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Abstract

The matching function is a “black box” whose satisfactory microfoundation has proven

elusive for nearly forty years now. In this paper we propose a network variant of the

classic balls-in-bins model that allows us to treat the problem at significant generality.

The matching function that emerges endogenously depends on the whole network of

connections between unemployed and firms, yet it is captured by a compact expression.

We show how in special cases matching depends only on the number of unemployed

and vacancies as typically assumed in the literature, and we recover existing functional

forms. We also analyze how matching efficiency depends on the network structure with

two main themes emerging: (a) applicant-side heterogeneity is harmful for matching

efficiency, and (b) increasing search intensity, i.e. adding links to the network has an

ambiguous effect on matching efficiency. Finally, we derive an “anything goes” type of

result: even just within Erdös-Renyi networks, any matching function, including Cobb-

Douglas and CES, can be derived assuming the mean of applicants’ search intensity

scales “appropriately” with the network size.
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1 Introduction

The matching function is the central building block of any model that departs from the Wal-

rasian equilibrium to capture search frictions in the market. It has proven very tractable and

largely consistent with a long literature of empirical findings. The number of contexts it has

been used in highlights its success: the labor market, where unemployed and vacancies co-

exist in equilibrium, but also credit markets, goods markets, assets trading over the counter,

the new monetarist literature aiming to explain the endogenous emergence of money.

The matching function, however, is an aggregate, reduced-form construct and its microfoun-

dation has proven elusive. Said differently, if the matching function is indeed an empirical

regularity of the macroeconomy, economists have no good story as to what gives rise to it.

Virtually all attempts towards such a microfoundation are based on some version of the clas-

sic balls-in-bins model of probability theory, which seems to very naturally capture the types

of coordination failures hypothesized to underlie the matching function. Yet the literature

has stopped short of a satisfactorily general treatment of the problem.

Early attempts gave functional forms that are empirically implausible (e.g. Petrongolo and

Pissarides, 2001). More recent attempts in the directed search literature, faced with technical

complications, have treated rather special instances of the problem only. For example,

Burdett, Shi and Wright (2001) derive a matching function when all applicants send a single

application. The literature on social networks, which has singled out the importance of

personal connections in finding a job, has delivered a matching function that is increasing

and concave in its two arguments, but does not exhibit constant returns to scale or resemble

any of the commonly assumed specifications (e.g. Calvó-Armengol and Zenou, 2005).

In this paper we derive the matching function in a general context using tools from the the-

ory of networks. Network theory is particularly appropriate to handle situations of granular,

micro-level heterogeneity as those encountered between workers and firms in the labor mar-

ket, which is what allows us to overcome pre-existing technical difficulties. Our treatment of

the problem is at significantly greater generality than what has been done before: applicants

can differ in the number of applications they send, and our analysis applies equally well to
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arbitrarily small or large economies. The model we present can be thought as a network

variant of the classic balls-in-bins model, thus the key underlying friction is the coordination

failure most commonly found in the literature, including all contributions mentioned above.

We adopt a simple applications-and-hiring protocol, capturing such standard coordination

failures. An arbitrary bipartite network connects unemployed (applicants) and vacancies.

Each unemployed applies to all vacancies they are connected to; each vacancy makes one

offer at random among all applications received (if any); each unemployed chooses one offer

at random among the offers received (if any). Formally, when referring to “matching” we

mean the expected number of total matches over all possible realizations of scenarios.1

The matching function we derive is captured by a compact expression and depends generally

on the whole network. In other words, matching is generally a function of the whole sets

of connections on the two sides of the market rather than just the sizes of the two sets of

unemployed and vacancies, as typically assumed to be the case. We have two main objectives:

(a) relate this general matching function to usual matching functions depending only on the

number of unemployed and vacancies; (b) analyze how matching efficiency depends on the

network structure.

In a first stage, we analyze non-stochastic networks. We find applicants’ heterogeneity

reduces matching efficiency: holding firms’ degrees fixed, link swaps which increase the dis-

persion in applicants’ job-finding probabilities reduce overall expected matching. In the case

all firms receive the same number of applications, any mean-preserving spread in applicants’

degrees decreases overall matching.

A natural way to generate a standard matching function with non-stochastic networks is to

impose symmetry. In particular, matching only depends on the numbers of unemployed and

vacancies in a double regular network, i.e., when all applicants send the same number of

applications and all firms screen the same number of applicants. Additionally this matching

1An example of a scenario being: applicant 1 applies to firm 1; applicant 2 also applies to firm 1. Firm

1 makes an offer to applicant 1, who also receives an offer from firm 2. Applicant 1 chooses (and gets hired

by) firm 2. This outcome occurs with some probability in our model, and we take the expectation over all

such possible outcomes.
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function satisfies key standard properties – concavity, and constant returns to scale, and

perhaps surprisingly, matching efficiency is maximized (miscoordination is minimized) when

applicants send a unique application.

In a second stage, we analyze stochastic networks. We consider bipartite networks that are

random conditional on the applicants’ degree distribution. The degrees (search intensity) of

the applicants are drawn iid from that distribution. Links then fall at random on vacancies.

We show that this model nests the classic Erdös-Renyi model where every link is formed

with the same probability.

We find that, again, heterogeneity reduces matching efficiency: a mean-preserving spread

in the applicants’ degree distribution decreases the expected matching rate. Interestingly,

matching efficiency is maximized in the Erdös-Renyi model when links are formed with

probability 1, i.e. the graph is complete. Contrasting this with the result on double regular

graphs indicates that adding links generally has an ambiguous effect on matching efficiency.

Finally, we derive an “anything goes” type of result. Restricting ourselves to the Erdös-Renyi

networks we show that any matching function, including Cobb-Douglas and CES, can be

derived assuming the mean of applicants’ degrees (search intensity) scales “appropriately”

with the network size, i.e. the size of the two sets of unemployed and vacancies. Thus classical

matching functions are consistent with a network-based matching process. Unsurprisingly,

however, micro-level network features may not be identified from only observing aggregate

matching.

We take our contribution to be primarily a methodological one, illustrating the use of net-

works to microfound a regularity that shows up in the aggregate, as has been done in other

contexts (e.g. Acemoglu et al., 2012). We also consider both literatures already mentioned,

directed search and social networks in the labor market, to offer complementary approaches

to ours, and take part of our contribution to be in linking the two.

The directed search literature highlights the importance of information, primarily wages

posted by firms, on how applicants search for jobs. Thus in our view, directed search offers

models of network creation. A good part of that literature has focused on the efficiency of
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matching (e.g. Kircher, 2009; Galenianos and Kircher, 2009), which is a point of focus for

us as well. The other main point of focus is wage dispersion, an issue we abstract from in

the present work.2

Without the networks treatment however, that literature seems to have reached technical

barriers concerning the setups where it can derive a matching function endogenously. Bur-

dett, Shi and Wright (2001) derive a matching function when all applicants send a single

application. Albrecht, Gautier and Vroman (2006) treat cases where applicants send mul-

tiple but the same number of applications, and they have to restrict attention only to the

limiting case of a large economy. We recover the same functional forms in both special cases.

The literature on social networks in the labor market, largely stemming from Calvó-Armengol

(2004), has evolved parallel and somewhat unconnected to the directed search literature.3

This literature has singled out the importance of personal connections in finding a job. We

naturally draw inspiration from this literature and are close to it conceptually, as social ties

are also granular micro-level objects. For us, however, social ties and their impact are an

additional layer that can be added to the analysis, not the only one.

As our model is different, the matching functional forms we get are different even in the

special cases explicitly treated in this literature, as for example when all applicants have

the same degree (Calvó-Armengol and Zenou, 2005). However, we do share some of the

qualitative properties regarding efficiency of matching: when all applicants have the same

degree, matching has an inverted-U shape as a function of that degree, echoing similar results

for example in Calvó-Armengol and Zenou (2005).

The rest of the paper is structured as follows. Section 2 lays out the economic setup and

introduces notation. Section 3 derives the matching function for an arbitrary given network

2The rich body of contributions is surveyed by Wright et al. (2021).
3The seminal modern contribution here can be taken to be Calvó-Armengol (2004). A series of very

interesting papers have followed including Calvó-Armengol and Jackson (2004), Calvó-Armengol and Zenou

(2005), Ioannides and Soetevent (2006), Galenianos (2014), Galeoti and Merlino (2014), Espinosa, Kovář́ık

and Ruiz-Palazuelos (2021). Montgomery (1991), even though earlier, can also be added as an important

and interesting contribution in this literature.
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and goes over some useful special cases of networks. In section 4 we do comparative statics

in the case of non-stochastic networks, i.e. taking the network as given. In section 5 we

extend the analysis to stochastic networks. Section 6 concludes discussing also some avenues

for future research.

2 The setup

We start by introducing the economic environment, some terminology and notation.

Primitives: The economic environment consists of two sets of agents U and V , of size

U, V ∈ N respectively, and a (bipartite) graph G linking elements between the two sets.

We take the elements of U to correspond to applicants, i.e. workers searching for a job, and

the elements of V to correspond to jobs offered by firms. In other words U contains the

unemployed, while V contains vacancies in our setup.

As a convention, we will be indexing the elements of U by i = 1, 2, ..., U and the elements of

V by j = 1, 2, ..., V . Following the search and matching literature we will assume that each

firm has a single vacancy to fill, thus we may be interchangeably refer to firm j or vacancy

j as the counterparty of an applicant i.

The graph G is represented by an adjacency matrix – denote G =
(
gij
)
, where gij = 1 if

applicant i is connected to firm j, and gij = 0 otherwise.4

We will denote by di =
∑

j gij an applicant’s degree, that is the number of firms the applicant

connects to. Similarly a firm’s degree dj =
∑

i gij corresponds to the number of applicants

the firm connects to. As a matter of accounting it has to hold that
∑

i di =
∑

j dj.

Finally we refer to an applicant’s neighborhood as the set of firms the applicant connects

to. Specifically, for an applicant i, define Ni = {j ∈ V : gij = 1}. Similarly we can define

the neighborhood of a firm j. It follows that the size of a node’s neighborhood equals their

degree; for applicant i denote |Ni| = di.

4Applicants correspond to rows and firms to columns.
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As in what follows we will be making connections to the search and matching literature, let

us also define the central quantity of that literature, market tightness, θ = V
U

.

An application and hiring protocol: Taking the network of links G as given, we assume

applicants apply to all firms they connect to. A firm chooses one of the applicants uniformly

at random to whom it makes an offer. Each applicant chooses to accept one offer uniformly

at random among the offers they receive.

The key object of interest throughout our analysis, to which we now turn, is the matching

rate defined as the expected number of matches given a particular network. We denote

m(G) = E[#matches|G]

An example: Let us consider the following instance5

Applicant i1 applies both to firms j1 and j2, while applicant i2 applies only to firm j2.

Accordingly, firm j1 makes an offer to applicant i1, and firm j2 chooses with probability 1/2

to make an offer to i1 and with probability 1/2 to make an offer to i2.

There are three possible outcomes:

5In matrix form the graph of this example is G =

1 1

0 1

. For exposition, we also note that the degree

of applicant i1 is 2, and of applicant i2 it is 1. Their corresponding neighborhoods are the sets {j1, j2}, and

{j2} respectively.
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(1) j2 makes offer to i2. i1, and i2 each accept their single offer.

(2) j2 makes an offer to i1. i1 chooses j2; i2 has no offer.

(3) j2 makes an offer to i1. i1 chooses j1; i2 has no offer.

The first outcome is the first best. Outcomes 2 and 3 are states of coexisting vacancy and

unemployment, as the outcome of coordination failure, an issue we will illustrate further in

the rest of the analysis.

According to our protocol, the first outcome occurs with probability 1/2; each of the other

two outcomes occurs with probability 1/4. Thus the expected number of matches is given

by

m(G) =
1

2
· 2 + 2 · 1

4
· 1

= 3/2

A note on interpretation: The links of the graph can correspond to social ties – as in

the social networks literature (e.g. Calvó-Armengol, 2004), or skills required to apply for

that job, or geographic restrictions the applicant has on where to work. In other words the

graph can represent any relevant factors restricting the jobs an applicant can apply to, and

we don’t need to take a stance on it for our analysis. We will return to this point in the

concluding remarks.

3 Matching when the network is given

What we did for the small instance in the example above, we can do in the general case for

an arbitrary graph G.

Proposition 1. For any given arbitrary graph G, the matching rate defined as the expected

number of total matches is given by

m(G) = U −
U∑
i=1

∏
j∈Ni

(
1− 1

dj

)
(1)

8



Proof. For any applicant i the probability to receive no offer is
∏

j∈Ni

(
1− 1

dj

)
, and thus

their probability of finding a job (= the probability of receiving at least one offer) is

f i ≡ Pr{i gets hired} = 1−
∏
j∈Ni

(
1− 1

dj

)
Now, for each applicant define the indicator r.v. showing if they find a job, where

Yi =

1, w.p. f i

0, w.p. 1− f i

Then the number of matches, taking the graph as given, which by definition is the number

of applicants finding a job is also a r.v., and specifically #matches|G =
∑

i Yi.

The matching rate, i.e. the expected number of matches is then

m(G) = E[#matches|G]

= E[
U∑
i=1

Yi]

=
U∑
i=1

E[Yi]

=
U∑
i=1

f i

= U −
U∑
i=1

∏
j∈Ni

(
1− 1

dj

)

Let us pause and appreciate how compact an expression (1) is for how general it is: it gives

us the expected number of matches for any possible graph G, for any two sets U ,V .

We think it is useful to highlight that each applicant i finding a match is a Bernoulli trial with

probability of success f i. The Bernoulli trials are not independent, they all depend on G,

but to compute m(G) independence is not required; we only use the linearity of expectation.

We also note that the derivation of f i hinges on each firm deciding independently from all

other firms which applicant to make an offer to.
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Let us now see how (1) specializes in specific types of graphs, and specifically how it reduces

in being a function only of the sizes U, V of the two sets as is usual in the search and matching

literature.

Example 1: The complete graph (or family of graphs) is the case where all applicants

connect to all firms. In this case Ni = V , ∀i, and dj = U, ∀j, thus (1) becomes

m(G) = U −
U∑
i=1

(
1− 1

U

)V
= U

(
1−

(
1− 1

U

)V)

It can be seen that the matching function in this case is increasing and concave in its two

arguments.6 It can also be seen to be the matching function derived by Burdett, Shi and

Wright (2001).7

We also note the complete graph case is precisely the classic balls-in-bins setup. Thus, it is no

surprise the above is the same type of matching function derived early in the literature using

the standard balls-in-bins model (e.g. Pissarides, 1979; Blanchard and Diamond, 1994).

It is broadly accepted in the literature (e.g. Petrongolo and Pissarides, 2001; Wright et al.,

2021) that the empirical relevance of this functional form and its limiting version8 is quite

limited.

Example 2: A double regular graph (or family of graphs) is the case where every applicant

is connected to dU firms, and each firm is connected to dV applicants.

This is a doubly-symmetric graph where all applicants and all firms search with the same

“intensity,” and we show it relates closely to the standard search-and-matching setup. We

note that a double regular graph can be thought to correspond to a symmetric equilibrium.

6Shown in the appendix.
7Replace U with m, and V with n to get their eq. 18. See also Wright et al. (2021), eq. 46.

8Using the result limn→+∞

(
1 + x

n

)n
= ex, the above assymptotically exhibits constant returns to scale,

as for large U the matching function can be taken to be approximately m(V,U) ≈ U
(

1− e−VU
)

.
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For such graphs (1) gives us the matching function being

m(G) = U

[
1−

(
1− 1

dV

)dU]

However, by accounting it holds that UdU = V dV , and utilizing this equation we can write

m(U, V ) = U

[
1−

(
1− 1

dU

V

U

)dU]

where dU is taken to be a parameter, and dV is determined from UdU = V dV . All applicants

have the same job-finding probability. Denoting θ = V
U

this probability is9

f(θ) = 1−
(

1− 1

dU
θ

)dU
The matching function in this case can be shown to possess standard properties assumed in

the literature: it is constant returns to scale, increasing, and concave in both U , and V . The

matching function can also be shown to be approximated at a first-order by a Cobb-Douglas

function.10 We show these results formally in the appendix.

We think the following result is interesting to compare with the more general results that

follow on efficiency.

Proposition 2. For the double regular network the matching rate is maximized when du = 1.

Proof. See appendix.

9Naturally, not any choice of a dU will do; dU has to be an integer and it has to be such that dV is also

an integer. This points to the limitation of this model (or special case) we are considering here. Having

said that, there are a couple remarks to make which we think make this model useful. Also the standard

“relaxation” of integer constraints applies when we are talking about thousands or millions of objects.
10We note that the 1st-order approximation result is not specific to this family of graphs: any matching

function that exhibits CRS, to a 1st-order approximation is Cobb-Douglas.
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4 Comparative statics when the network is given

We start again from the matching function formula (1) in the general case

m(G) = U −
U∑
i=1

∏
j∈Ni

(
1− 1

dj

)

Define pi ≡
∏

j∈Ni

(
1− 1

dj

)
, and xi ≡ ln(pi). pi is the probability applicant i receives no

offer (and thus the complement of the probability applicant i is hired). xi is an increasing

transformation of that. We will denote by x the U−dimensional vector (xi).

Lemma 1. Assume x′ is a mean-preserving spread (MPS)11 of x, and x and x′ correspond

to two networks G,G′ respectively with the same number of applicants U . Then

m(G′) < m(G)

Proof. A direct application of the fact that when x′ is a MPS of x, then
∑

i e
x′i >

∑
i e
xi .

This is a rather general result, but for it to not just be an abstract statement, we want to

be able to say what changes in networks create MPS in x’s. We show cases where the result

applies and illustrate its policy relevance. What we can already see from the result is that

matching efficiency relates intricately to the distribution of applicants’ probability to (not)

be hired.

Proposition 3. Suppose dj = dV ,∀j. If (d′i) is a MPS of (di), then m(G′) < m(G).

Proof. In this case

xi = ln
∏
j∈Ni

(
1− 1

dj

)

= ln

(
1− 1

dV

)di
11The Appendix of this section provides some background material on mean-preserving spreads over arbi-

trary vectors which are not necessarily a probability distribution.
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= di ln

(
1− 1

dV

)
Thus if (d′i) is a MPS of (di), x

′ is a MPS of x and thus lemma 1 applies.

Corollary 1. Suppose dj = dV ,∀j, and let GR denote the corresponding doubly regular

graph, if that exists. Then for any graph G, m(G) ≤ m(GR).

Thus, when the situation is homogeneous on the firms’ side, matching efficiency increases

with homogeneity on the applicants’ side as well. Conversely, any increase in the spread in

applicants’ degrees will reduce matching efficiency.

An applicant’s degree is 1-1 related to the probability of the applicant receiving no offers

(pi) and thus the probability the applicant gets hired (1− pi). By equalizing the applicants’

degrees (spreading their degrees as evenly as possible) we equalize their probability of being

hired. This result is generalizable beyond the case where firms’ degrees are equal.

In fact both proposition 3 and its corollary have more general analogs, where we hold any

arbitrary distribution of (dj)’s fixed.

Theorem 1. Take an arbitrary network G, and let G′ denote the network resulting from

swapping a link ij with link i′j, where i′ 6= i. Then m(G′) < m(G), if | ln(pi) − ln(pi′)| <
ln(p′i)− ln(p′i′).

Proof. We start by showing that a link swap between two applicants is mean-preserving in

x’s. Indeed, we have

xi = ln
∏
j∈Ni

(
1− 1

dj

)
=
∑
j∈Ni

ln

(
1− 1

dj

)
=
∑
j

ln

(
1− 1

dj

)gij
=
∑
j

gij ln

(
1− 1

dj

)
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Then swapping a link ij with link i′j means gij = 1→ g′ij = 0, and gi′j = 0→ g′i′j = 1, or

x′i = xi − ln

(
1− 1

dj

)
x′i′ = xi′ + ln

(
1− 1

dj

)
Thus x′i + x′i′ = xi + xi′ .

What remains to be shown is that if in addition ln(p′i) − ln(p′i′) > | ln(pi) − ln(pi′)|, then

x′ ≡ ln(p′) is a MPS of x ≡ ln(p), and thus lemma 1 will apply.

Indeed

x′i > xi

x′i′ < xi′

And as shown in the appendix, x′i − x′i′ > |xi − xi′ | is a sufficient condition for x′ being a

MPS of x.

This is a useful proposition for policy purposes as it provides a (greedy) algorithm of how

to improve a network:12

Corollary 2. Fix the firms’ degree distribution (dj), and let GR̃ denote the corresponding

graph from exhausting all link swaps that reduce inequality in applicant’s probability of being

hired. Then m(G) ≤ m(GR̃).

So what we have shown is that holding the firms’ side fixed – in the precise sense of hold-

ing the firms’ degree distribution fixed, equalizing the probabilities of applicants be hired

increases the efficiency of the system. This is a quite clear-cut result stating that inequality

in probability to be hired is never (constrained) optimal for the aggregate economy.

12We have no reason to believe this algorithm gives a unique GR independent of the order of swaps; it

does give us though a direction towards a “local optimum.”
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5 Matching under a model of network generation

Up to now we have taken the underlying network – the bipartite graph, as given and analyzed

the implications for matching. We now introduce a model of a (bipartite) random graph as

a model of how the graph is generated. As before we will be indexing applicants with

i = {1, 2, .., U}, and firms with j = {1, 2, ..., V }.

A random graph model: Take applicant degrees to be i.i.d. draws from a given distribu-

tion ~p = (p0, p1, ...pV ), where pk ≡ Pr{di = k}. For each applicant, conditional on a given

draw from that distribution, the links are assumed to fall at random on an equal number of

distinct firms among the V .13

The applicant-degree distribution ~p can be any arbitrary distribution over the non-negative

integers. The random graph model induces a distribution of degrees on the firm side, which

we will show is a binomial distribution.

We will denote the firm-degree distribution by ~z = (z0, z1, ...zU), where zk ≡ Pr{dj = k}.
We will also denote the mean degree on the applicant and firm sides by d̄U , d̄V respectively,

i.e. d̄U =
∑

k kpk and d̄V =
∑

k kzk.

Lemma 2. Conditional on an applicant-degree distribution ~p, the degrees on the firm side

follow a binomial distribution, denote dj ∼ Bin(λ, U), where λ = d̄U
V

.

Proof. We have

zk = Pr

{
U∑
i=1

Xij = k

}
where Xij is an indicator, being 1 if applicant i links to (has applied to) firm j.

13More formally that is random sampling of di elements from a population of V without replacement.
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Since all i are ex-ante i.i.d, Xij are also i.i.d with probability14

Pr{Xij = 1} =
V∑
k=1

Pr{Xij = 1|di = k}pk

=
V∑
k=1

(
V−1
k−1

)(
V
k

) pk

Define λ ≡
∑V

k=1

(V−1
k−1)
(Vk)

pk. Now, by noticing that
(V−1
k−1)
(Vk)

= k
V

, it follows that

λ =
d̄U
V

(*)

Then Xij are Bernoulli with probability of success λ, and thus dj ∼ Bin(λ, U).

We note that λ is a function of ~p, V but for notational simplicity we are not denoting this

explicitly.

Remark: Since dj ∼ Bin(λ, U), it follows that d̄V = λU , and thus15

d̄V
U

=
d̄U
V

This is a useful relationship we will invoke again in our analysis later.

Corollary 3. A mean-preserving spread in the distribution of di’s leaves the distribution of

dj’s unchanged.

Proof. This follows from dj’s following a binomial distribution, and its parameter λ depend-

ing only on d̄U , V , which stay constant with a mean-preserving spread.

We will return to this result when we do comparative statics.

14The second line follows from a standard combinatorial argument: we want to find how many choices

include a particular element i, among all the
(
V
k

)
possible choices. We fix element i, and are free to choose

the remaining k − 1 elements from the remaining V − 1 elements of the pool: these are precisely
(
V−1
k−1

)
.

15In fact it can be shown this is an accounting identity that has to hold for any bipartite random graph.
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5.1 Moving to matching

We now derive the matching rate in the stochastic network case. The matching rate now is a

double expectation, over who makes an offer to whom (as before), but also over the realized

network G. In other words, the matching rate now is

m = EG[m(G)]

We first prove a lemma we will need regarding the excess degree of a firm an applicant

connects to. The excess degree – denote by d̃, refers to the number of edges leaving the firm

other than the edge of the said applicant.16

Lemma 3. The excess degrees of all firms an applicant connects to (a) are i.i.d, and (b) it

holds that Pr{d̃ = k} = (1+k)z1+k
d̄v

.

Proof. The degrees of firms are i.i.d following Bin(λ, U). Thus the excess degrees of a firm

an applicant connects to are also i.i.d and d̃ ∼ Bin(λ, U − 1), since U − 1 only of the firm’s

degree Bernoulli trials remain to be determined. It follows that

Pr{d̃ = k} =

(
U − 1

k

)
λk(1− λ)U−1−k

=
(U − 1)!

k!(U − 1− k)!
λk(1− λ)U−1−k

=
1 + k

λU

U !

(1 + k)!(U − 1− k)!
λ1+k(1− λ)U−1−k

=
(1 + k)z1+k

d̄V

Theorem 2. The matching rate in our stochastic network model, defined as m = EG[m(G)],

is given by

m = U

(
1−

V∑
dU=0

pdU (1− φ)dU

)
(2)

16We note that the result Pr{d̃ = k} = (1+k)z1+k
d̄v

is a special case of a more general result known for the

configuration model (e.g. Newman (2003), Jackson (2010)). The result is exact in our case, while in the

configuration model it is approximate and holds asymptotically for a large number of nodes.
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where φ = 1−z0
d̄V

. z0 = (1− λ)U is the probability a firm receives no applications.

Proof. We have that

Pr{i finds job | Ni, dj∀j ∈ Ni} = 1−
∏
j∈Ni

(
1− 1

dj

)
Therefore the (ex-ante) probability an applicant finds a job is given by

f = 1− ENi

{
E(dj)j∈Ni

{∏
j∈Ni

(
1− 1

dj

) ∣∣∣∣Ni

}}

= 1−
∑
Ni

pNiE(dj)j∈Ni

{∏
j∈Ni

(
1− 1

dj

) ∣∣∣∣Ni

}

= 1−
∑
Ni

pNi
∏
j∈Ni

(
1− Edj

{
1

dj

∣∣∣∣Ni

})

= 1−
∑
Ni

pNi

(
1− Ed̃

{
1

1 + d̃

})|Ni|
= 1−

∑
du

∑
Ni:|Ni|=du

pdu
1(
V
du

) (1− Ed̃

{
1

1 + d̃

})du
= 1−

∑
du

pdu
1(
V
du

) (1− Ed̃

{
1

1 + d̃

})du ∑
Ni:|Ni|=du

1

= 1−
∑
du

pdu

(
1− Ed̃

{
1

1 + d̃

})du

= 1−
∑
du

pdu

(
1−

U−1∑
k=0

1

1 + k

(1 + k)z1+k

d̄V

)du

= 1−
∑
du

pdu

(
1− 1

d̄V

U∑
k=1

zk

)du

= 1−
∑
du

pdu

(
1− 1− z0

d̄V

)du

Since this it the probability of each applicant finding a job, the expected number of matches

is given by m =
∑

i f = Uf .17

17Note that φ < 1: d̄v =
∑U
k=1 kzk =

∑U
k=1 zk +

∑U
k=1(k − 1)zk >

∑U
k=1 zk = 1− z0.
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In the derivation of f , to go from the 2nd to the 3rd line we used the fact that dj’s are

independently distributed within i’s neighborhood (part (a) of lemma), and to go from the

3rd to the 4th line we used that dj’s are also identically distributed within any neighborhood

(also part (a) of lemma). To go to the 5th line, we enumerate the neighborhoods by their

size and use the fact that the probability to generate a particular neighborhood Ni of size

du is to draw a degree of du and then choose the one among the
(
V
du

)
neighborhoods of such

size. To go to the 6th line we notice that nothing depends on the exact neighborhood Ni,

only its size, thus we factor everything out of the second sum. To go to the 7th line we use

the fact that the number of neighborhoods with du members is precisely
(
V
du

)
, hence this

term cancels. To go to the 8th line we use part (b) of the lemma.

As the key object determining the matching rate is f , we will be working directly with it

when convenient.

5.2 The special case of Erdös-Renyi

Given its popularity in the literature of random graphs, we derive the matching properties

of the Erdös-Renyi model, which we show is a special case of our model.

Lemma 4. When di ∼ Bin(µ, V ), our stochastic network model becomes the Erdös-Renyi

model, that is the network can be created drawing each link with the same probability µ.

Proof. We have already shown the firm degree distribution is binomial with parameter λ =

d̄U
V

. But since di ∼ Bin(µ, V ), d̄U = µV . Thus λ = µ, and dj ∼ Bin(µ, U).

It follows that in this case the model can be constructed drawing each link with probability

µ as this process amounts to precisely V Bernoulli trials for each applicant, and U Bernoulli

trials for each vacancy all with probability of success µ.

Corollary 4. In the case of the Erdös-Renyi model the matching function is given by

m = U

(
1−

[
1− 1− (1− µ)U

U

]V)
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Proof. The matching function is m = U · f . We will work with the job-finding probability

f . Theorem 2 specializes in this case as

f = 1−
V∑

dU=0

pdU (1− φ)dU

= 1−
V∑

dU=0

(
V

du

)
µdU (1− µ)V−dU (1− φ)dU

= 1−
V∑

dU=0

(
V

du

)
[µ(1− φ)]dU (1− µ)V−dU

= 1− [1− µ+ µ(1− φ)]V

= 1− [1− µφ]V

= 1−
[
1− µ1− z0

µU

]V
= 1−

(
1− 1− (1− µ)U

U

)V

Two polar cases are readily verifiable: As we would expect, for µ = 0, we have the empty

graph, and f = 0; For µ = 1, we have the complete graph, and f = 1−
[
1− 1

U

]V
.

Corollary 5. The matching function in the Erdös-Renyi model is increasing in µ, and thus

it is maximized when µ = 1 (the complete graph).

Proof. It follows directly from the expression for f .

Contrasting this with the result on double regular graphs, it indicates that a higher search

intensity has generally an ambiguous effect on matching efficiency. We will see another

variant of this finding in the more general analysis that follows.
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5.3 Comparative statics in a random network

The applicants’ job-finding probability is given generally from the expression

f = 1−
V∑

dU=0

pdU (1− φ)dU

where φ = 1−z0
d̄V

.

We have already established that a mean-preserving spread in di’s leaves the distribution of

dj’s unchanged (corollary 3), and thus φ is left unchanged as well. We can further show the

following proposition

Proposition 4. A mean-preserving spread18 in the distribution of di’s reduces the applicants’

job-finding probability f .

Proof. Denote by ~p ′ a mean-preserving spread of ~p. Equivalently, the two distributions have

the same mean, and ~p second-order stochastically dominates (SOSD) ~p ′ (MCWG proposition

6.D.2). From the definition of SOSD it holds that for every non-decreasing concave functions

u(·) : R+ → R it holds that ∑
dU

p′dUu(dU) ≤
∑
dU

pdUu(dU)

Now, −(1−φ)dU is an increasing and (strictly) concave function, and then from the definition

of SOSD we have

∑
dU

p′dU [−(1− φ)dU ] ≤
∑
dU

pdU [−(1− φ)dU ]⇒

1−
∑
dU

p′dU (1− φ)dU ≤ 1−
∑
dU

pdU (1− φ)dU ⇒

18A mean-preserving spread is defined as a compound lottery, say d′U = dU + Y , where E[Y |dU ] = 0

(Rothschild and Stiglitz, 1970). For example define Y = 0, if dU = 0, and Y =

+1,w.p. 1/2

−1,w.p. 1/2
if dU ≥ 1.
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f ′ ≤ f

with equality holding iff φ = 0 or φ = 1.

Corollary 6. Given d̄U , the matching rate is maximized when everyone sends the same

number of applications, d̄U .

Proof. We have

1−
V∑

dU=0

pdU (1− φ)dU < 1− (1− φ)d̄U

following from Jensen’s inequality.

We note that proposition 4 and its corollary echo the results on the impact of heterogeneity

on matching efficiency of section 4.

5.4 Specific functional forms as special cases

We look at the Erdös-Renyi model, where it holds that

f = 1−
[
1− 1− z0

U

]V
When U → +∞ we get

f → 1− e−(1−z0)V/U

Now assume it holds that

V

U
(1− z0) = − ln

(
1− m̃(U, V )

U

)
where m̃(U, V ) is some functional form that can serve as a matching function.19

19We notice we need to restrict ourselves to cases where m̃(U, V ) < U so that the ln(·) term is well defined.

Cases of matching functions where m̃(U, V ) ≤ U , e.g. m̃(U, V ) = min{U, V } cannot be handled here. We

notice however the analytic tractability of CES, which does satisfy m̃(U, V ) < U, V , can give us the Leontief

form as limit case when γ →∞.
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It will then be the case that

f → m̃(U, V )

U

With a few manipulations we can get an equation explicitly defining an “appropriate” d̄U as

a function of U, V that gives the desired matching function. More specifically, we use that

for U → +∞, the binomial firm-degree distribution becomes approximately a Poisson and

hence z0 → e−d̄V to get

V

U
(1− z0) = − ln

(
1− m̃(U, V )

U

)
⇔

V

U
(1− e−Ud̄U/V ) = − ln

(
1− m̃(U, V )

U

)
⇔

1− e−Ud̄U/V = −U
V

ln

(
1− m̃(U, V )

U

)
⇔

e−Ud̄U/V = 1 +
U

V
ln

(
1− m̃(U, V )

U

)
⇔

d̄U = −V
U

ln

(
1 +

U

V
ln

(
1− m̃(U, V )

U

))
(**)

The special case of CES: m̃(U, V ) = (U−γ + V −γ)−
1
γ , γ > 0.20

The special case of Cobb-Douglas: m̃(U, V ) = m0V
ηU1−η, where η,m0 ∈ (0, 1).21

The question remains if the above equation defines a feasible d̄U , i.e. if d̄U > 0. As long as

m̃(U, V ) < U sufficiently, so that ln
(

1− m̃(U,V )
U

)
≈ − m̃(U,V )

U
is a good approximation, from

the 3rd line above we get 1 − e−Ud̄U/V = m̃(U,V )
V

, and as long as m̃(U,V )
V

< 1 (which we do

impose) this equation pins down a unique d̄U > 0.

20For this functional form it can be checked that m̃(U, V ) < U, V .
21We restrict U, V in the regions where m̃(U, V ) < U, V , which are those V,U s.t. m

1/(1−η)
0 < V

U < m
−1/η
0 .

The lower m0, the greater this region, while for m0 = 1 the region is empty. The fact that Cobb-Douglas is

less tractable than the CES in the discrete case is known in the literature. Cobb-Douglas can also be derived

as the 1st-order approximation to the CES.
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5.5 Random network model discussion

Our result on being able to generate specific matching functions can be taken to illustrate

“how much” or rather “what type” of a knife-edge case the Cobb-Douglas, the CES, or in fact

any specification of the aggregate matching function are. Through the lens of our model, to

get one of these specifications amounts to a particular type of scaling of the applicant-degree

distribution: For any pair of U, V , d̄U has to scale “appropriately” – as given by (**), for

the matching function to be of the respective functional form.

We wish to highlight this is a novel feature of our analysis, illustrating that the applicants’

search effort, i.e. the applicant degrees, are elevated to first-tier citizens in our analysis:

search intensity and a matching technology of certain properties are not two separate things,

they are one and the same. More concretely, it is only under a specific distribution of

applicant-degrees (search intensity) that certain functional forms emerge.

We note this type of analysis is to some extent analogous to the asymptotic analysis of the

the Erdös-Renyi model, where the key parameter of the distribution, p, is parameterized as a

function of the size, and thus we study the properties of the graph for different specifications

of p(n) (e.g. Jackson 4.2.2, p. 89).

More broadly, let us note that our random nets treatment may appear to have a somewhat

atypical feature, namely that applicants with di = 0 are included in the set of “unem-

ployed.”22 While this is indeed worth pointing out, it can be handled by our setup without

affecting any of the analysis by limiting attention to distributions with Pr{di = 0} = 0.

Then no applicant has zero degree, that is only people who exert some search effort to find a

job, sending at least one application are included among the unemployed, as typically done

in both the empirical and theoretical literature. In other words, our random graph approach

treats in a unified way the decision to enter the labor market (send ≥ 1 applications – ex-

tensive margin of search) and the search effort an applicant puts (number of applications –

intensive margin.)

22In the Erdös-Renyi model for example, some nodes in the set of U will indeed have zero degree. Applying

twice the 1st-order approx. ln(1 + x) ≈ x in (**), we get d̄U ≈ m̃(U,V )
U < 1.
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At the same time it is worth highlighting that some firms will have zero degree, but this is

perfectly normal: a firm can find no match either because nobody applied to its vacancy, or

because it made an offer to someone who took another offer.

6 Concluding remarks

We conclude with some overall remarks on our setup and then with some directions of future

research we think are pertinent.

We note that essentially our random network model assumes firms have no limit on how

many applications they want to screen; they accept as many applications as applicants send.

This assumption can be relaxed assuming each firm has a randomly drawn degree, and

“meeting” amounts to connecting the stubs of applicant and firm degrees. That model is the

bipartite configuration model analyzed by Newman, Strogatz, Watts (2001); asymptotically

it will have the same behavior as ours, with the only difference being that zk will not be

binomial, but an arbitrary distribution, and a primitive. Firms having a capacity of how

many applications they accept sounds empirically somewhat counterfactual, and in fact the

search-and-matching literature has considered firm search intensity as a not very important

margin (Pissarides, 2000). For all these reasons we abstract from it.

Going back to the discussion on the interpretation of what the graph is capturing of section

2, we think it is important to highlight one issue. In our stochastic network model we can still

pretend we are agnostic as to what the network represents: links form at random on firms

for some reason we are not modeling explicitly. However, for any plausible interpretation,

one might expect correlation patterns to emerge which are not present in our analysis.

Let us take for example links to represent either skills required for specific jobs, or social

ties between workers searching for jobs and friends employed at firms. Then if applicant i

connects to two jobs – say j, j′, conditional of applicant i′ connecting to job j, they may have

a higher than average probability to also connect to job j′. This relates to the fundamental

notion of clustering in the networks literature, and it is absent from our model, for which
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the probabilities of each link are independent.

We think this is an issue of first-order interest to be refined in future theoretical work, and be

tested empirically. Apart from its realism, clustering is expected to matter quantitatively,

as we would expect coordination failures be (potentially significantly) exacerbated in its

presence: to put it simply, clustering implies that the same people compete for the same

jobs.
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Appendices

A Section 3, Matching when the network is given

Proposition. The matching function in the case of the complete graph is increasing and

concave in its two arguments

Proof. The matching function in this case is

m(U, V ) = U

(
1−

(
1− 1

U

)V)
Its derivatives are of the respective signs:

∂m

∂V
= −U

(
1− 1

U

)V
ln
(
1− 1

U

)
> 0, and

∂2m

∂V 2
= −U

(
1− 1

U

)V [
ln
(
1− 1

U

)]2
< 0

∂m

∂U
= 1−

(
1− 1

U

)V−1(U − (1 + V )

U

)
> 0, and

∂2m

∂U2
= −V

2

U3

(
1− 1

U

)V−2
< 0

Proposition. The matching function m for a double regular graph exhibits constant returns

to scale, and it is increasing and concave in each of its arguments.

Proof. The matching function is

m(U, V ; dU) = U

[
1−

(
1− 1

dU

V

U

)dU]
Constant returns to scale follow from the definition, as ∀λ > 0

m(λU, λV ; dU) = λU

[
1−

(
1− 1

dU

λV

λU

)dU]
= λm(U, V ; dU)

For the rest it helps to express m in terms of the job-finding probability m(U, V ) = Uf(θ),

where f(θ) =

[
1−

(
1− 1

dU
θ
)dU]

, and we dropped the parameter dU as an argument of the

functions for notational convenience.
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So for monotonicity and concavity we check the derivatives:

∂m

∂V
= f ′(θ) (i)

∂2m

∂V 2
= f ′′(θ)

1

U
(ii)

∂m

∂U
= f(θ)− f ′(θ)θ (iii)

∂2m

∂U2
= f ′′(θ)θ2U−1 (iv)

We first show that f is increasing and concave, signing conditions (i), (ii), (iv):

f ′(θ) = (1− θ)dU−1 ≥ 0

f ′′(θ) = −(dU − 1)(1− θ)dU−2 ≤ 0

We also note that f(0) = 0, and f(1) = 1−
(

1− 1
dU

)dU
≤ 1.

To get the sign of (iii) we show that f(θ) − f ′(θ)θ ≥ 0: Define Q(θ) = f(θ) − f ′(θ)θ. But

Q′ = −θf ′′ ≥ 0. And since Q(0) = 0, Q(θ) ≥ 0.

We note the elasticity of m(·) is not constant.23 Specifically, denote η(θ) ≡ ∂m
∂V

V
m

, then

η(θ) =
f ′(θ)θ

f(θ)

Of course, from CRS we have that ∂m
∂U

U
m

= 1− η(θ). It follows from the concavity of m w.r.t

U that η(θ) < 1, as we showed above that f ′(θ)θ ≤ f(θ).

Proposition. For tightness θ = V
U

around 1, the matching function m for a double regular

graph is equal to a Cobb-Douglas function up to 1st-order. Specifically, one can write

m(U, V ) ≈ m0V
η̃U1−η̃,

where m0 = f(1) ≤ 1, and η̃ = η(1) < 1.

23Constant elasticity is not considered one of the characteristic properties of the matching function. For

example the Cobb-Douglas has constant elasticity, while the specification m(V,U) =
[
V −γ +U−γ

]− 1
γ , γ > 0

does not.

31



Proof. We take logs of the matching function

ln(m) = ln(U) + ln

(
1−

[
1− 1

dU
eln(VU )

]dU)

Define L(x) ≡ ln

(
1−

[
1− 1

dU
ex
]dU)

, where x ≡ ln
(
V
U

)
. We can take the Taylor expansion

of L(x) around any x0 ∈ (−∞, ln(dU)); we choose to do so around x0 = 0:

L(x) =
∞∑
n=0

L(n)(0)

n!
xn

The 1st-order approximation yields

L(x) ≈ L(0) + L′(0)x

And hence the matching function is (approximately) of the Cobb-Douglas form:

ln(m) ≈ L(0) + (1− L′(0)) ln(U) + L′(0) ln(V )

where L(0) = ln

(
1−

(
1− 1

dU

)dU)
, L′(0) =

(
1− 1

dU

)dU−1

1−
(

1− 1
dU

)dU .

We also notice that L′(0) = f ′(1)·1
f(1)

= η(1), and L(0) = ln(f(1)). Thus we have shown that at

a 1st-order, for cases when V ≈ U , and all applicants and firms are symmetric we can write

m(U, V ) ≈ m0V
η̃U1−η̃,

where m0 = f(1) ≤ 1, and η̃ = η(1) < 1.

Proposition. For the double regular network the matching rate is maximized when du = 1.

Proof. The job-finding probability in the double regular graph case is

f = 1−
(

1− 1

dU
θ

)dU
To study its monotonicity holding θ fixed and varying dU , let us define and study the

monotonicity of the auxiliary function

h(dU) =

(
1− 1

dU
θ

)dU
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where naturally dU ≥ θ for the function to be well-defined.24 From now on we drop the

subscript U to simplify notation.

Define

h̃(d) = ln(h(d))

= d ln

(
1− 1

d
θ

)
Now,

h̃′(d) = ln

(
1− 1

d
θ

)
+

d 1
d2
θ

1− 1
d
θ

= ln

(
1− 1

d
θ

)
+

1
d
θ

1− 1
d
θ

We can show this is always > 0. Raise both sides to the power of e to get

eh̃
′
=

(
1− 1

d
θ

)
e

1
d
θ

1− 1
d
θ

But we know ex ≥ 1 + x, ∀x ≥ 0, thus

e

1
d
θ

1− 1
d
θ ≥ 1 +

1
d
θ

1− 1
d
θ
⇒

e

1
d
θ

1− 1
d
θ ≥ 1

1− 1
d
θ
⇒(

1− 1

d
θ

)
e

1
d
θ

1− 1
d
θ ≥ 1

Since eh̃
′ ≥ 1, it follows that h̃′ ≥ 0, thus h̃ is increasing in d, thus h is increasing in d, and

hence f is decreasing in d.

B Section 4, Comparative statics when network is given

In this section we provide some background material on mean-preserving spreads over arbi-

trary vectors which are not necessarily a probability distribution.

24This constraint is imposed in our model from UdU = V dV , and dV ≥ 1.
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Definition A vector x′ is a mean preserving spread (MPS) of vector x if they have the

same mean
∑

i xi =
∑

i x
′
i and if x can be obtained from x′ by a series of Pigou-Dalton

transfers, ignoring the identities of the agents.

Definition A transfer t > 0 from one agent to another when the two agents are endowed with

x1, x2 respectively of some quantity, is a Pigou-Dalton transfer if x1 > x2 AND x1− t ≥
x2 + t.

That is a Pigou-Dalton transfer between two agents is one such that an amount is transferred

from the richer to the poorer agent preserving their relative positions. The quantity under

consideration can be anything, e.g. wealth, number of friends etc.

We make the following observations following straight from the definitions.

Remark 1: Any sequence of Pigou-Dalton transfers is mean-preserving.

Remark 2: It can be helpful to think of a mean-preserving spread (MPS) x′ of a vector x,

as created from x doing “inverse” Pigou-Dalton transfers. “Inverse” Pigou-Dalton transfers

are transfers where the rich become richer and the poor poorer.

Remark 3: A mean-preserving spread (MPS) increases inequality in the outcomes, while a

Pigou-Dalton transfer decreases it.

Remark 4: The identities of the agents do not matter for a MPS, as long as inequality

increases between the initial and final outcomes. It is worth clarifying a bit further this

qualification of the definition.

Take two agents for which x′1 > x′2. Transfer t > 0 from 1 to 2 such that x1 ≡ x′1 − t ≥
x′2 + t ≡ x2. Then according to the definition x′ is a MPS of x. Note also that

x′1 > x′1 − t = x1

x′2 > x′2 + t = x2

Thus

x′1 − x′2 > x1 − x2 (*)
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Now, take two agents for which x′1 > x′2. Transfer again t > 0 from 1 to 2 such that x1 < x2,

but x′1 ≥ x2, and x1 ≥ x′2. Then x′ is again a MPS of x because we can just switch the labels

of x1 and x2, and be in the previous situation.25

Alternatively, note that

x′1 > x′2 + t = x2

x′2 > x′1 − t = x1

Thus

x′1 − x′2 > x2 − x1 (**)

Combining (*) and (**) we see that x′ is a MPS of x, if

x′1 − x′2 > |x1 − x2|

This is an operationally easy to apply sufficient condition of a MPS, which will be useful for

us, so we state it as a lemma:

Lemma (MPS sufficiency condition). x′ is a MPS of x, if the two differ in only two dimen-

sions, 1, and 2, and for these dimensions the following holds:

x′1 − x′2 > |x1 − x2|

where x1 ≡ x′1 − t, x2 ≡ x′2 + t for some t > 0.

For a MPS we can show the following basic result:

Proposition. For a strictly convex function h(·), if x′ is a MPS of x, then it holds that∑
i

h(x′i) >
∑
i

h(xi)

Proof. It suffices to show the inequality holds for a single Pigou-Dalton transfer (up to

relabeling). Then by applying it repetitively, we can show it holds for any sequence of such

transfers. Let us assume a transfer occurs between agents 1 and 2.

25That is denote x1 ≡ x̃2, and x2 ≡ x̃1. Then we are in the case where x′1 > x̃1 ≥ x̃2 > x′2 which is

identical to the previous case, only we have x̃1, x̃2 instead of x1, x2 respectively.
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Assume x′2 = x2 + t, x′1 = x1 − t, and x2 ≥ x1, where t > 0. Then∑
i

h(x′i) >
∑
i

h(xi)⇔

h(x1 − t) + h(x2 + t) > h(x1) + h(x2)⇔

h(x2 + t)− h(x2) > h(x1)− h(x1 − t)⇔
h(x2 + t)− h(x2)

t
>
h(x1)− h(x1 − t)

t

But we know from the mean value theorem there exist c̃ ∈ (x2, x2 + t) and
≈
c ∈ (x1 − t, x1)

s.t.

h′(c̃) =
h(x2 + t)− h(x2)

t

h′(
≈
c) =

h(x1)− h(x1 − t)
t

We also know that since h(·) is convex, h′(·) is increasing thus h′(c̃) > h′(
≈
c), completing the

proof.

Note: Even though typically the outcome vectors x, x′ are taken to be positive in applications

(e.g. income redistribution), this is not a requirement. The result holds equally well for

positive and negative outcome vectors.
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