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Abstract

Competition is often presumed to enhance performance, however, empirical evidence points
out bi-modal effort provision in competitive environments: over-workers and drop-outs.
In this paper, I analyze a multiple-prize contest with expectations-based loss-averse con-
testants. The predictions of the model are able to align the observed behavior on effort
provision, which is hard to reconcile under classical preferences. In particular, I show that
high-ability players, holding high expectations, exert effort aggressively while low-ability
players, holding low expectations, exert little or no effort in comparison to the standard
theoretical predictions. Furthermore, the optimal prize allocation differs markedly in the
presence of loss-averse contestants. I show that awarding multiple prizes can become opti-
mal in the cases where a single prize is predicted to be optimal under standard preferences.
Intuitively, awarding an additional prize motivates drop-outs to exert effort, while it de-
motivates over-workers due to lowered competition. Which of these two countervailing
forces dominates, and thus the optimal allocation of prizes, hinges on the interplay be-
tween the number of competitors, the ability heterogeneity of competitors, and the degree
of loss-aversion. These results have significant implications for the optimal contest design:
muting competition by awarding more prizes can increase total output.
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I did not come to Tokyo for a silver medal. It will not give me

satisfaction. I could not achieve what I wanted to.

Ravi Dahiya, Silver Medal Winner, Tokyo Olympics 2021

1. Introduction

Contests are commonly-used mechanisms for encouraging agents to achieve a goal.

The principal, aiming to attain a goal, announces a prize structure, and contestants

compete with each other by means of expending resources to win prizes. Many

economic, political and social environments can be described as contests. In firms,

workers spend effort to receive bonuses, in sales contests salespeople compete for

rewards, at universities researches engage in scientific work to receive grants or tenure

positions, in sports athletes perform for winning medals, in R&D races research

teams work on projects to win prizes and in board elections firms compete for seats.

The prevalence of such environments resulted in contests and their design being

studied extensively in the economic literature both theoretically and experimentally.

A proven design instrument in contests is prize-allocation schemes. Galton (1902)

is one of the first to pose the question of how to “most suitably” allocate prizes

in a competition.1 Galton’s problem is addressed in various settings, including rent

seeking (Tullock, 1980), models of worker incentives (Glazer and Hassin, 1988; Barut

and Kovenock, 1998; Moldovanu and Sela, 2001, 2006), labor contracts (Lazear and

Rosen, 1981; Krishna and Morgan, 1998), elimination tournaments (Rosen, 1986),

innovation contests (Halac et al., 2017) and status contests (Moldovanu et al., 2007).

A well-documented and puzzling evidence reported in the literature is the dis-

crepancy between the theoretical predictions and observed behavior on effort provi-

sion. Competition among participants is often presumed to enhance performance,

however, empirical evidence points out bi-modal behavior: over-workers and drop-

outs. More specifically, it is observed that contestants with high abilities over-exert

effort while contestants with low abilities withhold or withdraw effort in comparison

to the predictions of standard theory (see, for example Müller and Schotter, 2010;

1Sisak (2009) presents a survey of theoretical papers studying the optimal prize allocations in
contests, and Dechenaux et al. (2015) documents an extensive review of the experimental literature
on contests.
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Schotter and Weigelt, 1992; Fershtman and Gneezy, 2011; Barut and Noussair, 2002;

Noussair and Silver, 2006; Ernst and Thöni, 2013; Sbriglia and Hey, 1994). Besides

the observed behavior in laboratory and field experiments, causal empiricism also

suggests that in many organizations, a group of workers is observed to be worka-

holics, while another group drops out by not exerting any effort (Kemeny, 2002;

Stinebrickner and Stinebrickner, 2012, see) 2 The observation raises the following

two key questions: What is the deriving force behind it? What are the implications

of it for the optimal prize-allocation schemes in contests?

To address these questions, I analyze a canonical all-pay contest under the as-

sumption that participants are expectation-based loss-averse. It is established that

competing agents not only evaluate outcomes in absolute terms but also relative to

their expectations and therefore expectations play a key role in effort provision in

competitive environments (Abeler et al., 2011; Gill and Prowse, 2012; Delgado et al.,

2008; Allen et al., 2017; Bartling et al., 2015). My model is able to align the empir-

ical evidence on bi-modal effort provision which is hard to reconcile with a model

under standard economic assumptions. Expectation-based loss aversion serves as a

key driver of this bimodal behavior and has important implications for the optimal

prize allocation. Muting competition by awarding multiple prizes becomes optimal

in the cases where a single prize is predicted to be optimal under the assumption

of standard preferences. These results appear to be consistent with the prevalence

of multiple prize contests in the real world. For example, employees expend effort

to be promoted to positions in organizational hierarchies, athletes perform to win

gold, silver and bronze medals and students study for grades and so on.

My model builds on the workhorse contest model of Moldovanu and Sela (2001).

In my setup, contestants covertly exert efforts simultaneously to win prizes. Effort is

always costly and the cost-of-effort depends on effort levels as well as abilities. Con-

testant with higher abilities bears lower costs and higher effort levels leads to higher

costs. Contestants know their private abilities and the distribution of abilities, while

they do not know the abilities of their competitors. The principal chooses a prize-

allocation scheme, specifying how a fixed budget sum is be allocated into prizes to

maximize the total expected effort. Prizes are allocated according to the rankings of

2Kemeny (2002) reports that around 30% of workers in the US and Canada self-identify them-
selves as workaholics. Stinebrickner and Stinebrickner (2012) reports that students’ learning that
their academic ability is low plays a prominent role in college drop-outs.
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players with respect to their effort levels. The first prize is allocated to the contes-

tant with the highest effort, the second highest prize is allocated to the contestant

with the highest second effort and so on until all prizes are allocated. In my setup,

contestants not only derive utility from evaluating outcomes in absolute terms (for

example the absolute value of prizes), but also by evaluating them in comparison

to their expectations. A contestant derive a gain-loss utility next to the standard

consumption utility, by comparing the actual outcome with his expectations about

outcomes. I posit that contestants are loss averse around their rational expectations

à la Kőszegi and Rabin (2006, 2007), where expectations are determined endoge-

nously within the economic environment.

My first main result is that expectation-based loss aversion induces a bifurcating

force among the efforts of high- and low-ability players: high-ability players choose

higher effort levels while low-ability players choose lower effort levels than predicted

by standard theory. Intuitively, a high-ability player, who has ex-ante high chances

of winning a prize, holds high expectations of winning a prize. To avoid the loss

sensation he faces in case of not wining any prize, he increases his effort level to

further increase his chances of winning. A low-ability player, on the other hand,

having ex-ante low chances of winning a prize, holds low expectations of winning a

prize. He reduces his effort level to further decrease his expectation since lowering his

expectations of winning a prize makes an outcome of not winning less disappointing.

Moreover, for sufficiently high degrees of loss aversion, players with low abilities drop

out of the contest by exerting zero effort since their gain-loss utility dominates their

standard consumption utility. Consequently, they end up with negative expected

utility if they exert positive effort levels. In order to secure themselves a non-negative

expected utility, these players reduce their effort level to the minimum possible level

and exert zero effort.

The principal, anticipating the contestants’ behavior, aims to maximize the total

expected effort. Thus, any change in the contestants’ effort provision has important

implications on the principal’s prize allocation decision. My second main result

is that awarding multiple prizes may become optimal in the cases where standard

preferences predict the optimality of a single grand prize. Intuitively, the marginal

effect of introducing another smaller prize has two countervailing effects on the

revenue of the principal: a beneficial effect on the low- and middle-ability players
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and a detrimental effect on high-ability players. While an additional prize motivates

drop-outs to exert effort, it de-motivates over-workers due to decreased value of

larger prizes. Which of these two forces dominates, and thus the optimal allocation

of prizes, depends on the interplay between the number of competitors, the ability

heterogeneity, and the degree of loss-aversion.

An important implication of these results is that the principal can obtain higher

levels of total effort by muting competition when contestants have reference depen-

dent preferences.3 The principal mutes competition by decreasing prize inequality,

namely either by transferring an amount from higher- to lower-ranked prizes or

by introducing additional prizes. The principal is better off by awarding additional

prizes when there is contest entry, when ability range of contestants is less dispersed,

and when contestants are more loss averse. Contest entry means adding external

contestants to the competition without adding any prizes, for example accepting

applications from outsiders for a promotion at a firm. A less dispersed ability range

means having more homogeneous contestants with lower abilities, for example ath-

letes in lower leagues. A higher loss aversion means contestants are putting more

weight on avoiding disappointment which leads to more bifurcated effort. In all

of these cases, the principal gets better off by lowering the prize inequality and

potentially introducing additional prizes.

Before reviewing the literature explaining micro and macro evidence by incor-

porating expectation-based reference-dependent preferences, I briefly discuss the

existing evidence documenting the role of expectations and loss-aversion on effort

provision. Abeler et al. (2011) manipulate the rational expectations of subjects in

a real-effort experiment and find that effort provision is in line with the theory of

expectation-based reference-dependent models: subjects work more when expecta-

tions are high, and many subjects stop otherwise. Sbriglia and Hey (1994) conduct

a series of real-effort experiments on R&D competition and report that players who

are ahead of others in the contest raise their investment to guarantee a win, while

players who are lagging behind drop out of the contest. Medvec and Gilovich (1995)

analyze the emotional reactions of bronze and silver medalists at the 1992 Summer

Olympics and find that the reactions are mainly influenced by medalists’ thoughts

3Fang et al. (2020) finds a similar result in a complete information all-pay contest model with
risk-neutral homogeneous contestants and convex cost-of-effort functions.

5



about “what might have happened”, which is a key property of Kőszegi and Rabin

(2006). Gill and Prowse (2012) experimentally study a real effort contest and find

that subjects competing with each other are loss averse around reference points given

by endogenous expectations, which affect subjects’ effort levels. Delgado et al. (2008)

combines neuroeconomic and behavioral economic techniques using functional mag-

netic resonance imaging (fMRI) to investigate the overbidding in auctions, similar to

workaholics in organizations. Their findings highlight a role for the contemplation

of loss in explaining the tendency to over-bid.

This paper fits well into the recent and growing literature utilizing expectation-

based loss aversion in different settings to give a rationale for a variety of empirical

findings. Lange and Ratan (2010) study first- and second-price sealed-bid auc-

tions for a single item with expectation-based loss-averse bidders. Their model

predicts overbidding in first-prize auctions, in line with evidence from recent labo-

ratory experiments. Balzer et al. (2020) study first-price and Dutch auctions with

expectations-based loss-averse bidders and show that the strategic equivalence be-

tween the two formats breaks down. von Wangenheim (2021) analyze expectation-

based loss-aversion in the context of dynamic and static auctions and show that the

Vickrey auction yields strictly higher revenue than the English auction, violating the

well-known revenue equivalence. Crawford and Meng (2011) analyze field data on

cab drivers’ working hours and propose a model of labor supply for cab drivers. Their

estimates suggest that their reference-dependent model of labor supply rationalizes

the cab drivers’ behavior observed in the field data. Herweg et al. (2010) study the

principal-agent model with moral hazard in the presence of expectation-based loss-

averse agents. They show that the optimal contract is a binary payment scheme,

consistent with the observed prevalence of simple contracts. Rosato (2017) studies

sequential negotiations with one-sided incomplete information and breakdown risk.

It is shown that in comparison to the standard benchmark case, loss aversion on the

buyer’s side softens the rent efficiency trade-off for the seller. Pagel (2017) demon-

strates that applications of expectations-based reference-dependent preferences are

not limited to explaining micro evidence, but also rationalize widely analyzed macro

consumption puzzles: excess smoothness and sensitivity in consumption.

The remainder of this paper is organized as follows. In Section 2 I present

the contest model, introduce the preferences and the equilibrium concept. Section
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3 discusses participation in the contest. In Section 4 I focus on linear cost-of-

effort functions and derive the equilibrium effort function of the players. I show

that the model’s predictions reconcile the empirical evidence on effort provision

with the theoretical predictions. Then, I formulate the principal’s problem and

provide a sufficient condition for the optimality of multiple prizes. In Section 5

I generalize Section 4 to the case of convex and concave cost-of-effort functions.

Section 6 concludes. Proofs are relegated to the Appendix.

2. The Model

The Contest Setup

I first present the contest model, build on Moldovanu and Sela (2001). Consider a

contest with P prizes V1 ≥ V2 ≥ ... ≥ VP ≥ 0, where Vi denotes the value of the

i-th prize. The values of the prizes are announced by the principal and are common

knowledge. The prize sum is fixed and assumed to be normalized to 1,
∑P

i=1 Vi = 1.

There is a principal who chooses the number and levels of prizes in order to max-

imize the total expected effort of players. There are k ≥ P players, i.e. there are at

least as many players as there are prizes. Each players has an ability (cost) param-

eter ci, which is private information. Ability parameters are drawn independently

from a continuous distribution function F on the interval [m, 1]. The distribution

function F is assumed to have a strictly positive and continuous density F ′ > 0. It

is assumed that F is common knowledge.

Each player i exerts effort xi, which is always costly regardless of winning any

prize. The cost-of-effort is denoted by ciγ(xi). The cost-of-effort function γ : R+ →
R+ is assumed to be a strictly increasing function with γ(0) = 0 and is assumed to

be either linear, or concave or convex. Note that a player with a high ci is of low

ability since it is more costly for him to put effort. In the remainder of the text, the

players having higher ci parameters will be referred to as low-ability players, and

those with low ci parameters will be referred to as high-ability players. In order to

avoid infinite efforts caused by zero costs, the highest possible ability m is assumed

to be strictly positive.
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Preferences

Having presented the contest model, I now introduce the contestants’ preferences.

Following Kőszegi and Rabin (2006), I posit that players have reference-dependent

preferences. The utility is assumed to have two components: a consumption (intrin-

sic) utility and a gain-loss utility. The consumption utility is the standard outcome-

based utility and solely depends on consumption. The gain-loss utility depends on

how consumption of the individual compares to his reference point and is evaluated

according to the following universal gain-loss utility function µ:

µ(w) =

 ηw, if w ≥ 0

ηλw, if w < 0.

The gain-loss utility function µ is assumed to satisfy the assumptions Kahneman and

Tversky (1979) put on their value function, where w is the distance of individual’s

consumption to his reference point, λ ≥ 1 is the loss-aversion index weighting losses

relative to gains and η > 0 weighs gain-loss utility component of the utility relative

to consumption utility component.

In my setting, the consumption space of the players comprises two dimensions:

the prize dimension and the effort dimension. The contestant’s consumption utility

for prizes is assumed to be the value of the prize. For example, if a player wins

the i-th prize, his consumption utility is equal to Vi. The consumption disutility

from exerting effort x for a player with ability c is equal to −cγ(x), namely to his

cost-of-effort.

The reference point of the players is determined by his rational expectations

about outcomes. The gain-loss utility for a given outcome is evaluated by comparing

it with all other possible outcomes and weighting each comparison with the ex-ante

probability of the alternative outcome. I apply the concept of choice-acclimating

personal equilibrium (CPE) as defined in Kőszegi and Rabin (2007). CPE assumes

that an individual correctly predicts his choice set, the set of possible outcomes, and

how the distribution of these outcomes depends on his decision. An essential feature

of CPE is that the reference point of the player is affected by his own action. In

a contest environment, a player not only affects his probability of winning a prize

but also his reference point by changing his effort level. As laid out in Kőszegi and
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Rabin (2007), CPE refers to the analysis of risk preferences regarding outcomes that

are resolved long after all decisions are committed to. This environment seems well

suited for a contest environment, where the prizes are allocated long after players

exert effort.

The Environment

In the following I formulate the expected utility of a players with ability c and an

effort level x. Suppose that there are P prizes to be awarded, V1 ≥ V2 ≥ ... ≥ VP ≥ 0,

and k > P players. In this case there are P + 1 possible outcomes for the players:

Winning the first prize V1, winning the second prize V2, · · · , winning the P -th prize

VP and not winning any prize. Denote the probabilities with which these P + 1

outcomes occur respectively by p1, p2,..., pP and 1 −
∑p

i=1 pi. Namely, ps is the

probability that (k − s) competitors of a players exert less effort than him while

s − 1 competitor exerts more effort. It is important to note that, a players can

affect these probabilities by putting more or less effort. For the convenience of

presentation, denote the probability of not winning any prize, by

pP+1 ≡ 1−
p∑

i=1

pi. (1)

To be consistent, let VP+1 = 0 denote the consumption in the prize dimension when

the players does not win any prize. The utility from winning the first prize V1 is

given as follows:

V1 − cγ(x) + η

P+1∑
i=1

pi(V1 − Vi) (2)

In this formulation, the term V1 − cγ(x) is the consumption utility from winning

the first prize plus the consumption disutility from exerting effort. The next term,∑P+1
i=1 pi(V1−Vi), is the gain-loss utility, where η is its weight relative to the standard

consumption utility. The player forms his gain-loss utility in the prize dimension as

follows: he first compares the actual outcome, namely winning V1, with all the other

possible outcomes, namely winning any other prize and not winning any prize. Then

he weights these comparisons with the ex-ante probabilities of alternative outcomes.

Note that winning the first prize V1 is the best outcome in the outcome space as

V1 − Vi ≥ 0 for i ∈ 2, · · · , P + 1. Thus, in each of these comparisons the player
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experiences a gain of V1 − Vi for any i ∈ 2, · · · , P + 1, as he could have ended up

winning the prize Vi with pi probability. Note that, the ex-ante expected gain-loss

utility is zero in the effort dimension as effort is a deterministic outcome (contestant’s

expected and actual effort choices coincide).

The utility of a player when he does not win any prize –the worst outcome– is

given as follows:

VP+1 − cγ(x) + η

(
P+1∑
i=1

piλ(0− Vi)

)
(3)

Here the consumption utility is 0−cγ(x), where the players has only the disutility of

exerting effort, while the gain-loss utility from not winning any prize is
∑P+1

i=1 piλ(0−
Vi). Since not winning any prize is the worst outcome in the outcome space, the

player will be always in the loss domain in his comparisons, namely µ(0 − Vi) =

−ηλVi. The experienced loss of 0 − Vi is weighted with pi, as he could have ended

up winning the prize Vi with this probability, for any i ≥ 1.

The utility of winning the s-th prize Vs with s > 1 is evaluated exactly in the

same way and given as follows:

Vs − cγ(x) + η

(
P+1∑
i=s+1

pi(Vs − Vi) +
s∑

i=1

piλ(Vs − Vi)

)
(4)

The players derives the consumption utility of Vs and the consumption disutility of

effort −cγ(x). The gain-loss utility
∑P+1

i=s+1 pi(Vs − Vi) +
∑s

i=1 piλ(Vs − Vi) has two

parts: the first part
∑P+1

i=s+1 pi(Vs−Vi) captures the gain sensation from winning Vs,

while the players could have ended up with winning a worse prize Vi with s < i and

the second part
∑s

i=1 piλ(Vs−Vi) captures the loss sensation from from winning Vs,

while the players could have ended up with winning a better prize Vi where s > i.

Note that Vs − Vi ≤ 0 for i < s since Vs ≤ Vs−1 ≤ · · · ≤ V1.

Being the actual outcome uncertain, the expected utility of the players is obtained

by averaging over all possible outcomes, namely the weighted average of the terms in

equations (2), (3) and (4), where the weights are the probabilities with which these
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outcomes realize. The expected utility of a player with type c is given as follows:

EU =
P∑

s=1

psVs − cγ(x) + η

[
P+1∑
s=1

ps

(
P+1∑
i=s+1

pi(Vs − Vi) +
s∑

i=1

piλ(Vs − Vi)

)]
(5)

The expected utility becomes a sum of the standard consumption utility and the

gain-loss utility derived from outcome comparisons. With λ = 0, the expected utility

in equation (5) reduces to the standard consumption utility.

The timing of the contest game is as follows: The principal chooses and an-

nounces the number and the levels of the prizes. Each player gets privately informed

about his ability. Each player chooses his effort level and forms rational expectations

about the prize outcomes. All players simultaneously exert effort. The player with

the highest effort wins first prize V1, the player with the second-highest effort wins

second prize V2 and so on until all the P prizes are allocated, while each player bears

the cost-of-effort regardless of winning any prize.

3. Participation in the contest

In my analysis, as standard in the contest and auction literature, I concentrate on

symmetric equilibria, where the equilibrium effort is assumed to be decreasing in

type parameter c. That is, a player with an ability (cost) parameter c always puts

more effort than a player with a ability (cost) parameter larger than c. Before

launching out into the discussion on participation in the contest, I introduce the

following notation. For any s ∈ {1, 2, ..., P} let Fs,k denote the distribution of the s-

th order statistic out of the k independent variables distributed according to F , and

Fs(c) = Fs−1,k−1(c) − Fs,k−1(c). To facilitate the exposition, define Λ = η(λ − 1),

where η is the weight placed on the gain-loss utility relative to the consumption

utility and λ is the classical loss aversion index. For λ = 1, there is no loss aversion

and the contestant’s expected utility equals expected net consumption utility. With

this notation, the expected utility of the players with type c becomes:

EU =
P∑

s=1

psVs − cγ(x)− Λ
P∑

s=1

(
P+1∑
i=s+1

pspi(Vs − Vi)

)
. (6)
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From this formulation of the expected utility of the players, it becomes clear that Λ

captures not only the weight put on losses relative to gains, but also captures the

weight of gain-loss utility relative to consumption utility. So, Λ can be interpreted as

the overall measure of a contestant’s degree of loss aversion. The expected utility in

equation (6) has two parts: the standard consumption utility part
∑P

s=1 psVs−cγ(x)

and the gain-loss utility part −Λ
∑P

s=1

(∑P+1
i=s+1 pspi(Vs − Vi)

)
. For Λ = η(λ− 1) =

1, the expected utility of the players reduces to the case without loss aversion. Since

Vs ≥ Vi for any i > s, the gain-loss utility part is always negative. This is because for

non-deterministic outcomes (i.e. the outcomes in the prize dimension) since losses

from comparing an outcome to a counterfactual loom larger than the symmetric

gains. Therefore, when choosing his effort level, the players has to balance off two

possibly conflicting targets: maximizing the expected net consumption utility and

minimizing the gain-loss utility.

According to Kőszegi and Rabin (2007), under CPE a player might choose a

stochastically dominated option when the degree of loss-aversion is sufficiently pro-

nounced with η(λ − 1) = Λ > 1. Although choosing a stochastically dominated

option of putting zero effort seems counterintuitive, the player gets worse off if he

exerts any positive effort level. The reason is that, when loss aversion is sufficiently

high, the standard consumption utility of a player with low probabilities of winning

a prize is dominated by his gain-loss utility, resulting in him ending up with a net

loss. Ex-ante expecting to experience a net loss, contestant’s main concern becomes

reducing the scope of possible losses. He does so by spending zero effort and se-

cures himself a zero net loss. The following proposition formalizes this intuition of

withdrawing effort and provides the comparative statistics on how the critical type

c̃ changes as contestants’ degree of loss aversion increases.

Proposition 1 Assume that there are P prizes with V1 ≥ V2 ≥ · · · ≥ VP to be

awarded and there are k > P loss-averse players. When the loss-aversion index

Λ ≤ 1, there is full participation in the contest, that is each players with type c < 1

exerts positive effort. When players are sufficiently loss averse, namely when Λ > 1,

there exists a critical type c̃ such that every players with c > c̃ exerts zero effort and
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drops out the contest, where the critical type c̃ satisfies:

P∑
s=1

(Fs(c̃))
2Vs +

P∑
s=2

s−1∑
i=1

2VsFs(c̃)Fi(c̃)

P∑
s=1

Fs(c̃)Vs

= 1− 1

Λ
. (7)

The value of c̃ decreases as the contestants’ degree of loss aversion increases.

Proof. See appendix A.

Proposition 1 gives two main messages. First, there is full participation in the

contest if loss aversion is mild. In other words, all players except the lowest-ability

one put positive effort when Λ ≤ 1. Second, if the contestants’ loss-aversion degree

is sufficiently high but still plausible, Λ > 1, then there is a group of players who

put zero effort and drop out of the contest. Moreover, as contestants’ degree of loss

aversion increases, more and more players drop out of the contest.

Drop-out behavior has been observed in a number of experimental and field stud-

ies. Müller and Schotter (2010) experimentally tests the predictions of Moldovanu

and Sela (2001) and reports that observed effort provision is bifurcated: Low-ability

subjects drop put, while high-ability subjects try too hard. Schotter and Weigelt

(1992) reports that subjects with higher marginal cost-of-efforts drop out of the con-

test even when they are not expected to lose money. Fershtman and Gneezy (2011)

reports the findings from running races among elementary school students: some

students simply stop running and drop out when it is clear they have no chance of

winning. Finally, dropping out is also observed in studies of multiple unit all-pay

auctions (see Barut and Noussair (2002), Noussair and Silver (2006) and Ernst and

Thöni (2013)).

Drop-out behavior is closely related to the cognitive strategy called “internal

self-handicapping”: an individual’s withdrawal of effort when he expects a low prob-

ability of success, as defined by Arkin and Baumgardner (2011).4 One cause of

self-handicapping is uncertainty about decision makers’ own performance –in my

4Self-handicapping, as a strategy to create obstacles by the decision-maker in anticipation of
a failing performance, is first introduced by Jones and Berglas (1978). Psychological literature
demonstrating a wide range of self-handicapping strategies (see in Rhodewalt (1990)), Arkin and
Baumgardner (2011) classified self-handicapping into two main categories: internal (e.g., with-
drawal of effort) or external (e.g., choice of non-diagnostic performance settings). The dropping-out
behavior discussed here is related to internal self-handicapping.
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context uncertainty about winning a prize or not– especially when others have high

expectations of success. By withdrawing effort, the decision-maker makes an out-

come of failure –not winning any prize – less painful for himself. Examples of internal

self-handicapping include students not studying on exam papers and workers’ un-

derachievement at organizations.

4. Linear Cost Functions

This section contains the main results about the optimal effort provision and the

optimal prize structure in a multiple prize contest when the players have linear cost-

of-effort functions. I will first solve the subgame and derive the equilibrium effort

levels of contestants for a given prize structure. I will then solve the problem of the

principal and elaborate the optimal allocation of prizes.

4.1. Equilibrium Effort Provision

Assume that there are P prizes with V1 ≥ V2 ≥ · · · ≥ VP to be awarded and there

are k > P loss-averse players with linear cost-of-effort function γ(x) = x. A players

with type c chooses his effort level x in order to maximize his expected utility. Then

the contestant’s problem is the following optimization problem:

max
x

P∑
s=1

psVs − cγ(x)− Λ
P∑

s=1

(
P+1∑
i=s+1

pspi(Vs − Vi)

)
. (8)

The following proposition displays the solution to this optimization problem, namely

the equilibrium effort function.

Proposition 2 Assume that there are P prizes V1 ≥ V2 ≥ ... ≥ VP ≥ 0 to be

awarded and k > P players. If Λ > 1, then there exists a critical type c̃ satisfying

(7) with equality, such that in equilibrium players with c ≥ c̃ exert zero effort and

players with c < c̃ exert effort according to:

b(c) =
P∑

s=1

As(c)Vs (9)
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where the coefficients of s-th prize is given by:

As(c) = (1− Λ)

∫ c̃

c

−1

a
Fs(a)′da+ Λ

∫ c̃

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da.

(10)

If Λ ≤ 1, then there is full participation and each players exerts effort according to

equations (9) and (10) with c̃ = 1.

Proof. See appendix A.

Put verbally, in equilibrium each player exerts an effort equal to a weighted sum

of the P prizes. The weights of the prizes differ for each player depending on his

chances of winning these prizes. If players are sufficiently loss-averse, then there

is a mass of players who puts zero effort as discussed in Section 3. The following

example illustrates the equilibrium effort function of players when there are P = 2

prizes to be awarded with V1 ≥ V2 ≥ 0.

Example 1 Assume that there are two prizes to be awarded V1 ≥ V2 ≥ 0 and k = 3

players whose abilities are drawn from the uniform distribution F (c) = 2c−1 on the

interval [1/2, 1]. Using Proposition 2, the optimal effort function in this case is the

following weighted sum of the first and the second prizes:

b(c) = A1(c)V1 + A2(c)V2,

where the coefficients of the first and the second prize are given by:

A1(c) = (1− Λ)

∫ c̃

c

−1

a
F ′1(a)da+ Λ

∫ c̃

c

−1

a
(F 2

1 (a))′da

= (1− Λ)

∫ 1

c

4
1

a
(2− 2a)3da+ Λ

∫ 1

c

8
1

a
(2− 2a)3da

(11)

and

A2(c) = (1− Λ)

∫ c̃

c

−1

a
F ′2(a)da+ Λ

∫ c̃

c

−1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da

= (1− Λ)

∫ 1

c

4
1

a
(−1 + 2(1− 2a)) da+ Λ

∫ 1

c

8
1

a
(2− 2a) (−1 + 3(1− 2a)) da.

(12)

Figure 1 depicts the equilibrium effort function for both standard preferences

(solid line) and expectation-based reference-dependent preferences (dashed line). The
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Figure 1: Equilibrium Effort Functions

(a) Full Participation, Λ ≤ 1
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(b) Drop-outs, Λ > 1
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Notes: The upper and lower panels depict the equilibrium effort functions when players
have linear cost-of-effort functions and have the loss-aversion index Λ = 0.8 and Λ = 1.5
respectively, on the left-hand side for a single prize and on the right-hand side for two
prizes.

upper panel shows the equilibrium effort provision when Λ = 0.8 ≤ 1 and the lower

panel when Λ = 1.5 > 1.

The upper panel of Figure 1 shows that when Λ = 0.8 ≤ 1, every players but the

one with the lowest ability c = 1 exert positive effort, as proven in Proposition 1. In

the lower panel of the figure, however, there is a critical type c̃, all players having

types c above which put zero effort and drop-out of the contest. The value of the

critical type depends on the distribution of order statistics and the ratio of prizes as

laid out in Proposition 1. Using the equation (7), the critical type is c̃ = 0.71 when

the principal awards a single prize, while it increases to c̃ = 0.9 when the principal

awards two equal prizes. The reason is that putting a second prize motivates low-
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ability players who otherwise give up the slim hope of winning any prize. In the

presence of a second prize, players with abilities between 0.71 < c < 0.9 come back

to the competition to win the second prize and start exerting positive efforts. While

introducing a second prize motivates low-ability players, it leads to a decrease in the

value of the first prize and results in an effort drop on the side of high-ability players,

as seen in Figure 1.

The effort provision discussed above is not particular to the numerical values in

the example. More precisely, a high-ability player always overexerts effort, while a

low-ability player always under-exerts effort. When the gain-loss utility is sufficiently

important, low-ability players with c > c̃ do not exert any effort at all and drop

out of the contest. The following theorem formalizes the bimodal effort provision

illustrated in example 1 to the general case of P prizes, k > P players with abilities

drawn from a distribution F on [m, 1].

Theorem 1 Assume that there are P prizes with V1 ≥ V2 ≥ ... ≥ VP ≥ 0 to be

awarded and k > P players with linear cost-of-effort functions. Denote the equilib-

rium effort function of a players with reference dependent preferences by bLA and of

players with standard preferences by bS. For any players with ability c in an ε neigh-

bourhood of m, bLA(c) > bS(c). For any players with ability c in an ε neighbourhood

of c̃, bLA(c) < bS(c), where c̃ = 1 whenever Λ ≤ 1.

Proof. See appendix A.

The presence of expectation-based reference-dependent preferences introduces a

bifurcating force among the high- and low-ability players. A high-ability player has

ex-ante high probabilities of winning a prize. He, therefore, holds high expectations

regarding winning a prize. Losses looming larger than gains of equal size, he tries

to avoid the loss of not winning a prize. To do so, he increases his effort level to

further increase his chances to win a prize. On the other hand, low-ability players

have ex-ante low probabilities of winning a prize. Thus, he holds low expectations

regarding winning a prize. Intuitively, lowering his expectations of winning a prize

makes the outcome of not winning less painful. Therefore, he reduces his effort level

to avoid such disappointments.

Furthermore, as discussed in Section 3, when the gain-loss utility is sufficiently

important, decision-makers central concern is reducing exposure to sensations of
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loss according to Kőszegi and Rabin (2007). For a low-ability player who is suffi-

ciently loss-averse, the gain-loss utility becomes more dominant than the standard

consumption utility. In this case, the players might end up with a negative expected

utility. To avoid the net loss arising from the strong disappointment he exerts zero

effort and secures himself a zero expected utility.

It is important to note that there are two different channels through which loss-

averse players try to avoid losses, creating the bimodal effort provision. A player

chooses either one of these two channels depending on his expectations. A high-

ability player, holding high expectations, chooses to increase his effort level to avoid

the disappointment of not winning. A low-ability player, on the other hand, holding

low expectations, chooses to lower his effort level to lower his expectations further,

which makes not winning a prize less painful. Therefore, high-ability players exert

effort aggressively while low-ability ones withhold effort.

4.2. The Optimal Prize Allocation

The contestants’ problem being discussed in the previous section, I now turn into

the principal’s problem. Assume that there are P prizes V1 ≥ V2 ≥ · · · ≥ VP to be

awarded with
∑P

s=1 Vs = 1 and k > P players with linear cost-of-effort functions

γ(x) = x. Given the optimal effort provision of players for any prize allocation, the

principal chooses the number and the level of the prizes. The goal of the principal

is to maximize his expected revenue, namely the total expected effort exerted by

players. players exert effort according to

b(c) =
P∑

s=1

AsVs

where the weights As(c) are as in equation (10). Noting that V1 = 1 −
(∑P

i=2 Vi

)
,

the average effort of each players is given by:

∫ c̃

m

(
P∑
i=1

ViAi(c)

)
F ′(c)dc =

∫ c̃

m

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc
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The expected revenue of the principal becomes:

R(V2, V3, ..., VP ) = k

∫ c̃

m

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc. (13)

The principal’s problem is choosing the number and the levels of the prizes to max-

imize his revenue, namely:

max
{Vi}Pi=2

k

∫ c̃

m

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc.

The optimal number of prizes depends on the shape of the revenue function. If

the revenue function with respect to the i-th prize Vi at Vi = 0 is increasing, then

it is optimal to award Vi > 0. Otherwise, it is optimal to set Vi = 0. Note that

when Λ ≤ 1, the critical type becomes c̃ = 1 and the only place Vis appears in the

principal’s revenue is the function inside the integral. When Λ > 1, however, the

critical type c̃ < 1 depends on the values of Vis as well as the degree of loss aversion.

In the following, I will discuss the principal’s problem respectively for these two

cases: Λ ≤ 1 and Λ > 1.

First, consider the case when Λ ≤ 1. Note that, in this case, there is full

participation in the contest with c̃ = 1 and so the maximization problem of the

principal becomes a linear programming problem, where the maximum value of the

objective function is achieved at the corners of the feasibility set 0 ≤ Vi ≤ 1
i+ 1.

Therefore, it is always optimal to either award a grand single prize or multiple

prizes of equal sizes whenever Λ ≤ 1. The following proposition provides a sufficient

condition for the optimality of the i-th prize and characterizes the optimal values of

the prizes for the case of Λ ≤ 1.

Proposition 3 Assume that there are P prizes V1 ≥ V2 ≥ ... ≥ VP ≥ 0 to be

awarded with
∑P

i=1 Vi = 1 and k > P players with linear cost-of-effort functions.

Moreover, assume that Λ ≤ 1 as such there is full participation in the contest. It is

optimal to allocate the s-th prize if and only if∫ 1

m

(As − A1)F ′(c)dc > 0. (14)

Moreover, the optimal value of the prizes are given by V1 = · · · = Vs = 1
s whenever
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it is optimal to put s prizes. In other words, it is always optimal to put equal prizes.

Proof. See Appendix B.

Now consider the case when Λ > 1. In this case, Vis appear in the principal’s

revenue not only in the function inside the integral but also in the upper bound of

the integral in equation (43). This is because the critical type c̃ < 1 depends on

the value of the prizes V2, V3, · · · , VP as defined in equation (7). In this case, the

derivative of the principal’s revenue with respect to the i-th prize at Vi = 0 becomes:

∫ c̃

m

(As − A1)F ′(c)dc+

∫ c̃

m

[
∂

∂c̃

(
A1(c) +

P∑
i=1

Vi(Ai − A1)

)
∂c̃

∂Vs

∣∣∣∣
Vs=0

]
F ′(c)dc > 0,

(15)

where

∂c̃

∂Vs

∣∣∣∣
Vs=0

= −
Fs(c̃)

2 − F1(c̃)2 +
s−1∑
i=1

(
2Fs(c̃)

2Fi(c̃)
2
)
− (1− 1

Λ
)(Fs(c̃)− F1(c̃))

(
F1(c̃)2

)′
+

P∑
i=1
i 6=s

Vi
(
Fi(c̃)

2F1(c̃)2
)′ − (1− 1

Λ
)

F1(c̃)′ +
P∑
i=1
i 6=s

Vi(Fi(c̃)
′ − F1(c̃)′)


.

To evaluate the expression in (15) for the i-th prize, one should first calculate the

value of c̃, which in turn depends on the optimal values of V2, V3, · · · , Vi−1. Therefore,

when Λ > 1, the expression analogous to the sufficient condition in Proposition 3

does not provide a practical way to check the optimality of the i-th prize. Indeed,

it is more straightforward to maximize the revenue function and directly calculate

the optimal values of the prizes V2, V3, · · · , VP and V1 = 1−
∑P

s=1 Vs.

The following example illustrates the optimal prize allocation when there are

P = 2 prizes to be awarded V1 ≥ V2 ≥ 0 in the setting of Example 1, comparing the

cases of standard- and reference-dependent preferences.

Example 2 Assume that there are 3 players, whose abilities are drawn from a uni-

form distribution F (c) = 2c − 1 on the interval [0.5, 1]. Assume, moreover, that

the cost-of-effort function is γ(x) = x. The optimal effort function in this case be-

comes b = A1V1 + A2V2, where A1 and A2 are as in equation (10). For the ease of

expression, rewrite A1 and A2 as follows:

A1 = (1− Λ)A1
1 + ΛA2

1 and A2 = (1− Λ)A1
2 + ΛA2

2.
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First, consider the standard case with Λ = 0. Letting V2 = α and V1 = 1−α, where

0 ≤ α ≤ 1/2, the revenue of the principal reads:

R(α) = k

∫ 1

m

(A1
1(c) + α(A1

2(c)− A1
1(c)))F ′(c)dc. (16)

Awarding a single prize is optimal if R(α) is strictly decreasing, that is if the revenue

function has its maximum at α = 0. Otherwise, the revenue function R(α) has

its maximum at α > 0, leading to the optimality of two prizes. A sufficient and

necessary condition for the optimality of two prizes reduces (see Moldovanu and

Sela (2001)):

R′(0) =

∫ 1

m

(
A1

2(c)− A1
1(c)
)
F ′(c)dc > 0.

Substituting the numerical values, R′(0) = −0.137 < 0, violating the sufficient condi-

tion. Therefore, it is optimal to award a grand single prize in this case. Now suppose

that players are loss-averse and contestants’ degree of loss aversion is Λ = 0.8. The

sufficient condition for the optimality of two prizes becomes:

R′(0) =

∫ c̃

m

(A2(c)− A1(c))F ′(c)dc > 0.

Substituting the numerical values, R′(0) = 0.152 > 0 and the sufficient condition is

satisfied. Therefore, awarding a second prize becomes optimal with V2 = 0.5 when

the degree of loss aversion is 0.8.

For the specific values taken in the above example, it is optimal to award a sin-

gle prize in the standard case without loss aversion, while awarding a second prize

becomes optimal in the presence of loss aversion. To grasp this finding intuitively,

recall the intuition underlying Theorem 1. Award of a second prize creates two op-

posite effects: a beneficial effect on low- and middle-ability players and a detrimental

effect on high-ability players.

On the one hand, when there is only a single prize, a loss-averse player with

low ability loses his hope of winning the prize and gives up the competition by

exerting either very little or no effort, as shown in the previous section. Award of

a second prize will motivate low- and middle-ability players, who otherwise give up

the competition, resulting in an increase in the total expected effort.

On the other hand, the award of a second prize lowers the value of the first one,
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Figure 2: The Beneficial Effect of a Second Prize
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Notes: The figure illustrates the beneficial effect of a second prize when players have linear
cost-of-effort functions for different levels of degree of loss aversion.

since the principal has a fixed budget sum. A smaller first prize will not motivate

the high-ability players as much as a single grand prize does. Therefore, loss-averse

players with high ability will lower their effort level relative to the case of a single

prize, leading to a decrease in the total expected effort.

The optimality of the award of a second prize depends on which of these two

effects is the dominant one. In example 2, the beneficial effect of the second prize

on the effort level of low- and middle-ability types dominates the detrimental effect

on high-ability types and so allocating a second prize becomes optimal. Figure 2

illustrates both the resulting effort increase for low- and middle-ability types and the

effort decrease of the high-ability ones, relative to the award of a grand single prize,

respectively for the standard case, moderate degrees of loss aversion (Λ = 0.8 ≤ 1)

and higher degrees of loss aversion (Λ = 1.5 > 1).

More generally, when players are loss-averse, the optimality of awarding a sec-
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ond prize (or a third or more when P > 2) depends on the specific properties of the

ability distribution function, the number of players, and the degree of loss-aversion.

In the standard case without loss aversion, Moldovanu and Sela (2001) show that

the result to contestant’s problem is independent of any of those variables and it is

always optimal to award a grand single prize even if, a priori, the principal is allowed

to award P prizes. It is important to note that a successful mechanism must elicit

behavior identical to the one assumed by the principal. Therefore, optimal prize

structure predicted in the presence of loss aversion could possibly yield better per-

formance than the standard predictions in applications to real life, e.g., the number

of promotions in a firm.

Figure 3 illustrates the optimal number of prizes when P = 2 depending on the

number of players k, the minimum effort cost m under a uniform distribution of

abilities, respectively for three different levels of the loss-aversion degree, Λ = 0.8,

Λ = 1.5 and Λ = 2.0. The plotted curves separate the k-m values for which the

award of a single prize is optimal from those for which the award of a second prize

becomes optimal. For example, when the degree of loss aversion is Λ = 0.8, for

any k-m combination below the large-dashed curve award of a grand single prize

is optimal, while introducing a second prize becomes optimal for k-m values above

the large-dashed curve. Inspecting Figure 3, it becomes clear that as contestants’

degree of loss aversion increases, the award of a second prize is more likely to become

optimal. Intuitively, as the degree of loss aversion increases, losses looming larger

than gains, even middle-ability players start to give up the race. The aggressive

effort provision of high-ability players can not compensate for a large number of

drop-outs. The primary target of the principal becomes motivating the drop-outs

by introducing a second (or possibly more when P > 2) prize(s).

As the number of players k increases, keeping everything else constant, the ben-

eficial effect of the second prize on middle- and low-ability players is amplified.

Intuitively, it becomes less likely to win a prize for a low-or a middle-ability player

when there are more competitors. So, there will be more players who put little or

no effort, decreasing the total expected effort further in comparison to the case of a

smaller k. In this case, the principal is better off when he motivates the low- and

middle-ability players – rather than the high-ability ones– by introducing a second

prize.
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Figure 3: Optimal Prize Allocation with P = 2
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Notes: The figure illustrates the optimal number of prizes for different degrees of loss
aversion when there are at most two prizes P = 2 and abilities are drawn from a uniform
distribution on [m, 1]. For (k,m) values below the graphs award of a grand single prize is
optimal, while for (k,m) values above the graphs award of a second prize becomes optimal.

The higher the minimum effort cost m is, the more likely a second prize to become

optimal. If m is small, players have lower cost-of-efforts on average in comparison

to the case of a larger m. In this case, the main contribution to the revenue of

the principal is from the abler players. Therefore, the principal is better off by

motivating those players with a grand single prize. In contrast, when m is larger,

the reasoning goes in the opposite direction: not only the number of players who

overexert effort is much less but also more low- and middle-ability players put very

little or no effort. In this case, the principal is better off by awarding two prizes

to motivate low- and middle-ability players. In other words, when m is larger the

beneficial effect of a second prize on the low- and middle-ability players dominates

the detrimental effect on high-ability players.

5. Concave and Convex Cost Functions

In this section, I generalize the results from the previous section to the cases of

convex or concave cost-of-effort functions.

5.1. Equilibrium Effort Provision

Assume that there are P prizes with V1 ≥ V2 ≥ · · · ≥ VP to be awarded and

there are k > P loss-averse players with convex or concave cost-of-effort functions.

24



The optimization problem of a player with type c is given by equation (8). The

equilibrium in the cases of convex or concave costs is obtained by a simple trans-

formation of the equilibrium strategies found in the previous section. The following

proposition displays the equilibrium effort function of a player.

Proposition 4 Assume that there are P prizes V1 ≥ V2 ≥ ... ≥ VP ≥ 0 to be

awarded and k > P players with either convex or concave cost-of-effort function

γ(x). If Λ > 1, then there exists a critical type c̃ satisfying (7) with equality, such

that in equilibrium players with c ≥ c̃ exert zero effort and players with c < c̃ exert

effort according to:

b(c) = γ−1

(
P∑

s=1

As(c)Vs

)
(17)

where the coefficients of s-th prize are given by equation (10). If Λ ≤ 1, then there

is full participation and each players exerts effort according to equations (17) and

(10) with c̃ = 1.

Proof. See appendix A.

As in the case of linear cost case, when players are sufficiently loss-averse, there is

a critical type c̃ satisfying equation (7) such that players with higher cost parameters

than the critical type put zero effort. Full participation in the contest is guaranteed

when contestants’ degree of loss aversion is Λ ≤ 1. The following example illustrates

the equilibrium effort function of players when there are P = 2 prizes to be awarded

V1 ≥ V2 ≥ 0 and the cost-of-effort function is convex.

Example 3 Assume that there are k = 3 players, whose abilities are drawn inde-

pendently from the uniform distribution F (c) = 2c− 1 on the interval [1/2, 1], as in

example 1. Assume that the cost-of-effort function of players is given by γ(x) = x2.

Using Proposition 4, the optimal effort function is given by:

b(c) = γ−1A1(c)V1 + A2(c)V2,

where the coefficients of the first and the second prize are given by equations (11) and

(12). Figure 4 depicts the equilibrium effort function for both standard preferences

(solid line) and expectation-based reference-dependent preferences (dashed line), in

the upper panel for Λ = 0.8 ≤ 1 and in the lower panel for Λ = 1.5 > 1.

25



Figure 4: Equilibrium Effort Functions

(a) Full Participation, Λ ≤ 1
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(b) Drop-outs, Λ > 1
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Notes: The figure illustrats the equilibrium effort functions when players have convex
cost-of-effort function γ(x) = x2, for the degree of loss-aversion Λ = 0.8 in the upper panel
and for Λ = 1.5 in the lower panel.

The upper panel of Figure 4 shows that there is full participation when Λ =

0.8 ≤ 1, while in the lower panel of the figure there is a mass of players with c ≥ c̃

putting zero effort. It is important to note that the critical type, as in the case of

linear cost-of-efforts, depends on the distribution of order statistics and the ratio

of prizes is calculated using the equation (7). As in example 1, the critical type is

much smaller in the case of the award of a single prize than the case of the award of

a second prize. Intuitively a second prize motivates low- and middle-ability players

who would otherwise give up the fragile hope of winning any prize and making gains.

Inspecting the left- and right-hand sides of the figure reveal that introducing a second

prize motivates low- and high-ability players while it discourages the high-ability
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players from putting high effort levels.

The equilibrium effort functions in the cases of convex or concave cost-of-effort

functions are obtained by a simple transformation of the equilibrium strategies in

the linear cost-of-effort case. Therefore, the intuition presented in Section 4.1 for

explaining the over- and under exertion of effort of high- and middle-ability players

and drop-outs of low-ability players in comparison to the standard predictions applies

here exactly in the same way.

The following theorem generalizes the bimodal effort provision illustrated in ex-

ample 3 to the general case with any number of prizes P , any distribution of abilities

F , and any number of players k.

Theorem 2 Assume that there are P prizes with V1 ≥ V2 ≥ ... ≥ VP ≥ 0 to be

awarded and k > P players with convex or concave cost-of-effort functions. Denote

the equilibrium effort function of a players with reference dependent preferences by

bLA and of players with standard preferences by bS. For any players with ability c

in an ε neighbourhood of m, bLA(c) > bS(c). For any players with ability c in an ε

neighbourhood of c̃, bLA(c) < bS(c), where c̃ = 1 whenever Λ ≤ 1.

Proof. See appendix A.

5.2. The Optimal Prize Allocation

Assume that there are P prizes V1 ≥ V2 ≥ · · · ≥ VP ≥ 0 to be awarded with∑P
s=1 Vs = 1 and k > P players with convex or concave cost-of-effort functions γ(x).

Given the optimal effort functions for any prize allocation, the principal chooses the

number and the level of the prizes to maximize the total expected effort. players

exert effort according to equation (17), where As for any s ∈ {1, · · ·P} is as in

equation (10). The average effort of a players with type c becomes:

∫ c̃

m

γ−1

(
P∑
i=1

ViAi(c)

)
F ′(c)dc =

∫ c̃

m

γ−1

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc

The revenue of the principal, the expected total effort of all players, becomes:

R(V2, V3, · · · , VP ) = k

∫ c̃

m

γ−1

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc. (18)
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The principal’s problem becomes choosing Vi
P
i=1 to maximize the total expected

effort:

max
{Vi}Pi=2

k

∫ c̃

m

γ−1

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc.

Similar to the case of linear cost-of-effort functions, the optimal number of prizes

depends on the shape of the revenue function. If the derivative of the revenue

function is positive with respect to the i-th prize Vi at Vi = 0, then it is optimal to

award a positive i-th prize and it is optimal to set Vi = 0 otherwise. As in Section

4,the principal’s problem will be discussed separately for the cases of Λ ≤ 1 and

Λ > 1. The following proposition provides a sufficient condition for the optimality

of the i-th prize for the case of Λ ≤ 1 and characterises the levels of prizes for a

concave cost-of-effort case.

Proposition 5 Assume that there are P prizes V1 ≥ V2 ≥ ... ≥ Vp ≥ 0 to be

awarded with
∑P

i=1 Vi = 1 and k > P loss-averse players with convex or concave cost-

of-effort functions. Moreover assume that Λ ≤ 1 so that there is full participation

in the contest. It is optimal to allocate the s-th prize if

∫ c̃

m

γ−1′

(
A1 +

P∑
s=1

Vs(As − A1)

)
(As − A1)F ′(c)dc > 0. (19)

Moreover, if the cost-of-effort function is concave, it is always optimal to award

either a single grand prize or multiple equal prizes.

Proof. See Appendix B.

Now suppose that contestants’ degree of loss aversion is Λ > 1. Similar to the

case of linear costs, the upper bound of the integral in equation (18) c̃ depends on

the values of the prizes V2, V3, · · · , VP . Therefore, c̃ appears in the derivative of

the principal’s revenue function R′(V2, V3, · · · , VP ) in the bounds of the integrals,

which in turn depends on the optimal values of prizes. For this reason, calculating

the numerical values for R′(V2, V3, · · · , VP ) does not becomes computationally less

demanding than finding the optimal values of the prizes V2, V3, · · · , VP and V1 =

1−
∑P

s=1 Vs by maximizing the revenue function R.

The following example illustrates the optimal prize structure when there are

P = 2 prizes to be awarded V1 ≥ V2 ≥ 0 and the cost-of-effort function is concave,

comparing the cases of standard- and reference-dependent preferences.
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Example 4 Assume that there are 5 players, whose abilities are drawn from a uni-

form distribution F (c) = 2c − 1 on the interval [0.5, 1]. Assume, moreover, that

the cost-of-effort function is γ(x) =
√
x. Suppose first that Λ = 0, so that we are

in the standard case without loss aversion. Following the results of Moldovanu and

Sela (2001), it is optimal to award a grand single prize in this case. Suppose that

Λ = 0.8, so that there is full participation in the contest. In this case, the revenue of

the principal is maximized at V2 = 0 and thus awarding a single grand prize is op-

timal. Now, suppose that players are more loss averse with Λ = 3, so that there are

some drop-outs. In this case, the revenue of the principal is maximized at V2 = 0.5

with the critical type being c̃ = 0.65. Thus the award of a second prize becomes

optimal when Λ = 3.

The optimal prize structure illustrated in example 4 is qualitatively very similar to

the one presented in example 2. The equilibrium effort strategies with convex or

concave costs being simple transformations of the equilibrium strategies with linear

costs, as shown in proposition 4, the intuition presented in Section 4 provides the

rationale behind these results.

6. Conclusion

Competition among participants is often presumed to enhance performance, how-

ever, empirical evidence points out bi-modal behavior: over-workers and drop-outs.

More specifically, it is observed that contestants with high abilities over-exert effort

while contestants with low abilities withhold or withdraw effort in comparison to

the predictions of standard theory. This observation is puzzling from the point of

view of classical economic theory, since contestants with positive probability of win-

ning a prize (i.e. any contestants except for the lowest type) are exerting zero effort

and staying out of competition. This observation raises to important questions: (1)

What is the deriving force behind this bifurcated effort provision? and (2) What is

its implication for the optimal allocation of prizes?

To address these questions, I analyze a canonical incomplete information all-pay

contest with heterogeneous contestants under the assumption that participants are

expectation-based loss-averse. It is established that competing agents not only eval-

uate outcomes in absolute terms but also relative to their expectations and therefore
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expectations play a key role in effort provision in competitive environments. There-

fore, expectations of contestants are critical in deciding how much effort to put. My

model provides a backbone theory for the observed bimodal effort provision. I show

that high-ability players exert effort aggressively while low-ability players withhold

effort, in comparison to the predictions with standard preferences. Players being

loss averse around an endogenous reference point determined by rational expecta-

tions creates the following bifurcating force on effort provision. On the one hand,

a high-ability player who has ex-ante high expectations regarding winning a prize,

increases his effort level further to avoid disappointment in case of not winning a

prize. On the other hand, a low-ability player who has ex-ante low expectations of

winning a prize, lowers his expectations of winning a prize to make the outcome of

not winning any prize less painful. If the degree of loss aversion is sufficiently high,

Λ > 1, a low-ability player chooses a stochastically dominated option: withdraws

effort. The reason is that loss aversion being sufficiently pronounced, the gain-loss

utility of a player with ex-ante low chances of winning a prize dominates his con-

sumption utility. In this case, ex-ante expecting a net loss, he withdraws effort to

secure himself the minimum possible net loss of zero.

Expectation-based loss aversion serves as a key driver of this bifurcated behaviour

and has important implications for the optimal prize allocation. Muting competition

by awarding multiple prizes becomes optimal in the cases where a single prize is pre-

dicted to be optimal under the assumption of standard preferences. Intuitively, the

marginal effect of introducing another smaller prize has two countervailing effects

on the revenue of the principal: a beneficial effect on the low- and middle-ability

players and a detrimental effect on high-ability players. While an additional prize

motivates drop-outs to exert effort, it de-motivates over-workers due to decreased

value of larger prizes. The beneficial effect of a second (or more) prize(s) dominates

its detrimental effect when the relative increase in principal’s revenue due to aggres-

sive effort provision of high-ability players is outsized by the relative effort decrease

of low-ability players. The balance of these two opposing forces and thus the optimal

allocation of prizes, hinges on the interplay between the number of competitors, the

ability heterogeneity, and the degree of loss-aversion.

The above conclusion has policy-relevant implications. A principal can obtain

higher levels of total effort by muting competition when contestants expectation-
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based loss averse. The principal can mute competition by decreasing prize inequal-

ity and by potentially introducing additional prizes. The discouraging effect of

competition is more pronounced when there is contest entry, when ability range of

contestants is less dispersed, and when contestants are more loss averse.
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Appendices

A. Derivation of Equilibria

Proof of Proposition 1. The expected utility of a players with ability c putting

effort x is given by equation (5). Using the notation introduced in Section 3, the it

reduces to:

EU =
P∑

s=1

psVs − cγ(x)− Λ
P∑

s=1

(
P+1∑
i=s+1

pspi(Vs − Vi)

)
,

as expressed in equation (6). The players derives positive expected utility only if

(1− Λ)

(
P∑

s=1

Fs(c)Vs

)
+ Λ

(
P∑

s=1

(Fs(c))
2Vs +

P∑
s=2

s−1∑
i=1

2VsFs(c)Fi(c)

)
≥ 0. (20)

Note that, here I already use the monotonicity of effort function, so that order

statistics are used in the above expression. It is straightforward to see that the

inequality (20) is automatically satisfied for all c ∈ [m, 1] if Λ ≤ 1. Therefore, there

is full participation in the contest. If Λ > 1, c̃ is the highest type for which the

inequality (20) holds, where c̃ satisfies the the condition in (20) with equality:

P∑
s=1

(Fs(c̃))
2Vs +

P∑
s=2

s−1∑
i=1

2VsFs(c̃)Fi(c̃)

P∑
s=1

Fs(c̃)Vs

= 1− 1

Λ
.

Therefore, any player with type c > c̃ ends up with negative expected utility if he

puts positive effort. Instead, these players put zero effort and secure themselves

a zero expected utility, a better outcome than a negative expected utility. Now it

remains to show that δc̃
δΛ

< 0. By definition c̃ is a function of Λ (see equation (7)).

Using Implicit Function Theorem:

δc̃

δΛ
= −

δEU

δΛ
δEU

δc

,
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where EU is the expected utility given in equation (6). It is straightforward to see

that δEU
δΛ

< 0 using the equation (6) as the coefficient of Λ is always negative. Now

I will show that δEU
δc

is also negative, which together with δEU
δΛ

< 0 implies that

δc̃
δΛ

< 0. Denote the sum of expected utility of a players with type, c EU(c) and his

disutility of cost-of-effort cγ(x) by ĒU(c). Namely EU(c) = ĒU(c) − cγ(x). Take

any two players with abilities c1 < c2. I will show that EU(c1) > EU(c2). Suppose

that ĒU(c1) < ĒU(c2). The players with type c1, being a better type, can imitate

the players with type c2 by putting exactly the same effort level as him (since the

bidding function is monotonically decreasing), implying ĒU(c1) > ĒU(c2). Since

c1 < c2, the cost-of-effort for the players with type c1 is lower than the cost-of-effort

for the players with type c2. Combining the two we get the following:

EU(c1) = ĒU(c1)− c1γ(x) > ĒU(c2)− c2γ(x) = EU(c2).

Thus δEU
δc

< 0, completing the proof.

Proof of Proposition 2. To ease the exposition, I first concentrate on the case

of P = 2 prizes with V1 ≥ V2 ≥ 0. I discuss the cases when there is full participation

in the contests (i.e. Λ ≤ 1) and when some players drop out of the contest (i.e.

Λ > 1) separately. I elaborate the case of P prizes afterwards. Assume that there

are two prizes to be awarded with V1 + V2 = 1. First suppose that Λ ≤ 1. Assume

that all players except i exert effort according to the function b and assume that b

is strictly monotonic and differentiable. The maximization problem of the players i

is:

max
x

[
p1

(
V1 + ηp2(V1 − V2) + η(1− p1 − p2)V1 − cx

)
+ p2

(
V2 − ηp1λ(V1 − V2) + η(1− p1 − p2)V2 − cx

)
.

+ (1− p1 − p2)
(
− ηp1λV1 − ηp2λV2 − cx

)]
.

(21)

where the probabilities of winning the first and the second prize are

p1 =(1− F (b−1(x)))k−1 and p2 = (k − 1)(1− F (b−1(x)))k−2F (b−1(x)). (22)

Denote the inverse of b by y. Substituting p1, p2, Λ = η(λ − 1) and y, the maxi-
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mization problem becomes:

max
x

[
(1− Λ)(1− F (y))k−1V1 + (1− Λ)(k − 1)(1− F (y))k−2F (y)V2

+ Λ(1− F (y))2k−2V1 + (Λ)(k − 1)2(1− F (y))2k−4F 2(y)V2

+ 2Λ(k − 1)(1− F (y))2k−3F (y)V2 − cx
]
.

Using the strict monotonicity of b and symmetry, the first-order condition (FOC) is

given by:

1 =V1
1

y

(
− (1− Λ)(k − 1)(1− F (y))k−2F ′(y)y′

− Λ(2k − 2)(1− F (y))2k−3F ′(y)y′
)

+ V2
1

y

(
− (1− Λ)(k − 1)(1− F (y))k−3F ′(y)y′(1− (k − 1))F (y)

+ 2Λ(k − 1)(1− F (y))2k−5F ′(y)y′
(

(1− kF (y)− ((k − 1)2 − 1
)
F (y)2

)
(23)

A player with the highest possible type c = 1 never wins a prize under the assumption

k > 2. Thus the optimal effort of this player is always 0, providing y(0) = 1 as a

boundary condition. Note that the FOC is a differential equation with separated

variables, since the left hand side of the equation (23) is a function of y only. Define

the function H(y):

H(y) =V1

(
(1− Λ)(k − 1)

∫ 1

y

1

t
(1− F (t))k−2F ′(t)dt

+ Λ(2k − 2)

∫ 1

y

1

t
(1− F (t))2k−3F ′(t)dt

)
+ V2

(
(1− Λ)(k − 1)

∫ 1

y

1

t
(1− F (t))k−3(1− (k − 1))F (t)F ′(t)dt

+2Λ(k − 1)

∫ 1

y

1

t
(1− F (t))2k−5F ′(t)(1− kF (t)− ((k − 1)2 − 1)F (t)2)dt

)
.

(24)

The solution to the differential equation (23) with the boundary condition y(0) = 1

becomes: ∫ 0

x

dt = −H(y). (25)

Integrating both sides of the equation (25) gives x = H(y) = H(b−1(x)) and thus
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b ≡ H. Therefore, the effort function of each player is given by:

b(c) = A1(c)V1 + A2(c)V2, (26)

where

A1(c) =(1− Λ)

∫ 1

c

1

a
(k − 1)(1− F (a))k−2F

′
(a)da

+ Λ

∫ 1

c

1

a
(2k − 2)(1− F (a))2k−3F

′
(a)da

(27)

and

A2(c) =(1− Λ)

∫ 1

c

1

a
(k − 1)(1− F (a))k−3 (−1 + (k − 1)F (a))F

′
(a)da

+ Λ

∫ 1

c

1

a
(2k − 2)(1− F (a))2k−5

(
−1 + kF (a) + ((k − 2)2 − 1)F (a)2

)
F

′
(a)da.

(28)

Replacing the terms in equations 27 and 28 with the order statistics one gets:

A1(c) =(1− Λ)

∫ 1

c

−1

a
F ′1(a)da− Λ

∫ 1

c

1

a
(F 2

1 (a))′da (29)

and

A2(c) =(1− Λ)

∫ 1

c

−1

a
F ′2(a)da− Λ

∫ 1

c

1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da. (30)

It remains to show that the equilibrium effort function b(c) is differentiable and

strictly decreasing. The former one is obvious. To show that the effort function is

strictly decreasing, consider the derivatives of A1(c) and A2(c):

A′1(c) =(1− Λ)− 1

c
(k − 1)(1− F (c))k−2F

′
(c)

− Λ
1

c
(2k − 2)(1− F (c))2k−3F

′
(c).

and

A′2(c) =(1− Λ)− 1

c
(k − 1)(1− F (c))k−3 (−1 + (k − 1)F (c))F

′
(c)

− Λ
1

c
(2k − 2)(1− F (c))2k−5

(
−1 + kF (c) + ((k − 2)2 − 1)F (c)2

)
F

′
(c).
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The derivative of the effort function b(c) becomes:

b′(c) = A′1(c)V1 + A′2(c)V2

≤ V2

(
A′1(c) + A′2(c)

) (31)

where the last inequality follows from V2 ≤ V1. Now it remains to show that A′1(c)+

A′2(c) < 0

A′1(c) + A′2(c) =− (1− Λ)(k − 1)(k − 2)
1

c
(1− F (c))k−3F ′(c)F (c)

− Λ(2k − 2)
1

c
(1− F (c))2k−5F ′(c)

(
(k − 2)F (c) + (k − 2)2F (c)2

)
< 0.

(32)

Now suppose that Λ > 1. By Proposition 1 there exists a critical type c̃ such that

all types with c > c̃ puts zero effort, i.e. drops out to avoid negative expected utility.

Thus the boundary condition becomes y(0) = c̃, while the maximization problem

of the players expressed in equation (21) remains the same, leading to the FOC in

equation (23). Note that the boundary condition y(0) = 1 in the case of Λ ≤ 1 can

be viewed as a special case of the boundary condition y(0) = c̃ with c̃ = 1. Thus

the solution to the differential equation (23) with the boundary condition y(0) = c̃

becomes:∫ 0

x

dt =V1

(
(1− Λ)(k − 1)

∫ c̃

y

1

t
(1− F (t))k−2F ′(t)dt

+ Λ(2k − 2)

∫ c̃

y

1

t
(1− F (t))2k−3F ′(t)dt

)
+ V2

(
(1− Λ)(k − 1)

∫ c̃

y

1

t
(1− F (t))k−3(1− (k − 1))F (t)F ′(t)dt

+2Λ(k − 1)

∫ c̃

y

1

t
(1− F (t))2k−5F ′(t)(1− kF (t)− ((k − 1)2 − 1)F (t)2)dt

)
.

Integrating both sides, a players with c ≤ c̃ puts effort according to:

b(c) = A1(c)V1 + A2(c)V2,
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where

A1(c) =(1− Λ)

∫ c̃

c

1

a
(k − 1)(1− F (a))k−2F

′
(a)da

+ Λ

∫ c̃

c

1

a
(2k − 2)(1− F (a))2k−3F

′
(a)da

(33)

and

A2(c) =(1− Λ)

∫ c̃

c

1

a
(k − 1)(1− F (a))k−3 (−1 + (k − 1)F (a))F

′
(a)da

+ Λ

∫ c̃

c

1

a
(2k − 2)(1− F (a))2k−5

(
−1 + kF (a) + ((k − 2)2 − 1)F (a)2

)
F

′
(a)da.

(34)

Again, replacing the terms in equations (27) and (28) with the order statistics gives

the following coefficients for the first and the second prizes:

A1(c) =(1− Λ)

∫ c̃

c

−1

a
F ′1(a)da− Λ

∫ c̃

c

1

a
(F 2

1 (a))′da

and

A2(c) =(1− Λ)

∫ c̃

c

−1

a
F ′2(a)da− Λ

∫ c̃

c

1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da.

The equilibrium effort function b(c) being differentiable and strictly decreasing can

be shown exactly in the same way as above. The last thing to show is for any

type c, the effort b(c) indeed maximizes the expected utility of that type. The

necessary FOC is clearly satisfied, now it remains to show that a sufficient second-

order condition is satisfied. In other words, I will show that the derivative of the

expected utility of players with type c given by equation (21) with respect to x is

nonnegative if x < b(c) and nonpositive if x > b(c). Since the expected payoff in

equation (21) is continuous in x, this implies that b(c) indeed maximizes the expected

utility. The derivative of the expected utility in equation (21) with respect to x is
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given by:

dEU(x, c)

dx
= V1

db−1(x)

dx

(
− (1− Λ)(k − 1)(1− F (y))k−2F ′(y)y′

− Λ(2k − 2)(1− F (y))2k−3F ′(y)y′
)

+ V2
db−1(x)

dx

(
− (1− Λ)(k − 1)(1− F (y))k−3F ′(y)y′(1− (k − 1))F (y)

+ 2Λ(k − 1)(1− F (y))2k−5F ′(y)y′
(

(1− kF (y)− ((k − 1)2 − 1
)
F (y)2

)
− c

I will show that dEU(x,c)
dx

≥ 0 for every x < b(c). Let x < b(c) and c̄ with b(c̄) = x.

Since b is strictly decreasing, c̄ > c. Note that the derivative of dEU(x,c)
dx

with respect

to c is −1 < 0, so that dEU
dx

is decreasing in c. This implies,dEU(x,c)
dx

≥ dEU(x,c̄)
dx

= 0,

where the last inequality follows from x = b(c̄). Thus, dEU(x,c)
dx

≥ 0 for every x > b(c).

A similar argument shows that for every x > b(c), dEU(x,c)
dx

≤ 0.

Following the same steps as in the case of 2 prizes, I will derive the optimal

effort functions when there are P prizes as follows. Assume that there are P ≤ k

prizes to be awarded with V1 ≥ V2 ≥ · · · ≥ VP and k > P players. Assume that the

cost-of-effort of players is given by cγ(x), where γ(x) = x. The expected utility of

players with ability c and effort level x is given by, as discussed in Section 2.

EU =
P∑

s=1

psVs − cx+ η

[
P+1∑
s=1

ps

(
P+1∑
i=s+1

pi(Vs − Vi) +
s∑

i=1

piλ(Vs − Vi)

)]

Substituting Λ = η(λ − 1) and rearranging the terms, the expected utility of the

players becomes:

EU =
P∑

s=1

psVs − cx− Λ
P∑
s

(
P+1∑
i=s+1

pspi(Vs − Vi)

)
.

Rearranging the terms, one gets:

EU = (1− Λ)
P∑

s=1

psVs − cx+ Λ

{
P∑

s=1

p2
sVs +

P∑
s=2

2VsFs

s−1∑
i=1

F1

}
.

The player chooses how much effort to put by maximizes his expected utility as
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follows:

max
x

(1− Λ)
P∑

s=1

psVs − cx+ Λ

{
P∑

s=1

p2
sVs +

P∑
s=2

2VsFs

s−1∑
i=1

F1

}
.

Taking the derivative of the objective function with respect to the choice variable x,

first order condition becomes:

P∑
s=1

Vs

{
(1− Λ)p

′

s + Λ

(
(p2

s)
′ +

s−1∑
i=1

(2pspi)
′

)}
= c,

the probability of winning the s-th prize is

ps =
(k − 1)!

(s− 1)!(k − s)!
(1− F (a))k−sF (a)s−1 with F (a) = (b−1(x)). (35)

Solving the differential equation with the boundary condition b(1) = 0, the equilib-

rium effort function becomes:

b(c) =
P∑
s

VsAs (36)

where As(c) is

As(c) = (1− Λ)

∫ 1

c

−1

a
Fs(a)′da+ Λ

∫ 1

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da.

Whenever Λ > 1, there exist a critical type c̃ satisfying the equation (7),

P∑
s=1

(Fs(c̃))
2Vs +

P∑
s=2,i<s

2VsFs(c̃)Fi(c̃)

P∑
s=1

Fs(c̃)Vs

= 1− 1

Λ
.

such that any players with c ≥ c̃ exerts zero effort in equilibrium, while players

with c < c̃ exert effort in equilibrium according to equation (36). Showing that

the equilibrium effort function is decreasing, b′(c) < 0, and that the second order

condition is also satisfied is completely analogous to the case of P = 2.

Proof of Theorem 1. First I will show that for each players with ability c in
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a neighbourhood of m, bLA(c) > bS(c). Proof of this part will be done by induction

on the number of prizes P . First assume that there are only two prizes V1 and V2

with V1 + V2 = 1, P = 2. The equilibrium effort function of a loss-averse player is

given by

bLA(c) = A1(c)V1 + A2(c)V2

where the coefficients of the first and second prize are given by:

A1(c) = (1− Λ)

∫ c̃

c

−1

a
F ′1(a)da+ Λ

∫ c̃

c

−1

a
(F 2

1 (a))′da

and

A2(c) = (1− Λ)

∫ c̃

c

−1

a
F ′2(a)da+ Λ

∫ c̃

c

−1

a

(
(F 2

2 (a))′ + (2F1(a)F2(a))′
)
da.

For the easiness of representation I introduce the following notation: denote A1(c) =

(1− Λ)A1
1(c) + ΛA2

1(c) and A2(c) = (1− Λ)A1
2(c) + ΛA2

2(c). The equilibrium effort

function of a player with standard preferences is obtained by substituting Λ = 0:

bS(c) = A1
1(c)V1 + A1

”(c)V2.

First I will show that bLA(m)− bS(m) > 0 for p = 2, concluding that there is over-

exertion of effort at c = m. Using this and the continuity of function b, for any c in

the ε neighbourhood of m: bLA(c)− bS(c) > 0 is true.

Claim: bLA(m)− bS(m) = V1Λ
(
A2

1(m)− A1
1(m)

)
+ V2Λ

(
A2

2(m)− A1
2(m)

)
> 0
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I will first look at the difference A2
1(m)−A1

1(m) and show that it is always positive.

A2
1(m)− A1

1(m) =

∫ c̃

m

−1

a
F ′1(a)

[
2F1(a)− 1

]
da

=

∫ v(c̃)

v(m)

1

a(v)

1

2
− vdv

=

∫ 1

v(c̃)

1

2

1

a(v)
vdv

>

∫ 1

v(c̃)

1

2
vdv

∫ 1

v(c̃)

1

a(v)
dv

≥
∫ 1

−1

1

2
vdv

∫ 1

v(c̃)

1

a(v)
dv

= 0,

where the following substitution is made in the second equality: v(a) = 2F1(a)− 1,

with v(m) = 1, v(1) = −1 and v(a) is decreasing. Notice that a(v) is the inverse of

v(a). Now I will look at the difference A2
2(m)− A1

2(m) and show that it is equal to

A2
1(m)− A1

1(m) plus some strictly positive term.

A2
2(m)− A1

2(m) =

∫ c̃

m

−1

a
F ′2(a)

[
2F1(a) + 2F2(a)− 1

]
da+

∫ c̃

m

−1

a
2F ′1(a)F2(a)da

=

∫ c̃

m

−1

a

[
F ′2(a) + F ′1(a)

][
2F1(a) + 2F2(a)− 1

]
da−

∫ c̃

m

−1

a
F ′1(a)

[
2F1(a)− 1

]
da

=

∫ c̃

m

−1

a

[
F ′1(a) + F ′2(a)

][
2(F1(a) + F2(a))− 1

]
da− (A2

1(m)− A1
1(m))

=

∫ v(c̃)

v(m)

−1

a(v)

1

2
vdv −

(
A2

1(m)− A1
1(m)

)
=

∫ 1

v(c̃)

1

a(v)

1

2
vdv −

(
A2

1(m)− A1
1(m)

)
>

∫ 1

v(c̃)

1

2
vdv

∫ 1

v(c̃)

1

a(v)
dv −

(
A2

1(m)− A1
1(m)

)
≥
∫ 1

−1

1

2
vdv

∫ 1

v(c̃)

1

a(v)
dv −

(
A2

1(m)− A1
1(m)

)
= 0−

(
(A2

1(m)− A1
1(m)

)
.

In the fourth equality the the following substitution is made: v(a) = 2(F1(a) +

F2(a)) − 1, with v(m) = 1, v(1) = −1 and v(a) is decreasing. Again, a(v) is the
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inverse of v(a). Going back to the original claim:

bLA(m)− bS(m) = V1Λ
(
A2

1(m)− A1
1(m)

)
+ V2Λ

(
A2

2(m) + ΛA1
2(m)

)
=
(
V1 − V2

)(
A2

1(m)− A1
1(m)

)
+ V2

(∫ c̃

m

−1

a
F ′12(a)(2F12(a)− 1)da

)
>

∫ c̃

m

−1

a
F ′12(a)(2F12(a)− 1)da+ 0

> 0 ,

where the last inequality follows from A2
1(m) − A1

1(m) being positive, Λ > 0 for a

player to be loss-averse and the fact that the second prize is at most as large as the

first one. Thus over-exertion of effort of type c = m is proven. By the continuity of

the effort function b, there is an over-exertion of effort for all types in a neighborhood

of m.

Now suppose that the claim bLA(m) − bS(m) is true for p = l prizes and now I

will show that it holds for p = l+ 1 prizes. Namely, for p = l+ 1 prizes the following

needs to be shown:

Claim: bLA(m)− bS(m) =
l+1∑
i=1

ViΛ
(
A2

i (m)− A1
i (m)

)
> 0.
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First lets look at the difference A2
l+1(m)− A1

l+1(m).

A2
l+1(m)− A1

l+1(m) =

∫ c̃

m

−1

a
F ′l+1(a)[2

l+1∑
i=1

Fi(a)− 1]da+

∫ c̃

m

−1

a

l∑
i=1

2Fl+1(a)F ′i (a)da

=

∫ c̃

m

−1

a
[
l+1∑
i=1

F ′i (a)][2
l+1∑
i=1

Fi(a)− 1]da−
∫ c̃

m

−1

a
[

l∑
i=1

F ′i (a)][2
l∑

i=1

Fi(a)− 1]da

=

∫ c̃

m

−1

a
[
l+1∑
i=1

F ′i (a)][2
l+1∑
i=1

Fi(a)− 1]da−
l∑

i=1

A2
i (m)− A1

i (m)

=

∫ v(c̃)

v(m)

−1

a(v)

1

2
vdv −

l∑
i=1

A2
i (m)− A1

i (m)

=

∫ 1

v(c̃)

1

a(v)

1

2
vdv −

l∑
i=1

A2
i (m)− A1

i (m)

>

∫ 1

v(c̃)

1

2
vdv

∫ 1

v(c̃)

1

a(v)
dv

l∑
i=1

A2
i (m)− A1

i (m)

≥
∫ 1

−1

1

2
vdv

∫ 1

v(c̃)

1

a(v)
dv −

l∑
i=1

A2
i (m)− A1

i (m)

= 0−
l∑

i=1

A2
i (m)− A1

i (m).

The third equality follows from the supposition for p = l. The fourth equality follows

by making the substitution is v(a) = 2
∑l+1

i=1 Fi(a)− 1, where v is strictly increasing

with v(m) = 1 and v(1) = −1. Going back to the claim:

bLA(m)− bS(m) =
l+1∑
i=1

ViΛ(A2
i (m)− A1

i (m))

>
l∑

i=1

(Vi − Vl+1)Λ(A2
i (m)− A1

i (m))

>
l−1∑
i=1

(Vi − Vl)Λ(A2
i (m)− A1

i (m))

...

>

l−2∑
i=1

(Vi − V3)Λ(A2
i (m)− A1

i (m))

> (V1 − V2)Λ(A2
1 − A1

1)

> 0,
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where the last inequality follows from A2
1(m) − A1

1(m) being positive, Λ > 0 for a

player to be loss-averse and the fact that the second prize is at most as large as

the first one. Thus the highest-ability type with c = m over-exerts effort. By the

continuity of the effort function b, all types in a neighborhood of m overexert effort.

Second, I will show that for each players with ability c in a neighbourhood of m,

bLA(c) < bS(c). If c̃ < 1, then for any c in a neighbourhood of 1, bLA(c) = 0as shown

in Proposition 2, while bS(c) > 0 except for c = 1. Thus bLA(c) < bS(c) is true

whenever c̃ < 1. Now consider the case when c̃ = 1. It has been already shown that:

A2
2(c)− A1

2(c) =

∫ c̃

c

−1

a

[ l+1∑
i=1

F ′i (a)
][

2
l+1∑
i=1

Fi(a)− 1
]
da−

l∑
i=1

A2
i (c)− A1

i (c).

Putting the second part of RHS to the LHS one gets:

l+1∑
i=1

A2
i (c)− A1

i (c) =

∫ c̃

c

−1

a

[ l+1∑
i=1

F ′i (a)
][

2
l+1∑
i=1

Fi(a)− 1
]
da. (37)

Recalling

bLA(c)− bS(c) =
l+1∑
i=1

ViΛ
(
A2

i (c)− A1
i (c)
)
,

it only remains to show that RHS of equality 37 is negative for any c in a neigh-

bourhood of c̃ = 1. Note that
∑l+1

i=1 F
′
i (a) will be negative since this is change in

the probability of winning any prize for players with type a as c increases, where

a ∈ [c, 1] with c being close to 1. 2
∑l+1

i=1 Fi(a)−1 is also negative since
∑l+1

i=1 Fi(a) is

the probability that a players with ability a ∈ [c, 1] wins any prize, which is almost

zero. Combining these signs, one gets the desired inequality. Thus,

bLA(c)− bS(c) =
l+1∑
i=1

ViΛ
(
A2

i (c)− A1
i (c)
)
< 0,

for any c in a neighbourhood of 1, as both Vi > 0 and Λ > 0.

Proof of Proposition 4. The equilibrium effort function in the case of

convex or concave cost-of-effort is derived following the same steps in the proof of

Proposition 2. Assume that all players except i exert effort according to the function

b and assume that b is strictly monotonic and differentiable. The maximization
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problem of the players i is:

max
x

[
p1

(
V1 + ηp2(V1 − V2) + η(1− p1 − p2)V1 − cx

)
+ p2

(
V2 − ηp1λ(V1 − V2) + η(1− p1 − p2)V2 − cx

)
.

+ (1− p1 − p2)
(
− ηp1λV1 − ηp2λV2 − cγ(x)

)]
.

(38)

where the probabilities of winning the first and the second prize are given by equation

(35). Denote the inverse of b by y. Substituting p1, p2, Λ = η(λ − 1) and y, the

maximization problem becomes:

max
x

[
(1− Λ)(1− F (y))k−1V1 + (1− Λ)(k − 1)(1− F (y))k−2F (y)V2

+ Λ(1− F (y))2k−2V1 + (Λ)(k − 1)2(1− F (y))2k−4F 2(y)V2

+ 2Λ(k − 1)(1− F (y))2k−3F (y)V2 − cγ(x)
]
.

Using the strict monotonicity of b and symmetry, the first-order condition (FOC) is

given by:

γ
′
(x) =V1

1

y

(
− (1− Λ)(k − 1)(1− F (y))k−2F ′(y)y′

− Λ(2k − 2)(1− F (y))2k−3F ′(y)y′
)

+ V2
1

y

(
− (1− Λ)(k − 1)(1− F (y))k−3F ′(y)y′(1− (k − 1))F (y)

+ 2Λ(k − 1)(1− F (y))2k−5F ′(y)y′
(

(1− kF (y)− ((k − 1)2 − 1
)
F (y)2

)
(39)

Assume that Λ > 1, so that there is a critical type c̃ such that all types with c ≥ c̃

puts zero effort, i.e. drops out to avoid negative expected utility as discussed in

Proposition 1. Thus the optimal effort of the players with type c̃ is zero yielding

the boundary condition y(0) = c̃. Using this boundary condition, the solution to

the differential equation in (39) is given by γ(x) = H(y), where H(y) is given by

equation (24). Thus x = γ−1(H(b−1(x))) implying that b = γ−1(H). The effort

function of each players with type c < c̃ is given by

b(c) = γ−1 (A1(c)V1 + A2(c)V2) , (40)
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where A1(c) and A2(c) are given by equation (33) and (34). Now assume that Λ ≤ 1.

The maximization problems of the players remains the same, while the boundary

condition becomes y(0) = 1. Thus, the equilibrium effort of a players with type c is

given by equation (40), where c̃ = 1. It remains to show that the equilibrium effort

function b(c) is differentiable and strictly decreasing. The former one is obvious.

To show that the effort function is strictly decreasing, consider the derivative of the

effort function, b′(c):

b′(c) = γ−1(A(c)V1 +B(c)V2) (A′(c)V1 +B′(c)V2) < 0,

where the last inequality follows from the facts that γ−1 > 0 and equation (32).

Thus, b(c) is strictly decreasing. The last thing to show is for any type c, the effort

b(c) indeed maximizes the expected utility of that type. Using the same arguments

as above, the derivative of the expected utility in equation (38) with respect to x is

given by:

dEU(x, c)

dx
= V1

db−1(x)

dx

(
− (1− Λ)(k − 1)(1− F (y))k−2F ′(y)y′

− Λ(2k − 2)(1− F (y))2k−3F ′(y)y′
)

+ V2
db−1(x)

dx

(
− (1− Λ)(k − 1)(1− F (y))k−3F ′(y)y′(1− (k − 1))F (y)

+ 2Λ(k − 1)(1− F (y))2k−5F ′(y)y′
(

(1− kF (y)− ((k − 1)2 − 1
)
F (y)2

)
− cγ(x)

I will show that dEU(x,c)
dx

≥ 0 for every x < b(c). Let x < b(c) and c̄ with b(c̄) = x.

Since b is strictly decreasing, c̄ > c. Note that the derivative of dEU(x,c)
dx

with respect

to c is −γ′(x) < 0, since gamma is strictly increasing. Thus dEU
dx

is decreasing in

c implying dEU(x,c)
dx

≥ dEU(x,c̄)
dx

= 0. Therefore, dEU(x,c)
dx

≥ 0 for every x > b(c). A

similar argument shows that for every x > b(c), dEU(x,c)
dx

≤ 0.

Proof of Theorem 2. First I will show that for each players with ability c in

a neighbourhood of m, bLA(c) > bS(c), where bLA(c) and bS(c) are given by:

bLA(c) = γ−1

( P∑
i=1

Vi

(
(1− Λ)Ai(c)

1 + ΛA2
i (c)
))

and bS(c) =

( P∑
i=1

ViA
1
i (c)

)
,
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where A1
i (c) and A2

i (c) are given by

A1
i (c) =

∫ 1

c

−1

a
Fs(a)′da and A2

i (c) =

∫ 1

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da.

Now, the following claim needs to be shown:

Claim: bLA(m)− bS(m) = γ−1

( P∑
i=1

Vi

(
(1− Λ)A1

i (m) + ΛA2
i (m)

))
− γ−1

( P∑
i=1

ViA
1
i (m)

)
> 0 .

In the proof of Proposition 1 the following is shown:

( P∑
i=1

Vi

(
(1− Λ)A1

i (m) + ΛA2
i (m)

))
>

( P∑
i=1

ViA
1
i (m)

)
.

Since both sides of the above inequality is positive and γ−1 is strictly increasing, we

have:

γ−1

( P∑
i=1

Vi

(
(1− Λ)A1

i (m) + ΛA2
i (m)

))
> γ−1

( P∑
i=1

ViA
1
i (m)

)
,

proving the claim.

B. Optimal Allocation of Prizes

Proof of Proposition 3. Assume that there are P prizes V1 ≥ V2 ≥ · · · ≥ VP ≥ 0

to be awarded and k > P players. Assume that players have linear cost-of-effort

functions. A players with type c exerts effort according to:

b(c) =
P∑

s=1

AsVs,

where where the weights As(c) are as in equation (10):

As =

{
(1− Λ)

∫ c̃

c

−1

a
Fs(a)′da

+Λ

∫ c̃

c

−1

a

((
Fs(a)2

)′
+

s−1∑
i=1

(2Fi(a)Fs(a))′
)
da

}
.
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Noting that V1 = 1−
(∑P

i=2 Vi

)
, one can re-write the bidding function as:

b(c) =

p∑
s=1

VsAs(c)

=

(
1−

p−1∑
i=1

Vi+1

)
A1(c) +

p∑
i=2

ViAi

= A1 +

p∑
i=2

Vi (Ai(c)− A1(c))

Given this, the average effort of each players is given by:

∫ 1

m

(
P∑
i=1

ViAi(c)

)
F ′(c)dc =

∫ 1

m

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc

The revenue of the principal becomes:

R(V2, V3, ..., VP ) = k

∫ 1

m

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc. (41)

The principal’s problem is choosing the number and the levels of the prizes to max-

imize his revenue, namely:

max
0≤{Vi}Pi=2≤

1
i

k

∫ 1

m

{
A1(c) +

p∑
i=2

Vi (Ai(c)− A1(c))

}
F ′(c)dc

subject to the following P − 1 conditions:

1−
p∑

i=1

Vi > V2 (42)

V2 > V3

...

VP−1 > VP

Since A1 does not have a coefficient of type Vi, one can remove the term A1 from

the objective of the maximization problem. Since the summation is finite, one can

interchange the integral and the summation signs. Then the maximization problem
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reads:

max
0≤{Vi}Pi=2≤

1
i

P∑
i=2

{
Vi

∫ 1

m

(Ai(c)− A1(c))F ′(c)dc

}
subject to equation (42). It is optimal to award a single first prize if and only if each

summand in the maximization problem is zero, that is∫ 1

m

(Ai(c)− A1(c))F ′(c)dc < 0.

for each i ∈ {2, . . . , p}. Otherwise, it is optimal to award equal prizes only, due

to the linearity of the program. That is the constraints in equation (42) will all

bind. To see this, suppose to the contrary that there is an interior solution. With-

out loss of generality assume that the interior solution is (σ, ς, τ, 0, . . . , 0) ∈ [0, 1]p,

where σ > ς > τ and σ + ς + τ = 1. For the sake of easiness denote Gi :=∫ c̃

m
(Ai(c)− A1(c))F ′(c)dc > 0. Since this allocation is optimal, and σ, ς, τ are all

positive it means that G4 is positive(otherwise it would be optimal to transfer the

weight τ to σ and ς). Since τ > 0, G2 should be greater than both G3 and G4 (oth-

erwise it would be optimal to transfer the weight τ to σ and ς). But then τ should

take the biggest value it could take, which is in this case 1
3

(otherwise(σ, ς, τ, 0, . . . , 0)

would not be optimal). Applying the same reasoning to both σ and ς, we conclude

that σ = ς = τ = 1
3
. In order to obtain the optimal prize allocation one needs

to evaluate the objective function only on the boundary values, namely on the set

{(1, 0, . . . , 0), (1
2
, 1

2
, 0, . . . , 0), . . . , (1

p
, 1
p
, . . . , 1

p
)} and take the allocation which gives

the maximum value. It is optimal to award 2 ≤ r ≤ p equal prices if and only if

r = arg maxj∈2,...,P

1

j

j∑
i=2

{∫ 1

m

(Ai(c)− A1(c))F ′(c)dc

}
.

Proof of Proposition 5. Assume that there are P prizes V1 ≥ V2 ≥ · · · ≥
VP ≥ 0 to be awarded and k > P players. Assume that players have linear cost-of-

effort functions. A players with type c exerts effort according to:

b(c) =
P∑

s=1

γ−1 (AsVs) ,

where where the weights As(c) are as in equation (10). Similar to the proof of
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proposition 3, the average effort of each contestant is given by:

∫ 1

m

γ−1

(
P∑
i=1

ViAi(c)

)
F ′(c)dc =

∫ 1

m

γ−1

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc

The revenue of the principal becomes:

R(V2, V3, ..., VP ) = k

∫ 1

m

γ−1

(
A1 +

P∑
i=1

Vi(Ai(c)− A1(c))

)
F ′(c)dc. (43)

The principal’s problem is choosing the number and the levels of the prizes to max-

imize his revenue, namely:

max
0≤{Vi}Pi=2≤

1
i

k

∫ 1

m

γ−1

(
A1(c) +

p∑
i=2

Vi (Ai(c)− A1(c))

)
F ′(c)dc

subject to the P − 1 conditions in equations 42. If the condition in (19) is satisfied

for some i, then

∂R

∂Vi
=

∫ c̃

m

γ−1′

(
A1 +

P∑
s=1

Vs(As − A1)

)
(As − A1)F ′(c)dc > 0,

which means the revenue function cannot be maximized at Vi = 0 given that it is

increasing in the i-th dimension. Thus Vi > 0 should be true. Now it remains to

show that the solutions to this maximization problem are at the corners when the

cost-of-effort function is concave. Assume that γ is concave, thus γ−1 is convex. I

will show that ∂2R
∂V 2

i

> 0, which implies that the revenue function is convex. Thus

one can only have corner solutions. First, suppose that there are P = 2 prizes to be

awarded. In this case,

R(V2) = k

∫ 1

m

γ−1 (A1 + V2 (A2 − A1))F ′(a)da.

The second derivative of the revenue function is:

R′′(V2) = k

∫ 1

m

γ−1′′ (A1 + V2 (A2 − A1)) (A2 − A1)2 F ′(a)da > 0,

since γ−1′′ > 0 by the concavity if γ. Now it remains to show it for P > 2 prizes.
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This should be done using the Hessian matrix as follows:

[
x2 x3 . . . xP

]


δ2R
δV 2

2

δ2R
δV2δV3

. . . δ2R
δV2δVP

δ2R
δV3δV2

δ2R
δV 2

3

. . . δ3R
δV2δVP

...
...

...
. . .

...

δ2R
δVP δV2

δ2R
δVP δV3

. . . δ2R
δV 2

P




x2

x3

...

xP

 > 0

Making the multiplication and substituting the cross partial derivatives, the above

expression reduces to: (
P∑
i=2

xi(Ai − A1)

)2

> 0.

Since this expression is a square of a sum, it is always positive, implying that the

revenue function R is convex. Therefore, the solutions to the principal’s problem is

always boundary solutions.
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