection for developed countries innovators.
Subsection 3.1.3 discusses at length the potential confounding effects arising from these concomitant changes.

11GATT doc. MTN.TNC/W/FA, Draft Final Act Embodying the Results of the Uruguay Round of Multilateral Trade
Negotiations, 20/12/91

12The Implementation of the Uruguay Round Agreement on Trade-Related Aspects of Intellectual Property - the TRIPs
Agreement: Hearings on S.2368 and H.R. 4894 before the Subcomm. on Patents, Copyrights and Trademarks of the Senate
Judiciary Comm. and the Subcomm. on Intellectual Property and Judicial Administration of the House Judiciary Comm.,
103rd Cong., 2d Sess.

13Representatives of IBM, 3M, Procter&Gamble, Motorola, Garret&Dunner, among the others.
14Panel Proposes Patent Changes, New York Times, Late Edition (East Coast); New York, N.Y. 15 Sep 1992.
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the positive conclusion of the negotiations was an unsettled dispute between the US and
European countries on agricultural trade. However, most of the disagreement was resolved
in November 1992, in a deal informally known as the Blair House Accord, which paved the
way for the signing of the final agreement on April 15, 1994.15

Overall, this narrative evidence suggests that the terms of the policy change were known
before theURAA(December 8, 1994), even thoughuncertainty surrounded its final adoption
until it was signed. This implies that the TRIPs potentially induced two distinct shocks: A
news shock and an implementation shock. Ignoring the news shock–i.e., assuming no policy
anticipation and restricting the effect of the news to be null–can confound the difference-in-
difference (DiD) estimates of the impact of policy implementation. Indeed, if the news has
an impact, the pre-implementation level of innovation used as a reference baseline for the
DiD exercise is itself endogenous to the policy.16 In the paper, I employ a multi-period DiD
specification that i) takes the level of innovation just before the news as the reference baseline
for the DiD, and that ii) estimates the quarter-specific effect of the policy. This allows in-
novation to potentially respond to information available before the URAA was signed, and
distinguishes the impact of news from the effect of implementation. This is the most con-
servative econometric choice. If innovation does not react to news until the formal vote of
the Congress, the multi-period specification would simply estimate a null effect before the
URAA. Otherwise, the impact of the news shock would be reflected in the quarterly DiD
estimates. Finally, I take as a reference date for policy news November 1992, the date of the
Blair House Accord.17

2.2 Variation in patent length across technical fields
Hereafter, a technical field or technological field is defined as one of the 621 4-digit International
Patent Classification (IPC) subclasses in my sample.18 The identification of the impact of
changes in patent length on innovation outcomes exploits two sources of variation in the
data: i) Cross-sectional variation of the average pending period by technical field, and ii)
policy-induced time variation in the statutory patent term. As to the first source of variation,

15This is reported by Morgese (2009) and at https://en.wikipedia.org/wiki/Uruguay_Round, where it
reads: "The round was supposed to end in December 1990, but the US and EU disagreed on how to reform agricultural
trade and decided to extend the talks. Finally, In November 1992, the US and EU settled most of their differences in a deal
known informally as "the Blair House accord", and on 15 April 1994, the deal was signed [...]"

16Appendix B.1 shows that this is the case in Abrams (2009) and that a sample extension would mitigate the
concerns.

17All the results are unaffected by an additional anticipation of one or two quarters.
18For example, the 4-digit IPC "A23D" is "Edible Oils or Fats, e.g. Margarines Shortenings, Cooking Oils". It

is included in the 3-digit IPC "A23", "Food or Foodstuffs; Their Treatment, not covered by other classes" and in
the 1-digit IPC "A", "Human Necessities". It further includes two 8-digit IPCs: "A23D 7/00", "Edible oil or fat
compositions containing an aqueous phase, e.g. margarines", and "A23D 9/00", "Other edible oils or fats, e.g.
shortenings, cooking oils".
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it partly originates from the fact that patents classified in different fields are examined by
different technical units, which differ in terms of congestion–due to, e.g., staffing issues or
intensity of foreign filings–and the difficulty of technical examination.19 The second source
of variation originates from the fact that the URAA changed the statutory patent term from
17 to 20 years andmoved the reference for determining patent expiration from the grant date
to the application date.

Because applicants can fully enforce their monopoly over the invention only after the
grant date, the interaction of the legal change in the statutory term–from 17 years after grant
to 20 years after application–and of technical field-level heterogeneity in the average pending
period implied a policy-induced change in average effective protection time that varied across
technical fields.20 Fields with an average pending period shorter than 3 years obtained an
average increase in effective patent length, and the increasewas longer the shorter the average
pendency duration. Figure 1 shows the distribution of the change in effective protection
time, the treatment variable, across technical fields before the policy news. Most of the fields
experienced an expected average increase in protection but heterogeneity was considerable,
and a few fields faced an expected reduction.

Figure 2 further illustrates with an example how the policy was changing effective patent
length. The top panel represents how effective protection time varied in a technical field
where the average pending period was longer than 3 years before the policy change. The pre-
implementation average effective protection time was equal to the statutory term of 17 years
from the grant date, represented by the blue pre arrow. After the policy implementation,
however, the average effective protection time covered the time between the grant date and
the end of the statutory term of 20 years from application, i.e., the red post arrow in Figure 2
top panel. Because the average pending period was longer than 3 years–and assuming that
it did not respond to the policy, which I show to be the case in subsection 3.1–the effective
patent term was shorter after the implementation of the policy than before. Therefore, the
TRIPs induced an expected average patent length reduction in these fields. The bottompanel
of Figure 2 shows that the situation is opposite for technical fieldswhere the average pending

19One may be concerned with the endogeneity of the pending period to innovation outcomes. Indeed,
Lemus and Marshall (2018) argue that the pending period is partly endogenous, because applicants can also
influence it by strategically choosing to delay or accelerate their replies to the inquiries of the patent office.
However, Table A.4 of Appendix A.2 shows that the average pending period by field is not correlated with the
growth rate of patenting before the policy news, but it is correlatedwith proxies of congestion, such as the share
of foreign second filings, and of examination difficulty, i.e. the average pending period at the European Patent
Office. In addition, subsections 3.1.2 and 3.1.3 present several analyses showing that the cross-field variation
exploited for identification is exogenous, allowing a causal interpretation of the results.

20Patents grant an exclusive monopoly power on an invention and legal protections against its violations
from the grant date or from the publication of the application. Under current regulation, publication occurs
after 18 months from the application date, but before 2000 patents were published only at grant. Therefore,
monopoly power was enforceable only from the grant date onward.
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Figure 1: Distribution of the expected change in effective protection time
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The histogram shows the distribution of the treatment variable (average change in effective protection time)
across technical fiels (4-digit IPC classes). The treatment is computed, by technical field, subtracting the average
pending time of patent applications first filed at USPTO and obtaining the grant between January 1st 1990 and
May 31st, 1992 to 365×3 days, the statutory change. Details on the construction are in subsection 2.3.1.

period was shorter than 3 years before the policy and where, therefore, the TRIPs induced a
longer effective protection time.

2.3 Data
Empirical evidence is provided at three levels of analysis: At the technical field level, at the
firm level, and at the NAICS 6-digit industry level.21 I mostly rely on PATSTAT for the tech-
nical field-level analysis, on the NBER Patent database and COMPUSTAT for the firm-level
evidence, and on the NBER CES manufacturing database for the sectoral results. The next
two subsections describe the construction of the continuous treatment variable by technical
field and at the firm-level. Appendix A reports summary statistics and Appendix D contains
the construction details for all the other variables.

2.3.1 Expected change in protection time - Technical field-level
The continuous treatment variable by technical field is the policy-induced change in effective
protection time faced by applicants filing a patent classified in a specific technological field.
As explained in subsection 2.2, it can be measured as the difference, in number of days,
between 3 years–the policy-induced statutory change–and the average pending period by
field. The latter is measured as the average number of days between the grant date and the
application date across all patents classified in a specific field.22 To compute such measure,
I use patent data from PATSTAT and focus on granted patents i) whose earliest application

21All the details and all the results of the industry-level analysis are not reported in the paper, but can be
found in Appendix B.5

22If a patent covers multiple technical fields (4-digit IPCs), I use that patent for computing the average
pending period for all those fields.
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Figure 2: The change in patent length induced by the TRIPs

The graph shows the policy-related change in the expected effective patent length in a technical field losing
protection (top panel) and in another gaining protection (bottompanel). Monopoly is enforceable only starting
from the grant date. The key difference between the fields is the average pending period, i.e. the average time
between the application and the grant. In the losing field, this is longer than 3 years. Therefore, the old-regime
effective protection time of 17 years after the grant (blue pre arrow) exceeds the effective protection time of
20 years from application date (new statutory term) minus the pending period (>3 years) (red post arrow),
effective with the new regime after June 8, 1995. In the field gaining, the opposite occurs, because the average
pending period is shorter than 3 years.

is filed at the USPTO and ii) whose grant date is between January 1st, 1990 and May 31st,
1992. The first restriction is imposed to capture the examination time of a novel US patent
and not of those inventions already examined at the USPTO or elsewhere (and applying for
legal protection in theUS aswell).23 The second restriction is imposed to estimate the average
pending period in awindow of time unaffected by the policy change and recent enough to be
representative of applicants’ expectations. Subsection 3.1.3 performs a number of checks to
show that the treatment is unlikely to be endogenous, and that it has good predictive power
on the effective change in protection time experienced by applicants after the policy change.24

2.3.2 Expected change in protection time - Firm-level
The expected treatment at the firm level is a firm-specific weighted average of the technical
field-level treatments. Weights are built using the NBER-COMPUSTATmatched dataset and
computed, for each firm, as the share of patents granted in a given field over the period 1971-
1991. Theseweights should represent the average ex-ante exposure of firms to technical fields
that are differently impacted by the policy change. I stop at 1991 to exclude the year of the
policy news.

23Results, not shown, are robust when including applications at the USPTO where the application date is
subsequent to the priority date of the patent.

24First, I show that the effective pending period experienced by applicants after the policy change does not
react to the treatment variable built using the ex-ante pending period. Second, I perform an analysis where the
treatment variable employed in the main DiD regression is built using the realized, ex-post pending period.
In this case, the latter regressor is instrumented by the treatment computed using the ex-ante average pending
period, described in this subsection. The instrument is strong and all the results are identical to the OLS specifi-
cation that employs the treatment based on the ex-ante pending period. Lastly, I check that the raw correlation
between the ex-ante and the ex-post average pending period is generally above 0.6.

14



3 Estimating the effect of changes in patent length
This section shows the estimation results of the impact of effective patent length on inno-
vation and R&D effort. Subsection 3.1 presents evidence by technical field, subsection 3.2
focuses on firm-level evidence, and subsection 3.3 summarizes the key findings.

3.1 Analysis by technical field
3.1.1 Specification of the DiD regressions
The main analysis employs a quarterly panel dataset at the technical field-level and the base-
line difference-in-difference (DiD) regression is

Yj,t = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)Tj + εj,t (1)

where Yj,t is the technical field-j and quarter-t dependent variable, αj are technical field fixed
effects, 1(t=k) are quarter-specific dummy variables, with the γk coefficients capturing the ef-
fect of any quarter-specific factor common to all technical fields and unrelated to treatment.
Tj is the technical field-specific treatment variable, i.e. the expected average change in effec-
tive protection time described in subsection 2.3.1, and εj,t is the error term. The βk’s are the
coefficients of interest, which capture the quarter-specific marginal effect of one more day of
expected protection time on Yj,t. The quarter-specific dummy referring to the quarter before
the policy news, i.e. 1992Q3, is always omitted. Therefore, the βk’s should be interpreted as
deviations of the outcome from its 1992Q3 baseline level.

Specifically, βk k ≤ 1992Q2 capture the correlation of the treatment variable with the out-
come of interest before the treatment should have any effects. The latter set of coefficients
being close to zero provides evidence that the treatment is not related to unobserved, preex-
isting heterogeneous trends of the outcome across technological fields, supporting the exo-
geneity assumption. In the absence of pre-trends, any candidate confounders must take the
form of an unobserved shock contemporaneous to treatment. Subsection 3.1.3 performs several
additional analyses suggesting the absence of these confounders, and supporting a causal
interpretation of the results. The post-news, pre-implementation coefficients βk 1992Q4 ≤
k ≤ 1995Q2 capture the marginal impact of a future 1-day increase in patent length Tj = 1.
Finally, βk k ≥ 1995Q2 capture the reduced form impact of the implementation of a 1-day
anticipated increase in Tj .

15



3.1.2 Results
The first outcome of interest is Pj,t, i.e. the number of patents whose application is filed in
quarter-t and technical field-j and that are subsequently granted.25 Importantly, patents are
counted in the quarter they are applied for and not in the quarter they are granted, thus re-
moving any effect of pending period adjustments or examination backlogs on the time series
of the outcome variable by field. The preferred specification features a dependent variable
in levels and not, e.g., in natural logarithms. First, because the implications of endogenous
growth theory suggest that patent length should affect the level of aggregate innovation or
productivity and not its growth rate.26 Second, because patenting by technical field in the later
80’s and early 90’s seems to bemore consistent with arithmetic growth thanwith exponential
growth.27 However, Appendix B.2.13 shows that results are robust to i) transformations of
the outcome variable, including logs; ii) sample restrictions aimed at reducing skewedness
of the patenting variable across fields; and iii) estimation of a negative binomial model for
count data.

Figure 3 plots the βk coefficients - and their 95% confidence bands, with standard errors
clustered by technical field. The first result is that the βk k ≤ 1992Q2 coefficients are very
close to zero and, therefore, the parallel trends assumption seems to be satisfied. As a result,
endogeneity problems caused by preexisting unobservables correlated with the treatment
seem to be ruled out.28 I postpone to subsection 3.1.3 additional investigations of potential
confounders contemporaneous to the treatment.

The second result is that the coefficients estimated between the news date 1992Q4 and the
25I use granted patents and not all patent applications because granted patents are thought to capture actual

innovation better than applications, and because data on all US applications are available only after year 2000.
Therefore, data on pending or abandoned patent applications filed during the sample period may be partial
or unavailable. In addition, while previous literature found a negative correlation between pending time and
quality or grant probability at the patent-level, I find amildly positive correlation between the average pending
period and the average patent quality–as measured by the average forward citations per patent–at the technical
field level.

26An extreme implication of assuming that patent length affects the growth rate of innovation rather than
the level would be that a country with a patent termmarginally longer than the one of another all-else identical
country would grow at a persistently higher rate. As a consequence, in the limit, the relative productivity
advantage of the country with marginally longer patent length would be infinite.

27This observation comes from fitting a quadratic time trend with field fixed effects on quarterly patenting
data by field, in levels and in natural logarithms. The coefficient of the linear term is positive and statistically
significant in both cases, but the coefficient of the quadratic term is negative and statistically different from 0
only in the log case.

28One of the endogeneity concerns could be caused by the interplay of the pending period and the point of
the life-cycle of different fields at the moment of the policy. For example, fields where innovation was grow-
ing very fast ex-ante may have had both a longer average pending period–because of congestion–and a slower
growth rate ex-post–because of a natural decay unrelated to the policy. This would result in lower innovation
in fields with shorter treatment, without such lower innovation being caused by the treatment. Crucially, how-
ever, this would also be reflected by pre-trends coefficients being different from 0, and capturing the ex-ante
correlation between the treatment and heterogeneous innovation pace.
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implementation date 1995Q2 are negative: The news of a future patent term increase induces
a fall in innovation. Themagnitude of the estimated effects is small right after news, but grad-
ually grows as implementation gets closer. Consider a 1-month (30-days) increase of patent
length. One year after news and two years before implementation, the policy change is re-
lated to -0.5 quarterly patents per technical field, which is approximately -1.5% of the baseline
level of 1992Q3. The effect becomes much bigger two years after news and approximately
one year before implementation: The same policy generates -1.4 quarterly patents per tech-
nical field, i.e. -4.4% of the baseline. Excluding the pre-implementation quarters 1995Q1 and
1995Q2, the average impact during 1992Q4-1994Q4 is -0.93 quarterly patents per technical
field, which is approximately -3% of the baseline level in 1992Q3. The effects in 1995Q1 and
1995Q2 are excluded from the computation of the average effect because the policy–officially
signed in December 1994–allowed applicants to choose whichever policy regime was most
favorable until the final implementation of the new regime in June 1995. Therefore, there is
strong evidence of bunching there. A 30-days longer future protection decreased patenting
by around 25% in 1995Q2, which is 4 times bigger than the effect estimated for 1995Q1 and
8 times bigger than the average effect.29

The third result is that the βk’s estimates remain negative even after policy implemen-
tation. Therefore, the reduced-form effect of the implementation of a longer patent length
on innovation is negative. The magnitude of the effect is also strong. On average, the im-
plementation of a 1-month (30-days) patent term change generates a drop of -3.7 quarterly
patents by technical field, which is around 12% of the baseline. I will refer to this effect as
post-implementation persistence.30

Quality-adjusted measures Results are qualitatively similar using alternative measures of
innovation that capture the scientific value of patents–weighting them by the number of for-
ward citations receivedwithin 5 years from grant–or the private economic value of patents.31

Figure 4 reports the βk coefficients of specification (1) taking as the dependent variable
citations-weighted patents. The dynamics of the effects are analogous, but the magnitude
is stronger. Excluding the pre-implementation quarters 1995Q1 and 1995Q2, a 1-month (30-
days) future increase in patent length generates an average fall of 10.5 citations-weighted
patents per quarter and field, i.e., around 6.6% of the 1992Q3 baseline. After the implemen-

29Alternative specifications reported in Appendix B.2.13–e.g., a negative binomial model for count data or
a linear specification with dependent variable in natural logarithms–deliver similar results.

30In an heterogeneity analysis–whose results are not reported–I discretize Tj by quartile and I run a DiD
regression comparing neighbor quartiles. The estimated coefficients are similar across quartiles but for the
case of the third and the fourth, where the estimates are closer to 0.

31I build a quarterly measure of private economic value of patents by technical field aggregating the
individual-patent estimates by Kogan et al. (2017). The results for this outcome are reported in Appendix
B.2.1. Alternatively, I present results for claims-weighted patents in Appendix B.2.2
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Figure 3: Marginal effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of specification (1) having as dependent variable quarter-t andfield-j number
of granted patents. Standard errors are clustered by technical field and 95% confidence bands are plotted. The
first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

tation of the policy, the average quarterly drop amounts to 75 citations-weighted patents, i.e.,
47% of the baseline.

R&D effort Next, I investigate the impact of the policy change on R&D effort, which is
relevant to support the argument that the policy-driven reaction of patenting outcomes orig-
inates from actual changes in innovative activity rather than frommere changes in patenting
strategies. A direct measure of R&D expenditure at the technical field-level is not available,
so I proxy R&D by the number of inventors that are listed on at least one patent filed in
a given quarter and technical field, avoiding multiple counting of inventors listed on more
than one patent.32 Indeed, an important item in firms’ R&D expenditure is thewage bill of in-
ventors: While I cannot observe the wages, I can count the number of people having actively
worked on a patent of a given field and quarter, which should give a sense of how the research
workforce employed by firms evolves over time. This approach is also employed by other
papers in the innovation literature. Appendix B.2.3 (Figure B.7) reports the results of the
dynamic DiD specification (1) having as a dependent variable the number of unique inven-
tors. The response is qualitatively similar to the one observed for innovation variables and,
quantitatively, the pre-implementation βk’s estimates imply that a 30-days future increase
of the patent term generates an average drop of 5% of inventors per-quarter and technical
field. Given the potential limitations of the field-specific measure of R&D effort, subsection
3.2 also provides firm-level evidence that a direct measure of R&D expenditure, taken from

32To build this inventors count, I use the STAN harmonized inventor’s identifiers from the EPOWorldwide
Bibliographic Database reported in PATSTAT.
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Figure 4: Marginal effect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coefficients of specification (1) having as dependent variable quarter-t and field-j 5-
years citations-weighted patents. Standard errors are clustered by technical field and 95% confidence bands
are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).

COMPUSTAT, moves consistently with previous evidence.

Post-implementationpersistence The economicmechanismsunderlying the reduced-from
DiD results remain an open point, which section 4 will empirically investigate. However, as
a preliminary step, I try to investigate whether the negative post-implementation impact of
the policy gradually weakens over time. I estimate (1) on a sample extended to 2010Q4,
and I find that the β̂k coefficients tend to revert back to 0 as the policy implementation gets
farther in time.33 Given the constraints posed by the policy and by the econometric frame-
work, it is difficult to draw definitive conclusions on this aspect.34 However, I interpret this
as suggestive evidence that the effect is transitory and that it features mean-reversion toward
zero.
3.1.3 Addressing endogeneity concerns
The inclusion of field fixed effects in specification (1) should capture all field-specific time-
invariant unobservable confounders. In addition, the absence of pre-trends in the data sug-
gests that the treatment is unrelated to omitted factors that generate ex-ante differential
growth paths across fields, potentially driving differential innovation ex-post. The pend-
ing period and the treatment are correlated with the level of innovation across fields, but not
with the ex-ante trend.35 Therefore, potential confounders must be time-varying factors that

33Results are reported in Appendix B.2.5. The linear specification of Appendix E.1.5 with the outcome vari-
able in natural logs further supports this hypothesis.

34The farther awaydata go from the policy implementation, themore likely it is that someunobserved factors
correlated with the treatment undermine a causal interpretation of the results.

35Heterogeneity in the pending period across technical fields mainly originates from the different degree of
complexity of inventions and, hence, of the examination process. Also, patents in different fields are examined
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correlate with the treatment and that are contemporaneous to the policy change.36

The first concern is that applicants’ incentives to respond more quickly to the patent of-
fice during the examination process may have changed endogenously with the policy.37 This
would generate an innovation response correlated with this reaction rather than with the
treatment itself. To address this issue, I first run specification (1) having as the dependent
variable the average pending period in quarter-t and field-j. Appendix B.2.4 (Figure B.8)
reports the results. I find that: i) The treatment variable is not related to a different trend of
the average pending period before the policy change and that ii) the pending period does
not show substantial level- or trend-discontinuities around the treatment date. Therefore, ap-
plicants’ incentives to be more responsive to the patent office’s inquiries do not seem to be
differentially correlated with the ex-ante pending period across fields. As a second check,
Appendix B.2.7 also shows the results of an IV specification where the treatment variable
is the policy-induced change in protection time actually experienced by applicants in every
quarter and field. Such treatment variable is computed along the lines of subsection 2.3.1
but replacing the ex-ante pending period with the actual quarter- and field-specific pend-
ing period observed in the data. The latter is instrumented with the Tj of specification (1),
interacted with quarterly dummy variables. The use of the actual pending period should im-
prove the representativeness and the accuracy of the main regressor, and the use of variation
induced by the ex-ante treatment should mitigate endogeneity concerns. Results are almost
identical to subsection 3.1.2, and the first-stage regressions confirm that the ex-ante treatment
is a statistically strong predictor of the ex-post effective change in protection time.38,39

A second relevant concern comes from the fact that the TRIPs, beyond homogenizing
the US patent term to the rest of the world, strengthened intellectual property protection in
many developing countries, favoring the access of American and European innovators. If
the benefits from these changes were heterogeneous across fields and somehow related to
the ex-ante pending period by field, then the evidence of subsection 3.1.2 would fail to cap-

by different technical units at the USPTO, which may face staffing issues that are persistent over time. Table
A.4 shows the correlation of the average pending period with several field-specific variables, finding support
for heterogeneity being related to congestion and technical examination difficulty.

36Appendix B.2.10 also shows that results are identical when including in specification (1) the interactions
of quarter- and 3-digit IPC class-specific fixed effects, which remove any confounders specific to the broader
3-digit field and quarter. This further reduces the set of potential confounders to care about.

37Lemus andMarshall (2018) find that in the pharmaceutical sector applicants’ responsiveness increased in
response to the TRIPs, making the pending period at least in part endogenous. Appendix B.2.14 shows that
the results of subsection 3.1.2 are fully consistent when excluding technical fields related to the pharmaceutical
and biotechnologies.

38The raw correlation between Tj and its ex-post quarterly realization is generally between 0.5 and 0.6.
39Appendix B.2.8 shows that the response of innovation outcomes is stronger in magnitude in fields where

the policy-induced treatment could be inferred ex-ante with more precision, i.e., where the standard deviation
of the ex-ante average pending period is smaller. This supports that the observed response is generated by the
treatment of interest and not by other factors.
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ture a causal effect of patent term on innovation.40 To address this concern, I exploit the fact
that European countries had similar benefits as the US from the TRIPs-implied strengthen-
ing of IP worldwide, and that the only crucial difference for patent policy between the two
regions was the US patent term adjustment, which remained unchanged in Europe.41 De-
spite the fact that the US patent term change may have affected those European firms also
patenting in the US, aggregate innovation in Europe should be relatively less sensitive to US
policies than US innovation. In practice, I build the same quarterly measures of patenting
by technical field for patents filed at the European Patent Office, and I run a triple-difference
regression that implicitly removes from the US patenting variable the technical field-specific
baseline effect observed in Europe. This triple-difference specification absorbs all technical
field-specific time-varying unobserved factors that are common to the US and Europe and
that happen independently from the change in the patent term. Figure 5 plots the triple dif-
ference coefficients and shows that the findings emerging from the baseline specification are
largely unaffected. The coefficients represent the marginal effect of one more day of patent
protection on US field-specific quarterly patenting relative to EPO, both in deviations from
the respective 1992Q3 baseline level.42

Motivated by both the potential manipulation of the pending period by applicants and
the potential presence of additional unobserved shocks contemporaneous to the policy event,
I finally implement an IV analysis where the US treatment variable is instrumented by i) the
technical field-specific share of second filings by foreign applicants before the news, and ii)
the technical field-specific pending period at the European Patent Office. The first exter-
nal instrument should capture pre-existing congestion of the examination offices unrelated

40Kyle andMcGahan (2012) argue that US pharmaceutical firms increased their innovation investment after
the TRIPs, mostly due to their ability to enforce patents in newdevelopingmarkets. Appendix B.2.14 shows that
the results of subsection 3.1.2 are fully consistent when excluding technical fields related to the pharmaceutical
and biotechnologies.

41The URAA introduced three main changes to US patent law. The first was the patent term change ex-
amined in this paper. In European countries the patent term was already 20 years since the application date.
The second change was a no discrimination rule for foreign inventors, which held for European countries too.
The third change was the introduction of provisional applications, i.e. preliminary applications that could be
filed at the USPTO before filing the actual application for examination. This normative change did not have
a counterpart at the European Patent Office. If this induced a substitution from normal applications to pro-
visional ones and this shift were correlated with the treatment variable, triple-diff results would potentially
be bias too. Unfortunately, I cannot directly check this correlation in the data, because PATSTAT does not al-
low to assign technical fields classification to provisional applications. However, a specific constraint posed on
provisional applications rules out any major concerns, because the latter type of applications must be turned
into an actual application within 12 months, otherwise they are considered definitely abandoned. Therefore,
should the above-mentioned substitution happen, it would simply induce a slight re-timing of the observed
post-implementation persistence rather than an actual bias to the results.

42Appendix B.2.10 also shows that results are identical when including in specification (1) the interactions
of quarter- and 3-digit IPC class-specific fixed effects. The latter should remove the impact of any effects of the
TRIPs that is unrelated to the patent term change and that is specific to the broader 3-digit field and quarter.
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Figure 5: Marginal effect of 1 more day of protection on granted patents - Triple difference
specification
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The plot shows the βk coefficients of specification Pr,j,t = ψr + αj + κ1(r=US)Tj +
∑

k γk1(t=k) +∑
k ηk1(t=k)1(r=US) +

∑
k θk1(t=k)Tj +

∑
k βk1(t=k)Tj1(r=US) + εj,t, k = 1985Q1, ..., 2000Q4. The dependent

variable is region-r’s, quarter-t, and field-j number of granted patents. Tj is the field-specific treatment de-
scribed in Section 2.3.1, and 1(r=US) is a dummy variable taking value 1 if the region considered is the US.
Standard errors are clustered by technical field. 95% confidence bands are plotted. The first vertical line refers
to the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before the
policy implementation (1995Q2).

to manipulation by domestic applicants. The second external instrument should proxy the
technical difficulty of examination of patents in a specific class.43 Results are reported in
Appendix B.2.9 and are fully consistent with those of subsection 3.1.2.

3.1.4 Additional evidence by technical field
A first additional concern is that the observed reaction of patenting may come from a change
in the patenting strategy of innovators rather than being an actual innovation response. For
example, in fields losing protection time, applicants may try to break down patents into
smaller ones or file patents with lower quality. However, this does not seem to be the case.
Subsection 3.1.2 already showed that quality-adjusted patent measures such as citations-
weighted patents respond in a way that is similar to the simple patent count. This is true
also for claims-weighted patents or their economic value (Appendices B.2.2 and B.2.1). Ap-
pendices E.1.1, E.1.2, and E.1.3 also show that the average number of citations per patent
mildly increases in fields where the policy generates more innovation, and that the number
of claims per patent, their average originality, and generality do not change in response to
the policy.

43Both instruments are computed using patents granted before the policy news in 1992Q4, in order to mini-
mize potential endogeneity concerns. The strategy is valid as long as time-varying, field-specific unobservable
confounders–correlated with both US patenting and the ex-ante US pending period for first filings–are orthog-
onal to pending period at the EPO and congestion at the USPTO generated by foreign filings.
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A second additional concern is that the estimated effects are not specifically driven by the
maximum patent term change but by other factors related to the average pending period. To
address this concern, I try to show that the response of innovation is stronger in fields that are
expected to bemore sensitive to themaximumpatent term. In fact, technological fields show
substantial heterogeneity in the rate of payment of patent maintenance fees, which are due
at 3.5, 7.5 and 11.5 years after the grant to keep patent protection active. Fields with a higher
share of patents for which the last fee is paid–thus extending protection to the maximum
term–are expected to be more sensitive to the maximum patent term changes. Therefore,
I run a triple-difference specification where the treatment variable Tj is interacted with the
technical field-specific percentage of patents for which the last maintenance fee, at 11.5 years,
is paid. If the estimated negative effects from the simple DiD are stronger in magnitude in
more sensitive fields, the triple-difference coefficient should be negative. Appendix B.2.11
shows that this is the case, suggesting that the response of innovation outcomes is precisely
related to the policy-induced patent term change. In addition, Appendix B.2.8 shows that
the magnitude of the response is stronger in fields where the inference on the average pend-
ing period by field could be more precise, i.e., where the within-field heterogeneity in the
pending period was smaller ex-ante.

Finally, I check that the effects are not driven by the specific timewindowwhen the policy
change is taking place. I carry out a placebo analysis using 1982Q4 rather than 1992Q4 as the
treatment date. In this case, the estimated policy effect is null.44

3.2 Firm-level evidence
This subsection studies the effect of the patent term change on firm-level patenting and a
direct measure R&D expenditure, using a sample of COMPUSTAT firms matched to patents
in the NBER Patent database. The specification of the firm-level regression is

ln(1 + Yi,t) = αi +
∑
j

η1,jsicj +
∑
j

2000∑
k=1987

η2,j,ksicj1(t=k) +
∑
age∈A

δage+

+ θln(1 + Si,t) +
2000∑

k=1987

γk1(t=k) +
2000∑

k=1987

βk1(t=k)Ti + εi,t

(2)

where Ti is the firm-level treatment variable described in subsection 2.3.2, αi are firmfixed
effects, sicj are 2-digit SIC industry fixed effects that take value 1 if firm i is active in SIC j and
0 otherwise, δage are firm-age fixed effects, Si,t are firm i’s sales in year t, and 1(t=k) are yearly
dummies. The 1991 dummy is omitted. The coefficients of interest are the βk, and standard
errors are clustered by 2-digit SIC industries. Specification (2) is run for several dependent

44Appendix B.2.12 shows the results
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variables. I report in the paper the results for R&Di,t, i.e. R&D expenditures of firm i in
year t (Figure 6).45 Appendix B.3.2 reports the results for granted patents (Figure B.26); the
number of citations-weighted granted patents (Figure B.27); and the private economic value
of patents (Figure B.28).

Firm-level evidence on innovation outcomes and direct R&D expenditure measures is
fully consistent with the patterns documented in subsection 3.1.2. On average, a 30-days
future increase of patent length decreases yearly patenting by 2.6% at the firm level before
implementation. This estimate is close to the field-level effect. After the implementation, the
impact of the same policy change implies a decrease of yearly firm-level patenting of 2.1%.
Appendix B.3.4 shows the results obtained by estimating a negative binomial model with
patent count as outcome variable. Evidence is fully consistent with the linear specification
(2).46 The findings are qualitatively similar when studying citations-weighted patents and
private economic value of patents.47 Figure 6 shows the effect on firms’ R&D expenditure.
The news of a future 30-days patent term increase implies an average reduction of yearly R&D
by 1.9% before implementation of the new policy. The effect remains negative but smaller in
size (-1.4%) after implementation.48 This confirms that the policy change generated an actual
response of R&D effort, consistent with the observed changes in innovation outcomes.

Specification (2) exploits cross-firms variation in expected patent protection, determined
by the interaction of firms’ ex-ante technological exposure with the field-specific average
patent term change. In a complementary analysis, I exploit variation of patent term across
technical fields within the firm. I build a yearly panel dataset where the cross-sectional unit
is a firm × technical field, which makes it possible to analyze how innovation activity is
reallocated within the firm, across technical fields experiencing heterogeneous patent term
changes. Controlling for the ex-ante firm’s technological position, I find that all innovation
outcomes respond to the policy in a way that is consistent with the evidence documented so
far.49

3.3 Key takeaways
To sum up, I have so far established two facts. First, news of a future patent term increase
induces a slowdown in innovation and R&D effort before policy implementation. Second, a

45R&D is the variable xrd in COMPUSTAT.
46The estimation of a negative binomial model is only possible for patents count, as the other firm-level

outcomes are continuous.
47Results available in Appendices B.3.2 and B.3.3.
48Themagnitudes are smaller than in the technical field analysis. The reason can be twofold. First, aggregate

innovation is affected by entry but firm-level results are just based on firms already innovating before 1991.
Second, firms’ income statement R&D better captures investment flows than patent-read R&D, which partly
reflects past effort.

49I refer to Appendix B.3.5 for all the details and the results of this analysis.
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Figure 6: Marginal effect of 1 more day of protection on firm-level R&D
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The plot shows the βk coefficients of regression (2) having as dependent variable ln(1+R&Di,t), whereR&Di,t

is year-t and firm-i R&D expenditure. Standard errors are clustered by 2-digit SIC industry. 95% confidence
bands are plotted. The first vertical line lies just before the news year (1992) and the second vertical line lies
just before the implementation year (1995).

negative reduced-form relationship between a positive patent term change and innovation
and R&D outcomes continues even after policy implementation. The data suggest that the
second negative effect gradually weakens over time.

4 Investigation of the economic mechanisms
This section empirically investigates themechanisms underlying the results. First, subsection
4.1 discusses several forces that may drive the post-implementation negative effect. Sub-
section 4.2 shows empirical evidence of the presence of a technology disclosure spillover
whereby the drop in innovation at news of a future patent term extension negatively impacts
subsequent innovative activity after policy implementation. Subsection 4.3 investigates al-
ternative candidate drivers. In subsection 4.4, I interpret the reaction of innovation and R&D
to the news shock, building on the results of subsections 4.2 and 4.3. Moreover 4.4 estimates
the elasticity of future innovation to current innovation shocks. Finally, subsection 4.5 pro-
vides a unified narrative for the empirical facts of section 3, highlighting the key role played
by policy anticipation and technological spillovers.

4.1 Post-implementation: Competing interpretations
I investigate several economic mechanisms that may rationalize the negative effect of patent
length on innovation observed after policy implementation. The data support that the main
driver of the observed relationship is a technology disclosure externality that directly links
the fall in innovation after policy implementation to the drop in innovative activity induced
by news of a future patent term extension. New inventions are often inspired by recent tech-
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nical advances and technologically rely on them. In fields where news of a future patent
term increase generates a drop in innovation, there is a lower flow of recent improvements
on which innovators can build to start new technologically related projects. If dependence
of new patents on past patents from the same field is sufficiently strong, this intertemporal
link may generate powerful negative effects on post-implementation innovation and explain
the negative reduced-form DiD estimates.

I also scrutinize other mechanisms. The first alternative is that the observed relation-
ship is driven by an adjustment of patenting strategies–e.g., a defensive breakup of patent
applications in fields losing protection–unrelated to real innovation outcomes. However,
the response of average patent quality to the policy does not support this hypothesis. The
second alternative is that a positive patent term change decreases innovation by worsening
the competitive environment. A patent lengthening could be a bad news for new innova-
tors, because longer patent rights provide incumbents with stronger protection from com-
petition and could even help anti-competitive strategies that aim at blocking entrants. Both
forces would discourage innovative effort by new entrants. In addition, they could induce
incumbents to innovate less due to lower competitive pressure and the opportunity to rely
on existing patents longer. However, I provide evidence that competition measures–such
as the entry intensity of new applicants or the concentration of patents among different in-
novators in a field–are unaffected by changes in patent length. In addition, movements in
the average quality of patents granted to incumbents–both in absolute terms and relative to
new applicants–do not support the anti-competitive use of patent rights to foreclose compe-
tition. Finally, incumbents do not seem to innovate less because they rely on existing patents
longer: The renewal rate of patents at differentmaintenance stages is unaffected by the policy
change. Therefore, competition does not seem to directly react to patent term changes, which
suggests that it is not the main driver of the post-implementation negative DiD estimates.

While other unexplored forces may also be at work, I document that the proposed tech-
nological spillover can fully account for the policy-driven drop in innovation after policy
implementation. Therefore, I take it as the privileged explanation of post-implementation
persistence. Subsection 4.2 details all the empirical analyses that document its action, and
subsection 4.3 shows the evidence on alternative channels.

4.2 Post-implementation: Evidence of an dynamic technological spillover
If the proposed technological spillover drives the policy-driven drop in innovation after pol-
icy implementation, the following testable hypotheses should hold in the data:

H1 If the post-implementation effect is driven by a technological spillover, its magnitude should be
stronger in technical fields in which within-field technological dependence is higher.
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H2 If the post-implementation effect is driven by a technological spillover, the degree of within-field
technological dependence should fall in fields in which innovation drops before implementation.

H3 If the post-implementation effect is driven by a technological spillover, post-implementation
R&D investment should be lower for firms more exposed to technological areas experiencing a slow-
down of R&D before implementation.

These hypotheses are tested and confirmed in the following subsections.

4.2.1 Testing H1 and H2: Backward citations by technical field
To testH1 andH2, I perform an analysis by technical field and use patent backward citations
to measure the strength of within-field technological dependence. I proxy the intensity with
which new technologies in a given technical field rely on previous technologies from the
same field by the share of patents filed in a given field that have at least one applicants’
backward citation to some patents classified in the same technical field.50,51 This within-field
backward citations intensity measure is computed for each field both at the quarterly level
and as an average across patents granted before the policy news. The latter is denoted by
Sj and, to test H1, it is interacted with the treatment Tj in the following triple difference
specification

Cj,t = αj + κSj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

ηk1(t=k)Sj

+

2000Q4∑
k=1985Q1

θk1(t=k)Tj +

2000Q4∑
k=1985Q1

βk1(t=k)TjSj + εj,t

(3)

where the dependent variable is citations-weighted patents.52 If H1 holds true, the βk’s
for the post-implementation period are expected to be negative, as the post-implementation
negative effect should be stronger in fields with a stronger reliance on previous technologies
from the same field. Figure 7 confirms that this is the case, supporting H1.

In addition, for H2 to hold, measures of technological dependence should directly re-
spond to the policy after its implementation: If policy-induced, post-implementation, inno-
vations are directly linked to pre-implementation patents, within-field backward citations

50The preferred backward citations intensity measure considers only backward citations originally made by
the applicant because the latter are thought to better represent genuine knowledge flows compared to other
backward citations added ex-post by examiners to comply with legal requirements. Results are similar using
all types of backward citations.

51As backward citations to prior art are a legal requirement, they may also reflect crowdedness of the tech-
nical field. Therefore, I focus on the share of patents backward citing prior art from the same field rather than
the number of backward citations, which should be more prone to reflect crowdedness. In addition, the het-
erogeneous size of fields is captured by the technical field fixed effects in the econometric specification.

52Appendix B.4.6 report analogous evidence for granted patents.
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Figure 7: Heterogeneity analysis for the same-field citation intensity - Citation-weighted
patents
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The plot shows the βk coefficients of specification (3), having as dependent variable the number of citations-
weighted patents filed in quarter-t and field-j. Clustered 95% confidence bands are plotted. The first vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).

and their intensity should reflect it. Figure 8 plots the estimated βk coefficients of specifica-
tion (1) having as the dependent variable the quarterly and technical field-specific share of
patents with at least one applicant-made backward citation to a patent from the same field.
The negative estimated coefficients in the post-implementation phase support H2 and pro-
vide suggestive evidence of the timing of the technology disclosure spillover, whose effect
takes action approximately 4 years after the initial of the policy news on innovation.

I interpret this delay as the combination of i) a knowledge diffusion lag and of ii) R&D
gestation lags. As to the first factor, most of the technical details of novel (patented) innova-
tions are visible only after the publication of the patent document that grants protection.53

Before 2000, patent documentswere published upon the grant, and the average time between
the creation of the innovation–proxied by the date of application for the patent– and the grant
date was on average 2 years. Starting from the publication date, other innovators can learn
about the details of recent technological advances andpotentially begin newprojects inspired
by those. R&D gestation lags precisely refer to the average time that innovators need to finish
a project, filing a patent application on the inventive output. Pakes and Schankerman (1986)
estimate research gestation lags to be 2 years on average. Therefore, 4 years coincides with
the time needed to new innovators to learn from recent technical advances and to produce
new innovations based on the latter.

Finally, in support of H2, I also find that the total number of applicant-made within-field
53As a legal requirement, patents must provide a detailed description of the technical characteristics of the

invention.
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Figure 8: Marginal effect of 1 more day of protection on the within-field backward cita-
tions intensity
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The plot shows the βk coefficients of specification (1) having as dependent variable the share of patents classi-
fied in field j and filed in quarter t that has at least one applicant-made backward citation to patents classified in
the same field j. Clustered 95% confidence bands are plotted. The first vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

backward citations moves consistently with Figure 8. I also provide evidence of direct tech-
nological links between post-implementation and pre-implementation patents in the same
field.54 Post-implementation patents show lower within-field backward citations rates to
patents filed before implementation exactly in those technical fields with a relative patent
protection gain–i.e., fields experiencing an innovation slowdown in the pre-implementation
period.

4.2.2 Does the technology link act within-firm or between-firms?
The evidence in favor of H1 and H2 suggests that the main driver of post-implementation
persistence is an intertemporal technological link among innovations in the same techno-
logical field. An open question is whether such link mainly occurs within the firm or be-
tween firms. In the former case, it should be interpreted as an internality, while in the latter
case it should be considered as a spillover. To distinguish between the two cases, I carry
out a decomposition of the aggregate change in innovation induced by the policy during
the post-implementation period 1996-1999. I isolate three components: The direct effect of
the implementation of the new patent term, the between-firms spillover, and the within-
firm internality. The strategy leverages on two ingredients.55 The first is the assumption
that, in the pre-implementation phase, the policy-driven technology disclosure channel is
muted for all the firms, which allows to isolate the policy-induced innovation shock. The

54Results for both analyses are reported in Appendix B.4.7 and Appendix B.4.8.
55I leave to Appendix B.4.9 all the details about the steps involved in these calculations.
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second ingredient is the fact that the within-firm component is necessarily muted for entrant
firms, i.e. innovation produced by entrant firms in the period in which they enter cannot
be driven by their own past innovations. I find that the between-firms component of the
decomposition accounts for more than 99% of the policy-induced change in innovation in
the post-implementation period. This component largely outweighs the contribution of the
within-firm internality, which is close to zero. Therefore, the decomposition exercise strongly
supports that post-implementation effects are driven by an externality across innovators.

4.2.3 Testing H3: R&D investment in the post-implementation period
Lastly, I perform a firm-level analysis to explore the validity of H3. The aim is to examine
whether firms that are ex-ante technologically close to other firms whose R&D expenditure
falls in 1992-1995 due to the policy, spend less on R&D in the 1995-1999 post-implementation
period. I make two key assumptions for this exercise: i) The spillover does not affect the pre-
implementation response of R&D, which is driven by the firm-level treatment only; ii) the
spillover affects firms’ R&D investmentwith a delay. Iwould find support forH3 if the lagged
spillovermeasure positively impacts firm-level R&D in the post-implementation period, con-
ditionally on the firm-level private treatment. The analysis proceeds in steps. The firm-level
sample is aggregated over the 4 periods 1986-1988, 1989-1991, 1992-1995, and 1995-1999, that
correspond to control (-2), pre-news (-1), news (0), and post-implementation (1) periods,
respectively. Under the first assumption, it is possible to adapt the difference-in-difference
specification (2) to estimate the effect of Ti on firm-level R&D in the pre-implementation peri-
ods (-2),(-1), and (0) only, disregarding the lagged spillover effect. The post-implementation
period (p = 1), when the spillover should be in action, is excluded from estimation. The
fitted values of the treatment-induced R&D for firm i in period p are computed as R̂i,p =

exp{ ̂ln(1 +R&Di,p)} − 1. In order to build a firm-specific measure of spillover, I follow the
literature and I compute, for every pair of firms (i, j), Jaffe (1986)’s measure of technological
distance, denoted by di,j .56 The externality measure for firm i in period p is

Ei,p =
∑
j ̸=i

di,jR&Dj,p

and it can be computed also using the fitted R&Dmeasure R̂i,p described above, in which
case it is denoted by Êi,p. Finally, it is possible to run the regression of interest, estimating
the period-specific effect of the lagged spillover measure and of the firm-specific treatment

56The formula for the technological distance measure is di,j =
fif

′
j√

(fif ′
i)(fjf

′
j)
, where fi is a vector that reports

the number of patents obtained by firm i in a given class over the period 1971-1991.
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on firm-level R&D spending. The specification is

˜R&Di,p = αi +
∑
j

η1,jsicj +
∑
j

1∑
k=−1

η2,j,ksicj1(p=k) +
∑
age∈A

δage+

+
1∑

k=0

γk1(p=k) +
1∑

k=0

βk1(p=k)Ti +
1∑

k=0

δk1(p=k)Ẽi,p−1 + ζẼi,p−1 + εi,p

(4)

where ˜R&Di,p = ln(1+R&Di,p) and Ẽi,p−1 = ln(1+Ei,p−1). Table 1 reports the results. The
first column shows the OLS estimates and the second column refers to the IV specification
where ln(1 + Ei,p−1) and its interactions are instrumented by the fitted value version of the
externality measure, i.e. ln(1 + Êi,p−1). The other columns report the estimates of the first
stage regressions of ln(1 + Ei,p−1) alone (column (5)), and interacted with the 1989-1991
and 1992-1995 dummies (columns (3) and (4), respectively). The F-statistic of the excluded
instruments exceeds 30 in all first-stage regressions. In column (2), the delayed spillover
variable is not statistically different from0 both in the baseline term andwhen interactedwith
the 1989-1991 period dummy, but is positive and statistically significantwhen interactedwith
the post-treatment period dummy. This confirms that the positive spillover contributes to
post-implementation effects and acts only after implementation. The firm-specific treatment
remains negative and economically sizable in the pre-implementation phase but drops to
zero in the post-implementation period. Overall this evidence supportsH3.

4.3 Evidence on other competing explanations
This subsection investigates additional structural forces that may act as the drivers of post-
implementation persistence. The first is manipulation of patenting strategies, and the second
is a deterioration of competition in the technological field, discouraging entrant innovators
and inducing incumbents to be lazier. However, neither seems to find support in the data.

4.3.1 Manipulation of patenting strategies and quality
A patent term change may produce a change in firms’ patenting strategies. For example, a
reduction of patent protection may induce a strategic breakup and staggered filing of lower-
quality patents on the same invention, with the aim of protecting the innovation for longer
than a single patent would do. This would artificially inflate the patent count in fields losing
protection without any change to actual innovation. However, Section 3 provides evidence
against this hypothesis. First, the average quality and the average value of patent do not
change in response to the policy. Second, measures of R&D investment react to the policy
consistently with aggregate innovation outcomes, confirming the real nature of the effect.
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Table 1: Firm-level evidence on the delayed investment spillover

(1) (2) (3) (4) (5)
OLS IV FS1 FS2 FS3

d92−95 × Firm Treat. -0.00057∗∗∗ -0.00040 -0.00327∗∗∗ 0.00032∗∗∗ -0.00024∗∗∗
(0.00018) (0.00029) (0.00061) (0.00009) (0.00004)

d96−99 × Firm Treat. -0.00034 0.00000 -0.00026∗∗∗ -0.00243∗∗∗ -0.00046∗∗∗
(0.00033) (0.00065) (0.00009) (0.00058) (0.00011)

d92−95 × R&D Ext.(t−1) 0.02197 0.02361
(0.01584) (0.01625)

d96−99 × R&D Ext.(t−1) 0.02657 0.03511∗
(0.02177) (0.01968)

R&D Ext.(t−1) 0.23727 0.75417
(0.18213) (0.82114)

d92−95 × ̂R&DExt.(t−1) 1.03960∗∗∗ -0.00431 0.00312
(0.02265) (0.00741) (0.00335)

d96−99 × ̂R&DExt.(t−1) -0.01582∗∗∗ 1.03829∗∗∗ -0.00863
(0.00498) (0.01942) (0.00855)

̂R&DExt.(t−1) -0.38329∗∗ 1.49015∗∗∗ 0.25297∗∗∗
(0.18539) (0.29041) (0.05465)

Firm F.E. Y Y Y Y Y
Period F.E. Y Y Y Y Y
Age F.E. Y Y Y Y Y
Industry×Period F.E. Y Y Y Y Y
Observations 5132 5132 5132 5132 5132

Column (1) reports the OLS estimates of the specification (4). Column (2) reports the results of IV estimation
of the same specification where the externality variable and its interaction terms are instrumented with the
externality measure computed using the fitted value from a regression of firm-level R&D on the firm-specific
change in protection based on the 1986-1988, 1989-1991, and 1992-1995 periods. Columns (3), (4), and (5)
report the first stage regressions coefficients. Statistical significance levels: ∗(p < 0.10),∗∗ (p < 0.05),∗∗∗ (p <
0.01)
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4.3.2 A longer patent length may worsen competition and harm new innovators
Competitive pressure is expected to influence the desirability of patent protection for innova-
tors and, in turn, patent length may affect innovation outcomes by changing the competitive
environment.57 Stronger patent rights provide incumbent firms with better protection from
the competition of new entrants and may help anti-competitive practices aimed at foreclos-
ing new innovators. Moreover, longer patents may also induce incumbents to innovate less:
With lower pressure from entrants, they may simply be able to economically exploit existing
patents for longer. Therefore, a patent lengthening may harm innovation both in the short
run and in the long run, because it reduces entrants’ and, potentially, incumbents’ incentives
to invest in R&D. I test these hypotheses empirically.

First, I test whether competition decreases due to an increase in patent length. Concentra-
tion of patents among different innovators and the entry rate of new applicants by technical
field proxy competition. I build these measures using PATSTAT. As a measure of concen-
tration by quarter and technical field, I use the Herfindahl-Hirschman Index based on the
quarterly flow of granted patents. As to entry, I determine, by technical field and quarter,
the percentage of patents granted to applicants that never filed a patent in the field before.
Disambiguation of applicants is performed using STAN harmonized applicant’s identifiers
from the EPOWorldwide Bibliographic Database available in PATSTAT.58 Finally, I run spec-
ification (1) having as dependent variables quarter- and field-specific measures of concen-
tration and entry. Entrants contribute to the post-implementation effect proportionally to
incumbents, so that the policy has no effect on the entry rate. Concentration, as measured by
the HHI, also does not endogenously respond to the policy. The estimated βk’s are close to
zero after both the policy news and implementation.59 This evidence does not speak in favor
of a deterioration of the competitive environment.60

Second, I show in Appendix B.4.5 that the average quality of patents filed by incumbent
innovators–as measured by the average number of forward citations per patent–does not
show major drops due to the implementation of a longer patent length. This is true in ab-
solute terms and even more evidently relative to the average quality of patents granted to
entrants. This evidence suggests that incumbents are not profiting from the longer term to

57In the extreme case of a firmwith a guaranteedmonopoly, the length of patent protectionwould notmatter
at all because there is no competitor that can imitate an innovation and erode profits.

58All the details on variables’ construction are reported in Appendix D
59Appendix B.4.3 and B.4.4 report the results.
60In Appendix B.4.1 and B.4.2, I also test whether the patent term change has a stronger impact in more

competitive fields. I run a triple-difference specification where the policy-induced change in patent length by
technical field is interacted with either the average concentration or the average entry rate in the field before
the policy news. I find support for the fact that patent length affects innovation by more in more concentrated
fields. However, I do not find any significantly stronger impact in fields where the entry rate is higher.
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foreclose competition.
Finally, I test whether a longer patent length increases the time for which innovators en-

dogenously decide to keep their patents active. As argued above, both incumbents and po-
tential entrants may have the incentive to reduce innovation. If the effect has equal strength
across the two groups, competition measures such as entry rate would be unaffected in equi-
librium. While it seems a rather special case, it cannot be ruled out a priori. Therefore, I turn
to the test of an alternative implication of lower competition: A worsened competitive envi-
ronment should induce less creative destruction from lower (potential) entry and, therefore,
a longer average life of existing innovations. I use specification (1) to test whether a longer
patent length increases the renewal rates of patents up the the maximum patent length or up
to 11.5 years from grant. As in the previous cases, I do not find support for this hypothesis
in the data.61

4.4 Pre-implementation: Competing interpretations and evidence
Previous subsections established that the negative post-implementation effect of patent length
on innovation is directly related to the drop of innovation and the R&D fall upon news of
a future patent term increase, i.e., the first empirical fact. Next, I turn to the interpretation
of the latter. Economically, news of a future lengthening implies that the duration of patent
protection obtainable by filing a patent application before implementation of the new policy
is relatively shorter than what will be obtainable under the new regime. This observation
opens the door to two opposing interpretations of the empirical fact.

First, innovators reduce the pace of innovation at news of a future patent term increase
because theywant to profit of the relatively longer protection available after implementation.
Indeed, if innovators prefer a longer patent length to a shorter one, they may want to reduce
the speed at which they complete existing projects, and file the related patent applications
after the implementation of the new regime.

Second, innovators reduce the pace of innovation at news of a future patent term increase
because they anticipate some negative effect of the policy after its implementation. As dis-
cussed in subsection 4.3.2, new innovators may dislike a longer patent length because they
may be discouraged or foreclosed by the stronger protection available to incumbents. At
the same time, incumbents may reduce innovation because, due to lower competitive pres-
sure, they can rely on existing patents for longer. However, subsection 4.3.2 showed that this
narrative does not seem to find support in the data. While the empirical analyses cannot
definitively rule out this interpretation, they suggest to look for alternative explanations.

Therefore, I turn to the first interpretation, and I provide suggestive evidence that sup-
ports it. I revisit the main DiD analysis in light of the findings of subsection 4.2, and I disen-

61Results are shown in Appendix E.1.4.
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Figure 9: Direct marginal effect of 1 more day of protection on granted patents
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Quarterly Dates

Original DiD Controlling for Externality

Baseline at (t−1): 31.184

The plot shows in black the βk coefficients of the augmentedDiD specification (5) and in gray the βk coefficients
of specification (1), having as dependent variable quarter-t and field-j number of granted patents. Standard
errors are clustered by technical field and 95% confidence bands are plotted. The first vertical line refers to
the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before the policy
implementation (1995Q2).

tangle the direct effect of the patent term change from the impact of the technology disclosure
externality. I run the specification

Pj,t = αj +
∑
k

γk1(t=k) +
∑
k

βk1(t=k)Tj +
∑
k

ψk1(t=k) P̄j,k−16:k−1︸ ︷︷ ︸
≡(1/16)

∑k−1
q=k−16 Pj,q

+εj,t (5)

which is a version of (1) enriched to control for the quarter-specific impact of P̄j,k−16:k−1,
which is defined as the average flow of patents in field j in the previous 16 quarters. This
term is meant to capture the effect of the technology disclosure externality through the flow
of recently granted patents. The chosen timing of 16 quarters, i.e., 4 years, is motivated by
the evidence of subsection 4.2.

The coefficients of interest βk capture in this case the direct effect of the news or imple-
mentation of a 1-day patent term increase, after controlling for the impact of the technology
disclosure externality. Figure 9 plots in black the βk of (5) and reports in gray the treatment
effects from the original DiD specification (1). There are two takeaways. First, the βk coef-
ficients remain negative between news and implementation of a positive change in patent
length, i.e., the direct effect of news of a future patent term is to depress innovation. This
confirms the first empirical fact of section 3. Second, the βk coefficient estimates of (5) turn
to positive after policy implementation. The action of the technology disclosure externality
fully accounts for relative drop in innovation after policy implementation—i.e., the second
empirical fact. Instead, the direct effect of implementing a longer patent length is positive on
innovation, which suggests that innovators indeed like longer patent protection. Quantita-
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tively, the average of the post-implementation coefficients imply that a one-month increase
in patent length increases innovation in the short run by 1.5% of the baseline 1992Q3 level.
This corresponds to an elasticity of patenting to patent length of 3.

Figures B.43 and B.44 in Appendix B.4.10 report the results of specification (5) having
as dependent variable citations-weighted patents and quarter- and field-specific measure
of R&D effort, respectively. All the results are fully consistent with those in Figure 9.62 In
addition, Appendix B.4.11 reports additional results from a version of (5) estimated on ag-
gregated sample sub-periods and exploiting an instrumental variable strategy that aims at
ruling out potential confounders included in the lagged externality term. Results are con-
sistent with Figure 9. Moreover, the coefficient estimate of the effect of the externality term
on patenting in the post-implementation period allows to infer that the elasticity of post-
implementation innovation to a 1% change in innovation in the “news” period is around 1.
This is a synthetic, reduced-formmeasure of the strength of the technology disclosure exter-
nality and it comparable to the 0.5 elasticity of innovation to spillovers in the technological
domain estimated by Bloom, Schankerman and Van Reenen (2013).63

4.5 Takeaways, interpretation, and key elasticity estimates
I interpret below the facts of section 3 in light of the evidence of subsections 4.2 and 4.4. While
other economic interpretations of the results are possible, I focus on the one that seems to be
most supported by the data.
First empirical fact At news of a future patent term increase, innovators reduce the pace
at which they invest to complete existing projects because they want to file a patent under
the new regime, which grants longer protection. The documented drop in R&D spending
shows that the decline of innovation is not driven by a pure re-timing of patent applications
but rather is generated by changes in actual innovation effort. Suppose that firms can decide
the pace at which they develop abstract ideas into finished products–i.e., run projects–and
that being faster becomes increasingly costly. In normal times, innovators would trade-off
the benefits of getting monopolistic profits sooner against the higher costs of a faster pace of
development. However, news of a future patent term extension makes a slower pace rela-
tively more desirable. Firms can reduce their costs and may be able to file a patent applica-
tion under the new regime, conditional on the future success of the project. Therefore, the
response to the news shock is driven by development investment on existing projects. After

62I also assess the relevance of potential cross-field technological externalities, but I find that the latter seem
to be negligible in the present context once controlling for within-field effects. Results are not reported, but are
available upon request.

63Appendix B.4.12 reports all the details about the derivation of the elasticity of post-implementation inno-
vation to a 1% innovation change in the pre-implementation period.
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policy implementation, the new patent length is set, the temporary incentives to slowdown
development terminate, and the previous trade-off returns to normal times.
Second empirical fact At implementation of the patent term extension, two counteracting
forces affect innovation and total R&D. On the one hand, a technological spillover depresses
the creation of new projects in fields where innovation has fallen due to policy news. On the
other hand, the empirical evidence suggests that the direct effect of longer patent length is
to promote more innovation, as it provides positive incentives to invest in new ideas. There-
fore, despite this positive direct effect of the policy variable, the reduced-form impact of the
shocks is crucially affected by anticipation and powerful technology disclosure externalities.
As to anticipation, innovation falls at news of a future longer patent length, consistently with
innovators seeking longer patent protection. As to technological spillovers, they translate the
initial drop into a protracted decline even after implementation of the longer term. The tim-
ing of the impact of the spillover and the characteristics of patent documents are suggestive
about the mechanisms through which the intertemporal link works. Indeed, patent docu-
ments convey to the public greater, better, and more precise information than undeveloped
ideas or ongoing innovation projects. In this respect, a slower pace of development of ideas
into products–and, therefore, into patent documents describing them–reduces the ability of
innovators to learn from recent technological advances and to generate new related research
ideas. Therefore, technology disclosure externalities and the research of ideas for new projects
are the key drivers of the second empirical fact.
Key elasticities Given the interpretation of the first empirical fact, the DiD estimates of the
pre-implementation period highlight a positive elasticity of innovation to patent term changes
available at a future point in time. The estimates of section 3 imply that the elasticity of
patenting to a 1% increase of patent length available in 2 years is 3.1. This figure increases to
9.1 considering a patent term increase available in just 1 year.64. In addition, the estimates of
Figure 9 suggest that the short-run elasticity of patenting to patent length is 3.65 Finally, ap-
pendix B.4.12 discussed that the elasticity of future innovation to current innovation shocks
is 0.997.

5 Model
The analysis of the positive and normative consequences of patent term changes that differ
from the observed quasi-experimental setting require a structural model. The latter also

64The elasticities are computed by using the quarterly estimates of subsection 3.1.2. First, I infer the effect
of a 1-day future increase in patent length on quarterly patenting, expressed in percentage deviation from the
average level of innovation in a technical field before the policy news. Second, I divide it by 1/(365×17), which
is 1-day expressed as a percentage of the status quo effective patent length of 17 years.

65I will use the structural model of section 5 to make more precise inference about the long-run elasticity of
innovation to patent length.
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allows me to shed light on aspects of the innovation process that cannot be directly captured
by the data, such as the elasticity of long-run innovation to patent length. Unfortunately,
while the evidence of Section 3 has an intuitive economic explanation, existing models of
R&D-based endogenous growthwould generate a counterfactual response of innovation and
R&D effort to the policy shocks.

Therefore, I build a structural model of innovation with novel features, which reflect the
description of the mechanisms of subsection 4.5. I start by discussing the performance of
existing models in subsection 5.1, and present the key novel ingredients of my framework. I
motivate the modelling choices and explain their consequences. Subsection 5.2 presents the
standard parts of the model. Firms employ labor and intermediate capital varieties to com-
petitively produce a final good. The expansion of the number of intermediate varieties drives
endogenous productivity growth, which occurs through R&D. Innovators use raw physical
capital to monopolistically produce patented varieties. The monopoly ends when the finite
patent T on the technology expires. Therefore, only a fraction of total varieties is monop-
olistic, and this affects the distortions in the model. Subsection 5.3 describes research and
development, which are formally distinct and constitute the novelties of the model. Firms
invest in research to generate new ideas. Subsequently, they turn ideas into new intermediate
capital varieties through development activity. Patents on novel varieties can be filed only
at the end of development. Subsections 5.4 and 5.5 define the competitive equilibrium and
describe the key mechanisms of the model, respectively. Appendix C.1 contains additional
details and derivations.

5.1 Performance of existing theories and new ingredients
In standard models of R&D-based endogenous growth, research and development consti-
tute a single activity. The output of R&D is new products and there is no separate role for
abstract ideas. Implicitly, innovators are successful if they both get a new idea through re-
search and develop the idea into a product within the same period. Otherwise the idea is lost
and the process re-starts from scratch next period. This is in clear contrast with the discus-
sion of subsection 4.5 on the separate role of existing projects’ development and research of
new ideas to explain the two empirical facts and, consistently, has important implications for
how in standardmodels innovation and R&D respond to an anticipated patent term increase
analogous to the one observed in the data. The left panel of Figure 10 shows the reaction of
innovation in the variety-expansion model of Jones (1995), adapted to feature finite patent
length.66 The figure compares the model-based response to the reaction implied by the em-

66This is the basic setup on which I nest the new ingredients of my model. Appendix F.1 outlines the full
description of Jones (1995), adapted to feature finite patent length. For the policy simulation, the parameters of
are set to the estimates of Section 6. However, the specific choice of the parameters does not affect the qualitative
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Figure 10: Policy in a model without new ingredients vs. empirical estimates

(a) R&D in a single stage (Jones (1995)) (b) R&D distinct, but no spillover

The plots show the response of innovation (patents) to a 100-days patent term increase anticipated by 2 years
and 8 months. The news shock occurs at time t = 0. The red dashed lines are the 95% confidence intervals
implied by the reduced-form estimates of Section 3. In the left panel, the black solid line shows the response of
Jones (1995) semi-endogenous growthmodel, adapted to features a finite patent length. Appendix F.1 provides
a full description. In the right panel, the black solid line shows the response of a model where research and
development are distinctly modelled, but there is no spillover from the latter to the former. This model is
equivalent to the one of Section 5, setting χ = 0. In both model-implies responses, the system is assumed to be
at the pre-policy change steady state at t = 0.

pirical estimates of section 3. In the model (black solid line), innovation increases mildly at
the news and fully adjusts to its new higher level only at implementation of the patent length
increase.67 This is in stark contrast with the sizable drop of innovation observed in the data
(red dashed lines).

According to the evidence-based narrative of subsection 4.5, the drop of innovation at
the news is driven by a slowdown of the pace of development of the stock of ideas into
patented products. The policy creates an incentive to keep the idea and to try to develop it
into a product–filing a patent application that protects the developed technology–once the
longer patent length will be in place. However, for this mechanism to work, ideas must
be formally distinct from products and must be storable. As argued above, this is not the
case in standard models: Research–that generates ideas–and development–that transforms
ideas into products–implicitly occur as a single activity. If not developed within the period,

implications of the analysis.
67The same would occur in Romer (1990)’s model. Instead, in Schumpeterian growth models where the

average length of protection is modelled through a Poisson arrival rate of imitators, news of a future in-
crease of patent length–i.e., a fall in the arrival rate of imitators–implies a lower discounting of future, post-
implementation, profits. At news, this immediately boosts the value of an innovation, causing a rise–rather
than a fall–of R&D effort and innovation.
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ideas vanish and have no value. Therefore, overall R&D directly responds only to changes
in the value of patented products. Since the latter fully adjusts to its higher value only upon
implementation of longer patent length, R&D investment and innovation behave similarly.

Hence, the first novel ingredient of my structural model is that research and development
are explicitly treated as distinct activities. Innovation occurs in two steps. First, research gen-
erates novel ideas, which can be stored by the firm that came upwith them. Second, the firm
invests to develop the stock of ideas into intermediate capital varieties, i.e., new technologies
that increase the productivity of the economy. Since abstract ideas cannot be patented, in-
novators can file patent applications only at the end of development, which terminates the
innovation process.68 The 2-stages structure formalizes the narrative of subsection 4.5 and
allows to replicate the empirical reaction of inventive activity at news of a future patent term
increase. The current value of a new variety does not increase sizably at news. It adjusts
only at implementation–i.e., when the longer patent length becomes actually available. On
the contrary, the value of an undeveloped idea (project) increases immediately at news, be-
cause it discounts the higher value of a future patented variety. This induces innovators to
optimally reduce the pace of development to profit of the longer patent length.69 Therefore,
patents–which are filed at the end of development activity–fall at news, and so does total
R&D through a marked fall of the resources spent on development.70

The 2-stages structure of the innovation process is mathematically similar to Comin and
Gertler (2006). However, the two settings radically differ in terms of content of the two steps.
In Comin and Gertler (2006), the first step encompasses both research and development,
which constitute again a single activity that generates patented intermediate varieties. The
second step is adoption, i.e., inclusion of technologies produced by the first step into the
consumption good. The modelling of R&D as a single activity implies that the response
of the model to the policy news is similar to Jones (1995), because the values of R&D and
adoption respond symmetrically to patent term changes.71

The second novel ingredient of my model–which constitutes a further departure from
Comin and Gertler (2006)–is that the average pace of development positively affects new

68The separation of research and development also reflects the fact that, in the real world, the two activities
are distinct, and that the development of an idea into a finished intermediate product may take several years
to firms.

69This implies that my theoretical setup nests Jones (1995) model if the development stage is suppressed by
assuming that there are no developments costs.

70In the model, research investment increases at news. Research produces new ideas and, as argued above,
the value of an idea increases at news, promoting investment in research. However, the drop in development
is quantitatively stronger and depresses total R&D.

71At the news of a future patent term increase, the value of adoption does not change immediately, as the
period over which profits can be collected–i.e., patent length–does not change until implementation. Therefore,
the value of R&D output–i.e., the value of subsequent adoption net of adoption costs–also does not change. As
the two values do not respond to the policy news, investment in both adoption and R&D does not change.
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ideas’ research productivity. A faster average pace of existing projects’ development in-
creases the ability of other researchers to generate new related ideas. Consistently with the
empirical evidence of section 4, this effect is modelled as an externality and innovators do
not consider this positive effect when choosing how fast to turn their own ideas into interme-
diate varieties and patents. As shown by the right panel of Figure 10, the spillover is crucial
to reproduce the post-implementation effect of the policy.72 The slowdown of the pace of
development at news of a future patent term extension reduces the availability of patent
documents describing recent technological advances and, therefore, hinders knowledge dif-
fusion. As productivity of research is lower, a lower investment in research depresses total
R&D. In addition, innovation falls because of a lack of new ideas to turn into varieties. I move
now to a more formal description of my theoretical setup.

5.2 Standard parts of the model: Consumers and producers
5.2.1 Consumers
The representative consumer has linear utility u(c(t)) = c(t) in per-capita consumption, dis-
counts the future at rate ρ, saves in real assets at a real rate of return r(t), and inelastically
supplies labor.73 Aggregate labor supply coincides with population L(t), which exogenously
grows at rate n. Appendix C.1.1 formally sets up the representative agent’s maximization
problem and shows that the Euler equation is r(t) = ρ ∀t.

5.2.2 Competitive production of the final good
There is a competitively produced final good in the economy. The representative firm solves

max
L(t),{X(i,t)}i

{
(h(t)L(t))1−α

∫ V (t)

0

X(i, t)αdi− w(t)L(t)−
∫ V (t)

0

z(i, t)X(i, t)di
}

(6)

where Y (t) = (h(t)L(t))1−α
∫ V (t)

0
X(i, t)αdi is the production function of the final good. h(t)

is an exogenous productivity term, L(t) is labor, and X(i, t) is the amount of the intermedi-
ate capital variety i used in production. The wage rate is w(t), and the price of each capital
variety is z(i, t). Final good producers generate the demand for labor and for each of the V (t)

intermediate capital varieties available in the economy. The expansion of V (t) drives endoge-
nous productivity growth in the model. New varieties originate from firms’ investment in

72The right panel of Figure 10 shows the response of innovation to an anticipated patent term increase im-
plied by a model where research and development activities are distinct but with no spillover, and compares it
to the response implied by the empirical estimates of Section 3. This model is equivalent to themodel of Section
5 with the externality parameter χ = 0.

73The economy features multiple real assets, such as physical capital and firms’ stocks. No arbitrage condi-
tions ensure that, in the absence of uncertainty in this economy, the real rate of return is equal across assets.
Appendix C.1.1 formally describes the representative agent’s utility maximization problem and precisely de-
fines total assets.
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research and development. Successful firms becomemonopolistic producers of the interme-
diate variety until the patent that protects their monopoly expires after the finite term of T
periods.

5.2.3 Production of intermediate capital varieties
Therefore, production of intermediate varieties can be either monopolistic or competitive.
Firms produce intermediate capital varieties through a linear technology, by hiring raw cap-
ital K(t) from the households at a competitive rate (r(t) + δ). δ is the depreciation rate of
physical capital. Monopolistic producers maximize profits, taking the inverse demand for
each variety as given. Their optimization problem is

max
X(i,t),z(i,t)

{
z(i, t)X(i, t)− (r(t) + δ)X(i, t)

}
s.t. z(i, t) = αh(t)1−αL(t)1−αXα−1(i, t)

(7)

where the constraint equals the price z(i, t) of the intermediate variety to final good produc-
ers’ inverse demand.

When the maximum patent term T expires, the production of intermediate varieties be-
comes perfectly competitive. The maximization problem of competitive intermediate pro-
ducers is analogous to (7), but the constraint becomes z(i, t) = r(t)+δ, as competition drives
the price to marginal cost.

5.2.4 Evolution of the share of monopolistic varieties
At any instant t, the creation of new varieties protected by patents and the expiration of old
varieties generated at t − T–T being the finite patent length–determine the evolution of the
share ζ(t) of total varieties that are monopolistic. Starting from the definition of ζ(t) ≡ Vp(t)

V (t)
–

where Vp(t) is the total number of monopolistic varieties–and time-differentiating both sides,
it is possible to write the evolution of ζ(t) as

ζ̇(t) = (1− ζ(t))
V̇ (t)

V (t)
− (1 + ψ)

V̇ (t− T )

V (t)
e−

∫ t
t−T λ(t′)dt′ (8)

Appendix C.1 reports the detailed derivation of (8). Intuitively, the first addend captures
the net contribution of new varieties produced at time t–i.e., V̇ (t)–to the growth of patent-
protected varieties. The second added represents the fall of monopolistic varieties due to the
expiration of patent protection on the gross mass of intermediates generated at t − T–i.e.,
(1 + ψ)V̇ (t− T ). In the last term, e−

∫ t
t−T λ(t′)dt′ represents the fraction of these t− T varieties

which have survived the process of creative destruction until t.
Indeed, the model assumes that new innovations destroy existing varieties at an endoge-

nous instantaneous probability λ(t) ≡ ψ V̇ (t)
V (t)

. This is a reduced-form way to formalize the
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destructive effect of entry on on existing monopolies. I assume that creative destruction is
proportional to the aggregate innovation rate and unaffected by T , in line with the results of
Section 4 on competition.74

5.2.5 Capital market clearing condition and resource constraint
Clearance of capital market requires that the total stock of capital is equal to the quantity
used for the production of the V (t) existing varieties, i.e.,K(t) =

∫ V (t)

0
X(i, t)di. In addition,

the evolution of aggregate capital is governed by K̇(t) = IK(t)− δK(t): Capital grows with
new investment IK(t) by households and falls with depreciation δK(t).

The resource constraint of the economy is

Y (t) = C(t) + IK(t) + IR(t) + µυ(t)ιD(t)
θN(t) (9)

Y (t) is the total production of the final good determined by problem (6), C(t) is aggregate
consumption, IK(t) is investment in physical capital, IR(t) is investment in research activity,
and µιD(t)

θυ(t)N(t) is aggregate investment in development. The latter is the product of
development costs on each project (µιD(t)θυ(t), with µ being a scale parameter, ιD(t)θ the
convex costs of development pace, and υ(t) the value of a patent) and the total number of
projects N(t). Investment in research and development is described in subsection 5.3.

5.3 Research and development
5.3.1 Research activity
Firms that want to obtain a patent on a new intermediate variety must separately succeed
in both research and development. Research is competitive and firms invest to discover new
ideas/projects, whose stock in the economy is N(t) and whose value is P (t). Crucially, an
idea is storable by the firms that cameupwith it, and its valueP (t) is positive because the firm
can exclusively develop the idea into an intermediate variety. All firms investing in research
are identical and solve

max
IR(t)

{
P (t)

[
E(t)χV (t)ϕ1IR(t)

ϕ2

]
− IR(t)

}
(10)

where E(t)χV (t)ϕ1IR(t)
ϕ2 is the production function of projects, and IR(t) is aggregate

research investment in units of the final good.75 The production function assumes that new
74Creative destruction is a standard effect in the literature. The model could also feature imitation: Old

varietieswould not disappear but their profitswould be pushed to zero. This is omitted from themodel because
it does not add any relevant theoretical insights. Appendix F.3 shows the positive and normative implications
of the model assuming that creative destruction depends linearly or quadratically on T .

75In an extension of the model used for welfare analysis, the production function of projects is transformed
into (1−ζ(t))ϕ1ηE(t)χV (t)ϕ1IR(t)

ϕ2 , where (1−ζ(t))ϕ1η is a distortion term that represents the probability of not
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ideas increase with research investment IR(t)–subject to decreasing returns governed by ϕ2–
and in the number of existing intermediate capital varieties V (t). V (t)ϕ1 , with ϕ1 < 1, cap-
tures the standing on the shoulders of giants effect, i.e., the contribution of the existing stock of
knowledge to the creation of new ideas. This effect is standard in the endogenous growth
literature. The parameters are constrained so that ϕ1 + ϕ2 < 1.

The termE(t)χ formalizes the new technology disclosure externality documented in sub-
section 4.2. It is defined as E(t) ≡ d−1

∫ t

t−d
N(s)−1

∫ N(s)

0
ιD(j, s)djds, where, d is the (maxi-

mum) delay with which the externality acts. As explained in the next subsection, ιD(j, s) is
the flow probability that project j ∈ [0, N(s)] is successfully developed at instant s. Higher
ιD means a shorter average duration of development activity. Therefore, E(t) is the average
pace of development during previous d years, with d = 4 to match the evidence of section
4. As the average pace of development is faster, the diffusion of novel technical knowledge
to other innovators through patent documents is more rapid. Being able to learn from recent
advances more rapidly positively affects the ability of all other innovators to generate new
ideas, beyond the standard "standing on the shoulders of giants effect" captured by the stock
of varieties V (t).

5.3.2 Development activity
Next, firms must choose the optimal pace of development, i.e. the speed at which they try to
turn existing ideas of value P (t) in patented intermediate varieties of value υ(t). Following
Lin and Shampine (2018), I assume that monopoly power on a variety can last at most T
years.76 Hence, the value of a new patent issued at t is

υ(t) =

∫ t+T

t

e−
∫ s
t (r(t

′)+λ(t′))dt′π(s)ds (11)

where π(s) is the flow of profits at instant s–and it is the solution to the maximization
problem (7)–r(t′) is the real interest rate, and λ(t′) is the instantaneous probability of en-
dogenous creative destruction. Therefore, υ(t) is the expected net present discounted value
of profits from a patent-protected monopoly on a variety77. The development problem is
independent across ideas/projects and its value function is

r(t)P (t)− Ṗ (t) = max
ιD(t)

{
ιD(t)

[
υ(t)− P (t)

]
− µιD(t)

θυ(t)
}

(12)

having an idea blocked by an existing monopoly. It is decreasing in the share of varieties that are monopolistic
and in the parameter η, which captures the severity of the distortion.

76This gives rise to forward and delayed terms in the system of differential equations that solves the model,
and I build on Lin and Shampine (2018)’s relaxation algorithm for the solution.

77From(11), we can see that, while themaximumstatutory patent length isT , the effective one can be shorter.
The expected patent duration along the balanced growth path (b.g.p) equilibrium is T e ≡ 1

λ∗ (1−e−λ∗T ), where
λ∗ is the endogenous rate of creative destruction along the b.g.p.
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where ιD(t) the pace of development chosen by firms–i.e., the instantaneous probability
of turning the project into a product. The total investment needed to achieve any given ιD(t)
is ID(t) = µιD(t)

θυ(t) units of the final good. µ is a scale parameter, and ιD(t)θ–with θ > 1–
captures the convex costs of development pace. The term in square brackets shows that a
successful firm generates an intermediate capital variety of value υ(t), but loses the value
P (t) of the idea/project, which is terminated. Crucially, when firms choose the optimal ιD(t),
they do not internalize the positive effect that a faster pace of development has on subsequent
productivity of research.

5.3.3 Evolution of projects and varieties
Equation (13) governs the evolution of varieties V (t)

V̇ (t) = ιD(t)N(t)− ψV̇ (t) (13)

The first addend represents the increase in varieties due to ideas/projects turned into va-
rieties by development activity. Since all projects have a symmetric instantaneous probability
of success ιD(t) in equilibrium, the mass of projects turned into patents at instant t is given
by this probability times the total number of projectsN(t), i.e., ιD(t)N(t). The second addend
represents creative destruction, with ψV̇ (t) varieties destroyed by new ones.

The evolution of ideas/projects N(t) follows the law of motion

Ṅ(t) =
[
d−1

∫ t

t−d

ιD(s)ds
]χ
V (t)ϕ1IR(t)

ϕ2 − ιD(t)N(t) (14)

The first addend represents themass of new ideas/projects generated by research, i.e., the
research production function of problem (10).

[
d−1

∫ t

t−d
ι∗D(s)ds

]χ
replaces the externality

term E(t)χ, using its definition and the fact that, in equilibrium, all projects are symmetric.
The previous paragraph already discussed the second added, which is the mass of projects
turned into varieties at instant t.

5.4 Definition of the competitive equilibrium
A competitive equilibrium equilibrium for this economy is a sequence of quantities
{V ∗(t), N∗(t), {X∗(i, t)}V

∗(t)
i=0 , {ι∗D(j, t)}

N∗(t)
j=0 , I∗R(t), I

∗
K(t), C

∗(t), K∗(t), π∗(t), ζ∗(t)}∞t=0,
prices {r∗(t), w∗(t), {z∗(i, t)}V

∗(t)
i=0 }∞t=0, and values {P ∗(t), υ∗(t)}∞t=0, such that, given the exogenous

evolution of {h(t), L(t)}∞t=0, i) r∗(t) = ρ ii) C∗(t) and I∗K(t) solve consumer’s utility maximization
problem; iii) L(t) and {X∗(i, t)}V

∗(t)
i=0 solve problem (6); iv) X∗(i, t) and z∗(i, t) solve problem (7)

∀i ∈ [0, V ∗(t)]; v) I∗R(t) solves problem (10); vi) ι∗D(t) solves problem (12) for all j ∈ [0, N∗(t)]; vii)
υ∗(t) satisfies equation (11); viii) π∗(t) = (ρ+ δ)−

α
1−α

(
α

1+α
1−α − α

2
1−α

)
h(t)L(t) from the solution of
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problem (7); ix) P ∗(t) satisfies

P ∗(t) =

∫ ∞

t

e−
∫ s
t [ρ+ι∗D(t′)]dt′ [ι∗D(s)− µι∗D(s)

θ]υ∗(s)ds (15)

x) ζ∗(t) satisfies equation (8), xi)K∗(t) satisfiesK∗(t) =
∫ V ∗(t)

0
X∗(i, t)di and K̇∗(t) = I∗K(t)−

δK∗(t); xii) the aggregate resource constraint (9) holds; xiii) V ∗(t) satisfies (13); and xiv) N∗(t)

satisfies (14).
Along the balanced growth path (b.g.p.) equilibrium, each variable x(t) grows at a constant rate gx,
so that x(t) = egxtx̃(t), where x̃(t) is the stationary version of x(t).

Appendix C.1 provides the details of the solution, and Appendix C.1.10 shows that the
economy admits a balanced growth path and derives the growth rates.78

5.5 The mechanism at work
How can the model reproduce the empirical facts of section 3? I answer the question by
studying its response to an anticipated patent term increase.79

First empirical fact At the news of a future extension of T , the current value of a new variety
υ∗(t) in equation (11) does not increase markedly until the effective implementation of the
policy, because it still discounts profits over the old, shorter, patent term. However, equation
(15) shows that the value of an ideaP ∗(t) increases on impact, because it discounts the higher
value of future patents.80. Optimal investment decision rules (16) and (17) shape the reaction
of research and development to news-induced changes in υ∗(t) and P ∗(t).

ι∗D(t) =

[
(υ∗(t)− P ∗(t))

θµυ∗(t)

] 1
θ−1

(16)

I∗R(t) =
(
P ∗(t)

[
d−1

∫ t

t−d

ι∗D(s)ds
]χ
V ∗(t)ϕ1

) 1
1−ϕ2 (17)

In equation (16), convex costs (θ > 1) imply a desire to smooth development intensity in nor-
mal times. However, the combined movements of υ∗(t) and P ∗(t) induce a slowdown of the
pace of development ι∗D(t) before implementation. As P ∗(t) increases, (17) highlights that
research investment rises at first. For most parameter values–and at the structural estimates
of section 6–the drop of development investment is stronger than the rise in research. There-
fore, total R&D falls. In addition, since firms obtain patents only at the end of development,
innovation also drops.

78Appendix F.4 shows that the model can be equivalently formulated assuming that R&D uses labor rather
than units of the final good.

79Appendix C.4 contains the model-implied responses to the simulated policy change for key variables.
80Let A be anticipation, the value of future patents is represented by υ∗(s), s ≥ t + A in the integral of

equation (15)

46



Second empirical fact After implementation of the longer T , the current value of a novel
variety υ∗(t) fully adjusts to its new higher level: Both υ∗(t) and P ∗(t) fully incorporate the
impact of longer T . Therefore, equation (16) shows that the pace of development goes back
to its pre-news levels after the initial drop upon news. However, the latter development
slowdown negatively impacts subsequent research productivity through the spillover term
E(t)χ =

[
d−1

∫ t

t−d
ι∗D(s)ds

]χ
, with the effect showing its maximum magnitude d = 4 years

after the policy implementation. The 4-years delay is chosen to match the observed behav-
ior of within-field backward citations intensity of section 4. Lower productivity depresses
research investment despite the higher value P ∗(t) of research output, i.e., ideas. Lower re-
search investment and lower innovation persist until i) the effect of the technology disclosure
externality from the pre-implementation development pace drop ends, and ii) the missing
mass of ideas caused by lower research investment is gradually replenished.81

Long-run implications As the new steady state approaches, the long-run incentives im-
plied by the longer patent term become dominant. Total R&D investment and innovation in-
crease to a higher level. Higher value of ideasP ∗(t) reflects higher patent value and promotes
higher research investment. More research investment generates a larger mass of projects
N(t), which result in a higher flow of innovations ι∗D(t)N∗(t) and higher aggregate develop-
ment investment µι∗D(t)θυ∗(t)N∗(t)–because the pace of development returns to its pre-news
levels after policy implementation. Therefore, the long-run behavior of the model is consis-
tent with standard frameworks. However, the novel ingredients are crucial to understand
the positive and normative consequences of patent term changes on innovation and output.
As documented in section 3, anticipation and powerful technological spillovers may gener-
ate unexpected effects, which would be overlooked in standard frameworks. This motivates
the structural estimation of the model to conduct policy counterfactuals and evaluate these
forces far from the status quo.

6 Structural estimation
Subsection 6.1 describes the estimation of the key structural parameters of the model, and
subsection 6.2 presents the results and the quantitative performance of the model.

6.1 Quantitative assessment of the model
I use amix of calibration–for ρ, n, gh, and η–and structural estimation via generalizedmethod
of moments–for the other 8 parameters ϕ1, ϕ2, θ, µ, ψ, χ, α, and δ–tomatch the empirical facts.

81The key role of the spillover to generate persistence is highlighted by the responses of innovation and
R&D flow in a model where the externality channel is shut down. In the latter setting, innovation and R&D
flow increase immediately after the implementation of the longer term. Figures F.3 and F.4 of Appendix F.2
illustrate the point.
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6.1.1 Calibrated parameters
I calibrate ρ = 0.03 and population growth at n = 1.1%, the US yearly average in the post-
war period. The growth rate of exogenous productivity gh is fixed so that the growth rate
of output-per-capita gy = 1−ϕ1

1−ϕ1−ϕ2
(n + gh) − n (derivations in Appendix C.1.10) is equal to

2% for every ϕ1 and ϕ2. Finally, in the extended model, η is set so that the steady-state block
probability 1− (1− ζss)

ηϕ1 is equal to 1%, which is computed by combining information on
patent litigation rates (1.5%) and plaintiff win or voluntary settlement rates (65%).82

6.1.2 Model-data mapping and estimation
I estimate key structural parameters by generalized method of moments to match i) the
reduced-form causal DiD estimates for patents and R&D effort of subsection 3.1, and ii)
3 long-run moment restrictions. The DiD estimates are used to compute the predicted re-
sponse of patenting and patent-read R&D effort to a 100-day increase in the patent term,
known 2 years and 8 months before implementation–i.e., the lapse of time between Novem-
ber 1992 and June 1995. I re-express the DiD estimates in percentage deviations from the
pre-announcement quarter (1992Q3) baseline level of the two variables and use the latter
as targets for the simulated response of the model to a policy change of the same size and
anticipation. I assume that the system is at its old steady state before news. The model coun-
terpart of granted patents is ι∗D(t)N∗(t)–i.e. the probability that each project is successfully
turned into a patent times the number of projects. The model-data mapping of R&D is less
immediate. The first reason is that, in the model, research and development are distinct, but
I cannot observe them separately in the data. The second reason is that, in field-level aggre-
gate data, R&D effort must be inferred from inventors listed on patents, which reflect all past
R&Ddone on the patent rather than the instantaneous flow of R&D expenditure. Since I can-
not make the data more granular, I derive below the theoretical aggregate that best matches
the patent-inferred R&D effort observed in the data. Let n(τ, τ) = E(τ)χV (τ)ϕ1IR(τ)

ϕ2 be
the number of new projects generated at time τ by a total research investment IR(τ), and let
n(t, τ) = e−

∫ t
τ ι∗D(s)dsn(τ, τ) be the number of such projects of vintage τ that are not completed

yet at time t. The total number of active projects isN(t) =
∫ t

−∞ n(t, τ)dτ . The total amount of
R&D spent on any project of vintage τ and successfully developed into a patent at time t ≥ τ

is
r&d(t, τ) = IR(τ)/n(τ, τ) +

∫ t

τ

µι∗D(s)
θυ∗(s)ds

82Patent litigation rates are taken from Figure S9 of WIPO report "Special theme - An overview of
patent litigation systems across jurisdictions" (https://www.wipo.int/edocs/pubdocs/en/wipo_pub_941_
2018-chapter1.pdf). Plaintiff win and settlement rates are taken from https://law.stanford.edu/
wp-content/uploads/2016/07/Revised-Stanford-August-4-2016-Class-Presentation.pdf
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I assume that each project of vintage τ absorbs an equal fraction 1/n(τ, τ) of the original
research investment IR(τ). In addition, I sum the total resources spent on the development
of the specific project, from its inception at τ to its completion at t. Since, at any instant,
all projects have equal completion probability irrespective of their vintage, aggregate R&D
inferred from patents generated at t is

R&D(t) =

∫ t

−∞
r&d(t, τ)

[
ι∗D(t)n(t, τ)

]
dτ

i.e. the aggregation over all vintages of the total investment on projects of vintage τ , weighted
by the mass thereof that are successful at time t–i.e., ι∗D(t)n(t, τ).

Finally, the long-run targetedmoments are: i) a capital-output ratio of 3, ii) a consumption-
output ratio of 0.65, and iii) an R&D expenditure-output ratio of 2.5%. The loss function is
quadratic in deviations of the model-simulated moments from their data counterparts.

6.1.3 Identification of structural parameters from empirical moments
The rich dynamics of the reduced-form empirical responses of innovation and R&D to policy
shocks are extremely informative about the key structural parameters of the innovation pro-
cess, i.e. θ, χ, ϕ1, and ϕ2. The discussion of subsection 5.5 on how the model can qualitatively
replicate the empirical facts is useful to infer which moments are informative about which
parameters.

In themodel, the adjustment of the pace of existing projects’ development drives the reac-
tion of innovation and R&D to news of a future patent term change. Therefore, the strength
of the empirical response to the news shock is informative about θ, which governs the cost
convexity of development pace. Subsequently, the disclosure spillover translates the initial
fall in development into lower research productivity, driving post-implementation persis-
tence with a delay of d = 4 years. Therefore, the magnitude of post-implementation negative
effect observed in the DiD estimates informs χ, which governs the strength of the new ex-
ternality. Instead, the speed of the recovery to the new steady state with higher innovation
and R&D identifies ϕ1, that shapes the "standing on the shoulders of giants effects" from the
stock of varieties and influences research productivity more smoothly. Finally, for any given
θ, χ, and ϕ1, the long-run R&D-output ratio determines ϕ2. A lower ϕ2 implies more severe
decreasing returns to research investment and lower aggregate R&D intensity.

The plots of Appendix C.5 illustrate these points by showing how the model-implied
responses change when parameters deviate from the optimal estimates of subsection 6.2.

6.1.4 Solution algorithm
Estimation requires solving, for several parameter vectors, the systemof equations describing
the b.g.p. solution of the model, which includes the delayed differential equation (8). The
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Figure 11: Model-based simulation of the policy and targeted reduced-form estimates

(a) New patents (b) R&D Investment

The black solid lines are the model-based responses of the model with parameter values reported in Table 2,
and the red dashed lines are 95% confidence bands of the reduced form estimates of Section 3. The system is
assumed to be at the pre-policy change steady state at t = 0, when the news of 100-days increase in protection
time implemented after 2 years and 8 months (blue vertical line) happens.

solution algorithm is described in detail in Appendix C.2. In a nutshell, it starts with a guess
for the full dynamic path of V (t)–and hence for λ(t)–and it solves the model treating the
delay term V̇ (t − T )e−

∫ t
t−T λ(t′)dt′ of equation (8) as fixed from the guess. The guess is then

updated, and the process is iterated until the series of λ(t) converges.

6.2 Estimation results and quantitative performance
Table 2 reports the estimated parameters and their standard errors, and Figure 11 plots the
model-based responses together with the confidence bands of the reduced-form estimates
of subsection 3.1.2, divided by the 1992Q3 baseline.83 The plots show that the model per-
forms well in tracking the response of the two main aggregates. It captures the drop of R&D
and innovation at news–due to a fall in the pace of development–and the persistence of the
negative effect even after the policy implementation–due to the technology disclosure exter-
nality. Subsection 5.5 discusses the details of the mechanism through which this happens.
In the long-run–not shown in the figure–innovation and R&D converge to their new higher
steady-state levels implied by the longer T .

Some of the parameter estimates of Table 2 offer interesting insights. First, the cost con-
vexity of development intensity is very mild, with θ very close to 1. It implies an optimal
steady-state development intensity ι∗D,ss = 0.3 that is consistent with an average project du-
ration of approximately 3 years. This is slightly longer than the lags estimated by Pakes and

83The computation of standard errors is described in Appendix C.2.
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Table 2: Estimated and Calibrated Structural Parameters

Symbol Value S.E. Parameter Target/Source
A: Calibration

ρ 0.03 Discount rate
gh 0.011 Exog. Prod, Growth 2% p.c. Output Growth
n 0.011 Population Growth World Bank

B: Estimation
α 0.4463 0.6753 Capital Share
δ 0.0701 0.0071 Capital Depreciation
ϕ1 0.6906 2.1484 Research V -Curvature
ϕ2 0.0840 0.6282 Research IR-Curvature
χ 8.3554 4.9520 Spillover Exponent
θ 1.0129 0.1990 Dev.’t Curvature
µ 0.6574 2.9311 Dev.’t M. Cost
ψ 0.0001 8.5134 Endog. Creative Destruction

C: Extension
η 0.1002 Curv. Monopoly Distortion 1% Block Probability

The table reports the calibrated parameters (ρ, n, and gh) and the structural estimates for the other parameters,
obtained by simulated method of moments targeting i) the reduced form estimates of the response of granted
patents and R&D effort presented in Section 3 and ii) three long-run moments: a capital-output ratio of 3, a
consumption-output ratio of 0.65, and a R&D investment-output ratio of 0.025. Finally, the parameter η of the
extended version of the model featuring blocking innovation is calibrated to match a 1% block probability of
new projects. Details on how this target is derived are reported in subsection 6.1.1 of the paper.

Schankerman (1984) but it may reflect that projects have now become more complex and
longer to complete on average. Second, ϕ2 close to 0.1 suggests substantial decreasing re-
turns to research investment, which may explain why models where R&D occurs in a single
step usually employ quadratic costs of R&D intensity (e.g. Acemoglu et al. (2018)), captur-
ing a combination of θ close to one and a small ϕ2. Third, ϕ1 = 0.69 implies that returns
from existing varieties are mildly decreasing, i.e. that marginal gains in research produc-
tivity slowly fall as the number of varieties expands.84 Finally, the estimated model allows
to infer the long-run elasticity of innovation and R&D to patent length, which could not be
directly desumed from the reduced-form estimates of section 3. A 1% increase of T from 17
years is associated to +0.35% patents and +1.3% of total R&D spending in the new steady
state. The implied elasticity of innovation to patent length is similar in size to the elasticity
of innovation to market size (Jaravel (2021)), which also increases the incentives to innovate
due to higher profits.

7 Policy simulations and normative analysis of patent length
This section conducts the normative analysis of the paper. It uses the structurally estimated
model to quantify the key trade-offs and evaluates the welfare and output consequences

84This is qualitatively in line with the findings of Bloom et al. (2020), even though they estimate more severe
decreasing returns, with ϕ1 close to 0 for the aggregate economy
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of patent term changes of various nature. I focus on two dimensions. First, subsection 7.1
presents the normative trade-off in the steady state of themodel, and subsection 7.2 compare
it to that arising from the transitional dynamics induced by the unanticipated implementation
of a new patent length. I estimate the welfare-maximizing patent length in the absence of
anticipation and discuss how key structural parameters affect it. Second, subsection 7.4 in-
vestigates anticipation and the normative implications of technology disclosure externalities,
which subsection 5.5 showed to be crucial to understand the positive consequences of patent
term changes. Indeed, due to the action of spillovers, an anticipation of 5 months would be
enough for the implementation of the optimal patent term not to generate any output gains.

7.1 Steady state trade-off
The steady-state trade-off is similar in spirit to the classic trade-off highlighted by Nordhaus
(1967). In the model, any stationary equilibrium featuring a longer patent term T implies a
higher number of varieties Vss, but also a larger share ζss of them that are monopolistically
produced. The expression of aggregate output in the steady-state equilibrium highlights the
two forces:

Yss = Vss (ααζss + (1− ζss))︸ ︷︷ ︸
≈0.9

L1−α
0 Xα

nm,ss (18)

The first force pushes up output, while the second tends to depress it, because monopolistic
varieties are produced in smaller quantity than competitive ones. Therefore, as ζss increases,
the distortion term in brackets gets closer to zero. However, in the structural model, (ααζss+

(1− ζss)) is above 0.9, which implies small distortions and calls for a long patent length. The
second column of Table 3 shows that the patent length that would maximize steady-state
consumption at the baseline parameter estimates is 171 years (first row).

There is an additional channel through which patent length may affect welfare: A longer
monopoly over specific products may block additional innovations if the latter infringe on
existing patents. While this feature is not present in the benchmark model of section 5, for
normative analysis I also consider a model extension where new projects may be blocked
with a probability 1 − (1 − ζ(t))ϕ1η, which is increasing in ζ(t) and whose severity is gov-
erned by the parameter η.85 In the remainder of the paper, I will refer to this alternative
setting as the model with "blocking innovation". The fourth column of Table 3 shows the op-
timal steady-state patent length in this setting. The additional distortion implies that a longer
patent length is relatively less desirable, but the estimates remain longer than the status quo

85The production function of projects becomes (1 − ζ(t))ϕ1ηE(t)χV (t)ϕ1IR(t)
ϕ2 , where the new term

(1 − ζ(t))ϕ1η is a distortion term that represents the probability of not having an idea blocked by an exist-
ing monopoly. Conversely, 1− (1− ζ(t))ϕ1η can be seen as the probability of being blocked and is increasing in
ζ(t).
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of 20 years.

7.2 Transitional dynamics trade-off
The second trade-off relates to the transitional dynamics of the model in response to the
unanticipated implementation of a new patent length. Consider a longer patent length T . Its
unanticipated implementation starts a transition to a new steady state that features more va-
rieties V and, potentially, higher output and consumption. The increase of V occurs through
research and development investment. However, due to the presence of development lags,
the initial investment does not immediately translate into higher productivity and output,
as it takes time for new ideas to be transformed into varieties. Therefore, by the resource
constraint of the economy, a reduction of consumption must finance R&D at first. The so-
cial planner trades-off short-run losses and long-run gains using the time-zero utility of the
representative agent, i.e.

Θ =

∫ ∞

0

e−(ρ−g∗c )tc̃(t)dt (19)

where c̃(t) is per-capita consumption in the b.g.p. model, ρ is the discount rate, and g∗c is
per-capita consumption growth in the b.g.p..

To estimate the patent length that would maximize (19) in the absence of anticipation, I
simulate a sudden policy change from T0 = 17, the status quo before the TRIPs, to several
possible values of T ′. I compute thewelfare indexΘ(T ′) along the transition to the new steady
state for each T ′.86 and I compute the welfare gain or loss as the percentage deviation of
Θ(T ′) from Θ(T0) = c̃T0,ss/(ρ − g∗c ), which is the welfare index under the hypothesis that no
policy change occurs. Similarly, I can compute the present discounted value of output and
innovation relative to the status quo.

The first column of Table 3 shows in bold the welfare-maximizing patent length in the
absence of policy anticipation, and reports in brackets the impliedwelfare change in percent-
age of the status quo. The first row shows that, for the baseline parameter values obtained
in section 6, the optimal term would be 28 years. The other rows examine how this figure
changes when key structural parameters vary, highlighting their importance for normative
considerations. First, more severe cost convexity of the pace of development–i.e. higher θ–
reduces optimal patent length. With higher convexity, development is slower and produc-
tivity gains take more time. Therefore, the initial consumption loss protracts for longer. In
addition, a slower pace of development reduces research productivity through the spillover
term, lowering the benefit of each unit of the final good spent on research investment relative
to consumption. Second, more severe decreasing returns to research–i.e. lower ϕ2– reduce
optimal patent length. The effect of ϕ2 is strong. Analogously to previous discussion, more

86In practice, the transition is simulated for 2,000 years and the welfare integral is cut there.
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Table 3: Optimal patent term - Transitional dynamics vs. steady state

Specification Benchmark Blocking innovation

Dynamic Steady State Dynamic Steady State

Baseline 28 (+0.5%) 171 (+47.7%) 23 (+0.2%) 61 (+21.5%)

θ = 1.001 29 (+0.6%) 168 (+47.3%) 23 (+0.2%) 61 (+21.4%)
θ = 1.005 28 (+0.6%) 169 (+47.4%) 23 (+0.2%) 61 (+21.4%)
θ = 1.02 27 (+0.5%) 174 (+48.0%) 23 (+0.2%) 62 (+21.6%)
θ = 1.05 27 (+0.4%) 191 (+49.9%) 22 (+0.2%) 63 (+22.1%)

ϕ2 = 0.05 16 (+0.0%) 122 (+20.8%) 15 (+0.0%) 60 (+10.6%)
ϕ2 = 0.07 23 (+0.1%) 145 (+34.7%) 19 (+0.0%) 61 (+16.5%)
ϕ2 = 0.10 34 (+1.2%) 244 (+67.7%) 27 (+0.6%) 62 (+28.3%)
ϕ2 = 0.12 43 (+2.5%) 500 (+104.4%) 32 (+1.6%) 62 (+38.9%)

ϕ1 = 0.63 28 (+0.4%) 144 (+34.7%) 23 (+0.2%) 69 (+19.3%)
ϕ1 = 0.66 28 (+0.5%) 155 (+40.2%) 23 (+0.2%) 65 (+20.3%)
ϕ1 = 0.72 28 (+0.6%) 223 (+63.9%) 23 (+0.2%) 57 (+20.7%)
ϕ1 = 0.75 29 (+0.6%) 500 (+104.4%) 24 (+0.3%) 53 (+24.0%)

The table reports: i) The estimated optimal patent length in the absence of policy anticipation (bold figures,
columns 1 and 3); ii) the related welfare change along the transitional dynamics arising from its implementa-
tion, relative to welfare in the absence of any policy change from T = 17 years (in brackets, columns 1 and 3);
iii) the patent length that would maximize steady state consumption (columns 2 and 4); iv) the related con-
sumption change in percentage deviation from steady state consumption at T = 17 years (in brackets, columns
2 and 4). The dynamic welfare index is (19). Columns 1 and 2 refer to the benchmark model. Columns 3 and 4
refer to the model with blocking innovation. The rows report the estimates for different values of the structural
parameters. In each row, all the other parameters are kept at the values reported in Table 2.

severe decreasing returns lower the benefit of each unit of the final good spent on research
relative to consumption. Therefore, the optimal policy tries to induce a shift from the former
to the latter. Finally, the third column of Table 3 shows how the optimal patent length would
change in the presence of blocking innovation. Due to worse monopolistic distortions, the
optimal length is uniformly lower than in the benchmark model.

7.3 Evaluating steady-state and dynamic trade-offs in the data
The specific structure of the model may potentially play a big role in the quantification of
the normative trade-offs, putting into question howmodel-specific previous conclusions are.
While addressing this issue empirically would require an entire new paper, I provide below
some evidence that the data qualitatively support the quantification implied by the model.
I use the NBER CES Manufacturing database to empirically investigate the impact of patent
term changes on productivity and welfare.87 As a measure of welfare, I consider the value of
shipments deflator, consistently with the idea that a lower price level reflects lower expendi-

87All the details of the empirical strategy and of the results are reported in Appendix B.5.
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tures to achieve any utility target. Productivity is instead measured by TFP, estimated as the
residual of a 5 factors production function.

To investigate the steady-state trade-off, I use a yearly panel of 6-digit NAICS industries
and perform an IV regression where innovation–measured by patents or citations-weighted
patents–is instrumented by the policy-induced change in the patent term, interacted with
yearly dummies. Results show that 100 more patents per year and industry increase TFP
by 3.3% and welfare by 2.7%, with an implied pass-through of TFP gains into lower prices
of around 0.83.88 The effect is similar across innovation measures and confirms the model’s
predictions: At the status quo, productivity gains from a longer patent term outweigh mo-
nopolistic distortions, with a large pass-through of the former into higher consumer welfare.

As to the transitional dynamics trade-off, the model highlights a slow adjustment of pro-
ductivity and welfare, which is confirmed in the data. I use a yearly DiD analysis that repli-
cates specification (1) at the sectoral level. I study TFP and value of shipments deflator as
outcomes. The results show that a longer patent length increases productivity and welfare,
but the dynamic effect is very close to zero at first and becomes quantitatively relevant only
gradually over time.89

7.4 The role of anticipation
Subsection 7.2 examined the welfare trade-offs implied by the transitional dynamics of the
model in response to an unanticipated patent term change. However, subsection 5.5 showed
that policy anticipation is crucial to understand the impact of patent length on innovation
and R&D, due to the presence of powerful technological spillovers. In this final subsection, I
investigate the normative consequences of implementing a 28 years patent term in the pres-
ence of anticipation. The left (right) panel of Figure 12 shows the change in per-capita con-
sumption (output)–in percentage deviations from the status quo–with policy anticipation
between zero and 1 year. To highlight the crucial role of the new technological spillover, I
plot consumption and output changes for three values of χ. The solid line refers to the base-
line estimate of section 6. With no anticipation, consumption and output increase by 0.5%
and 1.6% relative to the status quo, respectively. However, with a 1-month anticipation, al-
most all the consumption gains would be dissipated and a 1-year anticipation would induce
a loss of 1.9%. Similarly, per-capita output changewould be null with a policy anticipation of
around 5 months, and a 1-year anticipation would generate a loss of 1%. Stronger spillovers
(dotted line) would make anticipation even more costly, while weaker spillovers (dashed
line) would attenuate the negative effects of news.

The mechanism is analogous to the one described in subsection 5.5. News of a future
88The average number of yearly patents by 6-digit NAICS industry is 280.
89All the results are reported in Appendix B.5.2 and in Figures B.45 and B.46 more specifically.
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Figure 12: Change in output and welfare from T = 28 years by anticipation

(a) Output per capita (b) Consumption per capita

The left (right) panel shows the model-implied change in the present discounted value of per capita output
(consumption) due to the anticipated implementation of a patent length of 28 years–starting from the 17 years
status quo of 1995. The plots show how output and consumption vary by changing the anticipation of the
policy. Output and consumption variations are expressed in percentage deviation from the present discounted
value of per capita output (consumption) in the absence of any policy change.

patent term increase generates a drop in the pace of development, which immediately trans-
lates into less new varieties, lower productivity, and lower output. While the fall in aggregate
R&Dwould initially free-up resources for consumption, the rapiddecline of output overturns
this effect. Therefore, this analysis reinforces the idea that the evil is the policy details. Out-
put, innovation, and welfare consequences of patent term changes crucially depend on how
the new policy is implemented and technology disclosure externalities play a pivotal role.90

8 Concluding remarks
While patent length is considered a key policy tool for innovation, economic research has
struggled to provide causal estimates of its effects. This paper provides causally-identified
evidence of the impact of an anticipated change in patent length on innovation and R&D.
Policy anticipation, the distinct roles of ongoing projects’ development and new projects’
research, and powerful technological spillovers are crucial to understand the positive conse-
quences of the policy, which depresses innovation and R&D at news of a future longer term
and continues to negatively effect them even after implementation. Due to anticipation, firms
decrease the pace of ongoing projects’ development at news, as they want to profit of longer
protection after policy implementation. Due to a technology disclosure externality, the fall

90Policy anticipation is crucial also in other settings. For example, anticipation of a tax increase on durable
goods would substantially decrease tax revenues, because consumers would accelerate the replacement of the
goods before implementation.
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in the pace of development slows publication of patent documents, depressing diffusion of
knowledge about recent technological advances. This temporarily hinders other innovators’
research productivity in finding novel related ideas. Once controlling for the effect of the
externality, the direct effect of a term extension on innovation is weakly positive.

The technology disclosure spillover allows to identify that the elasticity of future innova-
tion to current innovation shocks is 0.997. Once controlling for the effect of the spillover, the
direct policy effect implies that the elasticity of patenting to a 1% patent term increase is 2.7
in the short run. In addition, the empirical effect of the news shock allows to estimate that
the elasticity of patenting to a 1% future increase of patent length available in 2 years is 3.1.

The paper develops a structural model of semi-endogenous growth that formalizes the
distinct roles of development and research. The latter responds to long-run incentives and
discovers new abstract ideas. Development subsequently converts ideas into intermediate
products, obtaining patents at the end of the process. Intertemporal comparison of the val-
ues of patents obtained today relative to patents obtained in the future drives development
incentives and the short-run impact of anticipated policies. Moreover, research productivity
increases with a faster pace of development through an externality, because a more rapid
diffusion of fresh technical knowledge through patent documents helps the creation of new
ideas. Thanks to the new R&D structure, the model can replicate the empirical facts. A
structural estimation of model’s key parameters highlights a mild convexity of development
intensity costs but severe decreasing returns to research investment. The long-run elastici-
ties of innovation and R&D to permanent patent term changes are 0.35 and 1.3, respectively.
Moreover, both the model and the data feature a high pass-through of productivity gains
into consumer’s welfare.

The main normative implication of the model is that the welfare-maximizing patent term
would be 28 years in the absence of policy anticipation. This term is longer than the one
currently in place (20 years). The presence of development lags makes the rich transitional
dynamics of the model in response to implementation of the new term crucial for normative
considerations. However, evil is in policy implementation details. Even short policy antici-
pation of the longer 28-years term would generate negative short-run effects on innovation
and output, due to development’s reaction to news and technology disclosure externalities.
This would dissipate all the welfare gains from the optimal policy.
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Appendices

Appendix A Data description
A.1 Data sources
For the empirical analysis, I rely on six data sources. The first is PATSTAT, which I use to
build the technical field-level innovation and treatment variables. The second is the NBER
Patent Database, which contains patent information and provides a match of applicants to
firm identifiers in COMPUSTAT. The NBER Patent database reports rich patent information
for patents that are filed at the USPTO between 1976 and 2006 and it provides harmonized
applicants’ identifiers which have been dynamically matched to COMPUSTAT identifiers.
This allows tomerge patent informationwith firm-level balance sheet information. The third
source of data is COMPUSTAT, that reports balance sheet and financials for listed US firms.
These are a selected subsample of innovating firms that are nonetheless responsible for a
relevant share of the aggregate US GDP, R&D and innovation. The fourth source of data is
the economic value of patents as taken from Kogan et al. (2017). The Authors use a long his-
torical sample of patent records and match applicants to listed firms for which stock market
data are available in the CRSP database. They estimate the private economic value of patents
by exploiting the stock market reaction to patent grants. The fifth source of data for sectoral
analyses is the NBER CESmanufacturing database, which is jointly built by the National Bu-
reau of Economic Research (NBER) and U.S. Census Bureau’s Center for Economic Studies
(CES). It contains annual industry-level data for 1958-2011 and by 6-digit NAICS industries.
The sixth data source the is ’Algorithmic Links with Probabilities’ crosswalk by Goldschlag,
Lybbert and Zolas (2019). It maps technical field (4-digit IPC classes) into industries (6-digit
NAICS) and viceversa. The probabilistic links are based on text-analysis of patents abstracts
and descriptions the activity of different sectors. I refer to the Online supplementary mate-
rials D for details on variables construction.

A.2 Summary Statistics
Summary statistics by technical field and at the firm-level are reported below. Online sup-
plementary material D reports summary statistics by 6-digit NAICS industry.
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Table A.1: Summary statistics by technical field and quarter

Variable Mean S.D. 10th p. 90th p.

Granted Patents 36.09 136.35 0 78
5 years Citations 195.15 1070.1 0 360
Patent value (Million Dollars) 351.01 3341.87 0 406.01
Pending Days (days) 1022.1 496.2 558.93 1660.94
Change in patent length (days) 472.66 117.42 343.55 590.79
Standard dev. of ∆ patent term (days) 37.13 38.93 11.53 72.55
Patents share w. p.p.>3y. .06 .08 0 .12
Share of patents renewed to max. term .29 .26 0 .63
Share of entrant applicants .54 .21 .28 .82
Share of patents granted to entrants .49 .23 .2 .8
Patents-based HHI 1191.51 1982.33 116.35 2800
N. Patent with w.-field bckwd. cit.s 4.89 27.07 0 10
Sh. Patent with w.-field bckwd. cit.s .19 .28 0 .59
Patents at EPO 1.47 4.65 0 4
Avg. Pending Period at EPO (days) 1702.43 272.63 1386.5 2012.84
Share of second filing applications .56 .15 .37 .73

The Table reports the summary statistics of different variables used in the paper by technical field (4-digit IPC
class) and quarterly date

Table A.2: Summary statistics by firm and year

Variable Mean S.D. 10th p. 90th p.

Granted Patents 13.57 94.75 0 12
Citations-weighted Patents 199.02 1589.75 0 173.72
Patents value (Million Dollar) 287.16 3434.04 0 74.8
Expected change in protection time 445.02 118.57 273.29 571.4
Sales (Million Dollar) 2337.66 9997.57 2.59 4456.27
Age 14.73 13.88 1 37
Employment (Thousands) 10.85 42.01 .05 22.92
R&D Expenditure (Million Dollar) 60.87 359.06 0 58.78

The Table reports the summary statistics of different variables used in the paper by firm (COMPUSTAT firms)
and year
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Table A.3: Summary statistics by industry and year

Variable Mean S.D. 10th p. 90th p.

Granted Patents 199.23 591.3 .44 491.7
Citations-weighted Patents 1433.73 6930.68 1.4 2656.01
Patents value (Million Dollar) 3015.86 16684.91 .38 4595.21
Expected change in protection time 474.27 87.17 377.46 564.72
Avg. TFP Growth (p.p.) .39 6.43 -6.09 6.86
Avg. Inflation (p.p.) 1.89 4.87 -1.53 6.26

The Table reports the summary statistics of different variables used in the paper by industry (6-digit NAICS)
and year

Table A.4: Correlation between Avg. Pending Period and Field-specific Characteristics

Variable Correlation Weighted Corr.

Number of Applications .13
Number of Second Filings .18
Perc. Growth of Patents -.02
Number of First Grants .08
Patents at EPO .14
Avg. Pending Period EPO .27 .44
Share of Second Filings .3 .3

The first column reports the simple correlation between the average ex-ante pending period by field and
several average characteristics of the field. The second column reports the same correlations, weighted by the
field-specific number of patents.

Appendix B Additional empirical evidence
B.1 Differences with Abrams (2009) explained
The aim of this subsection is to show how the different results obtained in Abrams (2009)
and in this paper can be reconciled in light of the different assumptions made about the
timing of the policy–unanticipated in Abrams (2009) and anticipated in my setting–and in
terms of the specification and sample restrictions adopted. In particular, Abrams (2009) i)
assumes no policy anticipation, ii) cuts the sample to a narrow window of data (6, 12, or 24
months) around the policy implementation, and iii) employs a static DiD specification that
includes a field-specific liner trend. The analyses below show that the combination of these
three factors can lead to a violation of the parallel trends assumption underlying the DiD
exercise and bias the estimated coefficients.

As a preliminary step, I replicate Abrams (2009)’s results in my data. Table B.1 shows the
estimates of the static DiD specification
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Yj,t = αj + Postt + δTj + βPosttTj + χjt+Xj,tγ + εj,t (20)

which is equivalent to specification (2) in Abrams (2009). As in the main analysis, j
indexes technical fields–a 4-digit IPC class in my setting–while t identifies a specific month,
consistently with Abrams (2009). So Yj,t is either the number of patents filed in month-t and
field-j, or number of citations-weighted patents. αj are field fixed effects, Postt is a dummy
variable that takes value 1 if month t comes after the policy implementation of June 1995 and
0 otherwise, Tj is the policy-induced change in protection time described in subsection 2.3.1
of the paper, χjt identifies a field-specificmonthly linear trend,Xj,t are field-specific controls
including the average number of inventors per patent and the average number of claims per
patent, and εj,t is the error term. The difference-in-difference coefficient of interest is β, i.e.
the coefficient of the interaction term between the treatment and the post-implementation
dummy variable. As in Abrams (2009), specification (20) is estimated on the period April
1994 to July 1996, i.e. a 12 months time window around the policy implementation of June
1995, excluding a 2-months inner window around the policy event because of bunching.

Columns (1) and (2) of Table B.1 refer to the number of granted patents as outcome and
show that the results are consistent with the sign of Abrams (2009)’s estimates. The magni-
tude is smaller in my replication because i) Abrams (2009) restricts the sample to technical
fields with at least thirty patents in every year, and ii) defines a technical field as a USPC
class, which is slightly broader definition than the 4-digit IPC I use.91 These two differences
imply that the baseline average number of patents in each field is smaller in my sample than
in Abrams (2009) and, therefore, marginal effects are smaller too. Indeed, when I also re-
strict the sample to fields with at least thirty patents in every year, I get coefficients estimates
that are approximately four times bigger than the ones reported in Table B.1, and that are in
line with the original ones by Abrams (2009). Columns (3) and (4) refer instead to citations-
weighted patents as outcome.

As a second step of the analysis, I will try to show how the interaction of the timing
assumptions of Abrams (2009) with the employed specification tend to cause problems with
the parallel trends assumption of the DiD exercise, and to deliver estimates of β which are
biased upward. As an illustrative example, I take two technical fields, C12R andA01H,which
have a negative expected change in protection time (-75 days) and a slightly positive change
in patent term (+50 days), respectively. Figure B.1 plots the number of granted patents in
the two technical fields over the period 1990-2000. The first vertical line refers to November
1992–the date of the Blair House Accord, which I use as reference date for the policy "news";
the second vertical line refers to December 1994, when the TRIPs were formally adopted in

91Overall, there are more than 600 4-digit IPC classes, but only 400 USPC classes.
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Table B.1: Replication of Abrams (2009)’s results

(1) (2) (3) (4)
Patents Patents Citations Citations

Postt -12.238∗∗∗ -17.261∗∗∗ -55.151∗∗ -76.602∗∗
(3.106) (4.051) (22.098) (31.091)

Postt × Tj 0.020∗∗∗ 0.029∗∗∗ 0.072∗ 0.109∗
(0.006) (0.008) (0.041) (0.059)

Avg. Num. of Inventors 0.216∗∗∗ 4.121∗∗∗
(0.048) (0.539)

Avg. Num. of Claims -0.005 0.537∗∗∗
(0.004) (0.080)

Constant 14.640∗∗∗ 16.980∗∗∗ 108.129∗∗∗ 111.448∗∗∗
(0.200) (0.235) (1.763) (2.372)

Field F.E. Y Y Y Y
Field-specific Trend Y Y Y Y
Observations 14904 12603 14904 12603

Columns (1) and (2) report the OLS estimates of specification (20) using granted patents filed in
month-t and classified in field-j as dependent variable. Columns (3) and (4) report theOLS estimates
of specification (20) using citations-weighted granted patents filed inmonth-t and classified in field-j
as dependent variable. Standard errors are clustered by technical field. Statistical significance levels:
∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)
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Figure B.1: Number of monthly patents in a losing and a gaining field
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The plot shows the time series of granted patents applied for in month-t and classified in field C12R,
the "losing field", and field A01H, the "marginally gaining field".

the US; and the third line refers to June 1995, the date of the policy implementation. From the
Figure, it is quite evident that patenting starts accelerating in the field losing protection well
before December 1994. Figure B.2, instead, shows the implications of this anticipation for the
estimated field-specific time trend in Abrams (2009)’s specification. Here the vertical lines
refer to the bounds of the outer 12-months estimation window used in Abrams (2009), with
an inner gap of 2 months before and after June 1995. The red solid and dashed lines are the
estimated trends for the field losing and gaining protection, respectively. It is immediately
clear from the Figure that these trends do not capture the long-run behavior of patenting in
the two fields.

This has relevant consequences for the interpretation of the βDiDestimate of specification
(20). Indeed, by the Frisch-Waugh-Lowell theorem, we could get β from the "residuals"
regression of the outcome variable and the regressors on a field-specific linear trend. In
practice, we would like to check that the pre-trends assumption underlying the DiD exercise
holds in the residuals of the patenting outcomes from the estimated linear trend. The time
series of these residuals is plotted, for the two fields of interest, in Figure B.3. It is clear from
the plot that, while the parallel trend assumption seems to hold in the raw data–as confirmed
by section 3 of the paper –, the same is not true when focusing on the trend-deviations. This
clearly undermines any causal interpretation of the static difference-in-difference estimates
in Abrams (2009).

The main issues with Abrams (2009)’s assumptions seem to be two. The first is that the
assumption of no policy anticipation is very restrictive. As argued in the paper, if the lat-
ter assumption is not true in the data–as it seems to be the case–then the static specification

6



Figure B.2: Number of monthly patents in a losing and a gaining field - Fitted trends from
Abrams (2009)
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The plot shows the time series of granted patents applied for in month-t and classified in field C12R,
the "losing field", and field A01H, the "marginally gaining field". In red, it also plots the fitted field-
specific time trends implied by Abrams (2009) specification and sample restriction.

Figure B.3: Number of monthly patents in a losing and a gaining field - Trend deviations
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The plot shows the time series of the deviation of granted patents from a field-specific linear trend
on a time-window of data corresponding to April 1994 to April 1995 and from August 1995 to July
1996. Field C12R is the "losing field" and field A01H is the "marginally gaining field". The fitted field-
specific time trends are those implied by Abrams (2009) specification and sample restriction.
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Figure B.4: Number of monthly patents in a losing and a gaining field - Fitted trends on
extended sample
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The plot shows the time series of granted patents applied for in month-t and classified in field C12R,
the "losing field", and field A01H, the "marginally gaining field". In red, it also plots the fitted field-
specific time trends obtained on an extended sample compared to Abrams (2009). The new sample
overs the periods June 1990 to November 1994 and December 1995 to June 2000.

(20) delivers biased estimates, because the chosen reference level for the first "diff" is also af-
fected by the policy. Assuming anticipation is amore conservative assumption is this respect.
Particularly when using a dynamic DiD specification such as equation (1), the estimated dy-
namic DiD coefficients for the pre-implementation period can flexibly capture any reactions
to the news or the absence thereof. The second issue is related to the choice of a sample
that uses data just in a narrow time-window around the implementation date. This implies
that the fitted field-specific trend does not capture well the actual evolution of field-specific
patenting farther away from the policy. As a result, the parallel trends assumption does not
hold for patenting data in trend-deviations, making the cross-fields comparison misleading,
because fields bad counterfactuals of one-another. The simplest possible fix to the problems
above is to extend the estimation window, so that the fitted field-specific trend gives a better
representation of the general behavior of the series, reducing concerns related to the viola-
tion of the parallel trends assumption. Therefore, Figure B.4 replicates the plot of Figure B.2,
but it extends the sample from June 1990 toNovember 1994, and fromDecember 1995 to June
2000. So, both the outer and the inner window are expanded. The rationale for expanding
also the inner window is to further reduce anticipation concerns, excluding the 6 months
between the formal signing of the URAA (December 1994) and the implementation of the
policy. As Figure B.4 shows, the fitted trends represent much better the behavior of the series
in the sample.

Encouraged by this experiment, I replicate the estimation of specification (20) used by
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Table B.2: Replication of Abrams (2009)’s results - Extended Sample

(1) (2) (3) (4)
Patents Patents Citations Citations

Postt 1.357∗∗∗ 1.975∗∗∗ 122.192∗∗∗ 170.237∗∗∗
(0.440) (0.568) (8.691) (11.239)

Postt × Tj -0.003∗∗∗ -0.005∗∗∗ -0.226∗∗∗ -0.320∗∗∗
(0.001) (0.001) (0.018) (0.023)

Avg. Num. of Inventors 0.152∗∗∗ 3.489∗∗∗
(0.045) (0.900)

Avg. Num. of Claims 0.002 0.649∗∗∗
(0.005) (0.093)

Constant 13.444∗∗∗ 15.681∗∗∗ 110.019∗∗∗ 114.221∗∗∗
(0.059) (0.130) (1.168) (2.574)

Field F.E. Y Y Y Y
Field-specific Trend Y Y Y Y
Observations 72657 60969 72657 60969

Columns (1) and (2) report the OLS estimates of specification (20) using granted patents filed in
month-t and classified in field-j as dependent variable. Columns (3) and (4) report the OLS esti-
mates of specification (20) using citations-weighted granted patents filed in month-t and classified in
field-j as dependent variable. The sample is extended to the period June 1990 - November 1994 and
December 1995 - June 2000. Standard errors are clustered by technical field. Statistical significance
levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)

Abrams (2009) on the extended sample June 1990 - November 1994 and December 1995 -
June 2000. Table B.2 reports the results and shows that, once correcting for the problems
outlined above, the DiD coefficient changes sign compared to Abrams (2009) analysis, and
becomes coherent with the reduced-form estimates of section 3 of the paper.

B.2 Technical field-level analyses
B.2.1 Private economic value of patents
Results of specification (1) with patent value as dependent variable are in Figure B.5.

B.2.2 Claims-weighted patents
Results of regression (1) with claims-weighted patents as outcome are in Figure B.6.

B.2.3 R&D effort by technical field
Figure B.7 plots the βk coefficients of the difference-in-difference specification (1) having as
dependent variable the number of inventors listed on patents filed in a given quarter t and
classified in field j. The variable corrects for double-counting of inventors listed on more
than one patent in the same field and quarter.
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Figure B.5: Effect of 1 more day of protection on patents value
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The plot shows the βk coefficients of specification (1). Dependent variable is quarter-t and field-j dol-
lar value of granted patents built from Kogan et al. (2017). Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

Figure B.6: Effect of 1 more day of protection on claims-weighted patents
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The plot shows the βk coefficients of specification (1). Dependent variable is quarter-t and field-j
claims-weighted granted patents. Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure B.7: Marginal effect of 1 more day of protection on number of inventors
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The plot shows the βk coefficients of specification (1) having as dependent variable quarter-t andfield-j number
of unique inventors. Standard errors are clustered by technical field and 95% confidence bands are plotted. The
first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

B.2.4 Reaction of the average pending period to the policy
Figure B.8 plots the βk coefficients of the difference-in-difference specification (1) having
as dependent variable the average pending period of patents filed in a given quarter t and
classified in field j. The results show that the policy event has no impact on the average
pending period by field in my data.
B.2.5 Extension of the analysis to 2010Q4
Results of specification (1), estimated on a sample extended to 2010Q4 and having citations-
wieghted patents as dependent variable, are in Figure B.9.
B.2.6 Triple difference with EPO patents
In order to assess endogeneity concernsmotivated by the fact that the TRIPswere not limited
to the change of the patent term, I run a triple difference specification that tries to clean
potential field-specific trends in innovation by controlling for the evolution of patents filed
at the European Patent Office in a given quarter-field. The specification is:

Pr,j,t = ψr + αj + κ1(r=US)Tj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

ηk1(t=k)1(r=US)

+

2000Q4∑
k=1985Q1

θk1(t=k)Tj +

2000Q4∑
k=1985Q1

βk1(t=k)Tj1(r=US) + εj,t

(21)

where Pr,j,t is region-r, quarter-t, and field-j number of granted patents, Tj is the field-
specific treatment described in Section 2.3.1, and 1(r=US) is a dummyvariable taking value 1 if
the region considered is the US. The motivation for this triple-difference specification is that
European innovators were exposed to the same TRIPs-related changes as the US, particularly
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Figure B.8: Average pending time around the treatment date
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The plot shows the βk coefficients of specification (1) having as dependent variable quarter-t and field-j average
pending period. Standard errors are clustered by technical field and 95% confidence bands are plotted. The
first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

Figure B.9: Effect of 1 more day of protection on cit.s-weighted patents
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The plot shows the βk coefficients of specification (1) having as dependent variable quarter-t and
field-j 5-years citations-weighted patents. The sample is extended to 2010Q4. Standard errors are
clustered by technical field. 95% confidence bands are plotted. The first vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before the
policy implementation (1995Q2).
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Figure B.10: Marginal effect of 1 more day of protection on granted patents - Triple differ-
ence specification
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The plot shows the βk coefficients of specification (21) having as dependent variable region-r’s,
quarter-t, and field-j number of granted patents. Standard errors are clustered by technical field.
95% confidence bands are plotted. The first vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).

regarding access to developing countries. However, the only difference between the two
regions was that the patent term in Europe was unaffected by the TRIPs. I omit the dummy
for 1992Q3, which is the pre-treatment quarter. Standard errors are clustered by technical
field, and 95% confidence bands are plotted. Figure 5 shows the results, which are fully
consistent with the evidence of Section 3.

B.2.7 ex-post effective treatment instrumented by ex-ante treatment
This subsection presents the results of an IV regression where the treatment is computed
based on the ex-post realized average pending period for patents filed in quarter-t and field-
j. The latter is instrumented by the field-specific treatment–based on the ex-ante average
pending period, as described in subsection 2.3.1–interactedwith quarterly dummy variables.
This analysis should address the concern that the policy-induced treatment computed using
the ex-ante pending period is not representative of the ex-post effective change in patent
length. Therefore, the analysis uses the latter in the second stage regression, and it employs
the former to induce plausibly exogenous variation in the ex-post patent term change. As a
result, variation still comes from the original treatment of subsection 2.3.1 but the βk coeffi-
cients measure now the response of innovation outcomes to a 1-day change in ex-post effective
protection time.

The specification of the second stage regression is

Yj,t = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)T̃j,t + εj,t (22)
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Figure B.11: Marginal effect of 1more day of effective ex-post protection change on granted
patents

−.4

−.3

−.2

−.1

0

.1

N
um

be
r o

f G
ra

nt
ed

 P
at

en
ts

19
85

q1

19
85

q3

19
86

q1

19
86

q3

19
87

q1

19
87

q3

19
88

q1

19
88

q3

19
89

q1

19
89

q3

19
90

q1

19
90

q3

19
91

q1

19
91

q3

19
92

q1

19
92

q3

19
93

q1

19
93

q3

19
94

q1

19
94

q3

19
95

q1

19
95

q3

19
96

q1

19
96

q3

19
97

q1

19
97

q3

19
98

q1

19
98

q3

19
99

q1

19
99

q3

20
00

q1

20
00

q3

Quarterly Dates

Baseline at (t−1): 30.023

The plot shows the βk coefficients of specification (22) having as dependent variable quarter-t and
field-j number of granted patents. I omit the dummy for 1992Q3, which is the pre-treatment quarter.
Standard errors are clustered by technical field and 95% confidence bands are plotted. The first vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

where all the variables have the samemeaning as in specification (1), and T̃j,t is the treat-
ment based on the ex-post, realized effective average pending period computed for patents
filed in quarter-t and classified in field-j. In turn, the first stage regressions are

1(t=k)T̃j,t = ηj +

2000Q4∑
k=1985Q1

ψk1(t=k) +

2000Q4∑
k=1985Q1

δk1(t=k)Tj + uj,t ∀k (23)

whereTj is the usual treatment variable based on the ex-ante average pendingperiod. Fig-
ure B.11 plots the βk coefficients of (22) having as dependent variable the number of granted
patents. Results are fully consistent with the main evidence of section 3.92

B.2.8 Triple difference analysis with the standard deviation of the pending period
In this regression, I use a triple difference specification interacting the main treatment vari-
able Tj–i.e. the expected change in protection time (in days) for field j–with a dummy vari-
able taking value 1 if the standard deviation of the average pending period by technical field–
as computed using patents granted before the policy news–is above the median value across
technical fields. The aim of this specification is to corroborate the idea that the effects esti-
mated in the benchmark specification are genuinely related to the TRIPs-induced patent term
change, rather than to other factors. This would be the case if we observe that the magnitude
of the estimated coefficients increases when the "signal" from the policy is more precise–i.e.
the standard deviation of the average protection change is smaller. The specification of the

92This is the case for citations-weighted patents too. Results are not reported for space constraints.
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Figure B.12: Marginal effect of 1 more day of protection on granted patents - Triple differ-
ence specification
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The plot shows the βk coefficients of regression (24) having as dependent variable Pj,t, i.e. quarter-t
and field-j number of granted patents. I omit the dummy for 1992Q3, which is the pre-treatment
quarter. Standard errors are clustered by technical field and 95% confidence bands are plotted. The
first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line
refers to the quarter before the policy implementation (1995Q2).

regression is

Yj,t = αj + dσj≤σm +

2000Q4∑
k=1985Q1

γ1,k1(t=k) +

2000Q4∑
k=1985Q1

γ2,k1(t=k)dσj≤σm+

χTjdσj≤σm +

2000Q4∑
k=1985Q1

ψk1(t=k)Tj +

2000Q4∑
k=1985Q1

βk1(t=k)Tjdσj≤σm + εj,t

(24)

where all the variables follow the usual notation, σj is the field-specific standard devi-
ation of the pre-policy-news pending period, and σm is the median value of such standard
deviation across technical fields.

Figure B.12 and B.13 plot the β̂k coefficients from previous regression, having as depen-
dent variables the number of granted applications and citations-weighted patents, respec-
tively. The negative coefficients mean that the negative magnitude of the baseline DiD speci-
fication is stronger when dσj≤σm = 1, i.e. when the standard deviation of the average pending
period is below the median and the policy-induced treatment is more precise.

B.2.9 IV strategy
The IV strategy aims to address the potential endogeneity of the average ex-ante pending
period across technical fields. I link heterogeneous pending periods by technical field to two
factors. The first is differential congestion of the technical offices that examine patents from
different fields. The second is the different technical difficulty of the patent examination pro-
cess in different technical areas. To capture presumably exogenous variation in the average
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Figure B.13: Marginal effect of 1 more day of protection on citations-weighted granted
patents - Triple difference specification
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Baseline at (t−1): 152.74

The plot shows the βk coefficients of regression (24) having as dependent variable Cj,t, i.e. quarter-t
and field-j number of citations-weighted granted patents. I omit the dummy for 1992Q3, which is the
pre-treatment quarter. Standard errors are clustered by technical field and 95% confidence bands are
plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

pending period, I build two instruments: i) the technical field-specific share of patents classi-
fied as second filings before the policy news - which should capture pre-existing congestion
of the examination offices - and ii) the technical field-specific pending period at the European
Patent Office - to capture the technical difficulty of examination.93 The first-stage F-statistic
of the excluded instruments is 33.09. Figure B.14 shows results of the second stage regres-
sion for granted patents as outcome variable. Evidence is analogous for citations-weighted
patents (Figure B.15).

B.2.10 Inclusion of a flexible trend by 3-digit IPC class
Ideally, we would like to control for any field-specific and quarter-specific factor that may
affect innovation independently from the policy-induced change in effective patent length.
The inclusion of field × quarter fixed effects is of course not feasible, and Appendix B.1 has
shown how the inclusion of a field-specific liner trend, as in Abrams (2009), can severely bias
theDiD estimates if the data are not linear-in-levels before the policy. Given these restrictions,
the best available alternative is the inclusion of a flexible trend by 3-digit IPC class, which is a
broader definition of technical field than the one employed in the main text, in specification

93A patent application is defined as a second filing if its filing date at the USPTO is subsequent to its priority
date, i.e. its earliest filing date at any foreign patent office. Both instruments are computed using patents
granted between the 1st of January 1990 and the 31st of May 1992, i.e. before the policy news in 1992Q4, as
done for the treatment variable, in order to minimize potential endogeneity concerns.
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Figure B.14: Effect of 1 more day of protection on granted patents - IV
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The plot shows the βk coefficients of specification (1) where Tj is instrumented by i) congestion by
foreign patents, and ii) technical difficulty of examination. See Appendix B.2.9 for details. Standard
errors are clustered by technical field. 95% confidence bands are plotted. The first vertical line refers
to the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before
the policy implementation (1995Q2).

Figure B.15: Effect of 1 more day of protection on cit.-weighted patents - IV
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The plot shows the βk coefficients of specification (1) where Tj is instrumented by i) congestion by
foreign patents, and ii) technical difficulty of examination. See Appendix B.2.9 for details. Dependent
variable: 5-years citations-weighted patents filed in field j and quarter t. Standard errors are clustered
by technical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy imple-
mentation (1995Q2).
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Figure B.16: Effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of specification (25). Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

(1).94 In practice, the enriched specification is

Yj,t = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)Tj +
∑
f

2000Q4∑
k=1985Q1

dj∈f1(t=k) + εj,t (25)

where all the termshave the samemeaning as in (1). The new term
∑

f

∑2000Q4
k=1985Q1 dj∈f1(t=k)

collects all the interactions between 3-digit IPC dummy variables dj∈f and quarterly dum-
mies. A 3-digit IPC is indexed by f and dj∈f takes value one if the 4-digit field j belongs
to the 3-digit field f . The coefficients of interest remain the βk’s. Figures B.16 and B.17 plot
them for granted patents and citations-weighted patents as outcome variables, respectively.
Results are fully consistent with Section 3.

B.2.11 Triple difference with maintenance fees
In this triple difference specification, I interact the main treatment variable Tj with a dummy
variable discretizing the field-specific share of patents for which maintenance fees at 11.5
years from grant are paid. These patents are those for which the maximum patent term–
which is the one affected by the policy–is binding. In such classes, the treatment effect is
expected to be stronger in magnitude, as the relevance of the policy is higher. The specifica-
tion of the regression is

94For example, the 4-digit IPC "A23D" is "Edible Oils or Fats, e.g. Margarines Shortenings, Cooking Oils". It
is included in the 3-digit IPC "A23", "Food or Foodstuffs; Their Treatment, not covered by other classes" and in
the 1-digit IPC "A", "Human Necessities". It further includes two 8-digit IPCs: "A23D 7/00", "Edible oil or fat
compositions containing an aqueous phase, e.g. margarines", and "A23D 9/00", "Other edible oils or fats, e.g.
shortenings, cooking oils".
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Figure B.17: Effect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coefficients of specification (25). Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

Pj,t = αj + dRj>25% +

2000Q4∑
k=1985Q1

γ1,k1(t=k) +

2000Q4∑
k=1985Q1

γ2,k1(t=k)dRj>25%+

χTjdRj>25% +

2000Q4∑
k=1985Q1

ψk1(t=k)Tj +

2000Q4∑
k=1985Q1

βk1(t=k)TjdRj>25% + εj,t

(26)

where Pj,t is quarter-t and field-j number of granted patents, Tj is the field-specific treat-
ment described in Section 2.3.1, and dRj>25% is a dummy taking value 1 ifRj , the field-specific
percentage of patents for which the last maintenance fee at 11.5 years since the grant is paid,
is above 25%. I omit the dummy for 1992Q3, which is the pre-treatment quarter. Standard
errors are clustered by technical field and 95% confidence bands are plotted. Figure B.18
shows that the results go in the expected direction.

B.2.12 Placebo date
In this subsection, I present the results of a further robustness analysis at the technical field-
level. I run the same specification (1) of Subsection 3.1.1, but I shift everything 10 years
before the actual treatment time, where no effect is supposed to be observed. Figure B.19
shows that this is the case.

B.2.13 Alternative specifications of the model
This subsection presents the results obtained from the estimation of model (1) with differ-
ent transformations of the outcome variable. or the results of the estimation of a negative
binomial model for count data.
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Figure B.18: Effect of 1 more day of protection on granted patents - Triple difference spec-
ification
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The plot shows the βk coefficients of specification (26) having as dependent variable quarter-t and
field-j number of granted patents. Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure B.19: Marginal effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of the specification (1) having as dependent variable quarter-t and
field-j number of granted patents. The sample covers 1975Q1-1990Q4. Standard errors are clustered
by technical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before
the policy news (1982Q3) and the second vertical line refers to the quarter before the policy imple-
mentation (1985Q2).

20



Figure B.20: Marginal effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of the specification (27) having as dependent variable the log. of
one plus quarter-t and field-j number of granted patents. Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

Natural logarithms The first alternative specification of regression (1) is to take the out-
come variable in natural logarithms rather than in levels. Given the presence of zeroes in the
data, I run the specification

ln(1 + Pj,t) = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)Tj + εj,t (27)

where all the variables have the same meaning as in subsection 3.1.The ln(1 + Pj,t) trans-
formation is chosen, among the possible alternatives, e.g. ln(10+Pj,t) or ln(0.1+Pj,t), because
it is the one that implies the skewedness of the dependent variable closest to zero. Results
are reported here for granted patents as outcome.95 Figure B.20 plots the βk coefficients of
specification (27) when the regression is run considering all technical fields. However, given
the presence of many zeros in the data, I also run the same regression excluding from the
sample the fields with a total number of patents below the sample median. The remaining
half of the fields generates more than 90% of total patents in the sample. Figure B.21 plots the
βk coefficients of specification (27) on such restricted sample, showing that results of section
3 of the paper are largely confirmed.

Negative binomial model The second alternativemodel to specification (1) is to use a neg-
ative binomial model for count data. The explanatory variables are the same as in the linear
specification, i.e. the assumed model is

95In the Appendix E.1.5, there is equivalent evidence for citations-weighted patents, and unique number of
inventors.
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Figure B.21: Marginal effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of the specification (27) having as dependent variable the log. of
one plus quarter-t and field-j number of granted patents. The sample covers only technical fields
with a number of total patents above the sample median. Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

E[Pj,t|Xj,t] = eαj+
∑2000Q4

k=1985Q1 γk1(t=k)+
∑2000Q4

k=1985Q1 βk1(t=k)Tj (28)

Figure B.22 plots the βk coefficients of specification (28). These are fully consistent with
the evidence shown above for the linear models with logs-transformed outcome variable.
When the sample is restricted to the technical fields with total patenting above the median–
in order to take care of the many zeros in the full sample–the evidence (Figure B.23) is even
closer to the one presented in section 3 of the paper. Appendix E.1.5 reports the results for
the negative binomial model using citations-weighted patents and the unique number of
inventors as outcome variables. Evidence is also in these cases fully consistent.

Additional transformations Finally, Appendix E.1.5 reports the results obtained i) using
the inverse sine transformation of the outcome variable in place of the natural logarithms,
and ii) expressing the outcome variable in percentage deviations from the number of patents
filed in the specific technical field in 1985Q1. In both cases, results are analogous to the
ones shown here. Appendix E.1.6 reports the results of restricting the estimation sample to
technical fields with a number of quarterly patents above 25 and below 500 in every quarter.
The logic of this sample restriction is to reduce the skewedness of the outcome variable, and
keep the same linear-in-levels specification of section 3 of the paper. Results are robust.
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Figure B.22: Estimated treatment coefficients of a negative binomial model
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Baseline at (t−1): 31.184

The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t and
field-j number of granted patents. Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure B.23: Estimated treatment coefficients of a negative binomial model
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t
and field-j number of granted patents. The sample covers only technical fields with a number of total
patents above the sample median. Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure B.24: Marginal effect of 1 more day of protection on granted patents - No pharma-
related fields
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t and
field-j number of granted patents. Pharma-related technical fields A01H, A61K, A61P, C07D, C02F,
C07G, C07H, C07J, C07K, C12M, C12N, C12P, C12Q, C12S, and G01N are dropped from the sample.
Standard errors are clustered by technical field. 95% confidence bands are plotted. The first vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

B.2.14 Dropping technical fields related to the pharmaceutical sector
Kyle and McGahan (2012) point out that some US pharmaceutical firms increased R&D in-
vestment after the TRIPs because the new regulations imposed on developing countries the
patentability of several pharmaceutical products that were previously not patentable. In or-
der to reduce the concerns that the results presented in Section 3 of the paper are biased or
driven by such fields, I report here the results of specification 1 on a restricted sample that
excludes all technical fields whose technologies can be related to the pharmaceutical and
biotech. industries.96 Figure B.24 shows the results for granted patents as dependent vari-
able, and Figure B.25 the results for citations-weighted patents. The evidence of section 3 is
virtually unaffected.

B.3 Firm-level analyses
B.3.1 Number of patents
Figure B.26 shows βk coefficients of the firm-level difference-in-difference specification (2).
The βk capture the effect of a one-day increase of patent length on yearly firm-level patenting,
in percentage deviation from the 1991 baseline average. Evidence is consistent with the be-
havior of patenting observed at the technical field level. On average, a 30 days future increase
of patent length decreases yearly patenting by 2.6% at the firm level before implementation.

96These are the 4-digit IPCs: A01H, A61K, A61P, C07D, C02F, C07G, C07H, C07J, C07K, C12M, C12N, C12P,
C12Q, C12S, and G01N.
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Figure B.25: Marginal effect of 1 more day of protection on cit.-weighted patents - No
pharma-related fields
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t and
field-j number of citations-weighted granted patents. Pharma-related technical fields A01H, A61K,
A61P, C07D, C02F, C07G, C07H, C07J, C07K, C12M, C12N, C12P, C12Q, C12S, and G01N are dropped
from the sample. Standard errors are clustered by technical field. 95% confidence bands are plotted.
The first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical
line refers to the quarter before the policy implementation (1995Q2).

This estimate is close to the field-level effect. After the implementation, the impact of the
same policy change implies a decrease of yearly firm-level patenting of 2.1%.

B.3.2 Citations-weighted patents
Figure B.27 shows that firm-level results are robust to the use of citation-weighted patents as
a measure of innovation. The citations-weighted version of the patent count is the one pro-
vided in the NBER Patent database, and computed according to Hall, Jaffe and Trajtenberg
(2001).

B.3.3 Private economic value of patents
I match the dataset by Kogan et al. (2017) with the NBER patent database using USPTO
patent numbers, and I aggregate patent values at the firm-level and by year. Figure B.28
plots the βk coefficients of specification (2), run having as dependent variable one plus the
natural logarithmof such patent value. The estimated effects are consistentwith the evidence
obtained for patents.

B.3.4 Negative binomial model for patent counts
An alternative model specification to the linear regression (2) is to use a negative binomial
model for count data. The dependent variable is the number of subsequently-granted patents
filed by firm i in year t. The specification of the conditional mean of the model is:

E[Pi,t|Xi,t] = eαi+
∑

j η1,jsicj+
∑

j

∑2000
k=1987 η2,j,ksicj1(t=k)+

∑
age∈A δage×

eθln(1+Si,t)+
∑2000

k=1987 γk1(t=k)+
∑2000

k=1987 βk1(t=k)Ti
(29)
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Figure B.26: Marginal effect of 1 more day of protection on firm-level patenting
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The plot shows the βk coefficients of regression (2) having as dependent variable ln(1+Pi,t), wherePi,t is year-t
and firm-i number of granted patents. Standard errors are clustered by 2-digit SIC industry. 95% confidence
bands are plotted. The first vertical line lies just before the news year (1992) and the second vertical line lies
just before the implementation year (1995).

Figure B.27: Marginal effect of 1 more day of protection on firm-level citations-weighted
granted patents

−.003

−.002

−.001

0

.001

.002

ln
(1

 +
 C

it.
−W

ei
gh

te
d 

P
at

en
ts

)

−5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

Year

Baseline at (t−1): 2.399

The plot shows the βk coefficients of regression (2) having as dependent variable year-t and firm-i
citations-weighted granted patents. Standard errors are clustered by 2-digit SIC industry. 95% con-
fidence bands are plotted. The first vertical line lies just before the news year (1992) and the second
vertical line lies just before the implementation year (1995).
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Figure B.28: Marginal effect of 1 more day of protection on firm-level patent value
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The plot shows the βk coefficients of regression (2) having as dependent variable year-t and firm-i
total patent value. Standard errors are clustered by 2-digit SIC industry. 95% confidence bands are
plotted. The first vertical line lies just before the news year (1992) and the second vertical line lies just
before the implementation year (1995).

Figure B.29 plots the βk coefficients of specification (29). These are fully consistent with
the evidence shown in subsection 3.2 of the paper.

B.3.5 Within-firm analysis of innovation outcomes
The aim of this analysis is to study how a patent term change, heterogeneous by technical
field, affects innovation activity within a specific firm, across technical fields. The first step is
to build a panel dataset where the cross-sectional unit is a firm in a given technical field (firm
× technical field). The time-dimension features 5 periods: (0) 1983-1985, (1) 1986-1988, (2)
1989-1991, (3) 1992-1995, (4) 1996-1999. Periods 0 and 1 are used to check pre-trends in the
regression, period 2 is the pre-treatment period, period 3 is the period between the policy
news and the policy implementation of 1995, and period 4 is the post-implementation period.
The starting point for this panel dataset is the NBER Patent Database, matching patents to
COMPUSTAT identifiers of applicant firms. I add up granted patents, citations-weighted
patents, and patent value by firm, technical field, and time period, using the 4-digit IPC class
reported in the NBER Patent Database for each patent. The specification of the regression is

ln(1 + Yi,j,p) = αi + χj +
∑
age∈A

δage +
4∑

p=1

γk1(p=k) +
4∑

p=1

ηk1(p=k)si,j+

+
4∑

p=1

βk1(p=k)(Tj/100) +
4∑

p=1

ξk1(p=k)si,j(Tj/100) + εi,j,p

(30)

where i indexes firms, j technical fields, and p the time period. αi are firm fixed effects,
χj are technical field fixed effects, δage are fixed effects by median age of the firm during
the period, 1(p=k) is an indicator taking value 1 when period p = k, Tj is technical field j’s
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Figure B.29: Estimated treatment coefficients of a negative binomial model
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The plot shows the βk coefficients of the specification (29) having as dependent variable quarter-t
and firm-i number of granted patents. Standard errors are clustered by 2-digit SIC industry code.
95% confidence bands are plotted. The first vertical line lies just before the news year (1992) and the
second vertical line lies just before the implementation year (1995).

treatment variable described in subsection 2.3 of the paper, si,j is the share of patents by
firm i produced in technical field j in the years before the policy news, i.e. up to 1991, and
εi,j,p is an idiosyncratic error term. In the specification, I allow for the ex-ante technological
position of the firm across technical fields to influence the trends in innovation outcomes
along the same dimension. The outcome variables Yi,j,p used in the regression are: Pi,j,p, i.e.
the number of patents granted to firm i in field j and filed in period p; Ci,j,p, i.e. the citations-
weighted patents granted to firm i in field j and filed in period p; Vi,j,p, i.e. the economic
value of patents granted to firm i in field j and filed in period p; fi,j,p, i.e. the share of firm
i’s period p’s patents classified in technical field j out of the total number of firm i’s, period
p’s patents. fi,j,p is not regressed in natural logs but in levels.

The coefficients in Panel B of Table B.3 confirm that the treatment is unrelated to differ-
ential trends in innovation across technical fields. The coefficients in Panel C capture the
baseline effect of the policy and provide evidence that firms tend to reallocate innovation
effort towards technical fields with a more favorable patent term. This is clearly consistent
with the patterns documented in subsections 4.1 and 3.2.
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Table B.3: Within-firm cross-technical fields effect of a patent term change

(1) (2) (3) (4)
Patents Citations Value Patent Share

Panel A: Interaction coefficients
1(p=0) × si,j × (Tj/100) -0.09541∗ -0.58772∗∗∗ -0.24771∗∗ 0.00006

(0.04925) (0.17764) (0.11098) (0.04802)

1(p=1) × si,j × (Tj/100) -0.01424 -0.20658∗∗ 0.01926 -0.03135
(0.02765) (0.10376) (0.05532) (0.03838)

1(p=3) × si,j × (Tj/100) -0.07684∗∗∗ -0.12578∗ -0.23457∗∗∗ 0.00077
(0.02088) (0.07564) (0.04986) (0.03088)

1(p=4) × si,j × (Tj/100) -0.01909 0.17715∗∗ -0.11911∗ -0.02483
(0.02329) (0.08227) (0.06210) (0.03253)

Panel B: Pre-trends
1(p=0) × (Tj/100) -0.00006 -0.00078 0.00002 -0.00001

(0.00015) (0.00049) (0.00040) (0.00004)

1(p=1) × (Tj/100) -0.00002 -0.00052∗ 0.00007 0.00004
(0.00009) (0.00028) (0.00023) (0.00003)

Panel C: Policy-impact
1(p=3) × (Tj/100) -0.00082∗∗∗ -0.00197∗∗∗ -0.00209∗∗∗ -0.00037∗∗∗

(0.00010) (0.00031) (0.00030) (0.00004)

1(p=4) × (Tj/100) -0.00129∗∗∗ -0.00165∗∗∗ -0.00325∗∗∗ -0.00070∗∗∗
(0.00014) (0.00044) (0.00043) (0.00004)

Observations 7,687,980 7,687,980 7,687,980 4,874,231

The Table reports the OLS estimates of specification (30). See subsection B.3.5 for details. Statistical
significance levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)
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Figure B.30: Effect of 1 more day of protection on patents - HHI as interactor
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The plot shows the βk coefficients of regression (31) having as dependent variable quarter-t and field-
j number of granted patents. Standard errors are clustered by technical field. 95% confidence bands
are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

B.4 Evidence on the mechanism
B.4.1 Evidence on concentration as an interactor
To test whether the patent term change has stronger effects on innovation inmore competitve
fields, I run the following triple difference specification

Yj,t = αj + κHHIj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

ηk1(t=k)HHIj

+

2000Q4∑
k=1985Q1

θk1(t=k)Tj +

2000Q4∑
k=1985Q1

βk1(t=k)TjHHIj + εj,t

(31)

whereYj,t will be either the number of patents or citations-weightedpatents,αj are techni-
cal field fixed effects, 1(t=k) are quarterly dummyvariables,HHIj is theHerfindahl-Hirschman
Index of concentration based on the share of patents granted to different applicants in a given
field before the policy news, and Tj is the policy-induced, field-specific change in effective
protection time. Since the HHI is smaller in less concentrated technical fields, for the treat-
ment to affect more strongly innovation in more competitive fields it should be the case that
the βk’s of previous regression are positive.

Figure B.30 plots the estimated βk coefficients of the previous specification for Yj,t being
the number of granted patents in field j and quarter t. This confirms that in technical fields
where the degree of concentration is lower, innovators respond more strongly to patent pro-
tection time. Evidence for citations-weighted patents is identical (Figure B.31).
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Figure B.31: Marginal effect of 1 more day of protection on citations-weighted patents -
HHI as interactor
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The plot shows the βk coefficients of regression (31) having as dependent variable quarter-t andfield-j
5-years citations-weighted patents. See Appendix B.4.1 for all the details about the empirical strategy
and the specification. Standard errors are clustered by technical field. 95% confidence bands are
plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

B.4.2 Evidence on entry as an interactor
As a further test for the fact that the change in patent length affects innovation more strongly
in more competitive fields, I run the triple difference specification (B.31) with sEj –the per-
centage of patents that are granted to applicants that have never patented in a given field,
computed before the policy news–in place of HHIj as interactor. Since the sEj is higher in
technical fields where entry intensity is higher, for the working hypothesis to be verified it
should be the case that the βk’s of previous regression are negative.

Figure B.32 plots the estimated βk coefficients. Using entry rates as a measure of com-
petition, it is not possible to conclude that the treatment affects innovation more strongly in
more competitive fields. Results are the same using citations-weighted patents as outcome
(see Figure B.33).

B.4.3 Evidence on concentration as outcome
To test the effect of a change in patent length on competition, I run specification (1) using
as dependent variable HHIj,t, i.e. the Herfindahl–Hirschman Index based on the flow of
patents filed by different applicants in quarter t and field j. If competition falls as a conse-
quence of a longer patent length, the post-implementation estimated βk’s of (1) should be
positive. A lower Tj should increase competition and lower the HHI. Figure B.34 plots the
estimated βk’s, and shows that concentration is unaffected by the policy.
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Figure B.32: Effect of 1 more day of protection on patents - Entry rate as interactor
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The plot shows the βk coefficients of regression (31) having as dependent variable quarter-t and field-
j number of granted patents and sEj as interactor of Tj . Standard errors are clustered by technical field.
95% confidence bands are plotted. The first vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure B.33: Marginal effect of 1 more day of protection on citations-weighted patents -
Entry intensity as interactor
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The plot shows the βk coefficients of regression (31) having as dependent variable quarter-t and field-
j 5-years citations-weighted patents and sEj as interactor of Tj . See Appendix B.4.2 for all the details
about the empirical strategy and the specification. Standard errors are clustered by technical field.
95% confidence bands are plotted. The first vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure B.34: Marginal effect of 1 more day of protection on the HH Index of concentration
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The plot shows the βk coefficients of regression (1) having as dependent variable quarter-t and field-j
Herfindahl–Hirschman index. Standard errors are clustered by technical field. 95% confidence bands
are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).

B.4.4 Evidence on entry as outcome
As an alternative test of the impact of patent length on competition, I run specification (1)
using entry rate as outcome. To build the entry intensity measure, I determine which appli-
cants in quarter-t and field-j are new to the field (entrants).97 Entry intensity is defined as
the share of granted patents filed by new applicants. I run specification (1) using entry as
outcome variable. Figure B.35 shows that the latter does not respond to the policy. Evidence
on the absolute number of new applicants and on the absolute number of patents granted to
new applicants can be found in Figures B.36 and B.37.

B.4.5 Evidence on the average quality of incumbents’ patents
An extension of patent length may increase the attitude of incumbents to use patent rights
to foreclose the entry of innovators. However, this should be reflected in a fall of the average
quality of patents granted to incumbents, both in absolute terms and relative to the quality
of patents granted to new entrants. Figure B.38 shows the results of specification (1) having
as dependent variable the average quality of patents granted to incumbent firms. In abso-
lute terms, the average quality of incumbents’ patents slightly falls in response to a patent
term increase. However, the effect is quantitatively weak and barely different from zero sta-
tistically. Figure B.39 shows the results of the same regression using as dependent variable
the average quality of patents granted to incumbent firms divided by the average quality
of patents granted to new applicants. In relative terms, the average quality of incumbents’

97New applicants at the quarterly level are determined using STAN harmonized applicant’s identifiers from
the EPO Worldwide Bibliographic Database available in PATSTAT and selecting, among the applicants ob-
served in a given field-quarter, those that are never observed before.
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Figure B.35: Marginal effect of 1 more day of protection on the share of total grants to new
applicants
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The plot shows the βk coefficients of regression (1) having as dependent variable quarter-t and field-j
share of granted patents filed by new applicants (entrants). Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

Figure B.36: Marginal effect of 1 more day of protection on the number of new applicants
(entrants)
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The plot shows the βk coefficients of regression (1) having as dependent variable quarter-t and field-j
number of new applicants (entrants). Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure B.37: Marginal effect of 1 more day of protection on the number of grants by new
applicants
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The plot shows the βk coefficients of regression (1) having as dependent variable quarter-t and field-j
number of granted patents filed by new applicants (entrants). Standard errors are clustered by tech-
nical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the
policy news (1992Q3) and the second vertical line refers to the quarter before the policy implemen-
tation (1995Q2).

patents shows no reaction to the policy change. Overall, I interpret this evidence as speaking
against the anti-competitive use of longer patents by incumbent innovators.

B.4.6 Within-field backward citation intensity as interactor
To test H1, I run the triple-difference specification (31) having as interactor of the treatment
Tj the within-field j share of patents Sj that have at least one applicant-made backward cita-
tion to at least one previous patent classified in the same technical field j. Sj replaces HHIj
in (31) and is computed before the policy news. Figure B.40 reports the estimated βk coeffi-
cients, confirming the validity of H1 and the evidence of subsection 4.2 of the paper.

B.4.7 Within-field backward citations as an outcome
This subsection shows evidence in support of H2 by running specification (1) on two out-
comes. First, the number of patents, by technical field and quarter of application, that have
at least one applicant-made backward citation to prior patents classified in the same tech-
nical field (Figure B.41). Second, the number of applicant-made backward citations from
patents classified in field j and filed in quarter t to other patents classified in the same field
and filed beforehand (Figure B.42). Figures B.41 and B.42 confirm the patterns documented
in subsection 4.2 of the paper.

B.4.8 Direct within-field links among pre- and post-implementation innovations
In this subsection, I try to provide evidence of the presence of a direct link between inno-
vations produced during the pre- and post-implementation periods in the same technology
field. My strategy is to count the number of applicant’s backward citations from patents filed
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Figure B.38: Marginal effect of 1more day of protection on the average number of citations
per patent by incumbents
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The plot shows the βk coefficients of regression (1) having as dependent variable the average number
of forward citations received by quarter-t and field-j patents granted to incumbent innovators. Stan-
dard errors are clustered by technical field. 95% confidence bands are plotted. The first vertical line
refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).

Figure B.39: Marginal effect of 1more day of protection on the average number of citations
per patent by incumbents relative to those of entrants
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The plot shows the βk coefficients of regression (1) having as dependent variable the average number
of forward citations received by quarter-t and field-j patents granted to incumbent innovators divided
by the average number of forward citations received by quarter-t and field-j patents granted to new
entrants. Standard errors are clustered by technical field. 95% confidence bands are plotted. The first
vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers
to the quarter before the policy implementation (1995Q2).
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Figure B.40: Heterogeneity analysis for the same-field citation intensity - Granted patents
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The plot shows the βk coefficients of regression Pj,t = ψr + αj + κSj +
∑2000Q4

k=1985Q1 γk1(t=k) +∑2000Q4
k=1985Q1 ηk1(t=k)Sj +

∑2000Q4
k=1985Q1 θk1(t=k)Tj +

∑2000Q4
k=1985Q1 βk1(t=k)TjSj + εj,t. Pj,t is quarter-t, and

field-j number of granted patents, Tj is the field-specific treatment described in Section 2.3.1, and
Sj is the pre-announcement share of patents of field j that have at least one applicant-made back-
ward citation to patents in field j. I omit the dummy for 1992Q3, which is the pre-treatment quarter.
95% confidence bands are plotted. The first vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure B.41: Marginal effect of 1 more day of protection on the number of patents with at
least one applicant-made backward citation to the same field
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The plot shows the βk coefficients of specification (1) having as dependent variable the number of
patents in field j and quarter t that have at least one applicant-made backward citations to prior
patents classified in the same technical field. Clustered 95% confidence bands are plotted. The first
vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers
to the quarter before the policy implementation (1995Q2).
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Figure B.42: Marginal effect of 1 more day of protection on applicant-made backward ci-
tations to the same field
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The plot shows the βk coefficients of specification (1) having as dependent variable the number
applicant-made backward citations made by patents in field j and quarter t to prior patents clas-
sified in the same technical field. Clustered 95% confidence bands are plotted. The first vertical line
refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter
before the policy implementation (1995Q2).

in 1995Q3-1999Q4 to patents filed in 1992Q4-1995Q2 and classified in the same technological
field as the citing patent. Then, I relate the change in protection by technical field to three
outcomes: i) the share of patents filed in the post-implementation phase that have at least one
applicant-made, within-field backward citation to a patent filed in the pre-implementation
period; ii) the total number of such citations; and iii) the total number of such backward cit-
ing patents. As a control group, I use the same technical fields 10 years before, i.e. 1985Q3-
1989Q4 and 1982Q4-1985Q2. The difference-in-difference regression equation is

Yj,p = dp + δTj + βdpTj + εj,p (32)

where dp is a dummy variable taking value 1 if the outcome refers to the 1992Q4-1999Q4 pe-
riod, and value 0 for 1982Q4-1989Q4. Tj is the usual policy-driven change in patent length
for technical field j, and β is the difference-in-difference coefficient of interest. Columns (1),
(3), and (5) of Table B.4 report the estimated coefficients of the previous regression for the
share of patents, the number of backward citations, and the number of patents satisfying
the criteria outlined in the previous paragraph. Standard errors are clustered by techno-
logical field. All outcome variables confirm H2. Columns (2), (4), and (6) augment the
previous specification with fixed effects by technical field. Indeed, the negative DiD esti-
mates imply that fields with a positive treatment, i.e. with a fall in innovation during the
pre-implementation phase, show a lower backward citations intensity to patents produced
exactly in the pre-implementation period and in the same technological field.
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Table B.4: Direct evidence on within-field intertemporal technology link

(1) (2) (3) (4) (5) (6)
Pat. Share Pat. Share Cit.s Cit.s Pat.s Pat.s

dpost 0.22399∗∗∗ 0.21880∗∗∗ 1080.02876∗∗∗ 1108.23022∗ 138.34799∗∗∗ 141.92759∗
(0.01945) (0.02256) (396.26864) (580.73722) (51.78394) (75.87705)

Tj -0.00004 -0.02388 -0.00722
(0.00003) (0.01588) (0.00486)

dpost × Tj -0.02296∗∗∗ -0.02194∗∗∗ -170.02418∗∗ -174.95083 -20.99621∗∗ -21.60771
(0.00375) (0.00444) (74.18362) (108.83809) (9.74579) (14.29485)

Tech. field F.E. Y Y Y
Obs. 1211 1211 1211 1211 1211 1211

The Table reports the OLS estimates of specification (32). See B.4.8 for all the details. Standard errors
are clustered by technical field. Statistical significance levels: ∗(p < 0.10),∗∗ (p < 0.05),∗∗∗ (p < 0.01)

B.4.9 Does the technology link act within-firm or between-firms?
In this subsection, I detail the steps of the decomposition of subsection 4.2.2 of the paper.
First, I define the theoretical objects of the decomposition.

∆P̂A
j,p ≡ E[Pj,p|T = Tj]− E[Pj,p|T = 0] (33)

is the difference between expected patents–filed in period p and field j–conditional on
the policy-induced change in protection time Tj , and expected patents absent any treatment.
This represents the aggregate impact of the policy change on innovation in period p. ∆P̂A

j,p

can be decomposed in two parts. The first is policy-driven innovation by incumbent firms
(∆P̂A,I

j,p ), and the second is the contribution of entrant firms (∆P̂A,E
j,p ), i.e.

∆P̂A
j,p = ∆P̂A,I

j,p +∆P̂A,E
j,p (34)

Further, I assume that ∆P̂A,I
j,p can be broken down into: 1) ∆P̂A,I,T

j,p , i.e. the direct impact of
the patent term change on innovation, 2) ∆P̂A,I,B

j,p , i.e. the between-firms component gener-
ated by the aggregate policy-driven innovation from the previous period (∆P̂A

j,p−1), and 3)
∆P̂A,I,W

j,p , the within-firm component driven by within-firm technological linkages between
past and present innovation. So,

∆P̂A,I
j,p = ∆P̂A,I,T

j,p +∆P̂A,I,B
j,p +∆P̂A,I,W

j,p (35)

I assume that for entrant firms the within-firm component of their contribution to the aggre-
gate effect is 0. This leads to the following decomposition
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∆P̂A,E
j,p = ∆P̂A,E,T

j,p +∆P̂A,E,B
j,p (36)

Finally, define the relative contribution of incumbents to the total effect of the policy in
period p as

sIp =
∆P̂A,I

j,p

∆P̂A
j,p

(37)

The second step concerns the estimation of these objects. The main dataset for this is the
firm× technical field panel dataset described in Appendix B.3.5. The cross-sectional unit is a
firm in a given technical field (firm× technical field) and there are 5 time-periods: (0) 1983-
1985, (1) 1986-1988, (2) 1989-1991, (3) 1992-1995, (4) 1996-1999. To estimate ∆P̂A

j,3, i.e. the
aggregate policy impact in period (3), I consolidate the data by technical field and period,
and I run the specification

Pj,p = αj +
3∑

k=0

γk1(p=k) +
3∑

k=0

βk1(p=k)Tj + εj,p (38)

All the variables have the same meaning as in specification (1) of Section 3, and Pj,p is the
number of granted patents filed in period p and classified in technical field j. Notice that the
post-implementation period is excluded, and the regression is run including all firms in the
sample regardless of when they enter, i.e. start innovating. ∆P̂A

j,3 is estimated according to
definition (33) using the linear specification (38).

Then, I estimate P̂A,I
j,3 , i.e. the contribution of incumbent firms to the total effect in period

(3), by aggregating the data by technical field as above, but excluding patents by firms that
start innovating in period (3) itself, i.e. the entrants in period (3). I run specification (38)
on such sample, and I estimate ∆P̂A,I

j,3 using expression (33), given the new parameter esti-
mates. Finally, the contribution of entrants to the aggregate policy effect in period (3) can be
determined residually using (34).

Under the assumption that the between-firms policy-driven spillover is at work in the
post-implementation period only, for period (3) expressions (35) and (36) can be rewritten
as ∆P̂A,I

j,3 = ∆P̂A,I,T
j,3 and ∆P̂A,E

j,3 = ∆P̂A,E,T
j,3 . Once we have the estimated ∆P̂A,I

j,3 and ∆P̂A,E
j,3

from the previous steps, these coincide with the direct policy effect.
To estimate∆P̂A

j,4, i.e. the aggregate policy impact in period (4), I consolidate the data by
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technical field and period and I run the specification

Pj,p = αj +
4∑

k=0

γk1(p=k) +
4∑

k=0

βk1(p=k)Tj + εj,p (39)

All the variables have the same meaning as in specification (1) of Section 3, but now
specification (39) includes also period (4), differently from specification (38). Again, all
firms are included, regardless of when they start innovating. ∆P̂A

j,4 is estimated according to
definition (33) using the linear specification (39).

Then, I estimate P̂A,I
j,4 , i.e. the contribution of incumbent firms to the total effect in pe-

riod (4), by aggregating the data by technical field as above, but excluding patents by firms
that start innovating in period (4) itself, i.e. the entrants in period (4). I run specification
(39) on such sample, and I estimate ∆P̂A,I

j,4 using expression (33), given the new parameter
estimates. Finally, the contribution of entrants to the aggregate policy effect in period (4)
can be determined residually using (34). The relative contribution of incumbents to the total
post-implementation policy effect is ŝI4 =

∆P̂A,I
j,4

∆P̂A
j,4

.
To isolate the direct effect of the policy on innovation in the post-implementation period

for the case of incumbents, I follow the strategy described in subsection 4.4 and I augment the
baseline difference-in-difference specification by lagged patenting in the field in the previous
period, interacted with period-specific dummy variables. These terms capture the impact of
the lagged spillover on innovation. So, the specification is

Pj,p = αj +
4∑

k=0

γk1(p=k) +
4∑

k=0

βk1(p=k)Tj +
4∑

k=0

ηk1(p=k)Pj,p−1 + χPj,p−1 + εj,p (40)

The regression is run excluding from the sample patents from new entrants. Using def-
inition (33) once more, I isolate the direct effect of the policy on incumbents, net of the in-
tertemporal effects generated by the within and between components, i.e. ∆P̂A,I,T

j,4 . I assume
that the direct effect of the policy affects entrants proportionally to their contribution to the
total post-implementation effect. Therefore, I compute ∆P̂A,E,T

j,4 =
1−ŝI4
ŝI4

∆P̂A,I,T
j,4 .

Equation (36) can be used to infer ∆P̂A,E,B
j,4 = ∆P̂A,E

j,4 −∆P̂A,E,T
j,4 , i.e. the contribution of

the between-firms technological spillover to aggregate entrants’ post-implementation inno-
vation. Assuming that such effect is proportional to the aggregate policy-induced innovation
from the previous period, I can retrieve such coefficient of proportionality as κ̂B =

∆P̂A,E,B
j,4

∆P̂A
j,3

,

and use it to infer∆P̂A,I,B
j,4 , i.e. the between-firms component of the aggregate policy impact

for incumbent firms in period (4), as ∆P̂A,I,B
j,4 = κ̂B

ŝI4
1−ŝI4

∆P̂A
j,3. The final step is to residu-

41



Figure B.43: Direct marginal effect of 1 more day of protection on citations-weighted
patents
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The plot shows in black the βk coefficients of the augmentedDiD specification (5) and in gray the βk coefficients
of specification (1), having as dependent variable quarter-t and field-j number of citations-weighted granted
patents. Standard errors are clustered by technical field and 95% confidence bands are plotted. The first vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before
the policy implementation (1995Q2).

ally infer from expression (35) the contribution of the within-firm internality in period 4 as
∆P̂A,I,W

j,4 = ∆P̂A,I
j,4 −∆P̂A,I,T

j,4 −∆P̂A,I,B
j,4 , where all the terms on the right hand side are known

from previous calculations.
Therefore, the aggregate policy impact in period (4) can be decomposed as

∆P̂A
j,4 = ∆P̂A,I,T

j,4 +∆P̂A,E,T
j,4︸ ︷︷ ︸

Direct policy effect

+∆P̂A,I,B
j,4 +∆P̂A,E,B

j,4︸ ︷︷ ︸
Between-firms spillover

+ ∆P̂A,I,W
j,4︸ ︷︷ ︸

Within-firm internality

B.4.10 Additional results from the augmented DiD specification
In this subsection I estimate specification (5), reported below, having as dependent variable
either citations-weighted patents or the quarter- and field-specific proxy of R&D effort based
on the number of inventors listed on patents.

Yj,t = αj +
∑
k

γk1(t=k) +
∑
k

βk1(t=k)Tj +
∑
k

ψk1(t=k) P̄j,k−16:k−1︸ ︷︷ ︸
≡(1/16)

∑k−1
q=k−16 Pj,q

+εj,t (41)

Figures B.43 and B.44 report the results and they confirm the findings of subsection 4.4.
Specifically, the direct effect of adopting a longer patent length is positive on quality-adjusted
innovation andR&D effort after policy implementation. While news of a future patent length
extension generates a decline in innovation and R&D until implementation.
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Figure B.44: Direct marginal effect of 1 more day of protection on R&D effort
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The plot shows in black the βk coefficients of the augmentedDiD specification (5) and in gray the βk coefficients
of specification (1), having as dependent variable quarter-t and field-j unique number of inventors listed on
granted patents. Standard errors are clustered by technical field and 95% confidence bands are plotted. The
first vertical line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

B.4.11 Direct effect of patent length vs. Technology disclosure externality in driving the
post-implementation effect

The aim of this subsection is to provide further empirical support to the findings of sub-
section 4.4 of the paper. Specifically, I assess potential endogeneity concerns raised by the
introduction of a lagged innovation term in specification (5). Also, I exploit the results of
this additional analysis to estimate the elasticity of post-implementation innovation to a 1%
change in innovation in the “news” period.

For this analysis, I aggregate the sample in 5 periods: (1) 1981Q1-1984Q4 and (2) 1985Q1-
1988Q4 (control periods); (3) 1989Q1-1992Q3 (pre-news period); (4) 1992Q4-1995Q2 (post-
news, pre-implementation period); and (5) 1995Q3-2000Q4 (post-implementation period).
The primary rationale of this aggregation is the reduction of the computational burden of the
instrumental variable analysis, which is very heavy on the quarterly sample due to the high
number of external instruments. As a first step, I run the triple-difference specification (3)
having as dependent variable the number of patentsPj,p classified in field j and applied for in
period p = 1, 2, 3, 4, 5. I store the field- and period-specific fitted values P̂j,p of this regression,
which captures the potentially heterogeneous effect of Tj on patenting, depending on the
degree of technological dependence of the field. In the second step, I run the augmented
DiD specification

Pj,p = αj + γp +
5∑

k=2

βp=kTj + χTj +
5∑

k=2

θp=kPj,p−1 + ψPj,p−1 +Xj,tδ + εj,t (42)
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The specification is similar in spirit to (1) but it controls for the period-specific effect of the
technological spillover, proxied by the flow of innovation generated in the same field during
the previous period. αj are field fixed effects, γp are period fixed effects, βp=k capture the
period-specific impact of the change in patent length Tj , and θp=k captures the period-specific
effect of the externality term Pj,p−1, in excess of the baseline impact ψ. Xj,t includes the
within-field backward citations intensity variable interacted with period-specific dummies.
Since the flow of innovation in the previous periodmight be endogenous, I instrument Pj,p−1

by P̂j,p−1, the fitted values of specification (3) run on the aggregated sample.
Table B.5 reports the estimation results. The first column shows, for sake of comparison,

the estimates of the baseline DiD specification (1) on the aggregated sample. The second
column reports the result of the first step of the exercise, i.e. the OLS estimates of (3). The
third and the fourth columns report the OLS and IV estimates of (42), respectively. The fifth
column reports the results of one of the first stage regressions. There are three takeaways
from the IV estimates, and the red coefficients highlight them.

First, the direct effect of patent length on innovation during the pre-implementation pe-
riod is unaffected by the inclusion of the externality term. It remains negative and close to the
baseline DiD estimate of column (1). Second, the externality term is positive, statistically sig-
nificant, and economically sizable in the post-implementation period only. A policy-induced
drop of one patent during the pre-implementation period 1992Q4-1995Q2 causes a drop of
around two patents in the post-implementation period 1995Q3-2000Q4. Subsection B.4.12
describes how to infer the elasticity of future innovation to current innovation shocks from
this estimate. Third, the direct effect of patent length on innovation is positive in sign in the
post-implementation period, once controlling for the impact of the spillover. The coefficient
estimate of 0.275 is not statistically significant but is economically sizable. It implies that a
1-month (30-days) increase of patent length generates additional 8.25 patents per field in the
period, which is equivalent to around 1.3% of the pre-news baseline level. The correspond-
ing elasticity estimate is 2.7, which is very close to the one obtained using the coefficients of
Figure 9 in the paper. This suggests that a longer patent length promotes innovation. More-
over, it provides support to the interpretation that innovators reduce the pace of innovation
at news of a future patent term increase because they want to profit of the relatively longer
protection available after implementation.

B.4.12 The elasticity of future innovation to current innovation shocks
The results of Table B.5 allow to estimate the elasticity of future innovation to current innova-
tion shocks. Overall, the table captures that the policy-driven drop in innovation after imple-
mentation can be directly related to the initial fall in innovation caused by the news of a future
patent term extension. Therefore, this is instructive about the impact of current patents on
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Table B.5: Decomposition of the post-implementation effect

(1) (2) (3) (4) (5)
(D.i.D.) (T.D.) (OLS) (IV) (F.S.)
Patents Patents Patents Patents Patentst−1

d85−88 × Tj 0.07628 -0.06653 -0.12583 -0.06501 0.00554
(0.10747) (0.56583) (0.10168) (0.05139) (0.02893)

d93−95 × Tj -0.63075∗∗∗ -0.23375 -0.62522∗∗∗ -0.59694∗∗∗ 0.03527
(0.16061) (0.56787) (0.15547) (0.11668) (0.03235)

d96−00 × Tj -3.43259∗∗ -0.47862 0.18472 0.27505 -0.03125
(1.34928) (0.55725) (0.44764) (0.34143) (0.06666)

d85−88 × Tj × Sj 0.00587
(0.01050)

d93−95 × Tj × Sj -0.01330
(0.01051)

d96−00 × Tj × Sj -0.09918∗∗∗
(0.01045)

d85−88 × Patentst−1 0.07163 -0.05456
(0.09368) (0.34333)

d93−95 × Patentst−1 -0.56134∗∗∗ -0.28330
(0.21563) (0.46021)

d96−00 × Patentst−1 1.24929∗∗∗ 1.99416∗∗∗
(0.17705) (0.75624)

Patentst−1 2.84560∗∗∗ 1.75987
(0.75790) (1.70780)

d85−88 × ̂Patentst−1 -0.08350∗∗∗
(0.01111)

d93−95 × ̂Patentst−1 0.16842∗∗∗
(0.01248)

d96−00 × ̂Patentst−1 0.27283∗∗∗
(0.03264)

̂Patentst−1 0.52965∗∗∗
(0.11175)

Period F.E. Y Y Y Y Y
Field F.E. Y Y Y Y Y
Observations 3067 3067 2434 2434 2434

The table reports the estimates of several specifications run on a sample aggregated into five periods: (1)
1981Q1-1984Q4; (2) 1985Q1-1988Q4; (3) 1989Q1-1992Q3; (4) 1992Q4-1995Q2; and (5) 1995Q3-2000Q4. Col-
umn (1) reports the OLS estimates of specification (1). Column (2) reports the OLS estimates of specification
(3). Column (3) reports the OLS estimates of specification (42). Column (4) reports the IV estimates of spec-
ification (42), where the Pj,p−1 terms are instrumented using the fitted values of the specification of column
(2). Column (5) reports the results of one of the first-stage regressions, having as dependent variable the un-
interacted term Pj,p−1. In all columns, standard errors are clustered by technical field. Statistical significance
levels: ∗(p < 0.10),∗∗ (p < 0.05),∗∗∗ (p < 0.01)
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future patents’ production. Quantitatively, 1 more patent during pre-implementation period
1992Q4-1995Q2 causes a drop of around 2 patents in the same technical field during post-
implementation period 1995Q3-2000Q4. Taking as a baseline the number of patents by field
during pre-news period 1989Q1-1992Q3 and re-scaling the effects by the different lengths of
pre- and post-implementation phases, the estimate implies an elasticity of 0.997 (95% confi-
dence bands: [0.256; 1.738]).98.

B.5 Evidence by industry
B.5.1 The effect of innovation on welfare and TFP
In this subsection, I provide evidence on the static effect of innovation (measured by patents,
citations-weighted patents, and patent value) on productivity and welfare. I perform a
sectoral-level analysis using data from the NBER CES manufacturing database and taking
the finest available definition of sector, i.e. the 6-digit NAICS.99

The (inverse) measure of welfare is the value of shipments deflator, and productivity is
measured by the 5-factors TFP. For the analysis, the time dimension of the panel is restricted
to the policy-related window 1985-2000. The aim of the empirical strategy is to isolate the
static impact of innovation on welfare and productivity by exploiting the variation in inno-
vation induced by the news and the subsequent implementation of the TRIPs-related patent
term change. The second stage regression is

ys,t = αs +
2000∑

k=1985

γk1(t=k) + βIs,t + ΞXs,t + εs,t (43)

where ys,t denotes the natural logarithm of either the value of shipments deflator or TFP
for industry s in year t, αs are industry fixed effects, 1(t=k) are yearly dummy variables, Xs,t

is a matrix of controls that include: 4-digit NAICS industry × yearly effects, and the log of
the energy price deflator and energy consumption. εs,t is an idiosyncratic error term. (43)
is estimated by weighted least squares. Weights are the mass of patents produced in the
sector in 1985, to take into account heterogeneous innovation-related industry sizes. Is,t is the
innovationmeasure for industry s and year t. To aggregatemeasures of innovation by 6-digit

98The average number of patents by field during pre-news 1989Q1-1992Q3 period is 425, which implies an
average of 28.3 patents per quarter. Taking such quarterly baseline and considering that there are 11 quar-
ters in pre-implementation phase and 22 quarters in post-implementation phase, I estimate the elasticity as
1.99/(28.3×22)
1/(28.3×11 . The confidence bands for the elasticity are computed by replacing the extremes of 95% confi-

dence intervals to the point estimate in the previous formula.
99An example of the depth of the sectoral classification I use in the analysis is the following. 31-33 is the

aggregate 2-digit classification for Manufacturing; 324 is the 3-digit Petroleum and Coal Products Manufacturing,
3241 is the 4-digit Petroleum and Coal Products Manufacturing; which includes the 5-digit 32412 Asphalt Paving,
Roofing, and Saturated Materials Manufacturing, which includes the 6-digit sectors 324121 Asphalt Paving Mixture
and Block Manufacturing and 324122 Asphalt Shingle and Coating Materials Manufacturing.

46



NAICS and year, I start frommeasures of innovation by technical field at the yearly level, and
I map them into 6-digit NAICS through the formula Is,t =

∑
j Ij,tπs|j . Ij,t is innovation in 4-

digit IPC field j and year t, and πs|j is the probability that a patent classified in technical field
j is linked to sector s. πs|j is taken from the ’Algorithmic Links with Probabilities’ crosswalk
by Goldschlag, Lybbert and Zolas (2019).

The first stage regression is

Is,t = κs +
2000∑

k=1985

ιk1(t=k) +
2000∑

k=1985

ψk1(t=k)Ts + ΛXs,t + us,t (44)

where the LHS innovation variables used are: grantedpatents, citations-weightedpatents,
or patent value. Ts is the policy-induced change in protection time in sector s. The technical
field level treatment Tj is converted into a sectoral treatment Ts by the formula Ts =

∑
j Tjπj|s,

where πj|s is the probability that, given that a patent is assigned to NAICS s, it comes from
technical field j. These probabilities are again taken from Goldschlag, Lybbert and Zolas
(2019).

Table B.6 reports the estimated impact of innovation on the natural logarithm of the value
of shipments price deflator. An increase of 100 patents by industry× year implies a 2.7% re-
duction of the value of shipment deflator.100 Similarly, an increase of 1,000 citations-weighted
patents by industry× year implies 1.5% lower value of shipment deflator.101 The F-statistics
for the first stage regressions are always above 10.

Table B.7 reports the estimated impact of innovation on the natural logarithm of the
5-factors TFP estimated by the NBER. An increase of 100 patents by industry× year im-
plies a 3.3% increase of TFP.102 Similarly, an increase of 1,000 citations-weighted patents by
industry× yea implies 1.8% higher productivity.r103 The F-statistics for the first stage regres-
sions are always above 10.

Pass-through of productivity gains The ratio of the estimated impact of innovation on TFP
to the estimated impact of innovation on the value of shipments deflator (flipped in sign) is
informative about the pass-through of productivity gains into higher consumer’s welfare.
Estimates of Tables B.6 and B.7 imply a pass-trough of TFP gains from more patents into
lower prices of around 83%; using citations-weighted patents, the figure is 84%; using the

100The sectoral average of industry× year patents in the pre-treatment year 1991 is 280.
101The sectoral average of industry×year citations-weighted patents in the pre-treatment year 1991 is approx-

imately 1,450.
102The sectoral average of industry× year patents in the pre-treatment year 1991 is 280.
103The sectoral average of industry× year citations-weighted patents in the pre-treatment year 1991 is ap-

proximately 1,450.
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Table B.6: Sectoral evidence on prices

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Patents/100 -0.024∗∗∗ -0.027∗∗∗
(0.003) (0.008)

Citations/1000 -0.012∗∗∗ -0.015∗∗∗
(0.001) (0.003)

Patent value (M)/1000 -0.002∗∗∗ -0.007∗∗
(0.001) (0.003)

6-d NAICS f.e. Y Y Y Y Y Y
Year f.e. Y Y Y Y Y Y
4-d NAICS × Year f.e. Y Y Y Y Y Y
Observations 6684 6684 6684 6684 6684 6684

Columns (1), (3), and (5) report the OLS estimates of the β coefficient of specification (43) having
as dependent variable the natural logarithm of the price of shipment deflator, normalized to 100 in
1997. Columns (2), (4), and (6) report the 2-stage estimates of the IV regression. Standard errors are
clustered by 3-digit NAICS × year. Statistical significance levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p <
0.001)

Table B.7: Sectoral evidence on TFP

(1) (2) (3) (4) (5) (6)
OLS IV OLS IV OLS IV

Patents/100 0.027∗∗∗ 0.033∗∗∗
(0.003) (0.008)

Citations/1000 0.013∗∗∗ 0.018∗∗∗
(0.001) (0.003)

Patent value (M)/1000 0.003∗∗∗ 0.009∗∗
(0.001) (0.004)

6-d NAICS f.e. Y Y Y Y Y Y
Year f.e. Y Y Y Y Y Y
4-d NAICS × Year f.e. Y Y Y Y Y Y
Observations 6684 6684 6684 6684 6684 6684

Columns (1), (3), and (5) report the OLS estimates of the β coefficient of specification (43) having
as dependent variable the natural logarithm of the 5-factors TFP, normalized to 100 in 1997. Columns
(2), (4), and (6) report the 2-stage estimates of the IV regression. Standard errors are clustered by
3-digit NAICS × year. Statistical significance levels: ∗(p < 0.05),∗∗ (p < 0.01),∗∗∗ (p < 0.001)
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Figure B.45: Marginal effect of 1 more day of protection on sectoral TFP
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The plot shows the βk coefficients of regression (45) having as dependent variable the natural loga-
rithm of TFP in sector s and year t. Clustered 95% confidence bands by 3-digit NAICS industry and
year are plotted. The first vertical line lies just before the news year (1992) and the second vertical
line lies just before the implementation year (1995).

private economic value of patents, it is 76%. So, the pass-through implied by the IV estimates
is high and quite stable across innovation measures.

B.5.2 The dynamic effect of the policy on welfare and TFP
This subsection performs a difference-in-difference analysis by industry to study the dy-
namic effect of the policy on welfare and TFP. Measures of welfare and productivity and
the sectoral treatment are the same as in the previous subsection. The policy-relevant time-
window is 1985-2000 and the specification of the regression is

ys,t = αs +
2000∑

k=1985

γk1(t=k) +
2000∑

k=1985

βk1(t=k)Ts + ΞXs,tεs,t (45)

where the dependent variable ys,t for sector s and year t is the natural logarithm of ei-
ther of the two outcomes described above, αs are industry fixed effects, 1(t=k) denotes yearly
dummies, Xs,t is matrix of controls that include: 4-digit NAICS industry × year effects, and
the natural logs of the energy price deflator and material costs deflator. Ts is the sectoral
treatment and εs,t is the error term. (45) is estimated by weighted least squares. Weights
are the mass of patents produced in the sector in 1985, to take into account heterogeneous
innovation-related industry sizes.

Figure B.45 plots the difference-in-difference coefficients capturing the dynamic effect of a
change in patent protection length on the logarithm of sectoral TFP. For Ts < 0, the dynamics
of the point-estimates–which are very close to zero at first and grow larger as time goes–is
consistent with a slow positive impact of higher policy-induced innovation on the level of
productivity.
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Figure B.46: Marginal effect of 1 more day of protection on sectoral value of shipments
deflator
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The plot shows the βk coefficients of regression (45) having as dependent variable the natural log-
arithm of the values of shipments deflator in sector s and year t. Clustered 95% confidence bands
by 3-digit NAICS industry and year are plotted. The first vertical line lies just before the news year
(1992) and the second vertical line lies just before the implementation year (1995).

Figure B.46 plots the difference-in-difference coefficients capturing the dynamic effect of a
change in patent protection length on the logarithm of the value of shipments deflator, which
is the (inverse) measure of welfare. Welfare gains from innovation take time to be achieved,
exactly because TFP gains are slow.

Appendix C Additional theoretical results
C.1 Model derivations
This section presents the details and the derivations of the model of Section 5.

C.1.1 Consumers
The consumer has linear utility u(c(t)) = c(t) in per-capita consumption c(t), invests in real-
assets a(t), and inelastically supplies labor. The maximization problem of the representative
agent is

max
c(t),a(t)

∫ ∞

0

e−ρc(t)dt (46)

subject to ȧ(t) = r(t)a(t)− c(t) + w(t) (47)

where is defined as aggregate consumption divided by population, i.e. c(t) ≡ C(t)/L(t),
and a(t) ≡ A(t)/L(t) are total assets per capita. Aggregate real assets are and A(t) ≡ K(t) +∫∞
0
υ(t−s, t)S(t−s, t)ds. The first term is the total stock of physical capital. The second term

represent the total value of firms owning patents on profit-generating intermediate capital
varieties.
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In particular, the last term is defined by the following expressions

υ(t− s, t) =

∫ t−s+T

t

π(t′)e−
∫ t−s+T
t′ (ρ+λ(z))dzdt′ if s ≤ T

υ(t− s, t) = 0 if s ≥ T

is the residual value at time t of a patent generated at time t− s. While the term S(t− s, t)
represents the mass of patents generates at time t− s that have not been creatively destroyed
up to time t. This is defined by the expression

S(t− s, t) = (1 + ψ)V̇ (t− s)e−
∫ t
t−s λ(t

′)dt′

No arbitrage conditions ensure that all the real assets give a net return equal to t. The
solution of problem (46) gives the Euler equation r(t) = ρ.

C.1.2 Final good production
The final good is produced by a competitive firm that optimally chooses labor and each of
the intermediates to maximize profits. The problem is

max
{X(i,t)}i∈[0,V (t)],L(t)}

[
h(t)L(t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]
−
∫ V (t)

0

z(i, t)X(i, t)di− w(t)L(t)

Y (t) =
[
h(t)L(t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]

(48)

(48) is the production function. The first order conditions of the problem are

w(t) = (1− α)h(t)1−αL(t)−α
[ ∫ V (t)

0

Xα(i, t)di
]

(49)

z(i, t) = αh(t)1−αL(t)1−αXα−1(i, t) ∀ i ∈ [0, V (t)] (50)

(49) is the inverse labor demand and determines the equilibrium wage rate. (50) is the in-
verse demand for intermediate i.

C.1.3 Monopolistic intermediate goods production
A share ζ(t) of the existing V (t) intermediate good varieties are protected by a monopoly,
granted by a valid patent. The monopolistic producer of variety i chooses the quantity to
produce in order tomaximize profits subject to the inverse demand given by (50), and subject
to the production function: One unit of each of the intermediate goods can be produced by
using one unit of raw capital K(t). The latter is rented from households at a rate rK(t) =

r(t) + δ, where δ is the depreciation rate of physical capital. The maximization problem is
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max
X(i,t),z(i,t)

{
z(i, t)X(i, t)− (r(t) + δ)X(i, t)

}
s.t. z(i, t) = αh(t)1−αL(t)1−αXα−1(i, t)

and the first order condition implies

z(i, t) = α(h(t)L(t))1−αX(i, t)α−1 =
1

α
(r(t) + δ) (51)

i.e. the price is a constant markup 1/α over the marginal cost (r(t) + δ). The produced
quantity and the profits are symmetric across monopolistic i’s and satisfy

X(i, t) = Xp(t) = α
2

1−α (r(t) + δ)−
1

1−αh(t)L(t) ∀ i ∈ [0, ζ(t)V (t)] (52)

π(i, t) = π(t) =
( 1
α
− 1
)
(r(t) + δ)Xp(t) (53)

C.1.4 Non-monopolistic intermediate goods production
A fraction 1 − ζ(t) of intermediates are competitively produced because legal patent pro-
tection on them has expired after the maximum patent length T . These non-monopolistic
varieties are produced in a regime of Bertrand competition and therefore the price z(i, t) is
driven to the marginal cost of production (r(t) + δ). It follows from the inverse demand
function (50) that the production of these competitively-produced intermediate varieties is
symmetric and given by

Xnp(t) = α
1

1−α (r(t) + δ)−
1

1−αh(t)L(t) ∀ i ∈ (ζ(t)V (t), V (t)] (54)

which implies that Xp(t) = αXnp(t). Since α ∈ (0, 1) by assumption, this implies that the
quantity produced of monopolistic varieties is lower than the one of competitive varieties,
which is the main distortion from monopoly in the model.

C.1.5 Physical capital market clearing condition
Physical capital market clearing requires that the quantity of capital supplied by households
K(t) is equal to the quantity of capital demanded byfirms to produce the intermediate capital
goods, i.e.

K(t) =ζ(t)V (t)Xp(t) + (1− ζ(t))V (t)Xnp(t)

=[αζ(t) + (1− ζ(t))]V (t)Xnp(t)
(55)

C.1.6 Research investment to discover new projects
The model features an unit mass of identical firms that invest in research. The output of
research investment is new ideas that need subsequent development by successful firms.
The research investment problem of the representative research firm is
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max
IR(t)

{
P (t)E(t)χV (t)ϕ1IR(t)

ϕ2 − IR(t)
}

P (t) is the economic value of a new idea, or, alternatively, it can be thought as the exclu-
sivity value of a development project. The optimal research investment is given by

IR(t) =
[
ϕ2P (t)E(t)

χV (t)ϕ1

] 1
1−ϕ2

C.1.7 Investment in development of projects
Development occurs independently on each existing project, even in the case of a single firm
running multiple projects. The project-specific maximization problem can be written in re-
cursive form as

r(t)P (t)− Ṗ (t) = max
ιD(t)

{
ιD(t)

[
υ(t)− P (t)

]
− µιD(t)

θυ(t)
}

(56)

where the equation captures the fact that if the project is successful with instantaneous
probability ιD(t), the firm receives a value υ(t) for the intermediate variety obtained but it
loses the value of the project P (t), which expires after completion. υ(t) is the value of a
patent on a variety, and it is defined by (11) in the paper. The optimal development project
completion rate is

ιD(t) =

[
1

θµ

(
1− P (t)

υ(t)

)] 1
θ−1

(57)

The process of creative destruction captured by the λ(t) term is endogenous, and it is
driven by the rate of growth of the number of varieties V (t). It is defined as λ(t) ≡ ψ V̇ (t)

V (t)
,

i.e. in times when the rate of growth of varieties is higher, the rate of creative destruction is
higher.

C.1.8 Evolution of aggregate quantities
Previous optimal policies determine the evolution of aggregate quantities. First, the number
of varieties V (t) evolves according to

(1 + ψ)V̇ (t) = ιD(t)N(t) (58)

where ψV̇ (t) is by howmuch creative destruction reduces themass of intermediate goods
available, and ιD(t)N(t) is the number of development projects successfully turned into a va-
riety. ιD(t) is the instantaneous probability that each of the existing projects N(t) is success-
fully completed. Since it is identical and independent across projects, a suitable law of large
numbers applies and the aggregate representation provided holds. Second, the evolution of
projects is given by

Ṅ(t) = E(t)χV (t)ϕ1IR(t)
ϕ2 − ιD(t)N(t) (59)
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where the first term captures themass of new projects generated by research investment, and
the second term captures the destruction of projects due to successful completion.

The evolution of the share of existing varieties that are covered by monopoly, i.e. ζ(t), is
given by

ζ̇(t) = (1− ζ(t))
V̇ (t)

V (t)
− (1 + ψ)

V̇ (t− T )

V (t)
e−

∫ t
t−T λ(t′)dt′ (60)

where the first term captures the additions to monopolistic varieties due to new patented in-
novations, and the second term captures the fact that all those varieties that have not already
been creatively destroyed become competitive when the maximum patent term T expires.

The derivation of equation (60) is the following. Let Vp(t) be themass of existing varieties
covered by monopoly. Then, ζ(t) ≡ Vp(t)

V (t)
. Reshuffling the definition of ζ(t) and taking time

derivatives, we get
ζ̇(t)V (t) + ζ(t)V̇ (t) = V̇p(t)

V̇p(t) is given by the inflow of new varieties in the stock of monopolistic ones, minus
the outflow from this stock, due to the expiration of the maximum patent term T . This is
what needs to be derived. At every instant t, the gross production of new varieties–which
are obviously monopolistic at their creation–is given by (1 + ψ)V̇ (t) = ιD(t)N(t). I assume
for simplicity that all creatively destroyed varieties ψV̇ (t) come from the pool of monop-
olistic ones. This simplifies things because it implies that the addition to the stock of ex-
isting varieties, net of creative destruction, V̇ (t) also coincides with the net addition to the
stock of monopolistic varieties Vp(t). Therefore, the net inflow component of V̇p(t) is sim-
ply V̇ (t). As to the outflow, we need to consider that the mass of varieties of vintage t − T ,
i.e. (1 + ψ)V̇ (t − T ), which go out of monopoly at instant t, has been eroded by creative
destruction over time. Let S(t0) be the stock of such patents issued at time t0. In practice,
take S(t0) = (1 + ψ)V̇ (t0). Due to creative destruction, the evolution of this stock responds
to the following law of motion: S(t + dt) = S(t)− (λ(t)dt)S(t), which can be re-written as a
first order differential equation Ṡ(t) = λ(t)S(t). Its solution, for two generic points in time t0
and t1, is S(t1) = S(t0)e

−
∫ t1
t0

λ(t′)dt′ . Now, the outflow from the mass of monopolistic varieties
is given by the residual mass of gross varieties produced at t − T and survived from t − T

up to t. Therefore, replacing S(t0) = (1 + ψ)V̇ (t0), t0 = t − T , and t1 = t, we get that the
outflow from the mass of monopolistic varieties is the right hand side of the last equation.
i.e. (1 + ψ)V̇ (t− T )e−

∫ t
t−T λ(t′)dt′ . Therefore,

ζ̇(t)V (t) + ζ(t)V̇ (t) = V̇ (t)− (1 + ψ)V̇ (t− T )e−
∫ t
t−T λ(t′)dt′

Moving the second LHS addend to the right, and dividing everything by V (t), we get
exactly (60).
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The evolution of aggregate capital satisfies K̇(t) = IK(t) − δK(t), where IK(t) is the in-
vestment in physical capital done by the households out of the final good, and δK(t) is the
depreciation of the existing stock.

C.1.9 Market clearing in the goods market
Given the production decisions of intermediate producers and final good producers, GDP
for this economy can be rewritten as

Y (t) = [ααζ(t) + (1− ζ(t))]V (t)h(t)1−αL(t)1−αXα
np(t) (61)

where [ααζ(t)+ (1− ζ(t))]V (t)h(t)1−α is the measured TFP. The productivity of the economy
grows with the number of varieties available, and decreases with the share of monopolistic
varieties, as αα < 1. On the other hand, the total production of the final good must also
satisfy the resource constraint

Y (t) = C(t) + IK(t) + IR(t) + µιD(t)
θυ(t)N(t) (62)

C.1.10 Balanced growth path
Population L(t) and the productivity term h(t) exogenously grow at constant rate n and gh,
respectively. Since r(t) = ρ, the real interest rate is constant. From equations (52), (54), and
(53) the growth rate ofXp(t),Xnp(t), and profits is identical in the b.g.p and equal to gh + n.
From the definition of υ(t), the patent valuemust growat the same rate of profits. In addition,
the rate of creative destruction λ(t) is constant along the balanced growth path. From the
value function of the development investment problem, P (t) must grow at the same rate of
υ(t), i.e. gP = n+gh, and the development speed ιD(t)must be constant. A constant ιD(t) also
implies that the externality term E(t) is constant in the b.g.p. The evolution of V (t) in (58)
implies that gV = gN , and the evolution ofN(t) in (59) requires that gN = ϕ1gV +ϕ2gIR . From
(62), the rate of growth of C(t), IK(t), and IR(t) must be the same as output, i.e. gY = gC =

gIK = gIR . In addition, from (60), ζ(t) is constant in the b.g.p., and therefore the equilibrium
production function (61) requires gY = (1 − α)(gh + n) + gV + αgX . Since gX = n + gh, we
then obtain gY = gV + n+ gh. Using gIR = gY and gV = gN , and plugging the last expression
into gN = ϕ1gV + ϕ2gIR , gV can be solved as gV = ϕ2

1−ϕ1−ϕ2
(n + gh). The latter can be used to

solve explicitly for all the other growth rates.

C.2 Transitional dynamics computational algorithm
I solve the stationary version of the system, which can be obtained by re-scaling each variable
by its growth rate along the b.g.p, as computed in subsection C.1.10. The stationary version
of the variables of the model is denoted with a tilde, as in the main text. In any solution of
themodel r(t) = ρ, which gives an explicit solution for the full dynamic path of X̃p(t), X̃np(t),
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Figure C.1: Transition dynamics of a change from T = 17 to T = 50

The figure shows the path of consumption and total R&D investment IR + µιθDυN in the transition
from the status quo T = 17 to T = 50, compared to the pre-change steady state.
and π̃(t). For the other variables, I setup a mesh that goes from t0 = 0 to tmax = 2000, and
I assume that i) just before t0, the stationary version of the system is in the pre-policy news
steady state, and ii) by tmax it has reached the post-policy change steady state.

I start from a guess of λ̃(t) from t0 = 0 to tmax = 2000, which I initially fix to be equal to
ψgV = ψ gh+n

1−ϕ1−ϕ2
at any time. Given λ̃(t), I can solve for the full dynamic path of υ̃(t) using

equation (11). I impose the terminal condition on P̃ (t) that it must be at the post-policy
steady state at tmax. Then, for each P̃ (t + dt) I solve the development investment problem
given υ̃(t), obtaining ιD(t) and P̃ (t). I use the full sequence of ιD(t) to build the delayed
externality term and, given the computed P̃ (t), I solve for the optimal ĨR(t) at every instant
using the fact that both Ñ(t) and Ṽ (t) are assumed to be at the old steady state at t0, as
they are state variables. With all previous objects, I solve forward (14) and (13) obtaining
Ñ(t + dt) and Ṽ (t + dt) ∀t. Also, given the full series of λ̃(t), I solve forward for ζ(t), again
assuming that this state variable is at the pre-policy steady state at t0. With Ṽ (t), ζ(t), and
Xnp(t), I use the capital market clearing condition to compute the aggregate series for K̃(t)

and, subsequently, the series ĨK(t) that is required to sustain K̃(t), assuming that at t0 the
level of physical capital is at the old steady state. Using the exogenous L̃(t) and h̃(t) with
X̃np(t), Ṽ (t) and ζ(t), I solve for Ỹ (t) and C̃(t) using the resource constraint. As a final step, I
use the series Ṽ (t) to update the guess for λ̃(t) according to λ̃(t) = ψ

(
gV +

˙̃V (t)

Ṽ (t)

)
, and I iterate

the previous steps until convergence of the λ̃(t) series.

C.3 Computation of standard errors
The quadratic loss functionused for simulatedmethodofmoments estimation isF = g′(Γ)Wg(Γ),
whereΓ is the vector of estimatedparameters and g(Γ) is the vector of the deviation ofmodel-

56



based moments computed at Γ from the empirically estimated moments. Overall, there are
69 moment restrictions. 33 are the post-announcement reduced-form estimates of the effect
of the reform on patenting activity, 33 are the post-announcement reduced-form estimates of
the effect of the reformonpatent-readR&Deffort, and 3 are the long-runmoment restrictions
on the capital-output ratio, the consumption-output ratio, and the R&D spending-output ra-
tio. In estimation, W is a diagonal matrix giving unit weight to the first 66 moments, and
weights 1, 10, and 100, to the K/Y , C/Y , and R&D/Y long-run restrictions, to correct for
their respective scale. The variance-covariance matrix of the estimated parameters for the
resulting GMM estimator is

V̂ = (D(Γ̂)WD′(Γ̂))−1D(Γ̂)Wg(Γ)g′(Γ)W ′D′(Γ̂)(D(Γ̂)WD′(Γ̂))−1

where W was defined above and D′(Γ̂) is defined as D′(Γ̂) = ∂g(Γ)
∂Γ′

∣∣∣∣
Γ=Γ̂

. The latter is

computed numerically around the optimal Γ̂. The standard errors of the parameters are
computed as the square root of the main diagonal elements of V̂.

C.4 The mechanism at work in the model
The plots show the response of various theoretical objects to an anticipated patent term in-
crease of 100 days, starting from a patent term of 17 years. The anticipation is assumed to
be 2 years and 8 months, consistently with the TRIPs anticipation. The news is assumed to
happen at t = 0, and the vertical line refers to the policy implementation. The red horizontal
line represents the steady state in the old regime ,and the blue horizontal line is the steady
state in the new regime. The black solid lines show the response of the variables of interest.

C.5 Identification of key structural parameters
The Figures reported in this subsection support the discussion of subsection 6.1.3 of the pa-
per about the identification of key structural parameters of the innovation process through
specific moments of the empirical estimates of Section 3.

Figure C.3 shows the response of innovation and patent-read R&D effort, in the model
and in the data, fixing θ = 2 or θ = 1.02. Raising θ from 1.01, which is the optimal estimate
found in Section 6, to θ = 2 implies moving from very mild to quite severe cost convexity
of the pace of development, so that the adjustment of the latter is much more costly for in-
novators. As argued in subsection 6.1.3, this leads to a much more muted response of the
innovation and R&D to the news shock in the model. Therefore, the strong response of both
variables observed in the data is informative about the mild cost convexity estimated in the
model.

Figure C.4 shows the response of innovation and patent-read R&D effort, in the model
and in the data, fixing χ = 2 or χ = 8. Lowering χ from 11, which is the optimal estimate
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Figure C.2: Evolution of aggregates

(a) Patent value: υ(t) (b) Project value: P (t)

(c) Development speed: ι(t) (d) Research investment: IR(t)
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Figure C.3: Policy simulation in a model with θ = 2 or θ = 1.02 vs. empirical estimates

(a) Innovation (Patents) (b) Patent-read R&D effort

The black solid (dashed) lines are the model-based responses of the model with parameter values reported in
Table 2, but θ = 2 (θ = 1.02). The red dashed lines are 95% confidence bands of the reduced form estimates of
Section 3. The system is assumed to be at the pre-policy change steady state at t = 0, when the news of 100-days
increase in protection time implemented after 2 years and 8 months (blue vertical line) happens.

found in Section 6, to χ = 2 or χ = 8 implies moving from a very strong externality of
development pace on research productivity to a milder effect. As argued in subsection 6.1.3,
this leads to a much weaker persistence effect–at the maximum drop after d = 4 years–of
innovation and R&D in the model during the post-implementation period. Therefore, the
strong response of both variables observed in the data is informative about the strength of
the spillover, leading to the estimation of a high χ.

Figure C.5 shows the response of innovation and patent-read R&D effort, in the model
and in the data, fixing ϕ1 = 0.08 and ϕ2 = 0.69 or ϕ1 = 0.5 and ϕ2 = 0.26. This implies
changing the estimates for ϕ1 and ϕ2 without modifying total returns to research. This im-
poses severe decreasing returns to the contribution of existing varieties in the production
function of ideas–i.e. a weaker "standing on the shoulders of giants" effect–and relaxes the
decreasing returns to research investment, while keeping fixed the aggregate returns to all
factors. As argued in subsection 6.1.3, weakening the "standing on the shoulders of giants"
effect implies a much faster recovery of innovation and R&D from the maximum drop dur-
ing the post-implementation, persistence phase. This is because the rich dynamics observed
during the news phase and immediately after the implementation depress the total mass
of varieties. As the latter are a slow-moving state variable, their adjustment up to the new,
higher steady state takes time and, therefore, it affects productivity of research for long. The
higher the importance of existing varieties in research activity, the slower the recovery from
low-V . Therefore, the slow empirical recovery from the maximum drop is informative about
a relatively high ϕ1.
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Figure C.4: Policy simulation in a model with χ = 2 or χ = 8 vs. empirical estimates

(a) Innovation (Patents) (b) Patent-read R&D effort

The black solid (dashed) lines are the model-based responses of the model with parameter values reported in
Table 2, but χ = 2 (χ = 8). The red dashed lines are 95% confidence bands of the reduced form estimates of
Section 3. The system is assumed to be at the pre-policy change steady state at t = 0, when the news of 100-days
increase in protection time implemented after 2 years and 8 months (blue vertical line) happens.

Figure C.5: Policy simulation in a model with (ϕ1 = 0.08; ϕ2 = 0.69) or (ϕ1 = 0.50; ϕ2 =
0.26) vs. empirical estimates

(a) Innovation (Patents) (b) Patent-read R&D effort

The black solid (dashed) lines are the model-based responses of the model with parameter values reported in
Table 2, but ϕ1 = 0.08 and ϕ2 = 0.69 (ϕ1 = 0.50 and ϕ2 = 0.26). The red dashed lines are 95% confidence bands
of the reduced form estimates of Section 3. The system is assumed to be at the pre-policy change steady state
at t = 0, when the news of 100-days increase in protection time implemented after 2 years and 8 months (blue
vertical line) happens.
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Supplementary Materials

Appendix D Variables construction
D.1 Number of granted patents - Technical field level
Using PATSTAT table tls201, which contains information on patent applications, I select
"patent of invention" applications for which the reported application authority is the USPTO,
and for which the application filing date is the same as the priority date, i.e. the earliest filing
date in PATSTAT. This is because, in the main analysis, I want to focus on innovations that
primarily refer to the US, excluding technologies that are developed and protected elsewhere
at first, and subsequently try to obtain protection in the US too. In addition, I just keep
applications tha are subsequently granted. Then, using PATSTAT table tls209, I attach to
each patent application information on the IPC classes associated to the invention, and I
truncate the IPC codes to the 4-digit level. A patent to which multiple 4-digit IPC codes
are associated is counted once for each of them in my dataset. Finally, in order to compute
the quarterly measure, I build a "customized" quarterly date that better fits the timing of
the TRIPs implementation. In particular, since the TRIPs was formally adopted in the US
system on December 8, 1994, and the new patent law entered into force on June 8, 1995,
I define quarters starting from the eighth day of the month. Hence, for example, 1995Q1
starts on January 8, 1995 and ends on March 7, 1995. A patent is counted in quarter t if its
priority date falls in that quarter. Finally, the variable Patj,t is the total count of granted
patent applications satisfying the conditions outlined above, i.e. patents classified in IPC
class j, and whose priority date falls in quarter t.

D.2 Number of citations-weighted granted patents - Technical field-level
Citations-weighted patent counts are usually employed to weigh patents by their scientific
quality, as measured by their relevance for subsequent technological developments. In or-
der to build this measure, I follow the same steps described in subsection D.1, and I stop
before the IPC-quarterly aggregation step. I assign to the selected patent applications the as-
sociated patent publications using PATSTAT table tls211, which contains publication infor-
mation. PATSTAT table tls212, instead, reports for each publication the list of applications
and publications that cite it. I use information in tls212 to assign to each patent application
the publications or applications that cite publications associated with it. I select as a citation
date the publishing date of the citing publication, and I just keep citations that occur within 5
years from the application date. This is done to avoid truncation bias in the citation-weighted
patentmeasure. In a robustness check, not reported, I keep citations that occurwithin 3 years
from the application date, and results are fully robust. Finally, I count for each patent appli-
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cation the number of forward citations received, and I build the citation-weighted patent
measure by summing this citations count by IPC and quarter of priority date of the focal
patent application.

D.3 Pending period and treatment - Technical field-level
In order to build this measure, I follow the same steps described in subsection D.1, and I stop
before the IPC-quarterly aggregation step. When I build the treatment variable, I restrict the
sample to patentswhose priority date is between January 1, 1990 andMay 31, 1992, in order to
focus on a time-window close enough to the news of the policy change, but also unaffected
by it. For this sample of patents, I compute the pending period by counting the number
of days between the grant date, i.e. the publication date of the official document granting
the patent, and the priority date reported in PATSTAT, which, given my sample restriction,
coincides with the application date. I compute an average of such patent-level pending time
at the IPC level, and I subtract it to 1095, which is 3 years in number of days. Therefore,
the treatment variable is negative if the average pending period computed for applications
filed between 1/1/1990 and 5/31/1992 is longer than 3 years, and positive otherwise. When
I build the quarterly version of the pending period underlying Figure B.8, I still compute the
patent-specific pending time in the same way described above, and I compute its average at
the IPC×quarter level, with quarters defined as in subsection D.1. Finally, as a measure of
treatment precision that I use to conduct a triple difference analysis, I compute the standard
deviation of the average pending period by technical field.

D.4 Patent renewal rate - Technical field-level
To build the patent renewal rate, I use information on legal events related to patents reported
in the PATSTAT LEGAL section of PATSTAT and, specifically, in table tls803. This dataset
reports, for each US granted patent application, whether maintenance fees at 3.5 years, 7.5
years, and 11.5 years since patent grant have been paid in order to maintain the patent active.
Therefore, for each patent selected according to the criteria explained in subsection D.1, I can
compute whether or not the maintenance fees at 11.5 years since grant have been paid. This
indicates whether, for the specific patent, the maximum patent term was binding or not. In
order to compute the IPC-specific pre-policy change measure of incidence of the maximum
patent term, I focus again only on patents whose priority date is between January 1, 1990 and
May 31, 1992, and I average out at the 4-digit IPC level the indicator variable that takes value 1
if the 11.5 years maintenance fees have been paid for a patent and 0 otherwise. The resulting
IPC-specific measure is the ratio of patents classified in the IPC for which the maximum
patent length was binding.
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D.5 Unique number of inventors - Technical field-level
PATSTAT table tls207 associates to each application a list of personal id’s that correspond
to the inventors and to the applicants listed on the patent. Table tls206, instead, reports,
for each of these personal id’s, details such as the full name listed on the patent, the address
of the inventor or the applicant, and other information. Since these personal id’s assigned
by PATSTAT do not uniquely identify a person or a firm, a substantial harmonization effort
has been done by the EPO, the OECD, and other researchers. Among the harmonized id’s
available in table tls206, I chose the STAN harmonized applicant’s identifiers developed
starting from the EPO Worldwide Bibliographic Database. Hence, combining tls207 and
tls206 with patent application information as selected in subsection D.1, I can assign to
each patent the unique (up to harmonization errors) identifiers of the inventors listed on the
patent. In order to build the quarterly measure of unique inventors working in a given IPC, I
simply count the number of id’s that are associated to a patent classified in the IPC and with
priority date in the quarter, dropping from this count multiple records of the same inventor
in multiple patents in the same IPC-quarter.

D.6 Number of new applicants, patents granted to new applicants and
their share on the total - Technical field-level

In order to compute the number of new applicants and measures associated to this concept,
I follow a similar approach as the one just described in subsection D.5, and I attach to each
patent application selected according to the rules of subsection D.1 the harmonized iden-
tifiers of the applicants associated to the patent according to table tls207. To determine
whether an applicant is a new or an incumbent one, for each quarter and IPC I build a list of
applicant’s ids that have already appeared at least once in the specific IPC and, for each appli-
cant, I check whether the id belongs to this list or not. If the id does not belong to the list, the
applicant is assigned a flag of 1 as a new entrant for that IPC-quarter pair. The unique num-
ber of new applicants is computed by counting the unique number of ids for which the flag
is 1 by IPC and quarterly priority date of the application. Similarly, the number of granted
patents attributable to new applicants is computed by assigning a value of 1 to a dummy
variable in case at least one of the applicants is an entrant, and 0 otherwise. Then, the num-
ber of patents with such dummy equal to 1 is counter by IPC and quarter. Finally, the share
of patents attributable to new applicants is simply computed by dividing the absolute figure
just described by the total number of patents filed in the corresponding IPC-quarter.

D.7 Herfindahl-Hirschman Index of concentration - Technical field-level
In order to compute the HHI by technological field, I follow a similar approach as in subsec-
tion D.5, and I attach to each patent application, selected according to the rules of subsection
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D.1, the harmonized identifiers of the applicants associated to the patent, taken from table
tls207. Then, I compute the total number of patents (or citations-weighted patents) made
by a specific applicant in a given technical field and quarter, and the total number of patents
(or citations-weighted patents) generated in the same technical field and quarter by any ap-
plicant. Let si,j,t be the share of patents made by applicant i over the total number of patents
in field j and quarter t. Then, the concentration index is

HHIj,t =
∑
i

s2i,j,t100
2

D.8 Within-field backward citations and within-field backward citation
intensity - Technical field-level

To compute the number of backward citations by IPC and quarter, I start from the pool of
patents selected according to the criteria of subsection D.1, and I follow subsection D.2 to
attach, to each patent application, the associated publications and the citations informa-
tion of table tls212. However, in this case, rather than keeping the list of citing publica-
tions, I keep the list of documents that each application (or publications associated to each
application) cite. Also, I separately keep track of citations directly made by the applicant
(citn_origin=’APP’) rather than added by examiners or during search. This distinction
may be important because previous literature has pointed out that only backward citations
made by applicants are representative of genuine knowledge flows. Therefore, for each
patent, I compute the overall number of patent documents backward cited (overall and by
applicants only), and the number of backward-cited patents (overall and by applicants only)
that are classified in the same IPC of the patent considered. I aggregate both variables by
IPC and quarterly priority date of the citing patent application. The aggregation of the latter
variable is called in the main text within-IPC backward citations. The intensity measure is
computed as the fraction of patents where the applicant makes at least one backward citation
directed to another patent in the same field over the number of patents having at least one
backward citation.

To compute the number and the intensity of within-field backward citations made by
patents filed during the post-implementation period July 1995 - July 2000 and directed to
patents filed during the pre-implementation period November 1992 - June 1995, I repeat the
same steps described above, but I restrict my attention to patents satisfying previous timing
criteria. Obviously, the steps are the same for the control group of patents filed during July
1985 - July 1990 and backward citing other patents classified in the same technical field and
filed during the period November 1982 - June 1985.
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D.9 Private economic value of innovation - Technical field-level
To compute ameasure of economic value of patents by technical field and quarter, I start from
the data provided in the replication package of Kogan et al. (2017). The variables relevant
for the present analysis are: i) the 7-digit US patent number, ii) the private economic value
of a patent ξ, and iii) the application date of the patent. Using the 7-digit US patent number,
I merge the dataset with the NBER patent database and, specifically, with the dataset which
contains information on International Patent Classification classes assigned to the patent.
Then, using the original application filing date and the IPC classes from the NBER database,
I add up the economic value of patents by quarterly application date and technical field.

D.10 Number of patents and citations-weighted patents - Firm-level
For the firm-level dataset, I rely on the NBER Patent Database merged with COMPUSTAT
using the applicant-gvey cross-walk provided in the NBER Database itself. In particular,
the NBER Database provides a list of gvey identifiers associated to each patent over its life.
Multiple gvey’s over time indicate that the ownership of the patent has changed. However,
here I am just interested in the firm which has originated the invention through its R&D ef-
fort, and this is why I just keep the gvey associated to the patent in the year of application.
Then, I download from COMPUSTAT firm-level information, and I match this dataset with
the gvey’s retrieved from the NBER Database. I build the patent count and the citations-
weighted patent variable by summing for each gvey and year the number of patents applied
for by the firm and the truncation-adjusted citations variable available in the database, re-
spectively. Truncation adjustment is performed in the original dataset by applying to cita-
tions the weights proposed by Hall, Jaffe and Trajtenberg (2001).

D.11 R&D expenditure - Firm-level
Data on firm-level R&D expenditure is downloaded from COMPUSTAT and merged with
information on patents using the gvey link. The name of the original R&D expenditure vari-
able in COMPUSTAT is xrd.

D.12 Treatment - Firm-level
In order to build the treatment at the firm level, I start from the patent-level dataset of the
NBER Database, which reports also information on the 4-digit IPC classes associated to the
patents. Then, for each gvey identifier, I just keep those patents with application year be-
tween 1971 and 1991, in order to have enough patenting-related information for each firm
and to exclude possible effects of the policy news. Then, for each firm, I compute the share
of the total number of patents, filed during this period, that is classified in each of the 4-digit
IPC. Let’s call it si,j , where i indexes firms and j IPCs. I interpret this fraction as the exposure
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of firm i to the technical field j before the policy news. The firm-level treatment is then built
as a weighted average of the field-specific treatment described in subsection D.3, i.e.

Ti =
∑
j

si,jTj

I take this approach because themain source of ex−ante heterogeneity in pending period
is linked to the different technical fields and, relatedly, to the different technical offices and
examination difficulties. Therefore, I still want to use field-level heterogeneity, interacting it
with heterogeneity in the technological location of firms. An alternativewould be to compute
the firm-level treatment by computing the average pending period of patents filed by firm
i, i.e. a pending period based on the specific experience of the firm. I do not follow this
route because I think this treatment variable would be more prone to endogeneity concerns
that the one I propose: In this case, the treatment might be correlated with the quality of
innovation performed by the firm, or with the responsiveness of the firm to the inquiries of
the patent office.

D.13 Other COMPUSTAT variables - Firm-level
I compute firm age using the begyrNBER patent database variable, and I use 2-digit SIC in-
dustry code assigned to each firm in the database. Firm’s yearly sales are taken from COM-
PUSTAT using the variable sales.

D.14 Aggregate investment externality - Firm-level
To compute the firm-level externality measure used in Section 4 of the paper, I try to follow
what has been done in the literature on the topic. Therefore I compute, for the period 1971-
1991, the total number of patents obtained by each of the firms in my sample in any 4-digit
IPC. This information is included in firm-specific vector fi, which stacks, in each entry, the
number of patents obtained by firm i in IPC j in the above-mentioned period. Then, based
on these vectors, I compute for every pair of firms (i, k) a technological distance measure
proposed by Jaffe (1986)

di,k =
fif

′
k√

(fif ′
i)(fkf

′
k)

The externality measure for firm i at time t is then

Ei,t =
∑
k ̸=i

di,kR&Dk,t

i.e. it is an aggregation of the firm-level R&D expenditure of other firms that uses as
aggregationweights the Jaffe (1986)measure of technological distance across firms. The idea
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Figure E.1: Marginal effect of 1 more day of protection on average citations per patent
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The plot shows the βk coefficients of the specification (27) having as dependent variable the average
number of forward citations obtained by patents filed in quarter-t and field-j. Standard errors are
clustered by technical field. 95% confidence bands are plotted. The first vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before the
policy implementation (1995Q2).

underlying such externality variable is that the influence of other firms’ R&D is stronger if
such firms are technologically closer to the firm of interest.

D.15 Productivity and welfare - Sectoral level
The productivity and price variables used in the sectoral welfare analysis are directly taken
from the NBER CES manufacturing database. Productivity is measured as 5-factors TFP,
whose constructions is detailed in the technical paper Bartelsman and Gray (1996). Welfare
is (inversely) measured by the value of shipments price deflator, which is built aggregating
product-specific deflators computed by the Bureau of Economic Analysis.

Appendix E Additional empirical results
E.1 Results at the technical field level
E.1.1 Average number of citations per patent
Figure E.1 plots the βk coefficients of regression (1) having as dependent variable the average
number of forward citations per patent, for patents filed in quarter-t and classified in field-
j.104 Fields with zero patents in at least one quarter are excluded from the estimation sample
because the average number of citations is not well-defined in such cases. Results are analo-
gous, however, when just excluding the field-quarter observation which is not well-defined.

104I count citations obtained within 5 years from application, to avoid truncation bias.
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Figure E.2: Marginal effect of 1 more day of protection on average number of claims per
patent
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The plot shows the βk coefficients of the specification (27) having as dependent variable the average
number of claimsmade by patents filed in quarter-t and field-j. Standard errors are clustered by tech-
nical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the
policy news (1992Q3) and the second vertical line refers to the quarter before the policy implemen-
tation (1995Q2).

E.1.2 Average number of claims per patent
Figure E.2 plots the βk coefficients of regression (1) having as dependent variable the average
number of claims per patent, for patents filed in quarter-t and classified in field-j. Fields
with zero patents in at least one quarter are excluded from the estimation sample because the
average number of claims is not well-defined in such cases. Results are analogous, however,
when just excluding the field-quarter observation which is not well-defined.

E.1.3 Average originality and average generality
Figure E.3 plots the βk coefficients of regression (1) having as dependent variable the average
originality of patents filed in quarter-t and classified in field-j. The originality index of each
patent i is taken from the NBER patent database and it is computed as

Oi = 1−
n∑

j=1

s2i,j

where si,j denotes the percentage of citations made by patent i that belong to patent class j,
out of n patent classes. The results show that the policy does not affect the average originality
of patents, which is often taken as a proxy of patent quality.

Figure E.4 plots the βk coefficients of regression (1) having as dependent variable the
average generality of patents filed in quarter-t and classified in field-j. The generality index
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Figure E.3: Marginal effect of 1 more day of protection on average originality of patents
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The plot shows the βk coefficients of the specification (1) having as dependent variable the average
originality of patents filed in quarter-t and field-j. Standard errors are clustered by technical field.
95% confidence bands are plotted. The first vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).

of each patent i is taken from the NBER patent database and it is computed as

Gi = 1−
n∑

j=1

s2i,j

where si,j denotes the percentage of citations received by patent i that belong to patent class j,
out of n patent classes. The results show that the policy does not affect the average generality
of patents, which is often taken as a proxy of patent quality.

E.1.4 Maintenance fee payment probability
In order to keep patent protection active, patent owners must pay fees after 3.5 years, 7.5
years, and 11.5 years from the grant. The payment of renewal fees is commonly linked to
the quality of patents–i.e., higher quality patents are renewed for longer–and to the rate of
creative destruction. If a technology is competed away by a new invention, it is pointless
to pay fees to keep alive the patent on an old technology that will not generate profits. In
this subsection I examine whether a patent term extension has any effects on the average
renewal rate of patents at later stages of theirmaintenance. Figure E.5 plots the βk coefficients
of regression (1) having as dependent variable the share of patents filed in quarter-t and
classified in field-j that are renewed up to themaximumpatent length. The results show that
a patent term extension does not induce innovators to renew their patents for longer. Since
other analyses showed that the average quality of patents was not changing due to the policy,
I interpret this finding as suggestive of the fact that the pressure of creative destruction does
not fall in fields getting a patent term extension. Figure E.6 shows that results are analogous
when using as the outcome variable the share of patents filed in quarter-t and classified in
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Figure E.4: Marginal effect of 1 more day of protection on average generality of patents
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The plot shows the βk coefficients of the specification (1) having as dependent variable the average
generality of patents filed in quarter-t and field-j. Standard errors are clustered by technical field.
95% confidence bands are plotted. The first vertical line refers to the quarter before the policy news
(1992Q3) and the second vertical line refers to the quarter before the policy implementation (1995Q2).

field-j that are renewed until 11.5 years since the grant.

E.1.5 Alternative specifications
Citations and inventors with log. transformation Figures E.7 and E.8 report the results
of specification (27) from Appendix subsection B.2.13–dependent variable taken in natural
logarithms– using citations-weighted patents as the dependent variable. Figures E.9 andE.10
report the same coefficients using the number of unique inventors by quarterly and field as
the dependent variable.

Citations and inventors with negative binomial model Figures E.11 and E.12 plot the βk
coefficients of the negative binomial model (28) having as dependent variable the count of
quarter-t and field-j citations-weighted patents. Figures E.13 and E.14 plot the same coeffi-
cients for the number of unique inventors by quarter and field as the dependent variable.

Inverse sine transformation A further alternative transformation of the dependent vari-
able is the inverse sine transformation, which is increasingly used as an alternative to the
natural logs transformation because, differently from the natural logarithm, it is well-defined
at 0. The specification is

ln(Pj,t +
√
P 2
j,t + 1) = αj +

2000Q4∑
k=1985Q1

γk1(t=k) +

2000Q4∑
k=1985Q1

βk1(t=k)Tj + εj,t (63)

where all the variables have the same meaning as in subsection 3.1. Figure E.15 plots
the βk coefficients of specification (63) when the regression is run considering all technical
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Figure E.5: Marginal effect of 1 more day of protection on average renewal rate of patents
up to the maximum term
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The plot shows the βk coefficients of the specification (1) having as dependent variable the share of
patents filed in quarter-t and classified in field-j that are renewed up to the maximum patent length.
Standard errors are clustered by technical field. 95% confidence bands are plotted. The first vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).

Figure E.6: Marginal effect of 1 more day of protection on average renewal rate of patents
up to 11.5 years since the grant
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The plot shows the βk coefficients of the specification (1) having as dependent variable the share of
patents filed in quarter-t and classified in field-j that are renewed up to 11.5 years since the grant.
Standard errors are clustered by technical field. 95% confidence bands are plotted. The first vertical
line refers to the quarter before the policy news (1992Q3) and the second vertical line refers to the
quarter before the policy implementation (1995Q2).
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Figure E.7: Marginal effect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coefficients of the specification (27) having as dependent variable the log. of
one plus quarter-t and field-j number of citations-weighted granted patents. Standard errors are
clustered by technical field. 95% confidence bands are plotted. The first vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before the
policy implementation (1995Q2).

Figure E.8: Marginal effect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coefficients of the specification (27) having as dependent variable the log.
of one plus quarter-t and field-j number of citations-weighted granted patents. The sample covers
only technical fields with a number of total patents above the sample median. Standard errors are
clustered by technical field. 95% confidence bands are plotted. The first vertical line refers to the
quarter before the policy news (1992Q3) and the second vertical line refers to the quarter before the
policy implementation (1995Q2).
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Figure E.9: Marginal effect of 1 more day of protection on unique inventors
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The plot shows the βk coefficients of the specification (27) having as dependent variable the log. of
one plus quarter-t and field-j number of unique inventors. Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

Figure E.10: Marginal effect of 1 more day of protection on unique inventors
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The plot shows the βk coefficients of the specification (27) having as dependent variable the log. of
one plus quarter-t and field-j number of unique inventors. The sample covers only technical fields
with a number of total patents above the sample median. Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).
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Figure E.11: Estimated treatment coefficients of a negative binomial model - Number of
citations-weighted patents as outcome
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t
and field-j number of citations-weighted granted patents. Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).

Figure E.12: Estimated treatment coefficients of a negative binomial model - Number of
citations-weighted patents as outcome
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t
and field-j number of citations-weighted granted patents. The sample covers only technical fields
with a number of total patents above the sample median. Standard errors are clustered by technical
field. 95% confidence bands are plotted. The first vertical line refers to the quarter before the policy
news (1992Q3) and the second vertical line refers to the quarter before the policy implementation
(1995Q2).
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Figure E.13: Estimated treatment coefficients of a negative binomial model - Number of
unique inventors as outcome
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t and
field-j number of unique inventors. Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).

Figure E.14: Estimated treatment coefficients of a negative binomial model - Number of
unique inventors as outcome
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The plot shows the βk coefficients of the specification (28) having as dependent variable quarter-t and
field-j number of unique inventors. The sample covers only technical fields with a number of total
patents above the sample median. Standard errors are clustered by technical field. 95% confidence
bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the
second vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure E.15: Marginal effect of 1 more day of protection on granted patents - Inverse sine
transformation
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The plot shows the βk coefficients of the specification (63) having as dependent variable the inverse
sine transformation of quarter-t and field-j number of granted patents. Standard errors are clustered
by technical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy imple-
mentation (1995Q2).

fields. However, consistentlywithAppendix subsection B.2.13, I also run the same regression
excluding from the sample the fields with a total number of patents in the sample below the
median. The remaining half of the fields generates more than 90% of total patents in the
sample. Figure E.16 plots the βk coefficients of specification (63) on such restricted sample,
showing that results of section 3 of the paper are largely confirmed. Also, the results are
fully analogous when using citations-weighted patents or the unique number of inventors
as outcomes of interest.

Percentage deviations from 1985Q1 patents As a final transformation, I run specification
(1) using as dependent variable the percentage deviation of patents in quarter-t and field-j
from the number of patents filed in the same field in 1985Q1. Therefore, the dependent vari-
able is P d

j,t =
Pj,t

Pj,1985Q1
. Figure E.17 plots the results, which are consistent with the main evi-

dence. The results for citations-weighted patents and the number of inventors–not reported–
are fully consistent.

E.1.6 Alternative sample restrictions
In order to reduce the skewedness of the distribution of patenting outcomes across fields, an
alternative to performing a transformation of the dependent variable–such as taking natural
logs or the inverse sine of quarterly granted patents or citations weighted patents–is to drop
technical fields which are either very small or very big compared to the average. In this
subsection, I show the βk coefficients of the linear-in-levels specification (1) used in the main
analysis when the sample is restricted to technical fields that, in all quarters, have not less
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Figure E.16: Marginal effect of 1 more day of protection on granted patents - Inverse sine
transformation
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The plot shows the βk coefficients of the specification (63) having as dependent variable the inverse
sine transformation of quarter-t and field-j number of granted patents. The sample covers only tech-
nical fields with a number of total patents above the sample median. Standard errors are clustered by
technical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy imple-
mentation (1995Q2).

Figure E.17: Marginal effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of the specification (1) having as dependent variableP d
j,t =

Pj,t

Pj,1985Q1
,

i.e. the percentage deviation of patents in quarter-t and field-j from the number of patents filed in
the same field in 1985Q1. Standard errors are clustered by technical field. 95% confidence bands are
plotted. The first vertical line refers to the quarter before the policy news (1992Q3) and the second
vertical line refers to the quarter before the policy implementation (1995Q2).
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Figure E.18: Marginal effect of 1 more day of protection on granted patents
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The plot shows the βk coefficients of the specification (1) having as dependent variable granted
patents in quarter-t andfield-j. The sample is restricted to technical fields that, in all quarters, have not
less than 25 patents and not more than 500. Standard errors are clustered by technical field. 95% con-
fidence bands are plotted. The first vertical line refers to the quarter before the policy news (1992Q3)
and the second vertical line refers to the quarter before the policy implementation (1995Q2).

than 25 patents and not more than 500.105 Figures E.18 and E.19 show the results obtained on
such restricted sample, when using granted patents and citations-weighted granted patents
as outcome variables, respectively.

E.2 Results at the sector-level
E.2.1 Evidence on innovation outcomes
In this subsection I provide evidence on the effect of the policy on innovation outcomes, as
measured by patents, citations-weighted patents, and patent value, at the NAICS 6-digit in-
dustry level.106 This layer of analysis requires aggregation of innovation measures by indus-
try, and the adaptation of the technical-field level treatment variable, i.e. the policy-induced
change in patent protection time, at the industry-level.

To build measures of innovation by 6-digit NAICS and year, I start from measures of in-
novation, i.e. number of granted patents, number of citations-weighted patents, and private
economic value of patents, by technical field and quarter. The first step is to aggregate pre-
vious innovation measures at the yearly level. The second step involves mapping them into
6-digit NAICS. This is done through the following formula

105For sake of clarity, these figures refer to the number of applications that are subsequently granted. As in
the other parts of the paper, the count of patents is done based on the quarter when the applications is filed,
irrespective of the subsequent grant quarter.

106An example of the depth of the sectoral classification I use in the analysis is the following. 31-33 is the
aggregate 2-digit classification for Manufacturing; 324 is the 3-digit Petroleum and Coal Products Manufacturing,
3241 is the 4-digit Petroleum and Coal Products Manufacturing; which includes the 5-digit 32412 Asphalt Paving,
Roofing, and Saturated Materials Manufacturing, which includes the 6-digit sectors 324121 Asphalt Paving Mixture
and Block Manufacturing and 324122 Asphalt Shingle and Coating Materials Manufacturing.
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Figure E.19: Marginal effect of 1 more day of protection on citations-weighted patents
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The plot shows the βk coefficients of the specification (1) having as dependent variable citations-
weighted granted patents in quarter-t and field-j. The sample is restricted to technical fields that, in
all quarters, have not less than 25 patents and not more than 500. Standard errors are clustered by
technical field. 95% confidence bands are plotted. The first vertical line refers to the quarter before
the policy news (1992Q3) and the second vertical line refers to the quarter before the policy imple-
mentation (1995Q2).

Is,t =
∑
j

Ij,tπs|j

Is,t is innovation in 6-digit NAICS sector s and year t, Ij,t is innovation in 4-digit IPC field
j and year t, and πs|j is the probability that a patent classified in technical field j is linked to
sector s or, alternatively, contributes to innovation in sector s. πs|j is directly taken from the
’Algorithmic Links with Probabilities’ crosswalk by Goldschlag, Lybbert and Zolas (2019),
which exactly compute these conditional probabilistic links between sectors and technical
field based on text analysis.

To convert the technical field-level treatment into a 6-digit NAICS sectoral treatment, I
rely again on probabilistic links between 4-digit IPC classes and 6-digit NAICS industries
computed by Goldschlag, Lybbert and Zolas (2019). Specifically,

Ts =
∑
j

Tjπj|s

The treatment Ts for sector s is the sum of technical field-level treatments Tj’s, weighted
by the probability that, given that a patent is assigned NAICS s, it comes from technical field
j.

The specification of the difference-in-difference regression at the industry-level is analo-
gous to the one by technical field
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Figure E.20: Marginal effect of 1 more day of protection on sectoral granted patents
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The plot shows the βk coefficients of regression (64) Ps,t = αs +
∑2000

k=1985 γk1(t=k) +∑2000
k=1985 βk1(t=k)Ts + εs,t. Ps,t is the number of patents attributable to sector s and filed for in year t,

and Ts is the industry-specific treatment. I omit the dummy for 1991, which is the pre-treatment year.
95% confidence bands are plotted. Standard errors are clustered by 3-digit NAICS industry and year.
The first vertical line lies just before the news year (1992) and the second vertical line lies just before
the implementation year (1995).

Ys,t = αs +
2000∑

k=1985

γk1(t=k) +
2000∑

k=1985

βk1(t=k)Ts + ΞXs,t + εs,t (64)

where αs are industry fixed effects, 1(t=k) are yearly dummy variables, Ts is the sectoral
treatment, Xs,t is matrix of controls that includes 4-digit NAICS industry × year effects, the
natural logarithm of the energy price deflator, and the natural logarithm of thematerial costs
deflator, εs,t is an idiosyncratic error term. Standard errors are clustered by 3-digit NAICS
industry× year in this case and the regressions.

Figure E.20 plots the difference-in-difference βk coefficients of interest, together with their
95% confidence bands, for specification (64) run having the number of granted patents by
industry and year as dependent variable. The pre-treatment coefficients are remarkably
close to 0, confirming the absence of pre-trends, and the pattern of post-treatment estimated
marginal effects is similar to the evidence by technical field presented in Section 3 of the
paper. Figures E.21 and E.22 plot the same coefficients for citations-weighted patents and
patent value as dependent variables , respectively. Again, the evidence is very consistent
with previous one, even though confidence bands are larger in this case.
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Figure E.21: Marginal effect of 1 more day of protection on sectoral citations-weighted
granted patents
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The plot shows the βk coefficients of regression (64) Cs,t = αs +
∑2000

k=1985 γk1(t=k) +∑2000
k=1985 βk1(t=k)Ts + εs,t. Cs,t is the number of citations-weighted patents attributable to sector s

and filed for in year t, and Ts is the industry-specific treatment. I omit the dummy for 1991, which
is the pre-treatment year. 95% confidence bands are plotted. Standard errors are clustered by 3-digit
NAICS industry and year. The first vertical line lies just before the news year (1992) and the second
vertical line lies just before the implementation year (1995).

Figure E.22: Marginal effect of 1 more day of protection on sectoral patent value
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The plot shows the βk coefficients of regression (64) Vs,t = αs +
∑2000

k=1985 γk1(t=k) +∑2000
k=1985 βk1(t=k)Ts + εs,t. Vs,t is the private economic value of patents attributable to sector s and

filed for in year t, and Ts is the industry-specific treatment. I omit the dummy for 1991, which is the
pre-treatment year. 95% confidence bands are plotted. Standard errors are clustered by 3-digit NAICS
industry and year. The first vertical line lies just before the news year (1992) and the second vertical
line lies just before the implementation year (1995).
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Appendix F Additional theoretical results
F.1 A model with R&D in one stage: Jones (1995)
In this subsection, I sketch the key elements of an adaptation of Jones (1995)’s model of semi-
endogenous growth to a setting with finite patent length, which I use the show that, without
the distinction of research and development activity in the way they are modelled in Section
5 of the paper, the theory cannot match the empirical responses. The consumption side and
the production side are exactly equal towhat presented in subsection 5.2.2 of the paper. What
is different is the R&D block of the model. In the standard setup, R&D is done in one step,
and investment of IR(t) units of the final good generates V (t)ϕ1IR(t)

ϕ2 new intermediate good
varieties. So, the R&D maximization problem is simply

max
IR(t)

{
υ(t)V (t)ϕ1IR(t)

ϕ2 − IR(t)
}

and, given the optimal investment I∗R(t) solving previous problem, the evolution of vari-
eties over time is ruled by

(1 + ψ)V̇ (t) = V (t)ϕ1I∗R(t)
ϕ2

Clearly, N(t), P (t), and other development-related variables disappear from the model.
So, the counterpart of new patents in the model is simply V (t)ϕ1I∗R(t)

ϕ2 , and the patent-read
R&D coincides with investment I∗R(t).

Then, I simulate the policy episode in themodel, and I compare its response to the reduced-
form estimates of Section 3, in the same way this is done for the estimation of the benchmark
model’s structural parameters. For sake of comparability between the settings, I fix the pa-
rameter of the model without development lags to the values estimated for the benchmark
model of Section 5 (parameters reported in Table 2 of the paper). Figure F.1 shows the re-
sponse of new innovations in the model and in the data. The standard model fails to capture
the pre- and post-implementation response shown by the data, and the responses of innova-
tion and R&D, plotted in Figure F.2, are flat at the news and drop at the policy implementa-
tion, slowly adjusting to toward the new steady-state.

As mentioned in the paper, the cause of this dynamics is that the value of a patent, at the
announcement of a future patent term increase, does not jump much, barely changing inno-
vation incentives until the actual policy implementation. When the increase is implemented,
however, patent value and investment increase. Investment does not increase immediately
to the new steady state because V (t) is slow-moving, and the transition features a produc-
tivity of research, given by V (t)ϕ1 , that is temporarily lower than in the new steady-state V ,
keeping investment lower during the transition.
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Figure F.1: New patents response to simulated policy: Jones (1995) model

The graph shows the response of new patents V (t)ϕ1IR(t)
ϕ2 to the news of a patent term increase of

100 days, starting from T0 = 17 years, implemented 2 years and 8 months after the announcement.
The vertical blue dashed line refers to the implementation moment and the system is assumed to
be in the steady state associated with T0 = 17 years before the news at time 0. The black solid line
is the response implied by the standard Jones (1995)’s model of semi-endogenous growth. All the
parameters are set to the values estimated in Table 2. The red dashed lines are the 95% confidence
bands of the empirical reduced form estimated of Section 3.

Figure F.2: R&D effort response to simulated policy: Jones (1995) model

The graph shows the response of R&D investment IR(t) to the news of a patent term increase of
100 days, starting from T0 = 17 years, implemented 2 years and 8 months after the announcement.
The vertical blue dashed line refers to the implementation moment and the system is assumed to
be in the steady state associated with T0 = 17 years before the news at time 0. The black solid line
is the response implied by the standard Jones (1995)’s model of semi-endogenous growth. All the
parameters are set to the values estimated in Table 2.
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Figure F.3: New patents response to simulated policy: Model with no spillover

The graph shows the response of new patents ιD(t)N(t) to the news of a patent term increase of 100
days, starting from T0 = 17 years, implemented 2 years and 8 months after the announcement. The
vertical blue dashed line refers to the implementation moment and the system is assumed to be in
the steady state associated with T0 = 17 years before the news at time 0. The black solid line is the
response implied by the model of Section 5 shutting down the externality channel by setting χ = 0.
All the other parameters are set to the values estimated in Table 2. The red dashed lines are the 95%
confidence bands of the empirical reduced form estimated of Section 3.

F.2 Performance of the model with no spillover
In this subsection, I illustrate what would be the behavior of patenting and of the model
counterpart of patent-read R&D effort if the externality term of the benchmark model is
muted, i.e. if the parameter χ is set to zero. In response to the new of a patent term increase,
the pre-implementation deceleration, which is driven by the drop in development intensity,
is unaffected. However, absent the externality, the post-implementation persistence vanishes,
and patenting jumps to a higher level than the old steady state, converging to the new one
from above. This occurs because V (t) is slowmoving, and its drop in the pre-implementation
phase is not strong enough to counteract the effect of the implementation of the longer term
on research investment.

F.3 Performance of the model if creative destruction depends on patent
length

This subsection shows how the positive and normative performance of the model changes if
the rate of creative destruction ψ is assumed to be a function of patent length T . I consider
two cases. First, λ(t) =

(
max{ψ + 0.001(T − 17) ∗ 365; 0}

)
V̇ (t)
V (t)

, i.e. the rate of creative de-
struction is a linear function of deviations of patent length from the status quo of 17 years.
In this case, a longer patent length linearly increases creative destruction. Figure F.5 shows
the positive performance of the modified model in matching the empirical response of inno-
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Figure F.4: R&D expenditure (flow) response to simulated policy: Model with no
spillover

The graph shows the response of the flow of R&D expenditure to the news of a patent term reduction
of 100 days, starting from T0 = 17 years, implemented 2 years and 8 months after the announcement.
The vertical blue dashed line refers to the implementation moment and the system is assumed to be
in the steady state associated with T0 = 17 years before the news at time 0. The black solid line is the
response implied by the model of Section 5 shutting down the externality channel by setting χ = 0.
All the other parameters are set to the values estimated in Table 2. The red dashed lines are the 95%
confidence bands of the empirical reduced form estimated of Section 3.

vation and R&D to a 100-days patent term increase anticipated by 2 years and 8 months. The
performance is unaffected relative to the benchmark model. Figure F.6 shows the welfare
change from the unanticipated implementation of a new patent length (left panel) and the
implied rate of creative destruction ad a function of T (right panel).

In the second case I consider, creative destruction depends quadratically on deviations of
T from 17 years, i.e. λ(t) =

(
max{ψ + 0.001(T − 17) ∗ 365− 0.0001[(T − 17) ∗ 365]2; 0}

)
V̇ (t)
V (t)

.
Figure F.7 shows the positive performance of the modified model in matching the empirical
response of innovation and R&D to a 100-days patent term increase anticipated by 2 years
and 8 months. The performance is unaffected relative to the benchmark model. Figure F.8
shows the welfare change from the unanticipated implementation of a new patent length (left
panel) and the implied rate of creative destruction ad a function of T (right panel).

F.4 Model with labor as R&D input
In this Section, I will present the details of an alternative specification of themodel presented
in Section 5: Research and development activities are not carried out by employing units of
the final good, but they are carried out by hiring labor at the competitive wage w(t). As in
subsection C.1, I will start from the maximization problem faced by agents, the derivation of
the aggregate laws ofmotion, and the derivation of the balanced growth path. The consumer
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Figure F.5: Model-based simulation of the policy and targeted reduced-form estimates

(a) New patents (b) R&D Investment

The black solid lines are the model-based responses of the model with parameter values reported in Table 2–
with creative destruction linearly depending on patent length–and the red dashed lines are 95% confidence
bands of the reduced form estimates of Section 3. The system is assumed to be at the pre-policy change steady
state at t = 0, when the news of 100-days increase in protection time implemented after 2 years and 8 months
(blue vertical line) happens.

Figure F.6: Welfare change from an unanticipated policy change

(a) Welfare (b) Creative destruction

The left panel shows the change in the welfare index (19)–relative to the status quo–from the unanticipated
implementation of a new patent length. The right panel shows how the rate of creative destruction is assumed
to change with patent length T (black solid line) and it plots it against the rate of creative destruction assumed
in the benchmark model (red dashed line).
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Figure F.7: Model-based simulation of the policy and targeted reduced-form estimates

(a) New patents (b) R&D Investment

The black solid lines are the model-based responses of the model with parameter values reported in Table
2–with creative destruction quadratically depending on patent length–and the red dashed lines are 95% confi-
dence bands of the reduced form estimates of Section 3. The system is assumed to be at the pre-policy change
steady state at t = 0, when the news of 100-days increase in protection time implemented after 2 years and 8
months (blue vertical line) happens.

Figure F.8: Welfare change from an unanticipated policy change

(a) Welfare (b) Creative destruction

The left panel shows the change in the welfare index (19)–relative to the status quo–from the unanticipated
implementation of a new patent length. The right panel shows how the rate of creative destruction is assumed
to change with patent length T (black solid line) and it plots it against the rate of creative destruction assumed
in the benchmark model (red dashed line).
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side is identical to the main model. A risk-neutral representative agent maximizes utility
by choosing the optimal consumption-saving behavior, and supplies a total of L(t) units of
labor, which are used for the production of the final good in quantity LP (t), for research in
quantity LR(t), and for development in quantity LD(t). The wage is the same for all three
types of labor, in equilibrium. The agent can save in physical capital or in the shares of
intermediate good firms, but both assets must deliver the same net rate of return under no-
arbitrage condition. Therefore, the dynamic consumer’s problem delivers the equilibrium
condition r(t) = ρ, stating that the net return of savings must be equal to the discount rate
of the consumer.

F.4.1 Final good production
The final good is produced by a competitive firm that chooses labor and the optimal quantity
of each of the intermediate goods in the economy to maximize profits. The problem is

max
{X(i,t)}i∈[0,V (t)],LP (t)}

[
h(t)LP (t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]
−
∫ V (t)

0

z(i, t)X(i, t)di− w(t)LP (t)

where output is

Y (t) =
[
h(t)LP (t)

]1−α[ ∫ V (t)

0

Xα(i, t)di
]

(65)

and it is determined by h(t), which is an exogenous labor-augmenting technology term
that grows exponentially at a given constant rate gh, LP (t), which is the hours devoted to
production, exponentially growing at constant rate n, and amass of V (t) intermediate capital
goods varieties. w(t) is the wage rate and z(i, t) is the instant-t price of intermediate variety
i. The first order conditions of the problem are

w(t) = (1− α)h(t)1−αLP (t)
−α
[ ∫ V (t)

0

Xα(i, t)di
]

(66)

and

z(i, t) = αh(t)1−αLP (t)
1−αXα−1(i, t) ∀ i ∈ [0, V (t)] (67)

The former equation determines the equilibrium wage rate and it is the inverse demand
for production labor, while the latter equation is the inverse demand for intermediate i.

F.4.2 Monopolistic intermediate goods production
A share ζ(t) of the existing V (t) intermediate goods varieties are protected by a monopoly,
granted by a valid patent. The monopolistic producer of variety i chooses the quantity to
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produce in order tomaximize profits subject to the inverse demand given by (67), and subject
to the production function. In particular, one unit of each of the intermediate goods can be
produced by using one unit of raw capital K(t), which can be rented from households at
a rate rK(t) = r(t) + δ, where δ is the depreciation rate of physical capital. Therefore, the
maximization problem is

max
X(i,t),z(i,t)

{
z(i, t)X(i, t)− (r(t) + δ)X(i, t)

}
s.t. z(i, t) = αh(t)1−αLP (t)

1−αXα−1(i, t)

and the first order condition implies

z(i, t) = α(h(t)LP (t))
1−αX(i, t)α−1 =

1

α
(r(t) + δ) (68)

i.e. the price is a constant markup 1/α over the marginal cost (r(t) + δ). This implies that
the price of each of the monopolistically-produced intermediate capital varieties is the same
and, therefore, also the produced quantity and the profits will be symmetric. In particular,
these will satisfy

X(i, t) = Xp(t) = α
2

1−α (r(t) + δ)−
1

1−αh(t)LP (t) ∀ i ∈ [0, ζ(t)V (t)] (69)

π(i, t) = π(t) =
( 1
α
− 1
)
(r(t) + δ)Xp(t) (70)

F.4.3 Non-monopolistic intermediate goods production
A fraction 1 − ζ(t) of intermediates are not monopolistically produced because legal patent
protection on it has expired. These non-monopolistic varieties are produced in a regime of
Bertrand competition, and therefore the price z(i, t) is equal to the marginal cost of produc-
tion (r(t)+ δ). It follows from the inverse demand function (67) that the production of these
competitively-produced intermediate varieties is symmetric and given by

Xnp(t) = α
1

1−α (r(t) + δ)−
1

1−αh(t)LP (t) ∀ i ∈ (ζ(t)V (t), V (t)] (71)

which implies that Xp(t) = αXnp(t). Since α ∈ (0, 1) by assumption, this implies that the
quantity produced of monopolistic varieties is lower than the one of competitive varieties,
which is what the distortion of monopoly consists in.

F.4.4 Physical capital market clearing condition
The equilibrium in the physical capital market requires that the quantity of capital supplied
by households K(t) is equal to the quantity of capital demanded by firms to produce the
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intermediate capital goods, i.e.

K(t) =ζ(t)V (t)Xp(t) + (1− ζ(t))V (t)Xnp(t)

=[αζ(t) + (1− ζ(t))]V (t)Xnp(t)
(72)

F.4.5 Research investment to discover new projects
The model features an unit mass of identical firms that invest in research. The output of
research investment is new ideas, onwhich the successful firm can exclusively invest in order
to develop the idea into a new intermediate variety. The research investment problem of the
representative research firm is

max
LR(t)

{
P (t)E(t)χV (t)ϕ1LR(t)

ϕ2 − w(t)LR(t)
}

Research requiresLR(t) units of labor for the production ofE(t)χV (t)ϕ1LR(t)
ϕ2 new ideas,

whereE(t)χ is the delayed externality term already discussed in Sections 4 and 5, and V (t)ϕ1

is an externality from existing varieties that is common in endogenous growth models. Pa-
rameters are constrained so that ϕ1 + ϕ2 < 1. ϕ1 < 1 captures the fact that ideas become
harder to find as the knowledge frontier expands, and ϕ2 < 1 captures the degree of decreas-
ing returns to scale in research investment. Finally, P (t) is the economic value of a new idea,
or, alternatively, it can be thought as the exclusivity value of a development project. The
optimal research investment is given by

LR(t) =
[ ϕ2

w(t)
P (t)E(t− d)χV (t)ϕ1

] 1
1−ϕ2

F.4.6 Development of projects
Development occurs independently on each existing project, even in the case when a single
firm is running multiple projects. Therefore, for each project firms hire labor to obtain a
patentable intermediate variety, and firms are successful with a Poisson arrival rate of

(
lD(t)V (t)

L(t)

) 1
θ

where θ > 1 still captures the cost-convexity of the intensity with which development is
carried out. lD(t) can be interpreted as development labor intensity. The innovation arrival
rate is re-scaled by the total labor force, so that lD(t)/L(t) can be interpreted as the share of
the labor force on each development project, and it is increasing in the number of existing
varieties V (t), tomake sure that a balanced growth path is admissible for this economy. Then,
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the development problem can be written in recursive form as

r(t)P (t)− Ṗ (t) = max
lD(t)

{( lD(t)V (t)

L(t)

) 1
θ
[
υ(t)− P (t)

]
− w(t)lD(t)

}
(73)

where the equation captures the fact that if, with instantaneous probability
(

lD(t)V (t)
L(t)

) 1
θ

the project is successful, the investing firm receives a value υ(t) for the intermediate vari-
ety obtained, but it loses the value of the project P (t), which expires after completion. The
expected value of a newly patented variety, which is what the developing firm cares about
when working on the project, is

υ(t) =

∫ t+T

t

e−
∫ s
t (r(t

′)+λ(t′))dt′π(s)ds (74)

where π(t) is the flow of profits at instant t, r(t) is the real interest rate, and λ(t) is an
endogenous Poisson rate atwhich, depending on aggregate innovation intensity, amonopoly
can be creatively destroyed. Therefore, υ(t) is the expected net present discounted value of
profits on a variety. The optimal labor hiring decision on each development project is

lD(t) =

[
1

θ

(V (t)

L(t)

) 1
θ
(
υ(t)− P (t)

) 1

w(t)

] 1

1− 1
θ

(75)

The dynamic spillover term must be re-defined here as

E(t) ≡ d−1

∫ t

t−d

( lD(s)V (s)

L(s)

) 1
θ
ds

which is identical in spirit the the expression of the benchmark model of Section 5, be-
cause the externality is simply a function of the development completion probability.

The process of creative destruction captured by the λ(t) term is endogenous and it is
driven by the rate of growth of the number of varieties V (t). Specifically, it is defined as

λ(t) ≡ ψ
V̇ (t)

V (t)

i.e. in times when the rate of growth of varieties is higher, the rate of creative destruction
is higher. This strategy to model entry and creative destruction is motivated by the fact that,
in the data, I observe that innovation by new applicants increases when overall innovation
rate increases, but their relative weight does not change.
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F.4.7 Evolution of aggregate quantities
The decisions resulting from the previous optimization problems shape the evolution of ag-
gregate quantities as follows. First, the number of varieties V (t) evolves according to

(1 + ψ)
V̇ (t)

V (t)
=
( lD(t)V (t)

L(t)

) 1
θ
N(t) (76)

where ψ V̇ (t)
V (t)

is by howmuch creative destruction reduces the mass of intermediate goods

available, while
(

lD(t)V (t)
L(t)

) 1
θ
N(t) is the number of development projects successfully turned

into a variety. This is the case because
(

lD(t)V (t)
L(t)

) 1
θ is the instantaneous probability that each

of the existing projects N(t) is successfully completed, generating varieties. Since this in-
stantaneous probability is identical and independent across projects, a suitable law of large
numbers applies, and the aggregate representation provided holds.

The evolution of projects is instead given by

Ṅ(t) = E(t− d)χV (t)ϕ1LR(t)
ϕ2 −

( lD(t)V (t)

L(t)

) 1
θ
N(t) (77)

where the first term captures the mass of new projects generated by research investment
and the second term captures the destruction of projects due to successful completion.

The evolution of the share of existing varieties that are covered by monopoly, i.e. ζ(t), is
given by

ζ̇(t) = (1− ζ(t))
V̇ (t)

V (t)
− (1 + ψ)

V̇ (t− T )

V (t)
e−

∫ t
t−T λ(t′)dt′ (78)

where the first term captures the additions to the monopolistic varieties due to current
innovation, and the second term captures the fact that all those varieties that have not already
been creatively destroyed become competitive when the maximum patent term T expires.

The evolution of aggregate capital satisfies

K̇(t) = IK(t)− δK(t) (79)

where IK(t) is the investment in physical capital done by the households out of the final
good, and δK(t) is the depreciation of the existing stock.

F.4.8 Market clearing in the goods market
Given the production decisions of the intermediate varieties producers and of the final good
producer, GDP for this economy can be rewritten as
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Y (t) = [ααζ(t) + (1− ζ(t))]V (t)h(t)1−αLP (t)
1−αXα

np(t) (80)

where [ααζ(t) + (1 − ζ(t))]V (t)h(t)1−α is the measured TFP. Notice that the productivity
of the economy grows with the number of varieties available, and decreases with the share
of monopolistic varieties, as αα < 1.

On the other hand, the total production of the final good must also satisfy

Y (t) = C(t) + IK(t) (81)

as consumption and capital investment are funded out of the final good.

F.4.9 Market clearing in the labor market
Market clearing of labor market requires that the exogenous amount of labor available L(t)
equals the sum of labor used in production, research, and development in equilibrium.

L(t) = LP (t) + LR(t) + LD(t) (82)

where LD(t) = lD(t)N(t) is the total labor used in development, given by the labor lD(t)
optimally hired on each project times the number of projects.

F.4.10 Balanced growth path
Population L(t) and the productivity term h(t) exogenously grow at constant rate n and gh,
respectively. Also, since r(t) = ρ, the real interest rate is constant. From the labor market
clearing condition, it follows that production labor LP (t) and research labor LR(t)must also
grow at rate n, while labor employed in each single project lD(t) must grow at less than
n, namely at n minus the growth rate of projects. From equations (69), (71), and (70), it
follows that the growth rate of Xp(t), Xnp(t), and profits along the balanced growth path is
identical and equal to gh+n. Also, from the definition of υ(t), it follows that the patent value
must grow at the same rate of profits, i.e. gh + n, and that, as a consequence, the rate of
creative destruction λ(t) is constant along the balanced growth path. In addition, from the
value function of the development problem, it follows that, for a b.g.p. to be possible, P (t)
must grow at the same rate of υ(t), i.e. gP = n + gh, and that the arrival rate of innovations(

lD(t)V (t)
L(t)

) 1
θ must be constant. This implies that the rate of growth of lD(t) must be equal to

population growth nminus the rate of growth of varieties. Notice that a constant
(

lD(t)V (t)
L(t)

) 1
θ

is consistent with the optimality condition (75), and it implies that also the externality term
E(t) is constant in the b.g.p.. The evolution of the stock varieties in equation (76) implies
that gV = gN , and the evolution of the stock of projects in equation (77) requires that
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gN = ϕ1gV + ϕ2n (83)

Since gV = gN , it follows that the rate of growth of endogenous productivity is gV = gN =
ϕ2

1−ϕ1
n, and the rate of growth of labor devoted to each development project is

glD = n− gV =
(
1− ϕ2

1− ϕ1

)
n =

(1− ϕ1 − ϕ2

1− ϕ1

)
n

which is smaller than population growth as long as ϕ2 > 0. From (81), the rate of growth
of consumption and capital investmentmust be the same as output. Hence, gY = gC = gIK =.
In addition, from (78), it follows that ζ(t) is constant along the b.g.p. and, as a consequence,
the equilibrium production function (80) requires

gY = (1− α)(gh + n) + gV + αgX

But gX = n+ gh, and therefore the last implies gY = ϕ2

1−ϕ2
n+ n+ gh, i.e.

gY =
1− ϕ1 + ϕ2

1− ϕ2

n+ gh

which fully solves for balanced growth path growth rates, and shows that the previous
model admits a balanced growth path.
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