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Abstract

Women used to lag behind men in college enrollment but now exceed them. This

paper focuses on the role of non-college job prospects in explaining these trends. We

first document that routine-biased technical change disproportionately displaced non-

college occupations held by women. We next instrument for routinization to show that

declining non-college job prospects for women increased female enrollment. Two stage

least squares results show that a one percentage point rise in routinization increases

female college enrollment by 0.6 percentage points, while the effect for male enrollment

is not systematically significant. We next embed this instrumental variation into a

dynamic model that links education and occupation choices. The model finds that

routinization decreased returns to non-college occupations for women, leading them to

shift to cognitive work and increasing their college premium. In contrast, non-college

occupations for men were less susceptible to routinization. Altogether, our model

estimates that workplace routinization accounted for 63% of the growth in female

enrollment and 23% of the change in male enrollment between 1980 to 2000.
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“Out of high school, men are more willing than women to enter a trade. For example,
there are jobs open to become electricians, carpenters, plumbers and more...Many of
my male peers entered a career right out of high school and they are successful and
happy.”
-Laura Thomas, Quinnipiac University, “Why the Future at U.S. Colleges is Female”
(2021)

1 Introduction

In the United States, women used to lag behind men in college enrollment. As their work

outcomes improved over time, social scientists predicted that the college gender gap would

eventually close, and that men and women would attend college at roughly equivalent rates

thereafter. Women indeed closed the gap in 1970-1980, as shown in Figure 1. Contrary to

expectations, the gap then reversed: women are now attending college at increasingly higher

rates relative to men. It remains an open puzzle as to why women exceed men in college

enrollment, especially when male college graduates tend to work longer hours and earn higher

median salaries than female college graduates. To reconcile this apparent contradiction, prior

work has posited a greater supply of women prepared for college than men. It argues that men

face greater obstacles to formal human capital investment because more of them struggle to

pay attention, stay disciplined, and persevere through school (Becker et al., 2010; Bertrand

and Pan, 2013; Goldin et al., 2006).

In contrast, this paper proposes that demand for a college degree is greater among women

than men, given differences in job prospects with only a high school diploma (“non-college job

prospects”).1 We observe that the non-college labor market is severely polarized by gender,

in that almost all occupations are male- or female-dominated, and few are gender-equal.

From this observation emerge two stylized facts. The first is that non-college occupations

dominated by women tend to pay less than those dominated by men. The second is that

many female-dominated occupations disappeared from the non-college labor market between

1970 and 2000. Together, these facts suggest that outside options to college-going were worse

for women, but deteriorated even further over time. We posit that the widening disparity in

non-college job prospects contributed to the widening of the reverse college gender gap.

To assess this hypothesis, we leverage routinization – automation’s displacement of rou-

tine tasks – as a shifter of non-college job prospects. A burgeoning literature on routine-

biased technical change has established that over time, automated devices such as answering

1To focus on the role of non-college job opportunities, this paper abstracts away from the myriad other
explanations that could also contribute to the college gender gap, such as the marriage market premium from
a college degree (see Ge, 2011 and Zhang, 2021) and the “motherhood wall” in more demanding occupations
(for a recent review, see Juhn and McCue, 2017).
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machines and computers increasingly substituted for human labor in performing routine

tasks, eroding demand for workers in routine-intensive occupations (Acemoglu and Autor,

2011; Autor and Dorn, 2013; Autor et al., 2003; Cortes et al., 2014; Cortes et al., 2017;

Goos et al., 2009, 2014; Jaimovich and Siu, 2012; Spitz-Oener, 2006). A few papers note

that routinization had especially severe impacts for the job prospects of women (Autor and

Wasserman, 2013; Beaudry and Lewis, 2014; Black and Spitz-Oener, 2010). We further high-

light that non-college women were the most vulnerable to displacement. In 1970, over 70%

of non-college young female workers worked in “routinizable occupations” (defined more

precisely below). When exploring the change in labor share from 1970 to 2000, we find

that routinization lowered labor share only for non-college women, but not for college men,

non-college men, or college women.

Following Autor and Dorn (2013), we measure local susceptibility to routinization using

routine task intensive (RTI) share, the share of occupations that involve many routine tasks

relative to other tasks. We use instrumental variation in routinization to overcome two

challenges with causal inference. One is that RTI share in a local labor market could depend

on the share of college and non-college workers, reflecting reverse causation. Another is that

both RTI share and college enrollment rates could be correlated with unobserved factors,

such as social norms regarding women’s education, the ease of graduating high school, or

opportunities to finance a college education. Both sources of endogeneity would bias our

estimates of how routine non-college work opportunities impact college enrollment decisions.

Our instrument predicts a local labor market’s displacement from routinization using

job posting data on administrative activity. The intuition is that labor markets with high

shares of industries intensive in administrative activity would experience more displacement

in routine-intensive work over time. Time-series variation stems from within-occupation

changes at the national level, which should not depend on changes in any particular commut-

ing zone. Cross-sectional variation stems from 1950 industry composition, which pre-dates

labor market and educational changes that occur during our analysis period of 1960-2000.

Our identifying assumption is that within-occupation changes in administrative activity at

the national level should only influence college enrollment in a commuting zone in ways re-

flected by routinization. We test these identifying assumptions in robustness checks, which

verify that our results are not driven by other changes to the share of non-college workers

or local shocks to markets from which the job postings originated. We also validate our

results using alternative instruments, which exploit different sources of identifying variation

to predict vulnerability to routinization.

Our first set of results comes from the two stage least squares (2SLS) regressions. The

first stage regressions indicate that labor markets with higher shares of administrative in-
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dustries in 1950 experienced greater routinization in 1960-2000. The second stage results

demonstrate that routinization increased college enrollment among young women. We find

that a 1 percentage point rise in routinization would increase the proportion of 18-25 year

old women who attend college by 0.58-0.61 percentage points. Equivalently, moving from

a commuting zone that experienced the 25th percentile of routinization to one that experi-

enced the 75th percentile of routinization (a difference of 5.51 percentage points) leads to a

3.20-3.36 percentage point rise in female college-going. For men, who experienced less dis-

placement in their non-college job prospects, coefficient estimates are directionally smaller

and not systematically significant. We thus use routinization to establish that the deteriorat-

ing availability of non-college jobs increased college enrollment. Since women’s non-college

jobs were more vulnerable to routinization, female college enrollment grew at a faster rate

relative to male enrollment.

To investigate the mechanism behind our 2SLS results, we develop a two-period Roy

model with unobserved skill heterogeneity. In the model, forward-looking individuals choose

their education level in the first period and their occupation in the second period. We allow

men and women to have heterogeneous endowments in cognitive, manual, and administrative

skills, which are measured by the Armed Services Vocational Aptitude Battery (ASVAB)

from the National Longitudinal Survey of Youth 1979 (NLSY79). We estimate the model

using maximum likelihood.

Our model allows skill prices to vary across genders and occupations. Gender differences

in skill endowments and skill prices create different comparative advantages for men and

women, leading to gender polarization among non-college occupations. In the presence of

this polarization, changes in skill price due to routinization would have uneven impacts on

the occupational returns of men versus women. To capture this gender asymmetric effect, we

specify skill prices to be functions of predicted routinization generated from the first stage

of our 2SLS approach. The structural model allows us to posit an explicit mechanism for

the second stage relationship between routinization and enrollment, rather than assuming

an ad hoc linear mapping as in most analyses using instrumental variables. By allowing

individuals to have heterogeneous responses to local routinization levels, our model generates

more precise predictions compared with a simple back-of-the-envelope calculation based on

our 2SLS estimates.

Our model then explains the tight connection between the gender polarization of the

non-college labor market and the reversal of the college gender gap. Men are more likely to

sort into manual occupations given their higher mechanical skill, and women are more likely

to sort into administrative occupations given their higher administrative skill. Since manual

occupations pay more relative to administrative occupations, men enjoy a comparative ad-
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vantage in non-college work overall. Women’s comparative disadvantage, on the other hand,

led them into administrative occupations that were more susceptible to displacement over

time. As the labor market routinized, the price of administrative skill declined, impacting

occupations predominantly held by non-college women. Skill returns for non-college men

experienced smaller changes, since the occupations they held were harder to routinize. Con-

sequently, routinization increased female college enrollment but had little impact on male

college enrollment. Simulations from our model demonstrate that, as routine tasks became

automated, the change in occupational returns increased female enrollment by 6.0 percent-

age points and male enrollment by 0.6 percentage points. This accounts for 63.2% of the

change in college enrollment for women, but only 23.1% of the change in college enrollment

for men.

Contributions to the literature. To our knowledge, this is the first paper that uses

automation as a source of variation to investigate how the non-college labor market shaped

the college gender gap over time. We use a new instrument to exploit the impact of au-

tomation on the demand for non-college workers in routine-intensive jobs. Prior work on the

impact of labor market returns on the college gender gap has mostly relied on cross-sectional

comparisons (Charles and Luoh, 2003; Dougherty, 2005; Jacob, 2002), occupational choice

models (Olivieri, 2014), or general equilibrium models (Huang, 2014; Rendall, 2017). Rel-

ative to these approaches, our paper better accounts for potential sources of endogeneity,

such as supply-side factors which could influence both non-college occupation share and col-

lege enrollment (e.g., social norms regarding women’s work, ease of graduating high school,

financial resources for pursuing college).

Second, we contribute to the literature on routine-biased technical change by quantifying

automation’s impact on the rise of female college-going. To our knowledge, this is the first

paper to evaluate the causal impact of automation on the college gender gap. Most prior

studies focus on the gender asymmetric impact of technological change on the labor market

outcomes (Autor and Wasserman, 2013; Black and Spitz-Oener, 2010; Borghans et al., 2014;

Cortes et al., 2021; Dillender and Forsythe, 2019; Juhn et al., 2014; Ngai and Petrongolo,

2017; Olivetti and Petrongolo, 2014, 2016; Yamaguchi, 2018). Our paper demonstrates

substantial impacts on human capital acquisition, and therefore the skills that men versus

women bring to the future workforce. Specifically, we show that routinization, a gender-

neutral process, generates gender-asymmetric changes in college enrollment due to differences

in skill endowments and skill prices. Our findings illuminate the role of technological change

in shaping gender disparities in human capital. According to our simulation, changes in

occupational returns from routinization can explain about 63% of the growth in female
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enrollment but only 23% of the change in male enrollment from 1980 to 2000.

Third, our paper uses a model-based approach to link gender-based occupation polar-

ization with the college gender gap. Since most prior papers use job task requirements to

indirectly infer gender differences in skill levels (Duran-Franch, 2020; Ngai and Petrongolo,

2017; Olivetti and Petrongolo, 2014; Rendall, 2017; Yamaguchi, 2018), they cannot dis-

entangle the skill endowments of individuals from the skill returns of jobs. We overcome

this limitation by separately measuring skill endowments and task requirements, which is

necessary to determine how routinization changed the value of different skills. The closest

frameworks to ours are Prada and Urzúa (2017) and Roys and Taber (2019), but our model

deviates from them in two ways. We introduce instrumental variation from routinization

to shift skill prices, following the spirit of Eisenhauer, Heckman, and Vytlacil (2015) and

Heckman et al. (2018). This helps us separately identify skill prices and skill endowments,

which are usually jointly determined in a classical Roy model. Furthermore, we study both

male and female workers and focus on gender inequality as it pertains to college enrollment

choices, whereas the other two papers only analyze male workers.

The paper is organized as follows. Section 2 describes stylized facts and data. Sections

3 and 4 describe our methodology and results from the 2SLS approach. Sections 5 and 6

describe our methodology and results from the structural model approach. We conclude in

Section 7.

2 Data and Stylized Facts

We begin this section with an overview of our data. We then discuss the descriptive evidence

that motivates our analytical approach. First, we present two stylized facts regarding the

gender polarization among non-college occupations. Second, we describe our measure of

routinization, followed by descriptive evidence that links routinization with the widening

gender gap in non-college job prospects.

2.1 Data

We start our analysis with data from the U.S. decadal census for 1950-2000, which are

collected by the U.S. Census Bureau and publicly provided by the Integrated Public Use

Microdata Series (IPUMS; Ruggles et al., 2021). The census data for 1950, 1960, and 1970

include 1% of the entire U.S. population, while the census data for 1980, 1990, and 2000

include 5% of the population. Following Autor and Dorn (2013), we specify a local labor

market as a commuting zone, which captures commuting patterns for work across coun-
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ties. Commuting zones are defined across the entire contiguous United States, in contrast

to other geographic constructs that are defined for only certain areas and therefore may

under-represent certain industries (e.g., metropolitan statistical areas may underrepresent

industries in rural areas such as agriculture or mining).2

The dependent variable is the college enrollment rate among 18-25 year olds. Individuals

are considered college enrollees if they have ever enrolled in college. Since our paper investi-

gates the decision to attend college among those prepared for college, we limit our analysis

to those with a high school diploma or GED. We focus on college enrollment rather than

college completion since our goal is to understand the impact of non-college job prospects

on the choice to pursue higher education. College completion is influenced by a number of

factors other than non-college job prospects, such as financial resources or academic ability,

which complicate the task of isolating how non-college job opportunities change the demand

for a college degree.

To measure the impact of routinization, we use data from Autor and Dorn (2013). We

focus on measures of routine task intensive (RTI) share at the commuting zone level, de-

scribed further in subsection 2.3.1. Our instrumental variable comes from job posting data

from Atalay et al. (2020). We use the share of occupations that involve high levels of ad-

ministrative activity, where administrative activity measures are constructed based on job

postings from The Boston Globe, The New York Times, and The Wall Street Journal from

1950 to 2000.

Our structural model uses individual level data from the geocoded National Longitu-

dinal Survey of Youth 1979 Cohort (NLSY79). The NLSY79 interviews the same 12,686

respondents annually from 1979-1994 and every two years from 1996 until present day. We

construct a binary college attendance decision that equals 1 if years of education exceed 12

and 0 otherwise. We designate the individual’s occupation choice to be the modal occupa-

tion between ages 25 to 35, and the occupation’s monetary return as the individual’s average

annual earnings when she worked in this occupation. The final sample contains 8,540 indi-

viduals, with 4,217 men and 4,323 women. We provide further details and summary statistics

in Appendix A.

Two advantages of the NLSY79 make it a good complement to the census data. First,

the NLSY79 contains information on the respondent’s county of residence at age 14 and

traces each individual up to age 35, allowing us to account for potential composition effects

due to migration. Second, the NLSY79 enables us to capture individual skill heterogeneity,

as measured by test scores. Our primary skill measures come from the Armed Services

2Following Acemoglu and Autor (2011), we calculate labor supply weights by adjusting the sampling
weight using the number of hours worked per week and the number of weeks worked per year.
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Vocational Aptitude Battery (ASVAB), a set of tests designed by the U.S. Department of

Defense to measure a wide array of cognitive and non-cognitive skills. These individual-

level ability measures shed light on why men and women may have comparative advantages

in different occupations, which is key to understanding gender differences in the college

premium.

2.2 Gender polarization among non-college occupations

Our empirical approach is motivated by two stylized facts from the census data. To describe

them, we classify occupations by gender and education. “Male-dominated” occupations are

those with less than 30% women; “female-dominated” occupations comprise of more than

70% women; and “gender-equal” occupations comprise of 30-70% women. “Non-college

occupations” have at least 50% high school graduates, and “college occupations” comprise

of at least 50% college enrollees.

The first stylized fact is that female-dominated non-college occupations tend to earn

lower pay than do male-dominated occupations. As shown in Figure 2a, there is a “missing

quadrant” in the non-college labor market. Plenty of male-dominated occupations pay above

the median income of all workers (including college graduates), indicating that men still have

the potential to earn high pay even if they only possess a high school diploma. In contrast,

female-dominated occupations pay below the 20th percentile, indicating female high school

graduates tend not to hold the same high-paying occupations that male high school graduates

do. Occupations such as miner, machinist, and truck driver are over 90% male and earn

between the 40th to the 80th percentile of annual earnings. Occupations that are over 90%

female, such as cashier, housekeeper, and cosmetologist, earn at or below the 10th percentile

of annual earnings. Based on this descriptive evidence, a typical male high school graduate

still has the potential for high earnings, whereas his female counterpart appears less likely

to sort into occupations with high earnings potential. Indeed, field experiments by Carrell

and Sacerdote (2017) find that college mentoring raised college-going for female high school

students by much more than for male high school students. In follow-up surveys, male high

school students cited their better non-college job prospects as one reason why they were less

responsive to treatment.

College occupations display the opposite missing quadrant, as shown in Figure 2b. There

is a dearth of low-paying occupations that are male-dominated, but plenty of low-paying

occupations that are female-dominated. The evidence in Figure 2 is consistent with an

underlying sorting mechanism for college enrollment, where few men enter low-paying college

occupations given the availability of high-paying non-college occupations. On the other hand,
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it would be expected for many women to hold low-paying college occupations if their non-

college job prospects were not particularly lucrative.3

The second stylized fact is that many female-dominated occupations disappeared from

the non-college labor market over time. Figure 3a displays how non-college occupations vary

by gender composition in 1970. Non-college occupations exhibited severe gender polariza-

tion. One third (34%) of non-college occupations were female-dominated; over half (53%)

were male-dominated; and only 13% were gender-equal. By 2000, female-dominated occu-

pations plummeted from 34% to 13%; male-dominated occupations rose even higher to 76%;

and gender-equal occupations remained low at 12%. College occupations demonstrate the

opposite trend, as shown in Figure 3b. The share of gender-equal occupations rose from

17% to 50%, while the share of male-dominated occupations dropped from 72% to 21%. The

share of female-dominated occupations rose from only 12% to 29%. The descriptive evidence

suggests that as female non-college job opportunities were declining, women were entering

college occupations that were formerly male-dominated. Over time, men and women ap-

peared more substitutable in college work, but non-college occupations remained polarized

by gender. Guided by this evidence, we designate college occupations as “white-collar”,

female-dominated non-college occupations as “pink-collar”, and male-dominated non-college

occupations as “blue-collar”.

When investigating this disappearance, we note that the occupations which experienced

the greatest decline in female workers happened to be intensive in routine tasks. Table

1 depicts broad changes across one-digit occupational groups from 1960 to 2000. As a

share of the 18-30 year old female workforce, workers in office and administrative support

occupations declined from 45.2% in 1960 to 25.7% by 2000, an enormous decline of 19.6

percentage points. Most occupations in this category, such as secretary, clerical worker,

stenographer, or typist, involved a great deal of repetitive tasks which were easy to codify

using automated devices. The most routine-intensive of these occupations experienced the

greatest displacement. From 1970 to 2000, the share of secretaries declined by 66% and the

share of typists by 95%. The erosion of routine-intensive jobs appears to be larger for women

than men. By way of comparison, the largest occupational decline in 18-30 year old men

occurred in the production occupations, from 17.7% to 11.7% during 1960 to 2000. This

decline of 6.0 percentage points is less than one-third of the decline experienced by women

in office and administrative support occupations.

We next examine changes among non-college occupations based on their routinizability

(defined in greater detail in Section 2.3.1). We plot the fraction of non-college occupations by

3In Section 5, we will show this sorting mechanism can arise naturally given different comparative advan-
tages to non-college work for men versus women.
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gender composition in Figure 4 for routinizable occupations (panel a) and non-routinizable

occupations (panel b). The right side of Figure 4a shows that among all routinizable oc-

cupations, those that were female-dominated virtually all disappeared from the non-college

labor market. In contrast, occupations that were 50% or more male increased in labor share

between 1970 to 2000. Figure 4b shows that for non-routinizable occupations, there was

little change in the distribution by gender composition during 1970-2000. Comparing panels

(a) and (b), it appears that the decline in female-dominated occupations shown in Figure 3

is driven by routinizable occupations.

The evidence suggests that erosion of women’s non-college job prospects could have been

due to routinization, defined as automation substituting for human labor in the execution of

routine tasks. The next section presents our method of measuring routinization.

2.3 Routinization and occupational composition

2.3.1 Measuring routinization

To explore how routinization impacted non-college job opportunities, we focus on the rou-

tinization of the office during 1960-2000 (Autor et al., 2003; Black and Spitz-Oener, 2010).

Examples include the electric typewriter, the fax machine, the word processor, and the per-

sonal computer, which all substituted for human labor in the execution of routine tasks

(Atlassian, 2022). Beyond the scope of this paper are other forms of automation which

could impact college-going through alternative channels. For example, beginning in the

1990s, industrial roboticization substituted for manually intensive work and displaced the

job prospects of men (Acemoglu et al., 2020; Acemoglu and Restrepo, 2019, 2020). Prior

to the 1960s, improvements in household production technologies contributed to the mass

entry of women into the labor force (Greenwood et al., 2005). Other forms of early au-

tomation include machinery which substituted for manual-intensive labor in agriculture and

manufacturing prior to the 1950s (Adams, 2019; Atack et al., 2019; Autor, 2015).

Our measure of routinizability comes from an occupation’s “routine task intensity” (RTI),

a measure used in Autor and Dorn (2013). The RTI of occupation k is calculated using the

logged index of its routine, manual, and abstract tasks:

RTIk = ln(routinek,1980)− ln(manualk,1980)− ln(abstractk,1980)

The RTI measure captures an occupation’s routine content net of its manual and abstract

content. “Routine,” “manual,” and “abstract” task content are compiled from census data
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and the Dictionary of Occupational Titles.4 “Routine” tasks are defined as codifiable tasks

that can be executed following an explicit set of rules. As technology progressed, automating

devices replaced human labor in executing routine tasks, decreasing employer demand for

workers who specialize in these tasks. For example, electric typewriters and carbon paper

obviated the need for clerical workers to fill out forms one by one using pen and paper

(Decker, 2016).

“Manual” tasks are defined as tasks requiring in-person execution, which tend to be

physical or service-oriented tasks. Routinizability declines with manual job content, which

involves the handling of objects across space, such as lifting materials or moving around.

Operative, production, and service occupations were shielded from automation compared to

clerical occupations, since they involved manual tasks that were difficult to automate. For

example, it was difficult to program a machine to wait tables at a restaurant, a highly manual

task which requires navigating around furniture and other moving bodies in unpredictable

situations. Such technology only emerged after the 1990s (Acemoglu and Restrepo, 2020).

Lastly, “abstract” tasks involve complex mental processes that are not easily programmable,

such as problem solving, management, and complex communication. If two occupations have

the same routine and manual job content, the occupation with greater abstract content would

have lower routinizability, since the execution of routine tasks would occur in conjunction

with cognitively demanding tasks that could not be completed using automated devices.

Prior work has also found that automation directly substituted for routine tasks while com-

plementing abstract and manual tasks.5

Based on the definitions of routine, abstract, and manual task content, occupations high

in RTI are vulnerable to routinization. In fact, the decline in female-dominated non-college

occupations shown in Figure 4 was driven by occupations in the top third of RTI. Therefore,

to measure the impact of routinization, we focus on “RTI share”, or the share of high RTI

occupations:

RTI sharect =

∑K
k=1 1(RTIk > RTIP66

1980)Lckt∑L
k=1 Lckt

where Lckt is the total number of workers 16-64 years of age in commuting zone c, occupation

k, and year t. Occupation k is designated high-RTI if it exceeds the 66th percentile of routine

4We fix them to 1980 levels, which nets out within-occupation changes over time so that any change in
RTI across labor markets will stem only from changes in occupational composition.

5Brynjolfsson and Hitt (2000) and Bresnahan et al. (2002) demonstrate that computers and routine tasks
functioned as substitutes in production. On the other hand, by increasing the marginal productivity of
abstract tasks, computers and similar automating devices raised labor demand for workers with abstract
skills (Autor et al., 2003; Bresnahan et al., 2002; Brynjolfsson and Hitt, 2000; Spitz-Oener, 2006).
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task intensity for all occupations in 1980: RTIk > RTIP66
1980.6

We then define our routinization measure as the change in RTI share for commuting zone

c in year t:

routinizationct = RTI sharec,1950 − RTI sharect

where t ranges from 1960 to 2000.

2.3.2 Linking routinization, job polarization, and college enrollment

Prior literature has established that the routine content of jobs declined over time because

automation substituted for human labor in executing routine tasks (see Autor and Dorn,

2013; Goos et al., 2009). We find that among youth, these changes are borne by women.

This result is consistent with related work showing that the decline in routine jobs is stronger

for women than men (Autor and Wasserman, 2013; Black and Spitz-Oener, 2010). Figure 5

panel a graphs standardized routine task intensity (RTI) across all jobs held by 18-30 year

old men and women. While the RTI of women’s jobs was consistently higher than men’s, it

declined substantially from over 0.4 standard deviations in 1970 to 0.2 standard deviations

by 2000. In contrast, the RTI of men’s jobs held relatively steady at -0.2 standard deviations

in 1970-2000. In Appendix Figure A.1, we investigate whether the gender difference in RTI is

driven by changes in routine, manual, or abstract content over time. Aggregate trends show

that only routine content could have driven these gender differences, since manual content

barely changed and abstract content followed similar trends for men and women.

We next compare the labor share of routinizable occupations (high RTI) with non-

routinizable occupations (low RTI). Panel b of Figure 5 breaks down automation suscep-

tibility by gender. Among young women, the share of routinizable occupations peaked at

55.8% in 1970 and then plummeted by over 10 percentage points to 44.1% by 2000. The

share of non-routinizable occupations, on the other hand, grew from 22.5% in 1970 to 32.3%

in 2000. The differential trends between routinizable and non-routinizable occupations sug-

gest that automation displaced certain jobs held by women. Remarkably, these divergent

trajectories are not observed for men. Among young men, the labor shares of routinizable

and non-routinizable jobs follow parallel trajectories: both grew about 3-5 percentage points

from 1980 to 2000. Automation’s displacement of routine-intensive jobs appears to have

largely affected the jobs held by young women, without noticeably affecting the aggregate

6The impact of automation is better captured by the share of high RTI occupations than other measures,
such as average RTI level, which would not capture the full extent of each local labor market that is vulnerable
to automation. We set the threshold of RTI to be the 66th percentile of the 1980 occupational distribution
following Autor and Dorn (2013). In robustness checks, we designate occupations as high-RTI if they are
in the top half of routine task intensity, rather than the top third. This alternative definition does not
appreciably change our results (see Table 5).
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labor share of young men.

The natural next question is whether the decline among routinizable occupations affected

the college-going margin for women. Panel c of Figure 5 depicts labor share by RTI and

college status among all 18-30 year old women. For non-college women, there are stark dif-

ferences in how labor share changed over time in routinizable versus non-routinizable jobs.

First, the share of routinizable occupations reached almost one-third (31.8%) of all non-

college working women 18-30 years old in 1970. From there, however, it plummeted to less

than half this level by 2000, from 31.8% to 14.1%. In contrast, the share of non-routinizable

jobs was quite small and constant at 5.4-7.3% over the same time period. The decline in rou-

tinizable labor share among non-college women mirrors the decline among all women in panel

b, suggesting that automation’s impact on women’s jobs was concentrated in non-college

jobs. Indeed, routinizable college jobs did not experience this same displacement. Panel c

shows that for college women, the labor share of both routinizable and non-routinizable jobs

followed parallel trajectories, increasing by 10-12 percentage points from 1970 to 2000.

Together, the three panels in Figure 5 indicate that the displacing impact of automation

coincided with a decline in the routinizable jobs held by non-college women, but not men

or college women. Our findings align with Black and Spitz-Oener (2010), who report a

“strong decline in routine tasks experienced by women and almost not at all by men” for

Western Germany (pg. 188). We extend on Black and Spitz-Oener (2010) by further isolating

the decline to non-college women, which suggests women’s outside options to college-going

were disproportionately vulnerable to routinization. The gender asymmetries in impacts are

natural in light of differential sorting into non-college occupations. Men’s “blue-collar” jobs

were highly manual, which made them difficult to displace even if they were intensive in

routine tasks. Women’s “pink-collar” jobs were less manual, since they involved operations

such as bookkeeping and calculating, which were easy to automate (Autor et al., 2003; Black

and Spitz-Oener, 2010).

3 Two Stage Least Squares Approach

The descriptive evidence we have shown so far does not necessarily establish the causal effect

of routinization on women’s college enrollment. Similarly, ordinary least squares (OLS)

regressions may not be sufficient to isolate causal impacts. Table 2 presents positive OLS

estimates between routinization and college enrollment, which suggest that labor markets

which underwent greater routinization experienced growth in female enrollment (p < 0.01)

and marginal growth in male enrollment (p < 0.10). Alternative explanations could be

driving these estimates. For example, if more students graduated from college for other
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reasons, the college workforce would rise relative to the non-college workforce, mechanically

decreasing the non-college labor share.

We therefore use an instrument to predict displacement due to routinization using the

share of occupations that involve administrative support and clerical work.7 The logic is that

areas with historically high administrative shares would experience more task displacement

as routinization took place. We calculate administrative share using data from Atalay et al.

(2020), who extract information the skills and activities involved in an occupation based

on job postings in the Boston Globe, the New York Times, and the Wall Street Journal

during 1940-2000. They use textual machine learning approaches to map each job title in a

posting to a code in the Census 2000 Occupation Index (Bureau, 2021). We then use their

measures of job characteristics at the occupation code level to construct our instrument.

Specifically, we use the frequency with which postings related to a census occupation code

mention administrative activity, defined by the Occupational Information Network as “day-

to-day administrative tasks such as maintaining information files and processing paperwork”

(O*NET, 2022). Atalay et al. (2020) measure administrative activity based on the occurrence

of the following keywords: “administrative,” “paperwork,” “filing,” and “typing”.8

To predict routinization at the commuting zone level, we fix industry shares in 1950 and

interact them with “administrative share”, the share of occupations with high administrative

activity in each industry. The intuition is that commuting zones with high 1950 shares of ad-

ministrative industries should experience greater routinization as these industries automate

over time. Therefore, the administrative share IV is:

admin share IVct =
I∑
i=1

Ei,c,1950

∑
k Likt1(adminkt > adminP66

1950)∑
k Likt

where i indexes industry, k indexes occupation, t indexes year from 1960 to 2000, and c

indexes commuting zone. Ei,c,1950 represents the share of industry i in commuting zone c

in 1950. The expression
∑
k Likt1(adminkt>adminP66

1950)∑
k Likt

is the administrative share in industry i in

year t. It is constructed using Likt, which represents the number of workers in occupation k,

industry i, year t. The indicator 1(adminkt > adminP66
1950) equals 1 if occupation k in year t is

7Following the literature on skill-biased technical change (see Atalay et al., 2020; Autor et al., 2003), we
treat administrative tasks as synonymous with clerical tasks, as opposed to managerial tasks.

8The administrative activity measure hones in on the subset of tasks that are most likely to be routinized,
but may not fully capture the range of routine tasks affected. We prefer this conservative measure over
measures that incorporate a larger range of tasks, which would risk violating the exclusion restriction by
attributing too many task changes to automation. The risk of using too conservative a measure is that the
relevance condition may not be satisfied. However, as the F-statistics in Table 3 will demonstrate, the first
stage relationship between routinization and our instrument is quite strong. Moreover, we plot administrative
activity and RTI share across occupations in Appendix Figure A.2. The raw data show a strong positive
correlation, indicating that occupations high in administrative activity exhibited high routine task intensity.
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in the top third of administrative activity, based on the occupation distribution in 1950.9,10

With this administrative share instrument, we then perform the following two stage least

squares regression. The first stage regression captures the relationship between routinization

and the instrument within commuting zone c and year t:

routinizationct = α0 + α1admin share IVct + α2Wct + θc + φt + uct (1)

In our regression approach, our measure of routinization focuses on the RTI share among

non-college workers between 25 to 65 years old. Focusing on the non-college RTI share

enables us to directly measure how routinization changed the outside options to college-

going.11 Focusing on jobs held by 25-65 year olds fits our underlying premise that 18-25 year

olds make their college-going decisions based on the job prospects of those currently working.

Furthermore, excluding 18-25 year olds also avoids simultaneity concerns: if enrollment

among 18-25 year olds rose for other reasons during this time, fewer workers would take

routine task intensive jobs, and RTI share would mechanically decline.

We control for commuting zone-year level controls Wct, commuting zone, census region,

and year. The matrix of control variables Wct includes the proportion of female, Black, and

Hispanic residents. It also includes the proportion of people by 10-year age bin. Additional

controls are discussed later in this section.

The intuition behind our first stage regression is that commuting zones starting out with

high levels of administrative work should have undergone greater routinization. For example,

the commuting zone around Republic city in the state of Washington had high 1950 shares of

the legal services industry, which used to comprise of many administrative jobs that involved

completing and filing forms. As the legal industry automated, the extent of routinization

would be especially severe in Republic city compared to other labor markets. This would lead

to a positive first stage coefficient between predicted administrative share, our instrument,

9Following the logic of Autor and Dorn (2013), we define “highly administrative occupation” based on
whether the occupation is in the top third of the 1950 distribution. Fixing the occupational distribution
to 1950 allows us to compare how administrative share changes over time for industries that traditionally
involved intensive administrative activity.

10While Ei,c,1950 and Likt are constructed from the census, the indicator 1(adminkt > adminP66
1950) is

constructed using job posting data from Atalay et al. (2020). Incorporating job posting data has two
advantages. First, it better isolates labor demand changes than employment data from the census, which
reflects the equilibrium outcome of both demand and supply forces. Second, our job posting data come from
newspapers in Boston and New York City. Commuting zones in areas outside of these two cities would not
directly depend on worker supply shocks that are specific to these cities.

11However, this measure is endogenous to supply-side considerations that influence educational choices,
such as social norms regarding education or the ease of graduating from high school. In Section 4.1, we apply
our 2SLS specification to routinization among both college and non-college workers and find no change in
our results.
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and routinization.

The second stage regression then uses the first stage linear prediction ̂routinizationct to

isolate the impact on college enrollment in commuting zone c, year t for gender g:

college enrollmentgct = β0 + β1
̂routinizationct + β2Wct + θc + φt + εgct (2)

As with the first stage regression in Equation 1, the second stage regression controls for

commuting zone-year characteristics Wct, commuting zone dummies, and year dummies.12

Under the frameworks of Adao et al. (2019) and Borusyak et al. (2018), the shift-share

approach is equivalent to a weighted instrumental variable regression in which industry-level

shocks are the instrument and industry shares are the weights. The exclusion restriction is

therefore that the administrative share at the national industry level can only affect college

enrollment in ways reflected by routinization at the commuting zone level. This restriction

is met if no commuting zone plays a large role in determining administrative share in an

industry. Since our job posting data come from newspapers located in New York City and

Boston, in robustness checks we exclude the commuting zones containing these cities to

determine whether our 2SLS results are driven by local omitted variables correlated with

both college enrollment and administrative work.

The general threat to the exclusion restriction is that industry-level changes in routine

activity, measured by administrative occupation share, could be correlated with enrollment

in ways not captured by commuting zone-level changes in RTI share. Using commuting zone

dummies accounts for time-invariant omitted factors, but not changes across time correlated

with both enrollment and labor market prospects. We next discuss plausible time-varying

confounders that could generate the gender differences in college-going we report in Section

4. These confounders motivate the inclusion of certain controls into the Wct matrix.13

One possibility is that non-automation factors could drive industry level changes corre-

lated with both enrollment and routinization in a commuting zone. For instance, the decline

in manufacturing over this period could change both college enrollment and the proportion

of high-RTI occupations within an industry (see Autor et al., 2013). We therefore include

in Wct lagged shares of the largest industries: manufacturing, mining, and retail trade.14

12Note that while the reduced form and second stage effects on enrollment are gender-specific, we pool
gender in estimating the first stage effect. This avoids the assumption that men and women operate in
isolated markets and allows for correlation between impacts for men and women. For example, estimating
the impact of routinization among men’s jobs on male enrollment would ignore how changes in men’s jobs
could influence the decision to attend college for women. This would violate the exclusion restriction for
instrumental variables analysis.

13In Section 4.1, we check that our results hold even when we do not use the control variables discussed
below (Table 5).

14A trade-off exists between controlling for some industries versus all industries. Our identification relies
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We also control for lagged service sector shares, given the Autor and Dorn (2013) finding

that automation raised service sector employment. Using the lagged shares is preferable to

current shares, since current shares may directly depend on college enrollment rates.

Supply-side factors could influence enrollment in ways correlated with the instrument.

For example, high female labor force participation in a commuting zone may raise the share

of industries that employ female high school graduates in 1950. More non-college jobs may

be available to women in this commuting zone than in others, which would then increase

their outside options to college-going, leading to lower growth in female enrollment in 1960-

2000. We therefore control for both female and male labor force participation among 25-65

year olds. Since 25-65 year olds are beyond typical college age, their labor force participation

should not directly depend on the college enrollment of 18-25 year olds.

Related concerns are serial correlation in RTI share, as well as persistence in other unob-

servable factors that could influence women’s labor market prospects. For instance, commut-

ing zones with more routine jobs in 1950 may have more favorable social norms regarding

women’s schooling in 1960-2000. In some specifications, we control for lagged RTI share

to capture the effects of these and related social norms. Finally, as mentioned above, rou-

tinization changed both the returns to non-college work and college work. To separate

the pull factor of rising college earnings from the push factor of declining non-college job

opportunities, we control for median earnings in abstract-intensive occupations in certain

specifications.

We use the standard error correction procedure of Adao et al. (AKM, 2019). AKM (2019)

demonstrate that shift-share instruments introduce correlation across labor markets with

similar industry shares, and that clustering standard errors at the local labor market level is

insufficient to account for such correlation. To report the results of our weak instrument tests,

we calculate Montiel Olea-Pflueger F-statistics, which are preferable to Kleibergen-Paap F-

statistics in assessing instrument strength (Andrews et al., 2018; Andrews and Stock, 2018;

Olea and Pflueger, 2013). Given recent literature on the limitations of using t-ratio based

inference and first stage F-statistics to assess instrument strength (Lee et al., 2020), we

report Anderson-Rubin weak instrument-robust confidence intervals.

on industry-level shocks, so controlling for all industries would lead the industry dummies to absorb valuable
identifying variation. We therefore only control for major industries that compose a large share of the overall
labor force.
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4 Two Stage Least Squares Results

We begin by investigating the first stage relationship between the instruments and rou-

tinization, presented in Table 3. As discussed in Section 3, we use various sets of controls to

account for potential confounds. Column (1) controls for demographic characteristics at the

commuting zone level, male and female labor force participation, the ten-year lagged service

sector share, and the ten-year lagged shares of the industries with the highest labor shares in

our data: manufacturing, retail, and mining. Adding to these controls, columns (2) and (4)

include the median annual log earnings of occupations in the top third of abstract intensity.

Columns (3) and (4) include the ten-year lag of RTI share.

Throughout this paper, we measure routinization as the percentage point reduction in

RTI share from 1950 levels. We find that on average, a commuting zone with a 1 percent-

age point higher share of administrative industries in 1950 experienced 0.38-0.39 percentage

points more routinization in 1960-2000 (p < 0.01). Coefficient estimates remain constant

even when we control for median earnings in abstract-intensive work in columns (2) and (4),

suggesting that the decline in RTI share is driven by declining routine task demand rather

than growing returns to abstract-intensive work. Similarly, our estimates do not change

when we control for lagged RTI share in columns (3) and (4), indicating that serial corre-

lation in unobservables is unlikely to explain these relationships. Across all specifications,

Montiel Olea-Pflueger F-statistics hover at 201.45-214.57. To visually assess fit, Appendix

Figure A.3b plots the raw data against the linear prediction. The raw data exhibit a clear

positive relationship between routinization and the administrative share IV, indicating that

commuting zones with higher historical administrative industry shares experienced greater

routinization.

Next, Table 4 reports the reduced form results for female enrollment (panel A) and male

enrollment (panel B). Across all regressions, we find greater female enrollment rates among

commuting zones with higher instrument values. This finding is consistent with the premise

that women’s non-college job opportunities diminished in labor markets more vulnerable to

routinization. Commuting zones predicted to undergo 1 percentage point more routinization

exhibit on average a 0.22-0.23 percentage point rise in female enrollment (p < 0.01). The

coefficient for men is about 75% of the estimate for women and marginally significant at 0.17

percentage points (p < 0.10).

We next turn to the two stage least squares results in panels C-D of Table 4. By isolating

variation in routinization based on changes in administrative activity over time, we aim to

capture declines in employer demand for routine-intensive occupations. This then translates

into fewer job options for high school graduates, since most routine-intensive occupations
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provided opportunities for non-college workers. Consistent with this story, panel C demon-

strates that commuting zones that underwent more routinization experienced higher female

enrollment rates. Our estimates indicate that a 1 percentage point rise in routinization led

to a 0.58-0.61 percentage point rise in the proportion of 18-25 year old women enrolled in

college (p < 0.01). Panel D shows that the corresponding estimate for male enrollment is

0.44 percentage points (p < 0.10). Another way to quantify our results is to compare a com-

muting zone which experienced the 75th percentile of routinization to one which experienced

the 25th percentile of routinization. This difference, which amounts to a 5.51 percentage

point gap in the extent of routinization, would have increased female enrollment by 3.18-3.33

percentage points and male enrollment by 2.40-2.44 percentage points.

Comparing across specifications, we find that including median earnings for cognitive

occupations does not change our estimates. This is consistent with the evidence in Appendix

Figure A.1 that abstract task content changed at similar rates for both men and women,

and therefore cannot explain the gender differential in college enrollment trends. Adding

lagged routine share also does not change point estimates across specifications, indicating

that persistence in occupational composition across time is unlikely to drive our results.

Our Anderson-Rubin weak instrument-robust 95% confidence intervals exclude 0 for fe-

male enrollment but cannot reject the null hypothesis of no effect for male enrollment. The

results establish a consistently significant negative relationship for women, but not for men.

However, the coefficient estimates on male and female enrollment do not statistically differ. It

is possible that the erosion of routine jobs also impacted male college-going, since some men

worked in occupations vulnerable to automation. In addition to the few men who worked

in secretarial and clerical occupations, high-RTI occupations that were dominated by men

include shipping clerks, meter readers, security guards, machinists, and machinery repairers.

Yet, even if a one percentage point reduction in RTI share generated equal responses for

male and female enrollment, far more women worked in high-RTI jobs than men (around

70% of non-college women compared to 40% of non-college men during 1960-2000), so the

aggregate change in non-college job prospects for women would still exceed that for men.

We explore the implications of these estimates on aggregate trends in the college gender gap

over time in Sections 5 and 6.

4.1 Additional specifications

We next address potential concerns regarding our main regression specification from Table 4

panels C and D. Table 5 summarizes results from our additional specifications. Column (1)

excludes controls which may be correlated with omitted variables that influence routinization:
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contemporaneous labor force participation, lagged service sector share, lagged major industry

shares, and lagged routine share. Our point estimates change slightly, but not significantly.

We find that greater routinization predicts greater college enrollment for women but not for

men. In particular, a 1 percentage point reduction in the share of high RTI occupations

from 1950 levels raises female enrollment by 0.5 percentage points (p < 0.01) but does not

significantly change male enrollment.

Local shocks in Boston and New York. The content of job postings may be endogenous

to the supply of skills in the local labor market. For example, if a commuting zone has a large

share of college workers skilled in abstract tasks, employers may specify more abstract tasks

and fewer routine or manual tasks in their job postings. The advantage of our approach is

that we exploit trends in administrative activity over time in Boston and New York City, so

local shocks from other commuting zones should not directly affect our job posting data. To

ensure that local shocks in Boston and New York City are not driving our results, we exclude

the commuting zones containing these two cities. The results are shown in column (2), Table

5. Our point estimates of 0.608 (p < 0.01) for female enrollment and 0.503 (p < 0.10) for

male enrollment are similar to our main estimates.

Changes in abstract occupation share. In our main specifications, we instrument for

routinization, which reflects the routine, manual, and abstract content of occupations in a

commuting zone. We control for manual content, but allow abstract content to vary freely

with routine content since prior work has found that routinization coupled the decline in

routine content with a rise in abstract content over time (see Brynjolfsson and Hitt, 2000;

Bresnahan et al., 2002). However, this raises the question of whether our results are driven

by deteriorating job prospects in routine-intensive occupations or by improving job prospects

in abstract-intensive occupations. While we already control for abstract median earnings in

Table 4, we go further by controlling for abstract occupation share in column (3) of Table 5.

This additional control places severe restrictions on the variation we use, but better nets out

the impact of non-automation forces that shift routine and abstract content simultaneously.

Despite the stringency of this specification, estimates are similar to the main results, leading

us to conclude that the response of female enrollment to changes in RTI share are not driven

by improving returns to abstract-intensive occupations alone. We find point estimates of

0.628 (p < 0.01) for women in panel A and 0.441 (p > 0.10) for men in panel B.

Changes in the composition of non-college workers. Our sample period witnessed

substantial growth in college enrollment due to many supply-side factors, such as greater high
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school completion rates, social norms encouraging college graduation, and more generous

financing options for education. Our main specification uses routinization among non-college

workers, but the rise in college enrollment over this period could change the composition of

the non-college workforce and impact this measure through channels other than routinization.

To address this concern, in an additional specification we use routinization among both non-

college and college workers, which is less sensitive to college enrollment changes. Column

(4) shows that this alternate measure does not appreciably change our main estimates,

suggesting that changes in non-college worker share during our sample period did not drive

our 2SLS estimates.

The administrative activities instrument and clerical requirements instrument.

Lastly, we look to alternate methods of using the job posting data to predict routinization.

First, throughout the paper we define administrative share based on the share of occupations

in the top third of administrative activity in 1950. We chose the top third to be consistent

with the RTI share measure from Autor and Dorn (2013), but note that our results could be

driven by this arbitrary designation. In Table 5 column (5), we show that our results hold

when we define administrative share based on occupations in the top half of administrative

activity.

We also explore using instrumental variation from the average administrative activity of

all occupations in an industry, rather than the share of highly administrative occupations.

In column (6), we construct the “administrative activity instrument” using the predicted

frequency of administrative activities. The units are the number of mentions of an adminis-

trative activity per job posting, rather than the share of occupations that require intensive

amounts of administrative activity. In column (7), we construct a similar instrument called

the “clerical requirements instrument”, based on the number of times a clerical knowledge

requirement is specified per job posting for an occupation. Estimated effects in specification

(6) and (7) are comparable with the effects in our baseline results, although the results in

column (7) are slightly higher than the main estimates. These comparisons indicate that

our results do not depend on the particular structure of our administrative share instru-

ment. Rather, we arrive at the same results using multiple methods of instrumenting for

routinization.

Overall, the results indicate that the positive relationship between routinization and

female enrollment is consistently significant across different forms of instrumental variation

and different model specifications. In contrast, the impact on male enrollment is weak.

Across all specifications in Table 5, Anderson-Rubin 95% confidence intervals are squarely

positive for women but include 0 for men. We rule out a null effect in characterizing the
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relationship between routine intensive work and female college-going, but fail to reject the

null hypothesis of no relationship between routine intensive work and male college-going.

5 Structural Model Approach

Our 2SLS results show that commuting zones with greater predicted routinization expe-

rienced higher levels of female college enrollment. We next propose the mechanism that

can explain these findings. An augmented Roy model with latent skills delves into how

individual choices can change based on non-college job prospects. Following the dynamic

discrete choice literature (Eisenhauer, Heckman, and Mosso, 2015; Keane and Wolpin, 1997;

Roys and Taber, 2019; Todd and Zhang, 2020), we explicitly model sequential education

and occupation decisions. Our innovation is that we incorporate instrumental variation in

routinization into occupation-specific skill prices.15 By doing so, we leverage instrumental

variation to exogenously shift skill prices and identify the causal effects of routinization at

well-defined margins of the education and occupation choices. These estimates are then

used to simulate how male and female enrollment would change based only on changes from

routinization, enabling us to quantify the importance of routinization in explaining trends

in the reverse college gender gap.

The model has two periods with transitions and nodes shown in Figure 6. Individuals are

forward looking and sequentially choose their education Di in period 1 and their occupation

Oi in period 2. In the first period, individuals choose whether to attend college based on the

flow utility of schooling and expected values from the second period. Initial skill endowments

are unobserved by the econometrician but fully observed by each individual. Following

Heckman et al. (2006) and Prada and Urzúa (2017), we identify workers’ unobserved skills

by constructing a measurement system based on individuals’ test scores from the NLSY79.

We use θi = [θci, θmi, θai] to represent a vector of three-dimensional skill sets for individual i,

where subscripts c, m, and a are used to denote cognitive, mechanical, and administrative

skills, respectively. We allow for gender differences in skill distributions.

We demarcate three different occupation choicesOi ∈ {White collar, Blue collar, Pink collar}.
White collar occupations (Oi = 1) refer to occupations dominated by college workers; blue

collar occupations (Oi = 2) refer to occupations dominated by the male high school gradu-

ates; and pink collar occupations (Oi = 3) refer to occupations dominated by female high

school graduates. This classification is derived from the contrast between the college and

non-college labor markets shown in Figure 3, where gender polarization is severe in non-

15Eisenhauer, Heckman, and Vytlacil (2015) and Heckman et al. (2018) have also incorporated instruments
into discrete choice models. However, the decision rules in their models are not fully dynamic.
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college occupations but not in college occupations. Men and women appear to sort into

similar jobs if they have a college degree, but different jobs if they only have high school

diplomas. This classification enables our model to capture, for instance, the notion that blue

collar jobs tend to be more brawn-intensive, leading to a comparative advantage for men

due to their higher mechanical skill endowments. Lastly, we allow for home-staying as an

outside option to working (Oi = 4).

Our specification is intentionally more parsimonious than typical life-cycle dynamic dis-

crete choice models such as Keane and Wolpin (1997, 2001), Roys and Taber (2019), and

Todd and Zhang (2020). It assumes that attending college is the only binary education

choice, that occupation choices are made once and permanent, and that individuals cannot

return to school after entering the labor market. Our model is intentionally simple so as to

focus on the connection between college attendance decisions and the heterogeneous college

wage premium across different occupations. This simplicity enables us to specify an explicit

mechanism by which instrumental variation in routinization shifts skill prices.

5.1 Sequential schooling and occupation choices

The model is solved through backwards induction. In the second period, individual i with

gender g ∈ {m, f} chooses an occupation depending on perceived expected values across

alternatives. Ex post, individual i who chooses occupation Oi given an education level Di

receives utility U(Oi|Di):

U(Oi|Di) = log Y (Oi|Di) + logP (Oi|Di) + εO,D,i (3)

where Y (Oi|Di) denotes the monetary return from occupation Oi given an education level Di,

while P (Oi|Di) is the non-pecuniary utility of working in occupation Oi (e.g., job amenities,

job flexibility, potential discrimination costs). The term εO,D,i is an idiosyncratic preference

shock that follows the extreme value type I distribution.16 Earnings in occupation Oi are

expressed as

log Y (Oi|Di) = XY
i β

g
O,X +Diβ

g
O,D + θiβ

g
O,θ + θiDiβ

g
O,D,θ + ugO,i (4)

where XY
i is a vector of relevant observed variables, including cohort, region, and urban

dummies. The subscript g ∈ {m, f} denotes male and female, respectively. The college

premium comes from both Diβ
g
O,D and θiDiβ

g
O,D,θ, in which βgO,D captures the common return

to education while βgO,D,θ captures the component varying by skill level θi. Lastly, ugO,i is

16Note that we can only identify differences among options, as opposed to their levels. We therefore
normalize the value of the home-staying option to be 0 for identification purposes.
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the random component, realized only after occupation Oi has been chosen. Analogously, the

non-pecuniary utility P (Oi|Di) from entering occupation Oi has the following expression

logP (Oi|Di) = XY
i α

g
O,X +Diα

g
O,D + θiα

g
O,θ + θiDiα

g
O,D,θ (5)

where αgO,D represents the non-pecuniary return to education shared by all workers and αgO,D,θ
captures the extra non-pecuniary education premium that varies by worker’s skill level θ.

In the first period, individual i decides whether or not to attend college depending on

the perceived value of the flow utility and expected value from the second period.

Di = 1[V 1
i + ξgD,i > V 0

i ]

V 0
i = Eε[U(Oi|Di = 0)]

V 1
i = XD

i λ
g
X + θiλ

g
θ + ρEε[U(Oi|Di = 1)]

(6)

where Di denotes a binary variable equal to 1 if the individual chooses to attend college and 0

otherwise. XD
i captures a vector of characteristics commonly believed to be relevant factors

for education choice.17 The term θiλ
g
θ captures the heterogeneous cost of attendance for

individual i with skill θi and gender g.18 The preference shock on education ξgD,i is assumed

to be orthogonal to XD
i and θi.

5.2 Incorporating routinization

One of the biggest challenges in the generalized Roy model is the identification of skill prices,

as they are endogenous outcomes jointly determined by supply and demand. Existing liter-

ature addresses this challenge by either using general equilibrium models (Lee and Wolpin,

2006) or assuming exogenous skill demand functions (Roys and Taber, 2019). In contrast,

we use the instrument for routinization defined in Section 3 to shift job prospects, specifi-

cally occupation-specific skill prices. Our framework allows routinization to impose different

changes to skill returns based on pre-existing skill endowments, yielding different incentives

to attend college. This setup, which is similar in spirit to Heckman et al. (2018), enables us

to identify the heterogeneous causal impact of routinization at the individual level.

We incorporate routinization by specifying skill prices as functions of the first stage

prediction of local routinization, estimated from Equation 1. In particular, we assume that

the vector of pecuniary and non-pecuniary returns to skills are functions of ̂routinization
g

c(i),t:

17Following Eisenhauer, Heckman, and Mosso (2015) and Prada and Urzúa (2017), XD
i includes parental

education, the number of siblings, an indicator variable for broken home, and family income at age 14.
18For identification purposes, we normalize the flow utility of not attending college to 0.
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βgO,θ(c, t) = βg,0Oθ + βg,1O,θ ̂routinization
g

c(i),t

βgO,D,θ(c, t) = βg,0O,D,θ + βg,1O,D,θ ̂routinization
g

c(i),t

αgO,θ(c, t) = αg,0O,θ + αg1O,θ ̂routinization
g

c(i),t

αgO,D,θ(c, t) = αg,0O,D,θ + αg,1O,D,θ ̂routinization
g

c(i),t

(7)

Here, ̂routinization
g

c(i),t is the first stage predicted level of routinization for individual i of

gender g in commuting zone c(i) and year t. Therefore, {βgO,θ(c, t), β
g
O,D,θ(c, t), α

g
O,D(c, t), αgO,D,θ(c, t)}

is the skill price vector that individuals in commuting zone c would adopt when making their

education choices at period t. Substituting Equation (7) into Equations (4) and (5) yields:

log Y (Oi|Di) = XY
i β

g
O,X +Diβ

g
O,θ + θiβ

g,0
O,θ + θiDiβ

g,0
O,D,θ

+θiβ
g,1
O,D,θ

̂routinization
g

c(i),t + θiDiβ
g,1
O,D,θ

̂routinization
g

c(i),t

logP (Oi|Di) = XY
i α

g
O,X +Diα

g
O,θ + θiα

g,0
O,θ + θiDiα

g,0
O,D,θ+

+θiα
g,1
O,D,θ

̂routinization
g

c(i),t + θiDiα
g,1
O,D,θ

̂routinization
g

c(i),t

Based on the above equation, returns to different occupations depend on both individual

characteristics (e.g., gender, education, and skill levels) as well as predicted routinization in

the resident commuting zone. Therefore, identical workers in the same occupation may have

different returns if they live in areas that experienced different amounts of routinization.

It is worth noting that we assume that routinization must only impact college-going in

ways reflected by changes in skill prices. Our model effectively uses the change in skill price

due to routinization as a sufficient statistic to capture the impact of routinization within

different occupations.

5.3 Structural model estimation strategy

5.3.1 Latent abilities

We use the NLSY79’s ASVAB tests to construct multi-dimensional skill profiles at the in-

dividual level. The ASVAB comprises nine subtests: arithmetic reasoning, word knowledge,

paragraph comprehension, mathematics knowledge, numerical operations, coding speed, au-

tomotive and shop information, electronics information, and mechanical comprehension. Fol-

lowing Prada and Urzúa (2017), we perform Exploratory Factor Analysis (EFA) analysis on

the NLSY79’s ASVAB tests to construct multi-dimensional skill profiles at the individual

level. The analysis suggests that two separate skills (“factors”) are necessary to explain the

variation in ASVAB scores. For both men and women, the first factor has the highest load-

ings for subtests designed to assess cognitive skill. However, there are gender differences in
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factor loadings for the second factor. For men, the loadings are statistically significant only

for the three mechanical subtests: automotive and shop information, electronics information,

and mechanical comprehension. For women, loadings for the second factor are statistically

significant only for the two administrative subtests: coding speed and numerical operations.

Figure 7 displays the estimated factor loadings.

Based on our results, we characterize each individual’s skill set θi by three dimensions: the

common first factor as cognitive ability θc,i, men’s second factor as mechanical skill θm,i, and

women’s second factor as administrative skill θa,i.
19 This particular skill structure sheds light

on how men and women can have different comparative advantages in different occupations,

leading to the occupational sorting shown in Figure 2. Men tend to have higher mechanical

skill, which would give them a comparative advantage in manually intensive tasks. Women

tend to have higher administrative skills, which provide a comparative advantage in routine

office work. Appendix A provides more information on the EFA implementation.

Guided by the exploratory factor analysis, we specify the measurement equations for an

individual i with latent skill vector θi = [θc,i, θm,i, θa,i] as follows:

Cj,i = λcjθc,i + ecj,i, j = 1, 2, ..., 4

Mj,i = λcjθc,i + λmj θm,i + emj,i, j = 5, 6, 7

Aj,i = λcjθc,i + λajθa,i + eaj,i, j = 8, 9

(8)

where Cj,i denotes the four subtests exclusive for the cognitive ability measure, Mji denotes

the three mechanical subtests, and Aj,i denotes the two administrative subtests.20 We restrict

the loading coefficients {λcj, λmj , λaj} to be gender neutral so that any gender differences in

test scores reflect only gender differences in latent abilities. Lastly, to identify the system, we

assume that all error terms {ec1,i, ..., ec4, em5,i, em6,i, em7,i, ea8,i, ea9,i} are mutually independent and

uncorrelated with the skill vector θi.

It is worth noting that we allow latent abilities to be correlated with each other, as several

test scores are relevant for multiple abilities. To identify the system, we follow Carneiro et

al. (2003), Eisenhauer, Heckman, and Mosso (2015), Heckman et al. (2006), and Prada

and Urzúa (2017) and assume that at least one measure in Mj,i is exclusively driven by

mechanical skill, and one measure in Aj,i is exclusively driven by administrative skill, and a

set of standard normalizations.21 We refer interested readers to the aforementioned papers

19Our EFA results match with Prada and Urzúa (2017) regarding the definition of mechanical skills for
men. However, the results on administrative skill for women are novel.

20In particular, Cj,i ∈{arithmetic reasoning, word knowledge, paragraph comprehension, mathematics
knowledge}, Mj,t ∈{automotive and shop information, electronics information, and mechanical comprehen-
sion} and Aj,i ∈{coding speed and numerical operations}.

21In practice, we assume the factor loadings of cognitive skill on automotive shop information test (λc5)
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or Appendix B for further details on identification.

5.3.2 The maximum likelihood function

The measurement equations are jointly estimated with the model using maximum likelihood.

Let ψ ∈ Ψ denote a vector of structural parameters and Ωi = {Xi, Ti, Oi, Yi, Di} be the

vector of observable characteristics of individual i, including exogenous control variables

Xi, a college dummy Di, occupations Oi, and annual earnings Yi. Test scores Ti include

cognitive test scores Cj,i, mechanical test scores Mj,i, and administrative test scores Aj,i.

The likelihood function for individual i is given by

`i(Ωi|ψ) =
∫
θ

Π4
j=1fj(Cj,i|θi;ψ)Π7

j=5fj(Mj,i|θi;ψ)Π9
j=8fj(Aj,i|Xi, θi;ψ)︸ ︷︷ ︸

skill measurements

(fY (Yi|Di, Oi, Xi, θi;ψ))I(Oi 6=4)︸ ︷︷ ︸
wage outcomes

Π4
k=1 (Pr(Oi|Di, Xi, θi;ψ))I(Oi=k)︸ ︷︷ ︸

occupations

Π1
l=0 (Pr(Di|Xi, θi;ψ))I(Di=l)︸ ︷︷ ︸

college

dFθ(θ;ψ)

(9)

where Pr(.) represents the probability of occupation choice Oi or education choice Di defined

in Equations 3 and 6, fj(.) is the probability density function for test j defined by Equations

8, fY (.) is the probability density function of earnings Yi in Equation 4, and Fθ(.) is the

joint cumulative distribution of the latent skill vector θ ∈ Θ. After taking the logarithm of

Equation (9) and summing across all individuals, we obtain the sample log likelihood logL:

logL =
N∑
i=1

log `i(Ωi|ψ)

Lastly, we impose some distributional assumptions to complete our likelihood function. In

particular, εO,D,i follows the standard Gumbel distribution while other error terms follow the

normal distribution. For latent skills, we use mixtures of normal distributions, which provides

minimal restrictions on the underlying distributions of [θc, θm, θa].
22 Following Prada and

Urzúa (2017), we use mixtures of two normal distributions and assume E[θc] = E[θm] =

E[s] = 0.23 After plugging the distribution assumptions into Equation (9), Pr(Oi) will be

and on coding speed test (λc9) are equal to 0. The loading of cognitive skill on mathematics knowledge (λc2),
the loading of mechanical skill on mathematics knowledge (λm7 ) and the loading of administrative skill on
numerical operations (λa9) are standardized to 1.

22Ferguson (1983) argues that any probability distribution can be approximated arbitrarily well by a finite
mixture of normal densities. Therefore, this distributional assumption should provide sufficient flexibility
while imposing a minimal number of restrictions on the underlying distributions.

23However, the mean values for men and women may differ and do not necessarily equal 0.
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a multinomial logit function and Pr(Di) will be a probit function. We can then obtain the

estimates ψ̂ by maximizing the total likelihood function

ψ̂ = argmaxψ

N∑
i=1

log `i(Ωi|ψ).

The standard errors are computed using the BHHH algorithm (Berndt et al., 1974).

6 Structural model results

6.1 Goodness of model fit

To assess model fit, we compare simulated occupation and education choices with those from

the real data in Table 6. The upper panel shows that moments from the model simulation

are close to the real data on occupational choice. The simulation replicates that the two most

common choices for men are white and blue collar occupations, while the two most common

choices for women are white and pink collar occupations. The middle panel shows that for

average log wages, simulated wages are reasonably close to actual wages. The average wage

is highest in white collar occupations and lowest in pink collar occupations, both for men

and for women. The lower panel summarizes education choices. Although our model slightly

overpredicts the overall college attendance rate, it captures the pattern that women attend

college at much greater rates than men. The fraction of women enrolled in college is around

60%, while the fraction of men is around a half.

6.2 The relationship between skills, occupational sorting, and ed-

ucation decisions

Our model estimates reveal notable gender differences in skill profiles, depicted in Figure

8. First, Figure 8a demonstrates similar distributions of cognitive skill for men and women,

although the variance is lower for women than men.24 This provides further evidence that

men and women are substitutable in white collar work, and can explain why the majority of

college occupations were gender-equal in 2000 (see Figure 3b).

In contrast, there are substantial gender differences in mechanical and administrative

skills. Figure 8b shows that the mechanical skill distribution for men is higher in mean and

24This result is consistent with Becker et al. (2010), who argue that the lower variance in skills among
women contributes to why more women than men are prepared to attend college. Our paper argues that
independent of any differences in the supply of students prepared for college, demand for a college degree is
also higher among women than men.
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variance than for women, and that mechanical skills for women appear to max out near

the male mean. Figure 8c shows that women on average have higher administrative skills

than do men. These differences in mechanical and administrative skill provide a basis for

the gender polarization among non-college occupations shown in Figure 3. They also help

substantiate related research claiming that gender-based occupational segregation arose from

higher mechanical skill among men (Huang, 2014; Rendall, 2017; Welch, 2000).

Aside from the difference in skill profiles, women and men may also receive different

returns for the same skill in the same occupation. Figure 9 plots the returns to different oc-

cupations by skill quintiles for men and women (left and right panels, respectively). Blue bars

represent returns from blue-collar occupations, pink bars represent returns from pink-collar

occupations, and white bars represent returns from white-collar occupations. Comparing

the blue bars between the left and right panels reveals that men receive higher returns from

blue-collar jobs than women do, even among those with the same level of mechanical skill.

On the other hand, the pink bars show that women receive much higher rewards from pink

collar jobs than men do among those with the same level of administrative skill. Lastly,

the white bars show that average returns for white-collar jobs are similar between men and

women.25

Second, Figure 9 shows that different occupations reward different skills. Returns to

blue-collar occupations tend to increase with mechanical skill for men, possibly because

manually intense jobs such as HVAC engineer, material mover, or equipment repairer tend

to require a great degree of mechanical skill. Compensating wage differentials contribute to

the high pay of these occupations, since they are manually challenging even if not cognitively

intense. Returns to pink-collar occupations increase with administrative skill for women,

possibly because office roles such as secretary or clerical worker reward the ability to file

paperwork, coordinate others’ schedules, and quickly enter strings of letters repeatedly into

administrative forms. Returns to white-collar occupations increase with cognitive skill for

both men and women, given that they tend to be intense in abstract tasks such as problem-

solving, computation, and critical thinking.

Together, Figures 8 and 9 suggest that gender differences in skill endowments lead to

comparative advantages at different occupations. This then creates gender differences in

occupational sorting, as shown in Figure 10. Cognitive skill is positively correlated with

25It is unclear why returns differ between men and women who possess the same skill in the same occupa-
tion. We speculate that differences in skill returns could be due to occupational sorting. That is, controlling
for mechanical skill, returns will be greater for men than women in blue-collar jobs since more men tend
to sort into these jobs, making the non-pecuniary amenities of the job higher for men than women. For
example, blue-collar jobs such as HVAC engineer, material mover, or equipment repairer have adapted to a
majority male workforce, which may affect how comfortable women feel in these occupations regardless of
mechanical ability.
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white-collar work for both men and women. As cognitive skill increases, men shift from

blue-collar occupations to white-collar occupations, while women shift from pink-collar oc-

cupations and home-staying to white-collar occupations. Mechanical skill is positively cor-

related with blue-collar occupations only for men. When moving up the quintiles of the

mechanical skill distribution, men increasingly sort into blue-collar occupations and out of

white-collar occupations. For women, high mechanical skill is positively associated with

home-staying and negatively associated with white-collar occupations. Lastly, administra-

tive skill is more relevant for women’s occupation choices than men’s. As administrative

skill increases, the share of women entering pink-collar occupations grows while the share

entering white-collar occupations declines. For men, on the other hand, administrative skill

has little impact on the likelihood of sorting into any of the four occupational choices.

We then examine the correlation between skill endowment and college attendance in

Figure 11. While cognitive skill predicts college-going for both men and women, it explains

more of the variation in men’s college-going. Women with low cognitive skill still attend

college at high rates, while comparable men exhibit low attendance rates. The disparity is

highest among individuals in the first and second quintiles of cognitive skill, but declines

as cognitive skill increases. The patterns are consistent with the idea that women have

worse outside options to attending college than men. Men with low cognitive skills still have

the option of entering blue-collar work, which can pay well, especially for men with high

mechanical skills. Therefore, the compensation from attending college must be sufficiently

high to warrant giving up the high pay from a blue-collar job. In other words, college is

worthwhile only for men whose cognitive skill is sufficiently high relative to their mechanical

skill. In contrast, women’s non-college work options tend to be less lucrative, making it

worthwhile to attend college even if their cognitive ability was relatively low.

Figure 11 shows that as mechanical skill increases, enrollment declines for men but stays

flat for women. The evidence suggests that mechanical skill presents a sharp trade-off be-

tween college and non-college work for men but not women. This interpretation is consistent

with the prior result that higher mechanical skill plays a larger role in whether men enter

blue collar work, which presents especially lucrative outside options to attending college.

Lastly, as administrative skill increases, female enrollment slightly declines but male enroll-

ment does not change. High administrative skill appears to present some trade-off between

college and non-college work for women, in that returns to pink collar work rise for women

with high administrative skill. However, this trade-off is not nearly as stark as the trade-off

that mechanical skill presents for men.

The interactions between college attendance and skill endowments imply different levels

of occupational polarization in the college and non-college labor markets, shown in Figure 12.
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The non-college labor market exhibits severe gender polarization. Few non-college workers

hold white collar occupations, given the complementarity between white collar occupations

and college degrees. Instead, non-college men specialize in blue collar jobs given their higher

mechanical skills, whereas non-college women specialize in pink collar jobs since they tend to

have higher administrative skills. In contrast, the college labor market exhibits less gender

polarization. Both male and female college graduates tend to hold white collar jobs due

to strong complementarities between their cognitive skills and white collar work. Together,

these results recreate the gender polarization in Figure 3 that motivated our study from the

outset.

6.3 The effect of automation on occupation choice and college

enrollment

We next use our estimated model to quantitatively assess how much of the gender gap is

attributable to changes in automation between 1980 to 2000. We incorporate local variation

in routinization to assess the impact on college-going based on the commuting zone of res-

idence. We then simulate the counterfactual trajectory of occupation choices for the 1979

cohort assuming that automation was the only change from 1980 to 2000 that impacted skill

prices. All other primitive parameters, including the utility value for home-staying, are kept

constant.26

Table 7 reports our simulated college enrollment rates between 1980 to 2000. Although

routinization increased the college attendance rate for both men and women, the growth rate

for women is ten times as large. Female enrollment grew 6 percentage points, accounting

for 63.2% of the observed 9.5 percentage point change between 1980 to 2000. In contrast,

male enrollment grew by only 0.6 percentage points, accounting for 23.1% of the observed

2.6 percentage point change. The growth in college-going is driven by the decreasing returns

to pink-collar occupations relative to white-collar occupations. Between 1980 to 2000, we

simulate a rise of 18.5 percentage points in white-collar jobs, with the majority of this

change driven by the shift out of pink-collar jobs (17.7 percentage points). The simulated

change in occupation shares is consistent with the empirical fact that many female-dominated

occupations disappeared from the non-college labor market over time, highlighted in Figure

3. By way of comparison, the share of men who left blue-collar occupations and entered white

collar occupations was only one-tenth as large, at 1.2 and 1.8 percentage points respectively.

Lastly, our simulation predicts a slight rise in the proportion of people that leave the labor

26However, labor force participation may still evolve over time if routinization changed the difference in
utility from working versus not working.
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force. This finding suggests that routinization decreased demand for certain workers, which

aligns with prior findings of the negative impact of automation on labor force participation

(Grigoli et al., 2020).

7 Conclusion

The college gender gap reversed in 1970-1980 when women exceeded men in college enroll-

ment. This came as a surprise to social scientists, who anticipated that male and female

enrollment rates would eventually converge. We argue that women’s greater enrollment is

partly attributable to their worse outside job options. We establish two stylized facts based

on the premise that the non-college labor market is highly polarized by gender, in that most

occupations were male- or female-dominated and few occupations were gender-equal. First,

non-college occupations dominated by men tend to pay better than those dominated by

women, suggesting that job opportunities may be worse for high school graduates if they are

female. Second, this discrepancy grew over time as automation displaced routine-intensive

occupations, which employed the majority of young, working non-college women.

Informed by these stylized facts, we instrument for routinization. Our instrument predicts

the share of occupations intensive in administrative activity based on job posting data from

major newspapers in 1950-2000. The intuition behind our instrument is that industries

with higher administrative activity involve more routine tasks, and local labor markets with

greater historic shares of these industries would experience more routinization over time.

Consistent with this intuition, our first stage regressions show that local labor markets

with higher predicted administrative shares in 1950 experienced greater routinization as

workplaces automated. This decline led to significant enrollment growth among 18-25 year

old women, but effects for men are directionally smaller and not systematically significant.

We estimate that moving from a commuting zone which experienced the 25th percentile of

routinization to one which experienced the 75th percentile of routinization corresponds to a

3.34 rise in female enrollment.

To investigate the mechanisms that explain these results at the individual level, we de-

velop a two-period discrete choice model. The model embeds instrumental variation from

the job posting data to examine how routinization affects the value of different skills. Us-

ing a maximum likelihood procedure, we find that gender differences in skills lead men to

sort into manual-intensive work and women into routine-intensive work. The resulting gen-

der polarization among non-college occupations translates to a comparative advantage for

men in non-college work in general, given the greater pay in manual occupations relative

to administrative occupations. Over time, automation decreased the value of administra-
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tive skill in routine-intensive work, lowering the opportunities for non-college women and

exacerbating their comparative disadvantage in non-college work. The model argues 1) that

women’s college premium increased relative to men’s over time and 2) that the efficient col-

lege enrollment rate for women is higher than for men given men’s comparative advantage

in non-college work.

Given prior research showing that boys face greater struggles in school (Becker et al.,

2010; Bertrand and Pan, 2013; Cappelen et al., 2019; Goldin et al., 2006), popular media has

framed the college gender gap as a problem rooted in men’s “under-investment” in college.

Our results indicate that men’s relative “under-investment” is natural given that their job

options are plentiful and lucrative even with only a high school diploma. Similarly, women’s

relative “over-investment” is a rational response to their bleak non-college job options. Given

the gender-based sorting we document in the non-college labor market, we argue that it is

efficient for a gender gap to exist.
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Table 1: Change in Occupation Groups, 1960-2000

Share among 18-30 Year Old Workers
Females (%) Males (%)

1960-2000 1960 1980 2000 1960-2000 1960 1980 2000
(1) (2) (3) (4) (5) (6) (7) (8)

Office and Administrative Support Occupations -19.55 45.23 35.17 25.68 1.05 7.64 6.84 8.69

Production Occupations -8.13 13.68 10.50 5.55 -6.01 17.73 17.73 11.72

Agriculture and Construction Occupations -0.48 1.19 0.82 0.71 4.34 8.84 13.81 13.18

Installation, Maintenance, and Repair Workers 0.26 0.16 0.40 0.41 0.67 6.42 7.54 7.09

Transportation and Material Moving Occupations 1.11 0.86 2.81 1.97 -4.85 15.23 13.91 10.38

Computer, Mathematical, Engineering, and Science Occupations 2.30 1.06 2.41 3.36 1.13 6.29 5.91 7.42

Service (Food, Maintenance, Sales) Occupations 4.17 23.90 20.69 28.06 10.74 10.96 15.13 21.70

Healthcare and Protective Occupations 4.74 6.39 10.60 11.13 2.55 2.65 4.26 5.20

Community, Social Services, Education, Arts, Media Occupations 6.70 5.14 8.75 11.84 1.95 3.23 4.48 5.19

Management, Business, Science, Arts Occupations 9.21 2.05 7.85 11.26 0.36 9.05 10.39 9.42

Notes: Occupation groups as share of 18-30 year old workforce. Columns (1) and (5) report the change (in percentage points) from 1960 to
2000. Data from Census.

Table 2: OLS Regression of College Enrollment on Routinization

College enrollment
(1) (2) (3) (4)

A. Women
Routinization 0.416 0.448 0.431 0.467

(0.096)∗∗∗ (0.098)∗∗∗ (0.094)∗∗∗ (0.095)∗∗∗

Observations 3610 3610 3610 3610

B. Men
Routinization 0.215 0.221 0.235 0.243

(0.120)∗ (0.122)∗ (0.128)∗ (0.130)∗

Observations 3610 3610 3610 3610

Commuting zone FE
Year FE
Median cognitive earnings
Lagged RTI share

OLS regressions of enrollment on instruments at the commuting zone-year level. All regressions include demographic controls for the propor-
tion of female, Black, and Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting
zone, labor force participation, manual occupation share, and 10-year lagged major industry shares: services, manufacturing, retail, and
mining. Columns (2) and (4) add median annual log earnings for occupations in the top third of abstract-intensive tasks. Columns (3) and
(4) additionally control for the 10-year lag of RTI share. Standard errors clustered at commuting zone level. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.
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Table 3: First Stage Regression of Routinization on Instruments

Routinization
(1) (2) (3) (4)

Administrative share IV 0.387 0.383 0.388 0.383
(0.026)∗∗∗ (0.027)∗∗∗ (0.027)∗∗∗ (0.027)∗∗∗

F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

Commuting zone FE
Year FE
Median cognitive earnings
Lagged RTI share

First stage regression of RTI share on instruments. All regressions include demographic controls for the proportion of female, Black, and
Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting zone, labor force participation,
manual occupation share, and 10-year lagged major industry shares: services, manufacturing, retail, and mining. Columns (2) and (4) add
median annual log earnings for occupations in the top third of abstract- intensive tasks. Columns (3) and (4) additionally control for the 10-
year lag of the share of high-RTI occupations. Standard errors are clustered at the two-digit industry level and adjusted using the correction
procedure of Adao et al. (2019). Olea-Pflueger F-statistics reported using AKM (2019) standard errors. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗

p < 0.01.

Table 4: Reduced Form and Second Stage Regressions

College enrollment
(1) (2) (3) (4)

A. Reduced form regression, women
Administrative share IV 0.224 0.232 0.224 0.232

(0.062)∗∗∗ (0.062)∗∗∗ (0.061)∗∗∗ (0.061)∗∗∗

Observations 3610 3610 3610 3610

B. Reduced form regression, men
Administrative share IV 0.169 0.170 0.169 0.170

(0.092)∗ (0.092)∗ (0.091)∗ (0.091)∗

Observations 3610 3610 3610 3610

C. Second stage regression, women
Routinization 0.578 0.606 0.578 0.606

(0.163)∗∗∗ (0.166)∗∗∗ (0.160)∗∗∗ (0.161)∗∗∗

[0.258,0.898] [0.281,0.931] [0.265,0.891] [0.291,0.922]
First Stage F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

D. Second stage regression, men
Routinization 0.436 0.444 0.436 0.444

(0.236)∗ (0.238)∗ (0.232)∗ (0.234)∗

[-0.026,0.898] [-0.022,0.910] [-0.019,0.891] [-0.015,0.904]
First Stage F-statistic 214.572 204.993 204.654 201.452
Observations 3610 3610 3610 3610

Commuting zone FE
Year FE
Median cognitive earnings
Lagged RTI share

This table presents the reduced form (panels A-B) and second stage (panels C-D) estimates. Panels A and C display the estimates
for women, while panels B and D display the estimates for men. All regressions include demographic controls for the proportion of
female, Black, and Hispanic residents and by 10-year age bin. All regressions also control for U.S. census division, year, commuting
zone, labor force participation, manual occupation share, and 10-year lagged major industry shares: services, manufacturing, retail, and
mining. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of Adao et al. (2019).
Montiel Olea-Pflueger first stage F-statistics reported using AKM (2019) standard errors. The second stage estimates include Anderson-
Rubin (1949) weak instrument robust confidence intervals using the AKM (2019) correction procedure. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 5: Second Stage Regressions, Additional Specifications

(1) (2) (3) (4) (5) (6) (7)
A: Female Enrollment

Routinization 0.495 0.607 0.628 0.736 0.365 0.548 0.784
(0.167)∗∗∗ (0.158)∗∗∗ (0.161)∗∗∗ (0.242)∗∗∗ (0.145)∗∗ (0.145)∗∗∗ (0.145)∗∗∗

[0.167,0.822] [0.297,0.917] [0.312,0.944] [0.263,1.210] [0.080,0.650] [0.213,0.884] [0.350,1.219]
F-statistic 137.280 205.558 182.001 51.040 203.540 161.233 111.715
Observations 3610 3600 3610 3610 3610 3610 3610

B: Male Enrollment
Routinization 0.315 0.503 0.441 0.540 0.254 0.432 0.616

(0.266) (0.234)∗∗ (0.238)∗ (0.315)∗ (0.196) (0.196) (0.196)∗

[-0.207,0.838] [0.044,0.961] [-0.025,0.907] [-0.077,1.157] [-0.129,0.638] [-0.101,0.964] [-0.048,1.280]
F-statistic 137.280 205.558 182.001 51.040 203.540 161.233 111.715
Observations 3610 3600 3610 3610 3610 3610 3610

Minimum controls
Excluding Boston and NYC
Control for abstract occupation share
RTI share: non-college workers
RTI share: college and non-college workers
IV: Administrative Share (top third)
IV: Administrative Share (top half)
IV: Administrative Activities
IV: Clerical Requirements

Two stage least squares regressions, additional specifications. Column (1) uses a minimum set of controls: total commuting zone population, year dummies, census region dummies, commuting zone
dummies, manual occupation share, proportion by gender, race, and ten-year age bin. Columns (2)-(7) start from the basic specification of Table 4 Column (1). Column (2) excludes commuting
zones that contain Boston and New York City. Column (3) additionally controls for abstract occupation share. Column (4) uses the routinization of all workers, rather than only non-college
workers used in the main specification. The IV in column (5) uses the share of occupations in the top half of administrative activity, rather than the top third. Column (6) uses the administrative
activities IV, and column (7) the clerical requirements IV. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of Adao et al. (2019). Montiel
Olea-Pflueger F-statistics reported using AKM (2019) standard errors. Anderson-Rubin (1949) confidence intervals reported using AKM (2019) correction. ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 6: Goodness of Model Fit

Women Men
NLSY79 Sim NLSY79 Sim

(1) (2) (3) (4)

Occupation choices

White collar 0.409 0.407 0.369 0.384
Blue collar 0.055 0.056 0.509 0.497
Pink collar 0.337 0.328 0.059 0.050
Not working 0.199 0.209 0.064 0.069

Average log wages by occupation

White collar 1.907 1.956 2.069 2.110
Blue collar 1.631 1.622 1.779 1.801
Pink collar 1.416 1.444 1.570 1.571

Education choices

High school 0.395 0.368 0.517 0.504
College 0.605 0.632 0.483 0.496

This table compares conditional moments from the model simulation with those from the NLSY79 data. Columns (1)-(2) compare moments
for female workers and Columns (3)-(4) compare moments for male workers. The top panel displays occupation choices, the middle panel
displays log average wages, and the bottom panel displays education choices.

Table 7: Simulated Changes in Occupation and Education due to Routinization

Women Men
Year 1980 1990 2000 1980-2000 1980 1990 2000 1980-2000

(1) (2) (3) (4) (5) (6) (7) (8)

Occupation choices

White collar 0.407 0.542 0.592 0.185 0.384 0.396 0.402 0.018
Blue collar 0.056 0.063 0.064 0.008 0.497 0.489 0.485 -0.012
Pink collar 0.328 0.194 0.151 -0.177 0.050 0.050 0.050 0.000
Not working 0.209 0.201 0.193 -0.016 0.069 0.065 0.063 -0.006

Education choices

High school 0.368 0.322 0.308 -0.060 0.504 0.500 0.498 -0.006
College 0.632 0.678 0.692 0.060 0.496 0.500 0.502 0.006
This table presents simulated education and occupation choices for the NLSY79 cohort. Columns (1)-(3) report simulated choices for women
based on changes in predicted RTI share over time. Column (4) reports the difference in simulated choices for women from 1980 to 2000.
Columns (5)-(7) report simulated choices for men based on changes in predicted RTI share over time. Column (8) reports the difference in
simulated choices for men from 1980 to 2000.
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Figure 1: College Enrollment by Gender, 1950-2000

Proportion of 18-25 year olds ever enrolled in college. Solid lines represent male enrollment and dashed lines represent female

enrollment. Data from the U.S. census.

Figure 2: Occupations by Gender Composition and Percentile Median Earnings, 2000

(a) Non-College Occupations
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Occupations by proportion female and median annual earnings percentile in 2000. Panel a depicts occupations with 50% or

fewer college graduates in 2000. Panel b depicts occupations with 50% or more college graduates in 2000. Navy markers indicate

occupations where women comprise less than 30% of all workers, with dark navy markers representing occupations with earnings

above the 40th percentile and light navy markers representing occupations with earnings below the 40th percentile. Maroon

markers indicate occupations where women comprise 30% or more of all workers. Data from the U.S. census.
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Figure 3: Occupational Dispersion by Gender Composition

(a) Non-College Occupations
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Distribution of occupations by proportion female in 1970 and 2000 for “non-college” occupations (a) and “college” occupations

(b). “Non-college” occupations are those with 50% or fewer college graduates, while “college” occupations are those with over

50% college graduates. The designation of occupations as “college” or “non-college” changes each year based on the education

composition of workers. Individuals aged 18-30 years old. Data from the U.S. census.

Figure 4: Occupational Dispersion by Gender Composition, Non-College Occupations

(a) Routinizable Occupations
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Distribution of occupations by proportion female in 1970 and 2000 for non-college occupations. Panel a shows routinizable

occupations (top third of RTI), while panel b shows non-routinizable occupations (below the top 3rd of RTI). Individuals aged

18-30 years old. Data from the U.S. census and Autor and Dorn (2013).
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Figure 5: Changes in Routine Task Intensity (RTI), 1960-2000

(a) RTI by Gender
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Panel a plots standardized routine task intensity (RTI) of work held by men and women. Panels b and c plot labor share by high versus low RTI occupations. Panel b plots

the labor share by RTI among women (red) and the labor share by RTI among men (blue). Panel c plots the labor share among women by RTI and education. Data from the

U.S. census and Autor and Dorn (2013). 18-30 year olds.

Figure 6: Two Period Dynamic Discrete Choice Model

Description of structural discrete choice model. In Stage 1, individuals decide whether or not to attend college. In Stage 2, they choose their occupation from four choices: blue

collar, white collar, pink collar, or home staying. The model is solved via backward induction.
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Figure 7: Factor Analysis Loadings

(a) Male (b) Female

Loadings calculated from exploratory factor analysis (quartimax rotation). The red horizontal line marks the statistically
significant threshold (see Diekhoff, 1992; Sheskin, 2004). arith = arithmetic reasoning; auto= automotive information and shop
information; code = coding speed; electr = electronics information; math = mathematics knowledge; mechan = mechanical
comprehension; numer = numerical operations; para = paragraph comprehension; word = word knowledge.

Figure 8: Distribution of Skills by Gender
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Distribution of skills by gender. The blue distribution is for men, and the red distribution is for women. Panel (a) presents the

estimated distribution of cognitive skill, while panels (b) and (c) present analogous results for mechanical skill and administrative

skill, respectively.
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Figure 9: Occupational Returns by Skill Quintile and Gender
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We simulate each individual 200 times based on the estimates of the model to calculate average returns to each occupations

by skill quintiles and gender. Returns include both the wage return and non-pecuniary returns. The upper panels present the

effect of cognitive skill by gender, integrating out the effect of the other two dimensions of ability. The middle panel and the

lower panel present analogous results for mechanical skill and administrative skill, respectively.

45



Figure 10: Occupation Choice Distribution by Skill Quintile and Gender
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We simulate each individual 200 times based on the estimates of the model to calculate the distribution of occupation choices

by skill quintiles and gender. The upper panels present the effect of cognitive skill by gender, integrating out the effect of the

other two dimensions of skills, while the middle panel and the lower panel present analogous results for mechanical skill and

administrative skill, respectively.
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Figure 11: College Attendance Rates by Skill Quintiles
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We simulate each individual 200 times based on the estimates of the model to calculate the college attendance rate by skill

quintile and gender. The vertical axis is the fraction of workers in each skill group. The upper panels present the effect of

cognitive skill, integrating out the effect of the other two dimensions of skills. The middle panel and lower panel present

analogous results for mechanical skill and administrative skill, respectively.

Figure 12: Distribution of Occupations by Gender and Education
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We simulate each individual 200 times based on the estimates of the model to calculate the occupation distribution by gender and

education levels. The vertical axis is the fraction of workers in each occupation group. The upper panels present occupation

distribution for college-goer, with blue bars for men and red bars for women. The lower panel present present occupation

distribution for high school graduates, with blue bars for men and red bars for women.
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Online Appendix - For Online Publication

A Data Appendix

A.1 Census microdata

Our first data sets come from the decennial census microdata from 1950 to 2000, which are
conducted by the U.S. Census Bureau and made publicly available through the Integrated
Public Use Microdata Series (IPUMS, Ruggles et al. (2021)). For enrollment, we only exam-
ine 18-25 year olds to ensure that we only detect changes in education among those closest
to college enrollment age. Following Acemoglu and Autor (2011), we restrict the sample to
full-time (at least 35 hours worked per week), full-year (at least 40 weeks worked per year)
workers.

The college enrollment variable is constructed using the harmonized EDUCD variable.
Individuals are coded as college enrollees if they report having at least some college education.
They are coded as never having enrolled in college if their highest reported level of educational
attainment was a high school diploma or equivalent. Those who did not report an education
level were excluded from the analysis.

Annual earnings data is obtained from the variable INCWAGE, the pre-tax individual
income from wages and salary. Annual earnings are only computed for workers who report
working for wages or salary. We exclude individuals who report being self-employed or an
unpaid family worker and individuals who report working no weeks in the previous year.
Annual earnings are topcoded at the pre-determined Census topcode levels, which vary from
year to year. They are bottom coded as the 1st percentile of reported earnings for each year.
All earnings are inflated to 2008 dollars.

All regressions are conducted at the commuting zone-year level. We merge the census
data to corresponding commuting zones using the crosswalks provided by Autor and Dorn
(2013). Demographic characteristics, occupations, education, earnings, and work variables
are collapsed to the commuting zone level using labor supply weights calculated following
the method of Acemoglu and Autor (2011).

Appendix Table A.1 presents summary statistics by decade from 1960 to 2000. Each
variable represents the average across commuting zones. Female enrollment increases steadily
over the decades, while male enrollment quickly rises from 1960-1970, then declines in 1980
before rising again. The proportion of women in each commuting zone stays constant at
50-51%, and the proportion of blacks also hold constant at 8% over our analysis period. The
share of Hispanics grows steadily over time, from 3% in 1960 to 8% in 2000.

A.2 Data from Autor and Dorn (2013)

To obtain information on work content, we merge the census data to the occupational task
intensity data compiled by Autor and Dorn (2013) using the OCC1990 variable, which is
harmonized across all years. Autor and Dorn (2013)’s Routine Task Intensity (RTI) measure
is the primary measure we use to determine how routine-intensive an occupation is. Following
Autor and Dorn (2013), we classify an occupation as highly routine-intensive occupation if
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its RTI measure falls in the top third of all RTI in 1980. Out of 330 total occupations, 113
occupations fit this criterion.

Our main analysis concerns RTI share, the proportion of jobs in a commuting zone that
are highly routine intensive. Routinization, the main endogenous regressor in the two stage
least squares approach, is the reduction in RTI share from 1950 base levels. We restrict the
RTI share measure to only 25-65 year olds. If youth choose to enroll in college for reasons
not captured by our data, that would mechanically lower labor share and bias the estimated
causal relationship between labor share and college enrollment. We therefore exclude 18-25
year olds to avoid these simultaneity concerns. In our main specifications, we focus on the
RTI share among non-college workers, since we aim to isolate the impact of routinization
on non-college employment opportunities. Appendix Table A.1 summarizes this RTI share
measure, averaged over all commuting zones. The RTI share among non-college workers rises
from 1960 to 1980, from an average of 15.4% across all commuting zones to 21.5%. It falls
from 1980 on, reaching 13.6% in 2000. These trends are roughly consistent with the change
in RTI share depicted in Figure 5.

We also use Autor and Dorn (2013)’s measures on the manual and abstract task content of
occupations as control variables in our two stage least squares (2SLS) approach. Specifically,
we control for predicted manual and abstract occupation share, which are constructed in
parallel ways. For both measures, we interact a commuting zone’s 1950 industry composition
with the share of occupations in the top third of manual or abstract content.

manual occupation sharect =
∑
i

Ei,c,1950

∑
k Li,k,19501[manualk,1980 > manualP66

1980]∑
k Li,k,1950

abstract occupation sharect =
∑
i

Ei,c,1950

∑
k Li,k,19501[abstractk,1980 > abstractP66

1980]∑
k Li,k,1950

where i indexes industry, c indexes commuting zone, and k indexes occupation. Ei,c,1950

is the share of industry i in commuting zone c in 1950. Li,k,1950 is the number of workers
in industry i, occupation k in 1950. We follow Autor and Dorn (2013) and define highly
manual and highly abstract occupations based on the 1980 distribution, which was when
RTI peaked in the census data. 1[manualk,1980 > manualP66

1980] equals 1 for occupations in the
top third of manual content in 1980 and 0 otherwise. 1[abstractk,1980 > abstractP66

1980] equals
1 for occupations in the top third of abstract content in 1980 and 0 otherwise. We construct
our controls for manual and abstract occupation share in this way since contemporaneous
occupational shares may depend on employment shares and education decisions.

A.3 Data from Atalay et al. (2020)

Our instrumental variables come from Atalay et al. (2020). To extract occupational charac-
teristics, Atalay et al. (2020) perform textual analysis on advertisements for job vacancies
from The Boston Globe, The New York Times, and The Wall Street Journal from 1940 to
2000. For each occupation in each year, they characterize the work styles, knowledge require-
ments, and task content desired by employers based on measures used in the literature. They
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compile one set of measures to match information in the Occupational Information Network
(O*NET), which describes the activities, tasks, and skills associated with thousands of jobs
throughout the U.S. economy (see Occupational Information Network, 2022 and Hershbein
and Kahn (2018)).

Using this set of measures, we construct our main instrumental variable, which predicts
the administrative share in a commuting zone. We define administrative share as the propor-
tion of jobs that are in the top third of administrative activity based on the 1950 occupational
distribution, when administrative activity was at its highest. According to O*NET, adminis-
trative activity consists of “performing day-to-day administrative tasks such as maintaining
information files and processing paperwork” (O*NET Work Activity 4Ac1; Occupational In-
formation Network, 2022). Occupations that involve high amounts of administrative activity
include receptionists, information clerks, secretaries, and administrative assistants. Atalay
et al. (2020) compile an occupation-level measure of administrative activity based on men-
tions per job posting, using keywords such as “filing,” “paperwork,” “administrative,” and
“typing”. Summary statistics in Appendix Table A.1 show that the administrative share
instrument exhibits a sizable decline over time, from 0.298 in 1960 to 0.0775 in 2000. This
is consistent with the decline in RTI share due to routinization during this time period.

We also use predicted administrative activity as a separate instrument. Rather than as a
share, this instrument is measured as the frequency of keyword mentions (“administrative”,
“paperwork”, “typing”, and “filing”) per job posting. We construct the administrative
activity instrument as follows:

administrative activityct =
∑
i

Ei,c,1950

∑
k

admini,k,t

where admini,k,t represents the average number of keywords for administrative activity per
job posting associated with occupation k in industry i at year t. Ei,c,1950 is the share of
industry i in commuting zone c in 1950.

Our last instrument is constructed from Atalay et al. (2020)’s data on clerical require-
ments, which corresponds to whether an occupation requires “knowledge of administrative
and clerical procedures and systems such as word processing, managing files and records,
stenography and transcription, designing forms, and other office procedures and terminol-
ogy” (O*NET Knowledge Requirement 2C1b; Occupational Information Network, 2022).
Examples of occupations high in clerical requirements are word processors, typists, secre-
taries, administrative assistants, and office clerks. Atalay et al. (2020) classify a job ad as
specifying clerical requirements if it includes words such as “clerical,” “secretarial,” “stenog-
raphy,” or “typing”.27 It is constructed in a parallel form to the administrative activity

27The data set has a few other variables related to routine work, but they do not isolate routine tasks
as cleanly as the administrative activity or clerical requirements variables. O*NET includes descriptions of
whether an occupation requires knowledge of administration and management (O*NET Knowledge Require-
ment 2C1a). It involves overseeing, managing, and coordinating with others, which are considered abstract
tasks that would make an occupation harder to automate. Atalay et al. (2020) also characterize occupations
based on the task content classification of Spitz-Oener (2006). Specifically, Spitz-Oener (2006) found that
routine cognitive tasks made an occupation more susceptible to automation, ceteris paribus. However, in
the Atalay et al. (2020) data, an occupation’s routine cognitive task content depends on ad words such as
“correcting,” “calculating,” “measuring,” “fixing,” and “rectifying,” which are quite vague and encompass a
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instrument:

clerical requirementsct =
∑
i

Ei,c,1950

∑
k

clerreqi,k,t

where clerreqi,k,t represents the average number of keywords for clerical requirements per job
posting associated with occupation k in industry i at year t. Ei,c,1950 is the share of industry
i in commuting zone c in 1950.

A.4 National Longitudinal Survey of Youth 1979

The National Longitudinal Survey of Youth 1979 (NLSY79) surveys the same 12,686 from
1979 until present day. Surveys were conducted annually until 1994, and then once every
two years. We restrict our sample to the 11,155 individuals who finished at least 12th grade
or hold a GED degree. We then further drop individuals who were employed but did not
have wage information between 25 to 35, leaving a sample size of 8,540. Finally, we exclude
individuals who were missing ASVAB test scores or relevant family background information.
Our final sample consists of 2,505 men and 2,490 women. Appendix Table A.3 presents
summary statistics for key variables in the model.

A.4.1 Measuring skill heterogeneity

We use the NLSY79’s Armed Services Vocational Aptitude Battery (ASVAB) test scores
to construct multi-dimensional skill profiles at the individual level. In 1981, over 90% of
NLSY79 respondents completed the ASVAB. The ASVAB is comprised of nine subtests:
arithmetic reasoning, word knowledge, paragraph comprehension, mathematics knowledge,
numerical operations, coding speed, automotive and shop information, electronics informa-
tion, and mechanical comprehension. Some of these subtests are used to construct the Armed
Forces Qualification Test (AFQT) score, a common measure of cognitive ability in the lit-
erature on skill returns.28 Rather than use AFQT directly, we take a different approach by
using exploratory factor analysis (EFA) on all nine subtests to construct multiple dimensions
of skill. This technique is frequently used to avoid ambiguity in the number of latent factors
and the underlying factor structure of a set of variables (Diekhoff, 1992).

Exploratory Factor Analysis (EFA) enables us to make use of the correlation structure in
scores among the nine ASVAB subtests when constructing our skill measures. The analysis
suggests that two separate skills (“factors”) are necessary to explain the variation in ASVAB
scores.29 Figure 7 displays the estimated factor loadings. For both men and women, the first
factor has significant loadings on all subtests. It is highest for arithmetic reasoning, word

greater variety of tasks than those that were routinized.
28Different studies use slightly different subtests to construct AFQT scores. Arithmetic reasoning, para-

graph comprehension, and word knowledge are commonly used. However, mathematics knowledge, numerical
operations and coding speed have also been adopted to construct the AFQT (see, among many others, Neal
and Johnson, 1996; Cameron and Heckman, 1998; Heckman and Cameron, 2001; Ellwood, Kane, et al., 2000;
Kautz and Heckman, 2014; Heckman et al., 2006).

29Our EFA approach follows that of Prada and Urzúa (2017), who also find that a two-factor structure
was most appropriate for explaining the variance in ASVAB test scores for men.

O4



knowledge, mathematics knowledge, and paragraph comprehension, which are designed to
measure cognitive ability and comprise the main components of the AFQT.

There are gender differences in factor loadings for the second factor. For men, load-
ings are statistically significant only for the automotive and shop information, electronics
information, and mechanical comprehension.30 The United States Department of Defense
designed these subtests to measure mechanical skill, since they evaluate the ability to solve
simple mechanics problems and understand basic mechanics principles (Welsh et al., 1990).
For women, loadings for the second factor are statistically significant only for coding speed
and numerical operations. The Department of Defense classifies these subtests into the ad-
ministrative qualification area, since they measure the ability to memorize strings of letters
or perform quick arithmetic operations on the fly (ASVAB Prep Tests, 2022).

B Robustness Appendix

B.1 Two Stage Least Squares Approach: Additional Instruments

The administrative activity and clerical requirement instruments are constructed similarly
and use similar identification assumptions. In both cases, we obtain variation at the com-
muting zone level by interacting the frequency of mentions in job postings with the industry
share in 1950:

IVct =
I∑
i=1

Ei,c,1950

∑
k∈i

Zkt (10)

where Zkt represents the number of mentions of administrative activity or clerical require-
ments per job posting for occupation k in year t. All other indices are defined as above.

The intuition is that commuting zones with high historic shares of industries intensive
in administrative activity or clerical requirements would experience greater routinization
over time. The identifying assumption for these instruments is similar to the identifying
assumption for the administrative share instrument. The administrative activity or clerical
requirements in an occupation at the national level should only influence enrollment in ways
captured by RTI share at the commuting zone level. That is, local omitted variables that
influence both RTI share and college enrollment should have negligible influence on the
administrative activity or clerical requirements of an occupation at the national level.

Appendix Table A.2 shows the first stage regression estimates in columns (6) and (7).
Point estimates are 3.217 for the administrative activities instrument and 1.460 for the cler-
ical requirements instrument (p < 0.01). They are larger than the 0.315 to 0.389 estimated
using the administrative share instrument, since the units are in terms of mentions per job
posting rather than shares. Our estimates indicate that commuting zones predicted to have
1 more mention of administrative activity per 100 job postings in 1950 will experience 3.22
percentage points more routinization in future years. Commuting zones predicted to have
1 more mention of clerical requirements per 100 job postings in 1950 will experience 1.46
percentage points more routinization in future years. Montiel Olea-Pflueger F-statistics are

30Factor loadings exceeding 0.3 are considered statistically significant (see Diekhoff, 1992; Sheskin, 2004).
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161.23 for the administrative activities instrument and 111.72 for the clerical requirements
instrument.

B.2 Structural Model Identification

Our model identification strategy follows those formally laid out in Carneiro et al. (2003)
and Prada and Urzúa (2017), so we only sketch out the main components below.

We first identify the loading factors that are exclusive to the cognitive skill measures

Cj,i = λcjθc,i + ecj,i, j = 1, 2, 3, 4

We normalize the loading associated with mathematics knowledge to 1 (λc2 = 1) to nonpara-

metrically identify the other three loading factors {λc1, λc3, λc4}. For example, λc1 =
Cov(Cj ,C1)

Cov(Cj ,C2)
=

λcjλ
c
1var(θc)

λcjλ
c
2var(θc)

=
λc1
λc2

because λc2 has been normalized to be 1. We can then apply Klotarski’s theo-

rem to secure nonparametric identification of the distributions of θc and ecj,i, with j = 1, 2, 3, 4
(Carneiro et al., 2003).

We proceed to summarize how we identify the loading factors in the mechanical skill
measures

Mj,i = λcjθc,i + λmj θm,i + emj,i, j = 5, 6, 7

We specify a linear correlation between θc,i and θm,i:

θm,i = α1θc,i + θ1,i

where θ1 is an additional factor, assumed to be independent of θc. The above mechanical
skill measure equation can be written as

Mj,i = λcjθc,i + λmj θm,i + emj,i
= λcjθc,i + λmj (α1θc,i + θ1,i) + emj,i

= βjθc,i + λmj θ1,i + emj,i

j = 5, 6, 7

where βj = λcj + λmj α1, j = 5, 6, 7. Under this setup, we can decompose the identification
strategy into three steps.

1. Once we identify the variance of cognitive skill var(θc) and the loading factors associ-
ated with the cognitive measures, we can recover βj from Cov(Mj, Cj′) = λcj′βjvar(θc).

2. We normalize mathematics knowledge: λm7 = 1. This secures the identification of the

other factor loadings λm5 and λm6 in the mechanical test score system: λm5 = cov(M5,M6)
cov(M6,M7)

and λm6 = cov(M5,M6)
cov(M5,M7)

. We can then apply Klotarski’s theorem to nonparametrically
identify the distributions of θ1 and emj,i, with j = 5, 6, 7.

3. To identify α1, we assume the factor loading of cognitive skill on automotive shop
information test is 0 (λc5 = 0). This implies that the cognitive factor θc affects the first
mechanical test score M5 only indirectly, through its correlation with the mechanical
factor θm. We can then recover α1 from the equation β5 = λm5 α1.
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Identification for the loading factors in the administrative skill equations follow a similar
process. We first impose

θa,i = α2θc,i + θ2,i

where θ2 is an additional factor, assumed to be independent of θc. The administrative
measure equations can be rewritten as follows:

Aj,i = λcjθc,i + λajθa,i + eaj,i
= λcjθc,i + λaj (α2θc,i + θ2,i) + eaj,i

= γjθc,i + λajθ2,i + eaj,i

j = 8, 9

where γj = λcj + λmj α2, j = 8, 9. Finally, we impose the normalization assumptions λc9 =
0, λa9 = 1, where j = 9 denotes the numerical operations subtest.

C Additional Tables and Figures

Table A.1: Summary Statistics, U.S. Census Data
1960 1970 1980 1990 2000 All years

Female enrollment 0.217 0.348 0.407 0.502 0.529 0.376
(0.00306) (0.00361) (0.00348) (0.00363) (0.00341) (0.00252)

Male enrollment 0.228 0.381 0.313 0.388 0.397 0.305
(0.00377) (0.00404) (0.00337) (0.00390) (0.00363) (0.00214)

RTI share 0.154 0.215 0.179 0.152 0.136 0.161
(0.00136) (0.00170) (0.00153) (0.00125) (0.00117) (0.000741)

Admin share IV 0.298 0.189 0.175 0.180 0.0775 0.228
(0.00180) (0.00133) (0.00132) (0.00105) (0.000452) (0.00189)

Population 565149.2 555278.7 310933.0 340498.1 386447.3 394666.5
(82541.9) (59610.9) (31270.0) (34956.9) (39302.9) (20208.0)

% female 0.502 0.510 0.511 0.511 0.506 0.505
(0.000450) (0.000360) (0.000382) (0.000366) (0.000387) (0.000193)

% black 0.0842 0.0801 0.0760 0.0769 0.0815 0.0808
(0.00497) (0.00425) (0.00431) (0.00430) (0.00445) (0.00187)

% Hispanic 0.0317 0.0326 0.0487 0.0575 0.0800 0.0460
(0.00339) (0.00310) (0.00400) (0.00437) (0.00492) (0.00159)

% ages 18-25 0.0858 0.114 0.129 0.0988 0.0969 0.105
(0.000656) (0.000679) (0.000788) (0.000834) (0.000820) (0.000359)

% ages 25-35 0.117 0.113 0.152 0.156 0.123 0.135
(0.000528) (0.000392) (0.000628) (0.000593) (0.000609) (0.000349)

% ages 35-45 0.123 0.107 0.106 0.143 0.154 0.128
(0.000386) (0.000288) (0.000324) (0.000469) (0.000368) (0.000312)

% ages 45-55 0.111 0.108 0.0961 0.0997 0.134 0.109
(0.000362) (0.000286) (0.000265) (0.000305) (0.000417) (0.000237)

% ages 55-65 0.0864 0.0942 0.0958 0.0892 0.0925 0.0903
(0.000539) (0.000395) (0.000454) (0.000382) (0.000421) (0.000204)

% ages 65 or older 0.0969 0.111 0.126 0.143 0.143 0.117
(0.000943) (0.000934) (0.00110) (0.00110) (0.00106) (0.000530)

Summary statistics for U.S. census sample, 1960-2000. The sample is restricted to individuals who have finished high school or hold a GED.
All summary statistics represent the average across commuting zones. Standard errors in parentheses.
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Table A.2: First Stage Regressions, Additional Specifications

(1) (2) (3) (4) (5) (6) (7)
IV: Admin Share (top third) 0.355 0.389 0.382 0.315

(0.030)∗∗∗ (0.027)∗∗∗ (0.028)∗∗∗ (0.044)∗∗∗

IV: Admin Share (top half) 0.350
(0.025)∗∗∗

IV: Admin Activities 3.217
(0.253)∗∗∗

IV: Clerical Requirements 1.460
(0.138)∗∗∗

F-statistic 137.280 205.558 182.001 51.040 203.540 161.233 111.715
Observations 3610 3600 3610 3610 3610 3610 3610

Minimum controls
Excluding Boston and NYC
Control for abstract occupation share
RTI share: non-college workers
RTI share: college and non-college workers
IV: Administrative Share (top third)
IV: Administrative Share (top half)
IV: Administrative Activities
IV: Clerical Requirements

First stage regression of routinization on instruments, additional specifications. Column (1) uses a minimum set of controls: total commuting zone population, year dummies, census region
dummies, commuting zone dummies, manual occupation share, proportion by gender, race, and ten-year age bin. Columns (2)-(7) start from the basic specification of Table 3 Column (1). Column
(2) excludes commuting zones that contain Boston and New York City. Column (3) additionally controls for abstract occupation share. Column (4) uses the routinization of all workers, rather
than only non-college workers used in the main specification. The IV in column (5) uses the share of occupations in the top half of administrative activity, rather than the top third. Column (6)
uses the administrative activities IV, and column (7) the clerical requirements IV. Standard errors are clustered at the two-digit industry level and adjusted using the correction procedure of Adao
et al. (2019). Montiel Olea-Pflueger F-statistics reported using AKM (2019) standard errors. Anderson-Rubin (1949) confidence intervals reported using AKM (2019) correction. ∗ p < 0.10, ∗∗

p < 0.05, ∗∗∗ p < 0.01.
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Table A.3: Summary Statistics, NLSY79 Data

Men Women Difference
Mean Std. Dev. Mean Std. Dev. Diff P-value

College by age 25 0.485 0.500 0.609 0.488 -0.123 0.000
Cohort 1 (born 1957-1958) 0.267 0.442 0.254 0.435 0.013 0.300
Cohort 2 (born 1959-1960) 0.225 0.418 0.244 0.430 -0.019 0.105
Cohort 3 (born 1961-1962) 0.253 0.434 0.268 0.443 -0.015 0.222
Cohort 4 (born 1963-1964) 0.247 0.432 0.231 0.422 0.017 0.170
Father completed high school 0.269 0.443 0.269 0.444 -0.001 0.974
Mother completed high school 0.208 0.406 0.21 0.407 -0.003 0.831
Living in urban area at age 14 0.780 0.414 0.779 0.415 0.001 0.938
Living in the South at age 14 0.330 0.470 0.356 0.479 -0.027 0.045
Family income in 1979 11.31 0.935 11.31 0.895 -0.001 0.971
Number of siblings in 1979 3.40 2.394 3.51 2.442 -0.104 0.129

Occupation choices between 25 to 35
White collar 0.074 0.262 0.441 0.497 -0.366 0.000
Blue collar 0.542 0.498 0.093 0.290 0.450 0.000
Pink collar 0.384 0.486 0.467 0.499 -0.083 0.000
Home staying 0.066 0.248 0.200 0.400 -0.134 0.000

Average annual earnings between 25 to 35
White collar 23,579 15,904 15,233 8,969 8346 0.000
Blue collar 14,461 9,075 11,201 6,278 3260 0.000
Pink collar 11,138 7,694 8,119 5,319 3019 0.000

Summary statistics for the NLSY79 sample. The sample is restricted to individuals who have finished high school (12th grade) or hold a
GED degree. Their occupation choice is defined as the modal occupation between ages 25 to 35. College by age 25 is a dummy variable that
equals 1 if the individual’s years of education exceeds 12 by age 25. The sample only includes individuals with complete family background
information and test score information.
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Table A.4: Estimates of Wage Coefficients by Occupation and Gender

Men Women
White Blue Pink White Blue Pink

College 0.141 0.011 0.013 0.102 0.152 0.003
(0.001) (0.001) (0.003) (0.002) (0.002) (0.002)

̂Routinization -0.200 0.035 -0.212 -0.661 -0.455 1.381
(0.007) (0.008) (0.018) (0.009) (0.017) (0.017)

Cognitive 0.119 -0.037 0.105 0.119 0.259 -0.045
(0.004) (0.001) (0.006) (0.004) (0.003) (0.003)

Cognitive*college 0.062 -0.173 -0.032 0.007 -0.149 0.076
(0.004) (0.002) (0.006) (0.004) (0.005) (0.004)

Cognitive* ̂Routinization 0.105 0.242 0.043 0.657 -0.414 -0.012
(0.022) (0.007) (0.030) (0.019) (0.019) (0.016)

Cognitive*college* ̂Routinization -0.006 -0.033 -0.008 -0.026 0.002 -0.008
(0.022) (0.010) (0.032) (0.020) (0.029) (0.018)

Manual -0.037 0.088 -0.058 -0.123 -0.138 -0.103
(0.003) (0.003) (0.009) (0.007) (0.019) (0.009)

Manual*college -0.001 0.126 0.008 0.083 -0.112 -0.286
(0.003) (0.002) (0.007) (0.007) (0.029) (0.011)

Manual* ̂Routinization -0.071 -0.191 -0.215 -0.561 0.320 0.375
(0.019) (0.013) (0.048) (0.035) (0.106) (0.046)

Manual*college* ̂Routinization -0.014 -0.004 0.022 -0.012 -0.041 -0.092
(0.016) (0.013) (0.044) (0.035) (0.158) (0.054)

Admin 0.246 0.128 0.216 -0.311 -0.094 0.131
(0.014) (0.008) (0.025) (0.023) (0.043) (0.015)

Admin*college -0.103 0.065 -0.190 -0.182 0.072 -0.197
(0.011) (0.009) (0.023) (0.023) (0.051) (0.018)

Admin* ̂Routinization 0.133 0.098 0.030 -0.144 0.273 0.251
(0.078) (0.041) (0.142) (0.134) (0.238) (0.081)

Admin*college* ̂Routinization 0.031 -0.020 0.001 0.127 0.061 0.018
(0.068) (0.050) (0.121) (0.130) (0.309) (0.098)

Constant 1.940 1.776 1.655 1.892 1.657 1.057
(0.001) (0.001) (0.002) (0.002) (0.001) (0.003)

Standard deviation 0.457 0.411 0.475 0.409 0.452 0.444
(0.001) (0.001) (0.002) (0.001) (0.002) (0.001)

Parameter estimates for the wage coefficients in Equation 4, reported by occupation and gender. Standard errors in parentheses.
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Table A.5: Estimates for Utility Parameters by Occupation and Gender

Men Women
White Blue Pink White Blue Pink

College 0.478 -0.904 0.419 0.890 -1.001 -0.493
(0.011) (0.009) (0.020) (0.012) (0.016) (0.011)

̂Routinization 0.148 0.535 0.167 -6.689 -3.194 5.267
(0.204) (0.164) (0.276) (0.198) (0.355) (0.188)

Cognitive 0.479 -0.053 0.335 1.162 0.573 0.398
(0.052) (0.024) (0.063) (0.041) (0.057) (0.022)

Cognitive*college 0.531 0.987 0.564 0.560 -0.350 -0.288
(0.057) (0.031) (0.089) (0.042) (0.080) (0.031)

Cognitive* ̂Routinization -0.839 0.838 -0.449 -8.097 -2.628 9.567
(0.289) (0.127) (0.347) (0.222) (0.308) (0.111)

Cognitive*college* ̂Routinization 0.030 -0.003 -0.012 3.976 -0.006 -4.103
(0.312) (0.164) (0.484) (0.229) (0.428) (0.159)

Manual -0.001 0.497 -0.175 -0.726 -0.186 -0.629
(0.059) (0.035) (0.095) (0.081) (0.155) (0.063)

Manual*college -1.094 -0.413 -0.217 0.154 1.596 0.537
(0.062) (0.039) (0.123) (0.076) (0.219) (0.080)

Manual* ̂Routinization -1.094 0.298 -0.608 1.193 0.559 -0.174
(0.330) (0.186) (0.518) (0.427) (0.858) (0.323)

Manual*college* ̂Routinization -0.005 0.013 0.016 -0.009 -0.023 0.000
(0.345) (0.202) (0.664) (0.407) (1.179) (0.413)

Admin 0.358 -0.073 0.015 0.735 -0.208 -0.087
(0.220) (0.134) (0.306) (0.262) (0.450) (0.190)

Admin*college -0.508 0.109 -0.320 1.107 -0.674 0.212
(0.176) (0.125) (0.242) (0.211) (0.405) (0.128)

Admin* ̂Routinization 0.041 0.117 -0.442 -4.632 -0.801 6.643
(1.223) (0.702) (1.706) (1.430) (2.503) (1.012)

Admin*college* ̂Routinization 0.010 -0.010 -0.042 -0.612 -0.100 0.830
(0.967) (0.654) (1.342) (1.128) (2.351) (0.678)

Constant -6.304 -4.497 -5.647 -5.377 -5.572 -4.852
(0.037) (0.031) (0.047) (0.039) (0.066) (0.036)

Parameter estimates for the non-pecuniary utility coefficients in Equation 5, reported by occupation and gender. Standard errors in paren-
theses.
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Table A.6: Estimates for the Education Equation by Gender

Men Women
Estimate Std. Error Estimate Std. Error

Cognitive 1.18 0.37 1.11 0.38
Manual -0.39 0.39 -0.22 0.39
Admin 0.16 1.49 0.17 1.64
Cohort 2 -0.15 0.13 -0.20 0.12
Cohort 3 0.00 0.13 0.15 0.11
Cohort 4 -0.02 0.14 0.25 0.14
Father’s education 0.85 0.17 0.34 0.15
Mother’s education 0.25 0.13 0.80 0.29
Urban 0.39 0.13 0.19 0.11
South 0.38 0.14 0.21 0.13
Intact family 0.48 0.04 0.15 0.03
Number of siblings -0.03 0.01 0.00 0.01
Constant -5.28 0.67 -1.51 0.62
Standard deviation 0.85 0.19 0.71 0.41

Parameter estimates for the education decision in Equation 6 are reported in columns (1) and (3) for men and women, respectively. Columns
(2) and (4) report the associated standard errors.
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Table A.7: Parameters for Skill Distributions and Measurement Equations

Skill distribution Measurement equation
Men Women Loadings Std. Dev.
(1) (2) (3) (4)

µcog -0.003 0.068 λm1 1.552 σc,1 0.465
(0.051) (0.088) (0.046) (0.023)

µmanual 0.296 -0.271 λc2 0.565 σc,2 0.527
(0.038) (0.023) (0.015) (0.016)

µadmin -0.194 0.160 λm2 0.929 σc,3 0.540
(0.022) (0.024) (0.027) (0.016)

σ
(1)
cog 0.800 0.745 λc3 0.505 σc,4 0.479

(0.090) (0.126) (0.016) (0.016)

σ
(1)
manual 0.336 0.335 λc4 1.064 σm,5 0.502

(0.091) (0.101) (0.021) (0.017)

σ
(1)
admin 0.191 0.111 λc6 0.998 σm,6 0.557

(0.084) (0.143) (0.020) (0.016)

σ
(2)
cog 0.556 0.324 λc7 0.936 σm,7 0.619

(0.082) (0.135) (0.019) (0.017)

σ
(2)
manual 0.398 0.108 λc8 0.815 σa,8 0.699

(0.091) (0.121) (0.024) (0.028)

σ
(2)
admin 0.117 0.117 λa9 0.945 σa,9 0.953

(0.090) (0.132) (0.136) (0.027)
The left panel, “Skill distribution”, reports the distribution of skills by gender. Each skill is a mixture of two normal distributions. µcog
denotes the mean of the first normal distribution for cognitive skill. The mean of the second normal distribution is pre-determined to be 0.

σ
(1)
cog reports the standard deviation of the first normal distribution for cognitive skill and σ

(2)
cog reports the standard deviation of the second

normal distribution for cognitive skill. µmanual denotes the mean of the first normal distribution for manual skill. The mean of the second

normal distribution is pre-determined to be 0. σ
(1)
manual

reports the standard deviation of the first normal distribution for manual skill and

σ
(2)
manual

reports the standard deviation of the second normal distribution for manual skill. µadmin denotes the mean of the first normal

distribution for administrative skill. The mean of the second normal distribution is pre-determined to be 0. σ
(1)
admin

reports the standard

deviation of the first normal distribution for administrative skill and σ
(2)
admin

reports the standard deviation of the second normal distribution
for administrative skill. The right panel, “Measurement Equation” reports the estimates of the loading factors associated with Equation 7 in
column (3). It reports the standard deviation of the residual term in each test score measurement equation in column (4). Standard errors
in parentheses.
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Figure A.1: Routine Task Intensity (RTI) and Task Content

(a) Women
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Data from census and American Community Survey microdata. Women aged 18-30.
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(b) Men
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The figure decomposes RTI into its component task content measures in for women (panel a) and men (panel b). All variables are standardized. Data from the U.S. census and

Autor and Dorn (2013).
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Figure A.2: Relationship between RTI and Administrative Activity across Occupations (all
years)

Raw correlation between routine task intensity (RTI) and administrative activity across occupations. RTI is measured in

standard deviations. Administrative activity is measured in the number of keyword mentions per ad. Data from the U.S.

census, Autor and Dorn (2013), and Atalay et al. (2020).

Figure A.3: Assessing Administrative Share Instrument

(a) Instrument Predicts Future Automation (b) Instrument Predicts Routinization

Both panels assess the predictive power of the administrative share instrument. Panel (a) plots the instrument in 1950 against the change in

personal computers in 1980-1990. Panel (b) depicts the first stage prediction. It depicts the residual plot of routinization and the administrative

share instrument after partialling out the controls in Table 3, column (4). In both panels, the solid line represents the correlation estimated from

an OLS regression using labor supply weights. The shaded gray area depicts 95% confidence intervals. Data from the U.S. census, Autor and Dorn

(2013), and Atalay et al. (2020).
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