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Abstract

Since the 90s many developed countries have experienced job polarisa-
tion, which is defined as employment growth in both high-paid and low-paid
occupations and a relative decline in middle-paying occupations. The most
popular explanation is that recent technological change has been biased
against routine tasks, which are more important in middle-paying occupa-
tions. This paper offers a new and complementary explanation that em-
phasises increasing skill supply and endogenous adoption of technology. I
exploit the large policy-driven increase in education in the UK and argue
that this supply shift has caused the adoption of routine-biased technology
and thereby employment polarisation. This framework is consistent with
two additional facts in the UK labor market. First, there were relatively
little movements in occupational wages and the pattern is certainly not po-
larising. Second, over a period of rapidly increasing supply of graduates, oc-
cupational outcomes among graduates have not deteriorated much. I build
and estimate a general equilibrium multi-sector model on UK data over
1997-2015. I find that in most industries, technical change over the period
was biased against routine tasks and favoured managerial and professional
tasks. Allowing endogenous technological change, I find that changes to the
skills distribution and industry demand shifts can each explain about half
of the decline in manual routine jobs.
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1 Introduction

In many developed countries since the 90s, employment has shifted substantially
away from middle-paying occupations towards both the top and the bottom (Goos
et al., 2014). This phenomenon - employment polarisation - has important impli-
cations for income inequality. In the polarisation literature, the leading explana-
tion is Routine-Biased Technological Change (RBTC) or Task-biased technological
change (TBTC). The basic idea is that technological change (embodied by IT and
automation equipment) has displaced workers in carrying out routine tasks, which
are important in middle-paying occupations. There is a large literature on this,
both theoretical and empirical.1 Most of it interpret RBTC as a consequence
of increasing availability or productivity of capital equipments, or their declining
prices. This paper offers a new perspective, which emphasises the role of increasing
skills supply in the diffusion of routine-biased technology.

The idea that firms’ choice of production technology depends on the supply of
skills is supported by a growing literature (Beaudry et al., 2010; Lewis, 2011; Ak-
erman et al., 2015).2 The intuition is simple: when faced with two available tech-
nology options, if the local supply of skills is abundant, then economic incentives
will be more likely to favour adopting the more skill-complementary technology.

This paper builds on the RBTC framework by allowing the adoption of tech-
nology to respond to skill supply shifts. This allows supply shifts to have different
effects on the labour market than other theories of RBTC. The UK provides a
uniquely-suitable empirical context to examine this, because it has experienced
a huge policy-driven increase in higher education since the early 90s. By endog-
enizing the adoption of technology, my model can explain not only employment
polarisation as a result of increasing skill supply, but also two additional phenom-
ena observed in the UK.

First, there has been no wage polarisation in the UK. While the UK saw a
significant shift in employment from middle-paying occupations to primarily high-
paying ones and to a lesser extent low-paying ones, there were little relative move-
ments in occupational wages since the mid-90s.3 In fact, the movements in wages
are uncorrelated with those in occupational employment in the UK. With endoge-
nous adoption of Task-Biased Technical Change (TBTC), my model implies that
skill supply shifts will primarily cause shifts in the occupational structure and have

1Acemoglu and Autor (2011) provides a good summary.
2Typically, these studies use exogenous geographical variation in the supply of educated work-

ers to prove the causality from skill supply to technology adoption.
3Goos and Manning (2007) found substantial growth in both ‘lousy and lovely jobs’ over the

80s and 90s, but wages in lousy jobs were clearly falling relative to those in the middling jobs
over their sample period.
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less impact on wages.4 Thus, it is consistent with job polarisation and a lack of
wage polarisation at the same time.

The 2nd additional fact is more striking: the huge increase in education at-
tainment since the early 90s has not led to much occupational downgrading for
graduates in the UK. We will see in section 2, when the proportion of graduates
in the workforce doubled from about 20% in the early 90s to over 40% in the mid-
2010s, the share of graduates employed in abstract occupations has been stable
around 75−80%. To the best of my knowledge, this fact has not been documented
before.5 This phenomenon is consistent with my model, and it would be harder
to rationalise in models of exogenous technical change.6 In fact, each of the three
phenomena can be explained by alternative theories, but together they paint a
picture consistent with the explanation proposed here. In section 5, I will discuss
some regression results that reject the hypothesis of exogenous technical change
and support my model.

The model proposed here is an equilibrium model with endogenous adoption
of task-biased technologies in every industry. It is static because the aim here is to
explain long-run trends. In each industry, firms choose between two technologies,
which differ in task intensities. The choice depends on task prices. On the supply
side, workers’ productivity depends on two dimensions of observable skills and
an unobserved general ability, and they choose their occupation based on their
comparative advantage and task prices. When the skills distribution shifts in a
way that favours a certain task, firms may switch towards the technology that’s
more intensive in that task, thus the resulting impact on prices and wages will
be smaller than if technology is fixed. In other words, the endogenous adoption
of technology helps absorb supply-side shocks, so the effects are seen in relative
quantities of tasks rather than prices.

The idea that the adoption of technology responds to supply-side shifts is new
to the polarisation literature (Autor et al., 2003; Goos et al., 2014; Goos and
Manning, 2007; Acemoglu and Autor, 2011).The literature has interpreted the
pervasiveness of employment polarisation across developed countries as a result of
a global technology shock, while attributing the differences in wage trends to un-

4I call it TBTC because my model does not presume that technical change is biased against
routine tasks per se; the direction of bias will be estimated from the data.

5There is an older and smaller literature on ‘over-education’, asking whether more graduates
are now over-educated for their job (Dolton and Vignoles, 2000; Battu et al., 2000; Dolton and
Silles, 2008). Sometimes the measure of ‘over-education’ is based on one’s education relative to
the mean or mode education level within the occupation, or the ‘required’ level as perceived by
some professional or the workers themselves. While it is related, ‘over-education’ is more fluid
concept.

6It would require the exogenous technical change to increase the demand for abstract tasks
at the same time and by the same magnitude as the supply-side shift.
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specified differences in institutions or differences on the supply side.7 By contrast,
the chain of events emphasised here starts with a positive supply shift (due to
education policy in the UK), this causes task-biased technical change, and there-
fore leads to the three aforementioned facts about occupations. This is not a
rejection of the hypothesis that technology shocks coming from cheaper machines
are routine-biased. Such exogenous technical change is still allowed in my model;
but the emphasis here is how the adoption of technology responds to supply-side
shifts. This new feature is important because it yields different predictions for
how a supply-side policy would affect the labor market. My model’s ability to
explain all three facts about occupations in the UK gives us confidence that it is
a reasonable model for analysing potential policies in the UK, such as skill-based
selection of immigrants.

The model also features flexible sectoral shifts. Because industries differ a lot in
task intensities8, differential productivity and demand trends in different industries
may affect relative demand for different tasks. Exogenous factors such as popula-
tion ageing and Chinese imports may lead to rising demand for personal services
and falling demand for manufacturing goods. Counterfactual analysis using my
model suggests between-industry demand shift played a big role in occupational
polarisation over the period. When I bring my model to data, I allow 7 industries.
This is a finer disaggregation than most papers in the polarisation literature. For
example, Autor and Dorn (2013) distinguishes between low-skill services and the
rest. Barany and Siegel (2018) built and calibrated a model of 3 sectors: low-
skilled services, manufacturing and high-skilled services. They show that sectoral
shift contributed significantly to changes in both occupational employment shares
and occupational wages in the US since the 1950s.

The idea that technical change is endogenous is not new. Acemoglu (1998,
2002, 2003) argued that the extent of skill bias in the new technology is endogenous,
which explained the apparent acceleration of skill-biased technical change after an
initial increase in the supply of skills in the US. While such models of endogenous
innovations are suitable for a big country on the technology frontier, like the US in
the last 100 years; for countries that are followers, models of endogenous adoption
of available technologies are more suitable. I believe overall the UK belongs to
the latter group over my sample period 1997-2015. The UK had a much lower
proportion of graduates than the US in the early 90s and have surpassed it by the
end of my period. Moreover, models with endogenous innovations typically imply
a downward-sloping short-run demand curve (just like the case with exogenous
technology) and a flatter or upward-sloping long-run demand curve; whereas my

7As we’ll discuss below, many developed countries experienced employment polarisation with-
out wage polarisation (Green and Sand, 2015).

8For example, finance is intensive in professional task, and construction is intensive in skilled
trades.
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model with endogenous adoption imply a flatter short-run demand curve. The
broad trends observed in the UK support the latter.

This paper also relates a growing literature on endogenous adoption of specific
technologies and its effects on employment or wages. They usually focus on a
tangible technology, such as personal computers (Beaudry et al. (2010), Borghans
and ter Weel (2008)), broadband internet (Akerman et al., 2015), automation
(Aghion et al., 2020), or industrial robots (Graetz and Michaels (2018),Humlum
(2019)). They often find that the adoption of technology was indeed affected by
the local supply of skills or local wages. Their research questions centre around the
causal effects of adopting that technology on employment, wages, productivity and
so on.9 By contrast, this paper aims to explain overall patterns in all parts of the
economy in a unified framework. So I choose not to focus on one specific technology.
Instead, ‘technology’ is general-purpose within industry. In my model, technology
boils down to the production function that combines tasks into output.10 In each
industry, there will be an ‘Old’ technology and a ‘New’ technology’. I believe
technical changes manifest differently in different firms. It could be automation
equipment in manufacturing, some software in financial services, and some sort
of organizational restructuring in another services firm. And all those kinds of
technical changes may be complementary to each other (Bresnahan et al. (2002),
Caroli and Van Reenen (2001)). Empirically, we will use a wide range of proxies
to measure the share of the ‘New’ technology at the industry-year level.

The paper is most closely related to Blundell et al. (2021). They noted that the
rapid growth of graduate numbers in the UK had no noticeable impact on grad-
uate wages, and explained it by an endogenous adoption of skill-biased technical
change. This paper uses the same intuition but in a different context, because the
aim here is to explain three facts about occupations and to allow policy analysis.
First, the model in Blundell et al. (2021) has two labour inputs (graduates and
others), whereas my model is about occupational tasks and it features multiple in-
dustries. Second, in this paper each worker has 2-dimensions of observable skills:
analytical and social skills are what matters for productivity, not education per
se.11 This opens up the possibility of modelling changes in skills distribution within
education groups over time, in a data-driven way. Third, they did not estimate

9Most of these papers did not model general-equilibrium effects. To my knowledge, Humlum
(2019) was the first to estimate a general equilibrium model of technology adoption. His model is
rich in how manufacturing firms choose whether to adopt of robots and parsimonious for the rest
of the economy. Specifically, the production function outside manufacturing is Cobb-Douglas
and contains no task-biased technical change.

10We do not model capital explicitly in this paper. We can think of the choice of capital
equipment as a choice of the function that combines occupations into output. For example,
adopting computers in the production process could mean you would need more technicians and
fewer production workers to produce one unit of output.

11The model also allows an unobserved general ability, that can vary across individuals freely.

5



or calibrate their model, whereas I do. This means I can simulate the effects of
counterfactual policies. Overall, my paper corroborates their story with a richer
model and supportive empirical evidence. In addition to Blundell et al. (2021),
Carneiro et al. (2018) and Dustmann and Glitz (2015) also found production tech-
nology responds to changes in the local supply of educated/uneducated workers.
Like Blundell et al. (2021), they differentiate labor by education and have nothing
to say about occupations.

Currently, the model is partly calibrated and partly estimated, at the level of 9
occupations and 7 industries. The 9 occupations are SOC2000 major occupation
groups: 1 managerial 2 professional 3 technician 4 admin 5 skilled trades 6 personal
services 7 sales and customer services 8 operatives 9 elementary. I will improve
the estimation approach when time allows. As it stands, the model fits the UK
trends pretty well. The good fit is not mechanically guaranteed by the model
design, because most of the key parameters do not vary over time. The estimates
suggest that technological change in the UK over 1997-2015 was biased against
all three routine tasks, favoured managerial and professional tasks, and neither
favoured nor biased against the remaining four (3 manual tasks and technicians).12

Counterfactual analysis suggests that industry demand shift could explain about
half of the decline of manual routine jobs, and so could the shift in the aggregate
skills distribution.

The model offers a suitable framework to investigate some counterfactual policy
questions. For example, how will further increase in higher education affect the
wage structure? If the UK government select EU immigrants by skills13, how will
it affect the labour market? Such counterfactual scenarios are outside the range
of historical observation and are difficult to answer by reduced-form methods. I
plan to use the UK Skills for Life Survey to obtain the differences in literacy and
numeracy skills between immigrants and natives, and to examine whether the skills
distributions within education groups have deteriorated over birth cohorts.

For reasons that will be discussed in Section 2 and Conclusion, this paper also
provides a promising framework that can be used to study occupational trends in
other European countries. The paper is structured as follows. Section 2 documents
three phenomena in the UK labour market, with comparison to other developed
countries where possible. Section 3 develops the model and explains how to identify
the unobserved technology share and the model parameters. Section 4 describes
the data sources, including how we impute the unobservable technology share.
Section 5 investigates various correlations in micro data, which are supportive

12This direction of biases are consistent with previous studies. For example, Humlum (2019)
estimated that in Danish manufacturing, robot adoption reduced the productivity of production
workers but increased that of tech workers (engineers, researchers and skilled technicians.

13It already does for non-EU immigrants, and now after Brexit it will be able to reject EU
immigrants on skill-related criteria.
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evidence of the model. Section 6 explains how various parameters are estimated,
discusses some key estimates and the fit of the model, and conducts counterfactual
analysis. The final section concludes.

2 Motivating facts

This section documents three phenomena in the UK labour market since the 90s.
The first fact has been observed in many developed countries in the past couple of
decades. The latter two pertain to the UK, which are clearly different to the US,
and somewhat shared with other European countries.

1. Since the 90s, employment has shifted significantly away from middle-paying
occupations towards both the high end and the low end.

2. There is no clear U-shaped pattern in occupational wage changes during the
period of employment polarisation outside of the US.

3. The huge increase in education attainment in the UK has not led to much
occupational downgrading, nor decline in the skilled wage premium.

The first point, of occupational polarisation, has been documented exten-
sively in the literature for the US (Acemoglu and Autor (2011) ,Autor and Dorn
(2013),Hershbein and Kahn (2018) ) as well as many other developed countries
(Goos et al. (2014),Breemersch et al. (2017),Michaels et al. (2014)). And it’s been
documented since the 1980s for the UK Goos and Manning (2007) and for Ger-
many (Kampelmann and Rycx, 2011) and even earlier in the US (Barany and Siegel
(2018)). The phenomenon is robust to different ways of classifying and ranking
occupations for both the US and the UK. When my model is brought to the UK
data, occupation will be at the level of SOC2000 major occupation groups.14 So
in this section I present occupational facts at this level, too. At this level of nice
occupations, the three middle-paying occupations are normally considered ’rou-
tine’: ‘Administrative and Secretarial Occupations’, ‘Skilled Trades Occupations’,
and ‘Process, Plant and Machine Operatives’. The three high-paying ones will be
referred to as ‘abstract’, and the low-paying ones the ‘manual’.

Figure 1 shows that each of the three routine occupations saw a very substan-
tial decline in employment share. Over 1997-2015 (the period for which my model
will be estimated), the total employment share of the 3 routine occupations fell
from 39.1% to 28.5%. Meanwhile, each of the three abstract occupations grew

14There are 9 occupations in total : 1, managerial, 2 professional, 3 technician, 4 admin, 5
skilled trade, 6 personal services, 7 customer services, 8 production and machine operatives, and
9 elementary.
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substantially. In particular, professional occupations grew from 9.9% of aggregate
employment to 15%. Together, the abstract employment share grew from 39.1% to
49.4% over the sample period. Among the manual occupations, there is some de-
cline in elementary occupations15, which is more than compensated by the increase
in personal services (such as care assistants).

At a similar level of aggregation, Figure 3 shows a V shape in employment
growth across ISCO occupation groups in a number of European countries over
2002-14. This echoes the findings in Goos et al. (2014), which looked at 16 Eu-
ropean countries and documented pervasive occupational polarisation over 1992-
2010. On the other hand, some more recent studies looking at employment changes
in European countries found no polarisation pattern but ‘occupation upgrading’ -
meaning fastest growth in the ‘best’ jobs and weakest growth in the ‘worst’ jobs.
For example, Fernández-Maćıas and Hurley (2017) looked at 23 European coun-
tries over 1995-2007 and found polarisation in a handful of countries but the most
common pattern is occupational upgrading. Oesch and Piccitto (2019) looked at
UK, France, Germany and Spain over 1992-2015 and found job growth was by far
the weakest in the ‘lowest-quality’ jobs using a range of measures of job quality.16

Murphy and Oesch (2018) looked at Ireland and Switzerland over 1970-2010 and
found ‘occupational upgrading’, and the patterns were consistent with changes on
the supply side from women’s education and immigration. It’s beyond the scope
of this paper to investigate why those studies reach different conclusions. But they
all point to strong growth in high-paying occupations. And we see in both Fig-
ure 1 and Figure 3, the professional occupation stands out as having the strongest
growth. This is an occupation in which university graduates are likely to have com-
parative advantage. In the framework proposed here, an increase in the supply of
graduates will cause firms to adopt a technology that’s more intensive in profes-
sional tasks, and therefore the professional employment share will increase. My
model does not have a definitive prediction as to whether low-paying occupations
should grow or decline relative to the middle. Both ‘occupational polarisation’
and ‘occupational upgrading’ could be the consequence of an increase in skills
supply. The former follows if compared to the old technology, the new technology
is biased against middle-skilled tasks and in favour of high-skilled tasks; while the
latter follows if the new technology is biased in favour of high-skilled tasks and
against low-skilled tasks.

Meanwhile, apart from the US, there is no such V shape in occupational wage
growth in other developed countries that also saw employment polarisation. This
is our fact no.2.

15which include labourers in agriculture, cleaners, waiters, kitchen assistants, labourers in
construction, porters, postal workers and so on.

16The only exception is for the earnings-based indicator in the UK, which suggests a polarising
pattern.
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Figure 1: Employment shares by occupation

Note: the 9 occupations are major occupation groups under SOC2000. See section 4 for how
we adjusted for discontinuities in SOC over 2000-01 and 2010-11.

Figure 2 ranks the 9 occupations from the lowest paid to the highest paid, and
plots the occupational wage growth in red markers. The plotted wage changes are
net of compositional shifts in education, age and gender.17 I plan to use another
dataset to estimate occupational wages with individual fixed effects in the near
future.18 The three low-skilled occupations have slower wage growth than 5 of the
other 6. Skilled trades and operatives have fairly strong wage growth, while admin
did have the slowest wage growth. The maximum difference between occupations
in log wage change over 1997-2015 is just under 0.08. This is not big, given the
difference in occupational log wage level can be more than 0.5 between the top and
bottom groups. This is also small relative to the observed changes in employment

17In each year, I have regressed log wages on those demographics and occupation dummies.
The coefficients on occupational dummies are interpreted as ‘composition-adjusted’ occupational
wages.

18This has been delayed due to data access issues during the pandemic.
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shares.19

In other European countries, we have not seen wage polarisation since the 80s
either. Before 2000, occupational wage growth was marked by increased inequality
across the distribution, in the UK during the 80s and 90s (Goos and Manning,
2007), in Germany in the 90s (Dustmann et al., 2009), and in Canada (Green
and Sand (2015)). In fact, Green and Sand (2015) summarizes that occupational
wage polarisation was only observed in the US in the 90s, and not elsewhere or
in other decades. After the turn of the century, there was less or no increase
in inequality between occupations. In figure 3, we see in a number of European
countries, wage growth over 2002-14 tends to be slightly slower in high-paying
occupations such as the professionals. Naticchioni et al. (2014) looked at twelve
European countries (subset of EU15) over 1995-2007 and found no evidence of
wage polarisation, whether using industry level or individual level data.

The leading explanation for the employment polarisation is routine-biased
technical change (RBTC thereafter) (Autor et al. (2003); Acemoglu and Autor
(2011) ,Autor and Dorn (2013),Hershbein and Kahn (2018), Goos and Manning
(2007),Goos et al. (2014) , Michaels et al. (2014) and many others). Broadly
speaking, the hypothesis is that technological changes (such as automation and
ICT) were biased against routine tasks, which are important in the semi-skilled
occupations around the middle of the distribution. Such a technology-induced
demand shock causes polarisation.20 This has a lot of intuitive appeal, and it
fits the polarising trends in employment and wage in the US in the 90s. Guided
by the RBTC hypothesis, some papers have asked directly whether occupational
wage change correlates negatively with its ‘routineness’, and the answer is no for
Germany and Sweden(Kampelmann and Rycx, 2011; Adermon and Gustavsson,
2015), and yes for the US(Firpo et al., 2011; Böhm, 2020; Acemoglu and Restrepo,
2021).21

19To give a sense of magnitude, if tasks are neither complements nor substitutes, the response
of the log wage ratio to log quantity ratio along the demand curve would be -1. That is assuming
no demand shift, an increase in the log quantity of professional tasks by 0.5 (its employment
share increased from 10% to 15%) would reduce its log wage by 0.5.

20A secondary explanation is the sectoral shift away from manufacturing towards the services.
This is also found to contribute to polarisation because manufacturing is more intensive in
middle-paying occupations(Autor and Dorn (2013), Barany and Siegel (2018)). But this story is
also about a shift in the demand curve.

21Adermon and Gustavsson (2015) examined occupational employment and wages in Sweden
over 1975-2005, and found that TBTC could explain changes in within-occupation wage differ-
entials but not between-occupation wage differentials. Kampelmann and Rycx (2011) found in
Germany, routine jobs have lost employment but there is “no consistent task bias in the evolution
of pay rules”. By contrast, for the US, Firpo et al. (2011) found that both changes in within-
and between-occupation wage differentials in the 90s are consistent with predictions from TBTC.
Acemoglu and Restrepo (2021) finds that demographic groups who specialize in tasks that were
automated experienced relative wage falls.
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Figure 2: Changes in log wages at SOC2000 occupation main group

Note: in each year, we regress log wages on gender-age interactions, detailed education, and
occupation dummies. This forms our ’composition-adjusted’ occupational wage data logPjt.
Because the occupation classification changed in 2001 and 2011, we then fit each Pjt with a
5th-order polynomial with discrete jumps at 2001 and 2011, and subtract the estimated jump in
both pre2001 and post2011 data. Here we show the change in the adjusted logPjt between 1997
and 2015.

The lack of wage polarisation outside the US does not in itself reject the RBTC
story. There are many reasons why RBTC could lead to substantial employment
polarisation and no noticeable impact on observed wages: 1, the supply curve
could have shifted at the same time in the same direction as the demand due to
some exogenous reason. 2, supply could be highly elastic, which would be the case
if wage is a key factor in people’s selection of occupation and there isn’t too high
a barrier to switching occupations. 3, wages are sticky for institutional reasons. 4,
observed wages are confounded by unobserved compositional changes. All these
explanations could be true simultaneously.

It’s beyond the scope of this paper to review the wage-setting institutions and
supply-side changes in individual countries. What this paper offers is a unified
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Figure 3: Employment and wage growth by ISCO major group

Source: SES 2002 and 2014

explanation of the facts without deviating from competitive labour markets. More
importantly, the third fact (documented below for the UK) is a prediction from
my model and is harder to explain otherwise.

It’s worth stressing that the changes in occupational wages are not only small
and dissimilar to employment changes, they are in fact uncorrelated with the move-
ments in occupational employment in the UK. Section 5 further investigates this,
comparing my model and the standard model with exogenous technology-driven
demand shifts. The correlations between occupational wages and employment
ratios do not support the latter.

Now let’s turn to the third fact. The proportion of graduates has increased
dramatically in the UK since the early 90s, with no significant deterioration in
graduates’ relative wage or occupation destinations.

This increase in education attainment was mostly driven by government policy.
The vast majority of universities in the UK are publicly-funded: they receive direct
grants from the government and tuition fees from students, who can take subsidised
loans from the government. The Education Reform Act (ERA) of 1988 changed
the funding formula of HE institutions and they responded by increasing their
student intake dramatically. Then in 1994, the government introduced student
number controls: the number of home students each university could admit every
year were capped. This resulted in a steady increase in student numbers from then
till the 2010s. In 2012, the cap was abolished for students whose grades are above
a threshold. Since 2015, the cap was abolished for all. Throughout the period,
entry to university was rationed by academic selection. Figure 4 shows that about
20% workers in the early 90s had higher-education qualifications, and this more
than doubled over the next 2 decades. The pace of increase is much faster than
the US.
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One might have expected such a big supply-side shift to reduce the relative
wage of graduates. In reality, that has not happened. (Blundell et al., 2021)
documents this and explains it in a model of endogenous technology.

One might also expect the huge increase in graduates to lead to ‘occupational
downgrading’, that is, an adverse shift in the occupation destinations of graduates
over time. However, there has not been much occupational downgrading among
graduates in the UK. To the best of my knowledge, this UK fact has not been
documented before.

The right subgraph in Figure 4 shows that among graduate workers, the pro-
portion in abstract occupations has been stable over time, at around 80%. There
seems to be a little fall after 2010, to around 75% by 2015, which is still very
far above the level among high-school workers. This is striking when compared
against the US. According to Beaudry et al. (2016), in the US the employment
rate of cognitive occupations for college graduates fell by nearly 0.1 log point over
2000-2010. The UK trend is basically flat over the 2000s. And the UK saw a much
faster increase of college graduates than the US.

To give a sense of magnitude, I calculate how much the abstract share needs
to fall within education group if the aggregate abstract share had been constant
while the education composition improves.22 These counterfactual trends are plot-
ted as dashed lines in Figure 4: the proportion in abstract occupations conditional
on education would need to fall by about a quarter. Thus, the UK story is one
where the increase of graduates was quickly absorbed through employment growth
in abstract occupations. The model in section 3 will formalise this intuition: in-
creasing education leads to an increase in the supply of skills; as those skills are
relatively more important in abstract tasks; this would cause firms to switch to
the abstract-task-intensive technology and create more abstract jobs.

Broadly speaking, most developed countries have seen some increase in tertiary
education over the past couple of decades, and the UK is one of the countries with
the fastest increase. The US, on the other hand, had the highest level to start
with and a slower increase since the 90s compared to most European countries.
According to Barro and Lee (2013), the proportion of 15-64 year olds with complete
tertiary education was already 24% in the US by 1990, when the proportion in
European countries was all below 15%. This supports the view that the US has
been the leader of technology in general, with other developed countries closely
behind. This means the latter group (including the UK) are in a position to choose
between technologies that are not too different and so the choice should depend
on prices and wages. Moreover, Blundell et al. (2021) shows that in 11 OECD

22In the counterfactual, the education-specific abstract share is proportional to its 1992 level,
the aggregate abstract share is at the 1992 level, and the shares of education groups in the
workforce are the actual values.
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Figure 4: Proportion of graduates and their occupation destination

Note: graduates are people with NVQ level 4 qualifications or above. High-school workers
refer to those with NVQ level 2 or 3 qualifications. First degrees are NVQ level 4. A-levels
and post-16 further education qualifications are NVQ level 3. O-levels and GCSEs (grade C+)
are NVQ level 2. ‘Abstract’ refers to the first three occupations in SOC2000: managerial,
professional and technicians.

countries which experienced substantial increase in tertiary education, there was
no significant decline in graduates’ relative wages in 9 of them, like the UK. These
similarities suggest that a model of endogenous adoption of technology might be
more suitable for these non-US developed countries, whereas the US might need a
model of endogenous innovations.

3 The model

This section develops a general-equilibrium model of tasks. It’s static because
we are interested in long-run comparative statics. On the demand side, there are
multiple industries and within each industry firms choose between two technologies
that differ in task intensities. The endogenous adoption of technology means that
one point of task prices is consistent with not one but a wide range of task ratios on
the demand side. On the supply side, workers have two dimensions of observable
skills and an unobservable general ability. They sort into occupations based on
wages and preferences.

In this paper I will use ‘occupations’ and ‘tasks’ inter-changibly. In reality, the
task content within occupations may change continuously, in response to changing
demand for tasks. This is an interesting challenge for future research.23 In this

23Conceptually, what matters in production is tasks, but what workers choose is occupation,
The task content within occupation is a choice made by the firm, subject to potentially complex
constraints (physical constraints, information constraints, supply constraints and so on). There’s
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paper, ‘tasks’ should be interpreted as the output of specific occupations. For ex-
ample, professional task is simply the output of labour in professional occupations,
whether the actual activity carried out is writing or analysing data is not studied
here.

Each industry produces one good. Dente the goods as g ∈ 1, 2, ..G. The pro-
duction of each good is a CES function of tasks j ∈ 1, 2, ..J , given the technology
choice.

To produce any given good g, there are two potential technologies, denoted by
T ∈ {O,N}. Each firm can choose freely between the ‘Old’ tech and the ‘New’
tech. Firms are identical otherwise within the industry. The difference between
two technologies is that they have different task intensities αTgj. They also have
their own TFP term ATgt, which is neutral with regard to tasks.

Y T
gt = ATgt[

∑
j

αTgj(y
T
gjt)

ρ]
1
ρ , T ∈ {O,N} (1)

where yTgjt is the amount of task j employed in industry g, using technology
T at time t; αTgj is the share parameter of task j in technology T in industry g,
note that it does not vary over time; ρ is 1 minus 1 over elasticity of substitution
between tasks; ρ must be below 1. A negative ρ means tasks are complements.
ATgt is Total Factor Productivity of technology T in industry g at time t. And Y T

gt

is the output produced by technology T in industry g at time t.
Consumers have CES preferences over G goods. A good produced by Old

technology is a perfect substitute for the same good produced by New technology.

Qgt = Y O
gt + Y N

gt (2)

Ut = [
∑
g

BgtQ
σ−1
σ

gt ]
σ
σ−1 (3)

where Qgt is output in industry g at time t, and Bgt captures time-varying
demand for good g. Bgt is assumed to be exogenous here. For future research, it
would be interesting to allow income growth to differentially affect the demand for
goods and services.

Each technology has constant returns to scale. We normalize
∑

j α
T
gj = 1, ∀g, T .

Because technology O and N differ in task intensities α. We can think of a
shift between technology O and N as task-biased technological change. This could
be caused by changes in TFP in either technology option, industry demand shifts,
or changes on the supply side. Ex ante, the model does not prescribe the new

also a question of how to organize all the tasks into bundles for each individual worker and then
to combine them by management.
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technology as routine-biased. It is left for the data to tell us how task intensities
differ between the old and new technologies.

The primary difference between my model and the RBTC literature is the
presence of two technologies to choose from. If there’s only one technology, then
employment shares can only change due to changing task prices or changing pa-
rameters in the production function. The latter could be modelled as exogenously
evolving share parameters in a CES production function, such as in Johnson and
Keane (2013). The downsides are: 1) there is a lot more unobserved parameters to
be estimated (one will need αgjt instead of αOgj, α

N
gj), 2) one less channel to absorb

supply-side shocks, so the result of increasing skills supply will tend to be lower
prices of high-skilled tasks. The reality is that the big increase in graduates did
not reduce their relative wages, or the relative wage of abstract occupations.24 In
my model, this happens through the endogenous shift towards the New technology,
which is more intensive in the tasks that graduates have comparative advantage
in. By contrast, in a model with exogenous technology, the technology’s param-
eters would need to shift in a way that happen to increase the demand for tasks
that graduates have comparative advantage in, and at a speed that happen to
leave the task prices and the mapping from education to occupation relatively
unchanged. In subsection 5.1, I will formally test the hypothesis of exogenous
task-biased technical change and reject it in favour of my model.25 It is worth
noting that my model allows for exogenous technical change as well, as the TFP
trends ATgt are exogenous and a sudden increase in the new technology’s TFP will
induce all firms to switch to it.

The CES formulation is common to the task literature, and many further as-
sumes Cobb-Douglas production. For example, Autor (2013) define output as
CES over a continuum of tasks; Acemoglu and Autor (2011) models output as
Cobb-Douglas over a continuum of tasks; Autor and Dorn (2013) models goods
output as Cobb-Douglas over routine task and abstract task, and services output
is simply manual labour times a scalar; Traiberman (2019) models output in each
industry is a Cobb-Douglas function of capital, human capital in each occupation
and intermediate inputs produced in other industries.

One exception is Johnson and Keane (2013). Johnson and Keane (2013) dif-
ferentiates labour by occupation, education, gender and age. Their production is
multi-level nested CES: the bottom three levels are education, gender and age;
at the top level, aggregate output is CES between unskilled task and skilled task;
unskilled task is 2-level CES of 8 occupations, and skilled task is 2-level CES of cap-
ital and 2 occupations. Their formulation is much more detailed than my model.

24The three abstract occupations clearly have much more graduates than other occupations,
so I call them ’high-skilled’.

25It’s a rejection of the hypothesis that all technical change is exogenous. That’s not to say
that there is no exogenous shock to technology.
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To fit the US data over 29 years of data, they found it’s necessary to allow the
share parameters to follow 3rd or 4th order polynomials. By contrast, there is no
time-variation in the share parameters in my model. As we show later in this sec-
tion, task-biased technological change in my model happens only through changing
weights of New technology versus Old technology within industries. Thus, ex ante,
it’s more challenging for my model to fit occupational trends.

That is the demand side. Now let’s specify the supply side.
Suppose each person i is endowed with two dimensions of observable skills:

analytical ability ai and social skill si; and a general ability µi. The joint distribu-
tion of a, s is assumed to be exogenous. Later on we will consider counterfactual
policies that shift the skill distribution, through education or immigration. In
reality, RBTC may induce workers to undertake more education or training in
order to become more productive in abstract tasks (Battisti et al., 2017). Such an
endogenous response on the skills distribution is left for future investigation.

In the workplace, only the individuals skills matter for productivity, not their
education per se. Each occupation produces one task, occupation and task are both
denoted by subscript j. The amount of task worker i in occupation j produces is

y(i, j) = kje
βajai+βsjsi+µi (4)

This formula follows from Autor and Handel (2013), where I restrict the number
of skills to 2-dimension rather than K-dimension. kj is a j-specific scalar. µi is
worker’s general ability which is unobserved. It can be correlated with observed
skills. The coefficients βaj, βsj determine which occupations reward which skills
more. The key assumption here is that comparative advantage is captured by 2
dimensions of skills ai, si; conditional on them, there is no omitted factor that
makes a person more productive in one task rather than another.

The labour market is competitive. We assume workers do not directly care
about the technology chosen by their employer or which industry they are in. Since
a worker’s task output is the same wherever they work, the task price must equalize
between firms that operate with different technologies and across industries. I
denote the price of task j at time t as pjt.

Because workers are perfectly substitutes in producing any given task (though
individuals have different productivities), worker of ability ai, si in occupation j
in a firm adopting tech T gets paid the value of their output

W (i, j, t) = y(i, j)pj,t (5)

The utility worker i gets from occupation j is

Uij = ln(y(i, j)pj) + ηj + eij, j = 1, ...J (6)
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where ηj is occupation-specific amenities; eij follows iid Type-1 extreme value
distribution, with location parameter at 0 and scale parameter ζ. In future, we
may want to allow ηj to vary across demographic groups (e.g. gender, age, family
type, and immigration status).

These preference shocks eij mean that for any given (ai, si), there is positive
probability of the worker going to any occupation j. The probability of worker i
choosing occupation k is simply

πk(i,p) = (y(i, k)pke
ηk)

1
ζ /[

∑
j

(y(i, j)pje
ηj)

1
ζ ] (7)

= [eβakai+βsksi+µi+ηkkkpk]
1
ζ /

∑
j

[eβajai+βsjsi+µi+ηjkjpj]
1
ζ (8)

= [eβakai+βsksi+ηkkkpk]
1
ζ /

∑
j

[eβajai+βsjsi+ηjkjpj]
1
ζ (9)

where p denotes the price vector of all tasks. Comparative advantage plays a role
in the sorting into occupation: a worker with higher ai is more likely to go to
an occupation with higher βaj. A smaller ζ means the preferences are less varied
and so the wages are more important in determining the occupation choice. Note
that the unobserved heterogeneity term µi does not enter into occupational choice.
Thus πk(i,p) = πk(ai, si,p).

Let’s denote expected task output conditional on observed skills as

y(a, s, j) = E[y(i, j)|ai = a, si = s] (10)

= kje
βaja+βsjsE[eµi|ai = a, si = s] (11)

Going back to (9) and substituting y(a, s, j)/E[eµi |ai = a, si = s] for kje
βaja+βsjs,

we get

πj(a, s,p) = [eβaka+βsks+ηkkkpk]
1
ζ /

∑
j

[eβaja+βsjs+ηjkjpj]
1
ζ

= [eηkpky(a, s, j)/E[eµi |ai = a, si = s]]
1
ζ /

∑
j

[eηjpjy(a, s, j)/E[eµi |ai = a, si = s]]
1
ζ

= [eηkpky(a, s, j)]
1
ζ /

∑
j

[eηjpjy(a, s, j)]
1
ζ

This last equation says occupation choice depends on task prices, parameters ηj,∀j
and ζ, and y(a, s, j).
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Given task prices, the supply of task j is

LSj(p) =
∑
i

πj(ai, si,p)y(i, j) (12)

=

∫ ∫
πj(a, s,p)y(a, s, j)f(a, s)dads (13)

where f(a, s) is the joint density function.
Thus, the only relevant unknowns on the supply side are ηj, ζ, y(a, s, j) and

f(a, s). As long as we get y(a, s, j), we don’t need to estimate the distribution of
unobserved heterogeneity µi or how it depends on (a, s), or the returns to skills
βaj, βsj.

In the rest of this subsection, we derive a prediction about the relationship
between task price ratio and task quantity ratio.

The FOC with regard to task j for a firm using technology T is:

pjt = pgt
∂Y T

gt

∂yTgjt
= pgtα

T
gj(y

T
gjt/Y

T
gt )

ρ−1 ∀j, g, t, T ∈ {O,N} (14)

Apply j = 1 to (14) and take the ratio of the same equation between j and 1,
we get

pjt
p1t

=
αTgj
αTg1

(
yTgjt
yTg1t

)ρ−1 ∀j, g, t, T ∈ {O,N} (15)

yTgjt
yTg1t

= (
pjtα

T
g1

p1tαTgj
)

1
ρ−1 ∀j, g, t, T ∈ {O,N} (16)

Because we don’t directly observe technology, we don’t observe yTgjt.What we
can observe is industry-level occupational employment EMPgjt = yOgjt + yNgjt.

EMPgjt
EMPg1t

=
yOgjt

yOg1t + yNg1t
+

yNgjt
yOg1t + yNg1t

(17)

=
yOg1t

yOg1t + yNg1t

yOgjt
yOg1t

+
yNg1t

yOg1t + yNg1t

yNgjt
yNg1t

(18)

=
yOg1t

yOg1t + yNg1t
(
pjtα

O
g1

p1tαOgj
)

1
ρ−1 +

yNg1t
yOg1t + yNg1t

(
pjtα

N
g1

p1tαNgj
)

1
ρ−1 (19)

Denote wgt = yNg1t/(y
O
g1t+yNg1t). We can interpret wgt as the share of technology

D in industry g at time t. Denote

rOgj = (αOgj/α
O
g1)

1/(1−ρ) (20)

rNgj = (αNgj/α
N
g1)

1/(1−ρ) (21)
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Equation (19) simplifies to

EMPgjt
EMPg1t

= (
pjt
p1t

)
1
ρ−1 [(1− wgt)rOgj + wgtr

N
gj] (22)

The last term is a weighted average between two technologies, where the weight
wgt is endogenous.

Flipping the task price ratio to the left hand side, we get

ln(
pjt
p1t

) = (ρ− 1) ln
EMPgjt
EMPg1t

+ (1− ρ) ln[(1− wgt)rOgj + wgtr
N
gj] (23)

Equation (23) looks like a typical demand-side equation from the Skill-Biased
Technical Change literature, where the term ln[wgtr

O
gj + (1−wgt)rNgj] would repre-

sent technical changes. But it has a particular functional form: it’s like a weighted
average between two technologies, where the weight is at the industry-year level.
The standard equation in the SBTC literature would have an exogenous time trend
to represent technological progress (for example Katz and Murphy (1992) just had
a linear time trend and Johnson and Keane (2013) had 3rd or 4th order polyno-
mial). In the context of several j, g, the standard exogenous SBTC specification
would be j-g-specific time polynomial. I will compare my model against the hy-
pothesis of exogenous technical change in section 5, and show that the evidence
supports mine.

3.1 equilibrium characteristics and effect of a supply-side
shift

Denote ωgt = Y N
gt /(Y

N
gt +Y O

gt ), the share of output produced by the new technology.
So it’s not the same as wgt = yNg1t/(y

N
g1t + yOg1t), the share of new technology in

terms of employment in the first occupation. But they are very strongly positively
correlated. I define the equilibrium as log task prices (log pjt = {logP1t, ...PJt})
and technology shares (ωt = {ω1, ...ωGt}) such that demand equals supply in each
task, and that in each industry, the lower-cost technology is adopted. Both are
adopted if their unit costs are equal.

Given the CES production function, the cost of using technology T to produce
one unit of output in industry g, under TFP ATg is

unitcostTg = [
∑
j

(αTgj)
1

1−ρp
ρ
ρ−1

j ]1−1/ρ/ATg (24)

The ratio of unit costs between the two technologies:

unitcostNg
unitcostOg

=
AOg
ANg

[

∑
j(α

N
gj)

1
1−ρp

ρ
ρ−1

j∑
j(α

O
gj)

1
1−ρp

ρ
ρ−1

j

]1−1/ρ (25)
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When the two technologies in industry g have exactly the same unit cost,

[

∑
j(α

N
gj)

1
1−ρp

ρ
ρ−1

j∑
j(α

O
gj)

1
1−ρp

ρ
ρ−1

j

]1−1/ρ =
ANg
AOg

(26)

⇒
∑

j(α
N
gj)

1
1−ρp

ρ
ρ−1

j∑
j(α

O
gj)

1
1−ρp

ρ
ρ−1

j

= (
ANg
AOg

)
ρ
ρ−1 (27)

⇒
∑
j

(αNgj)
1

1−ρp
ρ
ρ−1

j − (
ANg
AOg

)
ρ
ρ−1

∑
j

(αOgj)
1

1−ρp
ρ
ρ−1

j = 0 (28)

⇒
∑
j

[(αNgj)
1

1−ρ − (
ANg
AOg

)
ρ
ρ−1 (αOgj)

1
1−ρ ]p

ρ
ρ−1

j = 0 (29)

The last equation is linear in p
ρ
ρ−1

j . Given alphas, this equation may have no
solution in the positive domain if the TFP ratio is very far from 1. In that case,
one technology will dominate in that industry. When the TFP ratio is not extreme,
there are likely infinitely many points in the (pj > 0, 1 ≤ j ≤ 9) space that would
equalize the unit costs between the two technologies in all 7 industries.

Given all task prices, the demand for task j is∑
g

[δNjg(pjt)Qg(pjt)ωg + δOjg(pjt)Qg(pjt)(1− ωg)] (30)

=
∑
g

(δNjg(pjt)− δOjg(pjt))Qg(pjt)ωg) +
∑
g

δOjg(pjt)Qg(pjt) (31)

where

• δTjg is the amount of task j required by tech T to produce one unit of output
in industry g, and it’s a function of all task prices pjt;

• industry output Qg is a function of pjt through industry prices pgt. It does
not depend on wt.

Task demand is not one single point given task prices {p1, ...pJ}. Instead,
movements in 0 ≤ ωg ≤ 1 allows task demand to move within the cone of diver-
sification. The cone of diversification has as many dimensions as the number of
industries where the unit costs are equal. For a majority of years in our sample
period (1997-2015), it has 7 dimensions.

Recall (13), the supply of task j takes this form:

LSj(pjt) =

∫ ∫
πj(a, s,pjt)y(a, s, j)f(a, s)dads (32)
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where pjt is the vector of all task prices, f(a, s) is the joint density function, and
y(a, s, j) is the amount of task j that workers with skills (a, s) will produce. The
latter two do not depend on pjt.

Market clearing requires:∑
g

(δNjg(pjt)− δOjg(pjt))Qg(pjt)ωg +
∑
g

δOjg(pjt)Qg(pjt)− LSj(pjt) = 0 (33)

Given all task prices, these market-clearing constraints are a system of 9 linear
equations, linear in the 7-element vector wg.

When some supply-side shock shifts the supply curve (shifting the function
LSj(.) as in (32) ), it’s possible that a change in ωg will clear the markets without
any change in {p1, ...pJ}. This requires the shift in LSj to be in the cone of diver-
sification. In other words, the shift between technologies may absorb supply-side
shocks and leave the equilibrium task prices unchanged.26 Recall that occupational
choice probabilities are functions of two skills and task prices. When task prices
do not change, the occupational employment shares conditional on skills will not
change. This is consistent with the UK fact that during a period of rapid increases
in higher education, the occupational destinations among graduates did not change
very much (Figure 4). The small amount of occupational downgrading observed
within education groups could be interpreted as the education-specific distribution
of skills having deteriorated slightly.27 In short, through technology shifts, an in-
crease in the supply of skills can leave the task prices unchanged, the occupation
destinations conditional on skills unchanged, and increase the aggregate share of
abstract jobs.

Finally, let’s discuss the possibility of there being multiple equilibria of ωt with
the same task prices. ωt only enters the system of linear equations that equals
demand to supply (33). The coefficient on ωg in the system is

(δNjg − δOjg)Qg (34)

= [(
pj

αNgjpg
)

1
ρ−1 − (

pj
αOgjpg

)
1
ρ−1 ](cons/pg)

σ (35)

= [(
1

αNgj
)

1
ρ−1 − (

1

αOgj
)

1
ρ−1 ](pj)

1
ρ−1 consσp

− 1
ρ−1

−σ
g (36)

where pg = 1
ATgt

[
∑

j(α
T
gj)

1
1−ρp

ρ
ρ−1

j ]
ρ−1
ρ and cons is a scalar that does not vary by j or

g. Suppose the two technologies are sufficiently different (αNgj 6= αOgj), then there

26If the supply-side shocks are outside the cone of diversification, then price changes will be
necessary to return the economy to equilibrium.

27In the empirical estimation part of the paper, I will assume that the skills distribution is
fixed within education-gender. I hope to relax this assumption in future: when I find skills data
for cohorts with different education composition, the data will tell whether the skills distribution
of graduates worsens when a larger share of the cohort are graduates.
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is no reason to expect the vectors of coefficients to be linearly dependent. Thus,
it’s likely that given {p1, ...pJ}, there won’t be multiple solutions of wt clearing all
the task markets.

3.2 identification of wgt

We don’t observe wgt directly, nor do we observe yOgjt, y
N
gjt separately as opposed to

yOgjt + yNgjt. If we knew ρ, we could use observed yOgjt + yNgjt to obtain (1−wgt)rOgj +
wgtr

N
gj through (23),. However, rOgj, r

N
gj are also unknown. In fact, the level of wgt is

not identified even if we directly observe (1−wgt)rOgj +wgtr
N
gj. To see why, consider

an affine transformation of wgt :

ŵgt = kwgt + c,∀t

r̂Ngj = rOgj +
1− c
k

(rNgj − rOgj),∀j

r̂Ogj = rOgj −
c

k
(rNgj − rOgj), ∀j

The transformed case is observationally equivalent to the original one:

(1− wgt)rOgj + wgtr
N
gj = (1− ŵgt)r̂Ogj + ŵgtr̂

N
gj,∀j, t

Therefore, we will anchor the time series {wgt} by assuming wg0 = 0, wgT = 1, ∀g.
This ‘normalisation’ is not totally innocuous because it assumes that wgt cannot
go above wgT or below wg0. This seems true in the UK data, and it allows easy
interpretation: we are effectively calling the production function at time 0 the Old
technology and the one at time T the New technology.

Empirically, we will estimate wgt from technology proxies. Suppose we have
a proxy for new technology called z, such that zN > zO. The assumption here is
that all firms with the New tech share the same level of z, which is higher than
the level among old-tech adopters. There is no time variation within zN or zO.
In practice, we will try several measures of z. We observe z over time and at the
industry level.

zgt = (1− w̃gt)zO + w̃gtzN (37)

where w̃gt is the scale of new technology adoptors relative to the entire industry.
If zgt comes from employee survey, w̃gt is the employment share of firms using the
new technology in the industry-year. As we anchor w̃gt to 0 at one point and 1 at
another point, we would be setting zO = z̃g0, zN = z̃gT . Thus, we can impute wgt
as z̃gt−z̃g0

z̃gT−z̃g0
. Thus, wgt is just-identified by one proxy up to an affine transformation.

If we have several measures of z, we can allow errors in equation (37). In section
4.3, we will assume a latent factor model to impute wgt.
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3.3 identification of model parameters

The parameters fall into two broad categories: supply-side and demand-side.
On the supply side, the unknowns are: ηj, the preference for working in task

j; ζ, the scale of preference shocks; f(a, s), the joint distribution of analytical and
social skills ; and y(a, s, j), the expected task output conditional on skills (a, s).
Note that we don’t need the returns to skills per se, just the four listed here. The
reason was explained around equation (13).

ηj is the preference for working in task j, and we normalize η1 = 0. The higher
ηj, the more people will select into task j, all else equal. Therefore, ηj can be
identified from the occupational employment shares in any given year. If we allow
ηj to vary over time without any restriction, we could fit employment shares in
every year perfectly. For now, I choose to have fixed ηj, so that no changes in
employment will be attributed to preference shifts. Empirically, I search for ηj to
match the observed employment shares in LFS 2006 (the mid-point of my sample
period).

The smaller ζ is, the more elastic task supply will be with regard to task prices.
The identification of ζ relies on movements along the task supply curve. Had there
been no changes to the skills distribution, small movements in task prices together
with large movements in employment would imply that ζ is small. Currently we
search over a grid of ζ to minimize a loss function. In the next revision, I will use
instruments for demand shocks to estimate the elasticity of task supply.

The joint skill distribution comes from the numeracy score and the literacy
score the British Cohort Studies, measured at age 36. They are summarized to
7 points of support in each dimension.28 The skills distribution in the BCS data
might be quite different from the aggregate skill distribution in the UK because
the BCS only contains the 1970 birth cohort. The aggregate skill distribution
might be changing over time due to increasing education as well as immigration.
I assume the joint distribution of analytical and social skills is fixed conditional
on gender and education.29 We obtain the distribution from the BCS for each
gender-education, get gender-education weights from the LFS for each year, and
aggregate up to the aggregate distribution.

Because this is a competitive labour market, workers are paid their task output
times task price. We can get wages conditional on skills directly from the BCS,
and dividing it by pjt gives us the expected task output conditional on skills.

28Currently 7 is selected so that each group has at least 10% density. In future, I will experi-
ment with having more or fewer points of support.

29In future, I will use other data to test this assumption, by comparing between generations
who have very different education composition. This cannot be tested in the BCS because it
contains only one birth cohort.
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On the demand side, the unknowns are: ρ, which governs the substitution
elasticity between tasks; tasks intensities αTgj, T ∈ {O,N}, 1 ≤ g ≤ G, 1 ≤ j ≤ J ;
TFP trends ATgt, T ∈ {O,N}, 1 ≤ g ≤ G,∀t; industry demand Bgt; and σ, which
governs consumers’ substitution elasticity.

In principal, ρ is identified from (23): the correlation between log wage ratio
and log quantity ratio conditional on the technology share wgt. Because we don’t
observe wgt directly, non-linear estimation of (23) is tricky. I hope to estimate
ρ directly from (23) in the near future. Currently, I calibrate ρ = −0.1, which
corresponds to Goos et al. (2014)’s estimate of the substitution elasticity between
tasks at 0.9.

Given ρ, all the other production parameters are well-identified.
Recall equation (23):

ln(
pgjt
pg1t

)− (ρ− 1) ln
yOgjt + yNgjt
yOg1t + yNg1t

= (1− wgt)rOgj + wgtr
N
gj (38)

= rOgj + (rNgj − rOgj)wgt (39)

Given ρ, we can calculate the LHS directly for all g, j, t. The RHS is a linear
function of wgt with unknown parameters. So, regressing the term (39) on wgt by
industry and occupation will give us rOgj as the constant and rNgj − rOgj as the slope.
Given rTgj = αTgj/α

T
gj, and the fact that

∑
j α

T
j,g = 1, we can back out all αTgj from

rTgj.
We can get ATgt as an analytical function of (αTgj, Pjt, Pgt, ρ), assuming ρ 6= 0.

This is because the profit maximization gives a FOC:
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This last step gives ATgt as a function of (αTgj, pjt, pgt), once we have identified
all the alphas and over-time changes in pjt, we identify the over-time changes in
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each ATgt that yTgjt > 0. For industry g where tech T was not adopted at time t,
(40) gives the upper bound of ATgt. We can get the size of AOgt relative to ANgt. The
absolute scale of ATt is meaningless because it’s just the inverse of the scale of yTgj.

Finally, industry demand trends can be identified from observed quantities and
prices of all the goods. It doesn’t rely on ρ or wgt. The CES utility function means
that

1

σ − 1
ln[

∑
g

BgtQ
σ−1
σ

gt ] + lnBgt =
1

σ
lnQgt + lnPgt + lnλt (41)

where λt is a Lagrangian multiplier in utility maximization. Taking differences
between industry g and industry 1 within t, we get the relative trends of Bgt:

lnBgt − lnB1t =
1

σ
(lnQgt − lnQ1t) + ln(Pgt − P1t) (42)

σ is unknown. Industry-level prices and outputs can be obtained from the ONS.30

We can estimate σ by assuming lnBgt − lnB2t follows a time polynomial and re-
gressing relative outputs on relative prices. We get σ̂ = 0.16. The absolute level
of all Bgt is not identified, nor is it necessary because the model features Constant
Returns to Scale. To impute lnBgt, we use our own production function to impute
industry output rather than directly use the ONS measures. This is because my
model does not include capital explicitly, the industry output based on observed
employment and estimated production parameters in my model will be lower than
actual output in capital-intensive industries. To be internally consistent, we calcu-
late industry output from the production function, then combined with observed
industry prices and σ̂, equation (42) gives the relative demand trends.

4 Sources of moments of data

4.1 Occupational employment and wages

The main data source for occupational employment and wages is the UK Labour
Force Survey. This a representative quarterly survey of households in the UK,
focusing on education and work-related topics. It is similar in nature to the US
Current Population Survey (CPS). I have used the UK LFS data from the first
quarter of 1993 to the last quarter of 2017. The main estimation is restricted to
the period 1997-2015, because a key dataset for technology proxy is only available
over that period.

Occupation in the LFS is based on the Standard Occupational Classification
of that decade: SOC1990 up to 2000, SOC2000 for LFS2001-2010, and SOC2010

30Source: GDP output approach low-level aggregates from the ONS website .
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from 2011 onwards. There are 300+ occupations within each SOC classification.
When I bring the model to data, occupation will be based on the 9 major groups
under SOC2000. The occupations are : 1, managerial, 2 professional, 3 technician,
4 admin, 5 skilled trade, 6 personal services, 7 customer services, 8 production
and machine operatives, and 9 elementary.31 I construct a probabilistic mapping
from SOC1990 to SOC2000 on the basis of a subsample of LFS observations linked
between LFS2000Q4 and LFS2001Q2, who were in the same job and hence reported
SOC1990 and SOC2000 in those two quarters. The mapping takes into account
3digit SOC1990 (300+ occupations) and individual’s gender and education. On
the other hand, SOC2010 is mapped to SOC2000 using the transition matrix from
the Office for National Statistics.

Industry is a slight aggregation from SIC80 divisions (in the LFS until 2008)
and SIC92 sections (since 2009). To ensure consistency over time and across
datasets, I group industries to 7 categories: 1) agriculture, mining, energy and
water supply, let’s call it natural resources thereafter; 2) manufacturing; 3) con-
struction; 4) wholesale, retail, hotel and catering; 5) transport, storage, and com-
munication; 6) finance, real estate and business activities; 7) all other services
including government administration, health, education, social and other services.

For occupational employment ygjt, we add up all the actual weekly hours in
the relevant cell.

For task price pjt, we run a log wage regression every year on occupation
dummies, gender-age interactions and detailed education dummies. We add the
observed mean log wage in the reference occupation to the coefficient estimates
on occupation dummies. It’s possible that the resulting pjt is still contaminated
by unobserved compositional changes. I could estimate task prices from the New
Earnings Survey Panel Data by allowing individual fixed effect. This however will
have to wait till the next revision of the paper because doing analysis in the secure
data lab and taking results out takes time.

The change in occupational classification causes discontinuities in the observed
ygjt and pjt. We get rid of discontinuities in the time series by the following method.
We regress each time series (in log terms) on a 5th order polynomial of time plus
a dummy for t < 2001 and a dummy for t ≥ 2011. In other words, we allow the
occupation classification change to affect the level of the variable and nothing else.
We deduct the estimated jump from the affected period. Figure 5 plots the raw
and adjusted pjt for three example occupations. There are clearly jumps in some
raw time series at 2001 and 2011, and the adjusted time series are smoother.

31Elementary includes cleaners, waiters, kitchen assistants, labourers in agriculture and in
construction, security guards, postal workers and so on.
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Figure 5: adjusting occupational wage for classification changes

Source: UK Labour Force Survey 1993-2017.

4.2 Skills distribution

We use numeracy and literacy skills in the British Cohort Study (BCS). The BCS
is a longitudinal survey following around 17,000 people who were born in England
in 1970. BCS contains many skill assessments at various ages, sometimes for a
subset of the cohort. We are interested the skills measured after the completion
of education, because education could have affected skills. We also prefer a larger
sample. After age 16, there is only one wave (at age 34) when skills were assessed
for the whole sample. Hence, in this paper we will use literacy and numeracy
assessed at age 34.There are about 9500 observations with both skills measured
at 34 in BCS. 32 Figure 6 shows the two distributions of skills by education and
gender. For each skill, the mean score clearly increases with education, while
the distribution overlaps significantly between education groups. Both skills have
scores with 20+ points but the lower range is very sparsely populated. I will
summarize them to 7 points of support in each dimension during estimation. The
BCS tracks people over time. We pool all the waves together and increase sample
size. I have tested the hypothesis that wage returns to skills do not vary by age,
and that is not rejected in most cases. So I take age effects out of wages by simply
regressing log wages on age dummies; and I then get the mean log wage conditional
on skills and occupation.

Note: from British Cohort Studies. The box edges correspond to the 25th percentile and the
75th percentile within the education and gender group. The line inside the box is the medium skill

32At age 16, I find in the BCS data fewer than 4000 observations with arithmetic scores, and
fewer than 5000 observation with raw vocabulary scores. Even the whole sample at age 16 is
over 11,000.
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Figure 6: Distribution of literacy and numeracy scores in BCS

score. ”HE” refers to higher education or above. ”HS” refers to secondary school qualifications
including A-levels, O-levels, GCSE C+ or equivalents.

4.3 Technology proxies

When setting out the model, I have not specified what the new technology is or means in
practice. This is because I believe its practical manifestation should vary across industries and
firms. It could be something tangible such as automation equipment in a manufacturing firm,
or high-speed internet in a professional service firm; or it could be something intangible like a
decentralized structure of management and decision-making. The literature (Bresnahan et al.
(2002), Caroli and Van Reenen (2001)) suggests that the different aspects of changes may be
complementary to each other and skill-biased.

In theory, a good proxy for the New technology should: 1) have a strong increasing trend;
2) be available at the industry-year level for a good number of years; 3) It should be positively
correlated with the local proportion of graduates in the cross-section.33

Guided by the literature, I have considered measures of ICT capital and related tangible
technology, measures about worker autonomy, organizational structure and managerial practice.
Based on three criteria listed above, I have chosen proxies from two datasets: capital inputs in
EUKLEM and the British Skills Survey (BSS). The former is available over 1997-2015. The BSS
is available for 1986, 1992, 1997, 2001, 2006, 2012, 2017. It contains many variables about the
organization of work.

In EUKLEMS, we observe investment and capital stock at the level of year and dozens of
industries. I consider capital in 4 areas: Communication Technology, Information Technology,
Software&database, and R&D. Most of the variables about investment composition and capital
composition in those areas do show an increasing time trend. I have also verified that the BA
proportion is positively and significantly correlated with IT capital input. Correlations with
other capital inputs are mostly positive but insignificant, see table 1.

33This is based on the model predictions. Suppose skilled workers have comparative advantage
in abstract tasks and the new technology is more intensive in abstract tasks, then an increase in
skill supply will cause firms to adopt the new technology.
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Table 1: Capital input proxies and the BA proportion
cap CT cap IT cap Soft DB cap pca

propBA 0.0043 0.0301∗∗ -0.0172 4.4629∗

(0.0036) (0.0093) (0.0164) (2.1850)

propDO -0.0057 0.0069 0.0095 -0.2704
(0.0048) (0.0123) (0.0217) (2.8928)

Observations 133 133 133 133

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: these regressions are at the level of industry-year, controlling for industry dummies and
year dummies. ‘propBA’ is the proportion of people with Bachelor degree or more. ‘propDO’ is
the proportion of people without GCSE grade C+ or equivalent.

In the BSS, there are dozens of questions about technology and organizational/managerial
practices. I summarize the data to the level of industry-region-year. I run two regressions
to determine which variables are reasonable proxies. First, I regress each variable on the BA
proportion allowing for year dummies, industry dummies, region dummies. Second, I regress each
variable on year (linearly) during the period 1992+, allowing for industry dummies and region
dummies. I select variables for which the BA proportion is significant in the first regression
and for which year is significant in the second regression, and the two signs must be the same.
There are 8 such variables: ‘whether job involves use of computerised or automated equipment’,
‘which is important in determining how hard works -clients/customers’, ‘which is important
in determining how hard works -fellow workers or colleagues34, ‘my job requires that i keep
learning new things’, ‘my job requires that i help my colleagues to learn new things’, ‘do you
have a formal appraisal system at your workplace’, ‘i am willing to work harder in order to
help this organisation succeed’, and ‘In your workplace, what proportion of employees work with
computerised or automated equipment?’.

Figure 7 shows the aggregate trend in these 8 variables. They are mostly available for 5-6
waves. Not all of them increase steadily over time. Given the trends, I keep the following 5: two
PC measures, appraisal, and two learning measures. Table 4.3 shows that all these 5 proxies are
very positively and significantly correlated the local BA proportion.

Given a range of proxy measures zmgt , 1 ≤ m ≤ M , we now impute wgt in a latent vari-
able model. Suppose each measure is a linear function of the latent variable wgt plus some
measurement error.

zmgt = ζmg + ψm
g wgt + εmgt (43)

The constant and the slope coefficient is specific to measure m and industry g. Because wgt is
unobserved, wgt is only identified up to affine transformation. We have 4 measures of capital
composition from 1997 to 2015 annually and 5 measures from BSS available at 4-5 points between
1992 and 2017. Because the different measures have different scales, I standardise each measure
within industry so that when I minimize the sum of squared εmgt, they are equally important.
Then, I do an affine transformation of wgt to equal 0 in 1997 and 1 in 2015. Finally, I smooth each
time series with a cubic spline and constrain the value to be in the [0,1] range. Figure 8 shows

34other answers include machine, boss, own discretion, pay, appraisals, and none of these
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Figure 7: technology proxies in BSS, time trend

Note: I will use the following 5 to estimate wgt: two PC measures, appraisal, and two learning
measures.

Table 2: proxies in BSS, correlation with BA proportion
useauto bnewthin bhelpoth E propcom E eapprais

BAprop 0.3276∗∗∗ 0.4234∗∗∗ 0.3081∗ 0.2733∗∗∗ 0.2000∗∗

(0.0707) (0.0929) (0.1244) (0.0443) (0.0702)

Observations 348 390 312 390 389

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: the outcomes are aggregated to the industry-year-region level. Each regression is at the
industry-year-region level, including year dummies, industry dummies, region dummies. ‘use-
auto’ is binary on ‘whether job involves use of computerised or automated equipment’. ‘bnewthin’
is the reported agreement with the statement ‘my job requires that i keep learning new things’,
it has range 0-3, higher value for more agreement with the statement. ‘bhelpoth’ is similar, for
the statement ‘my job requires that i help my colleagues to learn new things’. ‘E propcom’ is
the mean of ‘In your workplace, what proportion of employees work with computerised or au-
tomated equipment?’. ‘E eapprais’ is binary for ‘do you have a formal appraisal system at your
workplace’.

31



the resulting time series for all the industries. Note that the levels of wgt are not comparable
between industries, because the affine transformation is industry-specific.

Figure 8: estimated wgt from 9 proxies measures

Note: estimated wgtunder the assumption that it follows a cubic spline in between each pair of
nodes, nodes are 3 years apart from 1997 to 2015, the value in 1997 is constrained to be 0 and
the 2015 value is constrained to be 1. Note that wgt is not really comparable between industries,
because of the affine transformation within industry.

5 Corroborative evidence

In this section, we empirically assess 2 implications of the model. First, increasing supply of
skills may have little impact on occupational wages. Second, changes in the skill supply predict
occupational shifts at the local level.

5.1 do occupational wages respond to supply shifts

The key difference between my model and standard models in the SBTC and RBTC literature
is that technical change in my model responds to supply shocks. This has different implications
for the relationship between wages and employment.

Recall equation (23):

ln(
pjt
p1t

) = (ρ− 1) ln
EMPgjt

EMPg1t
+ (1− ρ) ln[(1− wgt)r

O
gj + wgtr

N
gj ]
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This is similar to the SBTC formulation (44), in that both specify log price ratio equals ρ−1 times
log quantity ratio plus a term for technical change. It represents a demand-side relationship,
where the last term captures technology-driven shifts of the demand curve.

ln(
pjt
p1t

) = (ρ− 1) ln
EMPgjt

EMPg1t
+ θgjt (44)

In my model, the last term is a weighted average between the old and new technologies
where the weight wgt is endogenous. In the exogenous SBTC literature, the last term would be
an exogenous trend and it is usually approximated by some polynomial of time. The trend is
linear in Katz and Murphy (1992) and Card and Lemieux (2001).

In both (23) and (44), the coefficient on log quantity ratio is -1 over the elasticity of sub-
stitution.35 Goos et al. (2014) estimated the substitution elasticity between tasks to be 0.9,
which would mean a coefficient of -1.1 in front of log quantity ratio.36 In the case of exogenous
TBTC, if one attempts to regress log price ratio on log task quantity ratio, the last term would
be approximated by task-specific time polynomials. I do exactly this later, and instrument the
log task quantity ratio with a shift-share IV.

My model implies that wgt will respond to changes in skill supplies and task prices. As
explained in section 3.1, if the supply-side shift happens to fall into the cone of diversification, the
task prices will stay constant while wgt adjusts to equalize demand and supply. More generally,
the endogenous technological shift will tend to offset exogenous shocks on the supply side, so
the estimate will be biased towards zero. Intuitively, imagine a supply shock tends to increase
the professional employment and reduce professional wage. This is a case of a positive change
in the employment ratio. As the new technology is more intensive in professional task rN > rO,
the lower professional wage will cause a shift to the new technology: wgt increases. The whole
term (1 − ρ) log[(1 − wgt)r

O + wgtr
N ] increases. In other words, the correlation between the

employment ratio and the omitted variable is positive, which leads to a positive bias in the
coefficient estimate. As the true ρ− 1 must be negative, this means the empirical estimate will
be biased towards zero.

Now let’s put the hypothesis of exogenous technical change to test.
Firstly, we can approximate the tech term in (23) by j-g-specific time polynomials and run

OLS. Estimating it separately by industry, I find the coefficient on log quantity ratio to be almost
always near zero and insignificant. Table 5.1 reports the results based on LFS1993-2016. The
near-zero coefficient estimate comes from a lack of correlation between occupational wage change
and employment change in the data. Figure 9 plots annualized changes in wages and employment
at the level of 9 occupations and 7 industries. Over each period (1993-2000,2001-08,2009-2017)37,
there is substantial movements in the employment dimension and much smaller movements in
wages. And there is no obvious correlation between the two dimensions.

Second, we can instrument for the log quantity ratio. One possibility is that omitted demand
shock correlates positively with both quantity and wage, so my estimate of (ρ − 1) includes a
positive bias. To address this, I construct shift-share style IVs for the task ratio, using shifting
demographic composition of the population (defined by education-gender-age) and historical
mappings from each demographic group to tasks. Using LFS 1993-2016, I find that the 2SLS

35In Katz and Murphy (1992) the coefficient is estimated to be -0.7 (implying an elasticity of
1.4). In Card and Lemieux (2001), the substitution elasticity between college and high-school
labour equivalents is estimated to be in the 2-2.5 range. But those estimates are not really
comparable to mine because they differentiate labour by education, whereas I do by occupation.

36Their estimate did not come from such a regression.
37The periods are cut to avoid classification changes in occupation and industry.
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Table 3: testing the exogenous TBTC case by OLS

natural resources manufacturing construction trade
ln y gjt/y g1t 0.0233 0.2532∗∗∗ 0.0305 0.2552∗∗∗

(0.0384) (0.0451) (0.0473) (0.0529)

Observations 200 200 200 200

transport, infomation finance, business serv other services

ln y gjt/y g1t 0.0283 0.0189 -0.0986∗∗

(0.0416) (0.0514) (0.0322)

Observations 200 200 200
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The dependent variable is log hourly wage ratio at the industry-occupation-year level. The
column headings refer to industry division (SIC80). The ”natural” category groups together agri-
culture, mining, energy and water. In each regression (separately by industry), we approximate
the tech term by j-specific 5th-order polynomial of year. Source: LFS 1993-2016

Figure 9: annualized change in wage and total hours, at g, j level

Note: based on UK Labour Force Survey 1993-2017. Each dot is an occupation-
industry observation. There are 9 occupations and 7 industries.
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Table 4: testing the exogenous TBTC case with 2SLS
natural resources manufacturing construction trade

ln y gjt/y g1t 0.8936 0.2141 -0.9201 0.5166∗∗

(1.3214) (0.1275) (0.9624) (0.1714)

Observations 200 200 200 200

transport, information finance, business serv other services

ln y gjt/y g1t 0.1200 0.5330∗∗ -0.5050
(0.1115) (0.1859) (0.2673)

Observations 200 200 200
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: The dependent variable is log hourly wage ratio at the industry-occupation-year level.
The column headings refer to industry division (SIC80). The ”natural” category groups
together agriculture, mining, energy and water. In each regression (separately by industry), we
approximate the tech term by j-specific 5th-order polynomial of year. The occupations are : 1,
managerial, 2 professional, 3 technician, 4 admin, 5 skilled trade;6 personal services;7 customer
services; 8 production and machine operatives, 9 elementary. We use a shift-share instrument
at the g, j, t level, using contemporary share of demographic group and historical mapping from
demographics to g, j cells. When occupation 1 is the reference occupation group, the instrument
for ln ygjt/yg1t is supplygjt, supplyg1t Source: LFS 1993-2016.

estimates are still small and sometimes positive (See table 4). I found that the IV is reasonably
strong, the standard errors are small enough to rule out (ρ− 1) < −1 in most industries.

In short, we find the coefficient on log quantity ratio to be near zero in the framework of
exogenous technical change. This would mean tasks are perfect substitutes, which is implausible.
By contrast, my model with endogenous technical change offers an explanation as to why the
coefficient estimate is biased towards zero.

5.2 local skill supply change predict occupational shifts

Intuitively, there are two possible outcomes of an exogenous increase in skills supply: 1) the
occupational destination conditional on skills may deteriorate (‘occupational downgrading’), 2)
the occupational structure shifts favourably to absorb the extra supply. At the aggregate level,
the UK experienced more of 2) than 1). While there is no geography in the model, we can
think of applying it to separate local labor markets, and thus obtaining the prediction that an
increase in local skill supply should cause firms to switch to the technology that’s more intensive
in abstract tasks and therefore create more abstract jobs. Below we verify this at the regional
level.

At the level of region and 3-year periods, I use the measure of skilled labour supply as
in Blundell et al. (2021) (which is log total hours of degree-educated workers relative to other
workers) and examine how it correlates with occupational employment shares. In terms of levels,
the correlations are very strong and have the expected signs. What’s more interesting to us is
their correlation in changes. In table 5, I take the long difference in both skilled labour supply and
occupational employment shares between 1993-95 and 2014-16, and regress the long difference on
the long difference. The resulting coefficient is positive and large for managers and professional,
and significantly negative for admin and personal services.
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Table 5: local skill supply change and occupational shift
managerial professional technician admin skilled trades

change in skill supply 0.0582∗ 0.0378 0.0105 -0.0792∗ 0.0233
(0.0244) (0.0193) (0.0166) (0.0351) (0.0292)

Observations 19 19 19 19 19

personal sales production elementary

change in skill supply -0.0520∗ -0.0257 0.0325 -0.0055
(0.0212) (0.0227) (0.0314) (0.0225)

Observations 19 19 19 19
Note: the dependent variable is the change in employment share of the respective

occupation between 1993-95 and 2014-16. There are 19 regions in each regression.
Source: LFS 1993-2016.

At the aggregate level, we also see the increase in education accounting for a large part of
the increase in abstract employment. Using the LFS (1997-2015), I decompose the change in
occupational employment shares into within-gender-education-group component and between-
group component. Figure 10 suggests that all of the increase in abstract employment is due to
between-group, and almost all of the decline in skilled trades and operative employment is due
to between-group.

6 Estimation approach and results

Currently, the model partly calibrated and partly estimated. The process is the following:

1. I guess some value for ρ and ζ.

2. Given ζ, I estimate all other supply-side parameters according to methods discussed in
subsection 3.3.

3. Given any value of ρ, I estimate all other demand-side parameters αO
gj , α

N
gj , A

O
gt, A

N
gt, Bgt.

Their identification and estimation (conditional on ρ) are detailed in subsection 3.3

4. Given all the parameters, we solve for the equilibrium (pt,wt) in each year. I search for
the equilibrium that is closest to the observed and satisfies all the equilibrium constraints
within tolerance38.

5. We compute a loss function as the sum of the following deviations in all years and
tasks/industries: logPjt, wgt, logPgt, logEMPjt. The last term is log employment share
of occupation j in year t; we use log terms because a difference of say 1 ppt can be rather
substantial relative to the observed employment share (e.g. the smallest occupation share
averages 6 ppts in the period).

6. We select (ρ, ζ) based on the loss function.

38Demand minus supply in any occupational employment share is at most 1e-4 in absolute
value. The unit costs of two technologies can differ up to 1%. This is not very big relative to
the uncertainties in our parameters estimates. For example, a change of one standard deviation
in rOg2 (while holding other rOgj the same) would change the log unit cost by 0.01-0.04, depending
on the industry g.
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Figure 10: within-between decomposition of change in occupation employment
shares

Note: occupation = 1 ”managerial” 2 ”professional” 3 ”technician” 4 ”admin” 5 ”trades” 6
”personal” 7 ”sales” 8 ”operative” 9 ”elementary”.
Source: LFS 1997-2015.

In principle, we can search through the space of all parameters simultaneously to minimize
the loss function; or adopt some other iterative estimation procedure. This is left for the next
revision of the paper.39

I found ζ = 0.1 minimizes the loss function at most values of ρ. Conditional on ζ = 0.1, the
loss function does not vary a lot across ρ if ρ < 0.5, and it gets very big if ρ exceeds 0.5. This
means the tasks are likely complements. In what follows, we will set ρ = −0.1, which corresponds
to Goos et al. (2014)’s 0.9 estimate of the substitution elasticity between tasks.

39I intend to improve the algorithm so as to find equilibrium with smaller tolerances. Currently,
numerically there are sometimes multiple equilbria which can be qualitatively different to each
other, so it’s an issue for counterfactual analysis.
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6.1 estimation results

First, let’s compare the estimated task intensities between the two technologies. Figure 11

shows the task intensities αO
gj , α

N
gj in all 7 industries. Manufacturing is intensive in three tasks:

managerial, skilled trades and machine operatives. The new technology is more intensive in

managerial task, and less intensive in the other two manual routine tasks. This is what we

expect. And this is driven by the data: within manufacturing employment has shifted away

from manual routine to managerial. Meanwhile, in non-financial services, the new technology is

less intensive in admin and elementary and more intensive in all 3 abstract tasks and personal

service task. Again, this is true qualitatively regardless of ρ. Some patterns are common across

industries. In all industries except natural resource, the new technology is more intensive in

professional task and less intensive in admin task. In 5 out of 7 industries, the new technology

is more intensive in managerial task. In the natural resources, the new technology compared to

the old technology mainly involves a shift from operatives to skilled trades. For skilled trades

and operatives, the new technology is less intensive in them than the old technology in most

industries where the two tasks are sizable. Among the lower-skill task (personal service, sales

and elementary), there is little evidence of the new technology being more or less intensive. While

the direction of bias of technological change varies across industries, the overall pattern is that

the New technology is biased against the routine tasks and towards managerial and professional

tasks.

Next, we examine how the key endogenous variables in the model fit the actual trends. Recall

that the only time-varying exogenous factors in the model are TFP of both technologies, industry

demand, and aggregate skills distribution. And the last is based on education-gender-specific

distribution and the evolving composition, so there’s no free parameter in that aspect. The

parameters particularly important for employment shares such as the task intensities αT
gj and

the occupational amenity ηj are assumed to be constant. Therefore, the design of the model

does not mechanically guarantee a good fit of time trends.

Figure 12 shows the observed and predicted trends in occupational employment shares. For

all of the 9 occupations, the model fit is quite good. Figure 13 shows the same for log task prices;

Figure 15 shows the same for log industry prices; and Figure 14 shows the fit for technology

shares wgt. Note that given the partly-calibrated-partly-estimated parameters, the endogenous

variables are obtained through a search for logpt,wt that is closest to the observed and subject

to satisfying the equilibrium constraints.40 This means it is expected that we get a good fit for

logPjt, wgt,∀j, g, t. The fact that the model can capture the trends in occupational employment

share movements means that the calibrated/estimated parameters are not too bad.

40This is because there are multiple points of logpt,wt that satisfy the equilibrium constraints
within tolerance.
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Figure 11: estimated task intensities in each industry
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Figure 12: fit of occupation employment share

Note: The actual time trends of occupational employment shares are solid lines. The
corresponding baseline predictions are dashed lines of the same colour.

Figure 13: fit of log task prices Pjt

Note: The actual time trends of task prices are solid lines. The corresponding baseline
predictions are dashed lines of the same colour.
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Figure 14: fit of New technology’s share wgt

Note: The actual time trends of technology shares are solid lines. The corresponding baseline
predictions are dashed lines of the same colours.

Figure 15: fit of log industry prices Pgt

Note: The actual time trends of industry prices are solid lines. The corresponding baseline
predictions are dashed lines of the same colour.

6.2 counterfactuals

The model contains three sources of exogenous factors: TFP of two technologies, industry de-

mand, and the skills distribution. In this section, we will examine how each of them affect

occupational prices and employment in the past. In future, I would also like to examine coun-

terfactuals about Brexit-induced shift in the supply of skills and future education increases.

In each counterfactual, only one exogenous factor changes over time while others stay the

same as 1997. Because numerically there are multiple equilibria, I search for logpt,wt that is

closest to some benchmark subject to equilibrium constraints. I set the benchmark to the 1997

observations and interpret the result as a lower bound on the effect of shifting that factor.
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Figure 16: Counterfactual: only industry demand shifts

Note: using initial logPjt, wgt as the benchmark.

Figure 16 examines the effect of industry demand shifts. We hold TFP and skills distribu-

tion constant, and let Bgt follow the actual trend (imputed using estimated parameters). This

counterfactual represents a shift in the demand curve and movement along the supply curve.

Unsurprisingly, we see that occupational employment and prices move in the same direction.

Figure 16 also shows the actual changes as markers, so we can see that industry demand

shift alone can account for half of the employemnt decline in skilled trades, machine operatives.

Figure 6.2 considers the counterfactual where the skills distribution shifts according to the

baseline over 1997-2015 while TFP and industry demand are constant. In this counterfactual

scenario, the equilibrium task employment would shift significantly. As the 1st subgraph shows,

the supply shift alone could account for more than half of the decline in manual routine occupa-

tions and a third to a half of the increase in professional and technician occupations over the 18

year period. However, the supply shift did not contribute to the decline of admin employment.

In this scenario, occupational wages change by a smaller amount. For example, the skilled trades

employment share falls from 14.5% to 12.0% in the counterfactual, that is -0.17 in log terms. A

demand elasticity of, say 5, would mean a wage increase of 0.03. In fact, skilled trades’ wage falls

relative to other occupations in this counterfactual (2nd graph in Figure 6.2 ). It’s worth noting

that occupational wages and employment do not move in the opposite direction for 7 occupations

in this scenario. This counterfactual scenario is akin to a shift of the supply curve and a move

along the demand curve. This illustrates the unusual implication of my model: that occupational

wages do not respond to supply-side shocks along a downward-sloping demand curve.
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Figure 17: Counterfactual: only skills distribution shift

Note: using initial logPjt, wgt as the benchmark. For log task prices, we normalize the average
change across 9 occupations to 0.

Finally, we consider the scenario with just the old technology available. In Figure 18, we

let skills distribution and industry demand follow their baseline trends and suppose only the old

technology was available.41 The counterfactual incorporates industry demand shift, skills supply

shift, and evolving TFP in technology C; so the only difference between the counterfactual and

the baseline case is whether technology D is an option. Since the baseline prediction fits the actual

changes well, the difference in Figure 18 between the counterfactual and the actual changes can

be interpreted as the effects of having technology D. It suggests that having a 2nd technology

option was responsible for all of the increase in managerial employment and all of the decline in

admin employment.

7 Conclusion

This paper develops a multi-sector general equilibrium model of endogenous task-biased techno-

logical change that simultaneously explains three notable phenomena in the UK labour market.

First, the UK has seen very strong employment growth in high-paying occupations and an even

bigger decline in middle-paying occupations since the 90s. Second, changes in occupational wages

are small and uncorrelated with employment changes. Third, I document the striking fact that

41If we held them constant and get rid of the new technology, then the baseline predictions in
the 1st year would fit, because only technology C is adopted in that year.
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Figure 18: Counterfactual: only the old technology was available

Note: in the counterfactual, we shift skill supply from its 1997 distribution to 2015 distribution,
allow industry demand to follow the baseline trend, allow TFP in the old technology to follow the
baseline trend, and remove the option of the new technology. For log task prices, we normalize the
average change across 9 occupations to 0. We have used the initial logPjt, wgt as the benchmark.
The results would be very similar had we used the observed logPjt, wgt as the benchmark.
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there was relatively little occupational downgrading within education groups during a period

of rapid increases in education. This is consistent with my model, and harder to explain in

models with exogenous technical change. In addition to these three macro facts, I have provided

regression analysis to corroborate my story and to reject the hypothesis of exogenous technical

change.

This paper contributes to the polarisation literature by emphasising the endogenous nature

of technology ‘adoption’. Instead of an exogenous technology shock reducing the demand for

routine labour, the key driving force in my explanation is a large positive shift in the supply of

skills. This supply shift causes firms to adopt a new technology that’s biased against routine

tasks and in favour of abstract tasks. This technology shift helps to absorb the impact of the

supply shock on wages. As a result, we get substantial movements in employment shares, little

changes in occupational wages, and little change in the mapping from skills to occupation. The

second result implies the third because any given individual’s choice of occupation depends only

on wages. To the extent that the skills distribution within graduates are stable, the last outcome

means little occupational downgrading within graduates.

The model is estimated on UK data. While the direction of technical change varies across

industries, the overall pattern is that compared to the old technology, the new technology is less

intensive in all three routine tasks and more intensive in managerial and professional tasks, with

less difference in other tasks. The shift in skills distribution alone can account for about half of

the actual decline in routine manual occupations, and so can the shift in industry demand.

While the paper focuses on the UK, it provides a promising framework to study issues

around occupations and education in other advanced economies except the US. Many of them

share some of the key facts observed in the UK since the 90s, and are more different to the US.

First, like the UK, employment growth has been strongest in high-paid occupations, compared

to both the middle and the bottom. This is consistent with the new technology being more

intensive in abstract tasks. Second, occupational wages did not polarise, except for the 90s

in the US. And third, the US had the highest proportion of graduates in 1990 and a slower

increase afterwards than many European countries. Among the European countries that saw

large increases in higher education, the majority did not see a significant impact on graduates

relative wage. These empirical differences between the US and the other advanced economies are

intriguing, and worth further investigations with cross-country data.

Conceptually, the main point of my proposed framework is that the adoption of technology

depends on current prices and skill supply. This is fundamentally different from the scenario

where a new technology suddenly becomes available and it’s unambiguously better than the

existing one that all firms should adopt the new technology in the absence of fixed costs or

frictions. That scenario might be a good enough approximation of reality in some historical

episodes of technological revolution. In general, incremental changes of the technology frontier

mean that there is often a meaningful choice to be made between relevant technology options.

I believe many European countries are close enough to the technology frontier that their firms

are in a position to choose between recent technologies, and that decision depends on prices and
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skill supply. In principle, the same argument of endogenous adoption should apply to the US as

well; but because it’s a major innovator and has experienced a smaller increase in education in

the past three decades, the role of skill-supply-induced adoption of technology might be much

smaller than other factors in determining the observed occupational trends.

Finally, the paper offers a data-driven approach to answer a few policy questions about the

labour market. By having analytical and social skills (rather than education) as determinants

of worker productivity, it allows a lot of heterogeneity within groups of labour and opens up the

possibility of modelling changes in the group-specific skills distribution over time. For example, I

plan to use the UK Life for Skills Survey to check whether the education-specific skill distribution

has deteriorated between generations, as higher education becomes less selective. Then, the

relevant data moments can be fed into the full model to investigate the effects of education

expansion. The approach also makes clear that for analysing any policies about labor supply, it’s

important to model potential changes in the distribution of skills that matter for productivity,

rather than labels like education.

Another interesting question to investigate is the effects of immigration on the aggregate

labour market. Currently, immigrants in the UK are over-represented in both high-paying oc-

cupations and low-paying occupations. My next step is to use the UK Life for Skills Survey to

obtain skill differences between British workers and immigrants, and examine to what extent

the differences in occupation destinations are explained by skills (not just reported education

level), as opposed to preferences or discrimination. Then, we can examine differences in skills

distribution between European immigrants and non-EU immigrants, and ask what’s the effect

of forcing European immigrants to be as skilled as the non-EU ones on the UK labour market.

This is a policy that the UK government can now pursue after Brexit.
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