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1 Introduction

This paper revisits the problem of optimal taxation in dynamic economies with private information. Adapting
the dynamic asymmetric information problem due to Atkeson and Lucas (1992), it considers a government that
would like to insure individuals against persistent, unobservable shocks over time to their marginal utility of
consumption. Though this environment has been studied extensively in the social insurance literature, we de-
rive a number of novel results that clarify the character of optimal policy within it. In doing so, we provide a
more general contribution to the links between dynamic Mirrleesian and su�cient statistic analyses of optimal
taxation. Speci�cally, we show that the assumptions embedded in the dynamic asymmetric information problem
are su�cient simpli�cations for optimal nonlinear taxation to abide by tractable elasticity formulae in dynamic
settings.

To this end, we �rst show that constrained-optimal allocations in the Atkeson-Lucas environment can be
decentralised in a standard consumption-savings economy, provided savings are subject to a nonlinear tax period-
by-period. Given this, we provide a simple, intuitive characterisation of the corresponding tax instruments at any
optimum. The marginal tax rate on savings is generically positive in all time periods, limiting to zero at extreme
ends of the savings distribution. The revenue from it is used to fund a positive lump-sum transfer each period,
which permits higher within-period consumption for those with high ‘need’, or high marginal utility. Net of the
lump-sum component, the expected total tax bill for individuals each period is zero ex-ante, and its realised value
ex-post increases monotonically in their choice of savings.

For any given time period and shock history, we show that the optimal marginal savings tax rate can be written
as a function of a small number of behavioural statistics. This ‘su�cient statistics’ representation provides a
simple, intuitive statement of the mechanical, behavioural and welfare considerations that are relevant to optimal
policy design. It is analogous to the well-known Saez (2001) condition for optimal labour taxation, and isomorphic
to it in the special case that our preference shocks are iid over time.

The derivation of this characterisation represents a promising methodological innovation for the Mirrleesian,
‘mechanism design’ approach to dynamic taxation, of which our paper is an example.1 A number of writers have
expressed scepticism in recent years about the practical relevence of dynamic Mirrleesian analysis. A common
complaint is that it generates implausibly complex policies, whose form is too dependent on utility functions, type
distributions, and other unknowable objects, to have real-world applicability.2 Our results provide a counter-point
to this. The characterisation of optimal policy that we o�er is not signi�cantly more complex than a textbook
Saez formula with income e�ects. It is written in terms of behavioural objects that are de�ned independently
of the utility function and hidden type process, with the sole exception of social welfare weights – in which a
reference to marginal utility is standard.

Indeed, the most remarkable feature of our characterisation is precisely its simplicity. Despite the in�nite-
horizon setting and continuum of possible shock draws each period, at most three behavioural statistics are of
relevance to an optimal marginal savings tax. These are: the compensated elasticity of savings with respect to the

1Following Mirrlees (1971), this approach focuses on the design of optimal dynamic allocations subject only to information frictions,
without assuming any particular decentralisation, or a priori limits on the set of tax instruments.

2See, for instance, the discussions in Diamond and Saez (2011), Piketty and Saez (2013b), and Stantcheva (2020).
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marginal tax rate, the marginal e�ect of higher income on savings, and a compensated elasticity that measures
e�ect of a change to insurance at t on savings at t − 1.

This simpli�cation can be interpreted through the lens of the Atkinson-Stiglitz theorem. Consistent with the
wider literature, we impose a Markovian structure on shocks. This means that conditional on the next period’s

type draw, preferences across alternative insurance schemes more than one period ahead are independent of an
individual’s current type. It follows that there is no justi�cation for distorting type-speci�c allocations in t + 1, so
as to imprve allocations in time periods prior to t . This keeps the relevant behavioural considerations for policy
design to a manageable level.

The important general lesson, we argue, is that the mechanism design approach imposes structural restric-
tions on consumer preferences that allow optimal dynamic tax problems to become tractable. Far from complex-
ifying, the Mirrlees approach can provide a powerful, theoretically-grounded basis for simple policy advice in
dynamic settings – drastically limiting the relevant set of behavioural statistics. Through novel, but elementary,
manipulations, we provide a roadmap for achieving this.

1.1 Preview of main characterisation

To substantify this discussion, we brie�y preview the main characterisation result – which features as Theorem
1 in the body of the paper.3 When a nonlinear savings tax decentralises the constrained-optimal allocation, we
show that it satis�es the following trade-o� within each period, at each contemporaneous savings level s ′:

E

[
1 −T ′ (s)

ds

dM
− д (s)

���� s ≥ s ′
]
=

[
T ′ (s ′) s ′εs + RT ′−1 (s−1) s−1ϵ

s
−1 (s

′)
] π s (s ′)

1 − Πs (s ′)
(1)

This equation can be read as comparing the costs and bene�ts from a cut in the marginal tax rate at s ′, for a
cross-section of types with a common history. The left-hand side gives the net �scal cost of the tax cut, due to
a transfer of resources to higher savers. It is made up of a mechanical unit cost, less the marginal tax revenue
that is recovered through a standard income e�ect on savings, T ′ (s) ds

dM , less a social welfare weight, д (s), that
captures the welfare value of transfering income to an individual whose savings are s . The welfare weight –
an endogenous object that evolves with individuals’ wealth levels, discussed in detail below – is decreasing in
savings, because higher savers have a relatively low contemporaneous marginal utility of consumption.

The right-hand side of the equation gives the �scal bene�ts of substitution e�ects that are induced by the tax
change. When taxes are cut, savings in the current period increase in proportion to the contemporaneous savings
elasticity εs . This raises revenue in proportion to the marginal tax rate T ′ (s ′). Cutting taxes at s ′ in the current
period may also change savings in the previous period, by an amount proportional to a cross elasticity ϵs

−1 (s
′).

This raises additional income in the previous period, in proportion to that period’s marginal tax rate T ′−1 (s−1),
whose relative value depends on the gross real interest rate R.

The cross elasticity ϵs
−1 (s

′) is the least conventional of the objects in the characterisation, and is intrinsically
linked to type persistence: it is zero when types are iid. We discuss it in detail in the body of the paper.4 As

3Some notation, including time indexation, is dropped for simplicity.
4See Section 9.3.
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usual for Mirrleesian problems, the importance of substitution e�ects relative to income e�ects depends on the
equilibrium distribution of the taxed quantity – here: how many agents locate at the savings level s ′, relative to
those above it? This is captured by the hazard rate π s (s ′)

1−Πs (s ′) , the ratio of the density of savers at s ′ to the probability
that savings exceed s ′.

Equation (1) is also helpful for understanding the result in Theorem 2, that marginal savings taxes are gener-
ically positive. Taking substitution e�ects – the right-hand side – in isolation, it would generally be bene�cial
to cut marginal taxes on any given agent to zero. By raising savings, this raises �scal revenue until the last unit
saved is no longer being taxed.

But against this e�ciency gain is an equity loss – the left-hand side. When marginal taxes are cut at s ′,
income is necessarily redistributed to higher savers, and this comes at a net cost. Re�ecting the individual’s
own ex-ante insurance preferences, this is an undesirable diversion of resources. It is optimal to retain positive
marginal savings taxes, as this allows more resources to be directed towards lower savers.

1.2 Paper outline

The rest of the paper is organised as follows. Section 2 provides an overview of related literature. Section 3 in-
troduces the detailed setup of the dynamic information-theoretic problem that we study. Section 4 outlines how
nonlinear savings taxes can be used to decentralise incentive-compatible allocations for this environment, and
derives su�cient conditions on the allocation for this decentralisation to work. Like much of the optimal taxation
literature dating back to Mirrlees (1971), we keep analysis tractable via a ‘�rst-order’ approach to incentive com-
patibility: Section 5 reminds readers of this approach, and provides a novel, intuitive increasingness condition on
the allocation that guarantees its validity.

To aid understanding, our main characterisation is presented constructively, in steps. In Section 6 we use stan-
dard methods to characterise constrained-optimal allocations by reference to the costs and bene�ts of changing
utility levels for a cross-section of individuals. The resulting expressions are insightful, and reveal novel features
about the dynamics of consumption when types are persistent, but they rely heavily on arguments of the util-
ity function. Section 7 explains our novel approach for mapping from these utility-based expressions to a more
practical characterisation of optimal tax rates, and presents intermediate results to this end. The main su�cient
statistics characterisation that follows is given in Section 8. Section 9 explores the properties of optimal savings
taxes, and explains the link between our results and established principles in the optimal taxation literature –
notably the Atkinson-Stiglitz theorem. Section 10 concludes.

All but the most straightforward proofs are relegated to the appendix.

2 Relation to literature

The basic insurance problem that we study was �rst popularised by Atkeson and Lucas (1992), who focused
on the properties of constrained-optimal allocations in the presence of unobservable shocks to marginal utility.
Their paper gave particular attention to long-run outcomes, showing that the immiseration result of Thomas and
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Worrall (1990) carried over to their setting, as well as emphasising that the optimum could not be decentralised via
conventional linear pricing. Technically, Atkeson and Lucas assumed an iid type distribution, with types drawn
from a �nite set period-by-period – a structure retained by more recent literature that explores the sensitivity
of their immiseration result.5 Our paper instead allows for persistent (Markovian) type draws, which has non-
trivial implications for consumption dynamics relative to the iid case. We also assume types are drawn from a
continuum, which proves crucial in �nding a mathematical link from the mechanism design characterisation to
behavioural statistics.

More broadly, our paper is situated in the dynamic Mirrleesian public �nance tradition, analysing optimal tax
systems subject to the deep information frictions that necessitate departures from the Second Welfare Theorem.
Unlike our paper, most of the contributions to this literature consider the traditional Mirrlees setting of endoge-
nous labour supply and unobservable, stochastic productivity. Seminal papers include Golosov, Kocherlakota
and Tsyvinski (2003), Kockerlakota (2005) and Golosov, Tsyvinski and Werning (2006), with Kocherlakota (2010)
providing an excellent overview.

Much – though not all – of this literature has focused on characterising the di�erences between constrained-
optimal allocations and laissez-faire outcomes, rather than focusing directly on tax instruments.6 Emphasis in
the early papers was on the well-known ‘inverse Euler equation’ – an expression that implies a distortion rela-
tive to savings behaviour under autarky, but does not directly map to any particular tax instrument.7 Likewise,
more recent papers by Farhi and Werning (2013) and Golosov, Troshkin and Tsyvinski (2016) have examined the
properties of the wedge between the consumption-labour marginal rate of substitution and the marginal product
of labour. But in dynamic settings the link between this wedge and labour income tax rate is no longer direct. By
contrast, the main characterisation in the present paper relates to the marginal savings tax rate itself – an object
directly controlled by policy.

Interesting parallels to the current paper are found in Albanesi and Sleet (2006). The principal focus of this
paper is the possibility of a simple market decentralisation for a speci�c class of dynamic Mirrleesian problems
– where productivity shocks are iid, and labour and consumption separable. Like us, these authors �nd limited
intertemporal dependence in tax policy, with past choice only in�uencing current policy through an individual’s
retained wealth level. Though they do not draw the link to Atkinson and Stiglitz (1976), their assumptions together
imply that the value of real output – whether saved or consumed – is independent of one’s current type. This
suggests the structural reasons for limited intertemporal dependence in policy are likely very similar to ours.

Our paper follows Kapička (2013), Farhi and Werning (2013), Golosov, Troshkin and Tsyvinski (2016), Stantcheva
(2017) and Hellwig (2021) in making use of the �rst-order approach to incentive compatibility. Early contributions
to the dynamic Mirrlees literature were wary of the risks of neglecting global incentive compatibility, but this has
faded in recent years, due both to increased understanding of the conditions for validity – to which we contribute
– and the simple di�culty in making progress otherwise. Pavan, Segal and Toikka (2014) provided important new
clarity on the conditions for the �rst-order approach to be valid. Though their main focus is on settings from the

5See, for instance, Sleet and Yeltekin (2006) and Farhi and Werning (2007).
6Kocherlakota (2005) is an important exception, though his decentralisation retains much of the spirit of a direct mechanism: agents

are o�ered limited menus of options, with extreme punishments for behaviours inconsistent with the constrained-optimal allocation.
7The inverse Euler condition had been derived in less general settings by Diamond and Mirrlees (1978) and Rogerson (1985).
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microeconomic literature with quasilinear preferences, like Hellwig (2021) we adapt their methodology to our
setting of interest.

Away from the dynamic Mirrlees literature, our paper contributes to the growing movement to link policy
prescriptions to observable ‘su�cient statistics’, insofar as possible. From original contributions by Diamond
(1998) and Saez (2001), which re-cast the static Mirrlees (1971) model by reference to instruments rather than
allocations, this approach now encompasses broad areas of macro and micro policy design. Yet in contrast with
the static literature, for dynamic tax problems ‘su�cient statistics’ and ‘mechanism design’ approaches are in-
creasingly treated as rivals rather than complements – methods that generate distinct policy prescriptions, rather
than distinct methods for understanding the same prescriptions.

The reason for this separation has been a desire to obtain policy lessons for dynamic tax environments that
are as simple as for static, and the seeming di�culty of achieving this in a mechanism design setting. In�uen-
tial papers by Piketty and Saez (2013a) and Saez and Stantcheva (2018) have thus quite deliberately discarded
information-theoretic foundations, in favour of a long-run focus. Tax instruments are assumed to be time-
invariant, and the e�ects of any changes are analysed purely by reference to their mechanical, welfare and be-
havioural e�ects in steady state.8 This overcomes the need to consider arbitrary intertemporal cross elasticities
– the response of savings in t to taxation in s , say – by asserting that all that matters is what happens in the
long run.9 Our paper instead shows that simple, intuitive su�cient statistics characterisations can arise from a
mechanism design approach, attributing this to the standard preference assumptions made in these settings. Thus
we highlight an alternative route to policy insight from the more radical focus on long-run outcomes alone.

By o�ering a novel justi�cation for savings taxation, our paper also contributes to the large general literature
on the desirability of intertemporal distortions. Work on this topic has moved on considerably from the classic
Chamley (1986) and Judd (1985) zero tax results, due both to the direct assult of Straub and Werning (2020),10

and the earlier �ndings that savings taxes could play a useful role in computational Ramsey environments.11

Yet a common theme in this literature remains that savings distortions are only desirable faute de mieux, given
limitations elsewhere in the tax system – particularly credit constraints, limits on age-dependent taxation or
arbitrary tax ceilings. It provides few arguments for savings taxes per se. In this regard our paper di�ers: if
savings reveal consumption need, and the government would like to redistribute according to consumption need,
then a savings tax is the most direct, appropriate intervention.

Finally, our paper has links to the growing microeconomic mechanism design literature that gives particular
attention to the problems implied by type persistence.12 Current papers by Bloedel, Krishna and Strulovici (2020),
Bloedel, Krishna and Leukhina (2020) and Makris and Pavan (2020) deploy various settings to explore the dynam-
ics of wedges in problems without quasilinearity. Our paper provides a novel decomposition of consumption
dynamics into two distinct multiplier processes – one stationary, one nonstationary – that helps shed light on

8Stantcheva (2020) provides an excellent summary of the approach.
9Golosov, Tsyvinski and Werquin (2014) provide a general behavioural decomposition of the e�ects of tax changes, allowing for

arbitrary cross-elasticities, also without direct reference to information frictions. The di�culty they encounter is the multiplicity of
potential consumer substitution responses across periods and states of the world, which makes applicability a challenge.

10The signi�cance of the Straub-Werning critique remains disputed – see, in particular, Chari, Nicolini and Teles (2020).
11In�uential references include Aiyagari (1995), İmrohoroğlu (1998), Erosa and Gervais (2002) and Conesa, Kitao and Krueger (2009).
12Pavan (2017) surveys this literature in detail.
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the distinct roles played by type persistence and risk aversion in these settings.

3 Model setup

3.1 Preliminaries

Time is discrete but in�nite, indexed by the natural numbers and starting in period zero. The economy consists
of a measure-1 continuum of individuals, plus a policmaker whose role is to provide some insurance mechanism
against the taste shocks that consumers face period-by-period.

3.2 Preferences and shock structure

There is an aggregate endowment yt of real resources in each period t , which the policymaker either owns or
can tax lump-sum. Each consumer values contingent consumption streams from each period s ≥ 0 onwards
according to the criterion Us :

Us := Es
∞∑
t=s

β t−sαtu (ct ) (2)

where ct is consumption in period t , β is the discount factor, u : R+ → R or R++ → R is the period utility
function, and αt ∈

[
α, ᾱ

]
⊂ R+ is the idiosyncratic taste disturbance in t , with α > 0 and ᾱ < ∞ . To keep

notation compact, we will refer to the interval
[
α, ᾱ

]
as A. α t ∈ At+1 will denote a complete history of taste

draws up to period t , and α st ∈ As−t+1 a partial sequence of draws between periods t and s (inclusive). We make
the following standard assumption on the utility function:

Assumption 1. u (·) is twice di�erentiable, with u ′ (·) > 0 and u ′′ (·) < 0, and satis�es the Inada conditions.

Type draws are assumed to be independent across individuals, so there is no aggregate risk. Since there is no
other intrinsic source of uncertainty, and no policy reason to introduce one arti�cially, an agent’s consumption
in period t will be measurable with respect to their history α t alone.

The taste parameter is assumed to follow a Markov process, identical through time in all periods except the
initial period 0. Conditional on drawingαt ∈ A in period t , the distribution of shocks in t+1 is denoted Π (αt+1 |αt ),
with conditional density π (αt+1 |αt ). The equivalent (unconditional) objects for period 0 are denoted Π (α0) and
π (α0) respectively. We place the following reguarity structure on the distributions:

Assumption 2. Both Π (·|·) and π (·|·) are continuously di�erentiable on A2, and π (αt |αt−1) > 0 for all αt−1 ∈ A

and αt ∈
(
α, ᾱ

)
. Π (·) and π (·) are di�erentiable, and π (α0) > 0 for all α0 ∈

(
α, ᾱ

)
.

Notice that the density functions may be zero at endpoints for the type distribution.
Occasionally it will be useful to make reference to the measure of type histories up to some period t . For all

S ⊆ At+1, Πt (S) denotes the probability that α t will lie in S , which is induced by Π in the obvious way. Es denotes
period-s conditional expectations of a future variable under this process, given an α s .
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The elasticity of expected next-period type with respect to current type features in some of the analysis that
follows, where it is denoted εα (αt ). Formally, this is de�ned as follows:

εα (αt ) :=
αt

Et [αt+1 |αt ]

dE [αt+1 |αt ]

dαt
(3)

Also important is the elasticity of the distribution of types at t + 1 with respect to type at t . Speci�cally, let
ρ (αt+1 |αt ) be de�ned by:13

ρ (αt+1 |αt ) :=
αt
αt+1

·

d (1−Π(αt+1 |αt ))
dαt

π (αt+1 |αt )
(4)

Integrating provides a link between these two objects:∫
αt+1

ρ (αt+1 |αt )αt+1π (αt+1 |αt )dαt+1 = ε
α (αt )Et [αt+1 |αt ] (5)

Persistence notwithstanding, higher values of α are intended to imply a relative preference for current con-
sumption. This motivates the following assumption:

Assumption 3. ρ (αt+1 |αt ) ∈ [0, 1) for all (αt ,αt+1) ∈ A
2.

It is immediate from (5) that this implies εα (αt ) < 1. Thus higher current α may raise expectations about
future type, but not by so much as the increase in current type.

Some formulae will also feature the product of successive ρ (αt+1 |αt ) terms. Hence for all t < s , α s ∈ As+1,
we de�ne Dt ,s (α

s ):

Dt ,s (α
s ) :=

s∏
r=t+1

ρ (αr |αr−1) (6)

and normalise Dt ,t
(
α t

)
≡ 1.

Related to ρ is the elasticity of the density with respect to lagged type, denoted π∆:

π∆ (αt+1 |αt ) :=
αt

π (αt+1 |αt )

dπ (αt+1 |αt )

dαt
(7)

Integration by parts often allows this to be linked to ρ. For any absolutely continuous function f : A → R, we
have: ∫

αt+1

αt+1 f
′ (αt+1) ρ (αt+1 |αt )π (αt+1 |αt )dαt+1 =

∫
αt+1

f (αt+1)π
∆ (αt+1 |αt )π (αt+1 |αt )dαt+1 (8)

Finally, we impose a standard monotone likelihood condition on π . This is not used in the characterisation results,
but plays an important role in con�rming that optimal savings taxes are positive.

13Note that in the lognormal case, where:
logαt+1 ∼ N

(
ρ logαt ,σ 2

)
for parameters ρ and σ , we have ρ (αt+1 |αt ) ≡ ρ.
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Assumption 4. For all α ′t , α
′′
t with α ′t < α

′′
t , the ratio

π (αt+1 |α ′′t )
π (αt+1 |α ′t )

is monotone increasing in αt+1.

Note that this condition implies that π∆ (αt+1 |αt ) is monotone increasing in αt+1.

3.3 Planner choice

The planner’s aim in period 0 is to maximise a simple utilitarian sum, denotedW0:

W0 :=
∫ ᾱ

α
U0 (α0)dΠ (α0) (9)

The precise utilitarian form for period 0 is not important, and easily generalised.
The planner can commit perfectly in period 0 to an allocation mechanism for all future dates. This assumption

means that the revelation principle will apply, and so there is no loss in generality from initially focusing on direct
revelation mechanisms in which truth-telling is optimal. Individuals report their type each period, and receive
a consumption allocation conditional on their reports to date, ct

(
α t

)
. A complete set of ct

(
α t

)
functions for all

t ≥ 0 and α t ∈ At+1 is referred to as an allocation.14

The planner’s choice is restricted by the resource and incentive compatibility constraints detailed below, plus
a technical interiority restriction. This is de�ned by a set of scalars {Kt }t ≥0 and the bound:�����Et ∞∑

s=t

βs−tαsu (cs (α
s ))

����� ≤ Kt (10)

for all α t ∈ At+1.
Condition (10) guarantees that information rents are well de�ned at each history node, but it does not capture

meaningful economic restrictions, and cases where the constraint binds will not be our main focus. In particular,
the value of Kt can be set arbitrarily large for each t . If (10) does not bind for any αt following a given α t−1,
period-t consumption levels will be called interior for this history. If (10) never binds, the allocation as a whole
will be called interior.

3.4 Resources

The resource constraint is the simpler of the two main restrictions. We assume that there is an exogenous, time-
invariant world real interest rate, whose gross value is R ≤ β−1. The constraint requires net-present value of
consumption to equal the net-present value of endowments:

∞∑
t=0

R−t
[
yt −

∫
α t

ct
(
α t

)
dΠt

(
α t

) ]
≥ 0 (11)

This departs from the structure in Atkeson and Lucas (1992), where no savings technology exists. This is not
important for the characterisation results below, as it is a simple extension to let R vary over time, and to set it

14The dependence of ct on α t will be left implicit where the context allows.
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period-by-period to a value that ensures
∫
α t ct

(
α t

)
dΠt

(
α t

)
= yt for all t .

3.5 Incentive compatibility

Incentive compatibility requires that truth-telling should be optimal for all types in each successive period, and
after each possible history. This places a set of restrictions in t across every subset of types that share a common
α t−1. It is helpful to characterise it by reference to continuation utilities. LetVt

(
α t−1;αt

)
be the maximised value

for Ut available to an individual with history of type reports α t−1 and current type αt . This has the recursive
de�nition:

Vt
(
α t−1;αt

)
= max

α̃t

{
αtu

(
ct

(
α t−1, α̃t

) )
+ β

∫
αt+1

Vt+1
( (
α t−1, α̃t

)
;αt+1

)
dΠ (αt+1 |αt )

}
for all t ≥ 0. The Markov property of shocks means the value of Vt+1 is una�ected by the truthfulness, or
otherwise, of past reports.

Incentive compatibility then requires:

α ′tu
(
ct

(
α t−1,α ′t

) )
+ β

∫
αt+1

Vt+1

( (
α t−1,αt

) ′ ;αt+1

)
dΠ

(
αt+1 |α

′
t
)

(12)

≥α ′tu
(
ct

(
α t−1,α ′′t

) )
+ β

∫
αt+1

Vt+1
( (
α t−1,α ′′t

)
;αt+1

)
dΠ

(
αt+1 |α

′
t
)

for all t ≥ 0, α t−1 ∈ At , α ′t ∈ A and α ′′t ∈ A. α ′t here represents the agent’s true type, and α ′′t a candidate report.
Note that the true type α ′t features in two places in restriction (12). Most directly it a�ects the marginal

utility of consumption in t . But current type is also allowed to in�uence the distribution of future type draws,
Π

(
αt+1 |α

′
t
)
. This second channel complicates the variation of preferences as α ′t varies.

An allocation that satis�es constraints (10), (11) and (12) for all histories and all time periods is described as
incentive-feasible. The planner’s problem is to maximiseW0 on the set of incentive-feasible allocations.

4 A consumption-savings decentralisation

The analysis focuses heavily on a decentralisation of the chosen allocation via period-by-period consumption-
savings choice. This works as follows. Individuals enter each period t with a given value of net wealth, Mt ,
normalised to include the value of future endowments. Wealth in t can either be allocated to period-t consump-
tion, ct , or savings, st . This choice is observable, and the planner implements a non-linear tax on st , which may
vary in the history of past savings decisions st−1. This tax is denotedTt

(
st ; st−1) , or simplyTt (st ) if context allows.

The tax is normalised to equal zero on average, given st−1 and the equilibrium distribution of future choices.
In t + 1 the individual is allocated their residual post-tax savings, together with interest, as their new wealth
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level, and choice proceeds as before. The budget constraints can be written in sequential form as:

ct + st = Mt (13)

Mt+1 = R
[
st −Tt

(
st ; st−1) ] (14)

Given M0, individuals choose contingent consumption sequences to maximise U0, subject to (13) and (14), plus a
‘no Ponzi’ constraint:

lim
t→∞

R−tMt ≥ 0 (15)

Notice that conditions (13) to (15) together imply a forward-looking in�nite-horizon budget constraint that must
be satis�ed in all periods r ≥ 0, for any realised consumption-savings path:

Mr =

∞∑
t=0

R−t
[
ct+r +Tt+r

(
st+r ; st+r−1) ] (16)

That is, Mr must equal the net present value of consumption and tax payments from r onwards.
Proposition 1 provides conditions under which an incentive-feasible allocation can be decentralised by a tax

scheme of this kind.

Proposition 1. An incentive-feasible allocation
{
c∗t

(
α t

)}
t ,α t can be decentralised by a sequence of tax functions

Tt
(
st ; st−1) provided:
1. c∗t

(
α t−1,αt

)
is increasing in αt for all t and α t−1, and

2. If c∗t
(
α t−1,α ′t

)
= c∗t

(
α t−1,α ′′t

)
for distinct α ′t , α

′′
t , then c

∗
t+s

(
α t−1,α ′t ,α

t+s
t+1

)
= c∗t

(
α t−1,α ′′t ,α

t+s
t+1

)
for all α t+st+1 ∈

As , s > 0.

The main restriction here is to consumption allocations that are either strictly increasing in type or, if multiple
types bunch at the same allocation, provide identical future allocations across ‘bunchers’. Strict increasingness
guarantees that an agent’s consumption/saving choice in t implies a unique value for their type, αt , and so con-
sumption choice is informationally equivalent to a direct type report. If bunching occurs, consumption choice
implies a range of possible types. For the decentralisation to work, the chosen allocation must not subsequently
di�erentiate more precisely among types that fall in this range.

One of the main contributions of this paper is to show that it is possible to characterise the constrained-optimal
allocation in a simple and intuitive way, by reference to economic statistics that arise in this decentralisation.
These statistics are, in particular, the marginal savings tax rate given past outcomes, the elasticity of savings with
respect to current and future marginal tax rates, the e�ect on savings of higher wealth, Mt , and the endogenous
conditional distribution of savings at each history node.
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5 First-order incentive compatibility

5.1 A relaxed incentive constraint

Condition (12) implies a continuum of constraints for every element of A, after every history α t−1. Since there is
only one consumption level, and one continuation value, to solve for at each α t , almost all of these constraints
must be redundant. In keeping with much of the literature, we thus replace them with a ‘�rst-order’ envelope
requirement that is necessary for (12) to be true, but not su�icient.15 This is easiest stated by reference to two
state variables: ωt

(
α t−1) , which corresponds to the average level of utility across agents with a common history

α t−1, and ω∆
t

(
α t−1) , which summarises information rents that arise due to the impact of current type on the

distribution of future α values. These objects have the following recursive de�nitions:

ωt
(
α t−1) :=

∫
αt

{
αtu

(
ct

(
α t−1,αt

) )
+ βωt+1

(
α t−1,αt

)}
dΠ (αt |αt−1) (17)

ω∆
t

(
α t−1) :=

∫
αt
ρ (αt |αt−1) ·

{
αtu

(
ct

(
α t−1,αt

) )
+ βω∆

t+1
(
α t−1,αt

)}
dΠ (αt |αt−1) (18)

Formally, we then have the following result:

Lemma 1. Any incentive-feasible allocation satis�es the following envelope condition for all t ≥ 0, all α t−1 ∈ At

and all α ′t ∈ A:

α ′tu
(
ct

(
α ′t

) )
+ βωt+1

(
α ′t

)
= αu

(
ct

(
α
) )
+ βωt+1

(
α
)

(19)

+

∫ α ′t

α

1
αt

[
αtu (ct (αt )) + βω

∆
t+1 (αt )

]
dαt

We refer to (19) as the relaxed incentive compatibility condition. For an arbitrary type α ′t , this expression
decomposes the value of Ut into the value for the lowest type α , plus the sum of ‘information rents’ between α

and α ′t . The information rents are the objects contained within the integral on the last line.
An allocation that satis�es the interiority constraint (10), resource constraint (11) and (19) for all periods and

histories is called a relaxed incentive-feasible allocation. The relaxed planner’s problem is to maximiseW0

on the set of relaxed incentive-feasible allocations.
By Lemma 1, the set of relaxed incentive-feasible allocations must contain the set of incentive-feasible allo-

cations. If the optimal allocation from the set of relaxed incentive-feasible options is also incentive-feasible, it
follows that it must be optimal for the main planner’s problem. As is well known, con�rming this inclusion is the
central issue in justifying the �rst-order approach.

15The �rst-order approach has been used extensively in the dynamic mechanism design literature. Kapička (2013) highlighted the
computational gains from a lower-dimensional state space when non-local deviations were neglected, with an application to a dynamic
Mirrleesian economy. Farhi and Werning (2013) made use of similar techniques, also in a dynamic Mirrleesian setting. Pavan, Segal
and Toikka (2014) provide detailed a detailed exploration of the �rst-order approach in problems with quasilinear preferences, and the
approach in the present paper bears close resemblance to theirs.
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5.2 Su�ciency

When will (19) imply global incentive compatibility? In bivariate problems, this issue can be addressed by a
classic Spence-Mirrlees approach. Given single crossing in preferences, an appropriate form of monotonicity in
the solution is enough. This works because ‘single crossing plus monotonicity’ allows inference to be drawn
about the preferences of all agents, based on the local preferences of any one.

In a multi-period setting the situation is less straightforward, because current type may in�uence preferences
in a complex, multidimensional way. In the present environment, this occurs when types are persistent. In such a
case, an increase in αt does not just make current consumption more desirable relative to future. It also changes
an agent’s distribution across future draws, Π (αt+1 |αt ). This means that an allocation with relatively low ct could
nonetheless be appealing to an agent with high αt , if it delivers a distribution of future outcomes that provides
unusually high continuation utility in states with a high αt+1 draw.

Global incentive compatibility can be con�rmed by reference to an ‘integral monotonicity condition’, of the
type introduced in quasilinear settings by Pavan, Segal and Toikka (2014).16 This has the advantage that it is
necessary, as well as su�cient, for (19) to imply global incentive compatibility, but the disadvantage that it de-
pends on properties of the utility function rather than the allocation alone. Thus two subsequent corollaries give
su�cient conditions based on ordinal properties of the allocation.

To simplify presentation, we adopt the convention for de�nite integrals that
∫ α ′′t
α ′t
{·}dαt corresponds to

−
∫ α ′t
α ′′t
{·}dαt when α ′t > α ′′t . We can then show the following:

Proposition 2. A relaxed incentive-feasible allocation is incentive-feasible if and only if for all t , α t−1 ∈ At and(
α ′t ,α

′′
t
)
∈ A2, the following condition is true:∫ α ′′t

α ′t

1
α2
t

{
Et

[
∞∑

s=t+1
βs−t

(
1 − Dt ,s (α

s )
)
αs

[
u

(
cs

(
α t−1,αt ,α

s
t+1

) )
− u

(
cs

(
α t−1,α ′′t ,α

s
t+1

) ) ] �����αt
]}

dαt ≥ 0 (20)

Since Dt ,s (α
s ) < 1, the following corollary is immediate:

Corollary 1. A relaxed incentive-feasible allocation is incentive-feasible if for all t and s with s > t , all α t−1 ∈ At

and all α st+1 ∈ A
s−t+1, the consumption function cs

(
α t−1,αt ,α

s
t+1

)
is non-increasing in αt .

Non-increasingness here is a more restrictive requirement than condition (20) – hence the absence of an ‘only
if’ statement in this Corollary. But the result is nonetheless useful because it provides a su�cient condition for
the �rst-order approach to work that is independent of the utility function, relating only to ordinal properties of
the consumption distribution. In this regard it is a vector generalisation of the usual monotonicity condition in
bivariate screening problems.

Corollary 1 also provides simple overlap with the requirements for decentralisation. Notice that if the con-
dition of the Corollary is satis�ed then, by incentive compatibility, ct

(
α t−1,αt

)
must be non-decreasing in αt .

Moreover, if the condition is satis�ed and there are distinct α ′t and α ′′t with ct
(
α t−1,α ′t

)
= ct

(
α t−1,α ′′t

)
, then

16C.f. their Theorem 3.
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cs
(
α t−1,α ′t ,α

s
t+1

)
= cs

(
α t−1,α ′′t ,α

s
t+1

)
must be true along all subsequent paths – again by incentive compatibility.

It follows that any allocation satisfying the condition in Corollary 1 will also satisfy the requirements for decen-
tralisation in Proposition 1, and so an allocation of this kind has a simple consumption-savings decentralisation.

This link itself allows for an intuitive interpretation of the non-increasingness condition in Corollary 1.
Viewed through the lens of the decentralisation, it is equivalent to requiring that consumption should behave
as a normal good at all subsequent date-states, as savings in t are increased. That is, notwithstanding the changes
to subsequent tax schedules that may be induced at the margin, higher savings in t imply uniformly higher subse-
quent consumption. Given this, we refer to an allocation that satis�es the requirements of Corollary 1 a normal
allocation.

A second corollary relates to the iid case, where attention can be restricted to contemporaneous outcomes:

Corollary 2. Let types by iid over time. Then a relaxed incentive-feasible allocation is incentive-feasible if and only

if ct
(
α t−1,αt

)
is non-decreasing in αt for all t , α t−1.

Heuristically, this follows becauseDt ,s (α
s ) ≡ 0 with iid types, and the expectation term in (20) is independent

of period-t type, so is equivalent to requiring that future value should be non-increasing in αt . This can only be
true if current consumption is non-decreasing in type. Full details are in the appendix.

6 Utility-based characterisation

This section provides a �rst characterisation of optimal allocations, based on perturbations to the pro�le of util-
ity across agents. This takes as its main inputs arguments of the within-period utility function and the type
distribution.

6.1 Characterisation result

By conventional techniques, we derive the following:

Proposition 3. Suppose an interior allocation is optimal in the relaxed problem. For a cross-section of types in t

with a common history α t−1, the following must hold a.e.:

Et−1

{
αt

[
1 + λt + λ∆t ρ (αt |αt−1)

]
−

ηt
u ′ (ct (αt ))

����αt > α ′t } (21)

=
π

(
α ′t |αt−1

)(
1 − Π

(
α ′t |αt−1

) ) · (α ′t )2
·
{
λ∆t+1

(
α ′t

)
− ρ

(
α ′t |αt−1

)
λ∆t

}
Et−1

{
αt

[
1 + λt + λ∆t ε

α (αt−1)
]
−

ηt
u ′ (ct (αt ))

}
= 0 (22)

where ηt is the shadow value of resources for the planner, satisfying:

ηt = (βR)
−t E [α0]

E
[

1
u′(c0(α0))

] (23)
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λt and λ∆t are scalars measurable with respect to α t−1, satisfy λ0 = λ
∆
0 ≡ 0, and update according to:

λt+1 = λt + µt
(
α ′t

)
λ∆t+1 = ρ

(
α ′t |αt−1

)
λ∆t −

1 − Π
(
α ′t |αt−1

)
αtπ

(
α ′t |αt−1

) Et−1
[
µt

(
α ′t

) ��αt > α ′t ]
with µt

(
α ′t

)
a mean-zero object de�ned in the appendix. The conditional distribution and densities are replaced with

their unconditional equivalents for period 0.

Expressions (21) and (22) are the main objects of interest here. (21) can be interpreted by reference to the
costs and bene�ts of changing information rents at a particular point in the cross-sectional type distribution, for
agents with a common history. This yields a direct welfare bene�t, mitigated by the direct marginal resource cost
of the higher utility – accunting for the objects on the left-hand side. Against this is the marginal cost of raising
information rents at the threshold type, in order for (19) to remain true. This is captured by the object on the
right-hand side: note that λ∆t+1

(
α ′t

)
− ρ

(
α ′t |αt−1

)
λ∆t is the shadow cost of raising ω∆

t+1
(
α ′t

)
, holding constant ω∆

t .
λt and λ∆t are multipliers that derive from prior incentive restrictions – capturing the shadow costs of changing

ωt and ω∆
t respectively. Consistent with the well-known work of Marcet and Marimon (2019), the Pareto weights

that the policymaker attaches to di�erent agents’ utility in t are updated according to the shadow bene�ts of
changes to incentives in t − 1 and earlier.

6.2 The dynamics of consumption

A key element of the characterisation in Proposition 3 is the the inverse marginal utility of consumption – equiv-
alently, the marginal cost of providing αt units of utility to an agent in period t . This is a widely-studied object
in dynamic incentive problems, where it is commonly used to assess the long-run properties of the consumption
distribution.17 When shocks are iid, the inverse marginal utility is well-known to follow a quasi-martingale pro-
cess, with substantial implications for long-run inequality.18 There has been signi�cant recent debate about the
sensitivity of this conclusion to type persistence.19 In this subsection we divert brie�y from the main argument
to show that meaningful immiseration results still go through in our setting with type persistence.

With shock persistence the dynamics are a degree more complex than an iid case, as the following Proposition
demonstrates.

Proposition 4. For all t and s , s ≥ t , and any history α t , the period-t expected value of the period-s inverse marginal

17In particular, Rogerson (1985) �rst highlighted the ‘inverse Euler equation’ as a dynamic optimality condition for the marginal cost of
utility provision in multi-period moral hazard settings, following its derivation in a two-period setting by Diamond and Mirrlees (1978).
Thomas and Worrall (1990) showed that this condition implied almost sure immiseration in the long run, provided the discount factor
was su�ciently small.

18This setting is explored in detail by Farhi and Werning (2007).
19See, for instance, Bloedel, Krishna and Strulovici (2020).
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utility of consumption satis�es:

1
Et [αs ]

Et

[
1

(βR)s−t u ′ (cs )

]
=

1 + λt+1

ηt
+
Et

[
Dt ,s (α

s )αs
]

Et [αs ]

λ∆t+1
ηt

According to the Proposition, the expected value of the marginal cost of utility provision evolves as a com-
posite of two multiplier processes. For long-run expectations, what matters is the object 1+λt+1

ηt
– the shadow

value of raising lifetime utility for type αt , in periods after t . This is the only component that matters in the long
run, because ρ (αr |αr−1) ∈ [0, 1), and so Et [Dt ,s (α s )αs ]

Et [αs ]
→ 0 as s → ∞.20 Since λt+1 follows a martingale, the

implication is that shocks to this martingale process control long-run consumption outcomes. Intuitively, given
diminishing marginal utility it is cost-e�cient to spread incentives over time. If there is justi�cation for raising
the utility of type αt from t +1 on, in return for this type consuming relatively little in t , then this increase should
be delivered evenly across all future periods.

These arguments are well understood from the existing social insurance literature. But when λ∆t+1 is non-zero
there is an additional component to the short-run expected marginal cost, more in keeping with the dynamic con-
tracting literature in quasilinear settings.21 This comes from the desire to spread over time the cost of providing
information rents at a given αt . In particular, type persistence implies that periods after t matter for information
rents in t . If it is desirable in t to raise rents at αt (so λ∆t+1 > 0), then it will also be desirable to pay some costs to
do so in periods after t . The exent to which this incentive fades over time depends on the extent of persistence
in the shock process, which controls how much outcomes in period s matter for information rents in t . In this
context, note that the object Et [Dt ,s (α s )αs ]

Et [αs ]
is precisely the elasticity of Et [αs ] with respect to αt .

The layering of a transitory shock component over the more conventional martingale for inverse marginal
utilities complicates the derivation and interpretation of long-run results relating to inequality, but the main
content of the immiseration conclusion endures. In particular, notice:

(1 + λt+1)

ηt
= lim

s→∞

{
1

(βR)s−t
1

Et [αs ]
Et

[
1

u ′ (cs )

]}
≥ 0

Since ηt > 0, from (23), it follows that (1 + λt+1) is a bounded martingale. Thus it converges a.s. in t . So long
as R ≤ β−1, this will imply convergence to zero in the long-run expected inverse marginal utility. In particular,
note that convergence in t to a constant, positive value for (1 + λt+1) is only possible if the allocation converges
to a �rst-best outcome, with µs (αs ) = 0 for all αs , s ≥ t . But this outcome straightforwardly violates incentive
compatibility. Thus for R ≤ β−1, as t becomes large:{

lim
s→∞
Et

[
1

u ′ (cs )

]}
→
a.s.

0

That is, the long-run expectation of the marginal cost of utility provision converges almost surely to zero.
20Recall that Dt ,s (α

s ) :=
∏s

r=t+1 ρ (αr |αr−1).
21See, for example, the discussion in Pavan (2017).
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7 Su�cient statistics: preliminaries

This section provides a number of crucial concepts and intermediate steps in order to map from the utility-based
representation of optimal policy in Proposition 3 to a su�cient statistics representation.

7.1 Strict normality

For the optimal allocation to be characterised by su�cient statistics that relate to the consumption-savings de-
centralisation, this decentralisation must itself be valid. Proposition 1 established that this is true when current
consumption is non-decreasing in current type, conditional on history. Similarly, Corollary 1 provided a su�cient
condition for the validity of the �rst-order approach, requiring that future consumption should be non-increasing
in current type. There is a clear link between the two: by incentive compatibility, non-increasingness of future
consumption in current type must imply non-decreasingness of current consumption in current type.

Both of these conditions allowed for the possibility that a positive measure of types (with identical history)
could bunch at a common consumption level. Bunching implies that non-decreasingness restrictions on con-
sumption are either binding, or on the cusp of doing so. It is possible to handle these restrictions analytically,
but the analysis is clearer without them. For this reason, we focus attention on ‘strictly normal’ allocations, as
de�ned below.

De�nition. An allocation is called strictly normal if it is normal and for all t and α t−1 ∈ At there exists
δt

(
α t−1) > 0 such that ct (α t−1,α ′′t )−ct (α

t−1,α ′t )
α ′′t −α

′
t

≥ δt
(
α t−1) for all

(
α ′t ,α

′′
t
)
∈ A2.

That is, current consumption is strictly increasing in αt , by an amount that is bounded below with respect to
the change in αt . The link to normality, as de�ned above, can be seen from the the following:

Proposition 5. If an allocation is strictly normal and relaxed incentive-compatible, then for all t , α t−1and α ′′t > αt ,

consumption from t + 1 onwards satis�es the following inequality:

Et

[
∞∑

s=t+1

βs−tαsu
′
(
cs

(
α t−1,α ′′t ,α

s
t+1

) )
α ′tu

′
(
ct

(
α t−1,α ′′t

) ) ·
(
cs

(
α t−1,α ′t ,α

s
t+1

)
− cs

(
α t−1,α ′′t ,α

s
t+1

) ) �����α ′t
]
≥ δt

(
α t−1) (

α ′′t − αt
)

where δt
(
α t−1) is the same constant used to de�ne strict normality.

Thus a strictly normal allocation must see consumption increase strictly in savings, for some positive-measure
subset of date-states.

Note from the de�nition that a focus on strictly normal allocations will be enough to guarantee, for any
given shock history, that the inverse mapping αt (c) – the type associated with each consumption level – will
be uniquely de�ned, and Lipschitz continuous on all sub-intervals in

(
ct

(
α t−1,α

)
, ct

(
α t−1, ᾱ

) )
where a positive

measure of types locate.22 This rules out multiple types locating at a single point.
22Since consumption is monotone in type, there can be at most countably many discontinuities in the function ct

(
α t−1, ·

)
. αt (c) is not

de�ned for values of c that lie between the left and right limits of each discontinuity in ct
(
α t−1, ·

)
.
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7.2 Towards su�cient statistics: intuition and integration

Equation (21) states that the net bene�ts from raising the utility of high-type agents must be traded o� against
the costs of changing information rents in a compatible manner. But the practical value of the characterisation is
weakened by the fact that its key components – the marginal costs of unit changes to utility and to information
rents – are dependent on a particular cardinalisation of the utility function. It would be preferable to characterise,
as far as possible, by reference to measurable objects: behavioural elasticities and observable distributions.

We achieve this by use of a novel, intuitive analytical step, which links the utility-based mechanism design
characterisation – set out in Section 6 – to the e�ects of changing the decentralised tax schedules outlined in
Section 4. The logic is as follows. Su�cient statistics characterisations typically describe the costs and bene�ts at
the margin of simple step changes in the cross-sectional pro�le of e�ective income, or wealth in the population. A
cut in the marginal tax rate at a certain point in the earnings (or savings) distribution raises the e�ective income
of all types above this point, by a uniform amount.23 By considering the resulting behavioural responses – a
combination of standard income and substitution e�ects – one can arrive at an expression for the net �scal cost
of the tax cut, to be contrasted with its welfare bene�ts.

Proposition 3 also describes the costs and bene�ts of a simple step change, but in the cross-sectional pro�le
of utilities rather than incomes. Its key components are costs and bene�ts ‘per unit change in utility’. But this
does not prevent it from being used to discuss income changes – it just means that a conversion is needed. For
any given pro�le of income changes, there will always be a corresponding pro�le of utility changes. The main
conceptual insight in this paper is that an understanding of the former can be achieved by starting from the latter.

More speci�cally, a unit increase in the feasible period-t consumption level for an agent of type αt raises their
utility by αtu

′ (ct (αt )) at the margin. So long as the envelope condition applies, this will be true whether the
additional resources are fully used on period-t consumption, or are partly saved. Now, suppose that we were to
analyse the e�ects of a marginal increase in utility for all types below some α ′t by the amount αtu ′ (ct (αt )). This
is no longer a simple step change in utility, since αtu ′ (ct (αt )) varies in αt , but a statement of its e�ects can be
constructed from the statements in Proposition 3, using elementary manipulations. It will implicitly describe the
costs and bene�ts of cutting the marginal savings tax, at the savings level of type α ′t . Relating the component
arguments to intuitive behavioural statistics will remain a challenge, but we will at least be starting from the right
place.

Thus we obtain the following corollary to Proposition 3:

Corollary 3. If a strictly normal allocation is optimal in the relaxed problem, with ct (αt ) continuous at a given

history node, then the following two expressions are true:

23The discussion in Piketty and Saez (2013b) provides detailed treatment. Heuristic analysis of optimal top tax rates usually considers
a marginal tax cut on all incomes above a certain threshold, but this can be constructed from local cuts at all points in the upper range.
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∫ c̄

c

[
1 −

αt (c)u
′ (c)

{
1 + λt + λ∆t ρ (αt (c) |αt−1)

}
ηt

]
π c

(
c |α t−1) dc (24)

+

∫ c̄

c
(αt (c))

2u ′′ (c)

{
λ∆t+1 (αt (c))

ηt
− ρ (αt (c) |αt−1) βR

λ∆t
ηt

} (
dαt (c)

dc

)−1
π c

(
c |α t−1) dc

=0

−

∫ c ′

c

[
1 −

αt (c)u
′ (c)

{
1 + λt + λ∆t ρ (αt (c) |αt−1)

}
ηt

]
π c

(
c |α t−1) dc (25)

−

∫ c ′

c
(αt (c))

2u ′′ (c)

{
λ∆t+1 (αt (c))

ηt
− ρ (αt (c) |αt−1) βR

λ∆t
ηt−1

} (
dαt (c)

dc

)−1
π c

(
c |α t−1) dc

+ (αt (c
′))

2u ′ (c ′)

(
dαt (c)

dc

)−1
π c

(
c ′ |α t−1) {

λ∆t+1 (αt (c
′))

ηt
− ρ (αt (c

′) |αt−1) βR
λ∆t
ηt−1

}
=0

the latter for almost all c ′ ∈
(
c, c̄

)
, with c = ct

(
α
)
and c̄ = ct (ᾱ), and π c

(
ct |α

t−1) denoting the realised density of

consumption in t , given history α t−1.

The restriction to continuous ct (αt ) functions is made for convenience only: the appendix shows how to
incorporate jumps in consumption as type increases. Note also that the realised consumption density will equal
the realised savings density, since:

Πc (
c ′t |α

t−1) ≡ P
(
ct ≤ c ′t

)
= P

(
st ≥ s ′t

)
≡ 1 − Πs (

s ′t |α
t−1)

where s ′t := Mt
(
α t−1) − c ′t , so dst

dct
= −1.

7.3 Relevant behavioural statistics

By themselves, conditions (24) and (25) are not particularly intuitive statements. Their value becomes evident
only when their components can be linked to behavioural statistics. The characterisation in Section 8 will do
precisely this. It makes use of four distinct behavioural statistics, de�ned by reference to the decentralisation of
Section 4. These are de�ned in turn here.

The contemporaneous elasticity of savings with respect to the post-tax rate of return: This is denoted
εst . For an agent whose chosen savings level is st , it is de�ned as the response to a change in the local marginal
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tax rate that they face:

εst :=
R

(
1 −T ′t (st )

)
st

dst

dR
(
1 −T ′t (st )

)
As for the other statistics, this value is not ‘structural’. It will be endogenous to the chosen allocation, and asso-
ciated tax schedule. It is a compensated elasticity, since the the total tax liability at st ,Tt (st ), remains unchanged
to �rst order when the marginal tax rate, T ′t (st ), changes.

The contemporaneous income e�ect on savings: This is denoted dst
dMt

. For a given period-t type, it is de�ned
as the e�ect on st when Mt is increased at the margin, holding constant current and future savings tax schedules,
and abstracting from any anticipation e�ects prior to t .

The compensated elasticity of lagged savings, with respect to contemporary returns: This is is a more
unconventional object, capturing the complementarities that may exist between insurance and prior saving. De-
noted ϵst−1,t (st ), it is the response of savings in t − 1 to the change in the pro�le of insurance at t that is generated
by a tax cut at st . It is calculated assuming compensation that leaves ωt constant (in a way that does not a�ect
insurance), so that the relevant behavioural change in t−1 is purely due to the re-pro�ling of state-by-state utility
outcomes in t .

The formal de�nition of ϵst−1,t (st ) is technically involved, because of a ‘zero measure’ issue. Heuristically, but
with abuse, it satis�es:

ϵst−1,t (st )π
s (
st |α

t−1) dst :=
(
1 −T ′t (st )

)
st−1

dst−1

d
(
1 −T ′t (st )

) ����
comp

(26)

More formally, ϵst−1,t (st ) is de�ned implicitly from the Fréchet derivative of st−1 with respect to an arbitrary
pro�le of changes to the tax schedule in t , given compensation. LetTt (s (Mt+1)) denote the tax paid in t when the
consumer carries Mt+1 units of wealth into period t + 1, with s (Mt+1) the corresponding period-t savings, and
suppose that for each Mt+1 the tax schedule is perturbed to Tt (s (Mt+1) , Γ):24

Tt (s (Mt+1) , Γ) := [Tt (s (Mt+1)) − Γ f (s (Mt+1))] (27)

where Γ ∈ R and f (·) is an arbitrary bounded di�erentiable function on the interval of realised savings, with
f

(
s
(
M

) )
= 0 for the lowest realised value ofMt+1. The compensated derivative of st−1 with respect to Γ, evaluated

at Γ = 0, will be linear in the derivative of f (·), f ′ (st ).25 That is:

dst−1

dΓ

����
Γ=0, comp

=

∫
st
f ′ (st )д (st )dst (28)

24Formally de�ning the perturbations as functions of Mt+1 rather than st ensures that f (·) de�nes the ‘rightward’ shift in the budget
constraint linking ct to Mt+1, and so f (·) corresponds to the magnitude of the income e�ect, in units of period-t income. This makes
the characterisation of ϵst−1,t (st ) possible by reference to the di�erent income and substitution e�ects at t , and the impact these have on
information rents.

25This is established formally in the proof of Lemma 2.
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with the function д (st ) independent of the choice of f (·). Since f ′ (st ) is precisely the proportional increase in
the rate of return on st per unit change in Γ, we de�ne:

д (st ) := st−1ϵ
s
t−1,t (st )π

s (
st |α

t−1) (29)

thereby implicitly de�ning ϵst−1,t (st ). Thus, the aggregate change in st−1 induced by an arbitrary change to
marginal tax rates at t is the integral of the changes induced piecewise by tax cuts at each point, and ϵst−1,t (st ) is
constructed to capture the response at each point.

How and why savings at t −1 should respond to a re-pro�ling of insurance in t is an issue to which we return
later. Ultimately the sign and magnitude of ϵst−1,t (st )will capture important links between tax cuts, insurance and
savings. Through arguments that connect closely to the well-known Atkinson-Stiglitz theorem, this can provide
a force for additional insurance when types are persistent.

The compensated e�ect of transfers on lagged savings: Just as the insurance e�ects of a marginal savings
tax cut in t may change savings in t−1, so too could the insurance e�ects of a change in the lump-sum component
of taxes. Suppose s is the lowest realised savings level in period t after some history, and consider a marginal
reduction in Tt

(
s
)
, holding constant the pro�le of marginal rates at higher savings. This tax cut will shift con-

sumption possibilities in t , by an amount that is uniform across all savings levels. The marginal e�ect on utility
will equal αtu ′ (ct (αt )) for all agents. In general this will vary in αt , implying a change in relative utilities across
types. Even if compensation is applied so that ωt is held constant, the changed insurance pro�le may a�ect local
incentives to save at t − 1.

Since a change in the lump-sum component of taxes is equivalent to a change in Mt , we denote the compen-
sated e�ect of higher period-t income on t − 1 savings by:

dst−1

dMt

����
comp

7.4 Equivalence results

Making use of these de�nitions, the following Lemma provides the ingredients to link from expressions (24) and
(25) to a su�cient statistics representation:

Lemma 2. The following relationships hold:

1. Revenue raised from within-period substitution e�ects:

T ′t (st ) stε
s
t =

λ∆t+1 (αt (ct ))

ηt
(αt (ct ))

2u ′ (ct )

(
dαt (ct )

dct

)−1
(30)
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2. Revenue raised from within-period income e�ects:

T ′t (st )
dst
dMt

= −
λ∆t+1 (αt (ct ))

ηt
(αt (ct ))

2u ′′ (ct )

(
dαt (ct )

dct

)−1
(31)

3. Revenue raised from cross-period e�ects of tax cuts:

RT ′t−1 (st−1) st−1ϵ
s
t−1,t

(
s ′t

)
= − ρ

(
αt

(
c ′t

)
|αt−1

)
βR

λ∆t
ηt−1

(
αt

(
c ′t

) )2
u ′

(
c ′t

) (
dαt

(
c ′t

)
dct

)−1

+
1

π c
(
c ′t |α

t−1) ∫ c ′t

c

{
ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

αt (ct ) (u
′ (ct )) (32)

×

[
1 +

ctu
′′ (ct )

u ′ (ct )

(
ct

αt (ct )

dαt (ct )

dct

)−1
]
π c

(
ct |α

t−1)} dct

4. Revenue raised from cross-period e�ects of income transfers:

RT ′t−1 (st−1)
dst−1

dMt

����
comp
=

∫ c̄

c

{
ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

αt (ct ) (u
′ (ct ))

×

[
1 +

ctu
′′ (ct )

u ′ (ct )

(
ct

αt (ct )

dαt (ct )

dct

)−1
]
π c

(
ct |α

t−1)} dct

The proof of these relationships, in the Appendix, is based on elementary manipulations. It exploits two
important features of the problem. The �rst is the duality between welfare maximisation and cost minimisation
when designing policy. This enables the multipliers λ∆t and λt to be linked to the marginal cost for the policymaker
of allowing additional savings at the margin. This, in turn, allows an expression for the marginal tax revenue that
is raised per unit of savings.

The second feature that we exploit is the separability of consumption utility over time. This limits the depen-
dence of contemporaneous choice on decisions in other periods, and guarantees the existence of relatively simple
cross-relationships between di�erent behavioural statistics.

7.5 Welfare weights

In keeping with the static literature, we make use of ‘social welfare weights’ to capture the marginal value to the
policymaker of providing an extra unit of income to each type, expressed in units of current resources. In our
setting these weights are de�ned for history α t and current consumption level ct by:26

дt
(
α t

)
:= αtu ′

(
ct

(
α t

) ) 1 + λt
(
α t−1)

ηt
(33)

26If the mapping between αt and st is bijective, we may sometimes write дt (st ) in place of дt
(
α t

)
, leaving history implicit.
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That is, the subjective marginal utility of consumption, αtu ′ (ct ), multiplied by a term
(
1 + λt

(
α t−1) ) > 0 that

captures the contemporaneous value to the policymaker of providing resources to the cross-section of types with
history α t−1, and divided by ηt – the shadow utility value of period-t resources. Heuristically, the role of ηt is to
convert from marginal utility units into resource units.

Economically, the most interesting component of the welfare weight is the object λt
(
α t−1) . This updates

period-by period in response to the shocks that agents receive, with mean-zero innovations: E
[
λt+1 |α

t−1] = λt .
In the decentralised allocation, the updating process will capture the wealth that agents accumulate along each
history branch. Higher values for λt correspond to higher past savings, and therefore a higher implicit weight
in period-t welfare calculations. Cross-sectionally, this is equivalent to placing a higher Pareto weight on those
who have accumulated a large amount of wealth, relative to those who have not.27

The link between Pareto weights and wealth in a decentralised market economy has been understood at least
since Negishi (1960). The interesting feature of the present context is the non-stationary manner in which the
weights evolve – in parallel with the evolution of the wealth distribution. A policymaker in the initial period
may seek a radical utilitarian allocation, unconstrained by any initial pro�le of asset ownership. But as time
progresses, respect for the evolving pattern of wealth is implicitly incorporated into the societal objective. An
optimal plan remains cross-sectionally utilitarian, for any subset of individuals who share a common history.
Across subgroups, however, substantial di�erentiation in treatment is likely to emerge. The time inconsistency
here is evident, and provides a challenge to the plausibility of the commitment assumption.28

Proposition 4 provides an alternative way to interpret the weight:

дt
(
α t

)
= lim

s→∞

{
αt

Et−1 [αs ]
Et−1

[
u ′ (ct )

(βR)s−t u ′ (cs )

]}
This is the ratio of the expected marginal cost of providing lifetime utility to type αt , viewed from t − 1, relative
to the realised cost.

8 Su�cient statistics characterisation

8.1 Characterisation

Corollary 3 and Lemma 2 together deliver our main ‘su�cient statistics’ characterisation result:

Theorem 1. If a strictly normal allocation is optimal in the relaxed problem, with ct (αt ) continuous for any given

α t−1, then at t = 0, for all s ′0 ∈
(
s0, s̄0

)
:

E

[
1 −T ′0 (s0)

ds0

dM0
− д0 (s0)

���� s0 ≥ s ′0

]
= T ′0

(
s ′0

)
εs0

s ′0π
s (
s ′0

)
1 − Πs

(
s ′0

) (34)

27Formally, the proof of Theorem 2 establishes that λt is decreasing in αt−1. Since higher αt−1 corresponds to higher consumption in
t − 1, there is a monotone link from savings to Pareto weights.

28Brendon and Ellison (2018) propose an alternative solution concept under commitment that delivers stationarity in the Pareto weights.
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Figure 1: E�ects on the budget constraint of a marginal savings tax cut at s ′t

and:

E [д0 (s0)] = E

[
1 −T ′0 (s0)

ds0

dM0

]
(35)

Similarly, for t > 0, any given α t−1, and for all s ′t ∈
(
st , s̄t

)
:

Et−1

[
1 −T ′t (st )

dst
dMt

− дt (st )

���� st ≥ s ′t

]
=

[
T ′t

(
s ′t

)
εst + RT

′
t−1 (st−1)

st−1

s ′t
ϵst−1,t

(
s ′t

) ] s ′tπ
s (
s ′t |α

t−1)
1 − Πs

(
s ′t |α

t−1) (36)

and:

Et−1 [дt (st )] = Et−1

[
1 −T ′t (st )

dst
dMt

]
− RT ′t−1 (st−1)

dst−1

dMt

����
comp

(37)

.

Proof. Follows from direct substitution of the expressions in Lemma 2 into the conditions in Corollary 3, applying
the de�nition of the social welfare weights. �

8.2 Intuition

As previewed, equations (34) to (37) can be understood intuitively by reference to simple changes in the intertem-
poral budget constraint that links consumption in one period to income in the next. For (34) and (36), the relevant
exercise is a cut in the marginal tax rate at some particular savings level. As Figure 1 illustrates, the result is a
rightwards shift in the budget constraint for all savings levels above the threshold. For conditions (35) and (37),
the relevant exercise is a rightwards shift in the entire budget constraint, as the lump-sum component of the tax
schedule is made more generous.

Condition (34) assesses the e�ects of the tax cut in Figure 1, when applied in the initial time period. Heuris-
tically, the e�ects can be divided into those above s ′0, and those at s ′0. For those above s ′0, the tax cut serves to
shift out the within-period budget constraint by a uniform amount, and the left-hand side of (34) accounts for this
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from the policymaker’s perspective. There are three components: (1) the direct cost of the transfer, normalised
to 1 per agent by construction, minus (2) the additional tax revenue that is received on whatever fraction of the
additional income is saved,T ′0 (s0)

ds0
dM0

, minus (3) the social welfare value of providing an additional consumption
unit to the agent in question, д0 (s0). Taken together, these objects give the net �scal cost of the transfer that
high-saving agents receive.

The right-hand side of (34) relates to agents locating at s ′0. A higher post-tax rate of return – i.e., a lower
savings tax rate – will induce these agents to substitute towards savings in proportion to the savings elasticity.
So long as the marginal savings tax rate is positive, this is desirable to the policymaker: it generates higher tax
revenue. This is captured by the object T ′0

(
s ′0

)
s ′0ε

s
0 , interacted with the density of savers a�ected.

Condition (36) is the equivalent to (34) for t > 0. Relative to the period-0 version, it has an extra term that al-
lows for the impact that changes to tax schedules in t have on savings in t−1. This is the objectRT ′t−1 (st−1) st−1ϵt−1,t

(
s ′t

)
,

with the real interest rate R re�ecting the value of resources raised in t − 1 relative to t . Clearly this term depends
critically on the sign and magnitude of the cross-elasticity ϵt−1,t

(
s ′t

)
: do tax cuts at s ′t incentivise or deter savings

at t − 1, and by how much? This will be discussed in detail in Section 9.3, and we defer further comment for now.
Crucially, according to Theorem 1 there is no need to keep track of arbitrary cross-elasticity statistics when

working out optimal taxes – i.e., the response of savings in period s to tax changes in period r , for arbitrary r and
s (and arbitrary shock histories). This is an extremely helpful simpli�cation, since the set of cross-elasticities that
could potentially matter is in�nite. It speaks positively for the practical applicability of dynamic Mirrleesian tax
analysis – a feature that has not, to date, been considered its greatest strength.

Conditions (35) and (37) describe the consequences of shifting the entire budget constraint, rather than just
an upper segment. They are essentially variants of (34) and (36) respectively, when the substitution e�ects due to
marginal tax cuts are dropped – and when the relevant intertemporal behavioural e�ect is dst−1

dMt

���
comp

rather than

ϵt−1,t
(
s ′t

)
. The expressions can be read as optimal solutions for the average value of the welfare weight in each

period, discussed in more detail in the next section.

9 Properties of optimal taxes

9.1 Positive marginal rates at interior points

The characterisation can be used to analyse the qualitative properties of an optimal savings tax schedule in the
decentralised allocation. The most general result is the following:

Theorem 2. Suppose the optimal allocation is strictly normal. Then for all time periods and shock histories, marginal

savings taxes are strictly positive at all interior points in the type distribution.

This provides a very direct qualitative description of the optimal social insurance scheme. Recall from Section
4 that the average value of Tt (st ) is constructed to be zero, given the history st−1. Since the marginal rate is
positive, an optimal social insurance scheme must therefore provide a positive transfer (negativeT ) at the lowest
savings level, which is then taxed away as savings increase.
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Intuitively, this is consistent with the basic problem that the social insurance scheme seeks to address: how
to distribute income to those with a high consumption need in period t , given that need is unobservable? The
solution is to exploit the relative preference of high-need consumers for current rather than future consumption.
A universal transfer is made available to all in principle, and is �nanced by those who choose nonetheless to
defer consumption. The act of saving signals a relatively low consumption need, and thus attracts a high net
�scal contribution. Optimal policy faces the familiar trade-o� between redistributing towards those with a higher
social welfare weight, as revealed by their low savings, and the distortion of savings decisions that is implied by
this.

Returning brie�y to the utility-based characterisation, the fact that marginal tax rates are positive at interior
points also provides some insight into the expected evolution of the inverse marginal utility of consumption,
described in Section 6.2. Recall from section 6.2 that we have:

1
Et [αs ]

Et

[
1

(βR)s−t u ′ (cs )

]
=

1 + λt+1

ηt
+
Et

[
Dt ,s (α

s )αs
]

Et [αs ]

λ∆t+1
ηt

(38)

where Et [Dt ,s (α s )αs ]
Et [αs ]

is the elasticity of Et [αs ] with respect to αt , which converges to zero as s becomes large.
The object on the left-hand side measures the period-t cost of providing a unit of lifetime utility in t , by raising
consumption in period s > t . Its value, on the right-hand side, combines a ‘permanent’ component that is constant
in s , 1+λt+1

ηt
, and a ‘transitory’ component Et [Dt ,s (α s )αs ]

Et [αs ]
λ∆t+1
ηt

.
Marginal savings taxes are positive if and only if λ∆t+1 takes a positive value.29 Thus a corollary to Theorem

2 is that the marginal cost of providing lifetime utility is greater in the short run than the long run, at all interior
αt . Marginal cost is increasing in consumption, so this is equivalent to consumption falling over time, relative
to the dynamics at a �rst best – where marginal cost is constant. Downward drift in consumption comes about
precisely because the tax system is reducing the consumer’s return on savings below the technological rate R.

9.2 Limiting outcomes

The general �nding of strictly positive marginal savings tax rates need not extend to endpoints of the type dis-
tribution, where limiting rates may instead reach zero. A critical role is played by the limiting properties of the
distribution and density of savings, and it is possible for optimal marginal rates to reach zero at the upper and
lower limits. Zero tax results generally follow if the density remains positive at endpoints, or converges to zero
relatively slowly, since this implies that the local e�ciency costs of taxation become large relative to any redis-
tributive bene�t. For optimal top tax rates, the key ratio is well summarised by the Pareto statistic, which we
denote at

(
st |α

t−1) :
at

(
st |α

t−1) :=
stπ

s (
st |α

t−1)
1 − Πs (st |α t−1)

29See the proof of Theorem 2.
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If π s
(
s̄ |α t−1) > 0, where s̄ is the conditional upper bound for savings, then clearly limst→s̄

[
at

(
st |α

t−1) ] = ∞.
More generally, however, it is quite possible for limst→s̄

[
at

(
st |α

t−1) ] < ∞, and the primitive assumptions that
we have placed on the problem admit either of these outcomes.

As a direct corollary of Theorem 1, we can write an expression for the optimal marginal tax rate at the top of
the savings distribution:

Corollary 4. Given α t−1, the optimal marginal tax rate at the upper limit of the savings distribution, s̄ , satis�es:

T ′t (s̄) =
1 − дt (s̄) − RT ′t−1 (st−1)

st−1
s̄ ϵst−1,t (s̄)at

(
s̄ |α t−1)

dst
dMt

���
s̄
+ εst at (s̄ |α

t−1)
(39)

In keeping with the static literature on optimal tax design, it is possible to use this equation to obtain ap-
proximate estimates for upper marginal savings tax rates, given a shock history. The two problematic objects
to

9.3 Intertemporal elasticities: Atkinson-Stiglitz revisited

The most signi�cant theoretical insight from Theorem 1 is the limited extent to which the conventional Saez
(2001) condition needs to change when moving from a simple two-good screening problem to an in�nite-horizon,
persistent-type setting. Given an updated set of set of social welfare weights, optimal taxation in period t can
be characterised by reference only to a contemporaneous elasticity of savings, εst , and the elasticity of lagged
savings, ϵst−1,t

(
s ′t

)
. The �rst of these is a conventional behavioural elasticity – the response of saving to a change

in the rate of return. The second is a more unusual object, and the purpose of this subsection is to discuss its role,
and to relate it to more familiar intuition.

So long as marginal savings taxes are positive in period t −1, the marginal social value of additional savings in
that period necessarily exceeds the marginal private value. This means that there are social bene�ts to inducing
more savings, and the policymaker should be willing to pay some costs at the margin to achieve this. In particular,
following the well-known logic of Atkinson and Stiglitz (1976), the tax system should favour any goods that are
complements to the main behaviour being taxed – in the Atkinson-Stiglitz setting labour supply; here saving.

When types are persistent, there is one relevant complement to savings in t − 1: the level of insurance in
period t . To see why, suppose individuals are ordered by their savings levels in t − 1. Given the link between type
and behaviour, those with lower st−1 necessarily have higher values for αt−1. Type persistence, and the associated
monotone likelihood property, means that those with higher αt−1 place relatively more weight in t on high values
for αt . Marginal utility in t is increasing in αt , and so this in turn implies that those with lower st−1 place greater
weight on the likelihood that they will �nd themselves with a high consumption need in period t . This means
that they have a relative preference for greater insurance at t . A policy that marginally improves the pro�le of
insurance in t that savings provide, holding constant expected utility, will raise the marginal attractiveness of
savings in t − 1.

Thus the presence of ϵst−1,t
(
s ′t

)
in equation (36) is precisely to capture the e�ect of the posited tax cut on
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insurance in t , and, through this, on savings in t − 1. It represents an additional distortion to outcomes from t

onwards, relative to an optimal plan from the perspective of t alone. This distortion is justi�ed by the consequent
reduction in under-saving prior to t . It implies a second, more prosaic source of time inconsistency in the setting,
distinct from the more fundamental societal challenge of a widening wealth distribution. A policymaker re-
optimising in t would have no incentive to consider the e�ect of their choices on savings in t − 1, which would
by now already be determined.

Atkinson and Stiglitz (1976) showed that when consumption goods were independent of labour supply, there
were no gains to di�erential consumption taxation. The couterpart to this result in our setting is provided by the
case of iid types. There, the level of st−1 is independent of preferences across period-t outcomes. Any change to
the pro�le of utilities at t will be viewed identically by all types in t−1. Ex-post insurance is neither a complement
nor substitute to savings. This means that it is not optimal for the distribution of outcomes in t to be in�uenced
by concerns relating to t − 1 or earlier: ϵst−1,t (st ) ≡ 0, and only contemporaneous elasticities matter.

This line of reasoning also indicates that the Markov property of shocks is crucial to ensuring that just two
elasticities feature in (36). Markovian shocks imply that the preferences of two distinct αt−1 types across alter-
native allocations from t + 1 on are identical, conditional on drawing a particular αt . Thus there are no gains
to distorting t + 1 allocations in order to improve screening in t − 1, beyond the distortions already implied by
di�erent distributions across αt .

9.3.1 Cross-sectional variation in ϵst−1,t
(
s ′t

)
Consistent with this discussion, we show that ϵst−1,t

(
s ′t

)
will exhibit systematic cross-sectional variation, in a

manner that contributes to greater progressivity in the marginal tax rate in t , and thus a greater degree of insur-
ance ex-post. Formally, we have the following result:

Proposition 6. The statistic st−1
s ′t
ϵst−1,t

(
s ′t

) s ′t π
s (s ′t |α

t−1)
1−Πs (s ′t |α t−1)

is monotonically decreasing in s ′t ∈
(
st , s̄t

)
. It is positive for

su�ciently low s ′t , and negative for su�ciently high s ′t .

The implications of this result can be seen by comparing policies that satisfy condition (36) with those that ne-
glect intertemporal cross-elasticities – as would be optimal for a policymaker re-optimising in t . At our optimum,
we have:

Et−1

[
1 −T ′t (st )

dst
dMt

− дt (st )

���� st ≥ s ′t

]
> T ′t

(
s ′t

)
s ′tε

s
t

π s
(
s ′t |α

t−1)
1 − Πs

(
s ′t |α

t−1) (40)

for all s ′t below a threshold and

Et−1

[
1 −T ′t (st )

dst
dMt

− дt (st )

���� st ≥ s ′t

]
< T ′t

(
s ′t

)
s ′tε

s
t

π s
(
s ′t |α

t−1)
1 − Πs

(
s ′t |α

t−1) (41)

for all s ′t above the same threshold. By contrast, the re-optimising policymaker would set the two sides of these
expressions equal at all s ′t . The left-hand side represents the marginal redistributive cost of cutting taxes, and the
right-hand side the marginal revenue gain due to substitution e�ects. At least locally, therefore, the re-optimising
policymaker would prefer to raise marginal tax rates at low s ′t , and cut them at high st ’.
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The reason this occurs relates to the ex-ante insurance properties of a tax cut, and how these change with
variation in the critical value s ′t where the cut takes place. To see the logic intuitively, recall �rst that allocatons
in t are being perturbed for a particular history path, with given prior savings level s ′t−1. Now suppose that a tax
cut in t were applied at a very low value for s ′t , so that all, or almost all, types are able to bene�t from a uniform
increase in period-t income. Since marginal utility is highest for those saving the least, the (compensated) e�ect
of this is to redistribute utility towards low savers in period t .

Because of type persistence, this redistribution is relatively appealing ex-ante to those whose savings start
out marginally lower than s ′t−1, compared to those at st−1. Te perturbation gives these agents an incentive to raise
their savings up to s ′t−1, to bene�t from the more appealing pro�le of returns. Higher savers in t − 1, by contrast,
are not attracted by the change: they place greater weight on states where future savings are high, which have
become less pro�table. This means that the intertemporal behavioural response to a tax cut on low s ′t is positive.
This raises the bene�ts of lower taxes at s ′t , reducing the optimal T ′t

(
s ′t

)
.

By contrast, suppose that taxes are only cut at a value s ′t close to the upper threshold s̄t . With compensation,
the net e�ect of this change is to redistribute utility towards relatively high savers. Given persistence, this is
relatively appealing in t − 1 to those with savings marginally higher than s ′t−1, who are incentivised to reduce
their savings. This makes the tax cut relatively costly, since the deterred savings reduce �scal revenue in t − 1 –
and so the optimal T ′t

(
s ′t

)
tends to be higher.

9.4 Optimal transfers

Conditions (35) and (37) describe the optimal determination of the lump-sum component to the tax system after
each history. In the initial period, this is a straightforward trade-o� between the welfare bene�ts of transferring
an extra unit of income across all agents, captured by E [д0 (s0)], and the net cost of doing so, E

[
1 −T ′ (s0)

ds0
dM0

]
.

So long as contemporaneous income e�ects on savings are positive, it is optimal to increase transfers even beyond
the level where the average welfare weight is unity – the usual benchmark in the labour supply literature with
quasilinear preferences – because the net cost of the transfer is mitigated by tax revenue on the additional savings
it induces.

Outcomes in periods after 0 are additionally in�uenced by the complementarity of insurance and past savings.
A compensated increase in the lump-sum component of the tax system in period t raises the insurance value of
savings, since the marginal utility of this additional income is increasing in αt . With type persistence, this raises
savings at the margin in t − 1 – for the reasons just explained. This implies it is optimal to set transfers above the
value that equates the average welfare weight in period t with the within-period net cost of the transfer. That is,
at the optimum:

Et−1 [дt (st )] < Et−1

[
1 −T ′ (st )

dst
dMt

]
(42)

Once more, the general message is that type persistence motivates a more generous insurance scheme, because
insurance acts as a complement to past savings – and past savings are ine�ciently low.
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10 Conclusion

This paper contains two main messages. The �rst, from a policy perspective, is that a widely-used model of social
insurance under imperfect information implies a novel justi�cation for taxing savings. Faced with a population
whose consumption needs are heterogeneous and unobserved, it is best for the policymaker to provide a uniform
lump-sum resource transfer to all agents period-by-period, and to tax the savings of those whose very decision
to save reveals that their need is low.

The second main message of the paper is of relevance to the wider dynamic tax literature. It is that – con-
trary to widespread perceptions – the ‘mechanism design’ approach to dynamic optimal taxation can give rise
to simple, intuitive ‘su�cient statistics’ representations of optimal taxes. Indeed, it is precisely the assumptions
of the mechanism design approach – additively-separable utility over time, and Markovian shock processes –
that appear to simplify behavioural responses in a way that keeps them tractable. In a multi-period world, tax
design must inevitably make some simplifying assumptions, to avoid being overwhelmed by the multitude of
possible cross-period behavioural responses. One option, pursued in the literature already, is to focus exclusively
on steady-state outcomes. Though defensible, this is a signi�cant departure from conventional approaches, both
positive and normative. Our paper suggests that mechanism design o�ers a theory-guided alternative route.
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A Appendix

A.1 Proof of Proposition 1

We proceed constructively, showing how to map from the allocation
{
c∗t

(
α t

)}
t ,α t to tax functions Tt

(
st−1, st

)
,

with the property every budget-feasible sequence of savings choices over time implies a consumption sequence
that is part of the target incentive-feasible allocation

{
c∗t

(
α t

)}
t ,α t , and every consumption sequence from the

target allocation can be chosen via a feasible sequence of savings decisions. This implies that the menu of choices
at every history node under the decentralised allocation is the same as under the direct mechanism, and so the
decentralised scheme must implement the target allocation.

First, set M0 equal the net-present value of resources per capita in period zero:

M0 :=
∞∑
t=0

R−tyt

For all α0, let the savings level s0 (α0) then be de�ned by:

s0 (α0) := M0 − c
∗
0 (α0)

and denote the range of s0 values across α0 by S0:

S0 := {s0 (α0)}α0∈A

Since consumption is increasing, the minimum value for savings is s0 (ᾱ) and its maximum is s0
(
α
)
, and so

S0 ⊆
[
s0 (ᾱ) , s0

(
α
) ]

. We denote by Sc0 the complement of S0 in R.
For all s̃0 ∈ S

c
0 , letT0 (s̃0) = s̃0, so that M1 (s̃0) = 0, and for all t > 0 and subsequent savings choices {s1, ..., st },

let Tt (s̃0, s1, ...st ) > ε for some ε > 0. Combining the budget constraints (13) and (14), we have, along all future
consumption paths:

0 = M1 (s̃0) =

T∑
t=0

R−t [ct+1 +Tt+1 (s̃0, ..., st+1)] + R
−T−2MT+2

and so:
T∑
t=0

R−tct+1 = −

T∑
t=0

R−tTt+1 (s̃0, ..., st+1) − R
−T−2MT+2
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for allT ≥ 0. By the ‘no Ponzi’, the �nal term on the right-hand side satis�es limT→∞ R−T−2MT+2 ≥ 0, and so the
positive bound on taxes implies that the right-hand side must be negative for large enough T . But this implies
negative consumption in at least one period, which is not possible. It follows that s̃0 will not be chosen.

For all s0 ∈ S0, let M1 (s0) be given by:

M1 (s0) := E

[
∞∑
t=1

R1−tc∗t
(
α t

) �����α0 ∈ α0 (s0)

]
where α0 (s0) : S0 → R is the inverse of s0 (α0). Where c∗0 (α0) is strictly increasing, α0 (s0) is singleton-valued, and
expectations are with respect to the evolution of types subsequent to period 0 given this α0. More generally α0 (s0)

may take values from a convex interval inA, and in this case expectations satisfy Bayes’s rule in the obvious way.
Condition 2 in the Proposition guarantees that the continuation allocation is identical across types within any
such set, and so they do not need to be separated in their market treatment.

Given M1 (s0), we then de�ne T0 (s0) by:

T0 (s0) := s0 − R
−1M1 (s0)

The logic can then proceed recursively for on-equilibrium choices. Fix t > 0. Suppose that a mapping from
type history α t−1 ∈ At to savings history st−1 ∈ Rt is known, denoted st−1 (

α t−1) , with range St−1:

St−1 :=
{
st−1 (

α t−1)}
α t−1∈At

and that this mapping has an inverse correspondenceα t−1 (
st−1) , with α t−1 : St−1 → At . For t = 1,St−1 = S0.

Suppose further that there is a known wealth level Mt
(
st−1 (

α t−1) ) corresponding to each α t−1 ∈ At . For all
αt ∈ A, let st

(
α t−1,αt

)
be given by:

st
(
α t−1,αt

)
:= Mt

(
st−1 (

α t−1) ) − c∗t (
α t−1,αt

)
By the assumed increasingness of c∗t , st

(
α t

)
is decreasing inαt , with minimum st

(
α t−1, ᾱ

)
and maximum st

(
α t−1,α

)
.

Denote its range St
(
α t−1) :

St
(
α t−1) :=

{
st

(
α t−1,αt

)}
αt ∈A

Given α t−1, the inverse function αt
(
st ;α t−1) gives the convex subset of types corresponding to savings choice

st , for any st ∈ St
(
α t−1) . The mapping st

(
α t

)
is then given by extending st−1 (

α t−1) :
st

(
α t

)
:=

{
st−1 (

α t−1) , st (
α t

)}
and α t

(
st

)
by:

α t
(
st

)
:=

{
α t−1 (

st−1) ,αt (
st ;α t−1 (

st−1) )}
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For all st ∈ St
(
α t−1) , Mt+1

(
st−1 (

α t−1) , st ) can then be given by:

Mt+1
(
st−1 (

α t−1) , st ) := E

[
∞∑

r=t+1
Rt+1−rcr (α

r )

�����α t ∈ α t (
st

) ]
with expectations again taken with respect to the evolution of types, applying Bayes’s rule if αt is not uniquely
identi�ed. This leaves the tax function Tt

(
st−1, st

)
to be given by:

Tt
(
st−1, st

)
:= st − R−1Mt+1

(
st−1, st

)
for all st ∈ St

(
α t−1 (

st−1) ) .
As in period-zero, we need to to rule out allocation choices that do not feature under the direct mechanism.

Denote by Sct
(
α t−1) the complement of St

(
α t−1) in R, and for all s̃t ∈ Sct

(
α t−1 (

st−1) ) , setTt
(
st−1, s̃t

)
equal to s̃t .

For all r > t , set Tt
(
st−1, s̃t , ..., sr

)
> ε for some ε > 0. Again, this implies that choosing s̃t is inconsistent with

satisfying the no-Ponzi condition.

A.2 Proof of Lemma 1

This result is an application of Theorem 2 in Milgrom and Segal (2002), plus elemenatary manipulations.
First, note that the utility of type α ′t from arbitrary type report α ′′t in period t can be written in the form:

α ′tu
(
ct

(
α t−1,α ′′t

) )
+ β

∫
αt+1

V
(
α t−1,α ′′t ,αt+1

)
dΠ

(
αt+1 |α

′
t
)

(43)

The boundedness of lifetime utility (constraint (10)) and the di�erentiability of the conditional density π
(
αt+1 |α

′
t
)

in α ′t (Assumption 2) together imply that this expression is di�erentiable in α ′t for α ′t ∈
(
α, ᾱ

)
. Its derivative with

respect to α ′t is:

u
(
ct

(
α t−1,α ′′t

) )
+ β

∫
αt+1

V
(
α t−1,α ′′t ,αt+1

) dπ (
αt+1 |α

′
t
)

dα ′t
dαt+1 (44)

Constraint (10) implies that u
(
ct

(
α t−1,α ′′t

) )
andV

(
α t−1,α ′′t ,αt+1

)
are bounded for all α ′′t and αt+1. π

(
αt+1 |α

′
t
)

is
continuously di�erentiable in α ′t by assumption, and α ′t inhabits a compact interval, so dπ (αt+1 |αt )

dαt
is also bounded

by construction. Taken together this implies that the object in (44) is bounded in absolute value, uniformly
across type reports α ′′t . Since the allocation satis�es the general incentive compatibility restriction (12) under the
condition of the Lemma, the set of optimal choices for all types must, trivially, be nonempty. This establishes the
conditions required for the Milgrom and Segal’s Theorem 2 to be applied.
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A direct application gives that Vt
(
α t−1;αt

)
is absolutely continuous in αt for all t and α t−1, with:

α ′tu
(
ct

(
α t−1,α ′t

) )
+ β

∫
αt+1

Vt+1
(
α t−1,α ′t ,αt+1

)
dΠ

(
αt+1 |α

′
t
)

(45)

=αu
(
ct

(
α t−1,α

) )
+ β

∫
αt+1

Vt+1
(
α t−1,α,αt+1

)
dΠ

(
αt+1 |α

)
+

∫ α ′t

α

1
αt

{
αtu

(
ct

(
α t−1,αt

) )
+ βαt

∫
αt+1

Vt+1
(
α t−1,αt ,αt+1

) dπ (αt+1 |αt )

dαt
dαt+1

}
dαt

To obtain the representation in the main text, we then make use of the following de�nition and subsequent
Lemma:

De�nition. For all α s , s > t :

Dt ,s (α
s ) :=

s∏
r=t+1

ρ (αr |αr−1)

and:
Dt ,t

(
α t

)
≡ 1

Lemma 3. For all
(
αt ,α

′
t
)
∈ A2 and α t−1 ∈ At :

βαt

∫
αt+1

Vt+1
(
α t−1,α ′t ,αt+1

) dπ (αt+1 |αt )

dαt
dαt+1 = Et

[
∞∑

s=t+1
βs−tDt ,s (α

s )αsu
(
cs

(
α t−1,α ′t , ...,αs

) ) �����αt
]

Proof. Given the absolute continuity of the value function, the object:

βαt

∫
αt+1

Vt+1
(
α t−1,αt ,αt+1

) dπ (αt+1 |αt )

dαt
dαt+1

can be integrated by parts, giving:

βαt

∫
αt+1

Vt+1
(
α t−1,α ′t ,αt+1

) dπ (αt+1 |αt )

dαt
dαt+1

=βαt

∫
αt+1

[
ut+1

(
α t−1,α ′t ,αt+1

)
+ β

∫
αt+2

Vt+2
(
α t−1,α ′t ,αt+1

) dπ (αt+2 |αt+1)

dαt+1
dαt+2

]
d (1 − Π (αt+1 |αt ))

dαt
dαt+1

=β

∫
αt+1

αt
d (1−Π(αt+1 |αt ))

dαt

αt+1π (αt+1 |αt )

[
αt+1ut+1

(
α t−1,α ′t ,αt+1

)
+ βαt+1

∫
αt+2

Vt+1
(
α t−1,α ′t ,αt+1

) dπ (αt+2 |αt+1)

dαt+1
dαt+2

]
dΠ (αt+1 |αt )

=

∫
αt+1

βρ (αt+1 |αt )

[
αt+1ut+1

(
α t−1,α ′t ,αt+1

)
+ βαt+1

∫
αt+2

Vt+2
(
α t−1,α ′t ,αt+1

) dπ (αt+2 |αt+1)

dαt+1
dαt+2

]
dΠ (αt+1 |αt )

where ut+1
(
α t−1,α ′t ,αt+1

)
is used as shorthand for u

(
ct+1

(
α t−1,α ′t ,αt+1

) )
. Applying this result recursively, to-

gether with the assumption that ρ (αt+1 |αt ) ∈ (0, 1) (Assumption 3), and the boundedness of value in t , the result
follows. �
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Using the de�nition of ω∆
t+1

(
α t−1,αt

)
, setting α ′t = αt gives:

αt

∫
αt+1

Vt+1
(
α t−1,αt ,αt+1

) dπ (αt+1 |αt )

dαt
dαt+1 = ω

∆
t+1

(
α t−1,αt

)
Using this and the de�nition of ωt+1

(
α t−1,αt

)
, (45) collapses to (19).

A.3 Proof of Proposition 2

A.3.1 ‘If’

Suppose that global incentive compatibility fails. By the time separability of preferences, for some t and history
α t−1 there must exist α ′t , α ′′t such that:

α ′tut
(
α ′′t

)
+ β

∫
αt+1

Vt+1
(
α ′′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1 > α

′
tut

(
α ′t

)
+ β

∫
αt+1

Vt+1
(
α ′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1

or equivalently:

ut
(
α ′′t

)
+
β

α ′t

∫
αt+1

Vt+1
(
α ′′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1 > ut

(
α ′t

)
+
β

α ′t

∫
αt+1

Vt+1
(
α ′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1 (46)

where ut (αt ) is used as shorthand for u
(
ct

(
α t−1,αt

) )
, and dependence of Vt+1 on α t−1 is similarly suppressed.

By the absolute continuity of lifetime utility in type:

ut
(
α ′′t

)
+

β

α ′′t

∫
αt+1

Vt+1
(
α ′′t ,αt+1

)
π

(
αt+1 |α

′′
t
)
dαt+1

− ut
(
α ′t

)
+
β

α ′t

∫
αt+1

Vt+1
(
α ′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1

=

∫ α ′′t

α ′t

d

dαt

{
1
αt

[
αtut (αt ) + β

∫
αt+1

Vt+1 (αt ,αt+1)π (αt+1 |αt )dαt+1

]}
dαt

=

∫ α ′′t

α ′t


− 1
α 2
t

[
αtut (αt ) + β

∫
αt+1

Vt+1 (αt ,αt+1)π (αt+1 |αt )dαt+1

]
+ 1
αt

d
dαt

[
αtut (αt ) + β

∫
αt+1

Vt+1 (αt ,αt+1)π (αt+1 |αt )dαt+1

]  dαt
=

∫ α ′′t

α ′t


− 1
α 2
t

[
αtut (αt ) + βωt+1

(
α t−1,αt

) ]
+ 1
α 2
t

[
αtut (αt ) + βω

∆
t+1

(
α t−1,αt

) ]  dαt
= − β

∫ α ′′t

α ′t

1
α2
t

(
ωt+1

(
α t−1,αt

)
− ω∆

t+1
(
α t−1,αt

) )
dαt

where the penultimate line has made use of the relaxed incentive constraint (19).
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Applying this result in (46) yields:

ut
(
α ′′t

)
+
β

α ′t

∫
αt+1

Vt+1
(
α ′′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1 > ut

(
α ′′t

)
+

β

α ′′t

∫
αt+1

Vt+1
(
α ′′t ,αt+1

)
π

(
αt+1 |α

′′
t
)
dαt+1

+ β

∫ α ′′t

α ′t

1
α2
t

[
ωt+1

(
α t−1,αt

)
+ ω∆

t+1
(
α t−1,αt

) ]
dαt

Or:

β

∫ α ′′t

α ′t

1
α2
t

∫
αt+1

(
Vt+1

(
α ′′t ,αt+1

)
−Vt+1 (αt ,αt+1)

) (
π (αt+1 |αt ) − αt

dπ (αt+1 |αt )

dαt

)
dαt > 0

Applying Lemma 3 and the de�nition of Vt+1, this is equivalent to:∫ α ′′t

α ′t

1
α2
t

{
Et

[
∞∑

s=t+1
βs−t

(
1 − Dt ,s (α

s )
)
αs

[
us

(
α t−1,α ′′t , ...,αs

)
− us (α

s )
] �����αt

]}
dαt > 0

But this directly contradicts the integral monotonicity condition given in the Proposition.

A.3.2 ‘Only if’

Suppose integral monotonicity fails for some
(
α ′t ,α

′′
t
)
, i.e.:∫ α ′′t

α ′t

1
α2
t

{
Et

[
∞∑

s=t+1
βs−t

(
1 − Dt ,s (α

s )
)
αs

[
us

(
α t−1,α ′′t , ...,αs

)
− us (α

s )
] �����αt

]}
dαt > 0

Applying the steps for the previous subsection in reverse, this is equivalent the inequality:

α ′tut
(
α ′′t

)
+ β

∫
αt+1

Vt+1
(
α ′′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1 > α

′
tut

(
α ′t

)
+ β

∫
αt+1

Vt+1
(
α ′t ,αt+1

)
π

(
αt+1 |α

′
t
)
dαt+1

Thus global incentive compatibility must be violated for type α ′t .

A.3.3 Corollary 2

This corollary can be established directly by a simpli�ed version of the proof of the main proposition when types
are iid. Suppose that global incentive compatibility fails. Then for some t and history α t−1 there must exist α ′t ,
α ′′t such that:

α ′tut
(
α ′′t

)
+ βωt+1

(
α ′′t

)
> α ′tut

(
α ′t

)
+ βωt+1

(
α ′t

)
where future values are now independent of period-t type. The relaxed incentive constraint (19) in the iid case
gives:

α ′′t ut
(
α ′′t

)
+ βωt+1

(
α ′′t

)
= α ′tut

(
α ′t

)
+ βωt+1

(
α ′t

)
+

∫ α ′′t

α ′t
ut (αt )dαt
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Using this in the prior inequality gives:∫ α ′′t

α ′t

[
u

(
α ′′t

)
− ut (αt )

]
dαt

(
α ′t

)
< 0

This contradicts non-decreasingness. Likewise, working backwards, a failure of non-decreasingness implies
global incentive compatibility will be violated for some pair of types.

A.4 Proof of Proposition 3

The key �rst-order conditions are constructed by studying di�erential changes to the allocation that remain
within the constraint space. The derivations are taken by reference to Lagrange multipliers, which are assumed
to take a standard algebraic form. It is simple to show that these multipliers can be eliminated by taking linear
combinations of the resulting expressions. Thus by construction, the results could equivalently be derived through
a calculus of variations approach, and do not depend on the assumed form for the multipliers.

The relaxed planner’s problem is to solve:

max
{ct (α t )}αt

∞∑
t=0

∫
α t
αtu

(
ct

(
α t

) )
dΠt

(
α t

)
subject to the resource constraint:

∞∑
t=0

R−t
[
yt −

∫
α t

ct
(
α t

)
dΠt

(
α t

) ]
≥ 0 (47)

and the relaxed incentive constraint:

α ′tu
(
ct

(
α t−1,α ′t

) )
+ βωt+1

(
α t−1,α ′t

)
= αu

(
ct

(
α t−1,α

) )
+ βωt+1

(
α t−1,α

)
(48)

+

∫ α ′t

α

1
αt

[
αtu

(
ct

(
α t−1,αt

) )
+ βω∆

t+1
(
α t−1,αt

) ]
dαt

with, for all t ≥ 0:

ωt+1
(
α t

)
:=

∫
αt+1

{
αt+1u

(
ct+1

(
α t ,αt+1

) )
+ βωt+2

(
α t ,αt+1

)}
dΠ (αt+1 |αt ) (49)

ω∆
t+1

(
α t

)
:=

∫
αt+1

ρ (αt+1 |αt ) ·
{
αtu

(
ct+1

(
α t ,αt+1

) )
+ βω∆

t+2
(
α t ,αt+1

)}
dΠ (αt+1 |αt ) (50)

plus the interiority restriction, which is assumed not to bind for the Proposition. We place multiplier η on (47),
β t µt

(
α t−1,αt

)
dΠt

(
α t−1,αt

)
on (48), β t+1λt+1

(
α t

)
dΠt

(
α t

)
on (49) and β t+1λ∆t+1

(
α t

)
dΠt

(
α t

)
on (50). Necessary

�rst-order optimality conditions are:
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• With respect to ct
(
α t

)
, a.e.:

0 =αtu ′
(
ct

(
α t

) )
·

[
1 + λt

(
α t−1) + λ∆t (

α t−1) ρ (αt |αt−1) + µt
(
α t

)
− 1
αt π (αt |αt−1)

∫ ᾱ
αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃t

]
− (βR)−t η (51)

• With respect to ωt+1
(
α t

)
, a.e.:

0 = − λt+1
(
α t

)
+ λt

(
α t−1) + µt (

α t−1,αt
)

(52)

• With respect to ω∆
t+1

(
α t

)
, a.e.:

0 = − λ∆t+1
(
α t

)
+ λ∆t

(
α t−1) ρ (αt |αt−1) (53)

−
1

αtπ (αt |αt−1)

∫ ᾱ

αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃

• With respect to ct
(
α t−1,α

)
:

0 =
∫ ᾱ

α
µt

(
α t−1,αt

)
π (αt |αt−1)dαt (54)

Throughout here, we normalise λ0 = λ
∆
0 ≡ 0, and let π (αt |αt−1) be replaced with π (α0) when t = 0.

Using (52) and (53) in (51) gives:

(βR)−t η

αtu ′ (ct (α t ))
= 1 + λt+1

(
α t

)
+ λ∆t+1

(
α t

)
(55)

Condition (51) can be rearranged to:

(βR)−t η

u ′ (ct (α t ))
− αt

[
1 + λt

(
α t−1) + λ∆t (

α t−1) ρ (αt |αt−1)
]

(56)

=αt µt
(
α t−1,αt

)
−

1
π (αt |αt−1)

∫ ᾱ

αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃t

This can be integrated across all αt :∫ ᾱ

α

{
(βR)−t η

u ′ (ct (α t−1,αt ))
− αt

[
1 + λt

(
α t−1) + λ∆t (

α t−1) ρ (αt |αt−1)
]}
π (αt |αt−1)dαt (57)

=

∫ ᾱ

α

{
αt µt

(
α t−1,αt

)
π (αt |αt−1) −

∫ ᾱ

αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃t

}
dαt

Integrating by parts, making use of (54):∫ ᾱ

α

∫ ᾱ

αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃tdαt =

∫ ᾱ

α
αt µt

(
α t−1,αt

)
π (αt |αt−1)dαt
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and so: ∫ ᾱ

α

{
(βR)−t η

u ′ (ct (α t−1,αt ))
− αt

[
1 + λt

(
α t−1) + λ∆t (

α t−1) ρ (αt |αt−1)
]}
π (αt |αt−1)dαt = 0 (58)

or, using (5):
1

E [αt |αt−1]
E

[
(βR)−t η

u ′ (ct (α t ))

����α t−1
]
=

[
1 + λt

(
α t−1) + λ∆t (

α t−1) εα (αt−1)
]

(59)

Rearranging (59) for period 0 gives an expression for η:

η =
E [α0]

E
[

1
u′(c0(α0))

] (60)

Combining (55) and (59) gives expressions for the objects 1 + λt+1
(
α t

)
and λ∆t+1

(
α t

)
:

1 + λt+1
(
α t

)
= (βR)−t η

1
1 − εα (αt )

{
1

E [αt+1 |αt ]
E

[
1

βRu ′ (ct+1 (α t+1))

����α t ] − εα (αt )

αtu ′ (ct (α t ))

}
(61)

λ∆t+1
(
α t

)
= (βR)−t η

1
1 − εα (αt )

{
1

αtu ′ (ct (α t ))
−

1
E [αt+1 |αt ]

E

[
1

βRu ′ (ct+1 (α t+1))

����α t ]} (62)

Integrating (56) above any given α ′t gives:∫ ᾱ

α ′t

{
(βR)−t η

u ′ (ct (α t−1,αt ))
− αt

[
1 + λt

(
α t−1) + λ∆t (

α t−1) ρ (αt |αt−1)
]}
π (αt |αt−1)dαt (63)

=

∫ ᾱ

α ′t

{
αt µt

(
α t−1,αt

)
π (αt |αt−1) −

∫ ᾱ

αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃t

}
dαt

and integrating by parts, we have:∫ ᾱ

α ′t

∫ ᾱ

αt
µt

(
α t−1, α̃t

)
π (α̃t |αt−1)dα̃tdαt (64)

= − α ′t

∫ ᾱ

α ′t
µt

(
α t−1,αt

)
π (αt |αt−1)dαt +

∫ ᾱ

α ′t
αt µt

(
α t−1,αt

)
π (αt |αt−1)dαt

so: ∫ ᾱ

α ′t

{
(βR)−t η

u ′ (ct (α t−1,αt ))
− αt

[
1 + λt

(
α t−1) + λ∆t (

α t−1) ρ (αt |αt−1)
]}
π (αt |αt−1)dαt (65)

=α ′t

∫ ᾱ

α ′t
µt

(
α t−1,αt

)
π (αt |αt−1)dαt

= − π
(
α ′t |αt−1

) (
α ′t

)2 {
λ∆t+1

(
α t

)
− ρ

(
α ′t |αt−1

)
λ∆t

(
α t−1)}

Applying the de�nition of a conditional expectation, and letting ηt := (βR)−t η, this immediately gives the main
condition in the Proposition.
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A.5 Proof of Proposition 4

The proof of Proposition 3 has already established the result for s = t and s = t + 1. From (61) and (62) we
immediately have:

1
αtu ′ (ct )

=
1 + λt+1 + λ

∆
t+1

ηt
(66)

1
Et [αt+1]

Et

[
1

βRu ′ (ct+1)

]
=

1 + λt+1 + λ
∆
t+1ε

α (αt )

ηt
(67)

and note that εα (αt ) =
Et [Dt ,t+1(α t+1)αt+1]

Et [αt+1]
.

The proof then works recursively. Suppose that, for r < s:

Er

[
ηr

(βR)s−r u ′ (cs )

]
= [1 + λr+1]Er [αs ] + λ

∆
r+1Er

[
Dr ,s (α

s )αs
]

(68)

Then:

Er−1

[
ηr−1

(βR)s−r+1u ′ (cs )

]
(69)

=Er−1
{
[1 + λr+1]Er [αs ] + λ

∆
r+1Er

[
Dr ,s (α

s )αs
]}

=

∫
αr

{[
ρ (αr |αr−1) λ

∆
r −

1
αrπ (αr |αr−1)

∫ ᾱ

αr
µr (α̃r )π (α̃r |αr−1)dα̃r

]
· Er

[
Dr ,s (α

s )αs
]

+ [1 + λr + µr (αr )] · Er [αs ]} π (αr |αr−1)dαr (70)

By an identical argument to Lemma 3, we have:

d

dαr
[Er [αs ]] =

1
αr
Er

[
Dr ,s (α

s )αs
]

Integrating by parts, we therefore have:∫
αr

1
αr
Er

[
Dr ,s (α

s )αs
] [∫ ᾱ

αr
µr (α̃r )π (α̃r |αr−1)dα̃r

]
dαr =

∫
αr
Er [αs ] µr (α̃r )π (αr |αr−1)dαr (71)

where we have used condition (54). Using this in the preceeding expression, the terms in µr cancel:

Er−1

[
ηr−1

(βR)s−r+1u ′ (cs )

]
=

∫
αr

{
[1 + λr ] · Er [αs ] + ρ (αr |αr−1) λ

∆
r · Er

[
Dr ,s (α

s )αs
]}
π (αr |αr−1)dαr (72)

= [1 + λr ] · Er−1 [αs ] + λ
∆
r · Er−1

[
Dr−1,s (α

s )αs
]

which makes use of the de�nition of Dr−1,s (α
s ). Thus we have iterated expectations backwards a period from
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condition (68). Now, for any s > 0, condition (67) implies:

Es−1

[
ηs−1

βRu ′ (cs )

]
= [1 + λs ]Es−1 [αs ] + λ

∆
s Es−1

[
Ds−1,s (α

s )αs
]

(73)

The preceeding arguments allow this to be iterated back to t , as required.

A.6 Proof of Proposition 5

Relaxed incentive compatibility and normality imply full incentive compatibility, by Corollary 1. Incentive com-
patibility for type α ′′t implies:

α ′t
[
ut

(
α ′′t

)
− u

(
α ′t

) ]
+ Et

{
∞∑

s=t+1
βs−tαs

[
us

(
α ′′t ,α

s
t+1

)
− us

(
α ′t ;α

s
t+1

) ] �����α ′t
}
≤ 0

where ut (αt ) is shorthand for u
(
ct

(
α t−1,αt

) )
. Since ct

(
α ′′t

)
> ct

(
α ′t

)
, by the concavity of the within-period

utility function:
ut

(
α ′′t

)
− u

(
α ′t

)
≥ u ′

(
ct

(
α ′′t

) ) (
ct

(
α ′′t

)
− ct

(
α ′t

) )
> 0

and since cs
(
α ′′t ,α

s
t+1

)
≤ cs

(
α ′t ,α

s
t+1

)
for s > t :

0 ≥ us
(
α ′′t ,α

s
t+1

)
− us

(
α ′t ;α

s
t+1

)
≥ u ′

(
cs

(
α ′′t ;α st+1

) ) (
cs

(
α ′′t ;α st+1

)
− cs

(
α ′t ;α

s
t+1

) )
Using these:

α ′tu
′
(
ct

(
α ′′t

) ) (
ct

(
α ′′t

)
− ct

(
α ′t

) )
+ Et

{
∞∑

s=t+1
βs−tαsu

′
(
cs

(
α ′′t ;α st+1

) ) (
cs

(
α ′′t ;α st+1

)
− cs

(
α ′t ;α

s
t+1

) ) �����α ′′t
}

≤α ′t
[
ut

(
α ′′t

)
− u

(
α ′t

) ]
+ Et

{
∞∑

s=t+1
βs−tαs

[
us

(
α ′′t ,α

s
t+1

)
− us

(
α ′t ;α

s
t+1

) ] �����α ′′t
}

≤0

And so:

α ′tu
′
(
ct

(
α ′t

) ) (
ct

(
α ′′t

)
− ct

(
α ′t

) )
≤Et

{
∞∑

s=t+1
βs−tαsu

′
(
cs

(
α ′t ;α

s
t+1

) ) (
cs

(
α ′t ;α

s
t+1

)
− cs

(
α ′′t ;α st+1

) ) �����α ′′t
}

By strict normality: (
ct

(
α ′′t

)
− ct

(
α ′t

) )
≥ δt

(
α t−1) (

α ′′t − α
′
t
)
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So:

Et

{
∞∑

s=t+1

βs−tαsu
′
(
cs

(
α ′t ;α st+1

) )
α ′tu

′
(
ct

(
α ′t

) ) (
cs

(
α ′t ;α

s
t+1

)
− cs

(
α ′′t ;α st+1

) ) �����α ′′t
}
≥ δt

(
α t−1) (

α ′′t − α
′
t
)

A.7 Corollary 3

Monotonicity of ct (αt ) implies that ct (αt ) is continuous a.e.. Suppose it is continuous on some open interval
(α ′,α ′′) ⊂

[
α, ᾱ

]
, and write c ′ = limα↘α ′ (ct (α)) and c ′′ = limα↗α ′′ (ct (α)) (i.e. limits as α approaches from

above and below respectively). Integrating (21) across this range gives:∫ c ′′

c ′

{∫ ᾱ

αt (ct )

[
1

u ′ (ct (α))
−
α

{
1 + λt + λ∆t ρ (α |αt−1)

}
ηt

]
π (α |αt−1)dα

}
du ′ (ct )

dct
dct (74)

= −

∫ c ′′

c ′
(αt (ct .))

2

{
λ∆t+1 (αt (ct ))

ηt
− ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

}
π (αt (ct ) |αt−1)

du ′ (ct )

dct
dct

Integrating the left-hand side by parts, we have:∫ c ′′

c ′

{∫ ᾱ

αt (ct )

[
1

u ′ (ct (α))
−
α

{
1 + λt + λ∆t ρ (α |αt−1)

}
ηt

]
π (α |αt−1)dα

}
du ′ (ct )

dct
dct

=

[{∫ ᾱ

αt (ct )

[
1

u ′ (ct (α))
−
α

{
1 + λt + λ∆t ρ (α |αt−1)

}
ηt

]
π (α |αt−1)dα

} {∫ ct

c ′

du ′ (c)

dc
dc

}]c ′′
ct=c ′

+

∫ c ′′

c ′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

] [∫ ct

c ′

du ′ (c)

dc
dc

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

=

∫ ᾱ

α ′′

[
1

u ′ (ct (α))
−
α

{
1 + λt + λ∆t ρ (α |αt−1)

}
ηt

]
π (α |αt−1)dα [u

′ (c ′′) − u ′ (c ′)]

+

∫ c ′′

c ′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
[u ′ (ct ) − u

′ (c ′)]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

=

∫ c̄

c ′′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct (u

′ (c ′′) − u ′ (c ′))

+

∫ c ′′

c ′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
[u ′ (ct ) − u

′ (c ′)]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

=

∫ c ′′

c ′

[
1 −

αt (ct )u
′ (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

+ u ′ (c ′′)

∫ c̄

c ′′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

− u ′ (c ′)

∫ c̄

c ′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct
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where the strict normality assumption guarantees that dαt (ct )
dct

is de�ned a.e.. Note also that:

π c
(
ct |α

t−1) :=
dαt (ct )

dct
π (αt (ct ) |αt−1)

is a measure of the empirical density of consumption at ct , across types with the given history, de�ned a.e..
The main condition thus becomes:∫ c ′′

c ′

[
1 −

αt (ct )u
′ (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct (75)

+ u ′ (c ′′)

∫ c̄

c ′′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (α |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

− u ′ (c ′)

∫ c̄

c ′

[
1

u ′ (ct )
−
αt (ct )

{
1 + λt + λ∆t ρ (α |αt−1)

}
ηt

]
dαt (ct )

dct
π (αt (ct ) |αt−1)dct

= −

∫ c ′′

c ′
(αt (ct .))

2u ′′ (ct )

{
λ∆t+1 (αt (ct ))

ηt
− ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

}
π (αt (ct ) |αt−1)dct

Suppose �rst that there are no discontinuities in ct (αt ). Making use of (58), over the entire range (75) gives:∫ c̄

c

[
1 −

αt (ct )u
′ (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
π c

(
ct |α

t−1) dct (76)

+

∫ c̄

c
(αt (ct .))

2u ′′ (ct )

{
λ∆t+1 (αt (ct ))

ηt
− ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

} (
dαt (ct )

dct

)−1
π c

(
ct |α

t−1) dct
=0

And for each c ′ ∈
(
c, c̄

)
, making use of (65):∫ c̄

c ′

[
1 −

αt (ct )u
′ (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
π c

(
ct |α

t−1) dct (77)

+ (αt (c
′))

2u ′ (c ′)π c
(
c ′ |α t−1) (

dαt (c
′)

dc ′

)−1
{
λ∆t+1 (αt (c

′))

ηt
− ρ (αt (c

′) |αt−1) βR
λ∆t
ηt−1

}
+

∫ c̄

c ′
(αt (ct .))

2u ′′ (ct )

{
λ∆t+1 (αt (ct ))

ηt
− ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

} (
dαt (ct )

dct

)−1
π c

(
ct |α

t−1) dct
=0

as given in the text.
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A.7.1 Allowing discontinuities

Discontinuities in ct (αt ) can be included with minimal additional manipulation. Since ct (αt ) is monotone, the
set of αt values at which it is discontinuous is at most countable. Denote this set A ⊂ A, and for all αt ∈ A
let cu (αt ) = limα↘αt (ct (α)) and cl (αt ) = limα↗αt (ct (α)) denote the upper and lower limits for consumption
respectively. Summing (75) across intervals, over the entire range we have:∫ c̄

c

[
1 −

αt (ct )u
′ (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
π c

(
ct |α

t−1) dct (78)

+
∑
αt ∈A

(
u ′ (cu (αt )) − u

′
(
cl (αt )

))
π (αt |αt−1) (αt )

2

{
λ∆t+1 (αt )

ηt
− ρ (αt |αt−1) βR

λ∆t
ηt−1

}
+

∫ c ′′

c ′
(αt (ct .))

2u ′′ (ct )

{
λ∆t+1 (αt (ct ))

ηt
− ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

}
π c

(
ct |α

t−1) dct
=0

And for each c ′ ∈
(
c, c̄

)
:∫ c̄

c ′

[
1 −

αt (ct )u
′ (ct )

{
1 + λt + λ∆t ρ (αt (ct ) |αt−1)

}
ηt

]
π c

(
ct |α

t−1) dct (79)

+
∑

αt ∈A∩(αt (c ′),ᾱ )

(
u ′ (cu (αt )) − u

′
(
cl (αt )

))
π (αt |αt−1) (αt )

2

{
λ∆t+1 (αt )

ηt
− ρ (αt |αt−1) βR

λ∆t
ηt−1

}
+ (αt (c

′))
2u ′ (c ′)π c

(
c ′ |α t−1) (

dαt (c
′)

dc ′

)−1
{
λ∆t+1 (αt (c

′))

ηt
− ρ (αt (c

′) |αt−1) βR
λ∆t
ηt−1

}
+

∫ c̄

c ′
(αt (ct .))

2u ′′ (ct )

{
λ∆t+1 (αt (ct ))

ηt
− ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

} (
dαt (ct )

dct

)−1
π c

(
ct |α

t−1) dct
=0

A.8 Proof of Lemma 2

Conditions 1 and 2

We start with two Lemmata:

Lemma 4. The marginal tax rate satis�es:

T ′t (s (αt )) =
λ∆t+1 (αt )

ηt

{
αtu

′ (ct ) − βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

}
whereVM (Mt+1;αt+1) denotes the marginal increase in lifetime utility in t + 1 whenMt+1 is increased at the margin,

given type draw αt+1.
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Proof. Recall that the decentralisation in Proposition 1 sets the value of Mt
(
α t−1) equal to the expected present

value of consumption from t onwards, for agents with history α t−1:

Mt
(
α t−1) = E [

∞∑
r=t

Rt−rcr (α
r )

�����α t−1

]
By de�nition, the marginal tax rate on savings is the net revenue raised by the policymaker, per unit, when
savings are increased by a unit at the margin. Since the agent is optimising, a marginal change to savings relative
to the optimum leaves them indi�erent. Thus the marginal tax rate can be obtained from the optimal direct
allocation as the di�erence between the marginal cost to the policymaker of providing resources in t , and the
(discounted) shadow marginal resource cost of providing the utility increase implied by a unit increase in savings.
By construction, savings raise period-t + 1 lifetime utility ωt+1 at the margin by the amount:

R
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1

and raise ω∆
t+1 by the amount:

R
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

The marginal resource cost of increasing ωt+1 by a unit at the margin will be the relevant shadow cost from the
cost-minimisation dual. By standard arguments, an expression for this is obtained by dividing the marginal value
of an increase to ωt+1 in the main problem by the resource multiplier:

β t+1 (
1 + λt+1

(
α t

) )
η

Similarly, the marginal resource cost of increasing ω∆
t+1 by a unit is:

β t+1λ∆t+1
(
α t

)
η

The direct marginal resource gain from a unit increase in savings in period t is R−t , and this is also the relative
value of a unit of tax revenue from that period. Combining, we thus have:

R−tT ′t (st ) =R
−t −

β t+1 (
1 + λt+1

(
α t

) )
η

R
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1

−
β t+1λ∆t+1

(
α t

)
η

R
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1
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Or:

T ′t (st ) =1 −
(
1 + λt+1

(
α t

) )
η (βR)−t−1

(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1

−
λ∆t+1

(
α t

)
η (βR)−t−1

(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

Expressions for (1+λt+1(α t ))
ηt

and λ∆t+1(α
t )

ηt
, with ηt = η (βR)−t , follow from (61) and (62) respectively:

1 + λt+1
(
α t

)
ηt

=
1

1 − εα (αt )

{
1

E [αt+1 |αt ]
E

[
1

βRu ′ (ct+1 (α t+1))

����α t ] − εα (αt )

αtu ′ (ct (α t ))

}
(80)

λ∆t+1
(
α t

)
ηt

=
1

1 − εα (αt )

{
1

αtu ′ (ct (α t ))
−

1
E [αt+1 |αt ]

E

[
1

βRu ′ (ct+1 (α t+1))

����α t ]} (81)

Substituting in (80) gives:

T ′t (st ) =1 −
1

1 − εα (αt )

{
1

E [αt+1 |αt ]
E

[
1

βRu ′ (ct+1 (α t+1))

����α t ] − εα (αt )

αtu ′ (ct (α t ))

}
· αtu

′
(
ct

(
α t

) )
−
λ∆t+1

(
α t

)
ηt

βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

where we have used the consumer optimality condition:

αtu
′
(
ct

(
α t

) )
= βR

(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1

Rearranging the �rst line:

1 −
1

1 − εα (αt )

{
1

E [αt+1 |αt ]
E

[
1

βRu ′ (ct+1 (α t+1))

����α t ] − εα (αt )

αtu ′ (ct (α t ))

}
· αtu

′
(
ct

(
α t

) )
= −

1
1 − εα (αt )

{
1

E [αt+1 |αt ]
E

[
1

βRu ′ (ct+1 (α t+1))

����α t ] − εα (αt )

αtu ′ (ct (α t ))
−
(1 − εα (αt ))
αtu ′ (ct (α t ))

}
· αtu

′
(
ct

(
α t

) )
=
λ∆t+1

(
α t

)
ηt

· αtu
′
(
ct

(
α t

) )
So:

T ′t (s (αt )) =
λ∆t+1 (αt )

ηt

{
αtu

′ (ct ) − βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

}
as stated. �
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Lemma 5. The contemporaneous income e�ect and labour supply elasticity satisfy, respectively:{
αtu

′ (ct ) − βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

}−1
= −

dst
dMt

α2
tu
′′ (ct )

dct
dαt

(82){
αtu

′ (ct ) − βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

}−1
=

stε
s
t

α2
tu
′ (ct )

dct
dαt

(83)

Proof. Start with (82). Given the decentralised scheme, and holding constant actions prior to t , consider a joint
marginal change to αt and Mt would leave st constant for an optimising individual. From the budget constraint,
this implies setting a value for dMt

dαt
such that:

dct
dαt
+

dct
dMt

dMt

dαt
=
dMt

dαt
(84)

where dct
dαt

and dct
dMt

denote optimal responses. So long as dct
dMt

, 1, this is possible. But since the consumer
optimality condition is:

αtu
′ (ct ) = βR (1 −T ′ (st ))

∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1 (85)

then so long as the right-hand side is de�ned, we could only have dct
dMt
= 1 (implying dst

dMt
= 0) in the quasilinear

case u ′′ (ct ) = 0, which has been ruled out by primitive assumptions.
Di�erentiating (85) with respect to αt , given constant savings, yields:

u ′ (ct ) − βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)
dπ (αt+1 |αt )

dαt
dαt+1 + αtu

′′ (ct )

[
dct
dαt
+

dct
dMt

dMt

dαt

]
= 0

u ′ (ct ) − βR
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)
dπ (αt+1 |αt )

dαt
dαt+1 + αtu

′′ (ct )
dMt

dαt
= 0

Rearranging (84):

dMt

dαt
=

dct
dαt

1 − dct
dMt

=

dct
dαt
ds
dMt

Plugging this into the previous expression, trivial manipulations give (82).
Reasoning in a similar way for (83), consider the e�ect of a change to

(
1 −T ′t (st )

)
at the margin, for an agent

saving at st , coupled with a change to Mt that holds constant period-t consumption. That is, set dMt
d (1−T ′(st )) to

solve:
dct

d (1 −T ′ (st ))
+

dct
dMt

dMt

d (1 −T ′ (st ))
=

dMt

d (1 −T ′ (st ))
(86)
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Di�erentiating (85) with respect to
(
1 −T ′t (st )

)
under this joint change gives:

−βR

∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1 + αtu
′′ (ct )

[
dct

d
(
1 −T ′t (st )

) + dct
dMt

dMt

d
(
1 −T ′t (st )

) ] = 0

−αtu
′ (ct )

1
1 −T ′t (st )

+ αtu
′′ (ct )

dct
d(1−T ′t (st ))

dst
dMt

= 0

Rearranging, and noting dct
d(1−T ′t (st ))

= −
dst

d(1−T ′t (st ))
:

stε
s
t

u ′ (ct )
= −

dst
dMt

u ′′ (ct )

and so (83) follows, given (82). �

Combining the results in these two sub-Lemmata immediately delivers the �rst two statements in the main
Lemma.

Conditions 3 and 4

The third statement relates the change in savings at t to compensated changes in the pro�le of insurance at t + 1.
It is obtained by constructing o�setting perturbations to the marginal value of saving, based on two expressions
for this object that are true in any decentralised allocation. First, from the consumer optimality condition:

αtu
′ (ct ) = βR

(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1 (87)

Second, di�erentiating the relaxed incentive constraint:

αtu
′ (ct )

dct (αt )

dαt
+ u (ct ) + β

dωt+1 (αt )

dαt
= u (ct ) + β

1
αt
ω∆
t+1 (αt )

or:
αtu

′ (ct ) =
1

dct (αt )
dαt

β

{
1
αt
ω∆
t+1 (αt ) −

dωt+1 (αt )

dαt

}
(88)

The right-hand sides of (87) and (88) thus give alternative expressions for the shadow value of savings at the
chosen allocation. Denote this object γt (αt ), i.e.:

γt (αt ) :=R
(
1 −T ′t (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)π (αt+1 |αt )dαt+1 (89)

=
1

dct (αt )
dαt

β

{
1
αt
ω∆
t+1 (αt ) −

dωt+1 (αt )

dαt

}
(90)
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Suppose we are interested in the response of ct (αt ) to a generic change in the consumer’s constraint set ∆i . We
have:

αtu
′′ (ct (αt ))

dct (αt )

d∆i
=
dγt (αt )

d∆i
(91)

Consider two such changes, ∆i and ∆j , plus a scalar Γ, with the property:

dγt (αt )

d∆i
+ Γ

dγt (αt )

d∆j
= 0 (92)

Using (92) in (91):
dct (αt )

d∆i
+ Γ

dct (αt )

d∆j
= 0 (93)

So long as the perturbations ∆i and ∆j are constructed to leave Mt una�ected, this last result in turn implies:

dst (αt )

d∆i
+ Γ

dst (αt )

d∆j
= 0 (94)

and so
dγt (αt )

d∆i
+ Γ

dγt (αt )

d∆j
=

dγt (αt )

d∆i

����
st ,ct
+ Γ

dγt (αt )

d∆j

����
st ,ct

= 0 (95)

– the notation on the right-hand side denoting that the derivative can be taken under the greatly simplifying
assumption of �xed savings and consumption in t . For any pair of di�erential changes, (91) gives:

dct (αt )

d∆i
= −Γ

dct (αt )

d∆j

=

dγt (αt )
d∆i

���
st

dγt (αt )
d∆j

���
st

dct (αt )

d∆j
(96)

We now take the derivatives of γt (αt ) for two changes to the consumer’s budget constraint, as viewed in t . The
�rst is a simple change to contemporaneous post-tax returns,

(
1 −T ′t (st )

)
. From (89):

dγt (αt )

d
(
1 −T ′t (st )

) ����
st

=
1

1 −T ′t (st )
γt (αt )

=
1

1 −T ′t (st )
αtu

′ (ct ) (97)

The second change is a more general perturbation to the nonlinear budget constraint in t + 1, compensated so
that ωt+1 is left una�ected. This budget constraint can be rewritten as follows:

ct+1 = Mt+1 − s (Mt+2) (98)
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where s (Mt+2) is de�ned implicitly for all realised Mt+2 values by:

Mt+2 ≡ R [s (Mt+2) −Tt+1 (s (Mt+2))] (99)

We will focus on perturbations of the form:

ct+1 = Mt+1 − s (Mt+2) + Γ f (s (Mt+2)) (100)

for an arbitrary bounded, a.e. di�erentiable function f and scalar Γ. The focus of interest will be di�erential
movements in Γ away from zero. Taking the derivative from (90), since ct and ωt+1 are being held constant we
can write:

dγt (αt )

dΓ

����
st ,ct
=

1
dct (αt )
dαt

β
1
αt

dω∆
t+1 (αt )

dΓ
(101)

Thus the critical object to evaluate is dω∆
t+1(αt )
dΓ . The algebraic steps for this are consigned to a Lemma:

Lemma 6. dω∆
t+1(αt )
dΓ satis�es the following expression:

dω∆
t+1 (αt )

dΓ
=

∫
αt+1

f ′ (st+1 (αt+1))

{
α2
t+1u

′ (ct+1)
dst+1 (αt+1)

dαt+1
ρ (αt+1 |αt )π (αt+1 |αt ) (102)

−
dst+1 (αt+1)

dαt+1

∫ αt+1

α

[
α̃t+1 (u

′ (ct+1)) + α̃
2
t+1u

′′ (ct+1)
dct+1

dα̃t+1

]
ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1

}
dαt+1

+ f (st+1 (ᾱ))

∫
αt+1

{
αt+1 (u

′ (ct+1)) + α
2
t+1u

′′ (ct+1)
dct+1

dαt+1

}
ρ (αt+1 |αt )π (αt+1 |αt )dαt+1

Proof. We obtain the result by combining the income and substitution e�ects of the pertubation. The size of the
income income e�ect is proportional to the increase in ct+1 at each Mt+2 along the budget constraint:

dct+1

dΓ

����
Mt+2

= f (s (Mt+2)) (103)

To assess the magnitude of the substitution e�ect, note that the slope of the budget constraint at each point is:

dct+1

dMt+2
= −s ′ (Mt+2) (1 − Γ f ′ (s (Mt+2))) (104)

= −
1 − Γ f ′ (s (Mt+2))

R
[
1 −T ′t+1 (s (Mt+2))

] (105)

The e�ect on this as Γ changes is thus:

d

dΓ

[
dct+1

dMt+2

]
=

f ′ (s (Mt+2))

R
[
1 −T ′t+1 (s (Mt+2))

] (106)
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Notice that this is equal to:

f ′ (s (Mt+2))
(
1 −T ′t+1 (s (Mt+2))

) d

d
(
1 −T ′t+1 (s (Mt+2))

) [
dct+1

dMt+2

] ����
Γ=0

(107)

i.e. the perturbation changes the slope of the budget constraint by the equivalent of f ′ (s (Mt+2))
(
1 −T ′t+1 (s (Mt+2))

)
times a change in the post-tax rate of return.

Substitution e�ects have an impact on ω∆
t+1 to the extent that consumption is deferred:

dω∆
t+1

dΓ

�����
sub

=

∫
αt+1

{
−αt+1u

′ (ct+1) + βR
(
1 −T ′t+1 (st+1 (αt+1))

) ∫
αt+1

VM (αt+1)
dπ (αt+2 |αt+1)

dαt+1
dαt+2

}
×

dst+1 (αt+1)

d
(
1 −T ′t+1 (st+1 (αt+1))

) (
1 −T ′t+1 (st+1 (αt+1))

)
f ′ (st+1 (αt+1)) ρ (αt+1 |αt )π (αt+1 |αt )dαt+1

=

∫
αt+1

{
−α2

t+1u
′ (ct+1)

dct+1 (αt+1)

dαt+1

1
εst+1st+1 (αt+1)

}
×

dst+1 (αt+1)

d
(
1 −T ′t+1 (st+1 (αt+1))

) (
1 −T ′t+1 (st+1 (αt+1))

)
f ′ (st+1 (αt+1)) ρ (αt+1 |αt )π (αt+1 |αt )dαt+1

= −

∫
αt+1

α2
t+1u

′ (ct+1)
dct+1 (αt+1)

dαt+1
f ′ (st+1 (αt+1)) ρ (αt+1 |αt )π (αt+1 |αt )dαt+1 (108)

where the intermediate line makes use of Lemma 5, and we have used the fact that the speci�ed perturbation is
the equivalent of a change in

(
1 −T ′t+1 (st+1 (αt+1))

)
by

(
1 −T ′t+1 (st+1 (αt+1))

)
f ′ (st+1 (αt+1)) units.

Similarly, the income e�ect on ω∆
t+1 will be:

dω∆
t+1

dΓ

�����
inc

=

∫
αt+1

f (st+1 (αt+1)) ρ (αt+1 |αt )

{
αt+1 (u

′ (ct+1)) +
dst+1 (αt+1)

dMt+1
[−αt+1u

′ (ct+1)

+βR
(
1 −T ′t+1 (st+1 (αt+1))

) ∫
αt+1

VM (αt+1)
dπ (αt+2 |αt+1)

dαt+1
dαt+2

]}
π (αt+1 |αt )dαt+1

=

∫
αt+1

f (st+1 (αt+1))

{
αt+1 (u

′ (ct+1)) + α
2
t+1u

′′ (ct+1)
dct+1

dαt+1

}
ρ (αt+1 |αt )π (αt+1 |αt )dαt+1

=f (st+1 (ᾱ))

∫
αt+1

{
αt+1 (u

′ (ct+1)) + α
2
t+1u

′′ (ct+1)
dct+1

dαt+1

}
ρ (αt+1 |αt )π (αt+1 |αt )dαt+1 (109)

−

∫
αt+1

f ′ (st+1 (αt+1))
dst+1 (αt+1)

dαt+1

×

{∫ αt+1

α

[
α̃t+1 (u

′ (ct+1)) + α̃
2
t+1u

′′ (ct+1)
dct+1

dα̃t+1

]
ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1

}
dαt+1

where the second equality makes use of (82). Taking substitution and income e�ects, (108) and (109), together,
we obtain the result. �
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Applying (96), (97) and (101), we have:

dct
dΓ
=

[
αtu

′ (ct )(
1 −T ′t (st )

) ]−1
dct

d
(
1 −T ′t (st )

) 1
dct
dαt

β
1
αt

dω∆
t+1

dΓ
(110)

So:

1
st

dst
dΓ
=

[
αtu

′ (ct )(
1 −T ′t (st )

) ]−1 1
st

dst

d
(
1 −T ′t (st )

) 1
dct
dαt

β
1
αt

dω∆
t+1

dΓ

=

∫
αt+1

f ′ (st+1 (αt+1)) ε
s
t

αt+1
dst+1
dαt+1

αt
dst
dαt

{
−
βαt+1u

′ (ct+1)

αtu ′ (ct )
ρ (αt+1 |αt )π (αt+1 |αt ) (111)

+
1

αt+1

∫ αt+1

α

βα̃t+1 (u
′ (ct+1))

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

α̃t+1

ct+1

dct+1

dα̃t+1

]
ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1

}
dαt+1

+ f (st+1 (ᾱ)) ε
s
t

1
αt

dct
dαt

∫
αt+1

βαt+1u
′ (ct+1)

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

αt+1

ct+1

dct+1

dαt+1

]
ρ (αt+1 |αt )π (αt+1 |αt )dαt+1

A unit change in Γ changes the slope of the t + 1 budget constraint at st+1 by
(
1 −T ′t+1 (st+1)

)
f ′ (st+1) units, and

shifts it uniformly for all higher savings levels by the same amount. Thus, by construction, we have:

1
st

dst
dΓ
≡

∫
αt+1

f ′ (st+1 (αt+1)) ϵt ,t+1 (st+1 (αt+1))π (αt+1 |αt )dαt+1 (112)

+ f (st+1 (ᾱ))
1
st

dst
dMt+1

����
comp

where dst
dMt+1

���
comp

denotes the e�ect on st of a compensated, uniform income increase at t + 1. Since ϵt ,t+1 is

independent of the choice of f ′, we have:

ϵt ,t+1 (st+1 (αt+1)) =ε
s
t

αt+1
dst+1(αt+1)

dαt+1

αt
dst
dαt

{
−
βαt+1u

′ (ct+1)

αtu ′ (ct )
ρ (αt+1 |αt ) (113)

+
1

αt+1π (αt+1 |αt )

∫ αt+1

α

βα̃t+1 (u
′ (ct+1))

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

α̃t+1

ct+1

dct+1

dα̃t+1

]
×ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1} (114)
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So:

RT ′t (st ) stϵt ,t+1 (st+1 (αt+1)) (115)

=RT ′t (st ) stε
s
t

αt+1
dst+1(αt+1)

dαt+1

αt
dst
dαt

{
−
βαt+1u

′ (ct+1)

αtu ′ (ct )
ρ (αt+1 |αt ) (116)

+
1

αt+1π (αt+1 |αt )

∫ αt+1

α

βα̃t+1 (u
′ (ct+1))

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

α̃t+1

ct+1

dct+1

dα̃t+1

]
ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1

}
= −

λ∆t+1
ηt

αtu
′ (ct )αt+1

dst+1 (αt+1)

dαt+1

{
−
βRαt+1u

′ (ct+1)

αtu ′ (ct )
ρ (αt+1 |αt ) (117)

+
1

αt+1π (αt+1 |αt )

∫ αt+1

α

βRα̃t+1 (u
′ (ct+1))

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

α̃t+1

ct+1

dct+1

dα̃t+1

]
ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1

}
=βRαt+1u

′ (ct+1) ρ (αt+1 |αt )
λ∆t+1
ηt

αt+1
dst+1 (αt+1)

dαt+1
(118)

−

dst+1(αt+1)
dαt+1

π (αt+1 |αt )

λ∆t+1
ηt

∫ αt+1

α
βRα̃t+1 (u

′ (ct+1))

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

α̃t+1

ct+1

dct+1

dα̃t+1

]
ρ (α̃t+1 |αt )π (α̃t+1 |αt )dα̃t+1

Changing the unit of integration and using π (αt+1 |αt )
dαt+1(ct+1)

dct+1
= π c

(
ct+1 |α

t ) gives condition 3.
For condition 4, we have established:

1
st

dst
dMt+1

����
comp
= εst

1
αt

dct
dαt

∫
αt+1

βαt+1u
′ (ct+1)

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

αt+1

ct+1

dct+1

dαt+1

]
ρ (αt+1 |αt )π (αt+1 |αt )dαt+1 (119)

So:

RT ′t (st )
dst

dMt+1

����
comp
=
λ∆t+1
ηt

αtu
′ (ct )

∫
αt+1

βRαt+1u
′ (ct+1)

αtu ′ (ct )

[
1 +

ct+1u
′′ (ct+1)

u ′ (ct+1)

αt+1

ct+1

dct+1

dαt+1

]
ρ (αt+1 |αt )π (αt+1 |αt )dαt+1

(120)
Again, a change to the unit of integration gives the result.

A.9 Proof of Theorem 2

Equation (31), above, gives:

T ′t (st )
dst
dMt

= −
λ∆t+1 (αt )

ηt
(αt )

2u ′′ (ct )

(
dct
dαt

)
The utility function is time-separable and concave in consumption at each date-state, which together straightfor-
wardly imply dst

dMt
> 0. Concavity further gives u ′′ (ct ) < 0, the strict increasingness assumption implies dct

dαt
> 0,

and η > 0 from (23). It follows thatT ′t (st ) has the same sign as λ∆t+1 (αt (ct )), and so we focus on signing the latter
object.

To demonstrate positive taxes at interior points we start with the following Lemma:
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Lemma 7. For all t and α t−1, the long-run expectation of variation in the inverse, discounted marginal utility of

consumption is bounded, i.e.:

lim
s→∞

{
Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ..., ᾱ

) ) − 1
(βR)s−t u ′

(
cs

(
α ′t , ...,α

) ) ]} < ∞
Proof. We have just established that λ∆s+1 = 0 for αs = ᾱ and αs = α , and so:

Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ..., ᾱ

) ) − 1
(βR)s−t u ′

(
cs

(
α ′t , ...,α

) ) ] (121)

=Et

[
1

(βR)s−t
ᾱ

Es [αs+1 |ᾱ]
Es

[
1

βRu ′
(
cs+1

(
α ′t , ..., ᾱ,αs+1

) ) ���� ᾱ ] ]
− Et

[
1

(βR)s−t
α

Es
[
αs+1 |α

] Es [
1

βRu ′
(
cs+1

(
α ′t , ...,α,αs+1

) ) ����α ] ]
If the right-hand side of (121) is unbounded in s then so is the expression:

1
(βR)s−t

Et

[
Es

[
1

βRu ′
(
cs+1

(
α ′t , ..., ᾱ,αs+1

) ) ���� ᾱ ]
−
αEs [αs+1 |ᾱ]

ᾱEs
[
αs+1 |α

] Es [
1

βRu ′
(
cs+1

(
α ′t , ...,α,αs+1

) ) ����α ] ]
(122)

=
1

(βR)s+1−t Et

[∫
αs+1

[
1

u ′
(
cs+1

(
α ′t , ..., ᾱ,αs+1

) ) π (αs+1 |ᾱ) −
1

u ′
(
cs+1

(
α ′t , ...,α,αs+1

) ) αEs [αs+1 |ᾱ]

ᾱEs
[
αs+1 |α

] π (
αs+1 |α

) ]
dαs+1

]
By normality, if this is unbounded in s then so too is the object:

1
(βR)s+1−t Et


∫
αs+1

1
u ′

(
cs+1

(
α ′t , ...,α,αs+1

) ) 
π (αs+1 |ᾱ) − π

(
αs+1 |α

) αEs [αs+1 |ᾱ ]
ᾱEs [αs+1 |α]

π
(
αs+1 |α

)  π
(
αs+1 |α

)
dαs+1

 (123)

Moreover, continuity of the density implies that the object:


π (αs+1 |ᾱ) − π

(
αs+1 |α

) αEs [αs+1 |ᾱ ]
ᾱEs [αs+1 |α]

π
(
αs+1 |α

) 
is bounded in αs+1. Thus unboundedness of (123) in s implies:

lim
s→∞

{
1

(βR)s+1−t Et

[∫
αs+1

1
u ′

(
cs+1

(
α ′t , ...,α,αs+1

) ) π (
αs+1 |α

)
dαs+1

]}
= ∞

This implies:

lim
s→∞

{
1

(βR)s−t
Et

[
α

Es
[
αs+1 |α

] Es [
1

βRu ′
(
cs+1

(
α ′t , ...,α,αs+1

) ) ����α ] ]}
= ∞
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and thus, since λ∆s+1
(
α
)
= 0:

lim
s→∞

{
1

(βR)s−t
Et

[
1

u ′
(
cs

(
α ′t , ...,α

) ) ]} = ∞
But since consumption is increasing in αs , we have:

1
(βR)s−t

Et

[
1

u ′
(
cs

(
α ′t , ...,α

) ) ] ≤ 1
(βR)s−t

Et

[
1

u ′
(
cs

(
α ′t , ...,αs

) ) ]
Thus:

lim
s→∞

{
Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ..., ᾱ

) ) − 1
(βR)s−t u ′

(
cs

(
α ′t , ...,α

) ) ]} = ∞
must imply

lim
s→∞

{
1

Et [αs ]
Et

[
1

(βR)s−t u ′ (cs )

]}
= ∞

But:

lim
s→∞

{
1

Et [αs ]
Et

[
1

(βR)s−t u ′ (cs )

]}
=

1 + λt+1 (αt )

ηt
(124)

=
1

1 − εα (αt )

{
1

Et [αt+1]
Et

[
1

βRu ′ (ct+1)

]
−

εα (αt )

αtu ′ (ct )

}
which is �nite, since the resource constraint rules out in�nite expected consumption. Thus we have a contradic-
tion. �

Turning to the main argument, a combination of (52) and (53) gives:

λ∆t+1
(
α t

)
− λ∆t

(
α t−1) ρ (αt |αt−1) = −

1
αtπ (αt |αt−1)

∫ ᾱ

αt
[(1 + λt+1 (α̃t )) − (1 + λt )]π (α̃t |αt−1)dα̃t

Or, using the de�nitions of ρ and π∆:

λ∆t+1 (αt )αtπ (αt |αt−1) =

∫ ᾱ

αt

[(
1 + λt + λ∆t π

∆ (α̃t |αt−1)
)
− (1 + λt+1 (α̃t ))

]
π (α̃t |αt−1)dα̃t (125)

with: ∫ ᾱ

α

[(
1 + λt + λ∆t π

∆ (αt |αt−1)
)
− (1 + λt+1 (αt ))

]
π (αt |αt−1)dαt = 0 (126)

Since π∆ (αt |αt−1) is monotone increasing in αt , and λ∆0 = 0, a su�cient condition for the right-hand side of (125)
to be weakly positive for all t and all histories is that (1 + λt+1 (αt )) should be non-increasing in αt . Lemma 7
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enables this to be established. We have:

1 + λt+1 (αt )

ηt
= lim

s→∞

{
1 + λt+1 (αt )

ηt
+
Et

[
Dt ,s (α

s )αs
]

Et [αs ]

1 + λ∆t+1 (αt )

ηt

}
= lim

s→∞

{
1

Et [αs ]
Et

[
1

(βR)s−t u ′ (cs )

]}
where convergence is uniform acrossαt , from the �rst line: Et [Dt ,s (α s )αs ]

Et [αs ]
≤ ρ̄s−t where ρ̄ = supα ,α ′ [ρ (α ′ |α)] < 1.

Thus we wish to show non-increasingness in the object:

lim
s→∞

{
1

Et [αs ]
Et

[
1

(βR)s−t u ′ (cs )

]}
Clearly Et [αs ] is weakly increasing in αt , so a su�cient condition is that Et

[
1

(βR)s−tu′(cs )

]
is non-increasing at

the limit.
Consider the di�erence:

Et

[
1

(βR)s−t u ′
(
cs

(
α ′′t , ...,αs

) ) �����α ′′t
]
− Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) �����α ′t
]

(127)

for α ′′t > α ′t . We wish to show that this is weakly negative. We have:

Et

[
1

(βR)s−t u ′
(
cs

(
α ′′t , ...,αs

) ) �����α ′′t
]
− Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) �����α ′t
]

=Et

[
1

(βR)s−t u ′
(
cs

(
α ′′t , ...,αs

) ) �����α ′′t
]
− Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) �����α ′′t
]

+ Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) �����α ′′t
]
− Et

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) �����α ′t
]
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The �rst term is weakly negative, by normality. The second can be rewritten:∫
αt+1

{∫
αt+2

· · ·

∫
αs

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] π (αs |αs−1)dαs . . . π (αt+2 |αt+1)dαt+2

} [
π

(
αt+1 |α

′′
t
)
− π

(
αt+1 |α

′
t
) ]
dαt+1

=

∫ α ′′t

α ′t

∫
αt+1

{∫
αt+2

· · ·

∫
αs

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] π (αs |αs−1)dαs . . . π (αt+2 |αt+1)dαt+2

}
dπ (αt+1 |αt )

dαt
dαt+1dαt

=

∫ α ′′t

α ′t

1
αt

∫
αt+1

αt+1
d

dαt+1

{∫
αt+2

· · ·

∫
αs

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] π (αs |αs−1)dαs . . . π (αt+2 |αt+1)dαt+2

}
× ρ (αt+1 |αt )π (αt+1 |αt )dαt+1dαt

=

∫ α ′′t

α ′t

1
αt

∫
αt+1

{∫
αt+2

· · ·

∫
αs
αt+1

d

dαt+1

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] π (αs |αs−1)dαs . . . π (αt+2 |αt+1)dαt+2

}
× ρ (αt+1 |αt )π (αt+1 |αt )dαt+1dαt

+

∫ α ′′t

α ′t

1
αt

∫
αt+1

{∫
αt+2

· · ·

∫
αs

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] π (αs |αs−1)dαs . . . αt+1
dπ (αt+2 |αt+1)

dαt+1
dαt+2

}
× ρ (αt+1 |αt )π (αt+1 |αt )dαt+1dαt

= · · ·

=

∫ α ′′t

α ′t

1
αt

{
s∑

r=t+1
Et

[
Dt ,r (α

r )αr
d

dαr

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αr , ...,αs

) ) ] �����αt
]}

dαt

By normality, this object has negative terms except for the period-s entry:

Et

[
Dt ,s (α

s )αs
d

dαs

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] �����αt
]

≤

∫
αt+1

· · ·

∫
αs
ρ̄s−t ᾱ

d

dαs

[
1

(βR)s−t u ′
(
cs

(
α ′t , ...,αs

) ) ] π̄dαs . . . π (αt+1 |αt )dαt+1

where π̄ is an upper bound on π (which exists, by continuity and the compactness of A). The right hand side of
this inequality is equal to:

ρ̄s−tEt

[
ᾱ π̄

[
1

(βR)s−t u ′
(
cs

(
α ′t , ..., ᾱ

) ) − 1
(βR)s−t u ′

(
cs

(
α ′t , ...,α

) ) ] �����αt
]

Lemma 7 implies that the expectation is �nite as s →∞, and so this object converges to zero as s becomes large.
Since all other components of the di�erence (127) are weakly negative, uniform convergence guarantees that
1+λt+1(α ′′t )

ηt
−

1+λt+1(α ′t )
ηt

≤ 0.
Thus 1 + λt+1 (αt ) is weakly decreasing in αt , for all t and α t−1. This leaves two options:

1. λt+1
(
α ′′t

)
< λt+1

(
α ′t

)
for some α ′t < α ′′t

2. λt+1 (αt ) is constant in αt
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The �rst case implies λ∆t+1 (αt ) > 0 everywhere except endpoints, from (125) and the fact that the integral in (125)
is zero over the full range.

It remains to rule out that 1 + λt+1 (αt ) is constant in αt . If this were true but λ∆t > 0, we would still have
positive taxes except at endpoints, so the case is only problematic for λ∆t = 0 (or t = 0), in which case it would
imply λ∆t+1 = 0 everywhere – and so zero taxes for interior values of αt at the given node. Suppose this were true.
From the de�nition of λ∆t+1, the implication is:

1
αtu ′ (ct )

=
1

Et [αt+1]
Et

[
1

βRu ′ (ct+1)

]
(128)

with both objects constant in αt . Suppose for now that types are persistent (ρ (α |α ′) > 0 for all type pairs). For
the right-hand side of (128) to be constant in αt , and given nomality, a necessary requirement is that the partial
derivatives due to persistence are weakly positive for all αt :∫

αt+1

1
u′(ct+1)

dπ (αt+1 |αt )
dαt

dαt+1

Et

[
1

u′(ct+1)

] −

∫
αt+1

αt
dπ (αt+1 |αt )

dαt
dαt+1

Et [αt+1]
≥ 0

or: ∫
αt+1

{
1

u ′ (ct+1)
−

αt+1

Et [αt+1]
Et

[
1

u ′ (ct+1)

]} dπ (αt+1 |αt )
dαt

π (αt+1 |αt )
π (αt+1 |αt )dαt+1 ≥ 0

But since λ∆t+1 = 0, and we have already established λ∆s ≥ 0 for all s , condition (65) implies:∫ ᾱ

α ′t+1

{
1

u ′ (ct+1)
− αt+1

1 + λt+1

ηt

}
π (αt+1 |αt )dαt+1 ≤ 0

for all α ′t+1, with:
1 + λt+1

ηt
=

1
Et [αt+1]

Et

[
1

u ′ (ct+1)

]
By MLRP,

dπ (αt+1 |αt )
dαt

π (αt+1 |αt )
is a strictly increasing function, and so:

∫
αt+1

{
1

u ′ (ct+1)
−

αt+1

Et [αt+1]
Et

[
1

u ′ (ct+1)

]} dπ (αt+1 |αt )
dαt

π (αt+1 |αt )
π (αt+1 |αt )dαt+1 ≤ 0

with the inequality strict (a contradiction) unless the object in curly brackets is zero everywhere. This in turn
would imply that λ∆t+2 = 0 everywhere. Repeating the argument, this would imply λ∆t+3 = 0 at all successor nodes,
and so on. Thus the only possibility consistent with λ∆t+1 = 0 at interior points is that λ∆ is zero from t onwards
at all successor nodes. But this implies a �rst-best allocation, with αtu ′ (ct ) constant over time and histories. This
is clearly not incentive-compatible.
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It remains to provide equivalent arguments when types are iid. In this case λ∆t+1 (αt ) = 0 for all αt implies:

1
αtu ′ (ct )

=
1

Et [αs ]
Et

[
1

(βR)s−t u ′ (cs )

]
for all s > t , with both sides constant in αt . But if the right-hand side is constant in αt then future consumption
must be constant a.e. at all horizons, which is inconsistent with incentive compatibility, given that period-t
consumption must increase strictly in αt to keep the left-hand side constant.

A.10 Proof of Proposition 6

From Lemma 2, RT ′t−1 (st−1) st−1ϵt−1,t
(
s ′t

) π s (s ′t |α
t−1)

1−Πs (s ′t |α t−1)
is equal to:

− ρ
(
αt

(
c ′t

)
|αt−1

)
βR

λ∆t
ηt−1

(
αt

(
c ′t

) )2
u ′

(
c ′t

) (
dαt

(
c ′t

)
dct

)−1
π c

(
c ′t |α

t−1)
1 − Πs

(
s ′t |α

t−1)
+

1
1 − Πs

(
s ′t |α

t−1) ∫ c ′t

c
ρ (αt (ct ) |αt−1) βR

λ∆t
ηt−1

[
αt (ct ) (u

′ (ct )) + (αt (ct ))
2u ′′ (ct )

(
dαt (ct )

dct

)−1
]
π c

(
ct |α

t−1) dct
(129)

Switching to express arguments in terms of αt :

− ρ (αt |αt−1) βR
λ∆t
ηt−1
(αt )

2u ′
(
ct

(
α ′t

) ) π (
α ′t |αt−1

)
Π

(
α ′t |αt−1

)
+

1
Π

(
α ′t |αt−1

) ∫ α ′t

α
ρ (αt |αt−1) βR

λ∆t
ηt−1

[
αt (u

′ (ct (αt ))) + α
2
tu
′′ (ct (αt ))

dct (αt )

dαt

]
π (αt |αt−1)dαt (130)

Integration by parts gives the following relationship:∫ α ′t

α
ρ (αt |αt−1) βR

λ∆t
ηt−1

[
αt (u

′ (ct (αt ))) + α
2
tu
′′ (ct (αt ))

dct (αt )

dαt

]
π (αt |αt−1)dαt

− ρ (αt |αt−1) βR
λ∆t
ηt−1
(αt )

2u ′
(
ct

(
α ′t

) )
π

(
α ′t |αt−1

)
=βR

λ∆t
ηt−1

∫ α ′t

α
αtu

′ (ct (αt ))
αt−1

dπ (αt |αt−1)
dαt−1

π (αt |αt−1)
π (αt |αt−1)dαt

So:

st−1ϵt−1,t
(
s ′t

) π s
(
s ′t |α

t−1)
1 − Πs

(
s ′t |α

t−1) = β
(
λ∆t
ηt−1

)
T ′t−1 (st−1)

Et−1

[
αtu

′ (ct (αt ))
αt−1

dπ (αt |αt−1)
dαt−1

π (αt |αt−1)

�����αt ≤ α ′t
]

The expectation term contains two objects that are monotone increasing in αt , under the maintained assump-

tions (including MLRP). The term
dπ (αt |αt−1)

dαt−1
π (αt |αt−1)

is zero in expectation, whilst αtu ′ (ct (αt )) is strictly positive. Thus

61



for su�ciently low α ′t (corresponding to high s ′t ) both sides of the expression must be negative, whist positive
correlation between the components implies it is positive for su�ciently high α ′t (low s ′t ). From Lemma 4:(

λ∆t
ηt−1

)
T ′t−1 (st−1)

=

{
αtu

′ (ct ) − βR
(
1 −T ′t−1 (st )

) ∫
αt+1

VM ,t+1 (Mt+1;αt+1)αt
dπ (αt+1 |αt )

dαt
dαt+1

}−1
> 0

where the �nal inequality follows a step used in the proof of Lemma 7. The result follows.
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