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Abstract

I study a homogenous goods model where consumers discover prices via sequential

search and firms receive private signals about consumer valuations. The presence of a

sufficiently informative signal enables the existence of equilibria with on-path search at

intermediate levels of search costs. At low search costs, a structurally different equilib-

rium without on-path search is played, in which consumers use the threat of searching

to ensure low prices. Expansions of the set of consumers that search on-path lead to

increased prices. Firm entry is generally only pro-competitive when it eliminates a

monopoly and search costs are small.
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1 Introduction

The issue of online price discrimination has gained increased attention by legal authorities

around the world in the last years, reflecting the growing body of empirical evidence for its

prevalence.1 In 2016, the competition committee of the OECD recognized that ”there are

particular reasons to worry that price discrimination in digital markets will be harmful”.2

The European Union (EU) and the state of California have already taken steps to address

online price discrimination in the EU GDPR and the CCPA, respectively. In the EU, ad-

ditional compliance rules for firms engaging in online price discrimination will take effect

in 2022.3 Similarly, price transparency is a core area of competition policy. It is addressed

in several directives of the EU, such as the 1998 Unit Prices Directive and the 2005 Unfair

Commercial Practices Directive, and in recent legislation in the United States that targets

the healthcare market.

The prominence of the aforementioned topics in economic policy poses the question of how

they are connected. For instance, is fostering price transparency (in the form of reducing

the costs of acquiring price quotes) even desirable in markets where firms price discriminate

based on information about consumer valuations? If greater price transparency is benefi-

cial, is this because it induces larger volumes of equilibrium search, and hence more price

comparisons? Does the degree of price transparency impact the optimal regulation of price

discrimination in said markets? These questions will become even more relevant over time

as the prevalence of online price discrimination expands further.

I aim to generate insights pertaining to these questions in the following framework: There

is a unit mass of consumers who each want to buy at most one unit of an indivisible and

homogeneous good, which is produced by a finite number of firms at zero marginal cost.

Consumers have heterogeneous valuations for the good. These valuations are private infor-

mation to each consumer and are drawn independently and uniformly from the unit interval.

Consumers acquire consumption opportunities via sequential search. While the first search

is costless, searching any additional firm after that incurs weakly positive search costs. Con-

sumers search randomly - this is without loss of generality when restricting attention to

symmetric equilibria in this homogenous goods model.

1Hannak et al. (2014) show that e-commerce platforms differentiate prices by whether a consumer uses
an app or a website. Larson et al. (2015) demonstrate that prices for Princeton’s SAT packages depend
on the demographic characteristics of a consumer’s ZIP code. Escobari et al. (2019) document that airline
ticket prices are higher during business hours, when business travelers are more likely to buy.

2The full report may be viewed in CCOECD (2016).
3This is outlined in Directive 2019/2161 of the European Parliament, namely EUD2019/2161 (2019).
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When a firm is visited by a consumer, the firm receives a noisy private signal about the

valuation of this consumer. There are a finite number K ≥ 2 of possible signal realizations.

The probability distribution of the signal depends only on the consumer’s valuation and

nothing else. Consumers have perfect recall and firms cannot revise a price that they have

offered to a given consumer. All firms know nothing about any consumer’s search history.

Thus, the number of possible information sets that firms have is equal to the number of

possible signal realizations.

There are several reasons why different firms could observe varying signals for the same

consumer. Most importantly, online retailers may have different information about a given

consumer. In principle, web services only have access to first-party data, i.e. information

about a consumer’s behavior on their own website, aside from basic data such as IP ad-

dresses. Because a consumer’s behaviour on any particular website is just a snapshot of her

underlying preferences, the behavior that different firms observe may be quite heterogeneous

and induce different inferences. Similarly, different firms may receive diverse pieces of in-

formation from external sources such as data intermediaries. Moreover, even if firms had

exactly the same information about a consumer, the way they algorithmically interpret this

data may vary.

I initially document that the analysis of noisy price discrimination is intricately linked to

the understanding of consumer search choices. In the aforementioned model, no equilibrium

with price dispersion exists when search is costless and any consumer has a strictly positive

probability of generating any signal. Loosely speaking, there cannot be an equilibrium with

price discrimination if any consumer always has a chance of obtaining a low price via search

and search is costless. This is because the ability to costlessly search enables consumers to

exert significant downward pressure on prices, which precludes price discrimination.

After having documented this result for general signal structures, I restrict attention to

binary signal distributions in the remaining analysis. I define the signal realization which

becomes more likely to occur when a consumer’s valuation rises as the high signal and the

other signal realization as the low signal. A firm’s pure strategy is thus a price tuple (pL, pH)

that consists of a low signal price pL that is offered to all consumers who generate the low

signal and a high signal price pH that is quoted to the rest. To enable the analysis of equilib-

ria with price discrimination, I also assume that search costs are strictly positive from now on.
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Initially, I consider a simplified version of this framework, where the probability to gen-

erate the high signal is 1− α for any agent with a valuation below 0.5 and α for any agent

with a valuation above 0.5.4 In the following, I refer to consumers with valuation above and

below 0.5 as high-valuation and low-valuation consumers, respectively. In this game, there

are three candidates for a symmetric pure-strategy perfect Bayesian equilibrium. In any

such equilibrium, pL < pH must hold. Two of these equilibrium candidates do not feature

search on the equilibrium path, namely the monopoly equilibrium and what I refer to as the

search deterrence equilibrium. In the monopoly equilibrium, any firm sets the prices it would

offer to consumers if it were the only active firm or if search was prohibitively costly. In the

search deterrence equilibrium, the high signal price is set in such a way that the consumers

with the highest incentives to search are just indifferent between searching and not searching.

I refer to the unique pure-strategy equilibrium candidate with on-path search as the search

equilibrium. Moreover, there potentially also exists a mixed-strategy equilibrium with a very

particular form. This equilibrium must also feature search on the equilibrium path and

firms must offer a deterministic price pL to all consumers who generate the low signal in

this equilibrium.5 Both these equilibria are characterized by the following results: Firstly,

no high-valuation consumer can search on the equilibrium path. If this condition were to

be violated, there would either exist undercutting motives or the highest equilibrium price

would generate zero profits. Secondly, no consumer would move on to search when being

offered a price weakly below or just above the equilibrium low signal price pL. In addition,

any consumer that arrives after searching would directly buy when being offered a price in

this interval.6 These two notions induce a key property of any such equilibrium, namely that

the demand created by searchers is fully inelastic around the equilibrium low signal price pL.

In the following, I describe the parameter regions for which the aforementioned equilibria

exist. The monopoly equilibrium exists when search costs are comparatively high. Perhaps

surprisingly, the search equilibrium only exists for intermediate search costs. Existence of

this equilibrium requires that some low-valuation consumers search on the equilibrium path,

while high-valuation consumers do not. High-valuation consumers have comparatively low

incentives to search at equilibrium prices, because they have a lower probability of generating

the low signal and receiving pL. Thus, intermediate search costs are necessary and sufficient

4I assume that the signal is informative, i.e. α > 0.5.
5Incidentally, the low signal prices in the mixed-strategy equilibrium and the search equilibrium will be

exactly equal, ceteris paribus.
6Any consumer that arrives after searching must have received the price pH at all previous firms and

must have a valuation strictly above pL - otherwise, search would not have been optimal.
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to generate this separating behaviour.7 The interval of search costs for which the search

equilibrium can be supported as a perfect Bayesian equilibrium expands as information pre-

cision increases.

The search deterrence equilibrium will be played when search costs are low. Existence

of this equilibrium requires that high-valuation consumers can credibly promise to search at

the monopoly high signal price and at prices slightly below this, which in turn necessitates

low search costs. The mixed-strategy equilibrium characterized above exists when search

costs are in between the regions of search costs where the search and the search deterrence

equilibrium exist, respectively. Loosely speaking, this holds because the structure of any

such mixed-strategy equilibrium is a hybrid of the search and the search deterrence equilib-

rium. Note that these results imply a non-monotonic relationship between search costs and

the amount of equilibrium search. At low search costs, no consumer will search on-path.

Intuitively, this is because low search costs enable consumers to effectively constrain prices

(and their difference) with the threat of searching, which makes the actual act of searching

not worthwhile.

Consumer welfare, which I measure by ex-ante consumer utility, is maximal when search

costs are zero. However, the effects of changes in search costs are non-monotonic. Reduc-

tions of search costs affect prices through two possible channels, namely (i) expanding the

set of consumers who search on-path and (ii) changing the search incentives of consumers

that do not search on-path. At low levels of search costs for which the search deterrence

equilibrium is played, an increase of search costs only affects outcomes through the second

channel, because there is no on-path search in this equilibrium. More precisely, an increase

of search costs within this equilibrium will lead to higher prices, because the ability of low-

valuation consumers to restrict firm pricing by threatening to search is reduced.

There is a threshold level of search costs at which a marginal rise of search costs elimi-

nates the search deterrence equilibrium and the search equilibrium or the mixed-strategy

equilibrium will be played. When this happens, both equilibrium prices (or their averages)

will jump up discontinuously and consumer welfare is substantially reduced. This upward

jump in prices is accompanied by a discontinuous increase in the measure of consumers that

search on-path. At this point of discontinuity, both aforementioned channels are active.

7Under the weak assumption that income positively correlates with willingness-to-pay, the separating
behaviour in the search equilibrium matches the empirical pattern documented in Byrne & Martin (2021),
namely that there is an inverse U-shaped relationship between search intensity and income.
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High-valuation consumers loose their ability to sustain the search deterrence prices with the

credible threat of searching, which induces an upward jump in the high-signal price(s). This,

in turn, triggers search by a strictly positive measure of low-valuation consumers. Because

these consumers generate locally price inelastic demand around the low signal price, the

latter jumps up discontinuously.

In both equilibria with on-path search, an increase of search costs leads to a reduction

of the equilibrium low signal price. This result is driven by the first working channel: less

consumers arrive after searching, which reduces upward pressure on the low signal price. In

the mixed-strategy equilibrium, an increase of search costs leads to an increase in the average

high signal price. This reflects the reduced search incentives of high-valuation consumers,

who do not search on-path but constrain prices with the threat of searching.

Afterwards, I study the effects of increases in the number of active firms. Changes in the

latter do not substantially impact the existence regions of the aforementioned equilibria.

The transition from a monopoly to a duopoly can only lead to reduced prices when search

costs are low and the search deterrence equilibrium or the mixed-strategy equilibrium would

be played under competition. When the market transitions from a monopoly into a duopoly

in which the search equilibrium is played, the low signal price increases while the high signal

price remains unchanged. Further increases in the number of active firms lead to increased

prices in the search equilibrium and the mixed-strategy equilibrium and have no effect in

the other equilibria. Thus, increases in the number of active firms only lead to reduced

prices when search costs are low and the market transitions from a monopoly to a duopoly.

Moreover, the effects of an increase in the number of active firms are not generally equivalent

to the impacts of a transition from monopoly to duopoly.

Summing up, the baseline analysis generates the following insights on the interplay of price

discrimination and search: Firstly, equilibrium search is not necessarily pro-competitive

nor an indicator of low search costs when firms price discriminate. When only consumers

with intermediate valuations search on-path, a feature matching the empirical pattern doc-

umented by Byrne & Martin (2021), equilibrium search is an imperfect screening device

that drives up prices. Secondly, consumer welfare is highest when search costs are zero and

price discrimination is infeasible as a result. However, the effects of search cost reductions

are non-monotonic, because increases in the measure of consumers that search on-path have

detrimental effects on prices. Thirdly, fostering firm entry into such markets is only generally
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pro-competitive in monopolies and when search costs are low.8

To underscore these results, I study generalized binary signal distributions in section 5.

Ignoring equilibria that exist only for parameter regions with zero measure, the set of pure-

strategy equilibrium candidates is made up of the aforementioned three equilibria and one

other candidate when (i) the signal distribution is continuously differentiable and weakly

increasing, (ii) the profit functions of a monopolist are strictly concave, and (iii) the set of

valuations that satisfy a necessary condition for on-path search is always convex. In the

numerical simulations I conduct, the fourth equilibrium candidate almost never actually

constitutes an equilibrium. Moreover, the properties of the equilibrium candidates from the

baseline model carry over to these generalized settings under weak assumptions.

The rest of the paper proceeds as follows. I lay out the related literature in section 2.

In section 3, I set up the general framework and provide initial results. In section 4, I

solve the baseline model described above. Section 5 is devoted to the analysis of generalized

versions of this model. Section 6 concludes.

2 Related literature

My work represents a theoretical investigation of the interplay between price discrimination

and consumer search. Thus, it is related to the developing strand of theoretical research

which connects price discrimination to endogenous consumer search choices. Armstrong &

Zhou (2016) solve a search model where firms can discriminate against returning consumers.

Armstrong & Vickers (2019) analyse a setting where firms face exogenously captive and

non-captive consumers and receive information about this status. Fabra & Reguant (2020)

study a simultaneous search setting where consumers are heterogeneous in their search costs

and the quantity of the good they desire. Firms perfectly observe the consumer’s desired

quantity and price discriminate based on this information. Braghieri (2019) studies a model

where firms condition prices on how a consumer reaches a firm - through an intermediary

or via a sequential search process. Preuss (2021) studies a search model where consumers

learn about their preferences through search and firms price discriminate based on the search

history of a consumer. In contrast to all these papers, I study a model where firms receive in-

formation that is (i) noisy and (ii) informative about valuations and not about about search

8In appendix E, I solve a version of the above model where firms perfectly know the search history of
any arriving consumer in addition to observing the aforementioned signals about consumer valuations. In
this model, no symmetric equilibrium with on-path search exists and both prices are below monopoly prices.
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costs/history.

Thus, my analysis is more closely related to the papers that model search settings where

firms receive noisy information about consumers, which I list in the following. Mauring

(2021) and Atayev (2021) study a setting with shoppers and non-shoppers as defined in Bur-

dett & Judd (1983) and Stahl (1989). Mauring (2021) and Atayev (2021) assume that firms

receive imperfect information about the affiliation of a particular consumer to the groups of

shoppers and non-shoppers. Bergemann et al. (2021) study a homogeneous goods setting

where competing firms receive imperfect information about a consumer’s search technology

and the number of price offers a consumer obtains or has previously obtained. In all these

contributions, firms receive information about the search costs of consumers or the size of

the choice sets consumers are endowed with. By contrast, I study a setting where firms

receive noisy signals about consumer valuations and all consumers are endowed with the

same search technology.

Marshall (2020) is the only other paper I am aware of which considers a model of price

discrimination based on valuations together with search. In contrast to my work, Marshall

(2020) assumes that sellers have perfect information about consumer preferences except for

search costs and considers a different search setup: In Marshall (2020), every consumer only

interacts with one seller in any period. No recall is possible - when a consumer decides

to search in a given period, she foregoes consumption in this period and cannot return to

purchase at the firm she interacted with. In addition, Marshall (2020) provides no analytical

equilibrium characterization, but empirically calibrates the specified model.

As a model of price discrimination, my work also connects to the extensive literature that ex-

ists on price discrimination in itself, such as Villas-Boas (1999), Fudenberg & Tirole (2000),

and Acquisti & Varian (2005). More specifically, my work has ties to the theoretical con-

tributions which study price discrimination based on imperfect information in monopoly

settings, such as Aron et al. (2006), Belleflamme & Vergote (2016), de Cornière & Montes

(2017), Koh et al. (2017), and Valletti & Wu (2020). In contrast to all these papers, I study

a setting with competition.

My work is most closely related to the following papers that study price discrimination

based on imperfect or partial information about preferences in competitive settings. Es-

teves (2014) studies a Hotelling-style framework where firms receive noisy information about

the horizontal preference parameters of consumers. Peiseler et al. (2021) consider an infi-
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nite repetition of a stage game that is very similar to the one analysed in Esteves (2014).

Within this framework, the authors analyse under what conditions collusion can be sus-

tained over time. Clavorà Braulin (2021) studies a horizontal differentiation setting where

consumer preferences vary in two dimensions. In Clavorà Braulin (2021), firms have perfect

information about the realizations of one dimension of consumer preferences, but not both.

My work differs from all these papers in the sense that I study a model with endogenous

search decisions, which the preceeding papers do not. In addition, I consider a homogenous

goods setting with an arbitrary number of firms, while the aforementioned authors examine

Hotelling-style duopolies. Moroever, all these papers assume that the market is fully covered,

i.e. that all consumers purchase the good in equilibrium, which I do not.9

Finally, Belleflamme et al. (2020) study a homogeneous goods model where two competing

firms have access to an imperfect profiling technology. The technology they consider differs

fundamentally from the one I consider. In Belleflamme et al. (2020), a firm probabilistically

either knows a consumer’s valuation perfectly or knows nothing about the consumer beyond

the ex-ante distribution of preferences. In my setup, a firm receives information about all

consumers that visit the firm, but this information is always noisy. Moreover, Belleflamme

et al. (2020) do not model endogenous search decisions.

My results are also related to the well-known Diamond paradox established in Diamond

(1971). I show that the presence of a sufficiently informative signal about consumer valua-

tions is sufficient to generate equilibria with on-path search when search costs are at inter-

mediate levels. Moreover, the equilibria in my model converge to the Diamond equilibrium

whenever the signal becomes uninformative.

3 General framework and initial results

3.1 General framework

I study the following model: There is a unit mass of consumers indexed i, who each want

to buy at most one unit of an indivisible and homogenous good. There are N active firms

indexed j ∈ {1, 2, ..., N} who all produce this good at zero marginal cost. A firm is free to

offer a different price to any consumer that visits the firm. Consumers are heterogeneous in

their valuations for the good, namely vi. These valuations are private information to each

9Rhodes & Zhou (2021) show that this assumption is not without loss of generality when studying the
welfare effects of price discrimination based on perfect information.
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consumer and are known by the consumer at the beginning of the game. The distribution of

these valuations, namely the uniform distribution on [0, 1], is common knowledge. Consumers

maximize expected utility. When a consumer i buys the good at price p, the utility of the

consumer is:

u(vi, p) = vi − p (1)

Consumers visit firms through sequential search. After realizing their valuations, consumers

randomly visit some firm first. This incurs no costs to the consumers. The firm that is vis-

ited first offers a price to the consumer. After having received this price, a consumer decides

whether or not she wants to visit an additional firm, i.e. to search. Searching another firm

implies that the consumer incurs a fixed cost equal to s ≥ 0. The firm that is visited second

then also offers the consumer a price. Searching any additional firm after the first always

incurs the fixed cost s to the consumer. The game ends when all firms have been sampled

or the consumer stops the search process. Then, the consumer decides from which firm to

buy the product, or not to buy the good at all. When a consumer does not buy the good,

she obtains zero utility. Consumers always choose which firm to visit next randomly - this

is without loss of generality when considering symmetric equilibria in this setting.

When a firm j is visited by a consumer i, this firm receives a signal ṽi,j about the valu-

ation of this consumer. There are a finite number K ≥ 2 of possible signal realizations,

namely
{
ṽ1, ..., ṽK

}
. The signal probability distribution is expressed by Pr(ṽk|vi). Note

that this distribution only depends on vi and nothing else. In particular, the signals ṽi,j and

ṽi,−j that two firms j and−j receive for a given consumer i are independent, conditional on vi.

A firm knows nothing about any consumer’s search history. In particular, a firm does not

know its position in the search queue of any consumer. Consumers are fully aware of all the

prices they have received from any firm they have visited. Moreover, when a consumer visits

a firm and decides to search, the consumer can still purchase the good from the initially vis-

ited firm at the price that was previously offered to her without further cost. Firms cannot

revise a price that they have offered to a consumer.

I use perfect Bayesian equilibrium as a solution concept and focus on symmetric equilib-

ria. A consumer’s pure strategy consists of a search strategy and a purchasing strategy.

Sequential rationality implies that the consumer’s choices must also be optimal off-path, i.e.

for prices pj that the consumer would not be offered if firms play their equilibrium strate-

gies. A firm’s pure strategy is a mapping p : {ṽL, ṽH} → R. There are no relevant off-path

decisions for firms. Note that firms form beliefs over three consumer characteristics: (i) the
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true valuation of the consumer, (ii) the consumer’s search queue, and (iii) the prices the

consumer has received from the other firms (if any). In the following, I omit the index i

when describing a given consumer. I say that there is search on the equilibrium path when

there is a strictly positive measure of consumers who search with positive probability in

equilibrium.

3.2 General results

To break ties, I assume that consumers will search if and only if it is strictly optimal. Define

a cutoff function p̂(v, n) such that a consumer who has already sampled n firms will search

another firm if and only if the lowest price she has found sofar is above p̂(v, n). In a symmetric

equilibrium, the optimal search rule of any consumer will be myopic.

Lemma 1 In a symmetric equilibrium, the optimal search rule of any consumer will be

myopic, i.e. p̂(v, n) = p̂(v) holds for all n ∈ {1, ...N − 1}.

The proof of this lemma follows standard arguments and is based on the fact that both search

costs and the distribution of prices stay unchanged along the search path. Moreover, any

symmetric pure-strategy equilibrium in the above game is characterized by the following:

Proposition 1 Consider a symmetric pure-strategy equilibrium and define the lowest equi-

librium price as pmin = mink p
k.

• If s > 0, no consumer would search after being offered the price pmin. Moreover, any

consumer that arrives at a firm after searching buys immediately when offered pmin.

• Consider any price pk that is offered in equilibrium. The set of consumers with v ≥ pk

that (i) have a strictly positive probability of being offered pk in equilibrium and (ii)

would search when receiving pk must have measure zero.

Note firstly that pmin is the best possible price offer a consumer can obtain through searching

in a symmetric pure-strategy equilibrium. After receiving this best possible outcome, there

is no more reason to search. This notion also implies that any consumer that arrives after

searching must have received a price strictly above pmin. Because s > 0, any such consumer

must also have v > pmin. Taken together, these arguments imply the first result.

Now consider any equilibrium price pk and suppose, for a contradiction, that there is a

strictly positive measure of consumers with v > pk who would search upon receiving this

price and receive this price with strictly positive probability. Conditional on the valuation
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v, the probability to receive this price will be the same at all firms in a symmetric equilib-

rium. Morever, any consumer who searches upon receiving pk at the initial firm will continue

searching until obtaining a lower price or there are no more firms to sample. Thus, there

will be a strictly positive measure of consumers with v > pk who receive this price at all N

firms. However, this would induce some firm to slightly undercut pk, because this ensures

that the sale is made to all these consumers, which represents a contradiction.

Having established this, the following lemma describes the potential equilibria of the afore-

mentioned game when search is costless. To that end, I define ΠM(pj|ṽk) as the profit

functions of a monopolist in the above framework, conditional on the signal ṽk, with global

maximizers {pk,M}k∈{1,...,K}. Define the minimum of these as pmin,M = mink p
k,M . I further

say that an equilibrium features price dispersion unless there exists a price that all firms

play with probability 1 after all signals.

Proposition 2 Suppose that Pr(ṽk|v) ∈ (0, 1) holds for any k ∈ {1, .., K} and for any

v ∈ [0, 1].

• If s = 0, no equilibrium with price dispersion exists.

• Suppose that s = 0. If ΠM(pj|ṽk) are all strictly concave in pj, the uniform price that

firms offer to all consumers in an equilibrium must satisfy p0 ∈ [0, pmin,M ].

To see why there cannot be price dispersion under the specified signal structure when search

is costless, consider a symmetric pure-strategy equilibrium candidate (p1, ...pK) with price

dispersion. Define pmax = maxk p
k as the maximal price offered in this equilibrium and

consider consumers with v ≥ pmax. Any consumer with v ≥ pmax will have a strictly positive

probability of receiving this price because Pr(ṽk|v) ∈ (0, 1) holds for any valuation v and

any signal. However, this assumption also implies that all these consumers have a strictly

positive chance of receiving a better price by searching. Because search is costless, all these

consumers will thus search after receiving pmax. This breaks the equilibrium by proposition 1.

Now consider symmetric mixed-strategy equilibrium candidates. Once again, define pmax

as the highest price a consumer can receive. Any consumer with v ≥ pmax will search upon

receiving this price. If this price is offered with strictly positive probability by the firms, con-

sumers’ search decisions create undercutting motives that break the equilibrium. If this price

is offered with zero probability, any consumer that sees multiple price offers will buy with

probability 0 at a firm that offers her the price pmax. Because all consumers with v ≥ pmax

search upon being offered this price, profits at pmax will thus be zero. This implies the
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existence of a profitable deviation at the information sets where firms offer pmax. Similar ar-

guments can be made to rule out the existence of asymmetric equilibria with price dispersion.

Thus, proposition 2 establishes that equilibria with price dispersion cannot exist when search

is costless and firms receive noisy signals with the specified properties.10 To analyse price

discrimination that is based on these types of signals, I assume s > 0 from now on. Equilibria

with price dispersion can exist when the signals are deterministic, even if search is costless.

To achieve tractability, I restrict attention to binary signals in the following analysis.

4 Baseline model

4.1 Setup and monopoly solution

Consider the following special case of the model outlined above: The valuations of the

consumers are uniformly distributed on the interval [0, 1]. Search costs are strictly positive

and there are just two possible realizations of the signal, namely
{
ṽL, ṽH

}
. The signal follows

a step-function distribution with precision parameter α, where the following holds:

Pr(ṽH |vi) =

α vi ≥ 0.5

1− α vi < 0.5
(2)

I assume that α > 0.5, i.e. that the signal is informative. There are N ≥ 2 firms in the

market. In the following, I refer to the setting I have just described as the baseline model. I

believe that this step-function signal distribution constitutes a useful starting point for the

following reasoning: A binary signal about vi ∼ U [0, 1] can be viewed as an information

structure which indicates whether a consumer’s valuation is in the upper or lower half of its

support. To the extent that these groups differ systematically in some manifest way, the

signal structure likely varies the most around the cutoff which separates the two groups.

Defining the optimal prices of firms with monopoly power is instructive to understand the

competitive equilibria. In the baseline model, the monopoly profit functions are strictly con-

cave piecewise and the implied optimal monopoly prices pL,M and pH,M satisfy the following:

Lemma 2 Consider the baseline setting and suppose that s → ∞. The resulting optimal

monopoly low and high signal prices are given by pL,M = 1/4α and pH,M = 0.5.

10An analogue of this result would also hold in a model of simultaneous search where consumers decide
how many firms they want to visit before making the first (random) search. For a discussion of this, please
see appendix F.

12



The monopoly low signal price pL,M is falling in α because a more precise signal implies that

the average valuation of consumers that generate the low signal decreases.

4.2 Competitive pure-strategy equilibria

In this section, I characterize the structure of symmetric pure-strategy equilibria, beginning

with the following proposition:

Proposition 3 Consider the baseline setting. A symmetric pure-strategy equilibrium with

search on the equilibrium path must satisfy:

pL < pH = pH,M (3)

There are exactly two candidates for a symmetric pure-strategy equilibrium without search

on the equilibrium path, namely (pL, pH) = (pL,M , pH,M) and (pL, pH) = (pL,M , s/α + pL,M).

The above result shows that there are three types of possible symmetric pure-strategy equi-

libria in the baseline model. Firstly, there potentially exist equilibria with search on the

equilibrium path. I show later that there exists a unique candidate for such an equilibrium,

which I then refer to as the search equilibrium. In addition, there are exactly two candi-

dates for a pure-strategy equilibrium without on-path search. I label these equilibria as

follows: The price vector (pL,M , pH,M) is labelled the monopoly equilibrium, and the price

vector (pL,D, pH,D) = (pL,M , s/α + pL,M) is labelled the search deterrence equilibrium. Note

also that the low signal price must always be strictly below the high signal price in any

symmetric pure-strategy equilibrium.

In the monopoly equilibrium, firms set the same prices that a monopolistic firm would

set. In the search deterrence equilibrium, the high signal price is set in such a way that

consumers with valuations v ∈ (s/α + pL,D, 0.5) are exactly indifferent between searching

and not searching.11 These consumers have the highest probability of generating the low

signal and receiving the lower of the two equilibrium prices. Thus, these consumers have

greater incentives to search at equilibrium prices than consumers with v > 0.5, which means

that there will be no on-path search in this equilibrium. Note further that consumers with

v ∈ (s/α + pL,D, 0.5) would search and never return if offered a price above pH,D in this

equilibrium.

11Consumers with v < s/α+ pL,D do not fulfil the necessary conditions for search.
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I now establish when the aforementioned equilibria without on-path search exist. To that

end, I define ΠC(pj; ṽ) as the expected profits a firm obtains (in competitive settings) from

consumers that generate the signal ṽ ∈
{
ṽL, ṽH

}
when offering a price pj.

Proposition 4 Consider the baseline setting. The price tuple (pL,M , pH,M) can be supported

as a perfect Bayesian equilibrium if and only if:

0.5 ≤ s/α + pL,M = s/α + 1/(4α) (4)

By contrast, the price tuple (pL,D, pH,D) = (pL,M , s/α + pL,M) can be supported as a perfect

Bayesian equilibrium if and only if the following two conditions jointly hold:

0.5 > (1− α)pL,D + αpH,D + s (5)

ΠC((1− α)pL,D + αpH,D + s; ṽH) ≤ ΠM(pH,D; ṽH) (6)

The condition laid out in equation (4) is both necessary and sufficient for existence of the

monopoly equilibrium. This inequality is equivalent to the property that the cutoff price

p̂(v) of any consumer is above pH,M = 0.5. If this holds true, no consumer will find it opti-

mal to search on the equilibrium path. Then, the competitive profit function corresponding

to either signal is bounded from above by the respective monopoly profit function. Since

both prices maximize monopoly profits after the respective signal, there can be no profitable

deviations. Condition (4) is also necessary for existence of the monopoly equilibrium. If this

condition is violated, some consumers would search on the equilibrium path, which would

create incentives for an upward deviation from the equilibrium low signal price.

As discussed previously, there will not be on-path search in the search deterrence equi-

librium. This equilibrium can only be supported when all agents with v > 0.5 would search

upon being offered the out-of-equilibrium price pH,M = 0.5. Condition (5) implies that this

holds true. If consumers with v > 0.5 would not search when being offered pH,M , a deviation

to pH,M when observing the high signal would grant the firm profits equal to ΠM(pH,M ; ṽH).

Because there is no on-path search in this equilibrium and the monopoly high signal profit

function has a strict optimum at pH,M , this deviation would be profitable.

It remains to check other deviations from the search deterrence equilibrium prices. There

exist no profitable deviations from the low signal price, since there is no on-path search and

pL,D maximizes the low signal monopoly profit function. By an analogous logic, there exist no

profitable downward deviations from pH,D since pH,D < pH,M . Now consider deviation prices
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pj > pH,D. Setting such a price triggers search by all consumers with v ∈ (s/α + pL,D, 0.5).

Moreover, consumers with v > 0.5 would move on to search at such a price pj if and only if:

pj > (1− α)pL,D + αpH,D + s (7)

Note that condition (5) implies that the cutoff price on the right-hand side of this equation is

strictly below 0.5. Note further that any consumer who leaves firm j to search after receiving

a price pj > pH,D will never return. Thus, setting a price above (1−α)pL,D +αpH,D + s will

yield zero profits. In addition, any price in the interval (pH,D, (1 − α)pL,D + αpH,D + s) is

dominated by setting the price pj = (1− α)pL,D + αpH,D + s. At any such price, consumers

with v ≤ 0.5 will surely not buy at the firm while the sale is surely made to all consumers

with v > 0.5 who arrive at firm j first. Thus, the most profitable deviation from the equi-

librium high signal price would be to the price pj = (1 − α)pL,D + αpH,D + s, which is not

profitable if and only if condition (6) holds true.

This completes the definition of the conditions which guarantee existence of the equilibria

without on-path search. I thus turn my attention to the pure-strategy equilibrium candidate

with search on the equilibrium path. In this equilibrium, the mass of agents that search on

the equilibrium path and the equilibrium prices are determined jointly. To pin down the

equilibrium prices, I thus firstly characterize the equilibrium search behavior.

Lemma 3 Consider the baseline setting. A symmetric pure-strategy equilibrium (pL, pH)

with search on the equilibrium path must satisfy:

s

α
+ pL < 0.5 ≤ s

1− α
+ pL (8)

In such an equilibrium, the search cutoff p̂(v) of consumers with v ∈ (s/α + pL, 0.5] equals

p̂(v) = s/α + pL. All other consumers have a search cutoff strictly above pH = 0.5.

By proposition 1, agents with v > 0.5 = pH cannot search on-path in an equilibrium of the

above form. The inequality 0.5 ≤ s/(1−α) +pL is equivalent to this property. Moreover, an

equilibrium with on-path search must have a property which guarantees that on-path search

is optimal for some agents. The inequality s/α + pL < 0.5 guarantees that there exists an

interval of consumers with v ∈ (s/α + pL, 0.5] who optimally search when offered pH = 0.5.

Equipped with the characterization of the equilibrium search strategies, I now move on

to define the competitive profit functions of a firm. To that end, I define the density of con-

sumers with valuation v that arrive at a firm in position k ∈ {1, ..., N} as fk(v). Because the
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first search is random and valuations are drawn from the uniform distribution, fk(v) = 1/N

holds true for all k.

Firstly, suppose that a firm j sets a price pj ∈ (0, s/α+ pL). By lemma 3, no consumer that

arrives at firm j first would move on to search when receiving such a price. Thus, a con-

sumer that arrives at firm j first buys at firm j if and only if v ≥ pj. By lemma 3, consumers

that arrive at firm j after searching must have generated the high signal (and thus received

the high price pH = 0.5) at all previously visited firms and must have v ∈ (s/α + pL, 0.5].

Because s/α + pL < 0.5 = pH must hold, consumers arriving after search will thus surely

buy at firm j when offered a price pj ∈ (0, s/α + pL). For prices pj ∈ (0, s/α + pL), the

competitive profit functions ΠC(pj; ṽ
k) are hence given by:

ΠC(pj; ṽ
k) = pj

∫ 1

pj

f 1(v)Pr(ṽk|v)dv︸ ︷︷ ︸
ΠM (pj ;ṽk)

+pj

N∑
j=2

[ ∫ 0.5

s/α+pL
f j(v)Pr(ṽk|v)Pr(ṽH |v)j−1dv

]
︸ ︷︷ ︸

Mk(α,s;pL)

(9)

Note that the first term on the right-hand side is equal to the monopoly profit function,

evaluated at this price and for the given signal, and that Mk(α, s; pL) is the measure of

consumers that arrive after searching and generate the signal ṽk.

Profits in the price interval pj ∈ (s/α + pL, 0.5) are only relevant when checking for po-

tential deviations. Thus, consider prices in the interval pj ∈ [0.5, αpH +(1−α)pL+s], which

contains pH . Consumers that arrive at firm j after searching could not buy the good at

these prices. Moreover, no consumer that arrives at firm j first and has v > 0.5 would move

on to search at these prices. Thus, profits in this price interval are equal to ΠM(pj; ṽ). A

natural candidate for an equilibrium high signal price would thus be the global maximizer of

ΠM(pj; ṽ), namely pH,M . By proposition 3, we know that this price is the unique high signal

price that can be supported in a perfect Bayesian equilibrium with on-path search. In the

price interval pj ∈ [αpH + (1− α)pL + s, 1], profits will be zero. 12

Given that the equilibrium low signal price must satisfy pL ∈ [0, s/α + pL] and competi-

tive profits are continuously differentiable in this interval, the low signal price pL must be a

12The model can be equivalently formulated with a representative agent, where the competitive profit
functions are equivalent to the ones presented, but scaled by constants which represent the probabilities of
reaching the high signal and low signal information sets, respectively - please see appendix B.3. for details.
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fixed point of the following first-order condition:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pj=pL

+ML(α, s; pL) = 0 (10)

Strict concavity of the monopoly low signal profit function ΠM(pj; ṽ
L) in the interval [0, 0.5]

implies that there is a unique solution to this equation (if a solution that satisfies the prop-

erties laid out in lemma 3 exists). Moreover, stricty concavity of ΠM(pj; ṽ
L) will imply

the following important result: The low signal price pL,S will be higher in this equilibrium

than the monopoly low signal price pL,M . The following proposition defines when the search

equilibrium can be supported as a perfect Bayesian equilibrium:

Proposition 5 There is a unique pure-strategy equilibrium candidate (pL,S, pH,S) with search

on the equilibrium path, where pL,S solves equation (10) and pH,S = pH,M = 0.5.

This price tuple constitutes a perfect Bayesian equilibrium (with the sequentially rational

search behaviour given in lemma 3) if and only if the following conditions jointly hold:

s

α
+ pL,S < 0.5 ≤ s

1− α
+ pL,S (11)

ΠC(s/α + pL; ṽH) ≤ ΠM(0.5; ṽH) (12)

Moreover, firm profits are always strictly higher in the search equilibrium than in the monopoly

equilibrium and in the search deterrence equilibrium.

Uniqueness of the equilibrium follows from previous arguments. Equation (11) is equivalent

to the condition defined in lemma 3. In addition, it needs to be ensured that there are no

profitable deviations from equilibrium prices. In this equilibrium, both competitive profit

functions are bounded from above by the corresponding monopoly profit functions in the

price interval pj ∈ (s/α+ pL, 1]. This is because any consumers (first arrivers and searchers)

with v ∈ (s/α+ pL, 0.5) could only buy at such prices when generating the high signal at all

firms. However, this is quite unlikely. Thus, a firm loses more first arrivers at these prices

(in comparison to the monopoly outcome) than it gains consumers who arrive after search.

Having noted this, consider possible deviations from the low signal price pL,S. Recall that

the equilibrium low signal price in the search equilibrium is higher than the monopoly low

signal price pL,M . Note further that low signal profits in the price interval pj ∈ (0, pL,S+s/α]
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were given by the following expression:

ΠC(pj; ṽ
L) = ΠM(pj; ṽ

L) + pjM
L(α, s; pL,S) (13)

Because pL,M < pL,S, equation (13) implies that competitive profits when setting pL,M are

higher than the monopoly profits when setting this price. Moreover, recall that pL,S must

maximize ΠC(pj; ṽ
L) in the interval pj ∈ [0, s/α+pL,S], which includes pL,M . Together, these

two notions imply that the profits a firm obtains from consumers that generate the low signal

are higher in the search equilibrium than in the monopoly outcome. This result, together

with the fact that the competitive profit functions are bounded from above by the monopoly

profit functions for pj ∈ (s/α + pL, 1], implies there are no profitable deviations from pL,S.

By a similar logic, the most profitable deviation from pH,S would be to pj = s/α+ pL. This

deviation is not profitable if and only if equation 12 is satisfied.

4.3 Competitive mixed-strategy equilibria

Now, I move on to characterize the set of symmetric mixed-strategy equilibria (MSE) that

can exist. First, note the results of the following lemma:

Lemma 4 Consider a symmetric mixed-strategy equilibrium in the baseline setting. Define

pmin and pmax as the lowest and highest prices that are offered in this equilibrium. It must

hold that:

• The firm offers a deterministic price when observing the low signal, namely pmin.

• The probability that a firm offers a price above 0.5 after either signal is 0. There is

on-path search, but no consumer with v > 0.5 will search on-path.

In the following, I provide some intuition for these results when restricting attention to equi-

libria where actions are drawn from atomless, gapless distributions. The formal arguments

that deal with price distributions that have gaps and atoms are relegated to the appendix.

No consumer would search when receiving a price around pmin and all consumers that arrive

after searching directly buy. This implies the first result, since the corresponding competi-

tive objective function has the structure laid out in equation (9) and must thus be strictly

concave. The price pmax, which must be offered after ṽH , has to be weakly below 0.5. If

pmax > 0.5, all consumers with v ≥ pmax have identical search incentives and there are just

two possible outcomes: Either all of the consumers with v ≥ pmax search upon receiving

pmax, or none of them search. If all of them search, there are either undercutting incentives
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from pmax (if pmax is played with positive probability) or pmax yields zero profits (if pmax is

played with zero probability). Both of these notions break any such equilibrium. If none

of them search at this price pmax, the corresponding competitive profit function would be

strictly increasing on [0.5, pmax], a contradiction.

One can further narrow down the structure of possible mixed-strategy equilibria. Define

pL as the price that is set after ṽL. Suppose, for simplicity, that the distribution of prices

that are offered after the high signal is atomless and gapless, with support [pH , p̄H ].

Lemma 5 Consider a symmetric mixed-strategy equilibrium in the baseline setting where

the high signal action is drawn from an atomless, gapless distribution.

• It must hold that pL+s/α ≤ pH . Any consumer with v ∈ (s/α+pL, 0.5] will search with

probability 1 if she generates the high signal. No other consumer will search on-path.

• For given parameters s, α, and N , the price pL must equal the low signal price in the

search equilibrium, i.e. pL,S.

• Firm profits in such a MSE are weakly below those made in the search equilibrium,

with a strict inequality unless p̄H = 0.5. Whenever the MSE with p̄H = 0.5 exists, so

does the search equilibrium.

The first result holds because pL + s/α is the cutoff price of any consumer with v < 0.5.

If this cutoff price were above pH , no such consumer would search when receiving a price

in an open ball around pH . Then, competitive profits around this price would be strictly

increasing, a contradiction to mixing indifference. This result implies that the structure of

any such mixed-strategy equilibrium is very similar to that of the search equilibrium. Only

consumers with v ∈ (pL + s/α, 0.5] will search on path and they will do so if and only if

they generate the high signal. This property, together with the notions that (i) no consumer

would leave to search when receiving a price around pL and (ii) any consumer that arrives

after searching would immediately buy upon receiving such a price, implies that the measure

of consumers that search-on-path is the same in the search equilibrium and in this mixed-

strategy equilibrium, ceteris paribus. This feature generates the second result.

The third result of this lemma indicates that a subset of the MSE under consideration

is of particular interest, namely the MSE where p̄H < 0.5. By contrast, firms have no in-

centives to play an MSE with p̄H = 0.5, because the simpler search equilibrium would also

be available to play. Thus, I focus on the computation of the MSE with p̄H < 0.5 in the
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following. To that end, three equilibrium objects need to be pinned down, namely: pH , p̄H

(the bounds of the distribution), and FH(p), the distribution over prices itself.

Proposition 6 In a symmetric mixed-strategy equilibrium in the baseline setting where p̄H <

0.5 and FH(p) is atomless and gapless, the equilibrium objects are characterized by:

p̄H = (1− α)pL + α

∫ p̄H

pH
pdFH(p) + s (14)

p̄H = pH + pH(0.5− pH)

(
2N(1− α)N

α

)
(15)

FH(pj) = 1−
(

α

2N(1− α)N
p̄H − pj

pj(0.5− pj)

)1/(N−1)

(16)

The price p̄H must be equal to the cutoff price on the left side of equation (14), because

consumers with v > 0.5 must be indifferent between searching and not searching when offered

p̄H . To see this, note that this cutoff price must be weakly above p̄H , because consumers

with ν > 0.5 cannot search on path. If this cutoff price would be strictly above p̄H , there

would exist a profitable upward deviation. This is because p̄H < 0.5 and the demand for

prices in an open interval above p̄H would only consist of consumers with v > 0.5 that arrive

at a firm first, who would all directly buy at these prices. The two other equilibrium objects

are computed using the mixing indifference conditions. Conditions for the existence of said

equilibrium are given in the following proposition:

Proposition 7 The mixed-strategy equilibrium characterized by equations (14), (15), and

(16) exists if and only if the following two conditions hold jointly:

pL,S + s/α ≤ pH < p̄H < 0.5 (17)

ΠC(pL,S + s/α, ṽH) ≤ ΠM(p̄H ; ṽH) (18)

The first condition follows from what was previously established. Note that the second

condition is very similar to the no-deviation condition in the search equilibrium. There will

be no profitable deviations from the low signal price, and the most profitable deviation when

observing the high signal will be to pL,S + s/α, the cutoff price of consumers with v < 0.5.

4.4 Equilibrium predictions and comparative statics

A corollary of the previous results is that the equilibria of the aforementioned model converge

to the Diamond equilibrium when the signal becomes uninformative.
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Corollary 1 Consider any s > 0. As α → 0.5, the only aforementioned equilibrium that

exists is the monopoly equilibrium and we have limα→0.5 |pH,M − pL,M | = 0.

Having established this, I visualize the existence results pinned down in propositions 4, 5,

and 7 in figure 1, where I plot realizations of signal precision (α) on the x-axis and realiza-

tions of search costs (s) on the y-axis. To facilitate interpretability in the face of equilibrium

multiplicity for some parameter regions, the different colors indicate the most profitable

equilibrium that exists for a given parameter combination. Yellow dots indicate existence

of the search equilibrium. Pink dots indicate existence of the mixed-strategy equilibrium

described in proposition 6, which yields profits strictly between those attained in the search

and the search deterrence equilibrium, ceteris paribus. Green dots indicate that the search

deterrence equilibrium is the only equilibrium that exists. Blue dots indicate that only the

monopoly equilibrium exists. Black dots indicate that no equilibrium exists. I visualize the

aforementioned content when there are two (N = 2), three (N = 3) and four (N = 4) active

firms, respectively.

The monopoly equilibrium exists if and only if consumers with v ≤ 0.5, who have the

highest probability to generate the low signal, have no incentives to search on-path. The

incentives to search for these agents are falling in search costs and rising in information

precision. Thus, this equilibrium exists when search costs are relatively high or information

precision is relatively low.

The search equilibrium requires that some consumers with v < 0.5 would search when

offered the price pH,M = 0.5, but consumers with v ≥ 0.5 would not search at this price.

Such an outcome is possible because the incentives to search at equilibrium prices are lower

for consumers with v ≥ 0.5 than for consumers with v ∈ (s/α + pL, 0.5). In order for said

outcome to be an equilibrium, search costs must be in an intermediate range. Then, search

costs are low enough such that consumers with v ∈ (s/α + pL, 0.5) would optimally search

at the price pH,M , but also high enough to ensure that consumers with v ≥ 0.5 do not search

on path. The possible range of search costs that can support this equilibrium shrinks as

information precision falls. This is because the difference in between the search incentives of

consumers with v < 0.5 and those with v ≥ 0.5 becomes smaller as signal precision falls.

Now consider the search deterrence equilibrium. Recall that the equilibrium high signal

price was set to make consumers with v ∈ (s/α + pL,D, 0.5) exactly indifferent between

searching and not searching. By contrast, existence of this equilibrium is determined by the

search incentives of agents with v > 0.5. The search deterrence equilibrium exists if and
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only if the cutoff price of consumers with v < 0.5 is sufficiently far below pH,M = 0.5. This

is necessary to ensure that a deviation from the high signal price to this cutoff price is not

profitable. This property, in turn, requires low search costs.

Finally, consider the mixed-strategy equilibrium outlined in proposition (6). This equi-

librium exists even for low search costs where the search equilibrium does not exist - this

is because the decreased high signal prices reduce the search incentives of consumers with

v > 0.5, thus enabling these consumers to refrain from searching on-path. Like the search

equilibrium, the MSE does not exist when search costs and information precision are simul-

taneously low. This follows from the fact that consumers must separate w.r.t. their search

behaviour in the MSE, which requires appropriately high information precision, accompa-

nied by search costs that are not prohibitively high.

Finally, there also exists a small parameter region around α ≈ 0.58 and s ≈ 0.03 where

no equilibrium exists. Problems with equilibrium non-existence may thus be ruled out by

restricting attention to appropriately precise signal structures with α ≥ 0.6. Moreover, note

that increases in the number of firms (N) do not substantially alter the existence regions.

Now I investigate the comparative statics of prices and profits in any equilibrium. The

above considerations already indicate that the effects of changes in the parameters are non-

monotonic and fundamentally depend on the equilibrium that is being played. I begin by

outlining the comparative statics in the search equilibrium:

Corollary 2 In the search equilibrium, pH,S is independent of s and N . Moreover, pL,S(s,N)

is falling in s and rising in N .

Standard intuition regarding the effect of search costs on prices suggests the following: An

increase of search costs should reduce the number of firms an average consumer has in her

choice set, thus reducing competitive pressure and raising prices. In the search equilibrium,

both the sign of the comparative statics result and the working channel behind it are dia-

metrically opposed to the standard intuition.

The low signal price will fall in response to an increase of search costs. Recall that any

consumer that arrives at a firm after searching generates fully inelastic demand at prices

pj ∈ (0, s/α + pL,S). By contrast, the demand created by consumers that arrive at firm j

first is sensitive to the price pj offered by this firm. When search costs rise, less consumers

search on the equilibrium path. Thus, the weight of consumers that arrive after searching and
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generate locally inelastic demand in the low signal profit function falls. As a consequence,

the optimal low signal price falls. Similar logic underlies the result that pL,S is increasing

in the number of active firms. As N increases, consumers that arrive after searching receive

higher weight, which creates additional upward pressure on the low signal price.

Now consider the search deterrence equilibrium:

Corollary 3 In the search deterrence equilibrium, the price pL,D(N, s) is independent of s

and N . The price pH,D(N, s) is rising in s and independent of N .

The low signal equilibrium price is equal to the monopoly low signal price, which is indepen-

dent of s and N by design. By contrast, the high price pH,D is rising in search costs. Recall

that the high price is set in a way that makes consumers with v ∈ (s/α + pL,D, 0.5) exactly

indifferent between searching and not searching. As s rises, their gains of search at any given

price offer fall. This implies that the price achieving indifference rises. This comparative

statics result can also be explained by market forces. When s rises from s′ to s′′, competitive

profits are now equal to monopoly profits in the interval (s′/α+pL,D, s′′/α+pL,D). Note that

the old high signal price pL,D(α, s′) has to be strictly below 0.5 and monopoly profits must

thus be strictly increasing in prices at pL,D(α, s′). Thus, firms will raise their high signal

price in response to the rise of s.

This concludes the study of the effects of parameter changes on equilibrium prices within a

given equilibrium. Next, I study how the equilibrium prices respond to parameter changes

when these changes may switch the equilibrium that is being played. When parameter

changes induce shifts in the nature of the equilibrium that is played, this has a considerable

effect on prices. Given the research questions I have raised in the introduction, I will focus

on the effect of search costs (s) and competition (N) on equilibrium outcomes.

In visualizing these, I fix three levels of α at 0.65, 0.75, and 0.85. First, I study the equi-

librium prices under different search costs by fixing the number of firms at N = 2. The

corresponding effects are visualized in figure 2. Equilibrium prices are plotted on the y-axis

while search costs are plotted on the x-axis.

Changes in search costs affect prices through two channels in this model. Firstly, increases

of search costs reduce the search incentives of consumers who don’t search on-path. The re-

ductions of their search incentives imply increased high signal prices in the search deterrence

and the mixed-strategy equilibrium. Secondly, increases of search costs reduce the measure
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of consumers that search on-path. This channel, while underlying the negative effect of in-

creases in s on pL,S, has no impact on the high signal prices. This is because any consumer

that is detained from on-path search would not be able to consume at any of the high signal

prices in the search and the mixed-strategy equilibrium.13 In the appendix, I show (for the

2-firm case) that increased search costs lead to improved consumer welfare in the search

equilibrium for a substantial range of parameters.14

Thus, any increase in the measure of consumers that search never has a beneficial effect

on prices as such. When the market reverts from the search deterrence equilibrium to any

equilibrium with on-path search, there is an upward jump of prices that is accompanied by

a discontinuous increase in the measure of consumers that search. Moreover, while increases

of s reduce this measure in the mixed-strategy equilibrium and are accompanied by increases

of the expected high signal price, this relationship is not causal. Increases of the high signal

prices within this equilibrium are entirely driven by the reduced search incentives of high-

valuation consumers. Holding the search incentives of these consumers (and thus p̄H) fixed,

the high signal prices would not respond to changes of s within the MSE.

Now, I turn my attention to the comparative statics effects of N . Within the search de-

terrence equilibrium and the monopoly equilibrium, changes of N do not affect prices, since

there is no on-path search. In figure 3, I fix s = 0.05 and study the effects of increases in N

on equilibrium prices in the search equilibrium.

In figure 4, I fix s = 0.025 and study the effects of increases in N on equilibrium prices

in the MSE for slightly different levels of α than before, namely α ∈ {0.75, 0.8, 0.85}. I con-

sider these α to ensure that the MSE always exists for the parameters under consideration.

When the market transitions from a monopoly to a duopoly in which the MSE is played,

the high signal price falls. Afterwards, the presence of more firms in the market is not pro-

competitive. The low signal price pL,S is increasing in N . Moreover, increases in N also

lead to increased high signal prices in the MSE by the following logic: At the high signal

prices, two groups of consumers are relevant: (i) consumers with v > 0.5, who all buy at

pj ∈ (pH , p̄H) and thus entail locally price inelastic demand, and (ii) consumers with v < 0.5,

who only buy at a firm when generating the high signal at all N firms and who entail price

elastic demand. When N rises, the latter have less chance of consuming at firm j for any

13This follows from the result that pL,S + s/α < pH,S and pL,S + s/α < pH , respectively.
14Details may be found in appendix B.14.
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given price pj ∈ (pH , p̄H). Thus, these consumers receive less weight in the firm’s profit

function, making the high signal demand less elastic overall. This leads to higher prices.

5 Generalized signal distributions

5.1 Setup and initial remarks

This section establishes that the key insights of the previous model also hold for more general

signal distributions. Firstly, the presence of equilibrium search is neither an indicator for

high levels of competitive pressure nor low search costs in the markets I study. Secondly,

consumer welfare is maximized when search costs are neglibly small, but the effect of search

cost reductions on prices and consumer welfare is non-monotonic. Thirdly, an increase in the

number of active firms can only reduce prices when search costs are low. In the following, I

merely retain the specification that there are just two possible signals, i.e. K = 2.

5.2 Equilibrium structure

In this subsection, I show that the structure of potential pure-strategy equilibria in general

settings is the same as in the baseline model when the signal distribution is continuous,

weakly increasing, and satisfies Pr(ṽH |v) ∈ (0, 1) for all v ∈ [0, 1]. Further, I provide con-

ditions on Pr(ṽH |v) which ensure that the key properties of the mixed-strategy equilibria

from the previous framework are retained as well.

Proposition 1 still holds in any such settings. In a pure-strategy equilibrium p := (pL, pH)

with pL < pH , all consumers that arrive at a firm after searching can not buy at the high

price pH . In this section, it is useful to devote closer attention to the optimal search rule.

To do so, I define the set V̂ (pL), which defines what consumers can search on-path:

V̂ (pL) =

{
v ∈ [0, 1] : Pr(ṽL|v)(v − pL)− s > 0

}
(19)

A consumer can search on the equilibrium path if and only if her valuation v is in the set

V̂ (pL). Define further that S(pL, pH) is the set of consumer valuations that actually search

on the equilibrium path, with v := inf S(pL, pH), and v̄ = supS(pL, pH). The properties of

these sets are pinned down by the following lemma:

Lemma 6 Suppose Pr(ṽH |v) is weakly increasing and consider a pure-strategy equilibrium

(pL, pH) with pL < pH , in which V̂ (pL) is non-empty. The following must hold:
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• Pr(ṽL|v)(v−pL)−s = 0 must hold at v = inf V̂ (pL), which implies that inf V̂ (pL) > pL.

Moreover, the function Pr(ṽL|v)(v − pL) must be continuous at v = inf V̂ (pL).

• The set of consumer valuations that search on the equilibrium path (ignoring measure

zero sets) is V̂ (pL) ∩ [pL, pH ]. Thus, v = inf V̂ (pL).

The first result has mostly technical relevance. Intuitively, it holds because any jumps in

Pr(ṽL|v) at points of discontinuities must always be downwards by the assumption that

Pr(ṽH |v) is weakly increasing in v. The second result pins down the measure of consumers

that search on the equilibrium path. The following lemma establishes useful connections

between the optimal search and consumption choices:

Lemma 7 Suppose that Pr(ṽH |v) is weakly increasing. Consider a symmetric pure-strategy

equilibrium (pL, pH) with pL < pH and search on the equilibrium path. Ignoring sets of

valuations with measure zero, the following must hold:

• All consumers that arrive at firm j after searching would buy at this firm when being

offered a price pj ≤ v.

• No consumer would search after receiving a price pj ≤ v.

By lemma 6, all consumers that arrive after searching must have a valuation above v and

must have received pH at all previously visited firms. The assumption that there is search

on the equilibrium path implies that the set S(pL, pH) is not empty, which in turn requires

that v < pH . Together, these notions imply the first result. To understand the second result,

recall that a consumer with valuation v will search if and only if she receives an initial price

offer pj > p̂(v). Any consumer with v ∈ S(pL, pH) has a cutoff price p̂(v) > v. Together with

the fact that inf S(pL, pH) = v, this notion implies the second result.

These two lemmas imply that the structure of profits around the equilibrium low signal

price in general settings mirrors the structure of this function in the baseline model. Con-

sider an equilibrium with on-path search, where pL < v must hold. When receiving a price

close enough to pL, no consumer searches. Moreover, the demand that is implied by searchers

is also fully inelastic around the equilibrium low signal price pL in these generalized settings.

In other words, there must exist an interval of prices pj ∈ [0, v] with pL in its interior where

the profit functions for either signal ṽk satisfy the following stucture:

ΠC(pj; ṽ
k) = pj

∫ 1

pj

(1/N)Pr(ṽk|v)dv + pjM
k(pL, pH) (20)
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Note that Mk(pL, pH), i.e. the measure of consumers that arrive after searching and generate

the signal ṽk, is defined as follows:

Mk(pL, pH) =
N∑
j=2

∫
v∈S(pL,pH)

[
Pr(ṽH |v)

]j−1
Pr(ṽk|v)(1/N)dv (21)

The equilibrium low signal price in generalized settings is thus determined by an optimization

calculus that is analogous to its counterpart in the baseline setting. Similar notions hold

true for the equilibrium high signal price. Recall that the set of valuations that could search

on the equilibrium path in the baseline model was [s/α+ pL, 0.5] and inf V̂ (pL) = s/α+ pL.

Thus, the high signal price in the search deterrence equilibrium, namely pH,D = inf V̂ (pL),

satisfied Pr(ṽL|pH,D)(pH,D − pL,D) − s = 0. In all other equilibria, the high signal price

was a maximizer of ΠM(pj; ṽ
H), for which there was only one candidate, namely pH,M . The

following proposition formalizes that this dichotomy is retained under weak assumptions on

Pr(ṽH |v):

Proposition 8 Suppose that Pr(ṽH |v) is continuous and weakly increasing. In a symmetric

pure-strategy equilibrium (pL, pH) with pH > pL, the low signal price pL must satisfy:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pj=pL

+ML(pL, pH) = 0 (22)

Suppose further that Pr(ṽH |v) ∈ (0, 1) holds for all v ∈ [0, 1]. Then, the equilibrium high

price must satisfy one of the following expressions:

∂ΠM(pj; ṽ
H)

∂pj

∣∣∣∣
pj=pH

= 0 (23)

Pr(ṽL|pH)(pH − pL)− s = 0 (24)

The equilibrium low price must satisfy expression (22). This is because the competitive low

signal profit function is differentiable when Pr(ṽH |v) is continuous and satisfies the structure

laid out in equation (20) for prices pj ∈ [0, v], which includes pL in its interior.

Given that competitive profits are equal to monopoly profits at pH , a natural candidate

for the equilibrium high signal price is a maximizer of the monopoly high signal profit

function. Now consider an equilibrium candidate that does not satisfy the corresponding

first-order condition. Suppose that Pr(ṽL|pH)(pH − pL)− s > 0. By continuity of Pr(ṽL|v),
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there would exist an open interval of valuations above pH for which a consumer would

search at pH , which yields a contradiction to proposition 1. Suppose alternatively that

Pr(ṽL|pH)(pH − pL) − s < 0. Then, the competitive high signal profit function is equal to

the monopoly high signal profit function in an open ball around pH . Because ΠM(pj, ṽ
H)

is differentiable, pH must thus satisfy the first-order condition given in (23). Hence, a high

signal price that does not satisfy this first-order condition must satisfy equation (24). Having

established this, note the following:

Lemma 8 Suppose that Pr(ṽH |v) is continuously differentiable, weakly increasing, and sat-

isfies Pr(ṽH |v) ∈ (0, 1) for all v.

• If NPr(ṽH |pH,M)N−1 ≥ 1 holds, then pH ≤ pH,M must hold true.

• The regularity condition NPr(ṽH |pH,M)N−1 ≥ 1 holds true, for example, if N = 2 and

Pr(ṽH |0.5) = 0.5.

The above lemma provides regularity conditions that rule out equilibria where pH > pH,M .

Such outcomes would be quite unintuitive - this is because competition only puts downward

pressure on pH , since no consumer that arrives after searching can buy at pH . In the ap-

pendix, I show that the regularity condition NPr(ṽH |pH,M)N−1 ≥ 1, which is always satisfied

when N = 2 and Pr(ṽH |0.5) = 0.5, is also satisfied for a wide range of parameters when

N > 2. Loosely speaking, the validity of this condition requires a sufficiently precise signal.15

It remains to establish how many price tuples can satisfy the structure of equilibria that

was established in proposition 8. Strict concavity of the monopoly high signal profit func-

tions is sufficient to ensure that there are unique solutions to the equations (22) and (23).

Visual inspection of the function Pr(ṽL|pH)(pH − pL)− s for given prices pL makes it clear

that this function has, in most situations, at most two zeros. Strict quasiconcavity of this

function formally narrows down its number of zeros.

Corollary 4 Suppose that (i) Pr(ṽH |v) is once continuously differentiable and Pr(ṽH |v) ∈
(0, 1) ∀v ∈ [0, 1], (ii) N

[
Pr(ṽH |pH,M)

]N−1 ≥ 1, (iii) ΠM(pj, ṽ
L) is strictly concave in pj,

and (iv) g(v) := Pr(ṽL|v)(v− pL)− s is a strictly quasiconcave function on v ∈ [0, pH,M ] for

any pL ∈ [0, 1].16

15For details, please see appendix D.5.
16In appendix D.6., I document that the function g(v) has at most two zeros on [0, pH,M ] for an over-

whelming share of possible scenarios, which is the sole role that assumption (iv) plays in generating the
listed implications.
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Then, there are exactly four candidates for a symmetric pure-strategy equilibrium (ignor-

ing a candidate that only exists for an interval of search costs with zero measure), namely:

• The search equilibrium (pL,S, pH,S), defined by
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL,S

+ML(pL,S, pH,S) = 0 with

ML(pL,S, pH,S) > 0 and
∂ΠM (pj ;ṽ

H)

∂pj

∣∣
pH,S

= 0.

• The monopoly equilibrium (pL,M , pH,M) , where
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL,M

=
∂ΠM (pj ;ṽ

H)

∂pj

∣∣
pH,M

= 0.

• The search deterrence equilibrium (pL,D, pH,D), where pL,D = pL,M and pH,D = inf V̂ (pL,D).

• An equilibrium candidate (pL,C , pH,C), defined by
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL,C

+ ML(pL,C , pH,C) = 0

with ML(pL,C , pH,C) > 0 and pH,C = sup
[
V̂ (pL,C) ∩ [0, pH,M ]

]
.

The only new equilibrium candidate is the fourth one, which I call the constrained search

equilibrium. The numerical simulations that I conduct, in which I restrict attention to the

intuitive case where pH,C ≤ pH,M , highlight that this equilibrium candidate is extremely

unlikely to actually exist. Essentially, there are two conflicting requirements which are nec-

essary to support this price tuple as an equilibrium. As before, no consumer with a valuation

above pH can search on the equilibrium path. To ensure that an upward deviation from pH

towards pH,M is not profitable, enough agents with a valuation in the interval v ∈ (pH , 1]

need to search for prices above pH . Given that these consumers cannot search at pH , they

are relatively unlikely to search at prices pj ∈ (pH , pH,M) under continuity of the signal

probability distribution. In my numerical analysis, I have found exactly one parameter com-

bination (out of 600) for which this equilibrium exists. Moreover, the more profitable search

equilibrium would also exist at this particular parameter combination.17

Now, I move on to characterize the MSE that exist in these general settings. Providing

closed-form expressions for these without exact specifications of Pr(ṽH |v) is quite challeng-

ing. Thus, I focus on showing that key characteristics of the mixed-strategy equilibria which

were established for the baseline setting go through to these more general settings.

Proposition 9 Suppose that Pr(ṽH |v) is continuous, weakly increasing, and satisfies Pr(ṽH |v) ∈
(0, 1) for all v ∈ [0, 1]. Suppose further that the monopoly profit functions are both strictly

concave and that the function g(v) is strictly quasiconcave for all pL ∈ [0, 1].

Consider a symmetric mixed-strategy equilibrium and define pmin and pmax as the lowest

and highest prices that are offered in this equilibrium.

17Details may be found in appendix D.3.
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• There must be on-path search in this equilibrium.

• The firm offers a deterministic price pL when observing the low signal and pL = pmin.

• Suppose that the high signal prices are drawn from an atomless, gapless distribution

with support [pH , p̄H ]. It must hold that inf V̂ (pL) ≤ pH .

I conjecture that the relevant regions where these equilibria exist feature high information

precision and low search costs, as before. Low search costs and high information precision

are necessary and sufficient to facilitate the separating search behavior that is necessary

to sustain such an equilibrium. Given that there must be on-path search, the low-signal

price in such an MSE must be higher than the monopoly low signal price. Thus, prices

in this equilibrium must be strictly above the search deterrence equilibrium prices, because

inf V̂ (pL) < pH also holds.

In appendix D, I numerically show that the properties of the aforementioned pure-strategy

equilibria, i.e. the existence regions and comparative statics, carry over to generalized set-

tings when the signal distribution is given by the following parametric form:

Pr(ṽL|v) = α

(
1− 1

1 + ek(0.5−v)

)
+ (1− α)

(
1

1 + ek(0.5−v)

)
(25)

Lower values of k amount to making the signal distribution more linear, while the parameter

α governs the upper and lower bounds of the probability distribution. In figure 6, I plot

this distribution for different values of α and k. Under the aforementioned interpretation of

signal precision, the latter is rising both in k and α.

6 Conclusion

I have studied price discrimination based on imperfect information in homogeneous goods

markets where consumers engage in sequential search to obtain price offers. Whenever a con-

sumer visits a firm, this firm receives a binary and informative signal about the consumer’s

valuation. In the baseline framework, a firm observes nothing else for any consumer. I have

highlighted that different search costs give rise to fundamentally different equilibria.

My results refute the notion that a high volume of equilibrium search generally reflects

high levels of competitive pressure or low search costs. It crucially matters which consumers

choose to search in equilibrium. When the only consumers that search on-path have in-

termediate valuations, a feature matching the empirical phenomenon documented by Byrne
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& Martin (2021), equilibrium search is an imperfect screening device that is indicative of

intermediate search costs and allows firms to sustain high prices.

My work sheds light on the effects of three potential regulatory interventions in markets

where firms can price discriminate, namely: (i) fostering price transparency (in the form of

reducing search costs), (ii) promoting firm entry, and (iii) prohibiting firms from accessing

information about consumers’ search histories.18 Pushing search costs down to negligible

levels is a very effective way of regulating markets where firms can price discriminate. This

maximizes consumer welfare and renders firms unable to price discriminate, which may be

desirable in itself. However, the effects of search cost reductions on prices and consumer wel-

fare are non-monotonic. Expansions of the set of consumers that search on the equilibrium

path lead to higher prices. Search cost reductions unfold pro-competitive effects only via

strengthening the search incentives of consumers that do not search on-path. This is ben-

eficial whenever it enables them to constrain prices more effectively with the threat of search.

Analogously, fostering firm entry is not generally pro-competitive in the markets I study.

It leads to reduced prices only when it eliminates a monopoly and search costs are small. In

non-monopolistic markets with equilibrium search, firm entry leads to higher prices. Simi-

larly, banning firms from accessing search history information is only sensible when search

costs are low, because firms with access to search history information will find it impossible

to sustain equilibria with search.

18The associated model analysing the equilibrium outcomes when firms have access to search history
information in addition to receiving the aforementioned signals is found in appendix E.
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A Proofs of section 3

A.1 Proof of lemma 1

This proof works by induction and follows existing proofs in the literature. Consider any

valuation v ∈ [0, 1] and suppose that firms play a symmetric equibrium. Given the equi-

librium distribution of prices, one can define the differences max{v − p, 0} as the ”prizes”,

which are drawn from the distribution F (x) that is the same at all firms.

Define the cutoff prize of a consumer that has visited N − 1 firms previously as rN−1. When

the best prize in hand y ∈ [0,∞) satisfies y < rN−1, it is strictly optimal to search. When

the best prize in hand satisfies y ≥ rN−1, the consumer finds it (weakly) optimal not to search.

Such a unique prize must exist since the gains of search after having visited N −1 firms, call

these g(y, rN−1), must be weakly decreasing in y. Formally, we have that g(y,N − 1) > 0 if

y < rN−1 and g(y,N − 1) ≤ 0 if y ≥ rN−1. Search will occur iff y < rN−1.

Now I conduct the induction step. Suppose n firms have been visited sofar. Suppose that the

cutoff prize (defined as above) is equal to rN−1 whenever the amount of previously visited

firms is weakly above n+ 1. I show that the consumer will find it strictly optimal to search

when her best prize in hand (after having visited n firms) satisfies y < rN−1 and weakly

optimal not to search otherwise.

Firstly, suppose the best prize that the consumer has in hand after visiting n firms sat-

isfies y ≥ rN−1. This specification implies that the consumer will never search again after

having visited n + 1 or more firms. The gains of searching are thus equal to g(y,N − 1)

defined above, which are weakly negative because y ≥ rN−1.

Secondly, suppose the best prize the consumer has in hand after visiting n firms satisfies

y < rN−1. The expected utility gain this consumer obtains through search is weakly larger

than the expected utility gain this consumer obtains if she searches just one more time,

which is equal to g(y,N − 1). This follows because stopping the search process is just one

of several viable choices for any decision maker after having visited n+ 1 firms.

Because y < rN−1, g(y,N − 1) > 0 holds and it is strictly optimal to search.

This completes the proof, since the induction step was written down for a general n.
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A.2 Proof of proposition 1

Part 1:

Suppose that search costs are strictly positive. No consumer would search after receiv-

ing the price pmin, since the gains of search would be strictly negative.

Moreover, no consumer with v ≤ pmin would ever search. Thus, any consumer that ar-

rives after searching must have received a price strictly above pmin at all firms previously

visited and must have a valuation strictly above this price. Since they will not search at

pmin, such consumers will all immediately buy at a firm offering them the price pmin.

Part 2:

Consider a symmetric pure strategy equilibrium (p1, ..., pK). If the price pk is offered in

equilibrium, the set
{
v ≥ pk : p̂(v) > pk, P r(pk|v > 0)

}
must have zero measure.

Suppose, for a contradiction, that this set has strictly positive measure. Note that the

probability distribution over the prices a consumer (fixing v) can receive is identical for all

firms because Pr(ṽH |v) only depends on v and we study symmetric equilibria.

By our assumptions, there is a strictly positive measure of consumers who will receive the

price pk from all firms in this equilibrium (since receiving pk always triggers search because

search is myopic), which is given by:∫{
v≥pk:p̂(v)<pK ,P r(pk|v)>0

} [Pr(pk|v)
]N
dv > 0

When setting the price pk, some firm will only make the sale to these consumers with prob-

ability below 1. When marginally undercutting this price, the sale will be made to all these

consumers, representing an upward jump in this component of demand.

All other components of demand can only weakly increase after a decrease in price - any

such decrease in price will (i) reduce the search incentives of consumers and (ii) allow more

consumers to buy. Thus, marginally undercutting pk will imply a discontinuous upward jump

of total demand. This will represent a profitable deviation and we have a contradiction.
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A.3 Proof of proposition 2

Part 1:

Symmetric pure-strategy equilibrium candidates

Define pmax = maxk p
k. Because there is price dispersion, pmax > pmin must hold.

Any consumer with v ≥ pmax will receive pmax with strictly positive probability under our

assumptions. Given that s = 0 and the probability to obtain a lower price is strictly positive

(because there is price dispersion and any signal is generated with strictly positive probabil-

ity), receiving the price pmax induces search.

Note that pmax < 1 must hold - otherwise, this price would warrant zero profits. Thus,

we have a strictly positive measure of consumers with v ≥ pmax that receive pmax with

strictly positive probability and move on to search when receiving pmax. This contradicts

proposition 1. Thus, no such equilibrium can exist.

Symmetric mixed-strategy equilibrium candidates

Consider a candidate for a symmetric mixed-strategy equilibrium in which there is price

dispersion. Define pmax as the highest possible price that can be offered in this equilibrium.

At this price pmax, all consumers will surely search because there is price dispersion and any

consumer has strictly positive probability of receiving a lower price.

Suppose firstly that the highest price is played with zero probability after all signals. Then,

the probability that a consumer finds a price below this through search is 1. Thus, all con-

sumers with v ≥ pmax leave to search and never return. The measure of consumers who

arrive after searching and buy at pmax is also 0. Thus, profits at this highest price are zero.

This implies a contradiction. If the firm makes strictly positive profits for another price

that is played at an information set where pmax is offered, mixing indifference fails. If no

such price exists, there exists a profitable deviation in this information set.

Suppose, instead, that the highest price is played with strictly positive probability after

some signal and call this signal ṽmax. Any consumer with v ≥ pmax has a strictly positive

probability of generating the signal ṽmax and receiving the price pmax. Any such consumer
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will search at this price since there is price dispersion, s = 0, and Pr(ṽk|v) ∈ (0, 1) holds

true for any consumer and any signal.

As a result, there is a strictly positive measure of consumers with v ≥ pmax who receive

the price pmax at all firms, no matter at which firm they start the search process. This set

creates undercutting incentives that break the equilibrium. Once again, such an equilibrium

can thus not exist.

Asymmetric equilibria:

Now consider asymmetric equilibria and find the highest price that is offered by any firm.

Define this price as pmax. Call a firm that offers this price j.

Suppose there exists a firm −j that does not offer this price. Because search is costless,

and consumer with v ≥ pmax that receives pmax from firm j is guaranteed to visit the firm

−j and retrieve a strictly lower price with certainty. Thus, firm j would obtain zero profits

when offering pmax, a contradiction.

Thus, the price pmax must be in the price support of any firm. Suppose firstly that there

exists a firm −j that offers this price with probability 0 after all signals. Once again, a

consumer who visits firm j and receives pmax is guaranteed to visit firm −j and retrieve

p−j < pmax, implying that firm j makes zero profits by setting pmax, a contradiction.

Thus, suppose that all firms offer this price with strictly positive probability after some

signal ṽmax. Then, consumers with v ≥ pmax have a strictly positive probability of receiving

pmax at all firms.

There will exist some firm −j that offers a price strictly below pmax with positive prob-

ability by the assumption that there is price dispersion. All consumers with v ≥ pmax that

start at the firm j would search when receiving pmax at this firm - these consumers would

receive pmax at all firms with positive probability. Once again, this strictly positive measure

of consumers would create undercutting motives.

Part 2: Uniform price equilibrium candidates

Thus, any equilibrium must be of the following form: Independently of the signal, all firms
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must offer a uniform price p0. In such a symmetric PSE, the measure of consumers with

v ≥ p0 that search must be zero - see proposition 1. Define pmin,M as the lowest possible

monopoly price.

Suppose that p0 > pmin,M . By the above results, the equilibrium profits after any signal

equal monopoly profits at p0 (for the respective signal). When deviating downwards to

pmin,M , any consumer that arrives at your firm first with v ≥ pmin,M will surely buy, no

matter whether they search or not. Thus, the firm will at least make monopoly profits at

pmin,M when deviating. By strict concavity of all monopoly profit functions, this deviation

is strictly profitable when observing the signal ṽmin,M .

Now, I have to show that any price p0 ∈ [0, pmin,M ] constitutes an equilibrium. In equilib-

rium, it is optimal for any consumer not to search. Thus, no consumer arrives after searching.

There are no profitable upward deviations, since these invoke zero profits - this holds because

any consumer with v > p0 would move on to search.

No consumer arrives after searching. Thus, the competitive profit function is equal to the

monopoly profit function when deviating downwards. Note that all monopoly profit func-

tions (for the respective signals) are strictly concave. Thus, for prices pj < p0, all monopoly

profit functions must be strictly increasing. Thus, such a deviation can never be profitable.

B Proofs of section 4

B.1 Proof of lemma 2

Suppose that s → ∞, which makes any firm into a monopolist. Since the first search is

random, the profit functions are:

ΠM(pj; ṽ
k) = pj

∫ 1

pj

f 1(vi = v, ṽi,j = ṽk)dv = pj

∫ 1

pj

(1/N)f(vi = v, ṽi,j = ṽk)dv

Note that:

f(vi = x, ṽi,j = ṽL) =

(1− α)(1) , if x ≥ 0.5

(α)(1) , if x < 0.5
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f(vi = x, ṽi,j = ṽH) =

(α)(1) , if x ≥ 0.5

(1− α)(1) , if x < 0.5

We can show that:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pj

= 0 ⇐⇒ 0.5− 2αpj = 0 ⇐⇒ pL,M =
1

4α

Similarly, one can derive pH,M by the following logic:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pj

> 0 ⇐⇒ pj < 0.5 ,
∂ΠM(pj; ṽ

L)

∂pj

∣∣∣∣
pj

< 0 ⇐⇒ pj > 0.5

This implies that pH,M = 0.5. Note also that both these functions are strictly concave when

α ∈ (0.5, 1).

B.2 Proof of proposition 3

Recall that we assume s > 0 throughout this section.

Part 1: α < 1.

Crucially, this implies that both monopoly profit functions are strictly concave. Recall

also that the optimal search rule will be myopic.

Possible equilibrium category 1: p = pL = pH .

In such an equilibrium, there is no search on path because there are zero incentives to

search but positive costs of doing so. Thus, no consumer would arrive at any firm j after

search.

Since search costs are strictly positive, there exists an interval of prices pj ∈ [p, p + s]

where consumers would not search. Thus, no equilibrium with p < 0.5 can be supported,

since an upward deviation would be optimal when observing the high signal.

Consider instead a price p ≥ 0.5. Since pL,M < 0.5 holds true, there would be a prof-

itable downward deviation, since no consumer would move on to search after this deviation.

Thus, no equilibrium of this type can be supported.
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Possible equilibrium category 2: pH < pL.

(i) Suppose pL > 0.5.

Note that pL < 1 must hold - otherwise zero profits will be obtained after ṽL. Consider

the search calculus of an agent with v ∈ [0.5, pL] with a best price pj ≤ pL.

α(v−pH)+(1−α) max{v−pj, 0}−s > max{v−pj, 0} ⇐⇒ α(v−pH)−s > αmax{v−pj, 0}

An agent with v > pL that receives a price pL will search iff:

α(v−pH)+(1−α)(v−pL)−s > (v−pL) ⇐⇒ α(v−pH)−s > α(v−pL) ⇐⇒ α(pL−pH) > s

Suppose:

α(pL − pH)− s > 0

This is a direct contradiction, since agents with v ∈ (pL, 1] will search upon being offered

the price pL. Since these agents are offered this price with strictly positive probability, the

equilibrium is broken by proposition 1.

Thus, it must hold that: α(pL − pH) ≤ s. Thus, for all agents with v ∈ [0.5, pL], we

have that:

α(v − pH) ≤ α(pL − pH) ≤ s

This means that all these consumers cannot search at prices pj ∈ [0.5, pL]. Moreover, con-

sumers with v ≥ pL would also not search when being offered the price pL ever. Thus, no

consumer with v > 0.5 searches on path.

In the price interval, pj ∈ [0.5, pL] profits would thus equal monopoly profits. No con-

sumer with v > 0.5 can arrive after searching. No consumer with v > 0.5 that arrives first

would search. Thus, there is a profitable downward deviation since monopoly profits are

strictly concave on [0.5, pL], a contradiction.

(ii) pH < pL ≤ 0.5
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Assume that the following condition holds:

(1− α)(pL − pH)− s > 0 =⇒ α(pL − pH)− s > 0

Consider agents with v > 0.5 > pL, who will search at price pj = pL if and only if:

(α)(v − pH) + (1− α)(v − pL)− s > (v − pL) ⇐⇒ α(pL − pH) > s

Thus, these consumers will search at pj = pL, which breaks the equilibrium, since all these

consumers are offered pL with positive probability.

Thus, it must hold that:

(1− α)(pL − pH)− s ≤ 0 =⇒ pL ≤ pH +
s

1− α

Now consider agents with v ∈ [pH , 0.5], who search for prices pj ≤ pL if and only if:

(1− α)(v − pH)− s > (1− α) max{v − pj, 0}

Agents with v ∈ [pH , pL] have a negative LHS, i.e. won’t search for any price pj ≤ pL. For

the consumers with v ∈ (pL, 0.5], the cutoff price is interior and above pL, (this means search

won’t occur at this price), i.e.:

p̂(v) = pH +
s

1− α
≥ pL

Moreover, no consumer with v > 0.5 can search when being offered a price pj = pL (since

all these consumers have a strictly positive probability of receiving pL). Thus, no consumers

search when being offered the price pL or any price below this. This means that there will

not be search on the equilibrium path and profits for prices pj ≤ pL equal monopoly profits.

A deviation to the price pL is profitable after the high signal since pL ≤ 0.5 and monopoly

profits after the high signal are rising in this price interval. Thus, we have a contradiction

once more.

Possible equilibria category 3: pL < pH
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The fact that α > 0.5 implies that:

s

α
+ pL <

s

1− α
+ pL

Subcase 1: Suppose that s/α + pL < 0.5.

There are two possible equilibrium high signal prices, namely pH = pL + s/α and pH = 0.5.

(i) pH < s/α + pL.

Consider consumers with v ∈ [pH , 0.5]. At best price pj ≥ pH in hand, search occurs

iff:

Pr(ṽL|v)(v−pL)+Pr(ṽH |v)(v−pH)−s > max{v−pj, 0} ⇐⇒ v−αpL−(1−α)pH−s > max{v−pj, 0}

Solving for the interior cutoff price in this interval of valuations yields that:

p̂(v) = αpL + (1− α)pH + s

Note that this is above pH , which makes it the correct cutoff price:

αpL + (1− α)pH + s > pH ⇐⇒ α(pL − pH) + s > 0 ⇐⇒ pL +
s

α
> pH

In the price interval pj ∈ [pH , αpL+(1−α)pH+s], no consumer would search. For consumers

with v > 0.5 > pH , the price cutoff will also surely be above pH . To see this, consider the

search calculus of these agents for prices pj ∈ [pL, pH ]:

Pr(ṽL|v)(v−pL)+Pr(ṽH |v) max{v−pj, 0}−s > max{v−pj, 0} ⇐⇒ (1−α)(v−pL)−s > (1−α)(v−pj)

Their cutoff price cannot be in this interval since:

p̂(v) = pL +
s

1− α
> pL +

s

α
> pH

Thus, their cutoff price would be equal to:

p̂(v) = (1− α)pL + αpH + s > (α)pL + (1− α)pH + s > pH
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No agent would arrive after search. Thus, profits are equal to monopoly profits in the price

interval pj ∈ [pH , αpL + (1− α)pH + s]. Because pH < s/α+ pL < 0.5, monopoly profits are

increasing in this price interval. Thus, an upward deviation from pH is profitable.

(ii) pH = s/α + pL: This could be an equilibrium and will be verified later.

(iii) pH ∈ (s/α + pL, 0.5).

Consider a consumer with v ∈ (pH , 0.5). Such a consumer would search at price pH if

and only if:

Pr(ṽL|v)(v − pL) + Pr(ṽH |v)(v − pH)− s > (v − pH)

⇐⇒

α(−pL)− s > α(−pH) ⇐⇒ pH > pL +
s

α

This holds true for all such consumers. Thus, all these consumers would search at pH , which

breaks the equilibrium because they have a strictly positive probability of generating pL.

(iv) pH = 0.5. This could also be an equilibrium.

(v) pH > 0.5:

Suppose that pH ≤ pL + s
1−α . Consumers with v > pH will not search on-path or for

prices pj ≤ pH , since:

(1− α)(v − pL) + α(v − pH)− s ≤ (v − pH) ⇐⇒ pH ≤ pL +
s

1− α

Similarly, consumers with v ≤ pH will also not search on path or for prices pj ≤ pH .

Then, a downward deviation would be optimal since consumers with v ∈ (0.5, 1) would

not move on to search for prices weakly below pH . Thus, downward deviations will imply

profits weakly above monopoly profits, making these deviations be profitable.

Thus, suppose that pH > pL + s
1−α . Then, consumers with v ∈ (pH , 1) will search on-

path, breaking the equilibrium.

Case 2: Suppose that s/α + pL > 0.5. No such equilibrium can exist.
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The premise implies: α(0.5− pL) < s =⇒ (1− α)(0.5− pL) < s

(i) pH < 0.5.

Note firstly that this implies that pH < s/α + pL

Consider any consumer with v ∈ (pH , 0.5). If the cutoff price of these consumers is be-

low pH , it equals: s/α + pL. We know this cannot be true by assumption. The resulting

cutoff price for these consumers must hence be:

p̂(v) = αpL + (1− α)pH + s > pH ⇐⇒ αpL + s > αpH ⇐⇒ pL +
s

α
> pH

Moreover, the cutoff price for v > 0.5 , which has to be above pH as well, will be even higher.

Thus, there is no search on path and no consumer would ever leave to search for prices just

above pH .

Thus, you would have a profitable marginal upward deviation after the high signal since

profits are monopoly profits in this interval.

(ii) pH ∈ (0.5, 1]

For these prices, only the search behaviour of agents with v > 0.5 is relevant, since all

other agents cannot buy.

Suppose:

0.5 < pH ≤ pL +
s

1− α
Now consider consumers with v ∈ [0.5, 1]. These consumers would all not search on path.

For the price pj = 0.5 which is a better deal than pH , search occurs iff:

(1− α)(v − pL)− s > (1− α)(v − 0.5) ⇐⇒ 0.5 > pL +
s

1− α

Thus, no consumer will ever search with best price pj = 0.5. A downward deviation to

pj = 0.5 is profitable, because monopoly profits are guaranteed.
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Suppose instead that:

pH > pL +
s

1− α
As before, consumers with v > pH would search, breaking the equilibrium.

Part 2: Structure of equilibria when α < 1

Sofar, we have obtained that an equilibrium must either satisfy pH = pH,M or pH = pL+s/α <

0.5. In the second equilibrium, there will be no on-path search. To see this consider some

pL and pH = s/α + pL. It must hold that pL + s/α < 0.5

Since pH = pL+ s
α

, consumers with v < pH will strictly prefer to not search at pH = s/α+pL.

Consumers with v ∈ [s/α+ pL, 0.5) will strictly prefer to search for prices above pH , but will

be indifferent between searching and not searching at best price pH . However, the measure

of these consumers that would search at pH must be zero.

Consumers with v > 0.5 will strictly prefer not to search at best prize pH since:

(1− α)(v − pL)− s < (1− α)(v − pH) ⇐⇒ pH <
s

1− α
+ pL

If there is no on-path search, the only optimal solution for the low price is pL = pL,M . The

latter is unique. Setting pL > pL,M is not optimal, since a downward deviation to pL,M is

optimal.

Setting pL < pL,M is also not optimal since sequentially rational search implies that marginally

raising the price above pL will not trigger search. Strict concavity of the low signal monopoly

profit function on pj ∈ [0, 0.5] then implies the result.

Thus, there are two possible equilibria without search on path, where pL is always equal

to pL,M . An equilibrium with search must satisfy pH = pH,M and pL < pH by initial argu-

ments.

Part 3: Possible equilibria when α = 1.

Then, no people with v ≤ 0.5 arrive at firm j and generate the high signal and vice versa.

The monopoly prices are:

pL,M = 0.25 ; pH,M = 0.5
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There will be no search on the equilibrium path, since the price offer that any agent receives

is non-stochastic in a symmetric equilibrium and s > 0. Thus, the equilibrium profits equal

the corresponding monopoly profits.

Possible equilibrium candidate 1: p = pL = pH

Setting p ≥ 0.5 cannot be an equilibrium, since there exists a profitable downward devi-

ation from pL, which would yield zero profits.

Setting p < 0.5 will imply that there is a profitable deviation from pH . Consumers with

v > 0.5 have a cutoff price above or equal to: p̂(v) = pH + s. Setting a price just above

pH < 0.5 will thus not trigger search by consumers with v > 0.5. All these consumers would

hence still consume under this deviation. Thus, this deviation is profitable since only con-

sumers with v ≥ 0.5 generate the high signal.

Possible equilibrium candidate 2: pH < pL.

Because α = 1, no consumers arrive at any given firm j after searching.

Suppose pL > 0.5. Only consumers with v ≤ 0.5 will generate the low signal. This means

that low signal profits will be zero, a contradiction.

Suppose instead that pH < pL ≤ 0.5. For prices just above pH no agent with v > 0.5

will move on to search, which implies that there is a profitable upward deviation from the

high signal price, a contradiction.

Possible equilibrium candidate 3: pL < pH

Examine the search incentives of a consumer with v > 0.5. Only such consumers can arrive

at a firm and generate the high signal.

These consumers would never search when receiving the high price. Their cutoff price is:

p̂(v) = pH + s.

Suppose pH > 0.5. No consumer with v > 0.5 would search at pH by the above argu-

ments, which means there cannot be search on the equilibrium path by agents with v > 0.5.
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Equilibrium profits are thus monopoly profits - and profits at a deviation price pj = 0.5

would also equal monopoly profits, which makes this deviation profitable.

Suppose pH < 0.5. There is no search on-path by agents with v > 0.5, and there is an

interval of prices pj ∈ (pH , pH + s) for which no such consumer would move on to search.

Since high signal profits are only obtained from such consumers, there is a profitable upward

deviation from pH .

Thus, pH = 0.5 = pH,M must hold when α = 1. Since there is no search on-path, pL = pL,M

must hold.

B.3 Derivation of competitive objective functions

Consider the setting with a representative agent. The firm can be called to act at two infor-

mation sets - (i) the consumer shows up and generates ṽL, and (ii) the consumer shows up

and generates ṽH .

Call the information set where a consumer shows up and generates the signal ṽk Ik. The

expected profit a firm makes at this information set is then equal to the price that is set,

multiplied by the probability that the sale is made to the consumer that arrives at firm j

and generates the signal ṽk. I call this Pr(sale|Ik).

Thus, profits are:

ΠC(pj, I
k) = pjPr(sale|Ik) = pj

(
Pr(sale ∧ Ik)

Pr(Ik)

)
By the law of total probability for continuous random variables, it holds that:

Pr(sale|Ik) =
Pr(sale ∧ Ik)

Pr(Ik)
=

1

Pr(Ik)

∫ 1

0

Pr(sale ∧ Ik|v)f(v)d(v)

I define r∗ ∈ {1, 2, ..., N} as the exogenous position in which a consumer would visit a firm.

By a modified law of total probability, it holds that:

Pr(sale∧Ik|v) =
N∑
f=1

Pr(sale∧Ik|v∧r∗ = f)Pr(r∗i = j|v) = (1/N)
N∑
f=1

Pr(sale∧Ik|v∧r∗ = f)
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Equilibria without on-path search

Consider an equilibrium without search on the equilibrium path.

In an equilibrium without search, it is impossible for an agent with r∗ ≥ 2 to arrive at

a firm. This implies that:

Pr(sale ∧ Ik|v ∧ r∗ = f) = 0 ∀f ≥ 2

If r∗ = 1 holds for a consumer with valuation v, then the event IK is realized with probability

Pr(ṽk|v). Conditional on v and r∗ = 1 and for a given pj, the fact that a consumer generates

the signal ṽk is not informative about his consumption decision at a given price pj. Thus,

we can write:

Pr(sale ∧ Ik|v ∧ r∗ = 1) = Pr(sale|v ∧ r∗ = 1)Pr(Ik|v ∧ r∗ = 1)

Thus, in an equilibrium without search, we have the following at prices pj ≤ pH (for which

nobody searches):

Pr(sale ∧ Ik|v ∧ r∗ = 1) = 1[pj ≤ v]Pr(ṽk|v)

For prices pj > pH , where search is hypothetically possible, we have:

Pr(sale ∧ Ik|v ∧ r∗ = 1) = 1[pj ≤ v]1[pj ≤ p̂(v)]Pr(ṽk|v)

Thus, we have the following in an equilibrium without search:

Pr(sale ∧ Ik|v) =

(1/N)1[pj ≤ v]Pr(ṽk|v) pj ≤ pH

(1/N)1[pj ≤ v]1[pj ≤ p̂(v)]Pr(ṽk|v) pj > pH

Based on this, we can calculate the profit functions. For pj ≤ pH , these are:

Π(pj; I
k) =

pj
Pr(Ik)

∫ 1

0

Pr(sale ∧ Ik|v)f(v)d(v) =
pj

Pr(Ik)

∫ 1

pj

(1/N)Pr(ṽk|v)f(v)d(v)

For prices pj > pH , these are:

Π(pj; I
k) =

pj
Pr(Ik)

∫ 1

pj

(1/N)1[pj ≤ p̂(v)]Pr(ṽk|v)f(v)d(v)
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Note that Pr(Ik) depends only on the equilibrium strategies of the other players and not on

the choice of the price pj. Thus, it can be safely ignored in the maximization problem.

Equilibria with search on path

Consider an equilibrium price tuple (pL, pH) with search on the equilibrium path. Here,

it is possible for an agent with r∗ ≥ 2 to arrive at a given firm.

For prices pj < pH and f ≥ 2, it holds that:

Pr(sale ∧ Ik|v ∧ r∗ = f) =

1[pH > p̂(v)]Pr(ṽH |v)f−1Pr(ṽk|v)1[v ≥ pj]

[
1[pj ≤ p̂(v)] + 1[pj > p̂(v)]Pr(ṽH |v)N−f

]
For the price pj = pH , this becomes:

Pr(sale ∧ Ik|v ∧ r∗ = f) = 1[pH > p̂(v)]Pr(ṽH |v)f−1Pr(ṽk|v)1[v ≥ pj]

[
ρNPr(ṽ

H |v)N−f
]

The constant ρN < 1 denotes the probability with which consumption occurs at a given firm

in case of a price tie.

For prices pj > pH and f ≥ 2, it holds that Pr(sale ∧ Ik|v ∧ r∗ = f) = 0.

Now consider consumers that arrive at firm j first. For prices pj < pH , it holds that:

Pr(sale ∧ Ik|v ∧ r∗ = 1) = 1[pj ≤ v]

[
1[pj > p̂(v)]Pr(ṽH |v)N−1 + 1[pj ≤ p̂(v)]

]
Pr(ṽk|v)

Note that p̂(v) > pL must hold for any consumer in any symmetric pure-strategy equilib-

rium. Thus, when pj > p̂(v) > pL, a consumer that generates the low signal at the other

firm will not buy at the firm that is visited first. Moreover, we have considered a pj < pH ,

so p̂(v) < pj < pH , which implies that a consumer would either search all firms or none.

For the price pj = pH , it holds that:

Pr(sale ∧ Ik|v ∧ r∗ = 1) = 1[pj ≤ v]

[
1[pj > p̂(v)]ρNPr(ṽ

H |v)N−1 + 1[pj ≤ p̂(v)]

]
Pr(ṽk|v)
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For prices pj > pH , it holds that:

Pr(sale ∧ Ik|v ∧ r∗ = 1) = 1[pj ≤ v]

[
0 + 1[pj ≤ p̂(v)]

]
Pr(ṽk|v)

For prices pj < pH , we have the following:

Pr(sale ∧ Ik|v) = (1/N)
N∑
f=1

Pr(sale ∧ Ik|v ∧ r∗ = f) =

(1/N)1[pj ≤ v]

[
1[pj > p̂(v)]Pr(ṽH |v)N−1 + 1[pj ≤ p̂(v)]

]
Pr(ṽk|v)+

(1/N)
N∑
f=2

1[pH > p̂(v)]Pr(ṽH |v)f−1Pr(ṽk|v)1[v ≥ pj]

[
1[pj ≤ p̂(v)]+1[pj > p̂(v)]Pr(ṽH |v)N−f

]
Profits are then:

Π(pj; I
k) =

pj
Pr(Ik)

∫ 1

0

Pr(sale ∧ Ik|v)f(v)dv =

pj
NPr(Ik)

∫ 1

0

1[pj ≤ v]

[
1[pj > p̂(v)]Pr(ṽH |v)N−1 + 1[pj ≤ p̂(v)]

]
Pr(ṽk|v)f(v)dv+

pj
NPr(Ik)

∫ 1

0

N∑
f=2

1[pH > p̂(v)]Pr(ṽH |v)f−1Pr(ṽk|v)1[v ≥ pj]

[
1[pj ≤ p̂(v)]+1[pj > p̂(v)]Pr(ṽH |v)N−f

]
f(v)dv

=

pj
NPr(Ik)

∫ 1

pj

[
1[pj > p̂(v)]Pr(ṽH |v)N−1 + 1[pj ≤ p̂(v)]

]
Pr(ṽk|v)f(v)dv+

pj
NPr(Ik)

∫ 1

pj

1[pH > p̂(v)]Pr(ṽk|v)
N∑
f=2

[
1[pj ≤ p̂(v)]Pr(ṽH |v)f−1+1[pj > p̂(v)]Pr(ṽH |v)N−1

]
f(v)dv

For prices pj > pH , we thus have the following:

Pr(sale ∧ Ik|v) = (1/N)
N∑
f=1

Pr(sale ∧ Ik|v ∧ r∗ = f) = (1/N)1[pj ≤ v]1[pj ≤ p̂(v)]Pr(ṽk|v)

Profits are then:

Π(pj; I
k) =

pj
Pr(Ik)

∫ 1

0

Pr(sale ∧ Ik|v)f(v)dv =
pj

NPr(Ik)

∫ 1

pj

1[pj ≤ p̂(v)]Pr(ṽk|v)f(v)dv
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B.4 Proof of proposition 4

Part 1: Monopoly equilibrium

In the monopoly equilibrium, pL = 1/4α and pH = 0.5. At pH , no agent may search,

i.e. all agents must have a cutoff price above 0.5. This requires:

0.5 ≤ s

α
+

1

4α
<

s

1− α
+

1

4α

Consider any consumer with v ≤ 0.5. This consumer will search at pH = 0.5 if and only if:

α(v − pL)− s > 0 ⇐⇒ v >
s

α
+ pL

This cannot be true. Note that if the above condition is violated, there exists a positive

measure agents with v ∈ (pL + s/α, 0.5) that will search, which makes pL,M not optimal.

Now examine consumers with v > 0.5. These agents will not search at pH iff:

(1− α)(v − pL)− s ≤ (1− α) max{v − 0.5, 0} ⇐⇒ 0.5 ≤ s

1− α
+ pL

This holds by assumption. Thus, there will be no search on the equilibrium path.

There are no deviations in terms of prices, as competitive profits are below monopoly profits

everywhere (this holds because there is no search on-path).

Part 2: Search deterrence equilibrium:

There are no deviations from the low signal price. There is no search on-path, which means

that the monopoly profit function is an upper envelope for competitive profits. Since pL

maximizes the former, there will be no deviations from pL.

Consider deviations from pH . There will not be any profitable deviations to pj < pH , since

profits are equal to monopoly profits here. Monopoly profits are rising in this price interval

since pH = s/α + pL < 0.5 holds true.

First consider a deviation to pj = 0.5. To ensure that this is not profitable, it must hold

that some consumers with v ≥ 0.5 will move on to search at this price (otherwise there is a

profitable deviation to pj = 0.5 since monopoly profits are attained there).
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A consumer with v > 0.5 will move on to search at price pj = 0.5 in this equilibrium if

and only if:

(1− α)(v − pL) + α(v − pH)− s > (v − 0.5) ⇐⇒ 0.5 > (1− α)pL + αpH + s

Note that v ≥ 0.5 > pH > pL, which implies the structure of the gains of search in the above

equation. Note further that this condition is independent of v, so long as v > 0.5. Thus,

suppose for a contradiction, that:

0.5 ≤ (1− α)pL + αpH + s

Then, no consumer with v ≥ 0.5 will move on to search when receiving the price pj = 0.5

in said equilibrium. Then, a deviation to pj = 0.5 would be strictly profitable. Thus, the

following must hold:

0.5 > (1− α)pL + αpH + s

Moreover, the above condition implies that the initial condition that pH < 0.5 holds true.

To see this, recall that pH = pL + s/α, which yields that:

0.5 > (1− α)pL + αpH + s = (1− α)pL + αpL + s+ s ⇐⇒ 0.5 > pL + 2s > pL +
s

α

Note also that the condition 0.5 > (1−α)pL +αpH + s implies that the necessary condition

for search by all consumers with v > 0.5 is satisfied.

We can thus repeat the above arguments for generic prices pj > pH to pin down the (interior)

cutoff price of consumers with v ∈ [0.5, 1] as:

p̂(v) = (1− α)pL + αpH + s ∈ (pH , 0.5)

No deviations to prices pj ∈ ((1− α)pL + αpH + s, 1) will be profitable, since profits will be

zero as all consumers move on to search and never return.

Now consider price deviations in the interval pj ∈ (pH , (1 − α)pL + αpH + s). This in-

terval is non-degenerate.

In this interval of prices, all consumers with v ≤ 0.5 that can search (i.e. v ∈ (pL+s/α, 0.5))

will search and will not return. All consumers with v ≥ 0.5 do not search at these prices
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and buy directly because this cutoff price is below 0.5 by assumption. Thus, profits in the

price interval pj ∈ (pH , (1− α)pL + αpH + s) are:

Π(pj; ṽ
H) = pj

∫ 1

0.5

f 1(v)Pr(ṽH |v)dv

This holds because all consumers with v < 0.5 either left to search (v > pH = pL + s/α) and

won’t return or cannot buy (v ≤ pH = pL + s/α). Moreover, no consumer with v > 0.5 will

search for these prices.

Thus, the best deviation price is pj = (1 − α)pL + αpH + s < 0.5, since profits are strictly

increasing for prices in the interval just discussed. Note that no consumers arrive after

searching in this equilibrium.

When setting the price pj = (1 − α)pL + αpH + s < 0.5, the firm will only make the

sale to consumers with v ≥ 0.5 that arrive at this firm first - but the sale will be made to all

these consumers. Thus, profits from the deviation are:

ΠC((1− α)pL + αpH + s; ṽH) =
(
(1− α)pL + αpH + s

)
(0.5/N)α

By contrast, equilibrium profits are:

Π(pj = s/α+pL; ṽH) =

(
s

α
+pL

)[∫ 0.5

s
α

+pL
Pr(ṽH |v)(1)(1/N)dv+

∫ 1

0.5

Pr(ṽH |v)(1)(1/N)dv

]
=

(
s

α
+ pL

)[
(1/N)(1− α)

(
0.5− s

α
− pL

)
+ (0.5/N)α

]
Thus, a necessary condition for equilibrium existence (which is then also sufficient given that

said cutoff price is below 0.5) is:(
s

α
+ pL

)[
(1− α)

(
0.5− s

α
− pL

)
+ 0.5α

]
≥ 0.5α

(
(1− α)pL + αpH + s

)
B.5 Proof of lemma 3

We are studying an equilibrium with search, where it must hold that pL < pH = 0.5.

Part 1: Ordering
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(i) Suppose:

pH = 0.5 ≤ s

α
+ pL <

s

1− α
+ pL

Then, no consumer will search on-path. Consider consumers with v ≤ 0.5, who search at

pj = pH iff:

α(v − pL) + (1− α)(0)− s > (0) ⇐⇒ v >
s

α
+ pL

Such consumers don’t exist under the above assumption.

Consider consumers with v > 0.5, who will not search at pj = pH iff:

(1− α)(v − pL) + (α)(v − 0.5)− s ≤ (v − 0.5) ⇐⇒ 0.5 ≤ s

1− α
+ pL

Thus, these consumers will also not search on path.

(ii) Suppose instead that:

0.5 >
s

1− α
+ pL

Then, consumers with v > 0.5 will search on path by the above logic, which breaks the

equilibrium. This pins down the ordering such a PSE needs to satisfy.

Part 2: Calculating the seq. rational search strategy

Note that the optimal search rule is myopic, so we can consider the last search decision

without loss. I will pin down the optimal search process for the relevant intervals of valua-

tions separately.

(i) v ≤ pL

There is no price after which such a consumer would search. This implies that p̂(v) =∞ for

these consumers.

(ii): v ∈ (pL, 0.5):

Search is strictly optimal for prices pj ∈ [pL, pH ] if and only if:

α(v−pL)+(1−α) max{v−pj, 0}−s > max{v−pj, 0} ⇐⇒ α(v−pL)−s > αmax{v − pj, 0}︸ ︷︷ ︸
≥0
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Since the RHS is weakly positive, a necessary condition for search to occur at these prices

is α[v − pL]− s > 0. If this is true, the indifference price is pinned down by:

α(v − pL)− s = α(v − pj) ⇐⇒ p̂(v) = pL + s/α

Note that our assumption implies that there exist consumers with v ∈ [pL + s/α, 0.5] for

which the necessary condition for search is fulfilled and this is the cutoff price.

For all consumers with v ≤ pL + s/α, search is never optimal. For prices pj ≤ pH , the

above reasoning prooves it. For prices pj ≥ pH , v < 0.5 = pH ≤ pj holds and the search

calculus is the same as above.

(iii) v > pH = 0.5: Such a consumer will find it strictly optimal to search for prices

pj ∈ (pL, pH) if and only if:

(1− α)(v − pL) + α(v − pj)− s > (v − pj)

Supposing that the price cutoff if below pH , it will be: p̂(v) = s/(1−α)+pL. Our assumption

was that 0.5 = pH < s
1−α + pL, which means that this cannot be the correct search cutoff.

In other words, these consumers will never search at these prices.

If pj > pH , the search inequality becomes:

α(v − pH) + (1− α)(v − pL)− s > max{v − pj, 0}

The relevant necessary condition for search is now α(v− pH) + (1−α)(v− pL)− s > 0 ⇐⇒
v > s + αpH + (1 − α)pL. If this is weakly negative, a consumer won’t search. If this is

strictly positive, you will have an interior solution for your search cutoff and:

p̂(v) = αpH + (1− α)pL + s ≥ pH ⇐⇒ pH ≤ pL +
s

1− α

This pins down search behaviour.

B.6 Proof of proposition 5

Part 1: Closed-form solution for pL:

I first focus on pinning down the optimal low signal price pL. Until a price pj ∈ (0, s/α+pL],
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the objective function after the low signal is:

ΠC(pj; ṽ
L) = pj

∫ 1

pj

f 1(v)Pr(ṽL|v)dv + pj

N∑
j=2

[ ∫ 0.5

s/α+pL
f j(v)Pr(ṽL|v)Pr(ṽH |v)j−1dv

]
︸ ︷︷ ︸

ML(α,s;pL)

To evaluate this, note the following:∫ 0.5

s/α+pL
f j(v)Pr(ṽL|v)Pr(ṽH |v)j−1dv = (1/N)(1− α)j−1

[
(0.5− pL)α− s

]

It follows that:

ML(α, s; pL) =
N∑
j=2

[ ∫ 0.5

s/α+pL
f j(v)Pr(ṽL|v)Pr(ṽH |v)j−1dv

]
=

N∑
j=2

(1/N)(1−α)j−1

[
(0.5−pL)α−s

]
=(N−1∑

j=1

(1−α)j
)

(1/N)

[
(0.5−pL)α−s

]
=

(
(1− α)

(
1− (1− α)N−1

)
1− (1− α)

)
(1/N)

[
(0.5−pL)α−s

]
Now, let us plug this function M(.) into the objective for the prices pj ∈ (0, s/α + pL]:

ΠC(pj; ṽ
L) = pj

∫ 0.5

pj

α(1/N)dv + pj

∫ 1

0.5

(1− α)(1/N)dv + pjM(α, s; pL)

Integrating up, the objective function becomes:

ΠC(pj; ṽ
L) = pjα(1/N)[0.5−pj]+pj(1−α)(1/N)[0.5]+pjM(α, pL) = 0.5(1/N)pj−α(1/N)(pj)

2+pjM(α, pL)

Setting the derivative equal to zero and assuming that such a solution exists in the price

interval we are examining yields:

∂ΠC(pj; ṽ
L)

∂pj
= 0 ⇐⇒ 0.5(1/N)− 2α(1/N)pj +M(α, pL) = 0 ⇐⇒ pj =

1

4α
+
M(α, pL)

(2/N)α

Note strict concavity of the objective function for pj ∈ [0, s/α + pL]. Now let’s obtain a

closed-form expression for pL in symmetric equilibrium:

pL =
α + 2(1− α)

(
1− (1− α)N−1

)
(0.5α− s)

4α2 + 2α(1− α)
(
1− (1− α)N−1

)
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=⇒ ∂pL

∂s
=

−2(1− α)
(
1− (1− α)N−1

)
4α2 + 2α(1− α)

(
1− (1− α)N−1

) > −1 ⇐⇒

−2(1− α)
(
1− (1− α)N−1

)
> −4α2 − 2α(1− α)

(
1− (1− α)N−1

)
⇐⇒

4α2 > 2(1− α)2
(
1− (1− α)N−1

)
This holds because α > 1− α and

(
1− (1− α)N−1

)
< 1.

Part 2: Checking deviations from pL:

Consider first prices pj ∈ [0, s/α + pL]. Note that the objective function is strictly con-

cave in this price range. Thus, there will be no deviations in this interval.

Secondly, consider prices pj ∈ (s/α + pL, 1]. At these prices, the monopoly profit functions

are an upper envelope for the competitive profits function for both signals:

ΠC(pj; ṽ
k) < ΠM(pj; ṽ

k)

⇐⇒

pj

∫ 1

0.5

(1/N)Pr(ṽk|v)dv+pj

∫ 0.5

pj

(1/N)Pr(ṽH |v)N−1Pr(ṽk|v)dv+pj

N∑
f=2

∫ 0.5

pj

(1/N)Pr(ṽk|v)Pr(ṽH |v)N−1dv

<

pj

∫ 0.5

pj

(1/N)Pr(ṽk|v)dv + pj

∫ 1

0.5

(1/N)Pr(ṽk|v)dv

⇐⇒

pj

∫ 0.5

pj

Pr(ṽH |v)N−1Pr(ṽk|v)dv + pj

N∑
f=2

∫ 0.5

pj

Pr(ṽk|v)Pr(ṽH |v)N−1dv < pj

∫ 0.5

pj

Pr(ṽk|v)dv

⇐⇒

pj

∫ 0.5

pj

NPr(ṽH |v)N−1Pr(ṽk|v)dv+ < pj

∫ 0.5

pj

Pr(ṽk|v)dv ⇐⇒ N
(
1− α

)N−1
< 1

This equality holds for all relevant N since 1− α < 0.5.

Now consider prices pj ≥ 0.5. At these prices, the sale will not be made to any searchers.

Thus, competitive profits are below monopoly profits for any prices pj ∈ (s/α + pL, 1), i.e.:

ΠC(pj; ṽ
L) ≤ ΠM(pj; ṽ

L)
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By contrast, note that ΠC(pj; ṽ
L) > ΠM(pj; ṽ

L) holds for all prices pj ≤ s/α + pL.

Moreover, one can show the following regarding the relationship between the search equilib-

rium low signal price and the monopoly low signal price.

pL =
1

4α
+
M(α, pL)

(2/N)α
>

1

4α
= pL,M

Thus, pL,M < pL < pL + s/α holds. Taking note of this and the fact that pL maximizes

ΠC(pj; ṽ
L) on pj ∈ (0, s/α + pL] then yields:

ΠC(pL; ṽL) ≥ ΠC(pL,M ; ṽL) > ΠM(pL,M ; ṽL)

Since pL,M maximizes ΠM(pj; ṽ
L) over the entire domain, ΠM(pL,M ; ṽL) ≥ ΠM(pj; ṽ

L) holds

for pj ∈ (s/α+ pL, 1]: These arguments imply the following for the prices pj ∈ (s/α+ pL, 1):

ΠC(pL; ṽL) > ΠM(pL,M ; ṽL) ≥ ΠM(pj; ṽ
L) ≥ ΠC(pj; ṽ

L)

This shows there are no deviations from pL.

Part 3: Checking deviations from pH = 0.5

As argued before, the firm’s profits are bounded from above by ΠM(pj) in the price interval

pj ∈ (s/α + pL, 1). Since pH,S maximizes monopoly profits, there won’t be any deviations

into this region.

Finally, I need to show when there is no deviation to a price in the interval pj ∈ (0, s/α+pL].

Competitive high signal profits in this region are:

ΠC(pj; ṽ
H) = ΠM(pj; ṽ

H) + pjM
H(s, α; pL)

To evaluate this, recall that ΠM(pj; ṽ
H) is strictly rising for all prices pj ≤ 0.5. Thus, the

maximum of the above will be at pj = s/α+pL. Existence of the search equilibrium requires

that this deviation is not profitable. Equilibrium profits at pH,M = 0.5 are:

ΠC(0.5; ṽH) = 0.5

∫ 1

0.5

(1/N)αdv = (1/4N)α
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By contrast, deviation profits are given by the following function at prices pj ∈ (0, pL+s/α]:

ΠC(pj; ṽ
H) = ΠM(pj; ṽ

H) + pj

N∑
j=2

[ ∫ 0.5

s/α+pL
f j(v)Pr(ṽH |v)Pr(ṽH |v)j−1dv

]
=

0.5pj(1/N)− (1− α)(1/N)p2
j + pj

[
0.5− pL − s/α

]
(1/N)

(
(1− α)2

α

(
1− (1− α)N−1

))
Part 4: Ordering of profits in the different equilibria and premise of the search equilibrium.

The equilibrium prices also need to satisfy the ordering established in the previous lemma

regarding the optimal search process.

In the search deterrence and the monopoly equilibrium, there is no search on-path and

the low signal price is the same in the monopoly equilibrium and in the search deterrence

equilibrium. Thus, low signal profits are the same in the monopoly and the search deterrence

equilibrium.

In the search deterrence equilibrium, the firm makes the high signal profits it would make in

the monopoly setting when offering the price pH = s/α + pL < 0.5. We know this must be

below the monopoly price and that high signal monopoly profits have a strict global maxi-

mum at pH,M . Thus, high signal profits are higher in monopoly than in the search deterrence

equilibrium.

In the search equilibrium and the monopoly equilibrium, the high signal price is the same.

This is because no consumer that arrives after searching in the search equilibrium can buy

at the high signal price.

Thus, high signal profits are the same in the monopoly and the search equilibrium. This

means that high signal profits in the search equilibrium are strictly higher than in the search

deterrence equilibrium.

By previous arguments, low signal profits in the search equilibrium are higher than in the

monopoly equilibrium, which equal low signal profits in the search deterrence equilibrium.
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B.7 Proof of lemma 4

Part 1: The probability that a firm plays a price strictly above 0.5 is 0.

Find the highest price pmax that is in the support of the possible prices that can be played.

If this price is weakly below 0.5, we are done.

Suppose instead that this price pmax is strictly above 0.5, which means that only consumers

with v > 0.5 can consume at this price. Define the signal which warrants the offer of this

price as ṽmax. Further define the support of prices after the signals (with possible gaps) as

[pmin, p̄min] and [pmax, p̄max], respectively, where pmax = p̄max.

At pmax, all consumers with v ≥ pmax will optimally search iff:

Pr(ṽmin|v)

∫ p̄min

pmin
(v − p)dFmin(v) + Pr(ṽmax|v)

∫ p̄max

pmax
(v − p)dFmax(v)− s > (v − pmax)

⇐⇒

pmax > Pr(ṽmin|v)

∫ p̄min

pmin
pdFmin(v) + Pr(ṽmax|v)

∫ p̄max

pmax
pdFmax(v) + s

Since the signal probabilities are constant for these consumers, their search incentives are

identical.

Suppose that they all have strict incentives to search - then, they all search. If pmax is

played with zero probability after both signals, they never return, thus implying that profits

from setting this price are zero, a contradiction. If pmax is played with positive probability

after some signal, there are undercutting motives from this price, breaking the equilibrium.

Thus, consumers with v ≥ pmax must not have strict incentives to search - then, they also

would not search for any price pj ≤ p̄max. One can show that consumers with v ∈ [0.5, p̄max)

have lower search incentives and would not search at pmax because:

Pr(ṽmin|v)

∫ min{v,p̄min}

pmin
(v − p)dFmin(v) + Pr(ṽmax|v)

∫ min{v,p̄max}

pmax
(v − p)dFmax(v)− s < 0

58



This holds because:

Pr(ṽmin|v)

∫ min{v,p̄min}

pmin
(v − p)dFmin(v) + Pr(ṽmax|v)

∫ min{v,p̄max}

pmax
(v − p)dFmax(v)− s <

Pr(ṽmin|v)

∫ p̄min

pmin
(p̄max − p)dFmin(v) + Pr(ṽmax|v)

∫ p̄max

pmax
(p̄max − p)dFmax(v)− s ≤ 0

This expression must be negative by the case we are currently in because the signal proba-

bilities are constant for consumers with v > 0.5.

Thus, consumers with v ∈ [0.5, p̄max] would also not search for any prices pj ≤ pmax. As a

result, no such consumers would arrive at the firm after searching and no such consumers

would leave the firm to search at the prices pj ∈ [0.5, p̄max].

Thus, the profits a firm would make when setting any price pj ∈ [0.5, pmax] would be equal

to monopoly profits. By strict concavity of the monopoly profit functions (for either signal),

monopoly profits would be strictly decreasing in this region.

Suppose that there are two or more different prices pj ∈ [0.5, pmax] in the support of Fmax.

By the above results, this would violate the mixing indifference condition, since monopoly

profits are strictly decreasing in this interval of prices.

Thus, suppose that it is just pmax that is in the support of Fmax. If this is played with

positive probability, there is a profitable deviation towards 0.5.

Thus, if there is a pmax > 0.5 in the support of Fmax, it must be played with zero probability,

and there are no other prices in [0.5, pmax] that are in the support of Fmax.

Now consider the distribution of prices Fmin. We are still in the case pmax > 0.5, where

we know that no consumer with v > 0.5 can search for prices pj ≤ pmax. Thus, all prices

pj > 0.5 that are played after ṽmin will yield monopoly profits at the respective price, which

are strictly decreasing in the interval [0.5, 1].

If there are two or more such prices, we have a contradiction to mixing indifference. If

there is exactly one, it needs to satisfy a FOC whenever it is played with positive probabil-

ity, which cannot be fulfilled for prices pj > 0.5. Thus, no price pj > 0.5 can be set after ṽL
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with positive probability either.

Part 2: The lowest price that is played in such an MSE, call this pmin, cannot be part

of a stochastic action.

Suppose pmin is part of a stochastic action. For prices in the open ball [pmin, pmin + s),

no consumer will search. To see this, define the distribution of prices a consumer with v can

expect as F (p; v). Note that a consumer will not search at a price pj if:∫ pmax

pmin
max{v − p, v − pj, 0}dF (p; v)− s ≤ max{v − pj, 0}

The corresponding gains of search satisfy:∫ pj

pmin

[
max{v − p, 0} −max{v − pj, 0}

]
dF (p; v)− s <

[
(v − pmin)−max{v − pj, 0}

]
− s

Now consider prices pj in the open ball pj ∈ [pmin, pmin + s). If v ≤ pj, the gains of search

are bounded from above by:

[
(v − pmin)−max{v − pj, 0}

]
− s < (v − pmin)− s < 0

If v > pj, the gains of search are bounded from above by:

[
(v − pmin)−max{v − pj, 0}

]
− s < (pj − pmin)− s < 0

Thus, no consumer would move on to search for any of the prices in the open ball pj ∈
[pmin, pmin + s)

Similarly, no consumer with v ∈ [pmin, pmin+s) would ever search on the equilibrium path af-

ter any price. If v ≤ pj, the gains of search take the aforementioned form, which are negative.

Suppose instead that v > pj. Then, it must hold that pj < v < pmin + s, which im-

plies the result given the gains of search highlighted above.

Thus, all consumers that arrive after search must have a valuation v ≥ pmin + s and must

have initially received a price pj ≥ pmin + s. Note that these are just lower bounds, but not

necessarily infima.
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Thus, when setting a price in this open ball above pmin, the sale will be made to all searchers

and no consumer leaves to search.

Suppose that the set of prices pj ∈ [pmin, pmin + s] are played with probability/measure zero.

Then, these prices are irrelevant for the consumer’s search decision. Define pmin,∗ = pmin + s

and repeat the above steps until you find a pmin,∗ such that the prices in the open ball around

this are played with positive probability when observing the low signal. Such an interval

must exist after some repetitions, since s > 0 and the interval of possible prices can be

partitioned into a finite number of subsets. Moreover, pmin,∗ < 0.5 must hold.

If the first such interval satisfies pmin,∗ + s > 0.5, we know that the prices pj > 0.5 in

this interval can only be played with zero probability by previous arguments. Then, replace

pmin,∗ + s with 0.5 in the following arguments - the interval between [pmin,∗, 0.5] must be

played with positive probability.

No consumer with v < pmin,∗ + s would arrive after search and all consumers that searched

must have received prices strictly above pmin,∗+s previously. Moreover, no first arriver would

search after these prices. Thus, for all these prices, competitive profits will be monopoly prof-

its + price, multiplied by the measure of searches. Thus, profits in this interval will be strictly

concave, since we are considering prices below 0.5.

Thus, consider such a set [pmin,∗, pmin,∗ + s]. Suppose there are three or more prices in

this interval that are played in Fmin. This implies an immediate contradiction to the mixing

indifference condition by strict concavity of the competitive profit function in this interval.

Suppose that there are exactly two prices in this interval that are in the support of Fmin.

Since prices in the interval must be played with positive probability, at least one of these

prices must be played with positive probability. Then, this price must be a local maximizer

of the objective function, otherwise there would be a deviation. By strict concavity, this

must also be a (unique) maximizer on [0, 0.5], a contradiction to mixing indifference.

Thus, there must be exactly one price in this interval, which must be played with posi-

tive probability. Then, there can be no other prices in the support of Fmin. By a similar

logic as above, pmin,∗ must be a local maximizer of the competitive profit function monopoly

profits + price*searchers.
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By strict concavity of this function on [0, 0.5], pmin,∗ must uniquely maximize this func-

tion on this price interval. Since this function is an upper bound for the true competitive

profits for all prices, the firm cannot attain equal profits for any other price pj ≤ 0.5.

Now consider prices pj > 0.5. Then, we are in the case where pmax > 0.5. It was pre-

viously established that no consumer with v > 0.5 can search at pmax or lower prices. Thus,

any price pj ≥ 0.5 would only yield monopoly profits.

Since pmin,∗ must satisfy a FOC for the corresponding competitive profits pmin,∗ > pL,M

must hold. Thus, profits at pmin,∗ would be strictly above the optimal monopoly profits.

Thus, any prices pj > 0.5, which can only achieve monopoly profits at the respective price,

cannot satisfy mixing indifference.

Part 3: pmin < 0.5 and this price must be offered after the low signal.

Suppose, for a contradiction, that pmin ≥ 0.5. As a result, pmax > 0.5 must hold, but

any no prices above 0.5 can be played with positive probability. Thus, we do not have a

MSE in the classical sense, a contradiction. Also, there would be a downward deviation after

ṽL since there would not be search on path.

Thus, pmin < 0.5. Also note that it is played with strictly positive probability. Suppose, for

a contradiction, that it is played after the high signal ṽH . There is a contradiction, since

profits in an open ball above it are monopoly profits + price*searchers, which are strictly

increasing after the high signal in the interval [0, 0.5].

Part 4: There must be search in such an equilibrium.

Define [pH , p̄H ] as the interval of prices offered after the high signal. Suppose, for a con-

tradiction, that there is no search on the equilibrium path in a MSE.

Restrict attention to the prices in FH that satisfy pj ≤ 0.5. We know that such prices

need to be played with positive probability. Because no consumer arrives after searching,

profits for all the prices set after any signal equal the monopoly profits at these prices, which

are strictly concave on [0, 0.5].
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If there are more than 2 such prices, strict concavity implies a direct contradiction. If there

are two prices or one such price, one of them must be played with positive probability. This

price must then be a local maximizer - this cannot exist in the price interval, a contradiction.

Part 5: Consumers with v > 0.5 cannot search on path.

If pmax > 0.5, we know that consumers with v > 0.5 cannot search at pmax, which means

that they cannot search on-path.

Suppose p̄H = pmax ≤ 0.5. Given what was previously proven, these consumers have lower

incentives to search than consumers with v ∈ [p̄H , 0.5].

Suppose that consumers with v > 0.5 search on path - then they must search at p̄H . Since

they have a lower probability of generating the favorable low signal, they will have lower

search incentives than consumers with v ∈ [p̄H , 0.5], who would thus also search at p̄H .

This means that all consumers with v > p̄H would search at p̄H . If p̄H is played with

zero probability, all consumers that leave to search never return - thus, profits are zero, a

contradiction. If p̄H is played with positive probability, there will be undercutting motives

that break the equilibrium.

B.8 Proof of lemma 5

Consider first the structure of such an equilibrium. A price pL is offered to all consumers

that generate the low signal. Any consumer that generates the high signal is offered a price

that is drawn from the distribution [pH , p̄H ], which is atomless and gapless by assumption.

We know p̄H ≤ 0.5 must hold in such an equilibrium - by the atomless and gapless specifi-

cation and the previous result that prices above 0.5 are only played with 0 probability.

Part 1: pL + s/α ≤ pH must hold in a MSE.

The previous results imply that pL must be the smallest price that is offered, i.e. pL ≤ pH .

Suppose, for a contradiction, that pL + s/α > pH and consider the search decision of a

consumer with v ∈ (pL, 0.5] for prices pj ∈ [pH , pH + ε], with a small ε.
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When receiving such a price, a consumer with v ∈ [pj, 0.5] will choose not to search if:

α(v−pL)+(1−α)

[ ∫ pj

pH
max{v−p, 0}dFH(p)+

∫ p̄H

pj

max{v−pj, 0}dFH(p)

]
−s ≤ max{v−pj, 0}

⇐⇒

α(pj − pL) + (1− α)

[ ∫ pj

pH

[
(pj − p)

]
dFH(p)

]
− s ≤ 0

Note that the gains of search are continuous in pj, which follows from the fact that we are

studying atomless and gapless distributions FH .

As pj → pH , such a consumer will surely not search. This is because the gains of search

converge to α(pH − pL)− s, which must be strictly negative by our assumption.

Now consider consumers with v < pj. Such a consumer will not search at pj if and only if:

α(v − pL) + (1− α)

[ ∫ v

pH

[
(v − p)

]
dFH(p)

]
− s ≤ 0

As pj → pH , the gains of search for such a consumer must also be strictly negative, since

they are bounded from above by the expression introduced previously.

Under our assumption, there would thus be an interval of prices pj ∈ [pH , pH + ε] for which

no consumer with v ≤ 0.5 would move on to search. We also know that no consumer with a

valuation v > 0.5 can search for any such prices, since they cannot search on-path. At these

prices, the sale would thus be made to any first arriver with v ≥ pj.

Now examine the purchasing choices of any consumer that arrives after searching. Any

such consumer must have received a price weakly above pH + ε by the above logic.

Any consumer that arrives after searching must have a valuation v ≥ pH + δ. Consumers

with v ≤ pH < pL + s/α could never search on-path. Moreover, consider a consumer with

v > pH . Such a consumer would not search if and only if:

α(v−pL)+(1−α)

[ ∫ pj

pH
max{v−p, 0}dFH(p)+

∫ p̄H

pj

max{v−pj, 0}dFH(p)

]
−s ≤ max{v−pj}
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Suppose this consumer has received an initial price pj > v. Then, they will not search iff:

α(v − pL) + (1− α)

[ ∫ v

pH
max{v − p, 0}dFH(p)

]
− s ≤ 0

This is continuous in v and converges to α(pH−pL)−s as v → pH , which is strictly negative.

Suppose this consumer has pj ≤ v. Then, they will not search if:

α(pj − pL) + (1− α)

[ ∫ pj

pH
max{pj − p, 0}dFH(p)

]
− s ≤ 0

Once again, this is bounded from above by the aforementioned expression, which are nega-

tive when v is in an open ball around pH .

Thus: When setting a price pj ∈ [pH , pH + ψ], with ψ = min{ε, δ}, no consumer would

move on to search and any consumer arriving after search would surely buy. Thus, compet-

itive profits are equal to:

ΠC(pj, ṽ
H) = ΠM(pj, ṽ

H) + pjM
H(pL, FH(p))

Note that MH(pL, FH(p)) is the mass of consumers that arrive after searching and generate

the signal ṽH . Monopoly profits are strictly concave for pj ∈ [pH , p̄H ], since p̄H ≤ 0.5, and

the second component is linear in pj. Given that competitive profits are differentiable in

this interval, the derivative of competitive profits is strictly positive here, which violates the

mixing indifference condition, a contradiction.

Part 2: Any consumer with v ∈ (s/α + pL, 0.5] will search when receiving any price in

(pH , p̄H ]. No other consumers will search on path.

First, consider v ∈ (s/α + pL, pH ], where v < 0.5. Recall that s/α + pL ≤ pH was es-

tablished. These consumers will search at any price pj ∈ (pH , p̄H ] if and only if:

α(v − pL) + (1− α)[0]− s > 0

This equality is satisfied - thus, all these consumers will search.

Second, consider consumers with v ∈ (pH , 0.5]. These consumers will search at any price
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pj ∈ (pH , p̄H ] if and only if:

α(v−pL)+(1−α)

[ ∫ pj

pH
max{v−p, 0}dFH(p)+

∫ p̄H

pj

max{v−pj, 0}dFH(p)

]
−s > max{v−pj, 0}

If v ≤ pj, this inequality will be satisfied, because v > pH ≥ s/α + pL.

If v > pj, the above inequality becomes:

α(pj − pL) + (1− α)

[ ∫ pj

pH
(pj − p)dFH(p) + 0

]
− s > 0

Since pj > pH ≥ s/α + pL, this inequality will also be satisfied. Thus, these consumers will

thus search for any such price.

Thirdly, note that consumers with v ≥ 0.5 cannot search on-path - this would break the

equilibrium.

Fourth, consumers with v ≤ pL + s/α ≤ pH won’t search after pj ∈ [pH , p̄H ], since:

α(v − pL) + (1− α)(0)− s ≤ 0

This completes the characterization, since no consumer would ever search at pL.

Part 3: The equilibrium low signal price is identical to the low signal price in the search

equilibrium.

In an open ball above pL, no consumer would move on to search. Any consumer that

arrives after search must have v ≥ s/α + pL and must have received a price strictly above

pL. Thus, competitive profits are the following in an open ball around pL

ΠC(pj; ṽ
L) = ΠM(pj; ṽ

L) + pjM
L(pL, pH)

Moreover, the mass of consumers who arrive after searching is also exactly the same as in

the search equilibrium. All consumers with v ∈ (s/α + pL, 0.5] will search with probability

1 if they generate the high signal but never if they generate the low signal.
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Thus, pL is a fixed point of the following FOC:

∂ΠM(pj, ṽ
L)

∂pj

∣∣∣∣
pj=pL

+
N∑
j=2

∫ 0.5

s/α+pL
α(1− α)j−1(1/N)dv = 0

By strict concavity of ΠM(pj, ṽ
L), the solution to this equation is unique and equals pL,S.

Part 4: Comparison of profits to those made in the search equilibrium.

Profits made for all consumers that generate the low signal are exactly identical as in the

search equilibrium - this holds because the structure of profits is identical and the low signal

price is the same.

Now consider the equilibrium high signal profits. By mixing indifference, the firm must

make the same profits for any price in the support of FH . Thus, consider p̄H . At this price,

all consumers with v ∈ [p̄H , 0.5] leave the firm to search. They never return, since FH is

atomless.

By construction, no consumer with v > 0.5 can leave the firm to search at these prices

(or arrive after searching). Hence, competitive profits at this price (and thus at all prices

played after the high signal) are:

ΠC(p̄H ; ṽH) = pj

∫ 1

0.5

(1/N)αdv

If p̄H < 0.5, these profits are strictly smaller than those attained in the search equilibrium.

If p̄H = 0.5, profits will be exactly equal. We are done.

Part 5: Whenever the MSE with p̄H exists, so must the search equilibrium.

Existence of the MSE with p̄H = 0.5 requires that the following conditions hold (amongst

others): (1) pL,S + s/α < 0.5, (2) No consumer with v > 0.5 would search at p̄H = 0.5 in the

MSE, and (3) ΠM(0.5; ṽH) ≥ ΠC(pL,S + s/α; ṽH)

The search equilibrium exists if and only if the following three conditions are met: (1)

pL,S + s/α < 0.5, (2) no consumer with v > 0.5 would search at pH = 0.5 in the search

equilibrium, and (3) ΠM(0.5; ṽH) ≥ ΠC(pL,S + s/α; ṽH)
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Conditions 1 are the same in the two equilibria. Condition 3 is also the same in both

equilibria, for the following reasoning:

Both in the search equilibrium and in the MSE with p̄H = 0.5, setting the highest price

will grant you monopoly profits. At the price pL + s/α, nobody searches in the search equi-

librium - this also holds true in the MSE with p̄H = 0.5.

Consumers with v ≤ pL + s/α never search. All consumers that arrive after searching

must have v ≥ pL+s/α and must have generated the high signal at all previous firms. Thus,

the structure of profits at the deviation price is the same in the two equilibria.

It remains to show that when condition 2 of the MSE requirements holds, so will condi-

tion 2 of the search equilibrium.

Suppose that consumers with v > 0.5 do not search at p̄H = 0.5 in the MSE. This is

equivalent to saying that:

(1−α)(v−pL,S)+α

∫ 0.5

pH
(v−p)dFH(p)−s ≤ (v−0.5) ⇐⇒ 0.5 ≤ (1−α)pL,S+α

∫ 0.5

pH
pdFH(p)+s

Consumers with v > 0.5 do not search in the search equilibrium at pH,S = 0.5 if and only if:

(1− α)(v − pL,S) + α(v − 0.5)− s ≤ (v − 0.5) ⇐⇒ 0.5 ≤ (1− α)pL,S + α(0.5) + s

The RHS in the MSE condition is below the RHS in the search equilibrium condition, which

means we are done.

B.9 Proof of proposition 6

Part 1: Upper bound p̄H

Consider the equilibrium with p̄H < 0.5, the only relevant MSE. Note that this equilib-

rium is characterized by:

pL,S + s/α < pH < p̄H < 0.5
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The price p̄H must be set to make consumers with v > 0.5 exactly indifferent between

searching and not searching. Thus, this price needs to satisfy:

p̄H = (1− α)pL + αE[p|ṽH ] + s

If they strictly prefer to search, we have a contradiction, since the price p̄H will yield zero

profits. If they strictly prefer not to search, there is a profitable deviation to the cutoff price

listed above after the high signal, since profits there will be strictly higher.

Part 2: Distribution FH :

The profits for any price pj ∈ (pH , p̄H) are made up of profits from first arrivers and searchers.

We know that any consumer with v ∈ (pL + s/α, 0.5) will move on to search when re-

ceiving a price in the interval pj ∈ (pH , p̄H). No other consumer will search on path.

All initial arrivers with v ∈ (pL + s/α, 0.5) will not return from searching when generat-

ing the low signal at any other firm. They will return if and only if the high signal is

generated at all other firms (and thus the best price in hand is always above their search

cutoff and they keep searching), and then only when pj is lower than any other price they

have received at any other firm, which occurs with conditional probability [1− FH(pj)]
N−1.

Any consumer with v ∈ (pH , 0.5) that arrives after searching (no other consumer with v > pj

arrives after searching) will move on to search again upon receiving a price pj ∈ (pH , p̄H).

Note that these consumers arrive after searching if and only if they generate the high signal

at all previous firms.

Such a consumer will then buy at firm j only when generating the high signal at all other firms

and receiving a higher price at all these firms, which occurs with probability [1−FH(pj)]
N−1,

conditional on generating the appropriate signals.

Thus, competitive high signal profits from a price pj ∈ (pH , p̄H) are:

ΠC(pj; ṽ
H) = pj

∫ 1

0.5

(1/N)αdv + pj

[ N∑
j=1

∫ 0.5

pj

(1/N)(1− α)N
[
1− FH(pj)

]N−1
dv

]
=
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pj(0.5)(1/N)α +Npj
[
0.5− pj

]
(1/N)(1− α)N

[
1− FH(pj)

]N−1

By contrast, total profits from the price p̄H are:

ΠC(p̄H ; ṽH) = p̄H
∫ 1

0.5

(1/N)αdv = 0.5(1/N)αp̄H

By the mixing indifference condition, these profits have to be equal for any such price pj:

0.5(1/N)αp̄H = pj(0.5)(1/N)α + pj
[
0.5− pj

]
(1− α)N

[
1− FH(pj)

]N−1

⇐⇒

p̄H = pj+

(
2N(1− α)N

α

)[
pj[0.5−pj]

[
1−FH(pj)

]N−1
]
⇐⇒ α

2N(1− α)N
p̄H − pj

pj(0.5− pj)
=
[
1−FH(pj)

]N−1

⇐⇒

FH(pj) = 1−
(

α

2N(1− α)N
p̄H − pj

pj(0.5− pj)

)1/(N−1)

(26)

Part 3: Closed-form expression for pH

Profits at pH are:

ΠC(pH ; ṽH) = (0.5)(1/N)αpH + pH
[
0.5− pH

]
(1− α)N

The derivative of these profits w.r.t pH is the following:

(0.5)(1/N)α +
[
0.5− 2pH

]
(1− α)N

Note that:

(0.5)(1/N)α+
[
0.5−2pH

]
(1−α)N > (0.5)(1/N)α−0.5(1−α)N > 0.5α

[
(1/N)−(1−α)N−1

]
Because 1 > N(1−α)N−1, this derivative is strictly positive. This implies that there will be

a unique solution for pH . The profits made at pH must be equal to the profits made at p̄H :

ΠC(p̄H ; ṽH) = ΠC(pH ; ṽH)

⇐⇒
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(0.5)(1/N)αp̄H = (0.5)(1/N)αpH+pH
[
0.5−pH

]
(1−α)N ⇐⇒ p̄H = pH+pH

[
0.5−pH

](2N(1− α)N

α

)
Part 4: Numerical solution procedure:

Thus, a solution procedure for p̄H would be the following.

1. Start with an initial guess for p̄H → calculate pH and E[pj|ṽH ].

2. Check whether these satisfy the indifference condition highlighted above.

When calculating E[pj|ṽH ], note that:

E[pj|ṽH ] =

∫ p̄H

pH
pfH(p)dp =

[
pFH(p)

]p̄H
pH
−
∫ p̄H

pH
FH(p)dp = p̄H −

∫ p̄H

pH
FH(p)dp

B.10 Proof of proposition 7

Part 1:

Previous results imply that the following ordering of prices must hold in this equilibrium:

pL + s/α ≤ pH < p̄H < 0.5

Part 2: Deviations from the high signal price.

The following regions of deviations need to be checked: (i) [0, pL + s/α], (ii) [pL + s/α, pH ],

(iii) [p̄H , 1]. I will go through them in the following. By construction of the equilibrium, the

profits a firm makes for all prices pj ∈ [pH , p̄H ] will be equal, so there can be no deviations

into this region.

(i) pj ∈ [0, pL + s/α]

Recall that no consumer will leave to search for these prices. Moreover, all consumers

that arrive after search must have a valuation v ≥ pL + s/α. Also, the price beats any

price received at the other firm with probability 1, because search only occurs after the high

signal. Thus, the sale is made to all consumers that arrive after search.

Competitive profits are thus monopoly profits + searcher profits. Thus, competitive profits
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are strictly increasing in this price interval. The most profitable deviation in this price in-

terval would be to the price pj = pL + s/α. This is because pL + s/α < 0.5 by assumption.

Profits at this deviation would be:

ΠC(pL + s/α; ṽH) = ΠM(pL + s/α; ṽH) + (pL + s/α)
N∑
j=2

[ ∫ 0.5

pL+s/α

(1/N)(1− α)jdv

]
=

0.5(1/N)(pL+s/α)−(1/N)(1−α)(pL+s/α)2+(pL+s/α)
(
0.5−(pL+s/α)

)
(1/N)

(
(1− α)2

(
1− (1− α)N−1

)
1− (1− α)

)
We need to ensure that these are below the equilibrium profits, namely 0.5(1/N)αp̄H .

(ii) pj ∈ [pL + s/α, pH ]

For this set of prices, all consumers with v ∈ (pL + s/α, 0.5] that arrive at firm j first

will move on to search. If they generate the low signal at any other firm, they won’t return.

They will return iff and only if they generate the high signal at all other firms - since the

resulting price will always be strictly higher than pj.

For the prices pj ≤ pH , no consumer with v > 0.5 can search.

For these prices, all consumers that arrive after searching will have received a strictly higher

price pj ∈ (pH , p̄H) at all other firms with probability 1 . Recall that these consumers have

v ∈ (pL + s/α, 0.5]. These consumers will continue searching and will buy at firm j if and

only if they generate the high signal at all subsequent firms.

Thus, competitive profits for these deviation prices pj ∈ [pL + s/α, pH ] are:

ΠC(pj; ṽ
H) = pj

∫ 1

0.5

(1/N)αdv+pj

[ N∑
j=1

∫ 0.5

pj

(1/N)(1−α)Ndv

]
= 0.5(1/N)αpj+[0.5pj−(pj)

2](1−α)N

The derivative of this w.r.t. pj is:

∂ΠC(pj; ṽ
H)

∂pj
= 0.5(1/N)α + [0.5− 2pj](1− α)N > 0.5α

[
(1/N)− (1− α)N−1

]
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As indicated before, this derivative will be strictly positive for any N . Thus, profits in this

interval are strictly lower than profits at pH - which are the equilibrium high signal profits.

Thus, there will be no profitable deviations.

(iii) pj ∈ (p̄H , 1].

We know all consumers with v ∈ (pL + s/α, 0.5) search at p̄H and higher prices. We know

all consumers with v > 0.5 are exactly indifferent between searching and not searching at

p̄H - thus, a deviation pj > p̄H will trigger search by all these consumers.

Any consumer that arrives after search will not buy - these consumers must have received a

strictly lower price. Any consumer that leaves to search will not return.

By this logic, deviation profits are zero. Thus, as previously: The most profitable devi-

ation is to the price pj = pL+s/α - the condition that this is not profitable was listed above.

Part 3: Possible deviations from the equilibrium low signal price.

The following regions of deviations need to be checked: (i) [0, pL + s/α], (ii) [pL + s/α, p̄H ],

(iii) [p̄H , 1]. I will go through them in the following:

(i) pj ∈ [0, pL + s/α]

We know that competitive profits in the price interval pj ∈ [0, pL + s/α] take the same

structure as in the search equilibrium - the low signal price is a maximizer of profits in this

interval by construction.

Moreover, strict concavity of the competitive profit function guarantees it is the unique

maximizer within this price interval.

(ii) [pL + s/α, p̄H ]

Competitive low signal profits for these deviation prices pj ∈ [pL + s/α, p̄H ] are:

ΠC(pj; ṽ
L) = pj

∫ 1

0.5

(1/N)(1− α)dv +
N∑
j=1

pj

∫ 0.5

pj

(1/N)α(1− α)N−1[1− FH(pj)]
N−1dv
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=

pj

∫ 1

0.5

(1/N)(1− α)dv + pj

∫ 0.5

pj

α(1− α)N−1[1− FH(pj)]
N−1dv

We can use the same trick as we did in the baseline setting. We know that, in equilibrium,

pL,S will grant low signal profits strictly above the monopoly low signal profits.

I will show that competitive profits for prices pj ∈ [pL + s/α, p̄H ] will be strictly below

monopoly profits. To see this, recall that:

ΠM(pj; ṽ
L) = pj

∫ 1

0.5

(1/N)(1− α)dv + pj

∫ 0.5

pj

(1/N)αdv

Thus, ΠM(pj; ṽ
L) > ΠC(pj; ṽ

L) holds for any such price because:

pj

∫ 1

0.5

(1/N)(1−α)dv+pj

∫ 0.5

pj

(1/N)αdv > pj

∫ 1

0.5

(1/N)(1−α)dv+pj

∫ 0.5

pj

α(1−α)N−1[1−FH(pj)]
N−1dv

⇐⇒

pj

∫ 0.5

pj

(1/N)αdv > pj

∫ 0.5

pj

α(1−α)N−1[1−FH(pj)]
N−1dv ⇐⇒ 1 > N(1−α)N−1[1−FH(pj)]

N−1

This holds because the following inequality holds: N(1 − α)N−1 < 1. Thus, there will not

be any profitable deviations in this region.

(iii) pj ∈ (p̄H , 1]:

Profits will be zero - there will be no profitable deviations.

B.11 Proof of corollary 1

Consider any s > 0 and suppose that α→ 0.5.

Then, pL,M → 0.5, which means that limα→0.5[pL,M + s/α] = 0.5 + 2s > 0.5

This implies that the search deterrence equilibrium cannot exist, because existence of this

equilibrium requires that pL,M + s/α < 0.5.

In the search equilibrium, we have pL,S > pL,M , which means that limα→0.5[pL,S + s/α] ≥
0.5 + 2s > 0.5 must also hold true, which rules out existence of the search equilibrium.
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Thus, both the search and the search deterrence equilibrium cannot exist.

Similarly, recall that any MSE where the high signal price is drawn from an atomless, gapless

distribution must satisfy the following properties: The highest price must be weakly below

0.5 and pL,S + s/α ≤ pH .

When pL,S + s/α > 0.5, these two conditions cannot be jointly satisfied, implying that

this equilibrium cannot exist.

By constrast, the fact that limα→0.5[pL,M +s/α] > 0.5 implies that the monopoly equilibrium

exists. The last result follows because pL,M → 0.5.

B.12 Proof of corollary 2

Part 1: High price comparative statics:

The equilibrium high price is unaffected by search costs, signal precision, and the num-

ber of active firms N . It is always equal to 0.5.

Part 2: Low price comparative statics:

Note that the equilibrium low price has to satisfy the following FOC:

∂ΠM(pj; ṽ
L)

∂pj

∣∣∣∣
pj=pL

+ML(s,N ; pL) = 0

Note that:

ML(s,N ; pL) =

(
α(1− α)

(
1− (1− α)N−1

)
1− (1− α)

)
(1/N)

[
(0.5− pL)− s/α

]
Thus, it holds that:

∂ML(.)

∂s
< 0

The implicit function theorem and weak concavity of the monopoly profit function implies

that a rise of s will lead to a fall in pL,S.

Now consider the effect of a rise in the number of active firms. Recall that the equilib-
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rium low price must solve:

T (pL, α) = pL − 1

4α
− ML(s,N ; pL)

(2/N)α
= 0 ⇐⇒

T (pL, α) = pL − 1

4α
− 1

(2/N)α

(
(1− α)

(
1− (1− α)N−1

)
1− (1− α)

)
(1/N)

[
(0.5− pL)α− s

]
⇐⇒

T (pL, α) = pL − 1

4α
−
(

(1− α)
(
1− (1− α)N−1

)
2α

)[
(0.5− pL)− s/α

]
Note that:

∂T

∂pL
= 1−

(
(1− α)

(
1− (1− α)N−1

)
2α

)
(−1) > 0

∂T

∂N
= −(1− α)

2α

(
−
(
log(1− α)

)
(1− α)N−1

)[
(0.5− pL)− s/α

]
< 0

Since 1−α < 1, log(1−α) < 0, which implies that the second expression is strictly negative.

The result then follows from application of the implicit function theorem - pL is rising in N .

B.13 Proof of corollary 3

In the search deterrence equilibrium, it holds that pL,D = 1
4α

, pH,D = s/α + pL,D. The

comparative statics are immediate.

B.14 Comparative statics - consumer welfare (N=2)

Consider a pure-strategy equilibrium without search. In such an equilibrium, the expected

utility of a consumer with valuation v is given by the following:

EU(v) = Pr(ṽH |v) max{v − pH , 0}+ Pr(ṽL|v) max{v − pL, 0}

Consider instead a pure-strategy equilibrium with search. In such an equilibrium, the ex-

pected utility of a consumer that would not search at pH is given by the above. By constrast,

the expected utility of a consumer who searches at pH is given by:

EU(v) = Pr(ṽH |v)

[
Pr(ṽH |v) max{v−pH , 0}+Pr(ṽL|v) max{v−pL, 0}−s

]
+Pr(ṽL|v) max{v−pL, 0}

Defining welfare as the ex-ante expected utility of consumers, U =
∫ 1

0
EU(v)dv, figure 5

plots the (numerically calculated) relationship between search costs and consumer welfare

(when restricting attention to pure-strategy equilibria).
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C Proofs of section 5

C.1 Proof of lemma 6

Part 1:

I have previously defined the function g(v) := Pr(ṽL|v)(v − pL)− s. The first part requires

that limv↑xg(v) ≥ g(x) ≥ limv↓xg(v). By the limit rule for products, we have:

lim
v↑x

Pr(ṽL|v)(v − pL) = lim
v↑x

Pr(ṽL|v) lim
v↑x

(v − pL) = lim
v↑x

Pr(ṽL|v)(x− pL) ≥

Pr(ṽL|x)(x− pL) ≥ lim
v↓x

Pr(ṽL|v)(x− pL) = lim
v↓x

[
Pr(ṽL|v)(v − pL)

]
Note that these limits exist because we are dealing with monotonic functions.

Now I need to show that Pr(ṽL|v1)(v1 − pL)− s = 0, when v1 is defined as v1 = inf V̂ (pL),

and it holds that:

V̂ (pL) =

{
Pr(ṽL|v)(v − pL)− s > 0

}
Suppose that g(v1) = Pr(ṽL|v1)(v1−pL)−s > 0. We know that limv↑v1g(v) ≥ g(v1). By def-

inition, v1 cannot be the infimum of V̂ (pL) then, since it would not constitute a lower bound.

Now suppose that Pr(ṽL|v1)(v1 − pL) − s < 0. We know that limv↓v1g(v) ≤ g(v1) < 0.

By definition of limits, any point just above v1 would also be a lower bound, which means

we cannot have an infimum at v1.

Next, I need to show continuity. Assume, for a contradiction, that limv↑v1g(v) > g(v1) = 0.

This is a contradiction to the fact that v1 is an infimum, because it cannot be a lower bound.

Assume, for a contradiction, that 0 = g(v1) > limv↓v1g(v). We can show that this would be

a contradiction to the infimum definition as well, since a point just above v1 would also be

an infimum. This prooves continuity.

Part 2:

Search on the equilibrium path is only possible when receving the price offer pj = pH .

We know consumers with v /∈ V̂ (pL) cannot search on path. Similarly, consumers with
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v < pL cannot search on path. Moreover, only sets of consumers with v > pH that have zero

measure can search on-path.

The set of consumers that searches on path (ignoring measure zero sets) is thus a sub-

set of V̂ (pL) ∩ [pL, pH ]. Now I show that any consumer in this set will search when being

offered the price pH . Such a consumer will search then if and only if:

Pr(ṽL|v)(v−pL)+Pr(ṽH |v) max{v−pH , 0}−s > max{v−pH , 0} ⇐⇒ Pr(ṽL|v)(v−pL)−s > 0

This holds true by construction.

C.2 Proof of lemma 7

In an equilibrium with search, we must have v = inf V̂ (pL) < pH .

Part 1: Consider any consumer that has arrived after search. This requires that this

consumer has received pH at all other firms that were previously visited, which means the

firm beats the price of all other firms when offering a price pj ≤ v < pH .

A consumer that arrives after searching must have v ∈ V̂ (pL). We know that the infi-

mum of this set is v, so consumption is possible for all these agents. This implies the result.

Part 2: I need to show that no consumer would move on to search when receiving a price

pj ≤ v.

We know that no consumer with v /∈ V̂ (pL) or v ≤ pL can search at pH , which implies

that such a consumer would also not search at any price pj ≤ v < pH .

Now consider a v ∈ V̂ (pL). All these consumers have a price cutoff p̂(v) equal to:

p̂(v) = pL +
s

Pr(ṽL|v)

It was shown previously that: Pr(ṽL|v)(v − pL) − s = 0. This implies that p̂(v) = v. Note

that p̂′(v) > 0, which means that for all v ∈ V̂ (pL) ∩ [pL, pH ]:

p̂(v) ≥ p̂(v) = v
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This means that none of these consumers will search when offered the price pj ≤ v. Finally,

note that the set of consumers with v ≥ pH that search on path must have measure zero,

which means that all these consumer cannot search for prices pj ≤ pH either.

C.3 Proof of proposition 8

Part 1:

Given that the signal probability functions are continuous, the monopoly low signal profit

function is continuously differentiable. Since competitive low signal profits take the given

form in the price interval pj ∈ [0, v], we know that this FOC must hold.

Part 2:

(i) Pr(ṽL|pH)(pH − pL)− s > 0 cannot hold true in a symmetric equilibrium.

Suppose, for a contradiction, that Pr(ṽL|pH)(pH − pL) − s > 0 holds true in a symmet-

ric PSE. If this holds true, pH ∈ V̂ (pL). Consider the search decision of an agent with

v > pH . This consumer searches at pH if and only if:

Pr(ṽL|v)(v − pL) + Pr(ṽH |v)(v − pH)− s > (v − pH) ⇐⇒ Pr(ṽL|v)(pH − pL)− s > 0

These gains of search continuous in v and we know that this inequality is satisfied at v = pH .

This shows that there exists an interval of valuations v ∈ (pH , pH + δ) who would search

when receiving the equilibrium high price.

Given the assumption that Pr(ṽH |v) ∈ (0, 1) holds for all agents, there is a strictly pos-

itive measure of consumers with v > pH that search after pH and receive this price with

positive probability in equilibrium, a contradiction to proposition 1.

(ii) If Pr(ṽL|pH)(pH − pL)− s < 0, the equilibrium must satisfy:

∂ΠM(pj; ṽ
H)

∂pj
= 0
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Consider any consumer with v ∈ [pH , 1]. This consumer would search when offered a price

pj ≥ pH if and only if:

Pr(ṽL|v)(v − pL) + Pr(ṽH |v)(v − pH)− s > max{v − pj, 0}

In order for a consumer with v ≥ pH to search at a price pj ≥ pH , the LHS of this expression

needs to be strictly positive. Define the following set:

V̂ H(p) =

{
v − pH + Pr(ṽL|v)(pH − pL)− s > 0

}
Further recall that the cutoff price (if it is weakly above pH) of agents with a valuation in

the above set is:

p̂H(v) = Pr(ṽL|v)
(
pL − pH

)
+ pH + s

By continuity of Pr(ṽL|v), it holds that limv→pH Pr(ṽ
L|v) = Pr(ṽL|pH). This implies that:

lim
v→pH

[
v − pH + Pr(ṽL|v)(pH − pL)− s

]
= 0 + Pr(ṽL|pH)(pH − pL)− s < 0

Continuity implies that you can find an open interval [pH − δ, pH + δ] such that any v′ ∈
[pH − δ, pH + δ] will satisfy v′ /∈ V̂ H(p) and v′ /∈ V̂ L(p). Thus, for this price interval, all

consumers will have p̂(v′) =∞ by construction.

Find the first valuation v′ ≤ 1 above pH that solves:

v′ − pH + Pr(ṽL|v′)(pH − pL)− s = 0

If this does not exist, no consumer with v > pH will satisfy the necessary condition for search

at prices pj > pH . Thus, p̂(v) =∞ holds for all consumers with v > pH in this case.

Suppose that this exists. By continuity arguments, p̂(v) = ∞ must hold for all consumers

with v ∈ [pH , v′). They cannot search at prices pj < pH . Moreover, they do not fulfil the

necessary condition for search at pj > pH since v′ /∈ V̂ H(p).

Now consider consumers with v ≥ v′. Note that p̂(v′) = v′ > pH . All consumers with

v > v′ will have a cutoff price above this, since p̂′(v) ≥ 0.

Summing up, consumers with v ∈ [pH , v′) will have p̂(v) =∞ and consumers with v ∈ [v′, 1]
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will have p̂(v) ≥ v′ > pH . Thus, all consumers with v > pH will not search for prices

pj ∈ [pH , v′] and hence not for prices below this either.

This means that profits are equal to monopoly profits in the interval [pH , v′]. No consumer

with a valuation above pH can arrive at firm j after searching. No consumer with v > pH

that arrives at firm j first will search for these prices.

Consider prices just below pH . We know that consumers with v ∈ [pH − δ, pH ] must have

v /∈ V̂ (pL), which is the necessary condition for search at prices pj ≤ pH , i.e. for equilibrium

search. Furthermore, we know that no consumer with v ≥ pH can search at pH , which

implies that these consumers would also not search at pj ≤ pH .

Thus, no consumers with v > pH − δ will arrive at firm j after search. All consumers

that arrive first and have v > pH − δ won’t move on to search at prices pj ≤ pH . In the price

interval [pH − δ, pH ], profits will thus also be monopoly profits.

Thus, competitive profits equal monopoly profits in an open ball around pH . Differentiability

of this function implies that the high signal price must satisfy said FOC.

C.4 Proof of lemma 8

Part 1: If Pr(ṽH |v) is weakly increasing and once continuously differentiable, ΠM(pj; ṽ
H)

is strictly concave.

Note that monopoly high signal profits are given by the following:

ΠM(pj; ṽ
H) = pj

∫ 1

pj

(1/N)Pr(ṽH |v)dv

Taking the derivative of this w.r.t prices yields:

∂ΠM(pj; ṽ
H)

∂pj
=

∫ 1

pj

(1/N)Pr(ṽH |v)dv − (1/N)pjPr(ṽ
H |pj)

Note that this derivative is continuous, since the signal probability function is continuous.
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Now let’s evaluate the second derivative of profits, which is:

∂2ΠM(pj; ṽ
H)

∂p2
j

= −(1/N)Pr(ṽH |pj)− (1/N)Pr(ṽH |pj)− (1/N)pj
∂Pr(ṽH |pj)

∂pj
< 0

This is strictly negative because
∂Pr(ṽH |pj)

∂pj
≥ 0.

Part 2: If NPr(ṽH |pH,M)N−1 ≥ 1 holds true, pH ≤ pH,M must hold.

Consider a symmetric pure-strategy equilibrium candidate where pH > pH,M holds. Note

that there must be search on the equilibrium path - otherwise, there would be an immediate

downward deviation.

For ease of exposition, define Pr(ṽH |v) := PrH(v).

Consider demand for a price in an open ball below pH , such that any such pj must sat-

isfy pj > pH,M . The demand a firm receives at such a deviation price is given by:

DC(pj; ṽ
H) =

∫ 1

pH
(1/N)PrH(v)dv+

∫ pH

pj

(1/N)PrH(v)

[
1[p̂(v) ≥ pj]+1[p̂(v) < pj][Pr

H(v)]N−1

]
dv

+
N∑
i=2

∫ pH

pj

(1/N)PrH(v)1[p̂(v) < pH ]

[
1[p̂(v) ≥ pj][Pr

H(v)]i−1 +1[p̂(v) < pj][Pr
H(v)]N−1

]
dv

=⇒

DC(pj; ṽ
H) =

∫ 1

pH
(1/N)Pr(ṽH |v)dv+

∫ pH

pj

1

N
PrH(v)

[(
1[p̂(v) ≥ pj] + 1[p̂(v) < pj][Pr

H(v)]N−1

)
+

( N∑
i=2

1[p̂(v) < pH ]
[
1[p̂(v) ≥ pj][Pr

H(v)]i−1 + 1[p̂(v) < pj][Pr
H(v)]N−1

])]
dv

I will show the following: For any v ∈ [pj, p
H ], (which must satisfy v ≥ pj > pH,M) the

argument of the second integral will be weakly greater than (1/N)PrH(v), which implies

that said function lies above the monopoly demand function in this interval.

For any v such that p̂(v) ≥ pj, the argument is weakly greater than (1/N)PrH(v), because
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it becomes:
PrH(v)

N

[[
(1)
]

+
N∑
i=2

1[p̂(v) < pH ]
[
[PrH(v)]i−1

]]
For any v such that p̂(v) < pj, the argument is also weakly greater than (1/N)PrH(v),

because p̂(v) < pj ≤ pH and this argument thus becomes:

PrH(v)

N

[[
[PrH(v)]N−1

]
+

N∑
i=2

[
[PrH(v)]N−1

]]
=
PrH(v)

N

[
N [PrH(v)]N−1

]

The fact that N [PrH(pH,M)]N−1 ≥ 1, together with our assumption that PrH(v) is weakly

increasing, implies that N [PrH(v)]N−1 ≥ 1 holds true for any such v > pH,M . Thus, this

term is weakly greater than PrH(v)
N

.

Under the assumption that N [PrH(pH,M)]N−1 ≥ 1, we have thus shown that:

DC(pj; ṽ
H) ≥

∫ 1

pH
(1/N)Pr(ṽH |v)dv +

∫ pH

pj

1

N
PrH(v)dv

Thus, for prices pj just below pH , we have DC(pj; ṽ
H) ≥ DM(pj; ṽ

H), which implies the

following for any pj just below pH :

ΠC(pj; ṽ
H) ≥ ΠM(pj; ṽ

H) =⇒ ΠC(pj; ṽ
H) ≥ ΠM(pj; ṽ

H) > ΠM(pH ; ṽH) = ΠC(pH ; ṽH)

Note that ΠM(pj; ṽ
H) > ΠM(pH ; ṽH) holds by strict concavity, since pH > pH,M . Thus, the

profit function must be strictly decreasing at the prices we study. This prooves the existence

of a profitable downward deviation.

Part 3: The regularity condition holds when N = 2 and Pr(ṽH |0.5) = 0.5.

I firstly show that pH,M ≥ 0.5 generally holds true. Suppose, for a contradiction, that

pH,M < 0.5. Recall that the monopoly high signal price must solve:∫ 1

pj

(1/N)Pr(ṽH |v)dv − (1/N)pjPr(ṽ
H |pj) = 0 ⇐⇒ pH,MPr(ṽH |pH,M) =

∫ 1

pH,M
Pr(ṽH |v)dv

Because Pr(ṽH |v) is weakly increasing, we have:∫ 1

pH,M
Pr(ṽH |v)dv ≥

∫ 1

pH,M
Pr(ṽH |pH,M)dv = [1− pH,M ]Pr(ṽH |pH,M)
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Because pH,M < 0.5, we have:

[1− pH,M ] > pH,M

This implies a contradiction to the first-order condition.

Thus, pH,M ≥ 0.5. Because Pr(ṽH |v) is weakly increasing and Pr(ṽH |0.5) = 0.5, our regu-

larity condition will be satisfied, because:

NPr(ṽH |pH,M)N−1 = 2Pr(ṽH |pH,M) ≥ 2(0.5) = 1

C.5 Proof of corollary 4

Part 1: If Pr(ṽH |v) is once continuously differentiable, there is a unique maximizer of the

monopoly profit function, which I call pH,M . This holds because the former implies that

monopoly high signal profits are strictly concave, which implies uniqueness.

Part 2: Suppose that g(v) := Pr(ṽL|v)(v − pL) − s is a strictly quasiconcave function

on [0, pH,M ] .Then, it has at most two zeros on the interval [0, pH,M ].

If g(v) := Pr(ṽL|v)(v − pL) − s is a strictly quasiconcave function on v ∈ [0, pH,M ] for

any pL, it will have a unique maximum on [0, pH,M ], call this v∗, for any given pL.

Suppose, for a contradiction, that there are three (or more) distinct solutions to g(v) = 0 on

v ∈ [0, pH,M ]. Label these solutions v1, v2, v3 and assume, without loss, that v1 < v2 < v3.

This is a direct violation to strict quasiconcavity. Since v2 ∈ (v1, v3), strict quasiconcav-

ity implies that g(v2) > min{g(v1), g(v3)} = 0.

Part 3: If V̂ (pL) ∩ [0, pH,M ] is non-empty, the only possible solutions to g(v) = 0 in the

interval [0, pH,M ] are inf V̂ (pL) and sup
[
V̂ (pL) ∩ [0, pH,M ]

]
.

Note that our assumptions guarantee continuity of g(v). Because g(v) is strictly quasi-

concave, g(v∗) > 0 must hold - otherwise the set V̂ (pL) ∩ [0, pH,M ] is empty.

Thus, we can surely find an infimum of the set V̂ (pL) that lies below pH,M . It must hold

that inf V̂ (pL) satisfies g(inf V̂ (pL)) = 0.
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Suppose, for a contradiction, that g(inf V̂ (pL)) > 0. If this holds true, it must be true

that inf V̂ (pL) > 0.

By continuity of g, there exists an open ball below inf V̂ (pL) for which g(.) > 0 also holds

true. Hence, inf V̂ (pL) cannot be a lower bound of V̂ (pL), a contradiction.

Suppose, for a contradiction, that g(inf V̂ (pL)) < 0. We know there cannot exist valua-

tions v ≤ inf V̂ (pL) for which g(v) > 0. By continuity of g(.), there exists an open ball above

inf V̂ (pL) for which g(.) < 0 holds true. This implies that inf V̂ (pL) is not the smallest lower

bound of V̂ (pL), a contradiction.

The supremum of this set could be pH,M or something below pH,M . If the supremum of

V̂ (pL) ∩ [0, pH,M ] is strictly below pH,M , then g(sup V̂ (pL) ∩ [0, pH,M ]) = 0 must hold by

analogous arguments.

Suppose sup V̂ (pL)∩[0, pH,M ] < pH,M . Any solution to g(v) = 0 must be sup V̂ (pL)∩[0, pH,M ]

or the inf of V̂ (pL). Otherwise, we would have a contradiction to strict quasiconcavity, since

g
(

inf V̂ (pL)
)

= g
(

sup V̂ (pL) ∩ [0, pH,M ]
)

= 0 must hold and there can be no other zeros of

this function on [0, pH,M ].

Suppose sup V̂ (pL) ∩ [0, pH,M ] = pH,M . Then, it must hold that g(sup V̂ (pL)) ≥ 0. If

g(sup V̂ (pL)) < 0, there would be a contradiction, since the true supremum would be below

pH,M .

Once again, any solution to g(v) = 0 on v ∈ [0, pH,M ] must satisfy v = sup V̂ (pL) ∩ [0, pH,M ]

or v = inf V̂ (pL). Suppose there exists another solution to this, which must then be

strictly below sup V̂ (pL) ∩ [0, pH,M ] = pH,M . This would violate strict quasiconcavity, since

g(inf V̂ (pL)) = 0 and g(sup V̂ (pL) ∩ [0, pH,M ]) ≥ 0.

Part 4: If V̂ (pL) ∩ [0, pH,M ] is empty, there is at most one solution to g(v) = 0, namely v∗.

Note that g(v∗) ≤ 0 is equivalent to saying that the set V̂ (pL) ∩ [0, pH,M ] is empty un-

der strict quasiconcavity and continuity of g(v).

By strict quasiconcavity of g, it has a unique maximum on [0, pH,M ]. If this maximum

is below 0, there exists no solution.
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If this maximum is 0, v∗ is a solution - but it is the only possible solution.

Part 5: If pL satisfies
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL

= 0, then pH must be equal to v∗ = argmaxv∈[0,pH,M ] g(v),

inf V̂ (pL) or pH,M .

Our regularity conditions imply that only one other candidate for an equilibrium high signal

price can exist, namely pH = sup V̂ (pL) ∩ [0, pH,M ].

Consider an equilibrium candidate where pL satisfies the above FOC and pH = sup V̂ (pL) ∩
[0, pH,M ]. This construction requires that V̂ (pL) ∩ [0, pH,M ] is non-empty, which in turn im-

plies that inf V̂ (pL) < sup V̂ (pL) ∩ [0, pH,M ].

We know pL < inf V̂ (pL) < sup V̂ (pL) ∩ [0, pH,M ] = pH , which then directly implies that

a strictly positive measure of consumers will search on path, i.e. ML(pL, pH) > 0. Then,

there is a profitable upward deviation from pL.

Part 6: If pL satisfies
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL

+ ML(pL, pH) = 0, with ML(.) > 0, then pH =

sup V̂ (pL) ∩ [0, pH,M ] or pH = pH,M must hold.

Note first that V̂ (pL) ∩ [0, pH,M ] cannot be empty, since v ∈ V̂ (pL) is a necessary con-

dition for equilibrium search and all consumers with v ≤ pH ≤ pH,M cannot satisfy this

condition. This rules out the equilibrium candidate pH = argmaxv≥pH,M g(v).

Now suppose that V̂ (pL) is non-empty, but that pH = inf V̂ (pL). All consumers with v ≥ pH

cannot search on-path. All consumers with v < inf V̂ (pL) must have v /∈ V̂ (pL) by the

definition of the infimum. Thus, they cannot search at pH either, which implies that there

will not be search-on-path and ML(p) = 0, a contradiction.

Part 7: An equilibrium candidate (pL, pH) with
∂ΠM (pj ;ṽ

L)

∂pj

∣∣
pL

= 0 and corresponding empty

V̂ (pL) and g(pH) = 0 only exists for exactly one value of search costs.

By strict quasiconcavity of g(v), it has a unique maximum on [0, pH,M ] for any given pL.

Under strict concavity of the low signal monopoly profit function, there is only one pL,

namely pL,M , that can constitute a solution to the low-signal first-order condition. Thus,

there is a unique candidate v∗ for the equilibrium high signal price.
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This must satisfy g(v∗) = 0 ⇐⇒ Pr(ṽL|v∗)(v∗ − pL,M) − s = 0. This equation has

only one solution for s. If s 6= Pr(ṽL|v∗)(v∗ − pL,M), this equilibrium cannot exist.

Thus, the interval of search costs for which this equilibrium exists has zero measure.

Summary of previous steps:

The previous results show that there are four equilibrium candidates we can have (ignoring

candidates that only exist for a zero measure of search costs).

For the monopoly equilibrium, we know there is a unique candidate that can satisfy the

construction.

In the search deterrence equilibrium, pL = pL,M . The infimum of V̂ (pL,M), if it exists,

is uniquely determined, so there is just one candidate for this.

In the following, I proove that there exists exactly one candidate that satisfies the definition

of the search equilibrium and one candidate that satisfies the definition of the constrained

search equilibrium.

Part 8: Uniqueness of the search equilibrium.

I now show that there is at most one candidate for a low signal price that satisfies the

definition of the search equilibrium.

Because pH = pH,M , the set of consumers that search on-path is given by V̂ (pL) ∩ [0, pH,M ]

and inf V̂ (pL) = inf V̂ (pL) ∩ [0, pH,M ]. To see this, note that inf V̂ (pL) < pH,M must hold,

otherwise there would not be search on-path.

Here, pH,S = pH,M and pL,S must satisfy the following equation:

∂ΠM(pj, ṽ
L)

∂pj

∣∣∣∣
pL

+
N∑
j=2

∫ sup V̂ (pL)∩[0,pH,M ]

inf V̂ (pL)

(1/N)Pr(ṽL|v)Pr(ṽH |v)j−1dv = 0
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I have to show that the LHS is strictly falling in pL for the relevant interval of possible low

signal prices. An equilibrium low signal price pL must induce a non-empty V̂ (pL). Thus, for

all possible equilibrium candidates of pL, inf V̂ (pL) ∈ (0, 1) must hold.

The first component is already strictly falling in pL by strict concavity of the monopoly

low signal profit function.

Showing that inf V̂ (pL) is weakly increasing in pL and sup V̂ (pL)∩[0, pH,M ] is weakly decreas-

ing in pL will be sufficient to show that the second component will also be weakly decreasing

in pL.

First, I show that inf V̂ (pL) must be weakly increasing in pL.

Suppose, for a contradiction, that inf V̂ (pL) is decreasing in pL at some point. Pick two

pL,1, pL,2 with pL,1 < pL,2, for which:

inf V̂ (pL,1) > inf V̂ (pL,2)

It was already established that such an infimum must set g(v; pL) = 0. Thus, we have:

g(inf V̂ (pL,1), pL,1) = 0

Strict quasiconcavity, together with inf V̂ (pL,2) < inf V̂ (pL,1), implies that:

g(inf V̂ (pL,2), pL,1) < 0 =⇒ Pr(ṽL| inf V̂ (pL,2))

(
inf V̂ (pL,2)− pL,1

)
− s < 0

However, since pL,1 < pL,2, we have:

Pr(ṽL| inf V̂ (pL,2))

(
inf V̂ (pL,2)−pL,2

)
−s < Pr(ṽL| inf V̂ (pL,2))

(
inf V̂ (pL,2)−pL,1

)
−s < 0

Hence, inf V̂ (pL,2) ∈ (0, 1) does not satisfy the definition of an infimum, a contradiction.

Now I need to show the analogue of this for the supremum. I will show that the supre-

mum sup V̂ (pL) ∩ [0, pH,M ] is weakly decreasing in pL. Recall that this supremum must be

weakly greater than 0 in order for V̂ (pL) to be non-empty. For notational clarity, I abbrevi-

ate this by sup in what follows.

88



Pick two pL,1, pL,2 with pL,1 < pL,2 for which sup is increasing, i.e.:

sup(pL,1) < sup(pL,2) ≤ pH,M

This specification implies that sup(pL,1) < pH,M , which means that g(sup(pL,1); pL,1) = 0

must hold. By strict quasiconcavity of g, it must hold that:

g(sup(pL,2); pL,1) < 0

However, since pL,1 < pL,2, we have that:

Pr(ṽL| sup(pL,2))

(
sup(pL,2)− pL,2

)
− s < Pr(ṽL| sup(pL,2))

(
sup(pL,2)− pL,1

)
− s < 0

Once again, this represents a contradiction.

Thus, I have shown that sup V̂ (pL) ∩ [0, pH,M ] is weakly decreasing in pL and inf V̂ (pL)

is weakly increasing in pL. Thus, the entire integral of searchers will be weakly decreasing

in pL, which completes the proof.

Part 9: Uniqueness of constrained search equilibrium.

Note that inf V̂ (pL) is weakly increasing in pL and sup V̂ (pL)∩ [0, pH,M ] is weakly decreasing.

In the constrained search equilibrium (and by our strict quasiconcavity assumption), the

interval of consumers that search on-path is given by
[

inf V̂ (pL), pH
]
.

Uniqueness of the low signal price in the constrained search equilibrium follows if the follow-

ing equation only has one solution:

∂ΠM(pj, ṽ
L)

∂pj

∣∣∣∣
pL

+

∫ sup V̂ (pL)∩[0,pH,M ]

inf V̂ (pL)

(1/N)Pr(ṽL|v)Pr(ṽH |v)dv = 0

The LHS is strictly decreasing in pL by previous arguments, implying that there is only one

solution for pL.

Given that pL,C is unique, pH,C = sup V̂ (pL,C) ∩ [0, pH,M ] will also be unique by the def-
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inition of a supremum.

C.6 Proof of proposition 9

Part 1: There must be search in such a mixed-strategy equilibrium.

Suppose that no consumer searches on-path. Then, each firm attains monopoly profits

(for the respective prices) at all prices that are played on the equilibrium path. In a mixed-

strategy equilibrium, there must be signal ṽk after which at least two prices are offered by

a firm. Strict concavity of profits implies a contradiction to the mixing indifference condition.

Part 2:

By the arguments in the analogous proposition of the previous section, the price pmin will

be deterministically played after it’s corresponding signal ṽmin.

Now suppose, for a contradiction, that this price is played after ṽH . We know that no

other price can be played after this signal by previous arguments. Thus, it must hold that

pmin > pH,M - otherwise, the first-order condition that pmin must satisfy would surely be

violated by strict concavity of the monopoly profit functions.

Consider the gains of search of an agent with v > pmin at p̄L, the highest possible price

that an agent can receive.

Pr(ṽH |v)(v − pmin) + Pr(ṽL|v)

∫ p̄L

pL
max{v − p, 0}dFL(p)− s > max{v − p̄L, 0}

For v ≤ p̄L, the gains of search are:

Pr(ṽH |v)(v − pmin) + Pr(ṽL|v)

∫ v

pL
(v − p)dFL(p)− s− 0

The derivative of these w.r.t. v is:

Pr(ṽH |v) + Pr(ṽL|v)

∫ v

pL
dFL(p) +

∂Pr(ṽH |v)

∂v
(v − pmin)− ∂Pr(ṽH |v)

∂v

∫ v

pL
(v − p)dFL(p)

This will be strictly positive.

90



Now consider consumers with v > p̄L. For them, the gains of search are:

Pr(ṽH |v)(p̄L − pmin) + Pr(ṽL|v)

∫ p̄L

pL
(p̄L − p)dFL(p)− s

These are also increasing in v because pmin is smaller than any other price a consumer could

receive. Thus, if any consumer with valuation v′ searches at p̄L, so will all consumers with

a valuation above this.

If v′ < p̄L, all consumers with v ≥ p̄L will search, which will imply a contradiction. If

p̄L is played with zero probability, it will invoke zero profits. If it is played with positive

probability, there are undercutting motives.

Thus, v′ ≥ p̄L must hold. Firstly, suppose that p̄L is played with strictly positive prob-

ability. We know v′ < 1 must hold because there must be search in such an equilibrium. All

consumers with v ∈ [v′, 1] receice p̄L with positive probability and would search thereafter -

this creates undercutting motives.

Thus, p̄L must be played with zero probability. Any consumer who arrives after search

would buy with probability zero when being offered this price. Thus, profits at this price

must be weakly below monopoly profits.

Thus, low signal profits must be below ΠM(p̄L, ṽL). We know p̄L > pmin > pH,M > pL,M

and thus that monopoly profits are rising in this region. When offering pmin, no consumer

would search - thus granting monopoly profits at the very least. Thus, this deviation would

be profitable and we have a contradiction.

Part 3: The lowest price offered after ṽH , namely pH , must be weakly above inf V̂ (pL).

Note that the set V̂ (pL) now captures necessary conditions for search at pH . Any consumer

would search upon receiving this price if and only if:

Pr(ṽL|v)(v − pL) + Pr(ṽH |v)(0)− s > max{v − pH , 0}

Now suppose, for a contradiction, that inf V̂ (pL) > pH . Then, no consumer would search at

pH . To see this, note that membership in the set V̂ (pL) is clearly a necessary condition for

search at this price.
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Thus, the only consumers that could search at p̄H must have v ∈ [inf V̂ (pL), sup V̂ (pL)].

No such consumer would search at pH , because v ≥ inf V̂ (pL) > pH and hence:

Pr(ṽL|v)(v − pL) + Pr(ṽH |v)(v − pH)− s ≤ (v − pH) ⇐⇒ Pr(ṽL|v)(pH − pL)− s < 0

We know this must hold true because pH < inf V̂ (pL) and Pr(ṽL|v) ≤ Pr(ṽL|pH) (because

v > pH), which guarantees:

Pr(ṽL|v)(pH − pL)− s ≤ Pr(ṽL|pH)(pH − pL)− s < 0

The second inequality holds by strict quasiconcavity of g(.).

Similarly, no consumer will search after receiving a price just above pH . By the assumption

that FH is atomless and gapless, there will be a violation of the mixing indifference condi-

tion, because profits in this interval equal monopoly profits + searchers*price, which must

be strictly concave since monopoly profits are strictly concave.

.

D Numerical results for general signal distributions

D.1 Overview

In this subsection, I numerically show that the properties of the aforementioned equilibria

carry over to generalized settings. I will consider signal distributions that take the following

form:

Pr(ṽL|v) = α

(
1− 1

1 + ek(0.5−v)

)
+ (1− α)

(
1

1 + ek(0.5−v)

)
(27)

For k → ∞, this distribution is for all intents and purposes equal to the one used in the

baseline setting. Lower values of k amount to making the signal distribution more linear,

while the parameter α governs the upper and lower bounds of the probability distribution.

In figure 6, I plot this distribution for different values of α and k.

Under the aforementioned interpretation of signal precision, the latter is rising both in k

and α. In figure 7, I study different parameter combinations and show when the aforemen-

tioned equilibria exist. A given graph in this figure always corresponds to a fixed level of
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α and a fixed number of firms, namely α ∈ {0.75, 0.85} and N ∈ {2, 4}, respectively. On

the x-axis, different levels of k are being plotted. On the y-axis, different levels of s are

plotted. As before, the different colors indicate existence of a given equilibrium. The search

deterrence equilibrium exists at green points, the search equilibrium exists at yellow points,

and the monopoly equilibrium exists at blue points.

The general trends outlined previously are being confirmed. The search deterrence equi-

librium exists for low search costs, the search equilibrium exists for intermediate search

costs, and the monopoly equilibrium exists for high search costs. Both the search equilib-

rium and the search deterrence equilibrium exist for substantial parameter ranges even when

k is in the region [25, 40], at which the signal distribution is relatively linear.

High levels of information precision facilitate existence of the search equilibrium. Shifting α

from 0.85 to 0.75 and decreasing k shrinks the interval of search costs for which the search

equilibrium exists. There is a potential issue of equilibrium non-existence when search costs

are too high to support the search deterrence equilibrium but not high enough to support

the search equilibrium. I conjecture that the mixed-strategy equilibria discussed previously

would occupy these spaces.

In figure 8, I plot the comparative statics effects of an increase of search costs, fixing levels

of k and α. These comparative statics effects mirror those in the baseline model.

D.2 Equilibrium search in general settings

The measure of consumers who arrive after search and generate the signal ṽk is given by:

Mk(.) =
N∑
j=2

∫ sup V̂ (pL)

inf V̂ (pL)

[
Pr(ṽH |v)

]j−1
Pr(ṽk|v)(1/N)dv =

∫ sup V̂ (pL)

inf V̂ (pL)

( N∑
j=2

[
Pr(ṽH |v)

]j−1
)
Pr(ṽk|v)(1/N)dv

Note that:

N∑
j=2

[
Pr(ṽH |v)

]j−1
=

N−1∑
j=1

[
Pr(ṽH |v)

]j
=
Pr(ṽH |v)

(
1− Pr(ṽH |v)N−1

)
1− Pr(ṽH |v)

Plugging this back in yields:

Mk(pL, pH) =

∫ sup V̂ (pL)

inf V̂ (pL)

(
Pr(ṽH |v)

(
1− Pr(ṽH |v)N−1

)
1− Pr(ṽH |v)

)
Pr(ṽk|v)(1/N)dv
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Now I have to calculate the profits for off-equilibrium prices, namely pj ∈ [inf V̂ (pL), sup V̂ (pL)]

for which search is possible. Note that sup V̂ (pL) ≤ pH . These are:

ΠC(pj; ṽ
k) = pj

∫ 1

pj

(1/N)Pr(ṽk|v)

[
1[pj ≤ p̂(v)] + 1[pj > p̂(v)]Pr(ṽH |v)N−1

1[pj ≤ pH ]

]
dv+

pj

N∑
j=2

∫ sup V̂ (pL)

pj

(1/N)Pr(ṽk|v)Pr(ṽH |v)j−1

[
1[pj ≤ p̂(v)]+1[pj > p̂(v)]Pr(ṽH |v)N−j1[pj ≤ pH ]

]
dv

D.3 Existence results - constrained search equilibrium

This equilibrium exists if and only if (i) there is search on the equilibrium path but no

consumer with v > pH,C searches on-path and (ii) there are no profitable deviations from

the equilibrium high signal price pH,C . In figure 9, I visualize when these requirements are

met - if one of these requirements fails, then the equilibrium does not exist. This is visualized

by a red dot. At green dots, the equilibrium exists.

D.4 Search costs and prices - general settings

In figure 8, I visualize the relationship between search costs and prices in general settings

(when restricting attention to pure-strategy equilibria).

D.5 Documenting when NPr(ṽH |pH,M)N−1 ≥ 1 holds true

I consider signal distributions with the following form:

Pr(ṽL|v) = α

(
1− 1

1 + ek(0.5−v)

)
+ (1− α)

(
1

1 + ek(0.5−v)

)

Fixing a given level of N , I calculate the value of NPr(ṽH |pH,M)N−1 for different combina-

tions of k and α, which govern the signal distribution. In figure 10, the following data is

plotted: For a given combination of k and α, green dots indicate that the regularity condition

holds - red dots indicate that it is violated. Every graph corresponds to a given N .

D.6 Quasiconcavity of g(v)

In the following, I document how many zeros the function g(v) has. The following data is

visualized in figure 11. Every graph corresponds to a given combination of pL and s in the

sets pL ∈ {0.25, 0.3, 0.35, 0.4} and s ∈ {0.01, 0.05, 0.09, 0.13}. The first row corresponds to
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the first value of s and documents the results for different values of pL. The second row cor-

responds to the second value of s, and so on. In a given column, the pL under consideration

is always the same.

Within each graph, I check whether the function g(v) has at most two zeros in the in-

terval [0, pH,M ] for a given k and α, which governs Pr(ṽH |v). Green dots indicate that this

is fulfilled. Red dots indicate that there are more than two zeros.

E Extension - information about search history

E.1 Overview

In the previous analysis, it was assumed that firms have no information about the search

history of any consumer that visits the firm. In real-world settings, firms could design and

store third-party cookies in a way that allows them to determine whether a consumer has

previously acquired other price offers.

To study the effects of such a technology when firms already receive signals about con-

sumer valuations, I consider the following model: I assume, for simplicity, that there are just

two firms. For any consumer i that visits a firm j, the firm j receives an informative binary

signal ṽi,j about the consumer’s valuation and realizes whether this consumer i visits firm j

first or second. Thus, a firm has four information sets. The prices (p1,L, p1,H), which I call

first arriver prices, are offered to consumers that arrive at a firm first and generate the low

and high signal, respectively. The prices (p2,L, p2,H), which I call searcher prices, are offered

to consumers that arrive at a firm second and generate the low and high signal, respectively.

As in the baseline model, I assume that the signal distribution only depends on a consumer’s

valuation and is given by the following distribution with information parameter α ∈ (0.5, 1):

Pr(ṽH |v) =

α v ≥ 0.5

1− α v < 0.5
(28)

I further assume that s > 0. I label the resulting framework the framework with search

history information. Crucially, no symmetric equilibrium with on-path search can exist in

this setting, as demonstrated by the following propostion.
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Proposition 10 There exists no symmetric equilibrium with search on the equilibrium path

in the framework with search history information.

Any such equilibrium is ruled out by a fundamental inconsistency between the optimal search

behaviour of consumers and optimal firm pricing. To fix ideas, consider a potential pure-

strategy equilibrium with search. Define the infimum of the set of consumer valuations that

search on the equilibrium path as v and the price p2,min = min{p2,L, p2,H} as the lowest pos-

sible price a consumer can obtain via search. Optimal firm pricing requires that p2,min ≥ v

must hold. However, sequentially rational search behaviour implies that p2,min < v must

be true. Since these properties cannot be fulfilled simultaneously, there exists no symmetric

pure-strategy equilibrium with search on the equilibrium path.

To gain intuition, suppose that p2,min < v holds. Then, all consumers that arrive at some

firm j after searching will buy at firm j if offered the price p2,min or a price just above it -

this holds because p2,min < v and since p2,min surely beats the price that such a consumer has

received at the firm that was initially visited. The latter is a necessary condition for search

to have been optimal. If p2,min < v, firms would thus find it optimal to deviate to a slightly

higher price, a contradiction. This means that p2,min ≥ v must hold in such an equilibrium.

However, this result is not consistent with sequentially rational search behaviour. Because

s > 0, consumers with a valuation below p2,min or just above p2,min will find it strictly opti-

mal not to search, no matter the price they have initially received. This implies that v, the

infimum of the valuations that search on-path, must satisfy v > p2,min.

Similar arguments rule out the existence of symmetric mixed-strategy equilibria with on-

path search. Having established this, I characterize equilibria without on-path search.

Proposition 11 In a pure-strategy equilibrium without on-path search in the framework with

search history information, p1,L ≤ pL,M and p1,H ≤ pH,M must hold. There always exists an

equilibrium where first arriver prices equal monopoly prices and firms attain monopoly profits.

Because there is no on-path search, any price p1,k (for a signal ṽk) above the corresponding

monopoly price pM,k cannot be sustained as an equilibrium, because there would always be

a profitable downward deviation. To understand the second result, note that firm beliefs

at an information set where a consumer arrives after searching are arbitrary, because such

information sets must be off-path when there is no on-path search. If a firm believes that

only consumers with v = 0 would ever search, setting the prices p2,L = p2,H = 1 is optimal.
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Then, offering the monopoly prices (p1,L, p1,H) to first arrivers is optimal, as consumers can-

not constrain prices with the threat of searching.

It remains to study when consumers benefit from regulation that prohibits firms from using

information about their search histories. When this is not forbidden and certain browsers

enable the availability of search history information, propositions (10) and (11) establish

that the equilibrium prices in these situations will be weakly lower than their monopoly

counterparts. By contrast, the equilibria of the baseline setting will be played if firms can-

not access search history information. Thus, this policy measure would lead to increased

prices at high or intermediate search costs, when the monopoly equilibrium or the search

equilibrium would be played in the baseline setting. By implication, prohibiting firms from

accessing search history information can only be pro-competitive when search costs are low

and the search deterrence equilibrium or the MSE would be played in the baseline setting.

E.2 Proof of proposition 10

Part 1: Symmetric pure-strategy equilibria

Define p1,max = max{p1,L, p1,H} and p2,min = min{p2,L, p2,H}. Further, define v as the

infimum of the set of valuations that would search on the equilibrium path.

(i) Equilibrium candidates where search only occurs after p1,max.

Note firstly that p2,min < p1,max must hold - otherwise, search would never be optimal

after receiving p1,max.

Secondly, it must hold that p2,min < v. Suppose, for a contradiction, that p2,min ≥ v.

Any consumer will search upon receiving the initial price pj if and only if:

Pr(ṽH |v) max{v−pH,2, v−pj, 0}+Pr(ṽL|v) max{v−pL,2, v−pj, 0}−s−max{v−pj, 0} > 0

These gains from search are bounded from above by:

gos(v, pj) = Pr(ṽH |v) max{v−p2.H , v−pj, 0}+Pr(ṽL|v) max{v−p2,L, v−pj, 0}−s−max{v−pj, 0}

≤

max{v − p2,min, v − pj, 0} − s−max{v − pj, 0}
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Evaluating this at pj = p1,max > p2,min yields:

gos(v, p1,max) ≤ max{v − p2,min, 0} − s−max{v − p1,max, 0}

When v ∈ [0, p2,min + s), these gains of search will be strictly negative. Thus, no consumer

with v ∈ [0, p2,min + s) can ever search, which implies that v > p2,min must hold.

But this leads to a contradiction. Since α ∈ (0, 1), any consumer that searches has a

positive probability of generating either signal. Thus, there is a strictly positive measure

of consumers that generate either signal after searching because there is a strictly positive

measure of consumers that search. We have established that all consumers who arrive after

searching must have v ≥ v > p2,min and must have received the price p1,max > p2,min.

Thus, searcher demand is fully inelastic in an open ball around p2,min, which implies a

the existence of a profitable upward deviation from p2,min and rules out any such equilibrium.

(ii) Equilibrium candidates where search occurs after both prices.

In order for search to be optimal after both first arriver prices, it must hold that p2,min <

p1,min ≤ p1,max.

Secondly, it must once more hold that p2,min < v. Once more, we can bound the gains

of search at any price p1 ∈ {p1,min, p1,max}, which must be below p2,min, from above by the

following:

gos(v, p1) ≤ max{v − p2,min, 0} − s−max{v − p1, 0}

For any consumer with v < p2,min + s, these will be strictly negative.

All consumers who search must have v ≥ v > p2,min and must have received a price strictly

above p2,min, which induces the existence of a profitable deviation from this price.

Part 2: Symmetric mixed-strategy equilibrium candidates

Consider a symmetric mixed-strategy equilibrium candidate with p2,min being the lowest

possible price that firms offer to second arrivers. Define p1 as the infimum of the set of prices

P 1 for which there exists a v that finds it strictly optimal to search after such a price. Thus,

any consumer who arrives after searching must have received an initial price p1 ≥ p1.
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Once more, any price p1 ∈ P 1 must satisfy p2,min < p1. For any such prices, only con-

sumers with v > p2,min + s would ever search. Thus, once again: Any consumer that arrives

after searching must have received a price p1 > p2,min and must have v ≥ v ≥ p2,min + s.

Moreover, search by any consumer requires that the probability of receiving a price p2 ∈
[p2,min, p1) after searching must be strictly positive. Suppose that this probability is 0.

Then, search would never be optimal for prices pj ∈ [p1, p1 + s), making p1 an incorrect

infimum. To see this, note that the gains of search at prices pj ∈ [p1, p1 + s) bounded from

above by:

gos(v, p1) ≤ max{v − p1, 0} − s−max{v − p1, 0}

If v < p1 + s, these are negative. If v ≥ p1 + s, then they become:

gos(v, p1) ≤ (v − p1)− s− (v − p1) = p1 − p1 − s < 0

Because α ∈ (0.5, 1), said probability is strictly positive for any consumer valuation v iff it

is positive for all consumer valuations.

Thus, there must exist a signal ṽk after which the probability of receiving these prices must

be strictly positive, i.e. Pr(p2,k ∈ [p2,min, p1)|ṽk) > 0.

Suppose that p1 ≤ v. Then, for any price in the range pj ∈ [p2,min, p1), the sale will be

made to all consumers who arrive after searching.

Suppose there is just one price pj ∈ [p2,min, p1) in the support of these prices offered af-

ter ṽk. Then, there is a profitable upward deviation from this price since it has to be played

with strictly positive probability. Suppose there are at least two prices pj ∈ [p2,min, p1) in

said support - this is a contradiction, as demand is entirely inelastic in this price interval

and profits are thus strictly increasing. Thus, we cannot have an equilibrium.

Thus, suppose that v < p1. Then, demand will only be fully inelastic in the price inter-

val pj ∈ [p2,min, v].

Prices in this interval need to be offered with strictly positive probability to any consumer

that arrives after searching. Suppose, for a contradiction, that that prices in the interval

pj ∈ [p2,min, v] are offered with zero probability. Now consider the search decision of any
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consumer with v ∈ (v, p1] for any price pj ∈ P 1 (at which the consumer cannot consume).

Then, this consumer would search iff:∫ 1

p2,min
max{v − p, 0}dF 2(p)− s− 0 > 0

Because pj ∈ [p2,min, v] are offered with zero probability, these gains of search are bounded

from above by:

max{v − v, 0} − s

For v ∈ Bε(v), these gains of search will thus be strictly negative again - implying that v

could not be the appropriate infimum. Thus, prices pj ∈ [p2,min, v] must be offered with

strictly positive probability to all searchers.

Because the demand is fully inelastic in this interval (which must be offered with positive

probability to searchers), we obtain a contradiction once more.

E.3 Proof of proposition 11

Part 1: First arriver prices must be lower than monopoly prices.

Suppose that p1,k > pk,M for some signal ṽk. No consumer would move on to search for

prices pj ≤ p1,k - otherwise, there would be on-path search. Thus, competitive profits for

pj ≤ p1,k are equal to monopoly profits, and there is a profitable downward deviation.

Part 2: Independently of α and s, monopoly profits can always be attained.

The following vector of prices can always be supported as an equilibrium:

(p1,L, p1,H , p2,L, p2,H) = (pL,M , pH,M , 1, 1)

Given these prices, no consumer will ever search for any price under sequential rationality.

Thus, first arriver profit functions are exactly equal to the monopoly profit functions. Thus,

first arriver profits are maximized at (pL,M , pH,M).

The second arriver information sets are never reached on path - thus, beliefs are arbitrary.

Firms could believe that only consumers with v = 0 search. Then, the aforementioned prices

are optimal. No matter which prices are offered to second arrivers, the perceived profits are
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always 0.

F Simultaneous search

Consider a model with N firms where consumers, upon learning their type v, decide how

many firms they want to sample. This choice is made before visiting any firm. Search is

random. While the first search is free, visiting any firm after that incurs search costs equal

to s. Firms receive signals about consumer valuations as in the main text. There are K

signals
{
ṽ1, ..., ṽK

}
and Pr(ṽk) ∈ (0, 1) holds for any valuation v.

When s = 0, there cannot be an equilibrium with price dispersion in this model. Con-

sider, for a contradiction, an equilibrium candidate with price dispersion.

Consider a symmetric equilibrium with the highest equilibrium price pmax. Because there is

price dispersion, there must exist a price pj < pmax that is played with positive probability

after some signal. Any consumer has a strictly positive probability of obtaining this price

via search.

Suppose that pmax is played with positive probability after some signal. To attain the best

possible consumption opportunities, any consumer will optimally search all N firms. This

optimality is strict, because there is always a chance of receiving the worst price pmax at any

firm. Thus, all consumers will visit all firms in any such equilibrium candidate.

Because every consumer has a strictly positive chance of receiving pmax, there is a strictly

positive measure of these consumers who receive this price at all N firms - this creates un-

dercutting incentives that break the equilibrium.

Suppose instead that pmax is played with zero probability after all signals. Then, this price

will yield zero profits, because every consumer is guaranteed to visit all firms (since there is

price dispersion) and receive a price below this with probability 1. This represents a contra-

diction.

Finally, consider possible asymmetric equilibria with price dispersion and define the highest

price that is played by any firm as pmax. Because the equilibrium is asymmetric and search

is random, consumers will optimally commit to searching all firms.
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Suppose that there exists some firm that plays pmax with zero probability. Then, any firm

receives zero profits by offering pmax, a contradiction - because all consumers that visit this

firm will also visit all other firms and receive a better price with probability 1.

If all firms play pmax with positive probability after some signal, there will be a strictly

positive measure of consumers who receive this price with positive probability at all firms,

which creates undercutting motives, a contradiction.
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G Figures

G.1 Figure 1:

Figure 1: Equilibrium existence in the baseline model

G.2 Figure 2

Figure 2: Search costs and prices in the baseline model
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G.3 Figure 3

Figure 3: Competition and prices in the search equilibrium (baseline model)

G.4 Figure 4

Figure 4: Competition and prices in the MSE (baseline model)
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G.5 Figure 5

Figure 5: Search costs and consumer welfare

G.6 Figure 6

Figure 6: General signal distributions

105



G.7 Figure 7

Figure 7: Existence results for general signal distributions

G.8 Figure 8

Figure 8: Comparative statics - search costs
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G.9 Figure 9

Figure 9: Existence of the constrained search equilibrium

G.10 Figure 10

Figure 10: Regularity condition checks
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G.11 Figure 11

Figure 11: Quasiconcavity condition checks
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