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Abstract

I propose a method for formulating and solving for subgame perfect equilibria of continuous-
time games. The main idea is to study self-enforcing agreements corresponding to a strategic
interaction directly, without setting up a whole extensive-form game. My method allows for
non-Markov and asymmetric players’ behavior, and it does not impose restrictions on players’
strategies. The method applies to a broad class of games, including stochastic games, in which
arbitrarily many players can have both observable and hidden actions. In many cases, my
approach produces tractable and explicit solutions.
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1 Introduction

This paper proposes a novel approach for formalizing and solving for subgame perfect Nash equilibria
(SPNEs) in general continuous-time games. The proposed approach (i) applies to a broad class of
games, including those relevant for recent applications; (ii) does not rely either on the Markovian or
on the symmetry assumptions; (iii) does not impose restrictions on players’ strategies beyond those
given by the structure of a game; (iv) admits tractable and explicit solutions that do not require
taking frequent-action limits. Moreover, the proposed approach is the first one that manages all of
the above simultaneously.

Continuous-time game-theoretic models have become increasingly popular among economic the-
orists in recent years (Section 1.1). In many cases, modeling economic phenomena with continuous-
time games can considerably expand our understanding beyond what could be achieved with con-
ventional discrete-time tools. Unlike their discrete-time counterparts, continuous-time models allow
one to express equilibrium objects as solutions to partial differential equations (PDEs) or stochastic
differential equations (SDEs), which can then be readily found either analytically or numerically.
Despite the growing regard for continuous-time models, there has been but limited progress in
formally defining SPNEs in general continuous-time games. A possible explanation may be the fol-
lowing: It has long been known that for continuous-time games with observable actions, one can not
typically propose a coherent notion of an extensive form. Simon and Stinchcombe (1989) provide a
detailed discussion of related difficulties. One might conclude then that it is not possible to propose
a coherent notion of an SPNE for such games either. In this paper, I explain why such a conclusion
might be premature, and bridge the aforementioned gap in the literature.

Main Idea. To understand the main idea behind my method, consider first the problem of finding
SPNEs for a strategic interaction in discrete time. There exist two approaches for doing this.

The standard approach proceeds in the following three steps: (i)-(ii) Represent the interaction
as an extensive-form game: (i) define players’ strategies; (ii) for each strategy profile, specify an
outcome corresponding to that profile and players’ payoffs in that outcome. (iii) For the constructed
game, compute all Nash equilibria that satisfy subgame perfection.

The second approach is proposed by Abreu (1988). I call it the Abreu approach. Effectively, the
Abreu approach swaps the first two steps of the standard approach as follows: (i) Specify which
outcomes are possible as a result of the interaction. Specify players’ payoffs in each outcome. Define
an agreement as a collection of an initial outcome and punishment outcomes. The initial outcome
proposes a whole path of play, assuming nobody deviates. For any finite sequence of observed
deviations, the corresponding punishment outcome proposes a continuation path of play, assuming
no further deviations. (ii) Given an agreement, define players’ strategies as plans of unilateral
deviations from the agreement’s outcomes. After any finite history, each strategy of each player
will then induce a well-defined continuation path of play, assuming the opponents do not deviate.
(iii) Associate SPNEs with self-enforcing agreements: that is, agreements in which after any finite
history, neither player has a strategy with the value higher than his payoff in the effective outcome
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of the agreement. Find all self-enforcing agreements.
For discrete-time games, the two approaches are essentially equivalent.1 Yet, the Abreu ap-

proach can often be more tractable. For continuous-time games, following the standard approach is
problematic: In continuous time, it may be infeasible to specify which outcome should correspond
to which extensive-form strategy profile.2 The main insight of my paper is that the Abreu approach
can still be applied to a broad class of continuous-time games.

The Main Idea: To find subgame perfect equilibria of continuous-time games, one can
use the Abreu approach. That is, rather than defining first an extensive-form game, one
can search directly for self-enforcing agreements corresponding to the interaction.

Explanation. I interpret agreements as follows. Before a game, players coordinate on a total
description, or an agreement, that specifies what should be done in the game in any contingency.
The agreement contains an initial outcome: that is, the path of actions that should be followed
from the beginning and until the end of the game. Also, the agreement is supplemented with
instructions about what should be done if either player unilaterally deviates from the initially
proposed path. Those instructions describe punishments: that is, recommended continuation paths
of actions that should follow unilateral deviations from the initial outcome. Further, the agreement
includes instructions about what should be done if either player unilaterally deviates from a proposed
punishment: that is, further punishments. And so on.

In discrete-time games, my notion of agreements coincides with what Abreu (1988) calls “strategy
profiles.”3 However, my main point is that agreements are not profiles of players’ strategies! Instead,
once an agreement is in place, a strategy for a player is a plan of unilateral deviations from the
agreement. That is, a player’s strategy describes her future behavior, assuming her opponents do
not deviate. This means that after any finite history, a player’s strategy is completely summarized
by a path of her future actions until the end of the game. Moreover, when studying agreements, we
do not need to consider profiles of players’ strategies. This point provides a crucial simplification
necessary for working with continuous-time games.

I model SPNEs as self-enforcing agreements: that is, agreements in which at any time, no
player has a plan of unilateral deviations that has the value higher than the value promised to him
at that time in the agreement. The reason self-enforcing agreements are tractable in continuous-
time games is the following: In a self-enforcing agreement, the initial path is the only path that

1To be precise, in discrete time, the two approaches are equivalent for perfect-information games and multi-stage
games with observed actions. In general games, the Abreu approach leads to sequential rationality, which is stronger
than subgame perfection.

2Consider the following example from Bergin and MacLeod (1993). Two players play a prisoner’s dilemma on
the time interval r0,`8q. Let σ be the behavioral strategy for either player that prescribes the following: at t “ 0,
choose “Cooperate”; at any t ą 0, choose “Cooperate” if both players have always cooperated on r0, tq, otherwise
choose “Defect.” Strategy σ is well-defined: the prescribed action at each time is uniquely determined by the past
history of play. Yet, there are multiple outcomes consistent with the strategy profile pσ, σq: for any t ą 0, the outcome
in which both players cooperate on r0, ts and defect on pt,`8q is consistent with the profile.

3Abreu (1988): “I view a strategy profile as a rule specifying (or prescribing) an initial path and punishments for
any deviation from the initial path, or from a previously prescribed punishment.”
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Figure 1: A play under an agreement.

will be played actually. Any deviation from the initial path is a counterfactual, “what if” deviation,
which should not be made by a rational player. To establish the credibility of the initial path,
the agreement specifies punishments that would follow any such counterfactual deviation of level 1.
To establish the credibility of those punishments, the agreement further describes punishments for
“what if” deviations of level 2; that is, punishments for counterfactual deviations from punishments
for counterfactual deviations from the initial outcome. And so on. In this construction, (i) one does
not specify what would happen if several players deviated simultaneously; (ii) the number of levels
of counterfactual deviations grows large, but always remains finite, even though players’ strategies
may be arbitrarily complex.

Figure 1 illustrates schematically a possible play under an agreement. The agreement starts
with an initial outcome (green solid curve in Figure 1a). Suppose that a player, i, decides to deviate
from the initial outcome at some time t ě 0 by following any other path of actions. The red solid
curve in Figure 1b corresponds to the path of player i’s actions and her opponents’ reactions that
will result. At any time along that path, the agreement specifies a continuation outcome that should
be followed from that time; these are level-1 punishments depicted with blue dashed curves. At
all times, the agreement presumes that all players will follow the punishment recommended then.
Figure 1c illustrates what will happen if player i starts following the recommended punishment at
some time t1 ě t (blue solid curve). Another player, j, may further deviate from that punishment
at some time t2 ě t1. The second red solid curve shows the resulting path of his actions and his
opponents’ reactions. At any time along that path, the agreement specifies level-2 punishments.
This procedure continues for any finite number of consecutive unilateral deviations.

To find self-enforcing agreements of a continuous-time game, one can proceed similarly to the
discrete-time case. That is, one can typically find self-enforcing agreements in the following steps:
(i) characterize players’ incentive constraints in self-enforcing agreements; (ii) construct an optimal
penal code; (iii) using the optimal penal code for punishments, characterize paths supportable in
self-enforcing agreements.

Main Results. The main result of the paper is the formalization of agreements of continuous-time
games. In Section 3, I define an agreement as a collection of continuation outcomes: it specifies an
initial outcome that should be effective after the initial history; for any other finite history possible
under the play of the agreement, it specifies a continuation outcome that should be effective after
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that history. In any continuation outcome, a player’s strategy is an admissible path of her future
actions, from the beginning of the continuation outcome until the end of the game. If a player
uses a strategy in a continuation outcome, the path of her opponents’ reactions is determined by
the following convolution formula: at any time, the opponents’ actions played in response to the
strategy equal the actions prescribed to them at that time in the effective continuation outcome.
That is, the convolution formula is a consequence of deviations being unilateral. For each strategy,
the convolution formula defines a unique path of play that will be induced by that strategy. I impose
two restrictions on continuation outcomes comprising an agreement, admissibility and coherence.
Admissibility requires that for each strategy, the total induced path of play must be possible under
the rules of the game. Coherency is the requirement that in spells of time when players do not
deviate from effective outcomes, the agreement must be recommending the same continuation path
of play. These two restrictions are natural, and are sufficient for the play under an agreement
to be well-defined. Coherency ensures that the following promise keeping property is satisfied in
agreements: if a player decides to follow a continuation outcome, her opponents will react by also
following that continuation outcome. The value of a strategy is the payoff the player receives from
the path induced by that strategy. A player’s strategy in a continuation outcome is called a profitable
deviation if its value exceeds the payoff promised to her in that continuation outcome. Self-enforcing
agreements are agreements in which no player has a profitable unilateral deviation after any possible
history of play. By promise keeping, the value of the strategy that prescribes to follow a continuation
outcome coincides with the value promised in that continuation outcome. Hence, in self-enforcing
agreements, it is optimal for players to always keep following the agreement’s recommendations.

Another main result of the paper is the dense-collection principle, which I state and prove as
Theorem 1 in Section 4. A collection of strategies in an agreement is called dense if the value of any
strategy in the agreement can be arbitrarily approximated from below by the values of strategies
from the collection. The dense-collection principle asserts that to check that a given agreement is
self-enforcing, it suffices to check that there are no profitable deviations within a dense collection
of strategies. The dense-collection principle generalizes the one-shot deviation principle formulated
by Abreu (1988) for discrete-time infinitely repeated games with discounting. The dense-collection
principle is an effective principle that can facilitate characterization of self-enforcing agreements in
continuous-time games. To illustrate the power of the principle, I employ it to prove a version of
the one-shot deviation principle for smooth Markov agreements in the setting of Daley and Green
(2020) (Theorem 2 in Section 6.2), which I then use to characterize players’ incentive constraints
in those agreements. Similarly, one can establish versions of the one-shot deviation principle for
Markov agreements in the settings of Ortner (2017), DeMarzo and He (2021), Chavez (2020), and
Chavez and Varas (2021).

Organization of the Paper: Section 1.1 reviews the related literature. Section 2 illustrates my
approach with a simple example. Section 3 develops the main model and defines self-enforcing agree-
ments. Section 4 states and proves the dense-collection principle. Section 5 applies my approach to
deterministic games. Section 6 applies the approach to stochastic games.
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1.1 Related Literature

This paper is the first one to offer a workable formalization of SPNEs in general continuous-time
games without imposing additional restrictive assumptions. In contrast, the existing models of
SPNEs in continuous time either (i) artificially discretize players strategies, which renders intractable
nontrivial applications of the model; (ii) limit attention to either Markov or strongly symmetric
equilibria, which severely restrains the set of supportable outcomes; (iii) or focus on special classes
of games with particular simplifying structures. Below, I briefly discuss papers from each of the
above categories.

First, several papers solve the problem of non-existence of continuous-time extensive forms
by imposing extra restrictions on players’ strategies. Simon and Stinchcombe (1989) formalize
continuous-time games by prohibiting players to change actions more than a fixed number of times.
Bergin and MacLeod (1993) deal with continuous-time repeated games by only admitting strategies
in which any chosen action must stay constant for a positive period of time (and limits of such
strategies). Perry and Reny (1993, 1994) study continuous-time bargaining models in which after a
move, players can not make another move for a fixed positive period of time. Hörner and Samuelson
(2013) impose a similar restriction in their principal-agent framework with an experimenting agent.
While these techniques are effective in certain games, they can not be applied generally: for example,
they would not work for games studied in Section 6.

Second, a handful of papers uses the Markovian assumption to formalize equilibria in continuous-
time settings. Ortner (2017) studies stationary equilibria in a model of a durable-goods monopolist
whose marginal costs follow a diffusion process. Daley and Green (2020) — Markov equilibria for a
bargaining game with stochastic arrival of news about the quality of trade. Orlov et al. (2020) —
Markov equilibria in a model of dynamic Bayesian persuasion. DeMarzo and He (2021) — Markov
equilibria for a setting where equity holders choose without commitment the capital structure of a
firm. Chavez (2020) — stationary equilibria in a bargaining game in which new entrants can observe
the past history of offers. Chavez and Varas (2021) — stationary equilibria for a bargaining game in
which traders can offer securities rather than cash. As an alternative to Markov equilibria, Hörner
et al. (2014) study strongly symmetric equilibria in a multi-player game of experimentation with
Poisson bandits. The approach I propose in this paper can be used to reformulate these models
so as to also allow for non-Markov and non-symmetric equilibria. I give examples in Sections 5.2
and 6.1, and, especially, in Section 6.2, where I provide an extensive treatment of the model of
Daley and Green (2020).

Third, there are papers that formally define SPNEs for particular types of continuous-time
games. Sannikov (2007) studies games that only have imperfectly observable actions. The literature
on continuous-time contracts, originated in Sannikov (2008), considers games in which observable
actions are precommitted. The literature on differential games, started by Isaacs (1965), either
restricts attention to zero-sum games or concentrates on Markov equilibria. Neyman (2017) deals
with stochastic games that have finitely many perfectly observable actions and states. Examples
developed in Sections 5 and 6 do not belong to either of the above classes of games.
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Finally, two recent efforts employ the approach of this paper to study non-Markov equilibria
in economic applications. Malenko and Tsoy (2020) investigate a firm that chooses its capital
structure dynamically and without commitment. They find that outcomes attainable in equity-
holder-optimal self-enforcing agreements are quite different from the pessimistic Coasian prediction
of DeMarzo and He (2021), who focus on Markov equilibria in the same setting. Panov (2021)
looks at the role that money burning can play in sustaining collusion in cartels, and discovers that
addition of money burning to players’ actions can practically resolve the problem of renegotiation
in cartel agreements. I discuss these models in more detail in Sections 6.1 and 6.3.

2 Simple Example

To better understand my approach, consider the finitely repeated prisoner’s dilemma studied in
Bergin and MacLeod (1993): Two players interact on the time interval r0, 1q. At each moment,
they simultaneously take either of two perfectly observable actions, cooperate C or defect D. The
stage-game payoffs are given by the following matrix, g:

C D

C 4, 4 0, 5

D 5, 0 1, 1

An admissible total history is a measurable path of actions ta1
t , a

2
t utPr0,1q, with ait P tC,Du for

all t P r0, 1q and i P t1, 2u. Each moment of time t P r0, 1q divides into two consecutive sub-
moments, t and t`. Sub-moment t corresponds to the instant at which time-t actions are played,
while sub-moment t` corresponds to the instant immediately after that. For u P r0, 1q, the u-tail
of ta1

t , a
2
t utPr0,1q is the path ta1

t , a
2
t utPru,1q, and the pu`q-tail of ta1

t , a
2
t utPr0,1q is ta1

t , a
2
t utPpu,1q. In this

deterministic setting, outcomes coincide with admissible total histories, and continuation outcomes
— with tails of admissible total histories. For player i P t1, 2u, her promised value in outcome
Q “ ta1

t , a
2
t utPr0,1q is

U ipQq –

1
ż

0

gipa1
t , a

2
t q dt;

her promised continuation value in continuation outcome Q̃ “ ta1
t , a

2
t utPru,1q (or ta1

t , a
2
t utPpu,1q) is

W ipQ̃q –

1
ż

u

gipa1
t , a

2
t q dt.

An agreement is a collection of continuation outcomes: it specifies an initial outcome that
should be effective after the empty history; for any other finite history possible under the play
of the agreement (defined formally in Section 3), it specifies a continuation outcome that should
be effective after that history. In any continuation outcome, a player’s strategy is any measurable
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path of her future actions, from the beginning of the continuation outcome until the end of the
game. Suppose player i P t1, 2u plays a strategy, σi, in a continuation outcome that starts at time
t P r0, 1q. The agreement then determines the continuation path of player ´i’s actions, Φpσiq,
that will be played in reaction to σi. Specifically, reaction function Φpσiq is computed using the
following convolution formula: the action in Φpσiq at moment u P rt, 1q equals the action prescribed
to player ´i in the continuation outcome effective at moment u. Thus, strategy σi will induce
the continuation path tσi,Φpσiqu. The continuation value of σi is the continuation value player i
receives from tσi,Φpσiqu. A strategy is called a profitable deviation if its continuation value exceeds
the promised continuation value. Agreements without profitable deviations are called self-enforcing.

I impose two restrictions on continuation outcomes comprising an agreement, admissibility and
coherence. Admissibility requires that for each strategy, the total induced path, which is determined
from the convolution formula, must be an admissible total history. Coherency is the requirement
that in spells of time when players do not deviate from effective outcomes, the agreement must
be recommending the same continuation path of play. These two restrictions are natural, and are
sufficient for the play under an agreement to be well-defined. Moreover, coherency ensures that
the following promise keeping property is satisfied in agreements: if a player decides to follow a
continuation outcome, the opponent will react by also following that continuation outcome. This
implies that the continuation value of the strategy that prescribes to follow a continuation outcome
coincides with the promised continuation value. Hence, in self-enforcing agreements, it is optimal
for players to always keep following the agreement’s recommendations.

The finitely repeated prisoner’s dilemma has a plethora of agreements. I will focus on three
of them, which I call “naive,” “standard,” and “reputational.” The naive agreement consists of
continuation outcomes that recommend players to always cooperate. In that agreement, in reaction
to a player’s strategy, the opponent will keep cooperating no matter what. The naive agreement is
well-defined, but it is not self-enforcing: starting at any t ă 1, each player can profitably deviate
by defecting for the rest of the game.

The standard agreement resembles the unique SPNE of the discrete-time finitely repeated pris-
oner’s dilemma: in all continuation outcomes, it recommends players to always defect. In the stan-
dard agreement, the opponent will keep defecting regardless of a strategy chosen by a player. Like
its discrete-time counterpart, the standard agreement is self-enforcing: a player can not do better
than to keep playing the recommended defection, which is myopically optimal. Note that in the con-
sidered game, in any agreement at any time, each player can guarantee himself a continuation value
that is at least as high as the continuation value promised to him from that time in the standard
agreement: to do so, he simply needs to keep defecting until the game ends. Thus, the continuation
outcomes of the standard agreement constitute an optimal penal code in the continuous-time finitely
repeated prisoner’s dilemma (cf. Abreu (1988)).

The reputational agreement is similar to the “reputational” equilibria constructed by Ausubel
and Deneckere (1989) for the durable-goods monopoly game. The agreement proposes to cooperate
along the initial outcome, and supports this by the grim trigger promise of reverting to the standard
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agreement immediately after either player deviates. That is, in the reputational agreement, any
continuation outcome that follows a finite history in which both players have always cooperated,
recommends to keep cooperating until the games ends; any continuation outcome that follows a
finite history in which at least one player defected, recommends players to defect until the end.
In the reputational agreement, the opponent reacts with cooperation until the first time a player
deviates from the initial outcome, after which, the opponent starts defecting. The reputational
agreement is self-enforcing, despite the game having the finite deadline. This illustrates that in
continuous-time games, backwards induction does not always apply. (See also the discussion at the
end of Section 5.1.) Similarly using reversion to the standard agreement for punishing deviations,
one can support in self-enforcing agreements of the finitely repeated prisoner’s dilemma any path
of players’ actions in which players’ promised continuation values are always weakly above the
continuation values promised in the standard agreement.

In this simple game, the set of outcomes supportable in self-enforcing agreements coincides with
the set of SPNE outcomes identified by Bergin and MacLeod (1993). However, unlike their method,
my method allows one to construct optimal agreements explicitly, on path and off path, without
imposing ad hoc restrictions on players’ strategies. Moreover, my method can be tractably applied
to a large class of games for which the method of Bergin and MacLeod (1993) would not work: I
provide examples of such games in Sections 5 and 6.

3 Model

I now describe my model (Section 3.1), provide a formal construction of agreements (Section 3.2),
and define self-enforcing agreements, the main concept in the paper (Section 3.3). In the model of
this section, players have perfectly observable actions that they take simultaneously at each moment
of time, with the final outcome being a deterministic function of players’ action paths. I relax these
restrictive properties in applications in Sections 5 and 6.

3.1 Setup

There is a possibly infinite set of players, I, who play a game on the time interval r0,`8q. Each
player i P I has a nonempty set of actions, Ai. At each moment t P r0,`8q, player i takes an
action, Ait P Ai. Set Ai includes the null action, which signifies that player i does not take any
active action. Otherwise, Ai can be arbitrary. At each moment of time, the players take actions
simultaneously. All actions are perfectly observable.4

Sub-Moments. At each instant during the play, the players’ information is summarized by the
path of their past actions. In continuous time, at each moment of time t P r0,`8q, there can be two

4In what follows, I typically use superscripts to refer to players, strategies, or sufficient histories; subscripts – to
times or states; and superscripted tildes – to continuation objects. I denote a typical moment of time by t, u, or v.
I denote a typical sub-moment by s or s1. I also sometimes write t and t` to refer specifically to the first and the
second sub-moments of moment t.
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types of past-action paths: the path of actions before t, and the path of actions before t inclusive.
These two types of paths correspond to two different types of players’ decision nodes. To index
these nodes, I divide each moment t into two consecutive sub-moments, t and t`. Sub-moment t
corresponds to the instant at which time-t actions are played, while sub-moment t` corresponds to
the instant immediately after that.5 The set of all sub-moments, denoted S, is the totally ordered
set isomorphic to r0,`8q ˆ t0, 1u endowed with the natural lexicographic order.

Admissible Histories. A total history of play, H`8 “ tAituiPI,tPr0,`8q, is a path of actions of all
players at all times. For t P r0,`8q, a finite history of play before sub-moment t, Ht “ tAivuiPI,vPr0,tq,
is a path of actions of all players at times v P r0, tq. Similarly, a finite history of play before sub-
moment t`, Ht` “ tAituiPI,vPr0,ts, is a path of actions at times v P r0, ts. The initial history is empty.
The i-th component of history H, denoted Hi, is the path of player i’s actions along H. Similarly,
H´i is the path of actions of player i’s opponents along H.

Depending on a game, certain histories may be prohibited. Denote by H`8 the non-empty set
of admissible total histories. That is, H`8 is the set of all total histories possible under the rules of
the game. Denote by Hi

`8 the projection of H`8 on the i-th component. That is, Hi
`8 is the set of

all player i’s admissible individual action paths. The admissibility requirement can be used to ensure
that histories are measurable and payoffs are well-defined. Also, it can be used to model games, in
which actions available to players at any time are history-dependent. To simplify the definition of
players’ strategies, I assume that actions available to a player at a given time can depend on his
previous actions, but not on actions of his opponents. This assumption is formulated as follows.

Assumption (Action-Set Independence). The set of all admissible total histories is the direct prod-
uct of the sets of admissible individual action paths,

H`8 “
ą

iPI

Hi
`8.

The action-set independence is a substantive assumption on the structure of a game. For in-
stance, it fails in the game of chess.6 Nevertheless, the purpose of this paper is to study self-enforcing
agreements. To this end, the assumption is unrestrictive: For games where it fails, one can first
require that in an agreement, continuation outcomes that follow finite histories with admissible
continuations specify admissible total histories. One can then extend H`8 to

Ś

iPI

Hi
`8 by assigning

to inadmissible paths payoffs that are sufficiently negative to deter deviations to those paths.

Payoffs. Players’ payoffs are given by an arbitrary payoff function U : H`8 Ñ RI .

Truncations, Tails, and Concatenations of Action Paths. Take a path of actions H at times
r0,`8q. (Path H may include actions of different players at different moments of time.) For a non-
empty B Ď r0,`8q, HB denotes the path of actions in H at moments from B. For any t P r0,`8q,

5In discrete-time games, decision nodes immediately after period t are equivalent to period-pt` 1q decision nodes.
6Squares where the white can move her king depend on where the black has placed his pieces before.
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the t-truncation of H, denoted Ht, is the path Hr0,tq. Similarly, the pt`q-truncation of H, denoted
Ht`, is the path Hr0,ts. The t-tail of H, denoted H̃t, is the path Hrt,`8q. Similarly, the pt`q-tail
of H, denoted H̃t`, is the path Hpt,`8q. For any sub-moments s, s1 P S with s ă s1, H̃s1 is also
the s1-tail of H̃s. For tail paths, H̃1 Ą H̃2 denotes that H̃2 is a tail of H̃1. For non-empty disjoint
B1, B2 Ď r0,`8q and any paths of actions HB1 and HB2 , the concatenation of HB1 and HB2 is
denoted by HB1 `HB2 .

Admissible Finite Histories and Continuations. A finite history is admissible if it is a trun-
cation of an admissible total history. For any sub-moment s P S, Hs denotes the set of admissible
histories before sub-moment s. For i P I, Hi

s denotes the set of player i’s admissible individual
action paths before sub-moment s. For an admissible finite history H, HspHq denotes the set of
admissible histories before sub-moment s that contain H. The set of admissible total histories that
contain H is denoted H`8pHq. Similarly, Hi

spHiq denotes the set of player i’s admissible individual
action paths before sub-moment s that contain Hi. A tail history H̃s is an admissible continuation
for finite history Hs if the total history Hs ` H̃s is admissible. Denote by H̃`8pHsq the set of
all admissible continuations for Hs. Denote by H̃i

`8pHsq the projection of H̃`8pHsq on the i-the
component. Finally, denote by H̃i

s1pHsq the truncation of H̃i
`8pHsq before sub-moment s1 ą s.

Outcomes and Continuation Outcomes. It is convenient to distinguish between outcomes
and continuation outcomes. Take a finite admissible history Hs before sub-moment s P S. An
outcome, Q, that follows Hs is an admissible total history that contains Hs; that is, Q P H`8pHsq.
The corresponding continuation outcome, Q̃ – QzHs, is the s-tail of Q. The set of all admissible
continuation outcomes following Hs is then the set of all admissible continuations H̃`8pHsq. For a
continuation outcome Q̃ following Hs, the corresponding total outcome is Q – Hs ` Q̃.

In this deterministic setting, outcomes coincide with admissible total histories, and continuation
outcomes — with tails of admissible total histories. In stochastic settings, the difference between
outcomes and admissible histories becomes nontrivial (Section 6).

3.2 Agreements

I now provide a constructive definition of agreements in this setting. An agreement is an admissible
and coherent collection of continuation outcomes that recommend continuation play after all finite
sufficient histories possible under that collection. Sufficient histories are histories that record at
each time only an action of the player who is the deviator at that time. Precisely, an agreement is
defined in the following steps:

Step 1: the agreement specifies an initial outcome, Q̃H P H`8, that should follow the empty
sufficient history, H.

Step 2: the agreement specifies continuation outcomes of level 1. That is, all continuation outcomes
that should follow finite sufficient histories in which exactly one player deviates.

Specifically, suppose a player, i P I, deviates first. Sufficient histories for player i’s deviations
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after sufficient history H are associated with admissible paths of player i’s actions. That is, for any
s P Szt0u, the set of sufficient histories before sub-moment s for player i’s deviations after H is Hi

s.
Let Hcpi,Hq be the set of finite sufficient histories for player i’s deviations after H,

Hcpi,Hq –
ď

sPSzt0u
Hi
s.

The agreement specifies a collection of continuation outcomes, Qpi,Hq “ tQ̃σisuσisPHcpi,Hq, that
should be played after sufficient histories in Hcpi,Hq.

Suppose that at the beginning of the game, player i decides to play an admissible path of actions
σi P Hi

`8. The path of actions that his opponents’ will play in response to σi, denoted Φi,Hpσiq, is
determined by the following convolution formula:

Φi,Hpσiq –

!

Q̃´i
σit

“

t
‰

)

tPr0,`8q
, (1)

where Q̃´i
σit

“

t
‰

denotes the profile of actions of player i’s opponents at moment t in continuation out-

come Q̃σit P Qpi,Hq, the continuation outcome that should follow σit. The convolution formula (1)
computes Φi,Hpσiq assuming that at each time, player i’s opponents do not deviate from the rec-
ommended continuation outcome that begins at that time. That is, the convolution formula (1)
employs the assumption that player i’s deviations are unilateral.

The convolution formula (1) defines function Φi,Hp¨q on Hi
`8. I call function Φi,Hp¨q the reaction

function to player i’s deviations after H. Reaction function Φi,Hp¨q does not anticipate the future:
at each time, actions of player i’s opponents depend only on the path of actions player i has taken
before that time. Abusing the notation, I will write Φi,H

s pσisq to denote the s-truncation of Φi,Hpσiq.
To ensure that the play under the agreement is always well-defined, I impose two restrictions on

collection Qpi,Hq. First, collection Qpi,Hq must be admissible in the following sense:

Definition (Admissibility). A collection of continuation outcomes Qpi,Hq is admissible if the re-
action function determined from the collection always produces admissible paths of actions,

@σi P Hi
`8, Φi,Hpσiq P H´i`8.

Admissibility is the requirement that the total path induced by any unilateral deviation of a
player must be an admissible total history.

Second, collection Qpi,Hq must be coherent in the following sense:

Definition (Coherency). A collection of continuation outcomes Qpi,Hq is coherent if it keeps rec-
ommending the same continuation path in spells of time when player i does not actually deviate,

@σi P Hi
`8, @s, s

1 P S, s ă s1,
´

σis1 “ σis `
`

Q̃σis
˘i

rs,s1q

¯

ùñ

´

Q̃σis Ą Q̃σi
s1

¯

,

where (i) Q̃σi0 – Q̃H; (ii)
`

Q̃σis
˘i

rs,s1q
denotes the path of actions recommended to player i in contin-
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uation outcome Q̃σis at times in rs, s1q; (iii) Q̃σis Ą Q̃σi
s1
denotes that Q̃σi

s1
is a tail of Q̃σis .

Coherency requires the agreement to keep recommending the same continuation path whenever
players do not actually deviate. Together with the convolution formula, coherency implies that the
following promise keeping property is satisfied in agreements: if after some history, a player decides
to follow the recommended continuation outcome, his opponents will react by also following that
continuation outcome.

Finally, according to the convolution formula, for any sufficient history σis P Hcpi,Hq, the finite
history played before sub-moment s will be Hs –

 

σis,Φ
i,H
s pσisq

(

. Then, by admissibility and
promise keeping, continuation outcome Q̃σis is an admissible continuation for history Hs. That is,
the agreement will recommend an admissible continuation after any finite history of play possible
under the agreement.

Step 3: the agreement specifies continuation outcomes of level 2. That is, continuation outcomes
that should follow finite sufficient histories in which exactly two players deviate consecutively.

Specifically, suppose that player i is the first deviator after H, and that he has played a path of
actions σis P Hcpi,Hq before sub-moment s. As a result, the finite history Hs – tσis,Φ

i,H
s pσisqu is

induced. Suppose that another player, j ‰ i, decides to further deviate after σis. Starting from the
induced history Hs, player j can play any admissible action path from H̃j

`8pHsq. Suppose player j
decides to continue by playing an admissible action path σj

rs,s1q until s
1 P S. At sub-moment s1, the

corresponding sufficient history will be σis ` σj
rs,s1q. Denote by Hcpj, σisq the set of finite sufficient

histories for player j’s deviations after sufficient history σis. That is,

Hcpj, σisq – σis `
ď

s1PS:s1ąs

H̃j
s1pHsq.

The agreement specifies Q
`

j, σis
˘

“
 

Q̃
σis`σ

j

rs,s1q

(

σis`σ
j

rs,s1q
PHcpj,σisq

, a collection of continuation out-

comes that should be played after sufficient histories in Hcpj, σisq.
For any continuation path of player j’s actions in H̃j

`8pHsq, the reaction path of her opponents
is determined by the convolution formula analogous to (1). Similar to Step 2, collection Q

`

j, σis
˘

must be admissible and coherent, which ensures that any unilateral deviation of player j will induce
an admissible total history, and that the promise keeping property will be satisfied for player j’s de-
viations. The convolution formula then defines the reaction function Φj,σis : H̃j

`8pHsq Ñ H̃´j`8pHsq.
Any sufficient history σis ` σj

rs,s1q P Hcpj, σisq will induce the finite history before sub-moment s1

that equals Hs1 –
 

σis,Φ
i,H
s pσisq

(

`
 

σj
rs,s1q,Φ

j,σis
rs,s1q

`

σj
rs,s1q

˘(

. By admissibility and promise keeping,
continuation outcome Q̃

σis`σ
j

rs,s1q

is an admissible continuation for history Hs1 .

Steps 4 and further: and so on.

In the above construction, the agreement specifies consecutively a total admissible and coherent
collection of continuation outcomes, denoted by Q, jointly with a set of finite sufficient histories
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possible under the play of Q, denoted by HcpQq.7 This leads to the following definition:

Definition (Agreement). An agreement is an admissible and coherent collection of continuation
outcomes that recommend continuation paths of play after all finite sufficient histories possible under
the play of the collection.

Adapted Agreements. The above construction guarantees that any agreement is well-defined in
the sense that (i) after any observed history, the agreement will recommend an admissible contin-
uation; (ii) after any observed history, the reaction to any future path of unilateral deviations will
result in an admissible total history; (iii) promise keeping property will always be satisfied.

Still, agreements can have properties that may seem unrealistic. Indeed, an agreement recom-
mends continuation paths of play as a function of past sufficient histories rather than past observed
histories of play. If a game has more than one player with nontrivial observable actions, then given
an agreement, there may be multiple sufficient histories that induce the same finite history of play.
Thus, an agreement may specify multiple continuation paths and multiple reaction functions after
the same observed history of play. There are two sources for this multiplicity. First, sufficient his-
tories may include periods of time during which no player actually deviates. During such periods,
one can arbitrarily switch deviators in sufficient histories without affecting the history which will
be induced. Second, unlike the discrete-time case, in continuous time, the identity of a unilateral
deviator may be unidentifiable even when players’ actions are perfectly observable.8

To avoid the above multiplicity problem, one can restrict attention to agreements that are
adapted to observed information, defined as follows. Take an agreement Q that recommends con-
tinuation outcomes after all finite sufficient histories in HcpQq. For s P S, denote by Hc

spQq the set
of sufficient histories in HcpQq before sub-moment s. For σs P Hc

spQq, denote by
 

σs,Φspσsq
(

the
history before sub-moment s induced by σs. For σs P Hc

spQq, i P I, and σ̃is P H̃i
`8

` 

σs,Φspσsq
(˘

,

denote by
 

σs` σ̃
i
s,Φ

`

σs` σ̃
i
s

˘(

the total history that will be induced if after σs, player i unilaterally
deviates with σ̃is.

Definition (Adapted Agreement). An agreement Q is adapted if both

1. continuation outcomes in Q depend only on observed histories of play,

@s P S,@σs, σ̂s P Hc
spQq,

´

 

σs,Φspσsq
(

“
 

σ̂s,Φspσ̂sq
(

¯

ùñ

´

Q̃σs “ Q̃σ̂s

¯

;

7The set of sufficient histories HcpQq depends on collection Q through the requirement that paths of unilateral
deviations recorded in sufficient histories must be admissible given histories induced by past deviations.

8Consider a two-player game where at each time t P r0,`8q, each player i P t1, 2u chooses an action Ait P R, with
the admissibility restriction being vacuous. In this game, consider the following agreement: the initial outcome is the
constant path of actions that equal 0; after any observed history, the continuation outcome is the constant path of
actions that equal the supremum of actions that have been played so far. In this agreement, if player 1 deviates with
an increasing path of actions tAtutPr0,`8q, player 2 will react by copying player 1’s play. Yet, the same total history
would be induced if player 2 deviated with tAtutPr0,`8q. (Nevertheless, this agreement is adapted.)
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2. players’ reactions determined from Q depend only on observed histories of play,

@s P S,@σs, σ̂s P Hc
spQq,

´

 

σs,Φspσsq
(

“
 

σ̂s,Φspσ̂sq
(

¯

ùñ

´

@i P I,@σ̃is P H̃i
`8

` 

σs,Φspσsq
(˘

,
 

σs ` σ̃
i
s,Φ

`

σs ` σ̃
i
s

˘(

“
 

σ̂s ` σ̃
i
s,Φ

`

σ̂s ` σ̃
i
s

˘(

¯

.

The agreements of the finitely repeated prisoner’s dilemma discussed in Section 2 are adapted.
In this paper, I study two more games in which several players have observable actions (Sections 5.1
and 6.3). In both those games, extremal self-enforcing agreements can be chosen to be adapted.
The proof of Proposition 1 (Appendix A.1) illustrates a way how one can modify an agreement to
make it adapted.

3.3 Self-Enforcing Agreements

I now define self-enforcing agreements, the main concept in the paper. Take an agreement Q that
recommends continuation outcomes after all finite sufficient histories in HcpQq.

Strategies. Take a finite sufficient history σs P Hc
spQq, which induces the finite history Hs –

 

σs,Φspσsq
(

. For each i P I, the set of player i’s strategies in continuation outcome Q̃σs P Q is
ΣipQ̃σsq – Hi

`8pHsq. In each continuation outcome, each player has the strategy that prescribes
him to follow the actions recommended in that continuation outcome.

Promised Values. At all times, players’ promised values are computed assuming that nobody
further deviates. Specifically, for each σs P Hc

spQq, which induces Hs –
 

σs,Φspσsq
(

, the value
promised to player i at the beginning of continuation outcome Q̃σs is

W ipQ̃σsq – U ipHs ` Q̃σsq.

Values Strategies. Take a continuation outcome Q̃σs that follows history Hs –
 

σs,Φspσsq
(

.
Suppose player i plays a strategy σi P ΣipQ̃σsq from the beginning of Q̃σs . Assuming her opponents
do not deviate, σi will induce the total history

 

σs ` σ
i,Φpσs ` σ

iq
(

. The value of strategy σi is

V ipσiq – U i
´

 

σs ` σ
i,Φpσs ` σ

iq
(

¯

.

By promise keeping, the value of the strategy prescribing to follow the actions recommended in a
continuation outcome equals the value promised in that continuation outcome.

Self-Enforcing Agreements. The following is the main definition in the paper:

Definition (Self-Enforcing Agreement). An agreement Q is self-enforcing if

@Q̃ P Q, @i P I, @σi P ΣipQ̃q, V ipσiq ďW ipQ̃q.
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An agreement is self-enforcing if no player can find a profitable unilateral deviation from any of
its continuation outcomes. In a self-enforcing agreement, it is optimal for players to always follow
the agreement’s recommendations.

4 Dense-Collection Principle

The framework of Section 3 is by design highly abstract (for example, it does not impose any
restrictions on payoff functions). The framework can be specialized to a wide variety of settings, as
I illustrate in Sections 5 and 6. The general approach to finding self-enforcing agreements in these
applications is to proceed in the following steps: (i) characterize players’ incentive constraints in
self-enforcing agreements; (ii) construct an optimal penal code; (iii) using the optimal penal code
for punishments, characterize paths supportable in self-enforcing agreements.

A useful technique that makes it possible to simplify Step (i) in some cases is what I call the
Dense-Collection Principle. In this section, I introduce this principle and prove that agreements
that satisfy its restrictions are in fact precisely the self-enforcing agreements.

Take an agreement Q, a continuation outcome Q̃ P Q, and a player i P I.

Definition (Dense Subset of Strategies). A subset Σi
0pQ̃q Ď ΣipQ̃q of player i’s strategies in con-

tinuation outcome Q̃ is dense in ΣipQ̃q if

@σ P ΣipQ̃q, @ε ą 0, Dσ0 P Σi
0pQ̃q, V ipσ0q ą V ipσq ´ ε.

Let Σ0 “ tΣ
i
0pQ̃quiPI,Q̃PQ be a collection of players’ strategies in agreement Q. Collection Σ0 is

called dense in the collection of all strategies in the agreement if for each i P I and Q̃ P Q, Σi
0pQ̃q

is dense in ΣipQ̃q. The following is one of the main results of the paper:

Theorem 1 (Dense-Collection Principle). Let Σ0 be a collection of strategies that is dense in the
collection of all strategies in an agreement. The agreement is self-enforcing if and only if no player
can find a profitable deviation in Σ0.

Proof. The “if” direction: suppose that there are no profitable deviations in Σ0. As the value of
any strategy in the agreement can be approximated from below by the values of strategies from Σ0,
there are no profitable deviations in the agreement.

The “only if” direction: if the agreement is self-enforcing then there are no profitable deviations
in Σ0 by the definition of self-enforcing agreements.

The dense-collection principle is a simple, yet powerful principle that can facilitate characteri-
zation of self-enforcing agreements in continuous-time games. The principle suggests that to check
whether an agreement is self-enforcing, one can first propose a tractable dense collection of strate-
gies, and then check that there are no profitable deviations in the collection.

In discrete-time repeated games with discounting, the one-shot deviation principle of Abreu
(1988) is an implication of the dense-collection principle combined with backwards induction: by the
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dense-collection principle, to check that an agreement is self-enforcing, it suffices to check that there
are no profitable deviations in the dense collection of strategies prescribing finitely-many one-shot
deviations; by backwards induction, it then suffices to check that there are no profitable one-shot
deviations. In continuous-time games, the one-shot deviation principle may be inapplicable, but
the dense-collection principle can still be effective.9 To illustrate the power of the principle in a
nontrivial application, I use it to prove a version of the one-shot deviation principle for smooth
Markov agreements in the setting of Daley and Green (2020) (Theorem 2 in Section 6.2). Similarly,
one can establish versions of the one-shot deviation principle for Markov agreements in the settings
of Ortner (2017), DeMarzo and He (2021), Chavez (2020), and Chavez and Varas (2021).

The dense-collection principle is not indispensable for proving the one-shot deviation principle
in continuous-time games. For example, Sannikov (2007) (Proposition 2) establishes the one-shot
deviation principle in his setting by using the martingale representation theorem rather than by
working with dense collections of strategies.

5 Deterministic Applications

In Section 3, I formally constructed agreements in my basic setting. In the next two sections, I
show how that construction can be adapted and used in a number of economic applications. In this
section, I focus on deterministic applications: in Section 5.1, I study a public-good provision game;
in Section 5.2, I consider the continuous-time analog of the dynamic-monopoly model of Gul et al.
(1986). In Section 6, I illustrate how my method can be applied in stochastic settings.

5.1 Example: Provision of a Public Good

The first example is an instance of the model from Section 3. The example shows that backwards
induction does not always apply in continuous-time games. Consider the following public-good
provision game:

Setup. Two workers and a manager construct a public good. At each moment of time t P r0, 1q,
each worker i P t1, 2u chooses an effort, ait P r0,`8q, to put towards the construction; the manager,
m, decides how much money to pay to each worker, dΓ1

t ě 0 and dΓ2
t ě 0. Vector pΓ1

t ,Γ
2
t q P R2

`

represents cumulative payments that the manager has made to the workers by time t inclusive. The
players’ actions are perfectly observable and simultaneous.

In the notation of Section 3, for t P r0, 1q, a1
t P R` and a2

t P R` are the workers’ actions;
pΓ1
t ,Γ

2
t q P R2

` is the manager’s action. For t ě 1, the players have the null actions only.

9For instance, consider a one-player game on the time-interval R` in which (i) at all t P R`, player 1’s action set is
R; (ii) the set of admissible histories is L2

pR`q; (iii) the payoff function, U : L2
pR`q Ñ R, is continuous with respect

to the L2
pR`q norm. The one-shot deviation principle does not apply: an agreement may fail to be self-enforcing

even if the player can not profitably deviate from any outcome by changing his action at a single moment of time.
The dense-collection principle can still be useful: for example, to check that an agreement is self-enforcing, it suffices
to check that there are no profitable deviations to step functions, which form a dense collection of strategies.
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Admissible Histories. A total admissible history, H`8 “ ta1
t , a

2
t , pΓ

1
t ,Γ

2
t qutPr0,1q, is a path of the

workers’ efforts and the manager’s cumulative payments for all t P r0, 1q, such that (i) a1
t and a2

t

are measurable functions of time; (ii) Γ1
t and Γ2

t are nonnegative, nondecreasing, càdlàg functions
of time. The action-set independence is satisfied in this game.

Payoffs. Given a total history H`8 “ ta1
t , a

2
t , pΓ

1
t ,Γ

2
t qut“r0,1q, the quantity of the good produced

is
1
ş

0

pa1
t ` a

2
t q dt. The payoff of worker i P t1, 2u is U ipH`8q –

1
ş

0

pa1
t ` a

2
t q dt´

1
ş

0

`

ait
˘2
dt` Γi1´. The

manager’s payoff is UmpH`8q –
1
ş

0

pa1
t ` a2

t q dt ´ Γ1
1´ ´ Γ2

1´. That is, the players’ payoff functions

are quasi-linear; the workers’ efforts are additive; the workers’ flow costs are quadratic in effort; the
good is consumed by all the players at the end of the game; there is no discounting; the quantity of
the good can not be diminished by either player.

Agreements and Strategies. Defined as in Section 3.

Promised Values and Values of Strategies It is convenient to work in this game with con-
tinuation values. Formally, take a continuation outcome Q̃ that follows history H. Let H `H be
the total history in which after H, the workers keep supplying zero effort and the manager keeps
paying them zero. The continuation value promised to player i in Q̃ is

W̃ ipQ̃q – U ipH` Q̃q ´ U ipH`Hq.

The continuation value of a strategy σi of player i in Q̃, denoted Ṽ ipσiq, is defined analogously.
For s P S, denote by W̃ i

spQ̃q the continuation value promised to player i in Q̃ at sub-moment s:

W̃ i
spQ̃q – U ipH` Q̃q ´ U ipH` Q̃s `Hq.

Self-Enforcing Agreements. In terms of continuation values, an agreement Q is self-enforcing if

@Q̃ P Q, @i P t1, 2,mu, @σi P ΣipQ̃q, Ṽ ipσiq ď W̃ ipQ̃q.

Solution. I now describe self-enforcing agreements of the public-good provision game.
First, the game has the following “static” self-enforcing adapted agreement: After any finite

history of play, the players are recommended to play their myopically-optimal actions. That is,
the manager should send zero transfers; each worker should put the myopically-optimal effort,
a˚ “ 1

2 . Reaction functions specify constant paths of these actions in reaction to any strategy. As
reactions do not depend on players’ actions, it is indeed optimal for all players to keep playing their
myopically-optimal actions. Thus, the static agreement is self-enforcing. In the static agreement,
players’ promised continuation values depend only on the moment of time from which they are
computed. Specifically, for any t P r0, 1q, the static agreement promises the following continuation
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payoffs: W̃ i
t “

3
4p1´ tq to worker i “ 1, 2, and W̃m

t “ p1´ tq to the manager. The static agreement
is qualitatively similar to the unique Nash equilibrium of the static version of the game. By the
standard backwards-induction argument, any discrete-time analog of the game also has a unique
SPNE, which is similar to the static agreement. Yet, the continuous-time game has a plethora of
other self-enforcing agreements.

To find self-enforcing agreements, I first find an optimal penal code for this game. The following
lemma establishes a lower bound on continuation values promised in self-enforcing agreements:

Lemma 1 (Individual Rationality). If in a self-enforcing agreement, a continuation outcome Q̃
starts at sub-moment t or t`, with t P r0, 1q, then the continuation values promised in Q̃ satisfy
W̃ ipQ̃q ě 1´t

4 for worker i “ 1, 2, and W̃mpQ̃q ě 0 for the manager.

The proof of Lemma 1 is direct: In any agreement, worker i at time t can guarantee herself a
continuation payoff of at least 1´t

4 by always submitting the myopically-optimal effort, a˚ “ 1
2 . The

manager can guarantee himself a nonnegative continuation payoff after any history by sending zero
transfers. By definition, promised continuation values in a self-enforcing agreement must always be
weakly above what players can guarantee themselves.

For each t P r0, 1q, denote by G̃t` the subgame of the public-good provision game that starts
from sub-moment t`. Self-enforcing agreements for G̃t` are defined exactly as for the whole game.
For an agreement Q, denote by W̃ ipQq the continuation value promised to player i in the initial
outcome of Q. The following proposition shows that the lower bounds of Lemma 1 are tight:

Proposition 1 (Optimal Penal Code). For each t P r0, 1q, there exists a triplet Q1
t`,Q

2
t`,Q

m
t` of

self-enforcing agreements of game G̃t` delivering to each player correspondingly the worst payoff
possible for them in any self-enforcing agreement of G̃t`; that is, W̃ 1

`

Q1
t`

˘

“ W̃ 2
`

Q2
t`

˘

“ 1
4p1´ tq,

and W̃m
`

Qm
t`

˘

“ 0. Moreover, agreements Q1
t`, Q

2
t`, and Qm

t` can be chosen to be adapted.

Proof. See Appendix A.1 for constructive proof.

Intuitively, a construction of such a triplet works as follows. In the initial outcome of Q1
t`,

worker 1 is the only player who works. She keeps contributing the myopically-optimal effort, a˚ “ 1
2 ,

at all times, while the others are free riding: worker 2 is putting zero effort, the manager is sending
zero transfers. The initial outcome of Q2

t` is similar and proposes to free ride on worker 2. The
initial outcome of Qm

t` recommends a strike before time 1
2p1 ` tq: the workers should be putting

zero effort, the manager should be sending zero transfers. At time 1
2p1 ` tq, the manager should

pay upfront his entire future profits to the workers: he should send 1
4p1´ tq to each of them. After

that payment, the path of the static agreement follows. In all of these agreements, if any player i
deviates from the effective continuation outcome at any moment v ě t, the recommended play
immediately switches to the corresponding punishment, that is, to the initial outcome of Qi

v`. The
so-constructed agreements will be self-enforcing and will deliver to the players their worst possible
self-enforcing payoffs. A small modification can ensure that these agreements are adapted.

Any outcome supportable in a self-enforcing agreement can be supported in a self-enforcing
agreement that uses an optimal penal code for punishing deviations. Hence:
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Proposition 2 (Characterization). An outcome Q is supportable in a self-enforcing agreement of
the public-good provision game if and only if in Q, at all times, the players’ promised continuation
payoffs are individually rational,

@t P r0, 1q,
´

W̃ 1
t`pQq ě

1´ t

4

¯

&
´

W̃ 2
t`pQq ě

1´ t

4

¯

&
´

W̃m
t pQq ě 0

¯

.

Proof. See Appendix A.2.

In particular, one can support in self-enforcing agreements the socially-efficient production of
the public good. For instance, one socially-efficient outcome is the following: at all times t P r0, 1q,
each worker supplies the constant effort ae “ 11

2 ; the manager sends to each worker i P t1, 2u the
constant flow dΓit “ dt. This outcome satisfies the conditions of Proposition 2, and so it can be
supported in a self-enforcing agreement.

The reason this continuous-time game can support as self-enforcing outcomes that are destroyed
by backwards induction in discrete time is the same as for the finitely repeated prisoners’ dilemma
of Section 2: In continuous time, backwards induction does not always apply because there is no
penultimate period. No matter how close to the end of the game a player deviates, there may still
be enough time for the opponents to sufficiently and credibly punish her for the deviation.

Finally, if an outcome can be supported in a self-enforcing agreement of the public-good provision
game it can be supported in a self-enforcing agreement which is adapted. To do so, one can use for
punishments the adapted optimal penal code constructed in the proof of Proposition 1.

5.2 Example: Dynamic Monopoly

The next example differs from the model of Section 3 in the following: (i) at each moment of time,
players move sequentially; (ii) there are players whose individual actions are unobservable. The
construction developed here can be adapted to formalize non-stationary equilibria in the setting of
Chavez (2020). Consider the continuous-time analog of Gul et al. (1986):

Setup. A monopolist, M , faces a unit Lebesgue measure of non-atomic consumers indexed by
q P r0, 1s. Each consumer is in the market to buy one unit of the monopolist’s product. At each
time t P r0,`8q, the monopolist posts a price Pt P R. Having observed Pt, consumers decide
whether to buy the product at time t. Consumers who have purchased the product leave the
market and become inactive.

In the notation of Section 3, the set of players is I “ tM, r0, 1su. The monopolist’s action at
any time t is Pt P R. Each consumer q P r0, 1s has two actions, “accept” and “reject,” at times when
she is still active, and only the null action after she becomes inactive.

Sub-Moments. Each moment of time t P r0,`8q divides into two consecutive sub-moments, t
and t`. At sub-moment t, the monopolist posts price Pt. At the subsequent sub-moment, t`,
active consumers decide whether to accept Pt or not. As deviations of individual consumers are
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undetectable, we do not need to consider sub-moment t2`, the sub-moment immediately after
consumers act at t`.

Admissible Histories. A total history of play, H`8 “ tPt, Atutě0, is a total path of the mo-
nopolist’s prices and consumers’ acceptance sets: for t P r0,`8q, Pt is the price the monopolist
posts at time t; At Ď r0, 1s is the subset of consumers who leave the market before time t. Total
history H`8 “ tPt, Atutě0 is admissible if (i) tPtutě0 is càdlàg; (ii) tAtutě0 is weakly increasing
and left-continuous; and (iii) @t P r0,`8q, set At is Borel. The action-set independence is satisfied.

Fix an admissible total historyH`8 “ tPt, Atutě0. For t P r0,`8q, defineBt` –
`

lim
uÑt`

Au
˘

zAt,

the subset of consumers who buy the product at sub-moment t`. For q P r0, 1s, define T pqq –

inftt ě 0 | q P Atu, the moment of time at which consumer q buys the product. By admissibility of
H`8, subsets tBt`utě0 are disjoint and Borel; function T pqq is Borel.

Admissible finite histories are truncations of admissible total histories before each sub-moment
of time. Given an admissible total history H`8, for each t ě 0, there are two consecutive admissible
finite histories, Ht and Ht`. The former contains all actions made before time t. The later adds to
the former the price posted by the monopolist at time t.

Payoffs. Each consumer q P r0, 1s values the product at fpqq, where f : r0, 1s Ñ R` is a non-
increasing left-continuous function. The monopolist’s unit costs are constant and zero. All agents
have quasi-linear utility functions and discount the future by a common rate r ą 0.

Let H`8 “ tPt, Atutě0 be an admissible total history. For t ě 0, let λt be the Lebesgue measure
of At. By admissibility of H`8, path tλtutě0 is left-continuous with right limits. Then, the path of
the right limits of tλtutě0, denoted tλt`utě0, is càdlàg. The monopolist’s payoff from H`8 is

UM pH`8q –

`8
ż

0

e´rtPt dλt`.

For consumer q P r0, 1s, who buys the product at time T pqq, the payoff from H`8 is

U qpH`8q – e´rT pqqpfpqq ´ PT pqqq.

Agreements. In this game, the monopolist is the only player with detectable deviations. In such
games, construction of agreements takes just two steps as one does not need to consider reactions to
unilateral deviations of the remaining players. Specifically, an agreement is constructed as follows.

Step 1: the agreement specifies an initial outcome, QH, which is a total admissible history.

Step 2: the agreement specifies continuation outcomes that should follow any finite admissible path
of the monopolist’s prices.

From the start of the game, the monopolist can choose any càdlàg path of prices P P HM
`8.

Along P, the agreement specifies continuation outcomes tQ̃PsusPSzt0u, where Ps is the s-truncation
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of P. Consumers’ reaction is determined by the following convolution formula:

@P P HM
`8,@t P r0,`8q, AtpPq “

ď

vPr0,tq

Bv`
`

Q̃Pv`
˘

,

where AtpPq denotes the acceptance set before moment t in reaction to P; Bv`pQ̃Pv`q denotes the
set of consumers who accept at sub-moment v` in continuation outcome Q̃Pv` .

The total collection of continuation outcomes specified in the agreement must be admissible and
coherent, defined exactly as in Section 3.

Stationary Agreements. A special type of agreements are stationary agreements. In a stationary
agreement, consumers’ behavior is summarized by a Borel reservation-price function R : r0, 1s Ñ R:
in each continuation outcome, consumer q buys the product the first time the posted price is weakly
below her reservation, Rpqq. Given any Borel reservation-price function, the path of consumers’
acceptances in reaction to any càdlàg path of prices is guaranteed to be admissible.

Strategies, Promised Values, and Values of Strategies. Defined as in Section 3.

Self-Enforcing Agreements. In this setting, for each sub-moment s P S, HM
s is the set of càdlàg

paths of prices on r0, sq. Self-enforcing agreements can be defined as follows.

Definition (Self-Enforcing Agreement). An agreement Q is self-enforcing if both

1. the monopolist’s optimality:

@s P S,@Ps P HM
s , @σ P ΣM pQ̃Psq, VM pσq ď UM pQ̃Psq;

2. the consumers’ optimality:

@t P r0,`8q,@Pt` P HM
t`, @q P r0, 1szAtpPt`q, @σ P ΣqpQ̃Pt`q, V qpσq ď U qpQ̃Pt`q,

where AtpPt`q denotes the acceptance set before moment t in reaction to Pt`.

In the above definition, the consumers’ optimality is required only for the consumers who are
supposed to be active at the beginning of a continuation outcome. Also, for each moment t ě 0, the
consumers’ optimality is required only in continuation outcomes that start at sub-moment t`. One
could rewrite the definition to require the consumers’ optimality for all consumers in all continuation
outcomes. However, doing so would be redundant.

In any self-enforcing agreement, the following usual “skimming property” is a consequence of the
consumers’ optimality:

@t P r0,`8q,@Pt` P HM
t`, @q, q

1 P r0, 1szAtpPt`q, pq ă q1q Ñ
`

T pq|Q̃Pt`q ď T pq1|Q̃Pt`q
˘

,

where T pq|Q̃q denotes the time at which consumer q should accept in continuation outcome Q̃.
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Solution. I now describe self-enforcing agreements of the dynamic-monopoly game.
First, in any agreement, the monopolist can guarantee himself a nonnegative continuation payoff

after any history by not posting prices below the marginal cost. Thus, in any self-enforcing agree-
ment, the monopolist’s promised continuation values must be at least 0. The following proposition
shows that this lower bound is tight and can be attained in stationary agreements:

Proposition 3 (Optimal Penal Code). For any Borel C Ď r0, 1s and any P ě 0, the dynamic-
monopoly game that starts with the set active consumers that equals C has a stationary self-enforcing
agreement in which (i) the initially-recommended price is P ; (ii) the consumers’ reservation-price
function is Rpqq ” 0; (iii) the monopolist’s promised value is 0.

Proof. See Appendix A.3 for constructive proof.

Intuitively, a stationary agreement delivering to the monopolist zero payoff works as follows.
At the beginning, the monopolist offers price P ě 0. This price, however, should drop to zero “in
the twinkling of an eye” (c.f. Coase (1972)). That is, so quickly that no consumer would want to
purchase the good before the price is exactly zero. If the monopolist deviates from that path and
offers another price, that price, in its turn, would also be expected by consumers to go down to zero
“in the twinkling of an eye.” The precise lengths of such “twinklings” depend on prices offered by
the monopolist. For smaller deviating prices, the lengths are shorter. Continuous time allows one
to construct the corresponding continuation path no matter how short a “twinkling” is required.

Stationary agreements in which the consumers’ reservation price equals the monopolist’s marginal
cost are self-enforcing even if there is a “gap” between consumers’ valuations and the marginal cost.
This is qualitatively different from the discrete-time version of the model. There, in the unique
sequential equilibrium, the monopolist can sell to everyone immediately at a price just below the
lowest valuation. The difference stems from the following: In discrete time, the monopolist can
commit to a positive posted price for a one-period length of time, which is bounded away from zero.
In continuous time, the monopolist does not have such a commitment device.

Using an optimal penal code for punishing deviations, one can support a plethora of outcomes
in self-enforcing agreements:

Proposition 4 (Characterization). Any admissible path of prices above the monopolist’s marginal
cost can be supported in a self-enforcing agreement of the continuous-time dynamic-monopoly game.

Proof. The proof is similar to the proof of Proposition 2 and is therefore omitted.

In particular, the static-monopoly outcome can be supported in the following full-commitment
agreement : Along the initial path, the monopolist always posts the static-monopoly price P ˚; the
consumers with valuations weakly above P ˚ accept at time 0; the other consumers always reject. If
the monopolist ever deviates, the play reverts to an optimal penal code.

There is one more discrepancy between the continuous-time and discrete-time versions of the
model. In the “no gap” case, fp1q “ 0, as the periods’ length ∆ Ñ 0, there is a sequence of rep-
utational equilibria of the discrete-time versions whose outcomes converge to the static-monopoly
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outcome (c.f. Ausubel and Deneckere (1989)). Yet, in the “gap” case, fp1q ą 0, any discrete-time
version has a unique sequential equilibrium. As ∆ Ñ 0, the limit of these equilibrium outcomes con-
verges to the outcome, in which all consumers buy immediately at price P “ fp1q. This is drastically
different from the static-monopoly outcome, which can still be supported in the continuous-time
version. A possible interpretation of this qualitative difference is the following: Take a “gap” distri-
bution f of consumers’ valuations. For any ε P p0, 1q, let f ε “ p1´εq¨f`ε¨U r0, fp0qs be the mixture
of f and the uniform distribution on r0, fp0qs. Distribution f is the distribution of valuations of the
primary consumers of the monopolist’s product. The uniform distribution represents consumers,
who might come to the market occasionally. The mixed distribution, f ε, is the true distribution
the monopolist faces. The “gap” distribution, f , then is the limit of “no gap” true distributions
f ε as the relative measure of occasional consumers becomes negligible. When we are interested in
the limit of equilibrium outcomes of games with frequent price postings in the “gap” case, we are
essentially interested in finding the double limit of equilibrium outcomes as both ∆ Ñ 0 and εÑ 0.
One order to take these limits is to first take εÑ 0 and then to take ∆ Ñ 0. This order corresponds
to the frequent-posting limit of equilibria of discrete-time games with the “gap”. Another order is
to first take ∆ Ñ 0 and then to take ε Ñ 0. This order produces self-enforcing agreements of the
continuous-time game with the “gap.” The discrepancy then signifies that the result depends on the
order in which the limits are taken. The discrete-time limit corresponds to the situation in which
the relative measure of occasional consumers diminishes more rapidly than the monopolist’s power
to commit to a posted price. The continuous-time model is the limiting case for the situation in
which the monopolist’s commitment power vanishes faster.10

Comment. In the “gap” case, fp1q ą 0, one may be interested in a stationary self-enforcing
agreement in which (i) the consumers’ reservation-price function is P pqq ” fp1q; (ii) the monopolist
should always post price fp1q. However, such an agreement does not formally exist in the proposed
model. The reason is purely technical: given the consumers’ behavior, the monopolist would find it
strictly optimal to post fp1q immediately after any history of play. Yet, price paths of continuation
outcomes are restricted to be right-continuous. So, after a deviation price P ą fp1q is posted, there
could be no continuation outcome which the monopolist would want to follow.

One way to deal with this technical issue is to extend the set of admissible continuation outcomes.
If after a deviation at time t, an agreement can recommend a continuation outcome that allows the
monopolist to adjust the posted price “immediately after” time t, then the required agreement can
be constructed. Section 6.2 develops such a construction in detail.

10Daley and Green (2020) (Section V.A) make a similar point when they compare the “uninformative news” limit,
φÑ 0, of their continuous-time model, and the frequent-offer limit, ∆ Ñ 0, of the discrete-time model of Deneckere
and Liang (2006). They also interpret the difference as the order-dependence of the limit.
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6 Stochastic Applications

In Section 5, I demonstrated how my method can be used in deterministic applications. In this
section, I turn to stochastic applications of my approach. In Section 6.1, I study a game with
an exogenously evolving payoff-relevant state – the leverage-dynamics model of DeMarzo and He
(2021). In Section 6.2, I consider a game with hidden information – the bargaining model of Daley
and Green (2020). There, I show how one can incorporate into agreements instantaneous and
randomized adjustments after deviations. In the proof of the one-stage deviation principle for that
model (Theorem 2), I employ the dense-collection principle established in Section 4. Finally, in
Section 6.3, I treat a game with hidden actions – the collusion model of Panov (2021). There, I
illustrate a simplifying technique applicable to games in which at all times, players’ sets of observable
actions have myopically-optimal ones.

6.1 Example: Leverage Dynamics without Commitment

The construction developed in this example can be adapted to formalize non-stationary equilibria in
the setting of Ortner (2017). Consider the model of a firm choosing its capital structure dynamically
and without commitment as in DeMarzo and He (2021) and Malenko and Tsoy (2020):

Setup. A firm has assets-in-place that generate operating cash flow at the rate of Yt, which is
publicly observable and for v ě t, evolves according to

dYt “ µpYtqdt` νpYtqdZt ` ζpYt´qdNt, (2)

where µpYtq and νpYtq are general functions that satisfy the standard regularity conditions; tZtutě0

is a Brownian motion; tNtutě0 is a Poisson process with intensity λpYtq ą 0; and ζpYt´q is the jump
size given the Poisson event.

At each time t P r0,`8q, equity holders can issue/repurchase debt to competitive debt holders.
Having observed their decision, debt holders determine the price of debt, pt, in Bertrand competition.
The aggregate face value of debt outstanding at time t is denoted Ft. Debt takes the form of
exponentially maturing coupon bonds with a constant coupon rate c ą 0 and an amortization rate
ξ ą 0. At any time, equity holders can default on their obligations. In case of bankruptcy, investors
recover nothing from the firm’s assets.

Sub-Moments. Each moment of time t divides into four consecutive sub-moments: t, t`, t2`,
and t3`. At sub-moment t, operating cash flow Yt is realized. At sub-moment t`, equity holders
announce new face value of debt Ft. At sub-moment t2`, price pt is determined by debt holders.
At sub-moment t3`, equity holders decide whether to default at time t or not.

Random Paths. The game is played in a filtered probability space P “ pΩ,F , tFtutě0,P q.
Space P includes an tFtutě0-adapted càdlàg process of operating cash flows, tYtutě0, which evolves
according to (2). The initial operating cash flow is a nonrandom value Y0. The initial face value of
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debt is F0´ ě 0.
A random path of play is a quadruple

 

τ,Y ,Γ,p
(

, where τ is an tFtutě0-stopping time; Y “

tYtutPr0,τ s is the process of operating cash flows; Γ “ tΓtutPr0,τ s and p “ tptutPr0,τ s are tFtutě0-
adapted càdlàg processes. Stopping time τ can be infinite and corresponds to default time of the
firm. Process Γ is the process of cumulative issuance/repurchases of debt. Process p is the process
of debt prices. Equity holders can issue/repurchase debt at time τ . In that case, the default takes
place after the debt is sold/repurchased at price pτ . Under issuance/repurchase policy tΓtutPr0,τ s,
the evolution of face values of debt, tFtutPr0,τ s, is given by

dFt “ dΓt ´ ξFtdt,

with F0 “ Γ0`F0´. Policy tΓtutPr0,τ s must be such that tFtutPr0,τ s is nonnegative. In the description
of paths of play, processes tΓtutPr0,τ s and tFtutPr0,τ s will be used interchangeably.

Payoffs. At each moment t before default, equity holders send to debt holders a flow payment of
pc` ξqFtdt. The firm pays corporate taxes equal to πpYt´ cFtqdt, where πp¨q is a strictly increasing
function. All agents are risk neutral and have a common discount rate r ą 0. The equity holders’
payoff from random path H “

 

τ,Y ,Γ,p
(

is

UpHq – E
”

τ
ż

0

e´rtpt dΓt `

τ
ż

0

e´rt
`

Yt ´ πpYt ´ cFtq ´ pc` ξqFt
˘

dt
ı

,

where ∆Γ0 – Γ0; and the expectation is under measure P in space P.

Admissible Histories. Admissible histories correspond to realizations of random paths of play.
In this game, at each moment t P r0,`8q, there are two non-trivial decision nodes: at sub-moments
t` and t2`.11 For that reason, I will consider only histories before sub-moments of these two types.

An admissible history before sub-moment t2`,Ht2` , is a nonrandom triplet
 

tŶvuvPr0,ts, tF̂vuvPr0,ts,

tp̂vuvPr0,tq
(

such that the path of cash flows, tŶvuvPr0,ts, is càdlàg, starts at Ŷ0 “ Y0, and has jumps
∆Ŷv “ ζpŶv´q; the path of face values of debt, tF̂vuvPr0,ts, is nonnegative and càdlàg; the path of
debt prices, tp̂vuvPr0,tq, is càdlàg. Similarly, an admissible history before sub-moment t2`, Ht` , is
a nonrandom triplet

 

tŶvuvPr0,ts, tF̂vuvPr0,tq, tp̂vuvPr0,tq
(

satisfying the same restrictions. The initial
history, tY0u, is admissible. The set of finite admissible histories is denoted H.

Sufficient Histories. Sufficient histories correspond to realizations of cash flows and face values of
debt along admissible histories. A sufficient history before sub-moment t2`, Hct2` , is a nonrandom
pair tŶv, F̂vuvPr0,ts such that the path of cash flows, tŶvuvPr0,ts, is càdlàg, starts at Ŷ0 “ Y0, and
has jumps ∆Ŷv “ ζpŶv´q; the path of face values of debt, tF̂vuvPr0,ts, is nonnegative and càdlàg.
Sufficient histories before sub-moment t` are defined analogously. The initial sufficient history is

11At t3`, equity holders have the same information as at t`. The only new information that can arrive at t3` is
that equity holders end the game. Hence, we do not need to consider the node immediately after t3`.
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tY0u. The set of finite sufficient histories is denoted Hc.
The sufficient part of an admissible history

 

tŶvuvPr0,ts, tF̂vuvPr0,ts, tp̂vuvPr0,tq
(

is the sufficient
history tŶv, F̂vuvPr0,ts. (Similarly, for histories before t`.)

Initial Outcome. An initial outcome is a random path
 

τ,Y ,F ,p
(

in space P such that along
that path, the debt prices (i) are deterministic functions of past sufficient histories; (ii) are consistent
with debt holders’ competitive behavior. That is, such that for all t P r0, τ s, (i) pt is a function of
tYv, FvuvPr0,ts; and (ii) Ft-almost surely,

pt “ E
”

τ
ż

t

e´pr`ξqpu´tqpc` ξq du
ˇ

ˇ

ˇ
Ft
ı

,

where the expectation is under measure P. Initial outcomes are continuation outcomes that follow
the initial history.

Continuation Outcomes. A continuation outcome, Q̃, that follows finite admissible history Ht2` ,
is a random continuation path for times v ě t. Let pŶt, F̂tq be the last point in the sufficient part
of Ht2` . Continuation outcome Q̃ is defined in a filtered probability space P̃ “ pΩ̃, F̃ , tF̃vuvět, P̃ q.
Space P̃ is constructed specifically for Q̃ independently from spaces of other outcomes. Space P̃
includes an tF̃vuvět-adapted process of future operating cash flows, tỸvuvět, which evolves according
to (2) and must start with Ỹt “ Ŷt.

Continuation outcome Q̃ is a quadruple
 

τ̃ , Ỹ , F̃ , p̃
(

. Time τ̃ is an tF̃vuvět-stopping time, at
which equity holders should default. Process F̃ “ tF̃vuvPrt,τ̃ s is an tF̃vuvět-adapted nonnegative
càdlàg process of recommended face values of debt which must start with F̃t “ F̂t. Process Ỹ “

tỸvuvPrt,τ̃ s is the process of operating cash flows in P̃ before default time τ̃ . Process p̃ “ tp̃vuvPrt,τ̃ s is
an tF̃vuvět-adapted càdlàg process of future debt prices. Process p̃ must depend deterministically
on past sufficient histories and be consistent with debt holders’ competitive behavior in Q̃. That is,
for all v P pt, τ̃ s, (i) p̃v must be a function of tỸu, F̃uuuPrt,vs; and (ii) F̃v-almost surely,

p̃v “ E
”

τ̃
ż

v

e´pr`ξqpu´vqpc` ξq du
ˇ

ˇ

ˇ
F̃v

ı

,

where the expectation is under measure P̃ . The price of debt at the beginning of Q̃ must be the

nonrandom value p̃t “ E
“

τ̃
ş

t

e´pr`ξqpu´tqpc` ξq du
‰

, where the expectation is under P̃ .

Continuation outcomes that follow an admissible history Ht` are defined analogously. The only
difference is that in them, the starting value of debt, F̃t, can be an arbitrary nonnegative number.

Supported Histories. Fix a continuation outcome Q̃ that follows a finite admissible history H.
For each ω̃ P Ω̃, denote by Q̃pω̃q the nonrandom path in Q̃ that corresponds to realization of ω̃.
For all ω̃ P Ω̃, the concatenation H ` Q̃pω̃q is an admissible total history. Say that an admissible
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history Ĥ is supported in Q̃ if

´

H Ă Ĥ
¯

&
´

D ω̃ P Ω̃, Ĥ Ă H` Q̃pω̃q
¯

.

The set of admissible histories supported in Q̃ is denoted supppQ̃q. For a finite admissible history
Ĥ P supppQ̃q, denote by supppĤ, Q̃q the set of admissible histories that are supported in Q̃ and
follow Ĥ. That is, supppĤ, Q̃q – tH1 P supppQ̃q | Ĥ Ă H1u.

Agreements. Agreements are constructed as follows.

Step 1: An agreement specifies an initial outcome, Q̃tY0u, that should follow the initial history.
Step 2: The agreement specifies continuation outcomes that should follow all other finite suffi-

cient histories. That is, for each sufficient historyHc P HcztY0u, the agreement specifies continuation
outcome Q̃Hc that should follow Hc.

Along any infinite sufficient history tŶt, F̂tutPr0,`8q, the reaction path of debt prices is given by
the following convolution formula:

@t P r0,`8q, pt

´

tŶu, F̂uuuPr0,ts

¯

“ p̃t

´

Q̃
tŶu,F̂uuuPr0,ts

¯

, (3)

where pt
`

Hc
˘

denotes the price of debt at time t in reaction to sufficient history Hc; p̃tpQ̃Hcq

denotes the nonrandom initial price of debt in continuation outcome Q̃Hc that starts at time t. The
convolution formula (3) implies a nonrandom reaction function, Φ.

The admissibility requirement in this setting is the requirement that ΦpHcq is càdlàg for each
infinite sufficient history Hc. The admissible history before sub-moment s which results from the
play of Hcs equals to

 

Hcs,ΦspHcsq
(

. Thus, continuation outcome Q̃Hc
s
will follow the admissible

history tHcs,ΦspHcsqu.
The total collection of continuation outcomes, Q, must be coherent in the following sense:

Definition (Coherency). A collection of continuation outcomes Q “ tQ̃HcuHcPHc is coherent if it
keeps supporting the same histories in spells of time when equity holders do not actually deviate,

@Q̃ P Q, @H P H,
´

H P supp
`

Q̃
˘

¯

ùñ

´

supp
`

H, Q̃
˘

“ supp
`

Q̃H˚
˘

¯

,

where H˚ denotes the sufficient part of admissible history H.

Coherency implies the following promise keeping property: in each continuation outcome of Q,
the path of debt prices recommended along a sufficient history coincides with the reaction path of
debt prices determined by the convolution formula (3).

The above notion of a coherent collection of continuation outcomes generalizes to this stochastic
setting the corresponding notion from the deterministic setting of Section 3. Indeed, in the determin-
istic case, (i) each continuation outcome supports a unique path of play; (ii) relation H P supppQ̃q

reduces to H containing the pre-history of Q̃ and being a truncation of the total path corresponding
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to Q̃; (iii) supp
`

H, Q̃
˘

is singleton and equals the total path corresponding to Q̃; (iv) supp
`

Q̃H˚
˘

is singleton and equals the total path corresponding to Q̃H˚ .
The definition of agreements in this stochastic setting is the following:

Definition (Agreement). An agreement is an admissible and coherent collection of continuation
outcomes that recommend random continuation paths of play after all finite sufficient histories.

Strategies. Take a continuation outcome Q̃ that starts at time t. A strategy σ of equity holders
in continuation outcome Q̃ prescribes

1. a possibly infinite tF̃vuvět-stopping time τσ ě t at which equity holders default in Q̃;

2. a nonnegative tF̃vuvět-adapted càdlàg process of face values of debt, tF σv uvPrt,τσs. If Q̃ follows
a sufficient history before sub-moment t2`, then F σt must be equal to F̂t, the face value
announced at sub-moment t`, immediately prior to Q̃. Denote by tΓσv uvPrt,τσs, with Γσt –

F̂t ´ F̂t´, the associated process of debt issuance/repurchase.

The set of equity holders’ strategies in continuation outcome Q̃ is denoted ΣpQ̃q.

Promised Continuation Values. The continuation value promised to equity holders in continu-
ation outcome Q̃ that starts at time t is the nonrandom value

W̃ pQ̃q – E
”

τ̃
ż

t

e´rpv´tqp̃v dΓ̃v `

τ̃
ż

t

e´rpv´tq
`

Ỹv ´ πpỸv ´ cF̃vq ´ pc` ξqF̃v
˘

dv
ı

,

where ∆Γ̃t – F̃t ´ F̂t´; and the expectation is under measure P̃ in space P̃ associated with Q̃.

Values of Strategies. Fix an agreement Q. Take a continuation outcome Q̃ P Q that starts at
time t and a strategy σ of equity holders in Q̃. The continuation value of σ is the nonrandom value

Ṽ pσq – E
”

τσ
ż

t

e´rpv´tqp̂v dΓσv `

τσ
ż

t

e´rpv´tq
`

Ỹv ´ πpỸv ´ cF
σ
v q ´ pc` ξqF

σ
v

˘

dv
ı

,

where the expectation is under measure P̃ in space P̃ associated with Q̃; and for v P rt, τσs, p̂v
denotes the price of debt at the beginning of the continuation outcome that follows tỸu, F σu uuPrt,vs.
By promise keeping, the continuation value of the strategy that prescribes to follow Q̃ coincides
with the promised continuation value, W̃ pQ̃q.

Self-Enforcing Agreements. An agreement Q is self-enforcing if there is no strategy for equity
holders that constitutes a profitable deviation from any continuation outcome,

@Q̃ P Q, @σ P ΣpQ̃q, Ṽ pσq ď W̃ pQ̃q.
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Smooth Markov Agreements. A smooth Markov agreement with states pYt, Ft´q is determined
by a density of issuance/repurchase policy, G : R ˆ R` Ñ R, and a closed set D Ă R ˆ R`, which
is the firm’s default region. In the agreement, a continuation outcome that starts in state pŶt, F̂t´q
recommends continuation paths that are deterministic functions of realized cash flows. Specifically,
for a nonrandom path of cash flows tỸvuvPrt,`8q, the recommended path of face values of debt is
the solution to the ODE

dF̃v
dv

“ GpỸv, F̃vq ´ ξ F̃v (4)

with initial condition F̃t “ F̂t´. Provided GpY, F q is continuous in Y and uniformly Lipschitz
continuous in F on finite time intervals and outside D, the solution to (4) locally exists and is
unique by the Picard-Lindelöf theorem. Provided D is well-behaved, the solution to (4) can be
extended until pỸv, F̃vq first hits D, at which time the firm defaults. Debt price pt “ ppYt, Ft´q is
determined as the initial price of debt in the continuation outcome that starts in state pYt, Ft´q.
Provided GpY, F q and D are well-behaved, ppYt, Ft´q is continuous in both arguments, which ensures
that the path of debt prices in reaction to any sufficient history is càdlàg. That is, the admissibility
requirement is satisfied. Because face values and prices of debt are determined pathwise and uniquely
by an initial state and a path of cash flows, the so-constructed collection of continuation outcomes
is coherent. That is, the collection is an agreement.

Solution. After the model is formalized as above, one can say that DeMarzo and He (2021)
characterize self-enforcing agreements that are smooth Markov with states pYt, Ft´q. In their turn,
Malenko and Tsoy (2020) use the agreements of DeMarzo and He (2021) as an optimal penal code,
and characterize optimal outcomes among those that are (i) Markov with states pYt, Ft´q, (ii) have
a special form, (iii) can be supported in self-enforcing agreements.

Comments. 1. In the above construction, continuation outcomes lie in spaces that are different
from space P, in which the game is played. In a self-enforcing agreement, the only outcome that
will be played actually is the initial outcome, which lies in P. The other continuation outcomes are
counterfactual and describe what would happen only if equity holders deviated.

2. In continuation outcomes of agreements, face values of debt and default times are not re-
stricted to be deterministic functions of past cash flows. This allows for public randomization in
equity holders’ actions. However, this randomization is not needed for self-enforcing agreements
studied in DeMarzo and He (2021) and Malenko and Tsoy (2020).

6.2 Example: Bargaining and News

I now show how one can incorporate into agreements instantaneous and randomized adjustments
after deviations. A similar construction can be used for the deterministic model of Chavez and
Varas (2021). Consider the setting of Daley and Green (2020) (hereafter DG):

Setup. A buyer wants to purchase a non divisible durable asset that belongs to a seller. The asset
can be of either type θ P tL,Hu which is privately observed by the seller. The ex-ante probability
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that the asset is of type H is P0 P p0, 1q. Thus, there are three players: the buyer and the two types
of the seller.

At each moment of time t P r0,`8q, the buyer makes a price offer, Wt, to the seller.12 Having
observed Wt, the seller either accepts or rejects. In case of acceptance, the trade is immediately
executed at price Wt, and the game ends.

The seller’s type is gradually revealed by the evolution of a public-signal process, tXtutě0, that
satisfies for v ě t,

Xt “ µθ dt` ν dBt,

where tBtutě0 is a Brownian motion; µH ě µH are constant drifts; and ν ą 0 is a constant volatility.
Denote by φ – pµH ´ µHq{ν the signal-to-noise ratio in the public signal.

Sub-Moments. Each moment of time t divides into two consecutive sub-moments, t and t`. At
sub-moment t, public signal Xt is realized and the buyer makes offer Wt. At sub-moment t`, the
seller either accepts or rejects the buyer’s offer.

Random Paths. The game is played in a filtered probability space P “ pΩ,F , tFtutě0,Pq. Space P
includes an tFtutě0-adapted process of public signals, tXtutě0, with X0 “ 0, such that the process
t 1
νXtutě0 is a Brownian motion under P. For each realization of the seller’s type θ P tL,Hu,

probability measure P is changed to measure Pθ using Girsanov’s theorem so that the process
t 1
ν pXt ´ µ

θ tqutě0 is a Brownian motion under Pθ.
A random path of play is a quadruple tX,W ,SL,SHu, where X “ tXtutě0 is the public-signal

process; W “ tWtutě0 is an tFtutě0-adapted càdlàg process of the buyer’s offers; SL “ tSLt utě0

and SH “ tSHt utě0 are tFtutě0-adapted nondecreasing càdlàg processes with values in r0, 1s. For
θ P tL,Hu and t ě 0, value Sθt is the cumulative probability that the type-θ seller accepts an offer
by time t inclusive.

Payoffs. For θ P tL,Hu, the seller’s cost of parting with the asset is Kθ, with KL “ 0 ă KH .
The buyer’s value for the asset is V θ, with V H ě V L. Gains from trade are common knowledge:
V θ ą Kθ for each θ P tL,Hu. The players are risk-neutral and have a common discount rate r ą 0.
The payoffs from a random path H “ tX,W ,SL,SHu are as follows.

The payoff of the buyer is

UBpHq – p1´ P0q ¨EPL
”

`8
ż

0

e´rtpV L ´Wtq dS
L
t

ı

` P0 ¨EPH
”

`8
ż

0

e´rtpV H ´Wtq dS
H
t

ı

,

where for θ P tL,Hu, ∆Sθ0 – Sθ0 ; and EPθ denotes the expectation under Pθ.

12In this example, I use the notation of DG when possible. So, W denotes price offers rather than promised values.
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For θ P tL,Hu, the payoff of the type-θ seller is

U θpHq – EPθ
”

`8
ż

0

e´rtpWt ´K
θq dSθt

ı

.

Extended Càdlàg Paths. In this game, to ensure existence of a rich class of self-enforcing
agreements, one needs to allow the buyer to adjust her offer immediately after a deviation (See
also the comment at the end of Section 5.2). As a result, the sets of admissible paths of offers and
acceptances need to be extended beyond the set of càdlàg paths. I do it as follows.

A path is extended càdlàg if it is piecewise càdlàg with finitely many adjustment times. That
is, an extended càdlàg path, Fr0,ts, on interval r0, ts, with t P r0,`8s, is a finite ordered set of
adjustment times, ta1, .., anu, with 0 “ a1 ď .. ď an ď t “ an`1, and n càdlàg paths, F i :

ral, al`1s Ñ R for l “ 1, .., n. Path Fr0,ts can have several consecutive adjustments at the same
moment of time: al can be equal to al`1 for some l “ 1, .., n. Adjustments on Fr0,ts can be trivial:
at some adjustment time al, with l “ 2, .., n, there can be no adjustment in F ; that is, F l´1

al
“ F lal .

Extended Càdlàg Processes. A process F̃ “ tFvuvět in filtered space tΩ̃; F̃ , tF̃vuvětu is extended
càdlàg if there exists N P N such that for all w̃ P Ω̃, the path F̃ pω̃q is extended càdlàg with at most
N adjustment times. An extended càdlàg process F̃ is tF̃vuvět-adapted if for all n P t1, .., Nu, the
n-th adjustment time of F̃ , anpω̃q, is an tF̃vuvět-stopping time; and for all v ě t, random variable
Fnv pω̃q ¨ Itanpω̃qďvďan`1pω̃qu is Fv-measurable.

Admissible Histories. An admissible history before sub-moment t`, Ht` , is a nonrandom quadru-
ple

 

tX̂vuvPr0,ts, tŴvuvPr0,ts, tŜ
L
v uvPr0,tq, tŜ

H
v uvPr0,tq

(

such that the public-signal path, tX̂vuvPr0,ts, is
continuous and starts at X̂0 “ 0; the offer path, tŴvuvPr0,ts, is extended càdlàg with adjustment
times ta1, .., anu; the acceptance paths, tŜLv uvPr0,tq and tŜHv uvPr0,tq, are nondecreasing extended
càdlàg paths with values in r0, 1s and with the same set of adjustment times as on tŴvuvPr0,tq.
For an adjustment time al, value Ŝθal is the cumulative probability that the type-θ seller accepts
offer Ŵal or an offer before that. Abusing the notation, if tŴvuvPr0,ts has several adjustments at
time t, then tŜLv uvPr0,tq and tŜHv uvPr0,tq represent the paths of acceptances in response to all offers
before the offer at the last adjustment, Ŵan . Similarly, an admissible history before sub-moment t,
Ht, is a nonrandom quadruple

 

tX̂vuvPr0,tq, tŴvuvPr0,tq, tŜ
L
v uvPr0,tq, tŜ

H
v uvPr0,tq

(

satisfying the same
restrictions. The initial history, H, is admissible.

Buyer’s Beliefs. Let Ht` be a finite admissible history with last point pX̂t, Ŵt, Ŝ
L
t´, Ŝ

H
t´q, such

that ŜLt´ ă 1 and ŜHt´ ă 1. As is suggested by DG, it is convenient to represent the buyer’s belief
at the end of Ht` with the log-likelihood ratio, Ẑt´, defined as

Ẑt´ – ln

ˆ

P0

1´ P0

˙

`
φ

ν

ˆ

X̂t ´
µH ` µH

2
t

˙

` ln

˜

1´ ŜHt´

1´ ŜLt´

¸

. (5)
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The probability that the seller is of type-H assessed by the buyer before offer Ŵt is rejected is then

P̂t´ –
eẐt´

1` eẐt´
.

Sufficient Histories. A sufficient history before sub-moment t`, Hct` , is a nonrandom pair
tX̂v, ŴvuvPr0,ts, such that the public-signal path, tX̂vuvPr0,ts, is continuous and starts at X̂0 “ 0;
the offer path, tŴvuvPr0,ts, is extended càdlàg. Sufficient histories before sub-moment t are defined
analogously. The initial history is sufficient.

Initial Outcome. An initial outcome is a random path tX,W ,SL,SHu in space P such that
along that path, the cumulative acceptances are deterministic functions of past sufficient histories.
That is, such that for all t P r0,`8q, SLt and SHt are functions of tXv,WvuvPr0,ts. Initial outcomes
are continuation outcomes that follow the initial history.

Continuation Outcomes. A continuation outcome, Q̃, that follows finite admissible history Ht`
is a random continuation path for times v ě t. Let pX̂t, Ŵt, Ŝ

L
t´, Ŝ

H
t´q be the last point in Ht` . Con-

tinuation outcome Q̃ is defined in a filtered probability space P̃ “ pΩ̃, F̃ , tF̃vuvět, P̃ q, constructed
specifically for Q̃. Space P̃ includes an tF̃vuvět-adapted process of future public signals, tX̃vuvět,
which must start at X̃t “ X̂t, and such that t 1

νXvuvět is a Brownian motion under P̃ . For each
realization of the seller’s type θ P tL,Hu, probability measure P̃ is changed to measure P̃ θ using
Girsanov’s theorem so that t 1

ν pX̃v ´ µ
θ vquvět is a Brownian motion under P̃ θ.

Continuation outcome Q̃ is a quadruple
 

X̃, W̃ , S̃L, S̃H
(

. Process X̃ “ tX̃vuvět is the public-
signal process in P̃. Process W̃ “ tW̃vuvět is an tF̃vuvět-adapted càdlàg process of recommended
offers. For each θ P tL,Hu, S̃θ is the type-θ seller’s recommended acceptance behavior in Q̃.

Continuation outcome Q̃ can be either non-adjustment or adjustment as described below:

• If Q̃ is non-adjustment, then offer W̃t must be equal to Ŵt. For θ P tL,Hu, S̃θ is an tF̃vuvět-
adapted nondecreasing càdlàg processes tS̃θvuvět, whose values are deterministic functions of
past sufficient histories and must be in

“

Ŝθt´, 1
‰

.

• if Q̃ is adjustment, then the adjusted offer, W̃t, can be different from the last offer, Ŵt.
Offer W̃t can be randomized. For θ P tL,Hu, S̃θ is a pair tS̃θt´, tS̃θvuvětu. Nonrandom value
S̃θt´ must be in

“

Ŝθt´, 1
‰

. Probability
`

S̃θt´ ´ Ŝθt´
˘

is the ex-ante probability that the type-θ
seller accepts offer Ŵt. Process tS̃θvuvět is an tF̃vuvět-adapted nondecreasing càdlàg processes,
whose values are deterministic functions of past sufficient histories and must be in

“

S̃θt´, 1
‰

.

Continuation outcomes that follow admissible history Ht are analogous to adjustment continu-
ation outcomes constructed above. Such continuation outcomes are considered non-adjustment.

Supported Histories. Fix a continuation outcome Q̃ that follows a finite admissible history H.
For each ω̃ P Ω̃, denote by Q̃pω̃q the nonrandom continuation path in Q̃ that corresponds to w̃. The
total history of play that corresponds to ω̃ is the concatenation H` Q̃pω̃q. If Q̃ is non-adjustment,
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then H ` Q̃pω̃q has the same adjustment times as H. If Q̃ is adjustment, then H ` Q̃pω̃q adds to
the adjustment times of H an additional adjustment at the beginning of Q̃pω̃q. For each ω̃ P Ω̃,
the total history H ` Q̃pω̃q is admissible. With the above convention, histories supported in Q̃ are
defined exactly as in Section 6.1.

Agreements. An agreement is an admissible and coherent collection of continuation outcomes
that recommend random continuation paths of play after all finite sufficient histories. Agreements
in this setting are constructed similarly to Section 6.1.

Along any infinite sufficient history tX̂t, ŴtutPr0,`8q, the reaction path of the seller’s acceptances
is given by the following convolution formula:

@θ P tL,Hu, @t P r0,`8q, Sθt

´

tX̂u, ŴuuuPr0,ts

¯

“ S̃θt

´

Q̃
tX̂u,ŴuuuPr0,ts

¯

, (6)

where Sθr
`

Hc
˘

denotes the cumulative probability that in reaction to sufficient history Hc, the type-
θ seller accepts offer Ŵt or an offer before that; and S̃θt pQ̃Hcq denotes the cumulative acceptance
probability recommended to the type-θ seller at the very beginning of continuation outcome Q̃Hc .
For each adjustment time of tX̂t, ŴtutPr0,`8q, the convolution formula (6) applies separately. The
convolution formula (6) implies a nonrandom reaction function, Φ.

The admissibility requirement in this setting is the requirement that for any finite sufficient
history Hct`, the path ΦtpHct`q is nondecreasing extended càdlàg with values in r0, 1s2 and with
adjustment times that are the same as on path Hct` . For each finite sufficient history Hct`, Q̃Hc

t`
is

a possible continuation outcome after the finite admissible history
 

Hct` ,ΦtpHct`q
(

. (Analogously,
for any finite sufficient history Hct .)

The coherency requirement is formulated exactly as in Section 6.1.

Strategies. Given an agreement, consider a continuation outcome Q̃ that follows admissible history
Ht` with last point pX̂t, Ŵt, Ŝ

L
t´, Ŝ

H
t´q.13 Players’ strategies in Q̃ are defined as follows. (Players’

strategies is a continuation outcome Q̃ that follows admissible history Ht are defined analogously.)
A strategy of the buyer, σ, is an tF̃vuvět-adapted extended càdlàg process of offers, tW σ

v uvět,
that can start at W σ

t ‰ Ŵt.
For θ P tL,Hu, a strategy of the type-θ seller, σ, is a pair

 

Sσt´, tS
σ
v uvětu, where (i) value

pSσt´ ´ Ŝθt´q P r0, 1 ´ Ŝθt´s is the ex-ante probability of acceptance of offer Ŵt; (ii) tSσv uvět is an
tF̃vuvět-adapted nondecreasing càdlàg process of cumulative acceptance probabilities with values
in rSσv´, 1s. If Q̃ is non-adjustment, then it must be that Sσt “ Sσv´. If Q̃ is adjustment, then it can
be that Sσt ą Sσv´.

For i P tB,L,Hu, denote by ΣipQ̃q the set of player i’s strategies in continuation outcome Q̃.

Promised Continuation Values. Take a continuation outcome Q̃ that follows admissible history
Ht` with last point pX̂t, Ŵt, Ŝ

L
t´, Ŝ

H
t´q. The continuation values promised in Q̃ to the players are

defined as follows. (Analogously for continuation outcomes that follow an admissible history Ht.)
13The last point of the initial history is p0,H, 0, 0q.
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The promised continuation value of the buyer is the nonrandom value

W̃BpQ̃q – p1´ P̂t´q ¨ W̃B|LpQ̃q ` P̂t´ ¨ W̃B|HpQ̃q,

where P̂t´ is the buyer’s belief after Ht` that the seller is of type H; for θ P tL,Hu, value W̃B|θpQ̃q

is the buyer’s promised continuation value conditional on the seller being of type θ, defined as

W̃B|θpQ̃q – pV θ ´ Ŵtq ¨
S̃θt´ ´ Ŝ

θ
t´

1´ Ŝθt´
`EP̃ θ

”

`8
ż

t

e´rpv´tqpV θ ´ W̃vq
dS̃θv

1´ Ŝθt´

ı

.

In the above expression, the first term is the profit the buyer makes on the type θ seller and offer
Ŵt at the beginning of Q̃; the second term is the future profits she makes on the type-θ seller.
Symbol EP̃ θ denotes the expectation under P̃ θ in space P associated with Q̃. If Ŝθt´ “ 1, then
W̃B|θpQ̃q – 0.

For θ P tL,Hu, the promised continuation value of the type-θ seller is the nonrandom value

W̃θpQ̃q – pŴt ´K
θq ¨

S̃θt´ ´ Ŝ
θ
t´

1´ Ŝθt´
`EP̃ θ

”

`8
ż

t

e´rpv´tqpW̃v ´K
θq

dS̃Lv

1´ Ŝθt´

ı

.

Values of Strategies. Given an agreement Q, consider a continuation outcome Q̃ P Q that follows
admissible history Ht` with last point pX̂t, Ŵt, Ŝ

L
t´, Ŝ

H
t´q. (Analogously for continuation outcomes

that follow an admissible history Ht.)
The continuation value of the buyer’s strategy σ P ΣBpQ̃q is the nonrandom value

Ṽ Bpσq – p1´ P̂t´q ¨ Ṽ
B|Lpσq ` P̂t´ ¨ Ṽ

B|Hpσq,

where P̂t´ is the buyer’s belief after Ht` that the seller is of type H; for θ P tL,Hu, value Ṽ B|θpσq

is the continuation value of σ conditional on the seller being of type θ, defined as

Ṽ B|θpσq – pV θ ´ Ŵtq ¨
S̃θt´ ´ Ŝ

θ
t´

1´ Ŝθt´
`EP̃ θ

”

`8
ż

t

e´rpv´tqpV θ ´W σ
v q

dSθvpσq

1´ Ŝθt´

ı

,

where Sθvpσq denotes the type-θ seller’s cumulative acceptance by time v inclusive in reaction to σ.
The continuation value of the type-θ seller’s strategy σ P ΣθpQ̃q is the nonrandom value

Ṽ θpσq – pŴt ´K
θq ¨

Sσt´ ´ Ŝ
θ
t´

1´ Ŝθt´
`EP̃ θ

”

`8
ż

t

e´rpv´tqpW̃v ´K
θq

dSσv

1´ Ŝθt´

ı

.
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Self-Enforcing Agreements. An agreement Q is self-enforcing if

@Q̃ P Q, @i P tB,L,Hu, @σ P ΣipQ̃q, Ṽ ipσq ď W̃ ipQ̃q.

Smooth Markov Agreements. A smooth Markov agreement with parameters
 

β, qp¨q, Rp¨q
(

has
the buyer’s belief, Ẑt´, as a state, and is determined by a belief threshold, β P R; a hazard rate of the
type-L seller’s acceptance, q : p´8, βs Ñ p0,`8q, which is Lipschitz continuous on finite intervals;
and an offer function, R : R̄ Ñ R, which is continuous on R̄, strictly increasing on p´8, βq, and
constant on rβ,`8s. In the agreement, the play continues until the first time, τ , when the state is
weakly above threshold β. At τ , the buyer should offer Wτ “ Rpβq, which both types of the seller
should accept with probability 1. The type-H seller should reject all offers before τ . At any moment
t P r0, τq, the buyer should offer Wt “ RpẐt´q. The type-L seller should accept Wt according to the
hazard rate qpẐt´q. Appendix B.1 provides the formal construction of smooth Markov agreements.

Solution for smooth Markov Agreements. The characterization of all self-enforcing agreements
in this setting is beyond the scope of the current paper. Instead, I focus here on smooth Markov
agreements for the case when the Static Lemons Condition of DG holds; that is, when KH ą V L.

Fix a smooth Markov agreement Q. Let Q̃ P Q be a continuation outcome that starts at
time t ě 0. In Q̃, the players can choose among complicated deviating strategies. To simplify the
analysis, I select a tractable collection of strategies, which I call the one-shot deviations. Specifically,
for the buyer, consider one-shot deviations of the following two types: (i) to immediately make an
offer W P R and after that, to follow the recommendations of the ensuing continuation outcome;
(ii) to make unacceptable offers of Rp´8q until an tF̃vuvět-stopping time τ ě t and starting
from τ , to follow the recommendations of the ensuing continuation outcome. For the type-θ seller,
θ P tL,Hu, a one-shot deviation is a strategy given by an tF̃vuvět-stopping time τ ě t at which
the seller accepts the buyer’s offer: before τ , the seller rejects all offers and then, he accepts offer
W̃τ with probability 1. Denote by Σi

1pQ̃q, i P tB,L,Hu, the set of one-shot deviations of player i
in continuation outcome Q̃. The following is one of the main results of the paper:

Theorem 2 (One-Shot Deviation Principle). A smooth Markov agreement Q is self-enforcing if
and only if in the agreement, neither player has a profitable one-shot deviation,

@i P tB,L,Hu, @Q̃ P Q, @σ P Σi
1pQ̃q, Ṽ ipσq ď W̃ ipQ̃q.

Proof. See Appendix B.4.

The proof of Theorem 2 employs the dense-collection principle (Theorem 1): for the buyer’s
deviations, the principle is combined with backwards induction; for the seller’s deviations, the prin-
ciple is used directly. The restriction to Markov agreements is essential: in non-Markov agreements,
players’ reactions may depend on fine details of the past history of play. Thus, checking one-shot
deviations may be insufficient for verifying that a non-Markov agreement is self-enforcing.
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Let Q̃z P Q be a continuation outcome that starts when the state is z P p´8, βq, and the buyer
has just offered Rpzq. Denote by F pzq the buyer’s promised continuation value in Q̃z. Let τ̃β be
the stopping time in Q̃z at which the state first hits threshold β. Denote by DLpzq the continuation
value of the type-L seller’s strategy that prescribes to delay acceptance until τ̃β . In Appendix B.3,
I show that values DLpzq and F pzq depend on state z, but not on a particular choice of Q̃z P Q.

For z P R, let pz – ez{p1 ` ezq be the probability the buyer assigns in state z to the seller
being of type H; let V pzq – pzV

H `
`

1´ pz
˘

V L be the expected value of the asset in state z. For
z P p´8, βq, let Γpzq –

`

1´ pz
˘`

V L ´Rpzq ´F pzq
˘

`F 1pzq be the net benefit of screening for the
buyer in state z.

Recall the due diligence game studied in DG: the buyer observes the public-signal process and
decides when to optimally stop and make the pooling offer of KH , which will be accepted by
both types of the seller. DG prove that in the due diligence game, the optimal strategy for the
buyer is to stop whenever her belief is weakly above some optimal threshold, βd; moreover, they
provide an explicit expression for βd. Similarly, for W̄ P rKH , V Hq, let βdpW̄ q be the optimal
belief threshold in the due diligence game in which the pooling offer is W̄ . By DG’s Proposition 1,
βdpW̄ q – V ´1pW̄ q ` ln

`

u˚

u˚´1

˘

, where u˚ – 1
2p1`

a

1` 8r{φ2q.
My next step is to apply Theorem 2 to establish the following useful characterizations of players’

incentive constraints in smooth Markov agreements:

Proposition 5 (Buyer’s Incentive Constraints). The buyer does not have profitable deviations in a
smooth Markov agreement with parameters

 

β, qp¨q, Rp¨q
(

if and only if simultaneously

1. the instantaneous incentive compatibility constraints of the buyer are satisfied,

@z P p´8, βq, Γpzq “ 0;

2. the individual rationality constraint of the buyer is satisfied at threshold β,

Rpβq ď V pβq;

3. threshold β coincides with the optimal threshold of the corresponding due diligence game,

β “ βd
`

Rpβq
˘

.

Proof. See Appendix B.5.

Proposition 6 (Seller’s Incentive Constraints). Neither seller’s type has profitable deviations in a
smooth Markov agreement with parameters

 

β, qp¨q, Rp¨q
(

if and only if simultaneously

1. the instantaneous incentive compatibility constraints of the type-L seller are satisfied,

@z P p´8, βq, Rpzq “ DLpzq;
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2. the individual rationality constraint of the type-H seller is satisfied,

Rpβq ě KH .

Proof. See Appendix B.6.

Comparatively to DG, Proposition 5 is an “if and only if”-directional strengthening of their “only
if”-directional Lemma 1. Appendices B.5 and B.6 contain complete and formal proofs that close a
few gaps in the original treatment.

For the considered game, DG propose a unique equilibrium, in which the highest recommended
offer is KH . For each W̄ P rKH , V Hq, let ΓpW̄ q be the game obtained from the considered game
whenKH is replaced with W̄ . (Naturally, ΓpKHq is the considered game.) Let QpW̄ q be the smooth
Markov agreement in the considered game whose parameters coincide with the parameters of the
Daley-Green equilibrium of ΓpW̄ q. The following proposition characterizes self-enforcing smooth
Markov agreements in the considered game:

Proposition 7 (Characterization). In the considered game: for each W̄ P rKH , V Hq, agreement
QpW̄ q is the unique self-enforcing smooth Markov agreement in which the highest recommended offer
is W̄ ; there are no other self-enforcing smooth Markov agreements.

Proof. For W̄ P rKH , V Hq, applying Proposition 5 and Proposition 6 and following the procedure
proposed by DG (Section III.B), one can pin down QpW̄ q as the unique self-enforcing smooth
Markov agreement in which the highest recommended offer is W̄ . For W̄ ă KH , there are no
self-enforcing smooth Markov agreements by the type-H seller’s individual rationality constraint.
For W̄ ě KH , there are no self-enforcing smooth Markov agreements by the buyer’s individual
rationality constraint.

The Daley-Green equilibrium corresponds to the self-enforcing smooth Markov agreement with
the highest offer KH . Yet, the considered game has a continuum of other self-enforcing smooth
Markov agreements. In DG, other equilibria are dismissed by the assumption that in any equilib-
rium, both types of the seller would immediately accept any offer weakly above KH . While this
property holds in the discrete-time version of the model, it no longer follows from the sellers’ opti-
mality in continuous time. The reason is similar to the one discussed in Section 5.2: unlike trading
in discrete time, in continuous time, the buyer can not commit to a posted offer for a positive-length
period of time.

Other Self-Enforcing Agreements. The considered game has the following self-enforcing agree-
ment: the buyer should always offer V H ; both types of the seller should accept the first time the
buyer offers at least V H . In that agreement, the buyer’s promised continuation value is 0 at any
time. Thus, the outcomes of the agreement constitute an optimal penal code. If one proceeds
similarly to DG and restricts that in any self-enforcing agreement, both types of the seller should
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accept immediately any offer weakly above KH , then the outcomes of the Daley-Green equilib-
rium will constitute an optimal penal code. In both cases, any path supportable in a self-enforcing
agreement can be supported in an agreement that uses an optimal penal code for punishing the
buyer’s deviations. I leave for future research to complete the characterization of paths supportable
in self-enforcing agreements in the considered game.

Comparison with DG. My treatment of this game has several important differences from the
original treatment of DG.

First, DG construct their equilibrium objects taking as a primitive the process of the buyer’s
beliefs. In contrast, I take as primitives paths of public signals and players’ actions, and only then
derive the corresponding path of the buyer’s beliefs (Appendix B.1). Unlike DG, I formally construct
the probability measure, P̃B, that corresponds to the buyer’s perspective when she plays a strategy
in a smooth Markov agreement (Appendix B.2). Measure P̃B is crucial for establishing properties
of the buyer’s value function. In particular, measure P̃B is used to prove the one-shot deviation
principle (Theorem 2), and the fact that the buyer’s value function satisfies the DG’s ODE (10)
(Lemma 6 in Appendix B.3).

Second, as their equilibrium restrictions, DG impose that players do not have profitable one-shot
deviations. They do not consider other deviations that players’ might choose. That is, DG’s notion
of equilibrium effectively assumes that the one-shot deviation principle applies for the collection of
one-shot deviations they consider. In contrast, I start by allowing players to deviate with arbitrary
measurable action paths, and only then establish that for checking that a smooth Markov agreement
is self-enforcing, one can indeed without loss restrict attention to the one-shot deviations proposed
by DG. Also, in my treatment, the restriction that an agreement is self-enforcing implies all the
restrictions DG impose on their equilibrium concept except the restriction that both types of the
seller should always accept any offer weakly above KH .

Finally, DG’s notion of an S-candidate has similarities with my notion of an agreement. One of
the differences, however, is that an S-candidate requires the seller’s optimality, but not the buyer’s
optimality. In my treatment, both the seller’s and the buyer’s optimality are required only in
agreements that are self-enforcing.

6.3 Example: Collusion with Costly Transfers

In some games, paths of optimal self-enforcing agreements are expressed as solutions to SDEs rather
than ODEs. In such games, it is not possible to use the pathwise definition of coherency proposed in
Section 6.1. One way to deal with this issue may be to extend the notion of coherency appropriately,
which would complicate the model. I now illustrate an alternative, simplifying technique applicable
to games in which at all times, players’ sets of observable actions have myopically-optimal ones. To
solve such games, one can proceed in the following steps: (i) suitably discretize players’ deviations
by imposing an artificial restriction; (ii) find self-enforcing agreements of the restricted game; (iii)
verify that the set of outcomes supportable in self-enforcing agreements remains the same after the
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restriction is dropped. Consider the collusion game of Panov (2021):

Setup. Two players interact on the time interval r0,`8q. At each moment t P r0,`8q, each
player i P t1, 2u takes a productive action, Ait, from a finite setAi. Productive actions are imperfectly
observable by their effect on the evolution of a public-signal process, tXtutě0, that satisfies for t ě 0,

Xt “

t
ż

0

µpA1
v, A

2
vq dv ` Zt,

where tZtutě0 is a d-dimensional Brownian motion; and µ : A1 ˆ A2 Ñ Rd is a drift function.
Besides taking productive actions, the players can publicly transfer money to each other. There is
a retention parameter, k P r0, 1q. If at time t, player i sends the opponent amount dΓit ą 0, the
opponent receives only k ¨ dΓit, with the remaining p1´ kq ¨ dΓit being permanently lost. Cumulative
transfers until time t inclusive are denoted Γ1

t and Γ2
t . At each moment, all actions are simultaneous.

Random Paths. The game is played in a filtered space P “ pΩ,F , tFtutě0q. Space P includes an
tFtutě0-adapted process of public signals, tXtutě0, which has continuous sample paths and starts
at X0 “ 0.

A random path of play, H “ tX,A,Γu, is the public-signal process, X “ tXtutě0; an tFtutě0-
progressively measurable process of productive actions, A “ tA1

t , A
2
t utě0; and an tFtutě0-adapted

càdlàg process of cumulative transfers, Γ “ tΓ1
t ,Γ

2
t utě0, which is nondecreasing and nonnegative.

Given random path H, space P is completed with a probability measure, P, such that the process
 

Xt ´
t
ş

0

µpA1
v, A

2
vq dv

(

tě0
is a d-dimensional Brownian motion under P.

Payoffs. The payoff of player i P t1, 2u from a random path H “ tX,A,Γu is

U ipHq – E
”

r

`8
ż

0

e´rt
´

gipA1
t , A

2
t q dt´ dΓit ` kdΓ´it

¯ı

,

where for i P t1, 2u, ∆Γi0 – Γi0; gipA1
t , A

2
t q – cipAitq ` b

ipAitqµpA
1
t , A

2
t q for some arbitrary functions

ci : Ai Ñ R and bi : Ai Ñ Rd; and the expectation is under the measure corresponding to H.

Initial Outcome. An initial outcome is a random path constructed in space P.

Continuation Outcomes. A continuation outcome, Q̃, that starts at time t ě 0, recommends a
continuation play for times v P rt,`8q. Continuation outcome Q̃ is a random continuation path
that is defined in a filtered space P̃ “ pΩ̃, F̃ , tF̃vuvětq. Space P̃ is constructed specifically for Q̃
independently from spaces of other outcomes. Space P̃ includes a process of future public signals,
tX̃vuvět, which has continuous sample paths and starts at X̃t “ 0.

Continuation outcome Q̃ “ tX̃, Ã, Γ̃
(

contains the process of public signals, X̃ “ tX̃vuvět;
tF̃vuvět-progressively measurable processes of recommended productive actions, Ã “ tÃ1

v, Ã
2
vuvět;
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and tF̃vuvět-adapted càdlàg processes of recommended future cumulative transfers, tΓ̃1
s, Γ̃

2
vuvět,

which must be nondecreasing and nonnegative. Given Q̃, space P̃ is completed with a probability

measure, P̃ , such that
 

X̃v ´
v
ş

t

µpÃ1
u, Ã

2
uq du

(

vět
is a d-dimensional Brownian motion under P̃ .

Agreements. An agreement is a collection of outcomes constructed in steps as follows.
Step 1: The agreement specifies an initial outcome.
Step 2: The agreement specifies continuation outcomes of level 1. That is, continuation outcomes
that should follow any money-transfer deviation from the initial outcome made by either player.
Step 3: For each level-1 continuation outcome, the agreement specifies continuation outcomes of
level 2. That is, continuation outcomes that should follow any money-transfer deviation from the
level-1 continuation outcome made by either player.
Steps 4 and further: and so on.

Strategies. In the original game, players can choose any admissible paths of hidden productive
actions and observable money transfers. To simplify the analysis, I first impose an artificial inertia
restriction on players’ observable actions. I then solve for self-enforcing agreements of the restricted
game. After the solution is found, we will see that the inertia restriction can be dropped without
affecting the results.

The restriction works as follows. During the play of an agreement, there is only one observable
deviation available to the players: a player can publicly refuse to send money. Moreover, a player is
allowed to publicly deviate only if he is not restricted by the inertia of his past observable deviation.
Call a player unrestricted after a history of play if he can make a public deviation then; otherwise,
call him restricted. In the initial outcome, both players are unrestricted. Fix an inertia parameter
ε ą 0. The following is the restriction imposed on players’ observable deviations:

Inertia Restriction. During the play of an agreement, an unrestricted player, i, can publicly
deviate at time t and announce that he will send zero. In the ensuing continuation outcome, Q̃,
player i is restricted until stopping time τ̃ – pt` εq ^mintv ě t | |X̃v ´ X̃t| “ εu. Until τ̃ , player i
is forced to send zero, Γ̃iτ´ “ 0. The other player, ´i, is unrestricted in Q̃.

The inertia restricts continuation outcomes: a continuation outcome that follows a public devi-
ation must recommend to the deviator to send zero transfers until he becomes unrestricted.

Players’ strategies in an agreement are defined as follows.

Definition (Strategy). Given an agreement Q, a strategy σi for player i is a rule that specifies for
each continuation outcome Q̃ P Q that starts at time t

1. a potentially infinite tF̃vuvět–stopping time τ at which player i publicly deviates from Q̃;
stopping time τ must respect the inertia restriction;

2. a progressively measurable process tAivuvPrt,τ s of player i’s hidden actions in Q̃.

The set of player i’s strategies in agreement Q is denoted ΣipQq.
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During the play of an agreement, there is always exactly one effective outcome. At the beginning,
the initial outcome is effective. The outcome remains effective until the first time either player
publicly deviates from it. A public deviation causes instantaneous hold on money transfers. The
play immediately switches to the corresponding continuation outcome specified in the agreement.

Self-Enforcing Agreements. Denote by W̃ ipQ̃q the continuation value promised to player i in
continuation outcome Q̃ P Q. For σi P ΣipQq, denote by Ṽ ipσi|Q̃q the continuation value of strategy
σi from the beginning of Q̃. See Panov (2021) for the detailed definitions of W̃ ipQ̃q and Ṽ ipσi|Q̃q.

Definition (Self-Enforcing Agreement). An agreement Q is self-enforcing if

@i “ 1, 2, @Q̃ P Q, @σi P ΣipQq, Ṽ ipσi|Q̃q ď W̃ ipQ̃q.

Solution. In Panov (2021), under additional assumptions on the game structure, for a sufficiently
small inertia parameter ε ą 0, I construct an optimal penal code in the restricted game. The code
delivers to players their stage-game minmax payoffs. Using the code for punishments, I characterize
the dynamics and the payoffs attainable in optimal self-enforcing agreements of the restricted game.

To solve the original game, notice that if the inertia restriction is dropped, the set of self-
enforcing outcomes in the original game remains exactly the same as in the restricted game. Indeed,
the restricted penal code delivers to players their worst individually-rational payoffs in the original
game. Yet, the restricted code is self-enforcing even without the inertia: one can implement the code
by ignoring positive transfers that deviators make during “quiet” inertia phases; doing so will not
change players’ incentives in hidden actions. As the code recommends myopically-optimal transfers
in “quiet” phases, players can not deviate and get more than what they are promised in the code.
As the inertia does not apply to initial outcomes, supportable outcomes are indeed the same as in
the restricted game.
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A Proofs of Propositions 1-3.

A.1 Proof of Proposition 1 (Optimal Penal Code)

The proof proceeds in two stages: first, I construct a triplet of self-enforcing agreements delivering
the worst self-enforcing payoffs; second, I modify the constructed agreements to make them adapted.

Construction of Agreements. For each moment t P r0, 1q, let Q̃1
t be the path of actions at times

rt, 1q along which, worker 1 keeps putting effort 1
2 ; worker 2 keeps putting effort 0; the manager

does not send money, Γ1´ “ Γt´. The path Q̃2
t is obtained from Q̃1

t by renaming the workers.
Let Q̃mt be the path of actions at times rt, 1q described as follows. Along Q̃mt , the manager does
not send transfers until time t`1

2 , Γpt`1q{2´ “ Γt´. At time t`1
2 , he sends both workers transfers

∆Γ1
pt`1q{2 “ ∆Γ1

pt`1q{2 “
1´t

4 . After that, he sends zero until the game ends. Both workers are
on strike and supply zero effort at times rt, t`1

2 s; after that, both supply effort 1
2 until the game

ends. Continuation outcomes Q̃1
t`, Q̃2

t`, and Q̃mt` are obtained as the pt`q-tails of Q̃1
t , Q̃2

t , and Q̃mt
correspondingly.

Using the above paths as punishments for deviations of the corresponding player, one can con-
struct self-enforcing agreements that deliver to the players their worst self-enforcing payoffs. For
instance, the following agreement, Qm

t`, delivers to the manager zero continuation payoff starting
from sub-moment t`:

Step 1: Qm
t` specifies Q̃mt` as the initial outcome.

Step 2: Qm
t` specifies continuation outcomes that should follow any sufficient history in which

exactly one player unilaterally deviates from the initial outcome. Consider the following two cases:
Case 1: the deviator is a worker, say, worker i. Let ãi

pt,1q be the action path recommended to
her in Q̃mt`. Suppose she plays a measurable path ai

pt,1q instead. Let t̂ – infts P pt, 1q|ais ‰ ãisu be
the first moment when worker i deviates from Q̃mt`. This deviation is detected at any sub-moment
after t̂`. The continuation outcomes recommended along ai

pt,1q are as follows. Before the first
deviation, for each sub-moment s P rt`, t̂q, continuation outcome Q̃ai

rt`,sq
is the s-tail of Q̃mt`. At

t̂`, continuation outcome Q̃ai
rt`,t̂`q

is the pt̂`q-tail of Q̃mt` if ait “ ãit; and Q̃ai
rt`,t̂`q

“ Q̃m
t̂`

otherwise.

After the first deviation, for each s P pt̂`, 1q, continuation outcome Q̃ai
rt`,sq

is the s-tail of Q̃m
t̂`
. This

collection of continuation outcomes is admissible and coherent.
Case 2: the deviator is the manager. Denote by Γ̃pt,1q the action path recommended to him

in Q̃mt`. Suppose he plays a nondecreasing càdlàg path Γpt,1q instead. Continuation outcomes
recommended along Γpt,1q will be as follows. For each sub-moment s P rt`, 1q, there will be a well-
defined sub-moment νpsq, the sub-moment immediately after the last deviation by the manager
observed before s. Sub-moment νpsq will depend only on Γpt,sq, the manager’s actions before s. For
each sub-moment s P rt`, 1q, the recommended continuation outcome after Γpt,sq will be the s-tail
of continuation outcome Q̃mνpsq, the punishment continuation outcome for the manager which has
started immediately after his last observed deviation.

I now show how to define such νpsq for all sub-moments s P rt`, 1q. Set the starting point:
t0 – t` and νpt`q – t. At t`, the effective continuation outcome is Q̃mt`, which recommends the
strike until t`1

2 . Let t̂ be the first moment after t at which the manager successfully ends the strike.
That is, t̂ – inf

 

u P r t`1
2 , 1q

ˇ

ˇ

`

∆Γu “ p1´u
4 ; 1´u

4 q
˘

&
`

Γu´ “ Γ2u´1

˘(

if the infimum exists, and
t̂ – 1 otherwise. Note that in the definition of t̂, the infimum can be replaced with the minimum.

Now, define νp¨q on all sub-moments in pt`, t̂q. At any sub-moment s P pt`, t̂q, it is observed
that the manager has not ended the strike before s. Thus, he was recommended to send zero at
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all times in pt`, sq. Let µ0psq be the last sub-moment before s when the manager has sent positive
transfers. That is, µ0psq – inf

 

s1 P rt`, ss
ˇ

ˇΓs1 “ Γs
(

, where for a moment u, Γu` – Γu. By
right-continuity of Γ, the infimum in the definition of µ0psq can be replaced with the minimum.
Sub-moment µ0psq is determined by the manager’s actions before s. As the manager did not end
the strike, he has deviated at µ0psq. In case µ0psq “ s, set νpsq – s. In case µ0psq ă s, at
sub-moment µ0psq, the effective continuation outcome switched to Q̃mµ0psq

. In Q̃mµ0psq
, the manager

is supposed to send positive transfers at moment µ1psq –
µ0psq`1

2 ą µ0psq (where for a moment
u, pu`q`1

2 – u`1
2 ). If µ1psq ă s, the manager has deviated at µ1psq. At µ1psq, the continuation

outcome switched to Q̃mµ1psq
. And so on. For n P N, define recursively µnpsq –

µn´1psq`1
2 . Let µ˚psq

be the last element of that sequence that is less than s. Set νpsq – µ˚psq.
Now, in case t̂ ă 1, define νp¨q on all sub-moments in rt̂, 1q. As t̂ ă 1, µ0pt̂q “ 2t̂´ 1. Set νpt̂q –

2t̂´ 1. At t̂, the effective continuation outcome is Q̃m
2t̂´1

, in which the manager is recommended to
send zero after t̂. For sub-moments s P rt̂`, 1q, define νp¨q as follows. Let t1 be the first moment
after t̂ at which the manager sends positive transfers. That is, t1 – inftt1 P pt̂, 1q|Γt1 ą Γt̂u if the
infimum exists, and t1 “ 1 otherwise. For s P rt̂`, t1s, set νpsq – 2t̂ ´ 1. Set νpt1`q – 2t̂ ´ 1 in
case Γt1 “ Γt̂; and νpt1`q – t1` otherwise. To define νp¨q for sub-moments s ą t1`, move the
starting point from t0 to t1, and set the effective continuation outcome to be Q̃mt1`. Repeat the
whole procedure of defining νp¨q for pt1`, 1q. As t1 ě t0`1

2 , after countably many repetitions of the
procedure, νp¨q will be defined on the whole rt`, 1q.

Having defined νp¨q along path Γrt`,1q, specify the following continuation outcomes: for each
sub-moment s P rt`, 1q, Q̃Γrt`,sq is the s-tail of Q̃mνpsq. Naturally, this collection of continuation
outcomes is admissible. By construction, νpsq remains constant whenever the manager does not
actually deviate. Thus, this collection of continuation outcomes is coherent.

Step 3 and further: analogous to step 2.

Agreements Q1
t` and Q2

t` are constructed similarly to Qm
t`. By construction, these agreements

promise the appropriate payoffs to the players. It remains to show that the agreements are self-
enforcing. Indeed, in these agreements, in any continuation outcome after her deviation, a worker
can not do better than to keep putting the recommended myopically-optimal effort 1

2 because her
opponents will always respond with the same actions. Also, in any continuation outcome following
his deviation, the manager can not get positive profits because to do so would require him to put
an end to the strike, which requires him to forgo all of his profits. Thus, he may as well follow the
recommended action path. As in all other continuation outcomes, the players’ promised continuation
payoffs are always weakly above their continuation payoffs in their specific punishments, no player
will find it profitable to deviate from a continuation outcome that punishes another player.

Adapted Modification. I now modify agreements Q1
t`, Q2

t`, and Qm
t` so as to make them

adapted to observed information. The main idea behind this modification is that whenever a player
is deviating from an agreement, her identity can be signaled to the observed history by actions of
her opponents. Here is one way how the opponents can signal the identity of a deviator without
affecting their incentives in these agreements:

For s P S and i P t1, 2u, the modified continuation outcome Q̃i,˚s is obtained from Q̃is by the
following change: in Q̃i,˚s , the manager keeps sending to the non-deviating worker, ´i, a small
idiosyncratic flow of money, say, dΓ´it “ 1

4 dt; worker ´i exerts zero effort, a´it “ 0, at each
irrational moment of time t, and an idiosyncratic effort, say, a´it “ 3, at each rational moment of
time t. For s P S, the modified continuation outcome Q̃m,˚s is obtained from Q̃ms by the following
change: each worker exerts the effort recommended in Q̃ms at each irrational moment of time; at each
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rational moment of time, each worker exerts an idiosyncratic effort, say, 5. With these idiosyncratic
actions, non-deviating players are constantly signaling the identity of the current deviator. Because
this game has more than two players, this signaling ensures that deviators’ identities will always be
revealed in observed histories. To finish the modification, notice that in construction of agreements,
we can restrict attention to sufficient histories, in which switches of deviators happen only when
a new player deviates actually. Together with the signaling described above, this will ensure that
the so-constructed modifications are adapted. As signaling is cheap, the modified agreements are
self-enforcing.

A.2 Proof of Proposition 2 (Characterization)

“If” Direction. By Lemma 1, if an outcome Q is supportable in a self-enforcing agreement, it
must satisfy the conditions of Proposition 2.

“Only If” Direction. Suppose that Q satisfies the conditions of Proposition 2. Consider the fol-
lowing agreement Q. First, Q proposes Q as the initial outcome. Next, for any unilateral deviation
of any player, Q switches to the optimal self-enforcing punishment of that player immediately after
her deviation is detected. Specifically, suppose player i plays a path of actions ai

r0,1q instead of the
path ãi

r0,1q recommended to her in outcome Q. Let t̂ – inftt P r0, 1q|ait ‰ ãitu be the moment of
her first active deviation from Q. The continuation outcomes along ai

r0,1q are as follows. For each
sub-moment s P r0, t̂s, continuation outcome Q̃ai

r0,sq
is the s-tail of Q. At t̂`, continuation outcome

Q̃ai
r0,t̂`q

is the pt̂`q-tail of Q if ait “ ãit; otherwise the play reverts to Qi
t̂`
, the optimal self-enforcing

agreement for punishing player i. After t̂`, the play reverts to Qi
t̂`
. Naturally, the so-constructed

collection Q is admissible, coherent, and self-enforcing. Q.E.D.

A.3 Proof of Proposition 3 (Optimal Penal Code)

For P̂ ą 0 and t P r0,`8q, let Q̃pP̂ , tq be the continuation outcome from sub-moment t in which
(i) the monopolist posts price P̂ at times rt, t `mpP̂ qq, after which, he posts 0; where mpP̂ q – 1

if P̂ ě fp0q, and mpP̂ q – 1
r ln

` fp0q

fp0q´P̂

˘

otherwise; (ii) all active consumers buy the product at time

v `mpP̂ q at price 0. For P̂ ď 0, let Q̃pP̂ , tq be the continuation outcome from sub-moment t in
which (i) the monopolist posts price P̂ always; (ii) all active consumers buy the product immediately
at sub-moment t`. The consumers’ optimality is satisfied in all such Q̃pP̂ , tq.

Construct the required agreement as follows. The initial outcome is Q̃pP, 0q. Consider first any
càdlàg path of prices before sub-moment t`, Pr0,ts. If Pt ď 0, then set Q̃Pr0,ts to be the pt`q-tail of
Q̃p0, tq. If Pt ą 0, let v – min

 

v P r0, ts|Prv,ts is constant
(

. At time v, punishment Q̃pPt, vq began.

If t´ v ě mpPtq, then the next punishment began at time v`mpPtq. And so on. Let k –

Y

t´v
mpPtq

]

.

The last punishment before t began at time vptq – v ` kmpPtq. Set Q̃Pr0,ts to be the pt`q-tail of
Q̃pPt, vptqq. Now, consider a càdlàg path before sub-moment t, Pr0,tq. Let Pt – lim

uÑt´
Pu. If Pt ď 0,

then set Q̃Pr0,tq – Q̃p0, tq. If Pt ą 0, define vptq for Pr0,ts exactly as above. If vptq ă t, set Q̃Pr0,tq to
be the t-tail of Q̃pPt, vptqq. If vptq “ t, then set Q̃Pr0,tq – Q̃p0, tq.

The collection of continuation outcomes constructed above is admissible and coherent. Hence,
it forms an agreement. The monopolist is promised zero continuation payoff in all the continuation
outcomes of this agreement. Yet, he can not do better: consumers’ would never buy at prices higher
than his marginal cost. Hence, the proposed agreement is self-enforcing. Q.E.D.
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B Further Details for Section 6.2 (Bargaining and News)

B.1 Construction of Smooth Markov Agreements

A smooth Markov agreement is determined by a belief threshold, β P R; a hazard rate of the type-L
seller’s acceptance, q : p´8, βs Ñ p0,`8q; and an offer function, R : R̄ Ñ R. Hazard rate qp¨q
must be Lipschitz continuous on finite intervals in p´8, βs. Offer function Rp¨q must be bounded
and continuous on R̄, strictly increasing on p´8, βq, and constant on rβ,`8s. Below, I focus on
continuation outcomes that start at sub-moments t`, with t P r0,`8q. Continuation outcomes
that start at sub-moments t, with t P r0,`8q, are constructed analogously. A smooth Markov
agreement with parameters

 

β, qp¨q, Rp¨q
(

is constructed as follows.

Step 1. Under the agreement, the play continues until the first time, τ , at which the buyer
offers Wτ ě Rpβq. At moment τ , both types of the seller should accept the offer with probability 1.
Before τ , the type-H seller’s cumulative probability of acceptance should be 0. Thus, prior to each
sub-moment t` ď τ , the position in the game is summarized by the time, the value of the public
signal, the last buyer’s offer, and the type-L seller’s cumulative probability of acceptance. That is,
for each t P r0, τ s, a position before sub-moment t` is a quadruple pt, X̂t, Ŵt, Ŝ

L
t´q, with X̂t P R if

t ą 0 and X̂t “ 0 if t “ 0; Ŵt P R; and ŜLt´ P r0, 1s. The initial position is pH “ p0, 0, 0, 0q.

Step 2. For each position p “ pt, X̂t, Ŵt, Ŝ
L
t´q, continuation outcome Q̃ppq, that should be played

in the agreement after position p, is constructed as follows.
Case 1: ŜLt´ “ 1. At all times v ě t, the buyer should offer W̃v “ Rpβq, which both types of the

seller should accept immediately, S̃Lv “ S̃Hv “ 1.
Case 2: ŜLt´ ă 1 and Ŵt ě Rpβq. Both types of the seller should accept immediately, S̃Lt “

S̃Ht “ 1. At times s ą t, the buyer should offer W̃v “ Rpβq.
Case 3: ŜLt´ ă 1 and Ŵt ă Rpβq. The buyer’s belief at position p, Ẑt´, is computed using

the formula (5) for values X̂t, ŜLt´, and ŜHt´ “ 0. If Ŵt ă RpẐt´q, then Q̃ppq is an adjustment
continuation outcome. Both types of the seller should reject Ŵt. After that, the buyer’s belief
remains Z̃t – Ẑt´; and she should immediately offer W̃t “ RpZ̃tq. Then, the smooth part of Q̃ppq
ensues. If Ŵt P

“

RpẐt´q, Rpβq
˘

, then Q̃ppq is non-adjustment. Offer Ŵt is accepted only by the
type-L seller. The probability of the type-L seller’s acceptance is chosen such that after Ŵt is
rejected, the buyer’s belief jumps up to the value, Z̃t, which is the unique solution to Ŵt “ RpZ̃tq.
After that, the smooth part of Q̃ppq ensues.

The smooth part of Q̃ppq is constructed as follows. Let Z̃t be the buyer’s belief and S̃Lt be the
type-L seller’s cumulative acceptance probability at the beginning of the smooth part. For each
realized path of public signals, tX̃vuvět, with X̃t “ X̂t, the path of the type-L seller’s acceptances,
tS̃Lv uvět, is the solution to the ODE

dS̃Lv
dv

“
`

1´ S̃Lv
˘

¨ q
´

Z̃vpX̃v, S̃
L
v q

¯

(7)

with the initial value S̃Lt , where the state Z̃vpX̃v, S̃
L
v q is computed as

Z̃vpX̃v, S̃
L
v q –

φ

ν
X̃v ´ ln

`

1´ S̃Lv
˘

`

ˆ

Z̃t ´
φ

ν

´

X̂t `
µH ` µH

2
pv ´ tq

¯

` ln
`

1´ S̃Lt
˘

˙

. (8)

Because (i) tX̃vuvě0 is continuous in v; (ii) Z̃vpX̃v, S̃
L
v q is continuous in v, X̃v, and S̃Lv ; (iii) qp¨q

is Lipschitz continuous on finite intervals; the solution to (7) locally exists and is unique by the
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Picard-Lindelöf theorem. Because qp¨q is positive, the solution to (7) can be extended until the
possibly infinite time, τβ ą t, when the state first hits threshold β. At each time v P rt, τβq, the
buyer should offer W̃v “ RpZ̃vq; the type-H seller should reject that offer, S̃Hv “ 0. At time τβ , the
buyer should offer W̃τβ “ Rpβq; both types of the seller should accept that offer, S̃Lτβ “ S̃Lτβ “ 1. At
times v ą τβ , the buyer should offer W̃v “ Rpβq.

Step 3. For each finite sufficient history Hct` “ tX̂v, ŴvuvPr0,ts, the position that is reached
in agreement tβ, q,Ru at the end of Hct`, ppHct`q “ ptp, Xp,Wp, S

L
p q, is as follows. First, position

ppHct`q must correspond to the last point of Hct`: tp “ t, Xp “ X̂t, and Wp “ Ŵt. Second,
SLp is defined as follows. If for some v P r0, tq, Ŵv ě Rpβq, then SLp – 1. Otherwise, for each
v P r0, tq, denote by SLv the minimal cumulative probability of acceptance of the type-L seller which
is possible in the agreement after the buyer offers Ŵv at time s when the public signal is X̂v. Value
SLv is computed as follows. Let Zv “ ln

´

P0
1´P0

¯

`
µH´µH

ν2

´

X̂v ´
µH`µH

2 s
¯

be the belief the buyer
would have at time s if she thought that both types of the seller had rejected all past offers with
probability 1. If Ŵv ď RpZvq, then set SLv – 0. If Ŵv P

`

RpZ̄vq, Rpβq
˘

, then set SLv to be the
unique solution to

R´1pŴvq “ Zv ´ ln
`

1´ SLv
˘

.

Value SLp is the supremum of all such minimal acceptance probabilities for all times before t,

SLp – sup
vPr0,tq

SLv .

Step 4. The collection of continuation outcomes for the agreement, Q “ tQ̃HcuHcPHc , is as
follows. The initial outcome is Q̃ppHq, the continuation outcome that follows the initial position,
pH. For each finite sufficient history Hct` P HcztX0u, continuation outcome Q̃Hc

t`
is Q̃

`

ppHct`q
˘

, the
continuation outcome that follows ppHct`q, the position at the end of Hct`.

Step 5. Take an infinite sufficient history Hc “ tX̂t, Ŵtutě0. Let τ˚ “ min
 

t ě 0 | Ŵt ě Rpβq
(

.
(The minimum is obtained as tŴtutě0 is extended càdlàg.) Time τ˚ can be infinite and represents
the time at which along Hc, both types of the seller should accept with probability 1. For all times
t P r0, τ˚q, let SLt be the minimal cumulative probability of acceptance of the type-L seller at time t
as defined in Step 3. For t P r0, τ˚q, the convolution formula is

!

SLt
`

Hc
˘

;SHt
`

Hc
˘

)

–

!

sup
vPr0,ts

SLv ; 0
)

. (9)

For t ě τ˚, SLt pHcq – 1 and SHt pHcq – 1.

For any finite sufficient history, the reaction path of the seller’s acceptances is non-decreasing
extended càdlàg, has values in r0, 1s2, and has adjustment times that are the adjustment times of
the buyer’s offer path. Thus, collection Q is admissible.

In continuation outcomes of collection Q, supported histories are determined pathwise by each
realization of a public-signal path via the equation (7). The position at the end of any finite history
supported in a continuation outcome of Q coincides with the position computed in Step 3. As (7)
is the same in all continuation outcomes, collection Q is coherent. That is, the collection is an
agreement.
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B.2 Construction of the Buyer’s Measure

In this section, I construct the probability measure, P̃B, that corresponds to the buyer’s perspective
when she plays a strategy in a smooth Markov agreement. A similar technique can be used to
construct the buyer’s measures for strategies in general agreements.

In what follows, I fix a smooth Markov agreement Q with parameters
 

β, qp¨q, Rp¨q
(

. I denote
by Q̃ a typical continuation outcome in Q and by pt, X̂t, Ŵt, Ŝ

L
t´q the position before Q̃. I restrict

attention to nontrivial continuation outcomes, in which ŜLt´ ă 1. The buyer’s belief at the beginning
of Q̃ is denoted Ẑt´. I use P̃ “ pΩ̃, F̃ , tF̃vuvět, P̃ q to denote the filtered probability space associated
with Q̃. Unless otherwise specified, all processes and stopping times are with respect to tF̃vuvět.

For θ P tL,Hu, the measure for the type-θ seller, P̃ θ, is constructed as follows. For v ě t, define

M θ
v – exp

!µθ

ν2
pX̃v ´ X̃tq ´

pµθq2pv ´ tq

2ν2

)

. (10)

By construction of Q̃, for v ě t, X̃v “ X̂t ` νB̃v, where tB̃vuvět is a standard Brownian motion
under P̃ . For each fixed T ě t, define measure P̃ θ

T on F̃T by dP̃ θ
T – M θ

T dP̃ . By Girsanov’s
theorem, P̃ θ

T is a probability measure; and for v P rt, T s, dX̃v “ µθ dv ` ν dB̂v, where tB̂vuvPrt,T s is
a standard Brownian motion under P̃ θ

T . Below, I use symbol EP̃ θ to denote the limit of expectations
under measures P̃ θ

T as T Ñ `8.14

Suppose the buyer plays a strategy σ P ΣBpQ̃q. Let τ˚ be the first time at which under σ, the
buyer offers at least Rpβq. Let tSLv uvPrt,τ˚q be the extended càdlàg process of the type-L seller’s
acceptances in reaction to σ. Let SLt´ – ŜLt´. Let tZvuvPrt,τ˚q be the induced extended càdlàg
process of states. That is, for v P rt, τ˚q, Zv denotes the state after the buyer’s offer at time v has
been rejected.

Let pz – ez{p1`ezq be the probability the buyer assigns in state z to the seller being of type H.
Let µz – pzµ

H `
`

1´ pz
˘

µH be the expected drift of the public signal as assessed by the buyer in
state z. Similarly, let V pzq – pzV

H `
`

1´ pz
˘

V L be the expected value of the asset in state z
For v P rt, τ˚q, denote pv :“ ppZvq. Denote pt´ – ppẐt´q. Consider the extended càdlàd process

Y “ tYvuvPrt,τ˚q defined as

Yv – ´

v
ż

t

1´ pu´

1´ SLu´
dSLu .

Intuitively, Yv is the negative of the sum of predicted-by-the-buyer masses of trade in Q̃ by time s
inclusive if she plays σ. Let E

`

Y
˘

be the stochastic exponential of Y . That is, for v P rt, τ˚q,

EpY qv – eYv ¨
ź

uPrt,vs

ˆ

1´
p1´ pu´q∆S

L
u

1´ SLu´

˙

e

p1´pu´q∆S
L
u

1´SLu´

Intuitively, EpY qv is the assessed-by-the-buyer fraction of the seller’s population at the beginning
of Q̃ that does not trade by time v inclusive. For v P rt, τ˚q, define

ALv :“
1´ SLv

1´ ŜLt´

`

EpY qv
˘´1 and AHv :“

`

EpY qv
˘´1

.

14As the players’ profits from trades are uniformly bounded and r ą 0, the limit is well-defined and finite.
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For θ P tL,Hu, define Aθτ˚ – lim
vÑτ˚´

Aθv whenever τ˚ is finite.15 For v ą t, define

MB
v :“ p1´ pt´qA

L
v^τ˚M

L
v^τ˚ ` pt´A

H
v^τ˚M

H
v^τ˚ . (11)

Set MB
t – 1. The following lemma establishes a version of the innovation theorem for the current

setting (cf. Harrison (2013), Theorem 1.12):

Lemma 2 (Buyer’s Probability Measure). For each fixed T ě t, measure P̃B
T defined on F̃T by

dP̃B
T – MB

T dP̃ is a probability measure. Moreover, for v P rt, T s,

X̃v “ X̃t `

v^τ˚
ż

t

µ
`

Zu
˘

du` νB̂v,

where tB̂vuvPrt,T s is a standard Brownian motion under P̃B
T .

Proof. I first show that process tMB
v uvět is continuous. Indeed, jumps of tALv uvět and tAHv uvět can

happen only at times of jumps of tSLv uvět. Thus, all jumps of tMB
v uvět happen at times of jumps

of tSLv uvět. For v P rt, τ˚q, using (5), (10) and the fact that ALv {AHv “ p1´SLv q{p1´ Ŝt´q, we have,

pv “
pt´A

H
v M

H
v

p1´ pt´qALv M
L
v ` pt´A

H
v M

H
v

. (12)

Suppose that ∆SLv ą 0 for some v P rt, τ˚q. Using (12), we obtain

MB
v

MB
v´

“
p1´ pt´qA

L
v M

L
v ` pt´A

H
v M

H
v

p1´ pt´qALv´M
L
v ` pt´A

H
v´M

H
v

“

“ p1´ pv´q
ALv
ALv´

` pv´
AHv
AHv´

“

p1´ pv´q
1´SLv
1´SLv´

` pv´

1´ p1´pv´q∆SLv
1´SLv´

“ 1.

Thus, ∆MB
v “ 0. Hence, tMB

v uvět is continuous.
Next, I derive an expression for dMB

v under P̃ . Using the integration-by-parts formula for
semimartingales (He et al. (1992), Theorem 9.33), we have for v P rt, τ˚q,

dMB
v “ d

”

p1´ pt´qA
L
vM

L
v ` pt´A

H
v M

H
v

ı

“

“

”

p1´ pt´qM
L
v dA

L
v ` pt´M

H
v dAHv

ı

`

”

p1´ pt´qA
L
v´ dM

L
v ` pt´A

H
v´ dM

H
v

ı

. (13)

By the Doléans-Dade exponential formula (He et al. (1992), Theorem 9.39), we have for v P rt, τ˚q,

dEpY qv “ EpY qv´ dYv.

Then, by Itô’s formula for semimartingales (He et al. (1992),Theorem 9.35), we have for v P rt, τ˚q,

dAHv “ d
“

EpY q´1
v

‰

“
´EpY qv´ dYv
EpY q2v´

` jumps “ AHv´
1´ pv´

1´ SLv´
dSLv ` jumps. (14)

15If τ˚ is finite, then SLτ˚´ ă 1, and so the limit is well-defined and finite.
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Using the integration-by-parts formula for semimartingales and (14), we obtain for v P rt, τ˚q,

dALv “ d
” 1´ SLv

1´ ŜLt´
AHv

ı

“

”

´AHv´
dSLv

1´ ŜLt´
`

1´ SLv´

1´ ŜLt´
dAHv

ı

“ AHv´
´pv´

1´ ŜLt´
dSLv ` jumps. (15)

Combining (14) and (15) and using (12), we get for v P rt, τ˚q,

p1´pt´qM
L
v dA

L
v`pt´M

H
v dAHv “

”

p1´pt´qM
L
v A

H
v´

´pv´

1´ ŜLt´
`pt´M

H
v A

H
v´

1´ pv´

1´ SLv´

ı

dSLv `jumps “

“
MB
v´

1´ SLv´

”

´ p1´ pv´qpv´ ` p1´ pv´qpv´

ı

dSLv ` jumps “ 0, (16)

where the last equality is by continuity of tMB
v uvět. For θ P tL,Hu, we have for v ě t,

dM θ
v “

µθ

ν
M θ
v dB̃v. (17)

Using (17) together with (12), we obtain for v P rt, τ˚q,

p1´ pt´qA
L
v´ dM

L
v ` pt´A

H
v´ dM

H
v “

”p1´ p̂tqA
L
v´M

L
v ¨ µ

H ` p̂tA
H
v´M

H
v ¨ µ

H

ν

ı

dB̃v “

“
p1´ pv´qµ

H ` pv´µ
H

ν
MB
v´ dB̃v “

µ
`

Zv
˘

ν
MB
s dB̃v, (18)

where the last equality is by continuity of tB̃vuvět. Plugging (16) and (18) into (13), we obtain that
under P̃ , for v ě t,

dMB
v “

µ
`

Zv
˘

IvPrt,τ˚q

ν
MB
v dB̃v.

Values µ
`

Zv
˘

are uniformly bounded between µH and µH . Thus, the Novikov condition is satisfied
for tMB

v uvět for any fixed time T ě t. Therefore, by Girsanov’s theorem, for any fixed T ě t,
equation dP̃B

T “MB
T dP̃ defines a probability measure on F̃T such that under P̃B

T , process tB̃vuvět
is a Brownian motion with drift

 µpZvqIvPrt,τ˚q
ν

(

vět
. That is, for v ě t,

dX̃v “ µ
`

Zv
˘

IvPrt,τ˚q dv ` ν dB̂v,

where tB̂vuvět is a standard Brownian motion under P̃B
T .

Below, I use symbol EP̃B to denote the limit of expectations under P̃B
T as T Ñ `8. The

following lemma provides an expression for the continuation value of a strategy of the buyer in
terms of the corresponding measure P̃B:

Lemma 3 (Continuation Value of the Buyer’s Strategy). The continuation value of strategy σ of
the buyer in continuation outcome Q̃ is given by

Ṽ Bpσq “ EP̃B

”

τ˚´
ż

t

κv´
`

V L ´Wv

˘

p1´ pv´q
dSLv

1´ SLv´
` κτ˚´

`

V pZτ˚´q ´Wτ˚
˘

ı

,

where κv´ – e´rpv´tqEpY qv´ is the stochastic discount factor.
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Proof. By definition, the continuation value of σ is

Ṽ Bpσq “
`

1´ pt´
˘EP̃

”

τ˚´
ż

t

e´rpv´tqpV L ´WvqM
L
v

dSLv

1´ ŜLt´

ı

`

`
`

1´ pt´
˘EP̃

”

e´rpτ
˚´tq

`

V L ´Wτ˚
˘

ML
τ˚

1´ SLτ˚´

1´ ŜLt´

ı

` pt´EP̃

”

e´rpτ
˚´tq

`

V H ´Wτ˚
˘

MH
τ˚

ı

.

(19)

For v P rt, τ˚s, we have p1 ´ SLv´q{p1 ´ ŜLt´q “ ALv´{A
H
v´. Using this together with (11) and (12),

we can rewrite (19) as follows:

Ṽ Bpσq “ EP̃

”

τ˚´
ż

t

e´rpv´tqpV L ´Wvqp1´ pt´q
ALv´
AHv´

ML
v

dSLv
1´ SLv´

ı

`

`EP̃

”

e´rpτ
˚´tq

´

`

V L ´Wτ˚
˘

p1´ pt´q
ALτ˚´
AHτ˚´

ML
τ˚ `

`

V H ´Wτ˚
˘

pt´M
H
τ˚

¯ı

“

“ EP̃

”

τ˚´
ż

t

e´rpv´tq

AHv´
pV L ´Wvqp1´ pv´qM

B
v

dSLv
1´ SLv´

`
e´rpτ

˚´tq

AHτ˚´

`

V pZτ˚´q ´Wτ˚
˘

MB
τ˚

ı

.

B.3 Promised Continuation Values in Smooth Markov Agreements

Let Q̃z P Q be a continuation outcome that starts at time t when the state is z P p´8, βq and the
buyer has just offered Rpzq. By construction, Q̃z is non-adjustment and smooth. For θ P tL,Hu,
denote by Dθpzq the continuation value of the type-θ seller’s strategy in Q̃z that prescribes to delay
acceptance until threshold β is reached. Denote by F pzq the buyer’s continuation value promised
in Q̃z, F pzq – W̃BpQ̃zq. In this section, I derive properties of Dθpzq and F pzq.

Below, I use the following Itô diffusions: Take a standard Brownian motion tBuuuě0. For
θ P tL,Hu, denote by Zθ the Itô diffusion given by

dZθu “
”φ

ν

´

µθ ´
µH ` µH

2

¯

` qpZθuq
ı

du` φdBu.

Denote by ZB the Itô diffusion given by

dZBu “
”φ2

2

´

2p
`

ZBu
˘

´ 1
¯

` qpZBu q
ı

dv ` φdBu,

where qpzq – qpβq for z ą β.16 Finally, denote by Z0 the Itô diffusion given by

dZ0
u “

φ2

2

´

2p
`

Z0
t

˘

´ 1
¯

du` φdBu. (20)

16Note that qpzq may fail to satisfy the linear growth condition on R. Nevertheless, diffusion ZB can be defined
on any finite time interval because qpzq is Lipschitz continuous and lower bounded. Due to discounting and bounded
payoffs, in the analysis of this game, one can without loss restrict attention to arbitrary long but finite time intervals.
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For χ P tB,L,H, 0u and z P R, denote by Eχz the expectation operator with respect to the law of
diffusion Zχ with initial value Zχ0 “ z; denote by Aχ the characteristic operator of diffusion Zχ.

The following lemmata represent Dθpzq and F pzq as functions of Itô diffusions Zθ and ZB:

Lemma 4. For θ P tL,Hu and @z P p´8, βq,

Dθpzq “
`

Rpβq ´Kθ
˘Eθ

z

”

e´rτβ
ı

,

where τβ is the stopping time at which the diffusion hits threshold β.

Proof. From (8), it follows that in Q̃z, the state evolves according to

dZ̃v “
φ

ν

´

dX̃v ´
µH ` µH

2
dv
¯

` qpZ̃vq dv. (21)

Under P̃ θ, for v ě t, dX̃v “ µH dv ` ν dB̃L
v , where tB̃L

v uvět in a Brownian motion. Thus, under
P̃ θ,

dZ̃v “
”φ

ν

´

µθ ´
µH ` µH

2

¯

` qpZθv q
ı

dv ` φdB̃θ
v .

That is, under measure P̃ θ in Q̃z, the state evolves as diffusion Zθ with initial value Zθt “ z. This
implies the statement of the lemma.

Lemma 5. For all z P p´8, βq,

F pzq “ EB
z

”

τβ
ż

0

ku πpZ
B
u q du` kτβ

`

V pβq ´Rpβq
˘

ı

, (22)

where

• τβ is the stopping time at which the diffusion hits threshold β;

• πpzq –
`

V L ´Rpzq
˘`

1´ pz
˘

qpzq is the buyer’s flow profit in state z;

• V pβq – ppβqV H `
`

1´ ppβq
˘

V L is the expected value of the asset in state β;

• ku – exp
!

´
u
ş

0

“

r `
`

1´ ppZBv q
˘

qpZBv q
‰

dv
)

is the stochastic discount factor.

Proof. Consider the buyer’s strategy that prescribes to follow the recommendations of Q̃z. Under

that strategy, for u P rt, τ̃βs, EpY qu “ exp
 

´
u
ş

t

`

1 ´ ppZ̃vq
˘

qpZ̃vq dv
(

, where EpY qu is the term

defined in Section B.2. By Lemma 3, the buyer’s continuation value in Q̃z is then

F pzq “ EP̃B

”

τ̃β
ż

t

k̃u πpZ̃uq du` k̃τβ
`

V pβq ´Rpβq
˘

ı

,

where k̃u “ exp
 

´
u
ş

t

“

r`
`

1´ ppZ̃vq
˘

qpZ̃vq
‰

dv
(

. To finish the proof, notice that Lemma 2 and (21)

imply that under P̃B, tZ̃uuuět has the same law as diffusion ZB with initial value ZBt “ z.
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The following lemma shows that the buyer’s value function, indeed, is a bounded solution to the
ODE suggested by DG (their equation (10)):

Lemma 6. On p´8, βq, the buyer’s value function, F pzq, is in C2 and is a bounded solution to

ABF pzq ´
”

r `
`

1´ pz
˘

qpzq
ı

F pzq ` πpzq “ 0 (23)

with boundary condition F pβq “ V pβq ´Rpβq, where AB “ φ2

2
d2

dz2 `
“

φ2

2

`

2p
`

z
˘

´ 1
˘

` qpzq
‰

d
dz .

Proof. Take any ẑ P p´8, βq. Consider the Dirichlet problem on interval Dpẑq “ pẑ, βq given by

ABfpzq ´
”

r `
`

1´ pz
˘

qpzq
ı

fpzq ` πpzq “ 0

and boundary conditions fpẑq “ F pẑq and fpβq “ V pβq ´ Rpβq. Note that on Dpẑq, (i) AB is
uniformly elliptic as φ2{2 is a positive constant; (ii) coefficients φ,

“

φ2

2

`

2p
`

z
˘

´ 1
˘

` qpzq
‰

,
“

r`
`

1´
pz
˘

qpzq
‰

, and πpzq are Lipschitz (hence, Hölder) continuous in z; (iii) Dpẑq satisfies the exterior
sphere property. Therefore, by Remark 7.5 and Proposition 7.2 from Karatzas and Shreve (1991),
the above Dirichlet problem has a unique solution, fẑ, which is given by

fẑpzq “ EB
z

”

τDpẑq
ż

0

ku πpZ
B
u q du` kτDpẑq

´

`

V pβq ´Rpβq
˘

¨ ItZBτDpẑq“βu
` F pẑq ¨ ItZBτDpẑq“ẑu

¯ı

, (24)

where ku “ exp
´

´
u
ş

0

”

r ` p1´ ppZBv qqqpZ
B
v q

ı

dv
¯

and τDpẑq is the first exit time from Dpẑq.

Comparing (22) to (24) and using the strong Markov property of Itô diffusion ZB, we obtain
that F pzq coincides with fẑpzq on interval Dpẑq. In particular, on Dpẑq, function F pzq is in C2 and
solves the ODE (23). As ẑ is arbitrary, F pzq solves (23) on p´8, βq. As the buyer’s profits from
trades are uniformly bounded, F pzq is bounded on p´8, βq.

B.4 Proof of Theorem 2 (One-Shot Deviation Principle)

B.4.1 “Only if” Direction

If the players do not have profitable deviations in Q, then, a fortiori, they do not have profitable
one-shot deviations.

B.4.2 “If” Direction for the Buyer

Suppose the buyer does not have profitable one-shot deviations in Q. To show that she then does
not have profitable deviations in Q, I proceed as follows. First, I construct a collection of strategies,
ΣB

0 , which is dense in ΣB. Second, I use backwards induction to show that there must be no
profitable deviations in ΣB

0 . Finally, I invoke the dense-collection principle for ΣB
0 , which finishes

the proof.

Construction of ΣB
0 . A simple strategy for the buyer in continuation outcome Q̃ is given by

a finite nondecreasing sequence of tF̃vuvět-stopping times, t ď τ1 ď τ2 ď .. ď τn, and for each
stopping time τl, l P t1, 2, .., nu, an F̃τl-measurable serious offer Wτl P rRp´8q,`8q. Under the
strategy, for l P t1, 2, .., nu, the buyer offersWτl at stopping time τl; at all other times v P rt, τnq, the
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buyer makes unacceptable offers, Wv “ Rp´8q; after τn, the buyer follows the recommendations of
the ensuing continuation outcome.

Denote by ΣB
0 pQ̃q the set of simple strategies for the buyer in continuation outcome Q̃. Denote

by ΣB
0 the total collection of simple strategies in agreement Q.

Lemma 7. Collection ΣB
0 is dense in ΣB.

Proof. Take any strategy σ “ tWvuvět P ΣBpQ̃q. It suffices to construct simple strategies in ΣB
0 pQ̃q,

whose continuation values approximate Ṽ Bpσq arbitrary closely. I do it as follows.

Step 1. Ironing. Let τ˚ “ mintv ě t |Wv “ Rpβqu be the first time the buyer offers at least Rpβq
under σ. Let tSLv uvPrt,τ˚q be the type-L seller’s cumulative acceptance until time τ˚ in reaction to
σ. For v P rt, τ˚q, let Zv be the buyer’s belief after her offer Wv is rejected, that is,

Zv – Ẑt´ `
φ

ν

ˆ

X̃v ´ X̃t ´
µH ` µH

2
pv ´ tq

˙

´ ln
`

1´ SLv
˘

` ln
`

1´ ŜLt´
˘

. (25)

Define W̄v – RpZvq. The ironing of σ is the strategy, σ̄, that before τ˚, prescribes offers tW̄vuvPrt,τ˚q,
and starting from τ˚, coincides with σ. From (9), we have that σ and σ̄ induce the same reactions
of the seller, and, moreover,

Ṽ Bpσq “ Ṽ Bpσ̄q. (26)

Step 2. Constructing approximating simple strategies. Take a parameter δ P p0, 1q. Con-
struct simple strategy σδ as follows.

Set a random deadline Tδ – τ˚ ^ min
 

v ě t
ˇ

ˇ SLv ě 1 ´ δ
(

^
`

t ` 1
δ

˘

. Let tτnunPN be the
nondecreasing sequence of stopping times defined recursively as follows: τ1 – t; for n ě 2, τn –

pτn´1 ` δq ^min
 

v ě t
ˇ

ˇ |W̄v ´ W̄τn´1 | ě δ
(

^ Tδ. I now prove that

@ω̃ P Ω̃, Dn P N, τnpωq “ Tδpωq. (27)

Indeed, suppose on the contrary that there exists ω̃ P Ω̃, such that @n P N, τnpω̃q ă Tδpωq.
Then, on the one hand, there exists infinitely many n P N such that |W̄τnpω̃q ´ W̄τn´1pω̃q| ě δ.
Hence, tW̄τnpω̃qunPN does not converge. On the other hand, @n P N, SLτnpω̃q ă p1 ´ δq. Hence,
 

ln
`

1 ´ SLτnpω̃q
˘(

nPN converges to a finite limit. Also, by continuity of the public-signal process,
lim

nÑ`8
X̃τnpω̃q “ X̃t̂pω̃q, where t̂ “ lim

nÑ`8
τnpω̃q ă pt`

1
δ q. Then, from (25) and continuity of Rp¨q, it

follows that tW̄τnpω̃qunPN converges. Contradiction.
Let Nδ :“ min

!

n P N
ˇ

ˇ

ˇ
max

 

P̃ L
`

τn ă Tδ
˘

; P̃H
`

τn ă Tδ
˘(

ă δ
)

. By (27), such Nδ exists. Under
σδ, the buyer makes serious offers at 2Nδ stopping times. Specifically, at time τ1 “ t, the buyer
makes her first serious offer, W δ

t – W̄t. For n “ 2, .., Nδ, the buyer makes two consecutive serious
offers at sub-moments pτn´q and τn. At pτn´q, the offer is W δ

τn´ – lim
sÑτn´

W̄v. At τn, the offer

is W δ
τn – W̄τn . Finally, the last serious offer is at time τ˚ and coincides with the offer under σ,

W δ
τ˚ – Wτ˚ . After τ˚, the buyer keeps offering Rpβq.
Note that for n “ 2, .., Nδ, offers W δ

τn´ and W δ
τn induce acceptances SLτn´ and SLτn correspond-

ingly; also, by the definition of τn,

@s P pτn´1, τnq, max
!

ˇ

ˇW δ
τn´ ´ W̄v

ˇ

ˇ; pτn ´ sq
)

ď δ. (28)

Step 3. Showing that
ˇ

ˇṼ Bpσq ´ Ṽ Bpσδq
ˇ

ˇ Ñ 0 as δ Ñ 0. By (26), it is sufficient to show that
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ˇ

ˇṼ Bpσ̄q ´ Ṽ Bpσδq
ˇ

ˇÑ 0 as δ Ñ 0. Notice that σ̄ and σδ induce the same prices and times of trades
with the type-H seller. Thus, the difference between V Bpσ̄, Q̃q and Ṽ Bpσδ, Q̃q comes solely from
the type-L seller’s trades. Then, cancelling equal terms, we have

Ṽ Bpσ̄q ´ Ṽ Bpσδq “
1´ ppẐt´q

1´ ŜLt´
¨

˜

Nδ
ÿ

n“2

Jn ` J˚

¸

, (29)

where for n “ 2, .., Nδ,

Jn “ EP̃L

»

–

τn´
ż

τn´1`

e´rpv´tq
`

V L ´ W̄v

˘

dSLv ´ e
´rpτn´tq

`

V L ´ W̄τn´

˘ `

SLτn´ ´ S
L
τn´1

˘

fi

fl ,

and

J˚ “ EP̃L

»

—

–

˜ τ˚´
ż

τNδ`

e´rpv´tq
`

V L ´ W̄v

˘

dSLv ´ e
´rpτ˚´tq

`

V L ´Rpβq
˘ `

SLτ˚´ ´ S
L
τNδ

˘

¸

¨ ItτNδăτ
˚u

fi

ffi

fl

.

Let M̄ – max
 

|V L ´Rp´8q|; |V L ´Rpβq|
(

. For n “ 2, .., Npδq,

Jn “ EP̃L

”

τn´
ż

τn´1`

ξv dS
L
v

ı

,

where ξv – e´rpv´tqpV L ´ W̄vq ´ e´rpτn´tqpV L ´ W̄τn´q for v P pτn´1, τnq. For v P pτn´1, τnq, we
have

|ξv| “
ˇ

ˇ

ˇ
e´rpv´tq

`

1´ e´rpτn´sq
˘

pV L ´ W̄vq ` e
´rpτn´tqpW̄τn´ ´ W̄vq

ˇ

ˇ

ˇ
ď M̄

`

1´ e´rδ
˘

` δ,

where the last inequality follows from (28). Therefore,

|Jn| ď
´

M̄
`

1´ e´rδ
˘

` δ
¯

¨EP̃L

”

SLτn´ ´ S
L
τn´1

ı

. (30)

To bound J˚, notice that event tτNδ ă τ˚u is the union of events tτNδ ă Tδu,
 

SLτNδ
ě 1´ δ

(

, and
 

t` 1
δ ă τ˚

(

. Thus,

|J˚| ă 2M̄
´

δ
`

1´ ŜLt´
˘

` δ ` e´r{δ
¯

. (31)

Substituting (30) and (31) into (29), we obtain

ˇ

ˇṼ Bpσ̄q ´ Ṽ Bpσδq
ˇ

ˇ ă

ă
1´ ppẐt´q

1´ ŜLt´

˜

´

M̄
`

1´ e´rδ
˘

` δ
¯

¨
`

1´ ŜLt´q ` 2M̄
´

δ
`

1´ ŜLt´
˘

` δ ` e´r{δ
¯

¸

ÝÝÝÑ
δÑ0

0.

Backwards Induction. I now show that if the buyer does not have profitable one-shot deviations,
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then she does not have profitable deviations among simple strategies.
Consider the backwards induction operator, B : ΣB

0 Ñ ΣB
0 , which operates on simple strategies of

the buyer as follows. Let σ P ΣB
0 pQ̃q be a simple strategy given by stopping times τ1 ď τ2 ď .. ď τn

and serious offers tWτlu
n
l“1. Then, Bpσq P ΣB

0 pQ̃q is the simple strategy given by stopping times
τ1 ď τ2 ď .. ď τn´1 and serious offers tWτlu

n´1
l“1 . That is, B cuts aways the last serious offer

from a simple strategy, moving backwards the time when the buyer starts following the agreement’s
recommendations.

Lemma 8 (Induction Step). If the buyers does not have profitable one-shot deviations, then

@Q̃ P Q,@σ P ΣB
0 pQ̃q, Ṽ Bpσq ď Ṽ B

`

Bpσq
˘

.

Proof. Take any simple strategy σ P ΣB
0 pQ̃q given by stopping times t ď τ1 ď τ2 ď .. ď τn and

serious offers Wτl , l P t1, 2, .., nu. Assume without loss that τn´1 comes strictly before τ˚, where τ˚

is the first time the buyer offers Rpβq under σ.
Consider the simple strategy, σ̂, which coincides with σ P ΣB

0 pQ̃q before time τn and which
prescribes to follow the agreement’s recommendations starting from τn, without offering Wτn . I
prove that Ṽ Bpσq ď Ṽ B

`

Bpσq
˘

in two steps: first, I show that Ṽ Bpσq ď Ṽ Bpσ̂q; then, I show that
Ṽ Bpσ̂q ď Ṽ B

`

Bpσq
˘

.

Step 1. Proving that Ṽ Bpσq ď Ṽ Bpσ̂q. Following DG, denote by Jpz, z1q the continuation
value from the first-type one-shot deviation in which the buyer offersW “ Rpz1q in state z and then
follows the agreement’s recommendations. As there are no profitable one-shot deviations,

@W P rRp´8q, Rpβqs,@z P R, J
`

z,R´1pW q
˘

ď F pzq.

By Lemma 3, Lemma 5, and the strong Markov property of Itô diffusion ZB for stopping time τn,

Ṽ Bpσq ´ Ṽ B
`

σ̂
˘

“ EP̃B

«

e´rpτn´tq

AHτn´

´

J
`

Zτn´, R
´1pWτnq

˘

´ F pZτn´q
¯

ff

ď 0,

where Zτn´ is the state under σ before offer Wτn is made.

Step 2. Proving that Ṽ Bpσ̂q ď Ṽ B
`

Bpσq
˘

. Because there are no profitable one-shot devia-
tions of the second type, we have

@τ P T , F pzq ě Ez
0

”

e´rτF pZ0
τ q

ı

, (32)

where tZ0
t utě0 is the Itô diffusion Z0, defined by (20), with initial value Z0

0 “ z; and T is the set of
all stopping times with respect to the natural filtration of tZ0

t utě0. (To prove (32), one can adapt
the proofs of Lemma 3 and Lemma 5 and use the strong Markov property of Itô diffusion ZB for
stopping time τ .)

Let tZvuvPrt,τ˚q be the process of states induced by σ̂. Consider process tGvuvět defined by

Gv – EP̃B

«

e´rτn´1

AHτn´1

F
`

Zτn´1

˘

ˇ

ˇ

ˇ

ˇ

ˇ

F̃s

ff

Itvďτn´1u `
e´rs

AHτn´1

F
`

Zv
˘

Itτn´1ăvăτnu `
e´rs

AHτn´1

F
`

Z0
s

˘

Itvěτnu,

where under P̃B, tZ0
vuvěτn is Itô diffusion Z0 with initial value Z0

τn “ Zτn´. By Lemma 2, under
P̃B, process tZvuvPrτn´1,τns is Itô diffusion Z0 with initial value Z0

τn´1
“ Zτn´1 . Together with (32),
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this implies that under P̃B, tGvuvět is a super-martingale. As AHτn´1
ě 1, tGvuvět is bounded.

Then, by Doob’s optional sampling theorem,

EP̃B

“

Gτn´1

‰

ě EP̃B

“

Gτn
‰

.

By Lemma 3, Lemma 5, the strong Markov property of Itô diffusion ZB for stopping times τn´1

and τn, and the fact that AHτn´1
“ AHτn´ under σ̂,

Ṽ Bpσ̂q ´ Ṽ B
`

Bpσq
˘

“ EP̃B

«

e´rpτn´tq

AHτn´
F
`

Zτn´
˘

´
e´rpτn´1´tq

AHτn´1

F
`

Zτn´1

˘

ff

“

“ ert
´

EP̃B

“

Gτn
‰

´EP̃B

“

Gτn´1

‰

¯

ď 0.

Lemma 9 (Backwards Induction). If the buyer does not have profitable one-shot deviations, then
she does not have profitable deviations in ΣB

0 .

Proof. Take any simple strategy σ P ΣB
0 pQ̃q for the buyer in continuation outcome Q̃. Let N be

the number of stopping times in σ, at which the buyer makes serious offers before reverting to
the agreement’s recommendations. Denote by σ˚ the buyer’s strategy that prescribes to follow
the recommendations of Q̃. Then, σ˚ “ BN pσq. Applying N times Lemma 8, we obtain that
Ṽ Bpσq ď Ṽ B

`

BN pσq
˘

“ Ṽ Bpσ˚q “ W̃BpQ̃q.

Dense-Collection Principle. Suppose the buyer does not have profitable one-shot deviations.
By Lemma 9, she does not have profitable deviations in collection ΣB

0 , which is dense in ΣB by
Lemma 7. By the dense-collection principle (Theorem 1), the buyer then does not have profitable
deviations in ΣB.

B.4.3 “If” Direction for the Seller

Suppose that the type-θ seller, θ P tL,Bu, does not have profitable one-shot deviations in Q. We
need to prove that he does not have profitable deviations in Q.

Take a continuation outcome Q̃ P Q that starts at time t. Let Ŝθt´ be the cumulative acceptance
of the type-θ seller before Q̃. A simple strategy for the type-θ seller in Q̃ is a simple lottery over
one-shot deviations in Q̃. That is, a simple strategy σ is given by a simple probability distribution
λ P ∆n and tF̃vuvět-stopping times tτlunl“1. Under σ, for times v ě t, the type-θ seller’s cumulative
acceptance is given by

Sθv – 1´
`

1´ Ŝθt´
˘

´

1´
n
ÿ

l“1

λlItτlďsu

¯

.

Naturally, the continuation value of σ is the weighed average of the continuation values of the
one-shot deviations that comprise σ; that is,

Ṽ θpσq “
n
ÿ

l“1

λlṼ
θ
`

σplq
˘

, (33)

where for l “ 1, .., n, σplq is the one-shot deviation that prescribes to accept at τl.
Denote by Σθ

0 the collection of simple strategies for the type-θ seller in agreement Q.
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Lemma 10. Collection Σθ
0 is dense in Σθ.

Proof. Take any strategy σ “ tSθvuvět P ΣθpQ̃q. For n P N, construct simple strategy σn as follows.
For i “ 1, .., n, let τl – min

 

v ě t
ˇ

ˇSθv ě 1 ´ l
n

`

1 ´ Ŝθt´
˘(

. Strategy σn is the simple lottery that
for i “ 1, .., n, selects the one-shot deviation corresponding to τl with probability 1

n . Because in Q̃,
the buyer’s offers are uniformly bounded and continuous for s ą t, Ṽ θpσq “ lim

nÑ`8
Ṽ θpσnq.

To finish the proof, notice that if the type-θ seller does not have profitable one-shot deviations
in Q, then, by (33), he does not have profitable deviations among strategies in Σθ

0. By the dense-
collection principle (Theorem 1), he does not have profitable deviations in Q. Q.E.D.

B.5 Proof of Proposition 5 (Buyer’s Incentive Constraints)

The following proof is partially based on the proof of DG’s Lemma 1:

“Only if” Direction. Suppose the buyer’s incentive constraints are violated. We need to show
that the buyer has a profitable deviation.

Case 1: the IC constraints are violated. Suppose Dẑ P p´8, βq,Γpẑq ‰ 0. Consider a
continuation outcome Q̃ẑ that start in state ẑ with offer Rpẑq. I show that in Q̃ẑ the buyer has a
profitable deviation.

Suppose first that Γpẑq ă 0. By continuity of Γp¨q, Dε P p0, β ´ ẑq, @z P rẑ ´ ε, ẑ ` εs,Γpzq ă 0.
Consider the buyer’s one-shot deviation of the second type, σ, that prescribes to make unacceptable
offers until the stopping time, τ , at which the state first hits the boundary of rẑ ´ ε, ẑ ` εs. By
Lemma 2, before τ , the state evolves as Itô diffusion Z0. Adapting the proofs of Lemma 3 and
Lemma 5 and using the strong Markov property of Itô diffusion ZB, we can then express the
continuation value of σ as

Ṽ Bpσq “ E0
ẑ

“

e´rτF pZ0
τ q
‰

. (34)

By Lemma 6, on rẑ´ε, ẑ`εs, F p¨q is in C2 and satisfies ABF pzq´
”

r`
`

1´pz
˘

qpzq
ı

F pzq`πpzq “ 0.
Rewriting the ODE in terms of A0 and Γpzq, we obtain that on rẑ ´ ε, ẑ ` εs,

`

A0 ´ r
˘

F pzq ` qpzqΓpzq “ 0. (35)

Applying Dynkin’s formula (Øksendal (2013), Theorem 7.4.1) for (34) and using (35), we have

Ṽ Bpσq ´ F pẑq “ E0
ẑ

”

τ
ż

0

`

A0 ´ r
˘

F pZ0
uqdu

ı

“ E0
ẑ

”

τ
ż

0

`

´ qpZ0
uqΓpZ

0
uq
˘

du
ı

ą 0.

Hence, σ constitutes a profitable deviation for the buyer.
Suppose now that Γpẑq ą 0. Following DG, denote by Jpz, z1q the continuation value from the

first-type one-shot deviation in which the buyer offers W “ Rpz1q in state z and then follows the
agreement’s recommendations. DG observe that

@z P p´8, βq, J2`pz, zq “ Γpzq, (36)

where J2`p¨, ¨q is the partial right-derivative of Jp¨, ¨q with respect to the second argument.17 Then,
17Take any z P p´8, βq. By Lemma 3, @ε P p0, β ´ zq, Jpz, z ` εq “ pε

`

V L ´Rpz ` εq
˘

` p1´ pεqF pz ` εq, where
pε –

pẑ`ε´pẑ
pẑ`ε

is the buyer’s interim probability that offer Rpz ` εq will be accepted at the beginning of Q̃ẑ. As
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for small enough ε ą 0, the one-shot deviation of the first-type in which the buyer offers Rpẑ ` εq
at the beginning of Q̃ẑ constitutes a profitable deviation.

Case 2. the IR constraint is violated. If Rpβq ą V pβq, then the buyer’s promised con-
tinuation value in a continuation outcome that starts in state β with an offer below Rpβq is negative.
The continuation value of the strategy that prescribes to keep making unacceptable offers is zero.
Thus, that strategy constitutes a profitable deviation.

Case 3: the threshold is different. Suppose Rpβq ď V pβq and @z ă β,Γpzq “ 0; but
β ‰ βd

`

Rpβq
˘

. Then, (35) implies that on p´8, βq, the buyer’s value function, F p¨q, satisfies
`

A0 ´ r
˘

F pzq “ 0. Also, for z ě β, F pzq “ V pzq ´ Rpβq. Thus, F p¨q coincides on R with the
value of the strategy that prescribes to stop at β in the due diligence game with pooling offer Rpβq.
Let Fdp¨q be the value function of the optimal strategy in that game. As β ‰ βd

`

Rpβq
˘

, Dz P R,
F pzq ă Fdpzq. Let Q̃ be a continuation outcome that starts in state z with an offer less than Rpβq.
Then, the buyer’s promised continuation value in Q̃ is F pzq. In Q̃, consider the buyer’s strategy,
σ, that prescribes to make unacceptable offers until the first time at which the state is at least
βd
`

Rpβq
˘

; and then, to offer Rpβq. By Lemma 2, the continuation value of σ equals to Fdpzq. Thus,
σ constitutes a profitable deviation.

“If” Direction. Suppose the buyer’s incentive constraints are satisfied. We need to show that the
buyer does not have profitable deviations. By Theorem 2, it suffices to show that the buyer does
not have profitable one-shot deviations. Take a continuation outcome Q̃ that starts in state z with
offer Ŵ ă Rpβq.

Show first that in Q̃, the buyer does not have profitable one-shot deviations of the first type.
Indeed. If z ě β, then the continuation value of any first-type one-shot deviation coincides with
the promised continuation value. That is, such deviations are not profitable. Consider the case
z ă β. Assume without loss that Ŵ “ Rpzq (otherwise, set z – R´1pŴ q). To find profitable
deviations, we can without loss restrict attention to deviations in which the buyer does not offer
more than Rpβq. Any one-shot deviation in which the buyer offers less than Rpzq yields exactly
the promised continuation value. Thus, it is not a profitable deviation. Now, consider any one-shot
deviation in which the buyer offers Rpz̄q for some z̄ P pz, βq. We need to show that Jpz, z̄q ď
F pzq “ Jpz, zq. To do so, it suffices to show that @ẑ P pz, βq, J2pz, ẑq ă 0. But, @ẑ P pz, βq,
J2pz, ẑq “ ´p̂ R

1pẑq ` J2`pẑ, ẑq, where p̂ –
pẑ´pz
pz

is the buyer’s interim probability that offer Rpẑq
will be accepted at the beginning of Q̃. By (36), J2`pẑ, ẑq “ 0. Hence, J2pz, ẑq “ ´p̂ R

1pẑq ă 0.
Thus, any one-shot deviation in which the buyer offers less than Rpβq is not profitable. Finally, by
continuity of F p¨q and Rp¨q, function Jpz, ¨q is left-continuous at β. Hence, the one-shot deviation
in which the buyer offers exactly Rpβq is not profitable either.

Show now that in Q̃, the buyer does not have profitable one-shot deviations of the second type.
Indeed, (35) implies that on p´8, βq, the buyer’s value function, F p¨q, satisfies

`

A0 ´ r
˘

F pzq “ 0.
Also, for z ě β, F pzq “ V pzq´Rpβq. As β “ βd

`

Rpβq
˘

, the buyer’s value function then coincides on
R with the value function, Fdp¨q, of the optimal strategy in the due diligence game with pooling offer
Rpβq. Consider any second-type one shot deviation, σ, in Q̃ that prescribes to make unacceptable
offers until stopping time τ . By (34), the continuation value of σ equals to Ez

0

“

e´rτF pZ0
τ q
‰

. As
F p¨q ” Fdp¨q, the continuation value of σ does not exceed the value of the optimal strategy in the
due diligence game, which equals to Fdpzq “ F pzq. Hence, σ is not a profitable deviation. Q.E.D.

pz̃ ” ez̃{pez̃ ` 1q, we have lim
εÑ0`

pε

ε
“

p1z
pz
“ 1´ pz. Then, lim

εÑ0`

Jpz,z`εq´F pzq
ε

“ Γpzq.
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B.6 Proof of Proposition 6 (Seller’s Incentive Constraints)

In what follows, Q̃ẑ denotes a continuation outcome in a smooth Markov agreement that starts at
time t in state ẑ with offer Rpẑq. Also, τ̃β denotes the stopping time in Q̃ẑ at which the state first
hits β. Finally, tS̃Lv uvět denotes the recommended path of the type-L seller’s acceptances in Q̃ẑ.

“Only if” Direction. Suppose that a smooth Markov agreement is self-enforcing. Then, Rpβq ě
KH , for otherwise the type-H seller could profitably deviate by never agreeing to a trade. We need
to show that @z P p´8, βq, Rpzq “ DLpzq. I prove this by contradiction.

First, suppose that Dẑ P p´8, βq, Rpẑq ă DLpẑq. By continuity of Rp¨q andDLp¨q, Dε P p0, β´ẑq,
@z P rẑ´ ε, ẑ` εs, Rpzq ă DLpzq. Let τε be the stopping time in Q̃ẑ at which the state first hits the
boundary of rẑ´ ε, ẑ` εs. By the definition of ε, τε ă τ̃β . Consider the deviating strategy, σ, which
takes all acceptances that should happen in Q̃ẑ before time τε and delays them until time τ̃β . That
is, @v P rt, τεq, σ prescribes to reject all offers, SLv pσq – S̃Lt ; @v P rτε, τ̃βq, σ prescribes to accept
offers at the rate recommended in Q̃ẑ, SLv pσq – S̃Lv ´ S̃Lτε ; finally, σ recommends to accept at τ̃β
with probability 1, SLτ̃β pσq – 1. By Lemma 4, the definition of τε, and the strong Markov property
of Itô diffusion ZB, σ constitutes a profitable deviation. Contradiction.

Second, suppose that Dẑ P p´8, βq, Rpẑq ą DLpẑq. For any δ P p0, 1q, let τ̂δ – min
 

v ě

t
ˇ

ˇ 1´ S̃Lv ď δp1´ S̃tq
(

. By definition, τ̂δ ą t and pτ̂δ ă τ̃βq ñ
`

S̃Lτ̂δ “ 1´ δp1´ S̃tq
˘

. Let Wδ be the
portion of the type-L seller’s continuation value that accrues from “the last” δp1 ´ S̃tq probability
of acceptances,

Wδ – EP̃L

»

—

–

˜ τ̃β
ż

τ̂δ

e´rpv´tqpW̃v ´K
Lq

dS̃Lv
1´ S̃Lt

¸

¨ Itτ̂δăτ̃βu ` δ
´

e´rpτβ´tqpRpβq ´KLq

¯

¨ Itτ̂δ“τ̃βu

fi

ffi

fl

.

Note that S̃Lτ̃β´ ă 1 whenever τ̃β is finite. Hence, for each ω̃ P Ω̃, with finite τ̃βpωq, for all sufficiently
small δ ą 0, τ̂δpω̃q “ τ̃βpωq. Then, by Lebesgue’s dominated convergence theorem, 1

δWδ Ñ DLpẑq

as δ Ñ 0. Hence, there exists δ̂ ą 0 such that Wδ̂ ă δ̂ Rpẑq. Consider the deviating strategy,
σ, which moves “the last” δ̂p1 ´ S̃tq probability of acceptance recommended in Q̃ẑ to the very
beginning of Q̃ẑ. That is, σ prescribes to accept the first offer with ex-ante probability δ̂p1 ´ S̃tq:
SLt pσq – S̃Lt ` δ̂p1´S̃tq; after that, σ prescribes to accept offers at the rate recommended in Q̃ẑ until
the cumulative probability reaches 1, SLv pσq – mintS̃Lv ` δ̂p1 ´ S̃tq; 1u. Then, Ṽ

`

σ
˘

´ W̃L
`

Q̃ẑ
˘

“

δ̂ Rpẑq ´Wδ̂ ą 0. Thus, σ constitutes a profitable deviation. Contradiction.

“If” Direction. Suppose that @z P p´8, βq, Rpzq “ DLpzq and Rpβq ě KH . Prove that neither
seller’s type has profitable deviations. By Theorem 2, it suffices to show that neither seller has a
profitable one-shot deviation. Take any continuation outcome Q̃. Let τ̃β be the stopping time at
which the state reaches β in Q̃.

By Lemma 4 and the strong Markov property of Itô diffusion ZL, the type-L seller obtains
precisely his promised continuation value in Q̃ from any one-shot deviation that prescribes to accept
weakly before τ̃β . As the buyer would never offer more than Rpβq, the type-L seller can not do
better by postponing acceptance beyond τ̃β . Thus, the type-L seller does not have profitable one-
shot deviations in Q̃.

By Lemma 4, @z P p´8, βq,
`

AL ´ r
˘

Rpzq “
`

AL ´ r
˘

DLpzq “ 0. Then, @z P p´8, βq,
`

AH ´ r
˘

Rpzq “
`

AH ´ ALqRpzq “ φ
ν pµ

H ´ µHqdRpzqdz ą 0, where the last inequality follows from
the fact that Rp¨q is increasing on p´8, βq. Then, by Lemma 4, any one-shot deviation for the
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type-H seller that prescribes to accept before τ̃β has the continuation value that is smaller than the
promised continuation value. As the buyer would never offer more than Rpβq, the type-H seller
can not do better by postponing acceptance beyond τ̃β . Hence, the type-H seller does not have
profitable one-shot deviations in Q̃. Q.E.D.
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