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Abstract

We study the optimal nonlinear pricing of goods whose usage generates revenue but

cannot be contracted upon. The optimal price schedule is a multi-part tariff, featuring

tiers of usage within which buyers pay a price of zero on the margin. We apply our

model to digital goods markets, in which advertising makes usage valuable, but mon-

itoring legitimate usage is infeasible. Our results rationalize common pricing schemes

including premium plans, free trials, and free products. Under partial contractibility

of usage, there is an endogenous separation between “users,” who face a multi-part

tariff, and “workers,” who are paid on the margin.
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1 Introduction

Digital goods are often priced according to multi-part tariffs—that is, they are sold in tiers

of zero marginal prices, potentially interspersed with regions of positive marginal prices.

For example, making Google searches or browsing Facebook posts is always free; streaming

certain movies from Amazon Prime’s library is free after paying for a subscription, while

additional movies can be streamed for a price; and reading Wall Street Journal articles is

free on the margin for anyone up to a trial limit, and free for paid subscribers in unlimited

quantities. A common theme in each of these cases is that the seller can monetize the buyer’s

time and attention via other channels, like serving advertisements or collecting valuable data.

This indirect revenue model is big business for the internet’s largest players—for example,

Google, Facebook, and Amazon respectively made 98%, 108%, and 60% of their net profit

in Fiscal Year 2020 from advertisement.1

But the fact that indirect revenue can make zero-marginal-price units profitable does not

explain why they are optimal. The classical theory of nonlinear pricing as screening (Mussa

and Rosen, 1978; Maskin and Riley, 1984; Wilson, 1993) predicts that sellers should use

smoothly varying marginal prices, instead of tiers of zero marginal prices, to extract maximal

profits.2 Understanding multi-part tariffs requires an alternative economic mechanism.

In this paper, we introduce a nonlinear pricing model with the following form of non-

contractibility: once the buyer purchases the right to use a good, the seller cannot fully

enforce the good’s utilization. The scope for under-utilizing digital goods—and its potential

influence on digital markets—is perhaps best illustrated by the historical failure of “pay-to-

click” businesses that try to incentivize valuable usage (e.g., to pay people to see advertise-

ments), only to be defrauded by users’ simple cheating strategies (e.g., having a computer

script click through a website).3 Our model captures this key issue: providers cannot contract

upon legitimate, valuable usage, or otherwise prevent fraudulent, valueless usage.

Our main result is that the optimal price schedule in the presence of under-utilization and

usage-derived revenue is a multi-part tariff. Intuitively, non-contractibility of usage prevents

sellers from charging negative marginal prices, which they would like to do to encourage

valuable usage. Thus, they instead charge a price of zero on the margin. The remainder of

1Net advertisement revenue figures are analyst estimates by eMarketer (eMarketer Insider Intelligence,
2020), and net income is from financial statements as collected by the Wall Street Journal.

2As we clarify in Section 3, pooling of many buyer types, as is standard under “ironed solutions,” is
unrelated to the issue of zero marginal pricing: under pooling, many buyers purchase the same amount of
the good for the same price, but additional units of the good still have a strictly positive marginal price.
Models with discrete buyer types or bang-bang solutions can also generate weakly optimal multi-part tariffs,
but make the counterfactual prediction that no buyer ever consumes in the region with zero marginal prices.

3In Section 2.2, we discuss the case study of the pay-to-click AllAdvantage.com, and how modern legal
infrastructure is designed to prevent platforms from compelling users to engage with advertisements.
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our analysis explores the structure of multi-part tariffs, their welfare implications, and the

richer pricing structures that are possible when usage is partially contractible.

Model. As in the classical nonlinear pricing framework, buyers differ in their demand for

the product, represented by a scalar, privately known type, and have quasilinear utility

in money. Higher types correspond with higher demand for the product, embedded in the

familiar assumptions that preferences are convex and satisfy single-crossing. The seller values

transfers as well as usage-derived revenues from advertisement, data generation, platform

externalities, and/or user addiction. To model non-contractibility of usage, we give buyers

the ability to use less than they are allocated—for instance, if a buyer purchases the right

to spend y hours on an online platform, they may choose to spend x ≤ y hours.

The seller chooses an arbitrary price schedule that assigns a price to each level of pur-

chases. Buyers first decide how much to purchase, and then what to use, within the scope of

what is permitted by the contract. We study the problem of how to design the price schedule

optimally, taking both of the buyers’ decisions into account.

Pricing with Non-Contractible Usage. We first characterize the seller’s optimal pricing

when usage is completely non-contractible, or when buyers can freely dispose of what they

purchase. The induced levels of buyer usage in the optimum cap the seller’s preferred usage

(i.e., the optimum for the seller were usage fully contractible) with buyers’ bliss points (i.e.,

what buyers would use were the product free).4 The corresponding nonlinear price must be

flat whenever buyers consume their bliss points, since the marginal value of additional usage

to the buyer is zero. Thus, sellers price according to multi-part tariffs.

We next explore the structure of multi-part tariffs. We show zero marginal pricing applies

to more units of the good when there are greater marginal revenues from usage (e.g., from

advertising) and smaller marginal information rents, or costs of screening. Intuitively, usage-

derived revenue makes higher usage more attractive, while information rents distort down

the amount of usage for all but the highest type.

The shape of these competing effects determines where in the price schedule zero-marginal-

price regions emerge. Figure 1 previews four of the pricing schemes that our model can

generate. Free pricing, in which all units have zero marginal price (e.g., Google search or

Facebook), occurs when marginal revenues from usage globally dominate marginal informa-

tion rents. Freemium pricing or free trial pricing, in which initial units of the good have

zero marginal price and all subsequent “add-on” units have positive marginal price (e.g., the

mobile game “Candy Crush Saga”), occurs when usage-derived revenues are highly concave

4Formally, we show this under the technical conditions that virtual surplus is single-crossing in usage and
agents’ types, and that virtual surplus is strictly quasiconcave in usage. In Appendix C.1, we relax the first
of these assumptions.
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Figure 1: Example multi-part tariffs, which are derived in Section 3.

(e.g., because unique users generate valuable data) and overwhelm information rents for

only low-usage buyers. Premium pricing, in which initial units of the good are sold for a

strictly positive marginal price and subsequent units are sold for zero marginal price (e.g.,

Amazon Prime Video), occurs when usage-derived revenue dominates information rents for

only high-usage buyers. Indeed, as information rents vanish for the highest-usage buyers,

globally positive marginal revenue from usage always generates a “premium tier.” Thus,

hybrid pricing schemes like the combination of a free trial and premium plan (e.g., The Wall

Street Journal) can occur with sufficiently concave and increasing revenues from usage.

We next use our results to understand the effects on buyer welfare of both contractible

usage and changes in the structure of demand and revenue. First, while non-contractibility

improves buyer welfare under a fixed price schedule, all buyers would obtain greater welfare

with perfectly contractible usage under the corresponding optimal price schedule. The intu-

ition for this result is that the lack of contractibility of usage, which enables buyers to escape

being forced to use the good, also prevents them from being paid compensating differentials

for usage, which leads to forgone gains from trade. Second, in the absence of contractible

usage, buyer welfare is less sensitive to changes in marginal usage-derived revenue. These

results echo popular claims, made especially about social media products, that users are

not fairly remunerated for “being the product, not the consumer.”5 As we now argue, such

remuneration is intimately linked to the nature of contractibility of usage.

Pricing with Partially Contractible Usage. Finally, we generalize this analysis to

allow for different levels of contractibility corresponding to different levels of usage. We

characterize implementation in this environment, use this result to study realistic forms of

partial contractibility, and find that they can induce the combination of both negative and

zero marginal prices. For example, contractibility of high levels of usage rationalizes the

5As one example, Apple co-founder Steve Wozniak had the following to say about why he deleted his
personal Facebook account: “[Facebook’s] profits are all based on the user’s info, but the users get none of
the profits back [. . . .] As they say, with Facebook, you are the product” (Guynn and McCoy, 2018).
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combination of free services for low-intensity users with payments to high-intensity users.

This mirrors the contract terms of YouTube’s Partner Program and TikTok’s Creator Fund,

which pay a (nonlinear) wage per video view only to video creators with a sufficient level of

following and activity. Instead, contractibility of low levels of usage rationalizes payments

for sign-ups with zero marginal pricing for higher usage, like the Bing Rewards program

that pays users a small amount for the first few searches they make per day. In both cases,

contractibility of usage allows for platforms to separate “users” of a service from “workers” of

the platform. The former face a multi-part tariff, whereas the latter face a negative marginal

price that captures the information-rent-adjusted compensating differential of exerted effort

in generating revenue for the principal.

Related Literature. The closest theoretical analysis to ours is by Grubb (2009), who

demonstrates the optimality of three-part tariffs (or freemium pricing) when selling to over-

confident consumers who can freely dispose of the purchased good.6 In Online Appendix

D.4, we show how our formal analysis nests and generalizes this model without necessarily

appealing to behavioral foundations. By considering a richer class of external revenue func-

tions and more general extents of contractibility, our analysis also endogenizes a richer set

of pricing schemes and is applicable to a larger number of settings.

Our analysis relates to a literature on pricing under various constraints. Sundararajan

(2004) studies non-linear pricing of information goods when the principal faces a “transaction

cost” of measuring provision of the good, and derives an optimal tiered pricing schedule.

Our analysis, by contrast, endogenizes multi-part tariffs as an optimal strategy in light of

under-utilization. Amelio and Jullien (2012) and Choi and Jeon (2021) study markets with

constraints for non-negative linear pricing and how bundling products across markets can

effectively subvert such constraints. We complement this line of research by studying the

non-linear pricing problem, albeit in a single market.

Our results fit into a theoretical literature on mechanism design with moral hazard (e.g.,

Forges, 1986; Laffont and Tirole, 1986; Fudenberg and Tirole, 1990; Carbajal and Ely, 2013;

Strausz, 2017; Gershkov, Moldovanu, Strack, and Zhang, 2021). However, given its focus on

the possibility of under-utilization, our model of ex post moral hazard has a specific structure

that admits tractable analysis and, at the same time, has not previously been analyzed.

Outline. The rest of the paper proceeds as follows. Section 2 introduces our model. Sec-

tion 3 solves for optimal contracts with non-contractible utilization and establishes their

properties. Section 4 generalizes this to allow for partial contractibility. Section 5 concludes.

6Free disposal is also relevant for the sale of information goods, where agents may choose to optimally
disregard information (see, e.g., Bergemann, Bonatti, and Smolin, 2018).
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2 Model

2.1 Consumer Demand

There is a single good that can be bought and consumed in amounts x in the interval X =

[0, x] ⊂ R. There is a unit measure of consumers with privately known type θ ∈ Θ = [0, 1]

that parameterizes their demand. The type distribution F ∈ ∆(Θ) admits a density f that

is bounded away from zero on Θ. For example, x might be the time that an agent spends

on an online platform, and θ shifts how much they enjoy this activity.

Consumers’ type-specific preferences over consumption are represented by a twice con-

tinuously differentiable utility function u : X ×Θ→ R. We assume that higher types value

consumption more and that all types have single-peaked preferences over consumption with

the following three conditions: (i) u(·) satisfies strict single-crossing in (x, θ); (ii) for each

x ∈ X, u(x, ·) is monotone increasing over Θ; and (iii) for each θ ∈ Θ, u(·, θ) is strictly

quasiconcave over X. All consumer types value zero consumption the same as their outside

option payoff, which we normalize to zero, or u(0, θ) = 0 for all types θ ∈ Θ. Agents have

quasilinear preferences over consumption and money t ∈ R, so their transfer-inclusive payoff

is u(x, θ)− t.

2.2 Under-Utilization

The primary departure of our analysis from traditional non-linear pricing is the ability of

consumers to under-utilize what they buy at zero cost. To model under-utilization we define

a disposal correspondence D : X ⇒ X, which maps what consumers purchase y ∈ X to a

disposal set D(y) ⊆ [0, y]. A consumer buying y can consume any x ∈ D(y). The extent of

feasible under-utilization is determined by the scope of enforceable contracts to condition on

ultimate consumption of the good, as described mathematically by the structure of D. For

example, the standard screening model with perfectly contractible consumption is recovered

in this setting with D(y) ≡ {y}, which imposes that goods cannot be under-utilized. By

contrast, we are primarily interested in the case of unrestricted under-utilization, or free

disposal, which we model as D(y) ≡ [0, y].

We argue free disposal describes feasible contracting in digital goods markets, our primary

application. For example, the Wall Street Journal can measure if a given consumer loads an

article, but not if they actually read it. Likewise, Google can register that a search has been

made, but not that this is done by a human as opposed to a bot.

Perhaps the most direct evidence for the non-contractibility of consumption is provided

by the failure of “pay-to-click” internet businesses. One case study is the rise and fall of
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AllAdvantage.com, a venture that paid users to view a permanent banner ad when browsing

the internet. The New York Times, who interviewed the company’s founder as well as eager

customers, asked “Can it Pay to Surf the Web?” in a July 1, 1999, headline (Guernsey,

1999). But AllAdvantage.com was quickly bogged down by users’ finding simple ways to

automate web surfing. This was concisely summarized in the headline of a Wired magazine

article from July 10, 2000, which (unintentionally) answers the Times ’ original question:

“It Pays to Cheat, Not to Surf” (Kang, 2000). In our model’s language, consumers could

purchase y hours of time browsing the internet with the AllAdvantage banner, but then

under-utilize to consume x ≤ y hours, with the residual y − x hours handled by bots.

Other settings of intermediate contractibility of utilization are natural and arise, for

example, when platforms such as YouTube and TikTok monitor high levels of content pro-

duction. We return to these cases in Section 4.

2.3 Production and Revenues

The seller’s revenue derives from two sources. The first is the sum of monetary payments

t ∈ R from consumers to the seller. The second is revenue that derives from consumers’ usage

of the good, net of production costs. This second source is represented by a continuously

differentiable π : X ×Θ→ R.7 The seller values zero consumption the same as their outside

option revenue from not selling the product at all, which we normalize to zero, or π(0, θ) = 0

for all θ ∈ Θ.

We have four primary justifications of usage-dependent revenue in the digital goods case.

In practice, we think of our model’s π as a reduced-form representation of the combination

of potentially all four mechanisms that best characterizes a given market.

Advertisement. Digital goods are commonly bundled with revenue-generating advertise-

ments. For example, Google search results, Facebook social feeds, and Wall Street Journal

articles all include advertisements. In these and other online settings, advertisers can di-

rectly measure both the number of times an advertisement is loaded (impressions) and the

number of times an advertisement is clicked. Payments from the advertiser to the platform

commonly depend ex post on both impressions and clicks per impression (click through rate).

We model these payments via our π as functions of platform consumption x, rather

than purchases y—a Wall Street Journal user must load the article containing an adver-

tisement, and perhaps click on it, to register a payment. We argue that the metaphor also

applies when human and automated usage of online platforms may be substituted for one

7It may be reasonable to assume that production costs depend on the allocation rather than consumption
of the good. But if costs are monotone, it is straightforward to argue that the principal will never produce
more than is consumed and “waste” the product, leading to a representation of costs in terms of usage.

6



another. The aforementioned AllAdvantage.com failed because advertisers refused to pay

out for inauthentic, bot-derived clicks. Modern advertisement contracts, having internalized

the mistakes of the AllAdvantage era, tie payouts explicitly to “valid,” human-derived clicks

and impressions. As one example, the terms and conditions of Google AdSense, a popular

service for adding advertisements to a webpage, define invalid activity as that “solicited or

generated by payment of money, false representation, or requests for end-users to click on

Ads or take other actions” (Google AdSense, 2020). For the erstwhile AllAdvantage.com,

or any modern website monetized via AdSense, only human consumption x translates into

revenue, while any bot-derived residual y − x does not.

The function π is a possibly type-dependent mapping from usage to advertisement rev-

enue. This subsumes details of consumer behavior and the advertisement contract, such as

the rate with which consumers click advertisements and the payment per click. We further

justify this mapping in the Online Appendix, where we explicitly model bargaining between

advertisers and the platform (D.1) and the vendor’s choosing advertising intensity to balance

external revenue with depressed consumer demand (C.3).

Data Collection. A trend in digital advertising over the last decade is the rise of targeted

advertisements tuned toward individuals’ interests as revealed by their online activity.8 This

phenomenon has helped open up a “data economy” in which producers profit from collecting

information about consumers, either directly via selling data to marketing intermediaries or

indirectly via applying data toward internal advertisement. As in the advertisement case,

we use the function π to model the reduced-form “usage to revenue” schedule subsuming the

translation of usage into data and the valuation of that data.

Platform Externalities. Social media platforms, content-streaming platforms with social

rating systems (e.g., Netflix and Hulu), matching services (e.g., Tinder and Match.com) and

online games (e.g., Fortnite and Candy Crush Saga) rely on active use to boost the appeal

of their product. In Appendix D.2, we describe how a simple model of platform externalities

can micro-found an external revenue function π by affecting all agents’ willingness to pay

to participate in the platform. The framework can accommodate locally positive social

externalities, as suggested by the previous examples, as well as negative externalities, due

for instance to crowd-out or congestion.

Addiction. Conventional wisdom and recent empirical evidence (Allcott, Gentzkow, and

Song, 2021) suggest that addicted users are a major source of demand for phone apps and

social media services. In particular, assume that the quantity x′ ∈ X purchased tomorrow by

8A report by IHS Markit estimated that, in Europe, advertising that used behavioral data comprised
86% of all programmatic digital advertising (IHS Markit, 2017)
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each consumer is increasing in their “addictive” consumption today x ∈ X, establishing an

indirect link between current consumption x and future payments t′. Our revenue function

π captures this effect in reduced form. In Appendix D.3, we show how selling to myopic

consumers with habit formation gives rise to an identical nonlinear pricing problem to the

one we study, where π is the future revenue obtained by addicting agents today.

2.4 The Nonlinear Pricing Problem

The seller’s problem is to design a total revenue maximizing price schedule T : X → R, where

T (y) is the monetary payment from a consumer purchasing y ∈ X. Following the choice of T ,

each type θ ∈ Θ chooses whether to buy anything, how much to purchase ξ(θ) ∈ X, and how

much to ultimately consume φ(θ) ∈ D(ξ(θ)). As is standard, we assume that the purchase

and consumption functions ξ : Θ→ X and φ : Θ→ X are the revenue-maximizing selections

from the buyers’ demand correspondence. Hence, the seller’s problem can be formulated as:

sup
φ,ξ,T

∫
Θ

(π(φ(θ), θ) + T (ξ(θ))) dF (θ)

s.t. φ(θ) ∈ arg max
x∈D(ξ(θ))

u(x, θ) for all θ ∈ Θ (O)

ξ(θ) ∈ arg max
y∈X

{
max
x∈D(y)

u(x, θ)− T (y)

}
for all θ ∈ Θ (IC)

u(φ(θ), θ)− T (ξ(θ)) ≥ 0 for all θ ∈ Θ (IR)

(1)

The first constraint (O) in Problem 1, or Obedience, establishes that each consumer θ chooses

their optimal level of consumption φ(θ) by optimally under-utilizing their initial purchase

ξ(θ) to the extent allowed by the disposal correspondence D.9 The second constraint (IC), or

Incentive Compatibility, embodies the consumers’ optimal purchase ξ(θ), taking into account

their subsequent ability to under-utilize. The final constraint (IR), or Individual Rationality,

ensures that all consumers are willing to participate.10

3 Optimal Pricing with Free Disposal

We now characterize optimal pricing under free disposal, D(x) = D(x) = [0, x]. This models

our primary application to pricing digital goods for the reasons described in Section 2.2.11

9We use the word “obedience” in the sense of Myerson (1982).
10Ensuring participation of all types is without loss of optimality for the seller owing to their ability to

sell nothing and charge a price of zero, given the outside option of zero.
11Free disposal also serves as robust benchmark in the presence of partial contractibility of utilization as

it corresponds to the worst possible case of partial contractibility for the seller.
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We provide conditions under which the optimal price schedule endogenously takes the

form of a multi-part tariff with discrete tiers of provision. We use this structure to provide

sufficient conditions for optimal pricing to reduce to the freemium, premium and fixed cost

pricing plans often observed in practice. Finally, we study the implications of free disposal

and changes in external revenues for consumer and producer welfare.

3.1 The Optimal Price Schedule

We first define some important objects in which the optimal pricing schedule will be ex-

pressed. First, we define the consumer-optimal consumption of type θ as the function

φA : Θ→ X:

φA(θ) = arg max
x∈X

u(x, θ) (2)

which is unique and strictly increasing because of the strict quasiconcavity of u(·, θ) in x for

all θ ∈ Θ and strict single-crossing of u in (x, θ). For example, φA(θ) is the amount of time

that type θ would optimally spend on the digital platform if it were freely available.

Second, we define the virtual surplus function J : X ×Θ→ R,

J(x, θ) = π(x, θ) + u(x, θ)− 1− F (θ)

f(θ)
uθ(x, θ) (3)

which is simply the total surplus π + u, net of information rents, in the form of discounts

to consumers, required to ensure local incentive compatibility. For the remaining analysis,

we will assume that the function J satisfies single-crossing in (x, θ) and is strictly quasi-

concave in x. These standard technical assumptions guarantee that virtual surplus has a

unique maximum and is maximized pointwise under the optimal contract, thereby ruling out

cases with bunching, or multiple agent types’ consuming the same bundle.12 Therefore, the

producer-optimal consumption level φP : Θ→ X:

φP (θ) = arg max
x∈X

J(x, θ) (4)

is unique and strictly increasing. In a counterfactual world with perfect contractibility,

the revenue-maximizing seller would induce a type-θ consumer to spend φP (θ) time on the

platform.

With these definitions in hand, we state our result describing optimal pricing:

12In Appendix C.1, we relax the single-crossing assumption on J , strengthen strict quasiconcavity to strict
concavity, and show how to adapt our analysis to settings which feature canonical bunching.
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Proposition 1 (Optimal Pricing). In any optimal contract, consumption is given by:

φ∗ = min{φP , φA} (5)

The minimal optimal price schedule is monotone and given by:

T ∗(x) = u(x∗, 0) +

[∫ min{x,x∗}

x∗

ux(s, φ
∗−1

(s)) ds

]+

(6)

where x∗ = φ∗(0), x∗ = φ∗(1), and [·]+ denotes the positive part. Moreover, purchases

are part of an optimal contract if and only if they are a selection from the correspondence

Ξφ∗ : Θ ⇒ X:13

Ξφ∗(θ) =

{φ∗(θ)} if φ∗(θ) < φA(θ)[
φA(θ), infθ′∈[θ,1]

{
φ∗(θ′) : φ∗(θ′) < φA(θ′)

}]
if φ∗(θ) = φA(θ)

(7)

Thus, consumption in any optimal contract is simply the producer-optimal consumption

level capped by the consumer-optimal consumption level. The remainder of the result derives

corresponding optimal price schedules and levels of purchases from this optimal consumption

function. We analyze the properties of this contract in the following sections.

We prove Proposition 1, as part of a more general result (Proposition 7), in three steps

in Appendix A. In Appendix A.1, we extend the Taxation Principle (Guesnerie and Laffont,

1984) to our environment with disposal correspondences, obtaining an additional mono-

tonicity restriction on the price schedule. In Appendix A.2, we use this monotone taxation

principle to establish that a consumption function φ is implementable if and only if it is

monotone and capped by φA. In Appendix A.3, we reduce the monopolist’s problem to the

control problem of maximizing virtual surplus (3) under the constraint φ ≤ φA, show that the

pointwise monotone solution is φ∗ = min{φA, φP}, and show that the optimal price schedule

is uniquely identified over the offered menu by the envelope formula in Equation 6. Finally,

to characterize the corresponding purchases, we observe that whenever φ∗(θ) = φA(θ), the

monopolist can offer to buyer θ any amount up to

ξ(θ) = inf
{
φP (θ′) : θ′ ∈ [θ, 1], φP (θ′) < φA(θ′)

}
(8)

while still satisfying the incentive constraints in Problem 1.

13With the convention that if the set over which the infimum is taken is empty, then the infimum is equal
to the supremum of the codomain of the relevant objective function. For example, ∞ for R, and 1 for [0, 1].
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Importantly, a possible optimal solution for the seller is to offer only the tiered levels of

consumption in the set ξ(Θ) at the corresponding prices given by T ∗. By construction, each

consumer θ will purchase the corresponding tier ξ(θ) and then consume only up to φ∗(θ).

This selection ξ can be always justified in the presence of arbitrarily small menu costs for

the seller and will later help us rationalize the presence of several discrete tiers of service.

We provide a more specialized intuition for the form of the optimal contract in an example:

Example 1 (Digital Platform with Advertisement). A digital platform sells access time

x ∈ [0, 1]. Consumers have quadratic payoffs

u(x, θ) = θx− x2

2
(9)

where θ is uniformly distributed on Θ = [0, 1]. A consumer who spends time x on the

platform clicks on x(k − cx) advertisements, for k > 0 and c ∈ [0, k]. The assumption

c ≥ 0 embodies user fatigue from seeing the same advertisements repeatedly, and c ≤ k

ensures that total clicks remain positive. Each click yields revenue p > 0 for the seller. The

principal’s revenue function is therefore

π(x, θ) =
Revenue

Click
· Clicks

Time
· Time = p · (k − cx) · x = pkx− pcx2 =: αx− β

2
x2 (10)

where, in the last equality, we define α = pk and β = 2pc for simplicity.

We can use Proposition 1 to solve for the seller’s optimal pricing in this setting. The

seller-preferred consumption, which maximizes virtual surplus, is

φP (θ) = max

{
0,min

{
1,
α + 2θ − 1

β + 1

}}
(11)

The consumer-preferred demand is φA(θ) = θ. Therefore the consumption implemented in

the optimal contract is

φ∗(θ) = min
{
φA(θ), φP (θ)

}
=

φP (θ) if θ < 1−α
1−β

φA(θ) if θ ≥ 1−α
1−β

(12)

In the limit case of α = pk > 1, which can be guaranteed by a sufficiently high revenue

per click or intercept of the clicks-per-time function, the previous two expressions reduce

to φ∗(θ) = φA(θ) and T (x) ≡ 0. In words, the platform is free and consumers spend as

much time as they wish on it. At the other extreme, if α < β or k < 2c (corresponding

to a low click-per-time intercept and/or high fatigue rate), φ∗ = φP and the tariff is always

11
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Figure 2: Optimal contracts with and without free disposal (α = 1
2
, β = 0)

increasing. This is a “conventional” pricing scheme with positive marginal prices determined

by the usual considerations of screening. Finally, all other cases are a hybrid between the

two extremes: the tariff increases to the point x = 1−α
1−β via the “conventional” formula and

is flat thereafter, meaning that marginal units x ∈
(

1−α
1−β , 1

]
have a zero marginal price.

We illustrate such a hybrid case in Figure 2 with α = 1
2

and β = 0. We show φ∗(θ) in

the leftmost panel and T ∗(x) in the right-most panel with a solid line. In the middle panel,

we illustrate the “maximum purchase schedule” defined in Equation 8, which provides the

good in metered quantities up to x = 1−α
1−β = 1

2
and then in a maximum quantity x = 1 at a

fixed price Tmax = T ∗
(

1
2

)
= 1

16
. The region of zero marginal pricing can be interpreted as

a “premium tier” of unlimited usage, an idea we will expand upon more generally in later

analysis (Section 3.3).

We can contrast these predictions with those in a variant market with the same demand

and external revenues, but no potential for free disposal (i.e., the legitimate time spent on

the platform is perfectly contractible). The seller implements a contract in which agents

consume φ∗(θ) = φP (θ). The corresponding price schedule may entail negative marginal

and/or average prices depending on (α, β). We illustrate, in the same case of α = 1
2

and

β = 0, the consumption, purchases, and prices in the dashed lines of Figure 2. Due to

the non-monotonicity of prices, x = 0 and x = 1 are both priced for free. This starkly

demonstrates the incentives for sellers in digital markets to use negative prices to induce

valuable usage, which would be enforceable absent free disposal. 4

12



3.2 Rationalizing Multi-Part Tariffs

We now generally characterize when the optimal tariff is a multi-part tariff. We first formally

define the concepts of flatness, flat intervals, and tiers. To this end, we define the space of

consumed outcomes X∗ = φ∗(Θ) ⊆ X as the image of φ∗.14 In what follows, with an abuse

of notation, we let T ∗ : X∗ → R denote the restriction of the optimal price schedule over the

space of consumed outcomes X∗, and call it the price schedule.15

Definition 1 (Flatness, Flat Intervals, and Tiers). A price schedule T : X∗ → R is flat at

x ∈ X∗ if there exists an ε > 0 such that T (x′) = T (x) for all x′ ∈ (x− ε, x+ ε) ∩X∗. The

interval I ⊆ X∗ is a flat interval if the price schedule is flat at all points x ∈ I. The interval

R ⊆ X∗ is a tier if it is a maximal flat interval.

Flatness of prices is more demanding than zero slope, or T ′(x) = 0 wherever T ′ is defined,

as it must apply on a positive measure interval around x.16 Tiers are defined in terms of the

price schedule, which is the relevant observable outcome of interest in our analysis.

To characterize when optimal price schedules are flat, we first define the constrained

marginal revenue function H : X∗ → R that maps outcomes to the marginal revenue of the

principal in the type who most prefers that outcome:17

H(x) = Jx
(
x, (φA)−1(x)

)
(13)

To interpret H, imagine that the principal had to offer the product for free. The sign of

H(x) determines whether the principal would profit from more (H(x) > 0) or less (H(x) < 0)

consumption from the type whose favorite consumption is x. The following result links flat

pricing with this trade off.18

Proposition 2 (Flatness Characterization). If H(x) > 0, then the optimal price schedule

T ∗ is flat at x ∈ X∗. Conversely, if the optimal price schedule T ∗ is flat at x ∈ X∗, then

H(x) ≥ 0.

Proof. See Appendix A.4.

14Given continuity of φ∗, the set X∗ is an interval.
15Even if T ∗ is defined over the whole X, the outcomes x ∈ X \ X∗ are never consumed in the optimal

allocation. Therefore, our restriction is without loss for exploring pricing and welfare implications.
16Thus, zero marginal transfers or tariffs “at the top,” meaning a specific maximal point in the type or

action space, do not imply flatness by our definition—no unit of size ε > 0 is sold for zero price.
17Given an increasing function φ : Θ → X, we denote with φ−1 its generalized inverse φ−1(x) = inf{θ ∈

Θ : φ(θ) ≥ x}.
18It is not possible to strengthen the claim that if optimal price schedule T is flat at x ∈ X∗, then H(x) ≥ 0

and make the inequality strict. The proof of Proposition 2 provides an explicit counterexample.
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To understand this result, we observe that the condition H(x) > 0 corresponds to the

following comparison of two terms evaluated at x and θ = (φA)−1(x):

f(θ) πx(x, θ)︸ ︷︷ ︸
Marginal Revenues

> (1− F (θ))uxθ(x, θ)︸ ︷︷ ︸
Marginal Information Rents

(14)

Condition 14 holds when the marginal revenues from increasing x, multiplied by the density

of consumers, exceed the increase in information rents paid to all higher-type consumers.

Steepening the revenue function boosts the former force. Reducing complementarity or

increasing F (·) in the hazard rate order reduces the latter one. Without positive marginal

revenues, the second force would always win and the price schedule would never be flat.

This result allows us to understand how changing advertising revenues matter for the

structure of zero marginal pricing. To illustrate this, we revisit Example 1:

Example 1 (continuing from p. 11). The constrained marginal revenue function is H(x) =

(α − βx)− (1− x), where the first term is the marginal revenue from additional usage and

the second is marginal increase of information rents. Zero marginal pricing therefore occurs

on the set of consumption levels where H > 0. Globally increasing marginal revenues via

higher α and/or lower β increases the size of this set. These comparative statics amount to

increasing the revenue per click or decreasing the speed at which click-through-rate decreases

per session (i.e., user fatigue). In this way, a more lucrative advertising business causes more

units to be optimally priced at zero marginal price. 4

Next, we use our characterization to determine how many parts the optimal multi-part

tariff has. We say that a price schedule with N tiers is a generalized N + 2-part tariff. This

builds on the conventional definition of a three-part tariff in which there is a fixed cost,

an initial allotment of zero-marginal-price goods, and then additional units with marginal

positive price.19 Our more general definition can account for zero-marginal-pricing away

from the “bottom” of the contract. We observe, building on the characterization of locally

flat pricing in Proposition 2, that the number of tiers depends on the number of times that

H changes sign. Formally, we define the number of times H changes sign from below as:

k(H) = | {x ∈ X∗ : ∃ε > 0,∀y ∈ (x− ε, x),∀y′ ∈ (x, x+ ε), H(y) < 0, H(y′) ≥ 0} | (15)

where this definition simply rules out cases where H hits 0 at a single point only (which

does not lead to a flat tariff) and restricts to the earliest x at which a sign change happens

19A two-part tariff, via the conventional definition, combines fixed costs with positive marginal costs. This
of course can be accommodated in the conventional non-linear pricing framework, with zero tiers, as the
“intercept” of the tariff is a free parameter.
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to prevent double-counting of tiers.

Corollary 1 (Multi-Part Tariffs). If H(minX∗) > 0, respectively H(minX∗) < 0, then the

price schedule T is a 3 +
⌊

1
2
k(H)

⌋
, respectively 2 + d1

2
k(H)e, multi-part tariff.

Proof. See Online Appendix B.1.

Our model, depending on primitives and their effects on the function H, can therefore

rationalize a diversity of price schedules combining tiers with marginally priced “add-ons”

as strictly optimal for the principal.

Remark 1 (Standard models do not generate multi-part tariffs). Strictly optimal multi-part

tariffs are not possible in the canonical Mussa and Rosen (1978) and Wilson (1993) screening

models with a (convex) continuum of agent types.20 A weakly optimal multi-part tariff is

possible, for instance, in a specialization with a discrete number of types, by extending the

domain of the offered menu with a constant tariff. But we argue this is not economically

meaningful, or relevant for our applications, for three reasons. First, no type would ever

consume any outcome in the extended menu that does not lie in the initial menu, therefore

ruling out variability of consumption within a pricing tier. This is clearly counterfactual—

within the single tier of a zero-price product like Facebook, there is large variability in time

spent on the platform. Second, there would be as many parts to the tariff as unique consumer

types, which is an arbitrary choice of the modeler. This prevents meaningful comparative

statics for the number of observed tiers as a function of primitives. Third, there is no

principled reason for arguing that the multi-part tariff is the “right” selection from the set

of optimal price schedules which are extended off-menu.

Remark 2 (Bunching is unrelated to multi-part tariffs). As a technical point, we emphasize

that optimal bunching in standard screening models is a different phenomenon from optimal

multi-part tariffs. Intuitively, bunching is a feature that occurs in the type space Θ, where

many different types buy the same amount. However, all units of the good are still sold at

a strictly positive marginal price and so the optimal tariff is never flat. In Appendix C.1,

we solve for the optimal contract with bunching when J does not satisfy single-crossing in

(x, θ) and is strictly concave in x by adapting the method of Nöldeke and Samuelson (2007).

Example 1 provides an explicit illustration of how bunching is unrelated to the issue of

zero marginal pricing: multiple buyers bunch on buying nothing, but there are still strictly

positive marginal prices for the first marginal units of the good (see Figure 2).

20Even if the virtual surplus is not strictly-concave and a multi-part tariff is weakly optimal, the same
argument of this remark would apply.
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3.3 The Structure of Multi-Part Tariffs

We now use our characterization to study where in the price schedule zero marginal pricing

is optimal. In the process, we rationalize a number of commonly used price schedules.

3.3.1 Cut-off Price Schedules

We first restrict to a simple setting in which H crosses zero at most once. In this setting,

there are four exhaustive possibilities for the global shape of the price schedule, based on

cut-offs at which zero marginal pricing switches on or off.

Corollary 2 (Cut-off Pricing). The following statements are true:

1. If H(x) ≤ 0 for all x ∈ X∗, then T is strictly increasing everywhere.

2. If H(x) ≥ 0 if and only if x ≤ x̂ ∈ int(X∗), then T has a single tier [minX∗, x̂), and

is strictly increasing on [x̂,maxX∗].

3. If H(x) < 0 if and only if x < x̂ ∈ int(X∗), then T has a single tier [x̂,maxX∗] and is

strictly increasing on [minX∗, x̂).

4. If H(x) ≥ 0 for all x ∈ X∗, then T has a single tier X∗.

Proof. See Online Appendix B.2.

The first case corresponds to a standard, strictly positive marginal price. The second

corresponds to a classic three-part tariff: initial units are provided at a fixed price plus zero

marginal price, and subsequent units are provided at a positive marginal price. A common

specialization of this strategy in digital goods contexts, under the added restriction that

the fixed price is zero, is a freemium (“free plus premium”) or free trial pricing strategy.

The third case is an inverted three-part tariff, where initial units are provided at a positive

marginal price and larger quantities are bundled together at a fixed price. While such

schemes are rare for standard physical goods, they are common in digital goods contexts as

unlimited subscriptions. The final case is a completely free product. Such products are of

course ubiquitous online, mainly as free, ad-supported services in search (e.g., Google) and

social media (e.g., Facebook, Twitter, and Instagram).

We can use Example 1 to illustrate these four pricing cases numerically:

Example 1 (continuing from p. 11). The function H(x) = (α − βx) − (1 − x) satisfies

single-crossing. The four cases of Corollary 2 exhaustively summarize the possibilities in the

model.21 In Figure 3, we illustrate each of these cases as parameterized by different choices

of (α, β). We name the cases based on the interpretation sketched above. 4
21Case 1 arises if α ≤ 1 and α ≤ β; case 2 if α > 1 and α ≤ β; case 3 if α ≤ 1 and α > β; and case 4 if

α > 1 and α > β.
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Figure 3: Cut-off price schedules in Example 1

3.3.2 General Price Schedules: Premium and Trial Tiers

We next derive sufficient conditions for zero marginal pricing at the bottom and top of the

menu. We say a tariff T features a premium tier if it is flat at maxX∗, the highest level of

consumption under the optimal contract, and a trial tier if it is flat at minX∗, the lowest

level of consumption under the optimal contract.

Corollary 3 (Premium and Trial Tiers). The price schedule has a premium tier if

πx(φ
A(1), 1) > 0 (16)

The price schedule has a trial tier if

f(0)πx(φ
A(0), 0) > uxθ(φ

A(0), 0) (17)

Proof. See Online Appendix B.3.

The first part shows that the premium tier emerges as optimal any time that marginal

external revenues are globally positive. The lack of a countervailing force from marginal infor-

mation rents reflects the fact that the principal does not distort allocations of the highest-type

agents away from the first-best surplus-maximizing allocation.

This prediction matches standard pricing for online news and content streaming (e.g.,

Wall Street Journal or Netflix subscriptions), which rarely cap usage in the highest-paid tier.

The prediction also understandably breaks down for the “analog” version of each product,
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which necessarily entails production costs and therefore non-positive marginal revenues be-

yond a point—a print Wall Street Journal subscription does not promise access to unlimited

paper copies of the Journal and all possible supplements, and the original DVD-by-post

incarnation of Netflix had limits on videos per customer.

The second part shows that trial tiers require a more stringent condition, whereby

marginal revenue (multiplied by the mass of low-type agents) exceeds the marginal informa-

tion rent paid to all higher types. With zero or negative marginal revenues, this condition

would never hold. Otherwise, it is more likely to hold in environments with high marginal

revenues stemming from low consumption. This comparative static may be illustrated by

comparing digital video streaming and cable television. Platforms for the former, like Net-

flix and Hulu likely have a large “extensive margin” of advertising and/or data collection

revenue from small levels of usage. Consistent with the model, they regularly offer free trials

for their main services. Cable television providers might have a similar incentive to sign up

users, but face a large fixed cost to install a physical connection in the user’s home. Cable

TV pricing correspondingly has an installation fee in contrast to a free trial, combined often

with a tiered structure on the “intensive margin” of channel selection.

Another relevant example comes from phone apps, particularly games (e.g., “Candy

Crush Saga”). Such apps can directly generate revenue from merely being opened, as they

can scrape data points like the user’s location and sell them to advertising firms. They are

also likely to be addictive and have concave effects of past usage on future willingness-to-pay

(i.e., the first minute of the game hooks the user more than the hundredth).22 In practice,

these products often are priced with free basic versions and paid add-ons.

We conclude by using an example with randomly occurring impressions to numerically

illustrate how premium and trial tiers can coexist in the optimal contract:

Example 2 (Optimal Pricing with Premium and Trial Tiers). Consumer preferences, the

outcome space, and the type distribution are identical to those in Example 1. Impressions

are again generated at a constant rate, normalized to one, and advertisers pay α > 0 per

click. But consumer behavior toward advertisements has the following different structure.

Consumers “notice” an advertisement according to an exponential process with hazard rate

λ > 0, click on the first advertisement they notice, and ignore all subsequent advertisements.

The principal therefore receives the following payoff in expectation:

π(x, θ) =
Cost

Click
· Expected Clicks = α · (1− e−λx) (18)

22The micro-foundation of revenue via addiction in Online Appendix D.3 defines the relevant notion of
concavity more precisely. Allcott, Gentzkow, and Song (2021) show that a model of total demand for popular
phone apps (Facebook, Instagram, Twitter, Snapchat, web browsing, and YouTube), calibrated to empirical
evidence, is consistent with habit formation, myopia, and diminishing returns.
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Figure 4: General price schedules in Example 2

Thus, H(x) = λαe−λx − (1 − x), which has, depending on the values of (λ, α), either zero,

one, or two tiers. The last case features both a free trial at the bottom and zero marginal

pricing at the top while featuring positive marginal prices for intermediate units. In Figure

4, we illustrate these possibilities, including the two-tier scheme, for different parameter

values. Intuitively, the concave revenue function makes usage at the bottom attractive to

the principal, while the absence of information rents at the top coupled with some marginal

revenues makes zero marginal pricing optimal. This combination of a trial and premium

plan is characteristic of online newspaper and content streaming platforms. 4

3.4 Consumer and Producer Welfare Under Multi-Part Tariffs

We now study the impact of under-utilization on the levels of producer and consumer surplus.

For an arbitrary price schedule T , denote the welfare of each type θ ∈ Θ under optimal

purchasing and utilization as V (θ;T ) and the corresponding payoff of the seller as Π(T ).23

With unlimited disposal D and no disposal D we write these payoffs, respectively, as V (θ;T ),

V (θ;T ) and Π(T ), Π(T ). The following result summarizes how consumer and producer

23More formally:
V (θ;T ) = sup

y∈X,x∈D(y)

u(x, θ)− T (y) (19)

for all θ ∈ Θ, with seller-preferred ξ(θ;T ) and agent level consumption φ(θ;T ) yielding:

Π(T ) =

∫
Θ

(π(φ(θ;T ), θ) + t(ξ(θ;T ))) dF (θ) (20)
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surplus are affected by the removal of contractibility of consumption.

Proposition 3 (Contractibility and Welfare). For any fixed price schedule T , V (θ;T ) ≥
V (θ;T ) for each θ ∈ Θ. However, in any corresponding optimal price schedule T ∗ and T ∗

′
,

V (θ;T ∗) ≤ V (θ;T ∗
′
) for each θ ∈ Θ. Moreover, Π(T ∗) ≤ Π(T ∗

′
).

Proof. See Appendix A.5.

All consumers lose out from increased contractibility for a fixed pricing policy, as the scope

for payoff-increasing actions declines; but all consumers gain from increased contractibility

under the seller’s reoptimized menu. Intuitively, consumers would like to commit ex ante to

avoid the possibility of moral hazard and have the seller pay them to take certain actions; in-

creasing contractibility provides exactly this commitment device. Sellers gain from increased

contractibility for the simple reason that it increases the set of implementable allocations.

This result allows us to speak to the benefits for consumers of advertising- and data-

generated revenue. Technology companies have argued that advertising is consumer-friendly

because it supports the provision of more free content.24 Our results clarify how the con-

straints imposed by moral hazard and their observed consequence of zero-marginal-pricing

skew the distribution of surplus toward producers.

A next natural question concerns how the gap between worlds with and without free

disposal is itself affected by changes in the economic environment. Define the gaps in con-

sumer and producer surplus in the optimum ∆V (θ) = V (θ;T ∗) − V (θ;T ∗
′
) and ∆Π =

Π(T ∗) − Π
′
(T ∗

′
). The following result shows that these gaps expand when the economic

environment changes in ways that increase the principal’s desire for more consumption:

Proposition 4 (Comparative Statics for Welfare). If either (i) πx(·, θ) pointwise increases

for all θ ∈ Θ, or (ii) F decreases in the hazard rate order, then ∆V (θ) increases for all θ ∈ Θ

and ∆Π increases.25

Proof. See Appendix A.5.

The intuition for this result is that with higher marginal value of consumption for the

principal or smaller information rents, the principal-optimal consumption is larger. As a

result, in the absence of contractibility, there are more types who end up consuming their

bliss point rather than the principal’s preferred amount. Thus, the principal gains more

24This sentiment is typified in a 2010 report by the Information Technology and Innovation Foundation,
a US lobbying group, which claims that “data privacy regulations could sharply limit the principal funding
mechanism for most of the free Internet enjoyed by consumers today and result in lost jobs, investment and
Internet innovation.” (Castro, 2010).

25That is, if the environment changes from E = (π, F ) to Ẽ = (π̃, F̃ ) and either (i) π̃x(·, θ) ≥ πx(·, θ) for
all θ ∈ Θ or (ii) F̃ �HR F , where �HR is the hazard rate order, then ∆̃V (·) ≥ ∆V (·) and ∆̃Π ≥ ∆Π.
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from contractibility when they would like the buyers to consume more, precisely because the

disposal constraint is more often binding. Moreover, when incentives for the principal to allo-

cate more are stronger, the introduction of contractibility is more valuable as a commitment

device for the agents as they can be paid more for their now higher consumption.

This result allows us to shed light on the likely welfare effects of changes in advertising

technology, such as the past decade’s advent of more valuable targeted advertisements. This

phenomenon translates in our model to an increase in the marginal value of usage, πx.

Our result implies that such improvements in technology will lead to welfare gains for all

consumers, but that these gains would be larger if digital goods’ usage were fully contractible.

Moreover, government regulations that may, in the long run, diminish marginal advertising

revenues, like the European Union’s General Data Privacy Regulation, may not have large

negative effects on prices and consumer surplus for digital products if sellers are far on the

“interior” of the zero marginal pricing constraint.

Our focus on contractibility, and the technologies that would allow principals to monitor

usage, contrasts with an influential perspective in the literature that focuses instead on the

lack of collective bargaining for users of online products (Posner and Weyl, 2018). Taken to

the extreme, our results imply a thorny “privacy paradox” for consumers—the only way to

properly reap the benefits of the surplus generated by targeted advertising is to surrender

additional privacy by enabling tools to more precisely monitor usage and attention.

4 Pricing with Partial Contractibility

While the extreme case of totally non-contractible consumption is relevant for many of our

digital pricing applications, in some settings it appears that consumption is at least partially

contractible. For example, search engine Bing monitors unique sign-ups and pays users for

initial searches, while content-sharing platforms such as YouTube and TikTok monitor high-

end users and share advertising revenues by paying them for their usage of the platform

and the videos they create. In this section, we develop the theoretical apparatus required

to consider partial contractibility via disposal correspondences, characterize implementable

contracts, and simplify the optimal pricing problem. This enables us to fully characterize

the optimal price in applications.

4.1 Modelling Partial Contractibility

Recall that a disposal correspondence D : X ⇒ X takes as input an allocated quantity

y ∈ X and returns a set of achievable outcomes D(y) ⊆ X. The interpretation of D as
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capturing under-utilization is ensured through the following five conditions:

1. Reflexivity : y ∈ D(y) for every y ∈ X. It is possible for an agent to consume what

they are allocated.

2. No over-utilization: for every x, y ∈ X, if x ∈ D(y) then x ≤ y. Disposal can allow

the agent to consume or produce less but not more.

3. Transitivity : for every x, y ∈ X, if x ∈ D(y) then D(x) ⊆ D(y). If an agent can reach

x by disposing from y, and z by disposing from x, then they can reach z by disposing

directly from y.

4. Monotonicity : for every x, y ∈ X, if x ≤ y then D(x) ≤SSO D(y), where ≤SSO denotes

the strong set order. When an agent disposes from a lower starting point, the set of

things to which they can dispose is also lower.

5. Closed-valuedness : D(y) is closed for all y ∈ X.

We say that a disposal correspondence D is regular whenever it satisfies all five properties

listed above. Both the full-contractibility correspondence D(y) and the free-disposal corre-

spondence D(y) are regular. Toward understanding the general nature of contractibility in

our setting, we first characterize the structure of a regular disposal correspondence in terms

of its minimum selection δ : X → X, defined as δ(y) = minD(y) for all y ∈ X.

Lemma 1 (Characterization of Regular Disposal Correspondences). A disposal correspon-

dence D : X ⇒ X is regular if and only if D(y) = [δ(y), y] for some function δ : X → X

that is increasing and such that, for every x, y ∈ X, δ(y) ≤ y, and,

x ∈ [δ(y), y] =⇒ δ(x) = δ(y) (21)

Proof. See Online Appendix B.4.

Intuitively, given any initial allocation y ∈ X, it is feasible to consume any x ∈ [δ(y), y].

Graphically, each representing function δ can only switch between adjacent intervals I ⊆ X

and I ′ ⊆ X such that: (i) there is no contractibility in the first interval and full contractibility

in the second, that is δ(x) = min I for all x ∈ I and δ(x) = x for all x ∈ I ′; (ii) there is full

contractibility over the first interval and none in the second, that is δ(x) = x for all x ∈ I
and δ(x) = min I ′ for all x ∈ I ′ ; (iii) there is no contractibility over allocations within each

interval, that is δ(x) = min I for all x ∈ I and δ(x) = min I ′ for all x ∈ I ′.
This characterization implies that three regular disposal correspondences form the build-

ing blocks of any other: upper-threshold contractibility Du under which the seller can con-

tract upon consumption above some threshold c ∈ R; lower-threshold contractibility Dl under
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which the seller can contract upon consumption below c; and grade-based contractibility Dg

the seller can contract upon whether or not consumption is above or below c. Hence:

Du(y) =

[0, y] if y < c

{y} if y ≥ c
Dl(y) =

{y} if y < c

[c, y] if y ≥ c
Dg(y) =

[0, y] if y < c

[c, y] if y ≥ c
(22)

In this section, we will explicitly apply upper-threshold and lower-threshold contractibility

to digital goods pricing. In Online Appendix E.1, we apply grade-based contractibility

to a problem of optimal monopoly regulation. However, we start with a general result

characterizing implementability for arbitrary regular disposal correspondences.

4.2 Implementation with Partial Contractibility

We first define implementable consumption functions:

Definition 2 (Implementation). A consumption function φ is implementable given D if

there exists a purchase function ξ and a price schedule T such that (φ, ξ, T ) jointly satisfy

the constraints (O), (IC), and (IR) of Problem 1. In this case, we say that φ is supported

by (ξ, T ).

We next characterize what is implementable with partial contractibility of utilization:

Proposition 5 (Characterization of Implementation). Let D be a regular disposal corre-

spondence with minimum selection δ. A consumption function φ is implementable given D

if and only if φ is monotone increasing and such that for all θ ∈ Θ:

φ(θ) ≤ max{δ(φ(θ)), φA(θ)} (23)

Moreover, φ is supported by ξ = φ and price schedule (with C ≤ 0):

T (x) = C +

∫ x

0

ux(s, φ
−1(s))ds (24)

Proof. See Appendix A.2.

To understand this result, consider what the capping condition in Equation 23 requires.

Intuitively, after being given any y ∈ X, the agent’s favorite point is either y (if y ≤ φA(θ)) or

φA(θ) (if y > φA(θ)). Thus, if y ≤ φA(θ), then the agent is content to consume y. However,

if φA(θ) < y, then the agent’s favorite feasible deviation is simply φA(θ) (if φA(θ) ∈ D(y))

or the lowest possible feasible level of consumption δ(y) (if φA(θ) < δ(y) = minD(y)).
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Thus, the agent optimally consumes no more than max{δ(y), φA(θ)}. Thus, it is clear that

the capping requirement is necessary. The more involved part of this result shows that for

any monotone φ, the capping requirement is sufficient. Standard arguments through the

envelope formula and single-crossing rule out single deviations where a type θ would rather

consume the allocation of any other type θ′. The main steps of the proof establish that there

are also no double deviations where a type θ wishes to purchase φ(θ′) and consume some

x ∈ D(φ(θ′)). Intuitively, single-crossing of agents’ preferences remains sufficient to rule out

any agent having the willingness-to-pay to profitably perform such a double deviation.

Beyond its use in characterizing optimal contracts, this result already informs us of

interesting features of implementable contracts. In particular, the price schedule T must be

increasing over the intervals (δ(y), y) for all y ∈ X. Thus, while the seller is constrained to

offer positive or zero marginal prices on any such interval, they now have the potential to

charge negative marginal prices across such intervals. This is an important possibility that

we will shortly explore in an application to pricing content creation.

4.3 Optimal Pricing with Partial Contractibility

This implementation result allows us to express the optimal pricing problem (Problem 1) as

a control problem, where the seller chooses a monotone and pointwise capped consumption

function to maximize expected virtual surplus.

Lemma 2 (The Control Problem). Let D be a regular disposal correspondence with minimum

selection δ. A consumption function is part of a solution to Problem 1 if any only if it solves

max
φ

∫
Θ

J(φ(θ), θ) dF (θ)

s.t. φ(θ′) ≥ φ(θ), φ(θ) ∈ [0, φA(θ)] ∪ {x ∈ X : δ(x) = x}, θ, θ′ ∈ Θ : θ′ ≥ θ

(25)

Proof. See Appendix B.5

Thus, optimal consumption maximizes total virtual surplus subject to monotonicity and

contractibiltiy constraints. The contractability constraint requires that consumption either

lies below the bliss point or is at a fixed point of δ, which represents the lowest level of

consumption in any interval of non-contractibility. This is as much as we can say about the

optimum in general.

However, with additional structure, it is possible to say a lot more about optimal so-

lutions with partial contractibility using Lemma 2. In particular, under lower-threshold

contractibility and with no additional assumptions, in Appendix Proposition 7 we use this
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result to solve pointwise for the optimal contract as:

φ∗l(θ) = min
{

max
{
c, φA(θ)

}
, φP (θ)

}
(26)

This mirrors the solution with free disposal, but now with the agents’ bliss points replaced

with max{c, φA(θ)}. Intuitively, if agents’ bliss points are below c, as their consumption

is contractible, they can be forced to consume up to the level of c. Moreover, whenever

agents have φA(θ) < c, they are paid on the margin for their consumption. We argue that

such a contractibility structure mirrors that of search engine Bing where initial sign-ups are

contractible, but subsequent usage is not. In this context, our result rationalizes the pricing of

Bing, where, under the Bing Rewards program, users are remunerated for a certain quantity

of initial searches, but subsequently face a price of zero on the margin.

Without additional structure, the pointwise solutions to the problems with upper-threshold

and grade-based contractibility are possibly non-monotone as the implementation constraint

is not monotone in the strong set order. Nevertheless, when the pointwise solution is mono-

tone, pointwise optimization of virtual surplus subject to the contractibility constraint is

optimal. We now lever this structure to study the optimal pricing of content creation plat-

forms, where, as we will argue, upper-threshold contractibility appears descriptively realistic.

In Online Appendix E.1, we use this structure to solve for optimal quality regulation of a

monopolist under a pass-fail, grade-based structure.

4.4 Application: Pricing Content Creation Platforms

Content creation platforms, websites on which users post their own videos, music, writ-

ings, or other shareable digital content, perhaps epitomize the internet’s grey area between

“users” and “workers.” One important example is the video-sharing website YouTube. The

parent company Alphabet (formerly, Google) reported in its 2019 annual earnings report

that YouTube generates about $15 billion per year in advertising revenue (Alexander, 2020).

As per the website’s current Terms of Service, advertisements may appear on any YouTube

video. But creators can share in that advertisement revenue only if they belong to the

YouTube Partner Program. The Partner Program, introduced in December 2007, is avail-

able to content creators who meet a minimum threshold of activity, measured by “valid

public watch hours” per year and subscriber count (YouTube Help, 2021). Initial approval

and periodic verification of Partner status involve human review, and in particular the defi-

nition of “valid public watch hours” is intentionally qualitative to guard against cheats like

watching one’s own videos on loop. Approved creators earn revenues that scale with video

views at variable rates. Popular video-sharing app TikTok has a similar Creator Fund, which
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like the YouTube Partner Program is available only to creators with sufficient “authentic

followers” and “authentic video views” (TikTok, 2021).

We model YouTube’s Partner Program (henceforth, the leading example of the two) as

nonlinear pricing of video creation. The good x is video content measured, as described

above, by valid public watch hours. Creators have satiated preferences over video creation—

the process is intrinsically enjoyable up to some point, after which it requires costly effort.

Type θ scales individuals’ ability to produce a given amount of content, measured by the

eventual extent to which it is watched, per unit of effort. The advertising revenue that

YouTube receives from x hours of watching one content creator of type θ is π(x, θ).

The monitoring of quality production described by YouTube follows closely upper-threshold

contractibility Du, as defined in Equation 22. In particular, above the threshold c (as per

current guidelines, 4000 valid public watch hours per year), there is perfect monitoring of

content creation. More concretely, we think of under-utilization in this context as manipu-

lation of watch-hours, for instance by writing a computer script to replay videos on loop or

hiring bots as part of a “click farm.” However, it is not possible to “fake” the relevant time

spent on the platform and the content created beyond a certain level as YouTube employs

extensive algorithmic and human reviewing to ensure legitimacy.

Toward solving for optimal pricing, we assume that YouTube, absent any imperfect con-

tractibility, prefers that all sufficiently productive users produce more videos than they would

for free. We do this through the condition that φP (θ) ≥ φA(θ) if and only if θ ≥ θ̂ for some

θ̂ ∈ [0, 1]. Moreover, we define the function ∆c(θ) = J(c, θ) − J(φA(θ), θ), which is posi-

tive whenever it is better to assign type θ to c rather than their bliss point, and negative

otherwise. We can now use Lemma 2 to solve for the structure of the optimal contract:

Proposition 6 (Optimal Usage with Upper-Threshold Contractibility). If ∆c crosses zero

at most once from below, then usage in any optimal contract is given by:26

φ∗(θ) =



φP (θ) if θ < θ0

φA(θ) if θ ∈ [θ0, θ1)

c if θ ∈ [θ1, θ2)

φP (θ) if θ ≥ θ2

(27)

where θ0 = θ̂, θ1 is the smallest solution to ∆c(θ1) = 0 if one exists and 1 otherwise, and θ2

solves φP (θ2) = c if a solution exists and is 1 otherwise.

Proof. See Online Appendix B.6.

26That is, ∆c(θ) ≥ 0 if and only if θ ≥ θ1 for some θ1 ∈ [0, 1].
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We now provide intuition for this solution and describe the implied optimal pricing. In

the region with non-contractibility, the solution starts out by following the free-disposal

solution of min{φA, φP}. In this setting, where φP crosses φA once from below, the seller

starts out by offering φP before transitioning to φA after they cross. Thus, the seller may

start out with positive marginal pricing before switching to zero marginal pricing. Next,

the seller is faced with choosing to allow production at the bliss-point level, or bumping up

agents’ production into the region with full contractibility. Bumping agents up is attractive

exactly when ∆c(θ) ≥ 0. Thus, at this point, the optimal production level jumps from φA(θ)

to c.27 Here, the seller makes a lump-sum payment to agents who produce at or above the

threshold c. Finally, when φP reaches c, it is of course optimal to simply request the optimal

level of production and the seller pays agents on the margin for additional production.

Example 3. To illustrate the properties of this contract, we solve for the optimal pricing

under the same quadratic structure of preferences and advertisement revenue used in Exam-

ple 1.28 We use the revenue structure π(x) = x, or in the Example’s language, α = 1 and

β = 0. This generates a free product in the absence of contractibility of production. We

finally consider the upper threshold cut-off c at levels “∞” (i.e., the free-disposal case), 1,

and 0, which increase subsets of X on which the principal can contract on production. In

Figure 5, for each threshold, we plot the schedule of video creation as a function of type and

the tariff or wage schedule in the optimal contract.

First, when c → ∞, all agents consume their bliss point and the product is free. This

models YouTube before the December 2007 introduction of the Partner Program.

Second, when c = 1, sufficiently high types are paid both in absolute terms and on the

margin for content creation, as in the YouTube Partner Program.29 The payment schedule

beyond x > c = 1 is determined by the standard screening motives to provide incentives

toward effort—in the mechanism design interpretation, truthful reporting of one’s type. In

particular, in our quadratic example with uniformly distributed types, the tariff is concave

or the wage schedule is convex, consistent with the empirical observation that top creators

receive higher rates per view (Alexander, 2020). The split of surplus between YouTube and

creators, a contentious issue in practice, relates both to the location of the threshold cutoff

27This is why we restrict attention to cases in which ∆c crosses zero at most once from below. When
this fails, the pointwise solution becomes non-monotone as the seller wishes to move some agents down
from consuming c to their bliss point φA(θ). In Online Appendix B.6, we provide sufficient conditions on
primitives for this condition to hold.

28In the earlier examples, there was a natural and relevant notion of a binding “maximum time” spent on
a platform. For video creation, such a limit is less natural, so we choose a domain such that the upper limit
is never binding, X = [0, 2].

29This “free then payment” structure arises because marginal advertising revenues are sufficiently high or,
in our language, φP > φA globally.
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Figure 5: Optimal contracts under various levels of upper-threshold contracting.

c and the deep parameters determining the extent of information rents for better producers.

Third, when c = 0, all consumption is contractible and all types are paid. This is a

counterfactual world in which the Partner Program is not exclusive only to high-productivity

creators. In particular, switching from the observed world to this one not only creates surplus

for low-type creators who were excluded from the program, but also for the highest-type

creators who are paid larger information rents.30 This switch does not, however, necessarily

increase the aggregate amount of watch hours on YouTube, as a mass of creators who were

previously bunched at producing exactly at the monitoring threshold c = 1 now produces at

a lower level which is preferable to the platform. 4

5 Conclusion and Summary of Extensions

We study optimal nonlinear pricing in environments with feasible under-utilization and

usage-derived revenue, features that are ubiquitous in the digital goods context. We show

how the combination of these two forces rationalizes the occurrence of multi-part tariffs, or

price schedules that include at least one tier of zero marginal prices. The key mechanism is

that sellers have an incentive to pay users on the margin, due to usage-derived revenue (e.g.,

from advertisement or data collection), but non-contractibility prevents such arrangements

from being enforceable. More succinctly, zero marginal pricing is the sellers’ constrained

optimum in a world in which “pay to click” is impossible.

30While creator welfare is not plotted, this comparative static is immediate from observing that the c = 0
tariff is pointwise lower than the c = 1 tariff—creators are paid more for any given level of activity.
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We apply these results to study positive and normative features of digital goods markets.

We show how different structures of external revenue translate into different familiar pricing

schemes like free trials, premium tiers, and free products. We next show the scope for under-

utilization reduces buyers’ welfare and dampens the ability of buyers to reap the rewards from

the revenue they generate. We finally show how partial contractibility predicts endogenous

switching from agents being consumers, who either pay for a good or receive it for free, to

being workers, who are paid for their usage of a platform.

We finish by discussing additional analysis contained within the Online Appendix.

Under-Utilization with (Perfect) Competition. It is of course natural to ask how

our analysis in a monopoly setting would extend to markets with competition. In Online

Appendix C.2, we solve for the equilibrium outcome of our screening model when the mo-

nopolist faces a perfectly competitive fringe of potential entrants. The equilibrium price

schedule under perfect competition features zero marginal pricing more often than under

monopoly pricing (Corollary 4 in Online Appendix C.2). The reason is simply that the per-

fectly competitive outcome is total, rather than virtual, surplus maximizing. Total surplus is

maximized by a higher level of consumption owing to the absence of information rents, and

so the constraint of under-utilization is more often binding. As a result, our model implies

that multi-part tariffs are likely to be more prevalent in scenarios with fierce competition

between sellers than under monopoly.

Pricing Meets Product Design. Our main analysis took the structure of the seller’s

revenues as exogenous. In practice, of course, the revenue function reflects platform de-

sign decisions. In Online Appendix D.1, we study an extended model in which the seller

(e.g., Google) and an outside advertiser (e.g., the retailer that wants to show sponsored re-

sults) engage in Nash bargaining over advertising revenue generated from usage (e.g., Google

searches). We show that the principal designs the optimal mechanism as if the external ad-

vertisers’ revenue is their own. Providers also have latitude in determining the “extent” of

usage-derived revenue (e.g., how many sponsored search results to show), which in turn may

directly affect demand. We study this issue of optimal bundling in Online Appendix C.3 and

show how this both provides a microfoundation for the particular example revenue functions

we consider and allows us to explore how the extent of contractibility affects such bundling.

Additional Applications: Beyond Digital Goods. While we have so far discussed the

implications of our results for digital goods pricing, we argue that our results are relevant

beyond this context. We summarize these additional results in Online Appendix E. First,

we study problems of government monopoly regulation as in Baron and Myerson (1982)

(E.1). The government (principal) values production instrumentally due to concerns about
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consumer surplus, but can contract only on maximum permitted production; and the monop-

olist does not wish to produce beyond the point that maximizes profits. Our analysis shows

how, in optimal government contracts with pass-fail quality regulation, the optimal contract

features endogenous fines for failing to produce a sufficiently high quality. Second, we study

optimal income taxation in the presence of human capital or aggregate demand externalities

(E.2). In this case, with perfect contractibility, it may be optimal for the government to

charge a negative marginal tax for sufficiently high income. Instead, we show how, under

a partial contractibility scenario in which governments cannot detect over-reported income,

zero marginal taxes may be optimal incentives.

Appendices

A Proofs of Main Results

In this appendix, we provide the proofs of the main results. To do this, we present and

prove a series of more general results, from which we derive the results in the main text.

First, we characterize implementation under regular disposal correspondences in terms of

monotonicity of price schedules (A.1), before providing the proof of our implementation

result for regular disposal correspondences (A.2). Second, we characterize optimal contracts

(A.3) under lower-threshold contractibility and both zero marginal prices and multi-part

tariffs in the case of free disposal (A.4). Finally, we derive comparative statics for welfare

(A.5). The proofs of all additional results are postponed to Online Appendix B.

A.1 Toward Implementation: A Monotone Taxation Principle

To prove our implementation result, we first prove a novel extension of the taxation principle

in our setting: a monotone taxation principle. Let R̄ denote the extended set of reals

including {−∞,+∞}. In this section, we only assume that X and Θ are compact metric

spaces. All the five properties defining regular disposal correspondences extend as written

in Section 4.2. Given a regular disposal correspondence D, we say that T : X → R̄ is

monotone with respect to D if T (x) ≥ T (y) for all x, y ∈ X such that y ∈ D(x). The

following intermediate result shows that monotonicity of the tariff with respect to D is

necessary and sufficient for implementability (cf. Definition 2).

Lemma 3 (Monotone Taxation Principle). Fix a regular disposal correspondence D. A

consumption function φ is implementable given D if and only if there exists a tariff T : X →
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R̄ that is monotone with respect to D and such that:

φ(θ) ∈ arg max
x∈X
{u(x, θ)− T (x)} (28)

and u(φ(θ), θ)− T (φ(θ)) ≥ 0 for all θ ∈ Θ. In this case, φ is supported by ξ = φ and T .

Proof. We begin by proving necessity of the existence of a monotone tariff. Suppose that φ

is implementable. It follows that there exists (ξ, T ) that support φ. In particular, observe

that (O) implies that φ(θ) ∈ D(ξ(θ)) for all θ ∈ Θ. Next define T̂ : X → R̄ as:

T̂ (x) = inf
y∈X
{T (y) : x ∈ D(y)} (29)

We next show that φ is also supported by (φ, T̂ ). By (O) of (φ, ξ, T ), we have

u(φ(θ), θ) ≥ u(x, θ) (30)

for all x ∈ D(φ(θ)) ⊆ D(ξ(θ)) and for all θ ∈ Θ, yielding (O) of (φ, φ, T̂ ). By (IR) of (φ, ξ, T )

and the definition of T̂ , we have

u(φ(θ), θ)− T̂ (φ(θ)) ≥ u(φ(θ), θ)− T (ξ(θ)) ≥ 0 (31)

for all θ ∈ Θ, yielding (IR) of (φ, φ, T̂ ). Next, assume by contradiction that (φ, φ, T̂ ) does

not satisfy (IC), that is, there exists θ ∈ Θ and y ∈ X such that

max
x∈D(y)

u(x, θ)− T̂ (y) > u(φ(θ), θ)− T̂ (φ(θ)) (32)

With this, there exists ŷ ∈ X such that y ∈ D(ŷ) and

max
x∈D(ŷ)

u(x, θ)− T (ŷ) ≥ max
x∈D(y)

u(x, θ)− T (ŷ) > u(φ(θ), θ)− T̂ (φ(θ))

≥ u(φ(θ), θ)− T (ξ(θ)) = max
x∈D(ξ(θ)

u(x, θ)− T (ξ(θ))
(33)

where we used Transitivity of D to argue that D(y) ⊆ D(ŷ). However, the previous equation

yields a contradiction of (IC) of (φ, ξ, T ), proving that (φ, φ, T̂ ) satisfies (IC). This shows that

(φ, φ, T̂ ) is implementable, hence that Equation 28 holds and that u(φ(θ), θ)− T (φ(θ)) ≥ 0

for all θ ∈ Θ. Finally, we argue that T̂ is monotone with respect to D. Fix x, y ∈ X such

that y ∈ D(x). By Transitivity of D we have

{x̂ ∈ X : x ∈ D(x̂)} ⊆ {x̂ ∈ X : y ∈ D(x̂)} (34)
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yielding that T̂ (y) ≤ T̂ (x), as desired.

We now establish sufficiency. Suppose that there exists a monotone T : X → R̄ such that

Equation 28 holds and u(φ(θ), θ) − T (φ(θ)) ≥ 0 for all θ ∈ Θ. We next show that (φ, φ, T )

is implementable. (IR) is immediately satisfied. Suppose toward a contradiction that (O) is

not satisfied. That is, there exists θ ∈ Θ and x ∈ D(φ(θ)) such that:

u(x, θ) > u(φ(θ), θ) (35)

However, by monotonicity of T , we have

u(x, θ)− T (x) > u(φ(θ), θ)− T (φ(θ)) (36)

yielding a contradiction. Finally, suppose toward a contradiction that (IC) is not satisfied.

That is, there exist θ ∈ Θ, y ∈ X, and x ∈ D(y) such that

u(x, θ)− T (y) > max
x̂∈D(φ(θ))

u(x̂, θ)− T (φ(θ)) ≥ u(φ(θ), θ)− T (φ(θ)) (37)

But then, we have the following contradiction of monotonicity of T :

u(x, θ)− T (y) > u(φ(θ), θ)− T (φ(θ)) ≥ u(x, θ)− T (x) (38)

where the second implication uses the fact that φ(θ) solves the program in Equation 28.

This proves sufficiency.

Finally, the fact that any implementable consumption function can be implemented as

part of an allocation (φ, φ, T ) follows by the construction in the necessity part of our proof.

A.2 Implementation (Proof of Proposition 5)

In this section, we go back to the standard assumptions of the main text. The proof of

Proposition 5 follows.

Proof. Fix a regular disposal correspondence with minimum selection δ and a consumption

function φ. We first prove that there exists a tariff T that is monotone with respect to D

and such that (φ, T ) satisfy Equation 28 and u(φ(θ), θ) − T (φ(θ)) ≥ 0 for all θ ∈ Θ if and

only if φ is monotone increasing and satisfies φ(θ) ≤ max{δ(φ(θ)), φA(θ)} for all θ ∈ Θ. In

turn, by Lemma 3, this proves the first part of Proposition 5.

( =⇒ ) By the standard taxation principle with our assumptions, φ must be incentive
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compatible when the disposal correspondence is D = D, that is, when disposal is not feasible.

It is well-known that under our assumption that u is strictly single-crossing, a necessary

condition for incentive compatibility is that φ(θ) is monotone increasing in θ. By Lemma 3,

(φ, φ, T ) satisfies (O). Therefore, it is immediate by strict quasiconcavity of u and Lemma 1

that θ’s optimal point in D(φ(θ)) = [δ(φ(θ)), φ(θ)] is given by max{δ(φ(θ)), φA(θ)}. Thus,

it is necessary that φ(θ) ≤ max{δ(φ(θ)), φA(θ)} for all θ ∈ Θ.

( ⇐= ) Now suppose that φ(θ) ≤ max{δ(φ(θ)), φA(θ)} for all θ ∈ Θ and φ is monotone

increasing. Define the function t : Θ→ R as

t(θ) = C + u(φ(θ), θ)−
∫ θ

0

uθ(φ(s), s) ds (39)

for some C ≤ 0, and the tariff T : X → R as

T (x) = inf
θ′∈Θ
{t(θ′) : x ∈ D(φ(θ′))} (40)

Fix x, y ∈ X such that y ∈ D(x). By Transitivity, for all θ ∈ Θ, if x ∈ D(φ(θ)), then

y ∈ D(φ(θ)). This shows that

{θ′ ∈ Θ : x ∈ D(φ(θ′))} ⊆ {θ′ ∈ Θ : y ∈ D(φ(θ′))} (41)

and therefore that T (x) ≥ T (y). We conclude that T is monotone with respect to D. Next,

for every θ ∈ Θ, we have

u(φ(θ), θ)− T (φ(θ)) ≥ u(φ(θ), θ)− t(θ) =

∫ θ

0

uθ(φ(s), s) ds− C (42)

Note that the right-hand side of this last equation is monotone increasing in θ since it is

continuously differentiable with derivative uθ(φ(θ), θ) ≥ 0 for all θ ∈ Θ, owing to the fact that

u is monotone increasing over Θ. Given that C ≤ 0, we have that u(φ(θ), θ)− T (φ(θ)) ≥ 0

for all θ ∈ Θ.

We are left to prove that (φ, T ) satisfy Equation 28. We first prove that, for all θ, θ′, we

have

u(φ(θ), θ)− t(θ) ≥ max
x∈D(φ(θ′))

u(x, θ)− t(θ′) (43)

This is a variation of the standard reporting problem under consumption function φ and

transfers t, where each agent, on top of misreporting their type, can also consume everything

allowed by D. Violations of this condition can take two forms. First, an agent of type θ

could report type θ′ and consume x = φ(θ′). We call this a single deviation. Second, an
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agent of type θ could report type θ′ and consume x ∈ [δ(φ(θ′)), φ(θ′)) = D(φ(θ′)) \ {φ(θ′)}.
We call this a double deviation. Under our construction of transfers t and monotonicity of

φ, by a standard mechanism-design argument (e.g., Nöldeke and Samuelson (2007)), there

is no strict gain to any agent of reporting θ′ and consuming x = φ(θ′). Thus, there are no

profitable single deviations under (φ, t).

We now must rule out double deviations. To this end, we first state an ancillary Lemma

that transfers are monotone on any interval of types who can achieve a common lowest

consumption. Its proof is relegated to the Online Appendix.

Lemma 4. For any θ, θ′ ∈ Θ such that θ ≤ θ′ and δ(φ(θ)) = δ(φ(θ′)) ≡ δ0, it holds that

t(s′) ≥ t(s) for all s, s′ ∈ [θ, θ′] such that s ≤ s′

Proof. See Online Appendix B.7.

We now use this Lemma to rule out double deviations. Define the value function V :

Θ→ R under φ and t as

V (θ) =

∫ θ

0

uθ(φ(s), s) ds− C (44)

We separate the argument by various cases comparing (θ, φ(θ), φA(θ)) and (θ′, φ(θ′), φA(θ′)):

1. θ′ < θ: for there to be a strict double deviation, it must be that φ(θ′) < φ(θ). We

have already argued that Obedience holds, so that φ(θ′) is optimal for type θ′ when

they could choose and x ∈ [δ(φ(θ′)), φ(θ′)]. Moreover, by strict single-crossing of u

in (x, θ) and strict quasiconcavity of u(·, θ) in x, it is optimal for type θ to consume

some x ≥ φ(θ′). But, we know that x ∈ [δ(φ(θ′)), φ(θ′)], thus x = φ(θ′) is optimal.

Hence, if there is a double deviation with θ′ < θ, there is also a single deviation. This

is a contradiction as we already showed that there are no strictly profitable single

deviations.

2. θ′ > θ and φA(θ) ≥ φ(θ′): the optimal choice of consumption for agent θ in D(φ(θ′)) is

given by φ(θ′) by strict quasiconcavity of u, and there is a profitable single deviation,

which is a contradiction.

3. θ′ > θ and φA(θ) < φ(θ′) and δ(φ(θ)) = δ(φ(θ′)): There are two sub-cases.

(a) φA(θ) < δ(φ(θ′)) = δ(φ(θ)): The optimal consumption choice for type θ in

D(φ(θ′)) is given by δ(φ(θ′)) = δ(φ(θ)) = φ(θ) by strict quasiconcavity of u.

Thus, there can be a strict double deviation only if t(θ′) < t(θ), which we have

already shown to be impossible.

(b) φA(θ) ≥ δ(φ(θ′)) = δ(φ(θ)): We know x = φA(θ) is most attractive following any

misreport θ′. Suppose that there exists some θ̂ ∈ (θ, θ′] such that φ(θ̂) = φA(θ).
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As t is monotone over the interval [θ, θ′], we know that a single deviation to θ̂

is weakly more attractive than a double deviation to x ∈ D(φ(θ′)). As no single

deviations exist, this is a contradiction. It must then be that φ is discontinuous

and no type receives φA(θ). We know that the most attractive misreport is the

smallest type θ′ such that φ(θ′) ≥ φA(θ). It follows that φA(θ) ≤ φ(θ′) ≤ φA(θ′)

and therefore that there exists some θ̂ such that φA(θ̂) = φ(θ′), by continuity of

φA.

We now show that if there exists a double deviation for type θ, there exists a

single deviation for type θ̂. By the hypothesis of a double deviation for type θ:

u(φA(θ), θ)− t(θ′) > u(φ(θ), θ)− t(θ) (45)

Define for any type θ, the value of optimal autarkic consumption as V ∗(θ) =

u(φA(θ), θ). We can write:

V ∗(θ)− V (θ) > t(θ′) (46)

As we have ruled out single deviations, we know that:

u(φA(θ̂), θ̂)− t(θ′) ≤ u(φ(θ̂), θ̂)− t(θ̂) (47)

Thus:

V ∗(θ̂)− V (θ̂) ≤ t(θ′) (48)

Together, we then have that:

V (θ̂)− V (θ) > V ∗(θ̂)− V ∗(θ) (49)

Or: ∫ θ̂

θ

uθ(φ(s), s)ds >

∫ θ̂

θ

uθ(φ
A(s), s)ds (50)

But we know that φA(s) ≥ φ(s) for all s ∈ [θ, θ̂] owing to being in this case,

and this implies by single-crossing of u that uθ(φ
A(s), s) ≥ uθ(φ(s), s), which

contradicts the inequality above.

4. θ′ > θ and φA(θ) < φ(θ′) and δ(φ(θ)) < δ(φ(θ′)): There are two sub-cases.

(a) φA(θ) < δ(φ(θ′)): We know that x = δ(φ(θ′)) is the most attractive deviation.

Suppose that there is some type s who receives φ(s) = δ(φ(θ′)), as transfers
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are monotone on each interval we know that t(s) ≤ t(θ′), and thus deviating to

type s is more attractive. However, this is a single deviation, a contradiction.

It must then be that for all types s such that δ(φ(θ′)) ≤ φ(s) ≤ φ(θ′) that

φ(s) > δ(φ(θ′)). In this case φA(θ′) ≥ φ(θ′) and we can apply a variation of the

argument in 3(b) above. Namely, there exists θ̂ ∈ (θ, θ′) such that φA(θ̂) = φ(θ′).

We have already shown that θ̂ has no strict incentive to imitate type θ′. Thus,

by the same arguments as in case 3 (b):

V ∗(θ̂)− V (θ̂) ≤ t(θ′) (51)

By the hypothesis that type θ has a strict incentive to imitate type θ′ and consume

x = δ(φ(θ′)), we also have that:

u(δ(φ(θ′)), θ)− t(θ′) > u(φ(θ), θ)− t(θ) (52)

It follows from this that:

u(δ(φ(θ′)), θ)− V (θ) > t(θ′) (53)

Combining above inequalities, it follows that:

V (θ̂)− V (θ) > V ∗(θ̂)− u(δ(φ(θ′)), θ) (54)

Which we can express as:

∫ θ̂

θ

uθ(φ(s), s)ds > u(φA(θ̂), θ̂)− u(δ(φ(θ′)), θ) (55)

Observe further that there exists some θ′′ ∈ (θ, θ̂) such that φA(θ′′) = δ(φ(θ′)).

Therefore we can write:

u(φA(θ̂), θ̂) = u(δ(φ(θ′)), θ′′) +

∫ θ̂

θ′′
uθ(φ

A(s), s)ds (56)

Thus, we can rewrite inequality 55 as:

∫ θ̂

θ′′
uθ(φ(s), s)ds+

∫ θ′′

θ

uθ(φ(s), s)ds >

∫ θ̂

θ′′
uθ(φ

A(s), s)ds+

∫ θ′′

θ

uθ(δ(φ(θ′)), s)ds

(57)

However, we know that for all s ∈ [θ′′, θ̂] that φA(s) ≥ δ(φ(θ′)) = φA(θ′′). It
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follows that φ(s) ≤ φA(s) for all s ∈ [θ′′, θ̂]. Therefore, by strict single-crossing of

u it follows that: ∫ θ̂

θ′′
uθ(φ(s), s)ds <

∫ θ̂

θ′′
uθ(φ

A(s), s)ds (58)

Moreover, we know that for all s ∈ [θ, θ′′] that φA(s) ≤ δ(φ(θ′)) = φA(θ′′). It

follows that φ(s) ≤ δ(φ(θ′)) for all s ∈ [θ, θ′′]. Therefore, by strict single-crossing

of u it follows that: ∫ θ′′

θ

uθ(φ(s), s)ds <

∫ θ′′

θ

uθ(δ(φ(θ′)), s)ds (59)

The above two inequalities contradict inequality 55. That is, a double deviation

would imply a single deviation, which is a contradiction.

(b) φA(θ) ≥ δ(φ(θ′)): We know that x = φA(θ) is most attractive following a misre-

port θ′. By the same argument as in case 3(b), if any type in fact was allocated

φA(θ), there would also be a single deviation, a contradiction. If instead there

was no such type, we apply the same argument as in 3(b), and reason similarly

that there would be a single deviation for type θ̂.

We have ruled out double deviations in all cases and thereby completed the proof of the

claim in Equation 43.

We next prove that Equation 43 implies that (φ, T ) satisfy Equation 28. Indeed, for all

θ ∈ Θ, we have

u(φ(θ), θ)− T (φ(θ)) ≥ u(φ(θ), θ)− t(θ) ≥ sup
θ′∈Θ

max
x∈D(φ(θ′))

u(x, θ)− t(θ′)

= sup
x∈X

sup
θ′∈Θ:x∈D(φ(θ′))

u(x, θ)− t(θ′) = sup
x∈X

u(x, θ)− T (x)
(60)

yielding Equation 28. This concludes the proof of the first part of Proposition 5.

Fix an implementable φ. By the previous part of the proof and by Lemma 3, it follows

that we can take ξ = φ. By the construction of t and T in the previous part of the proof and

Lemma 1 in Nöldeke and Samuelson (2007), we can take T as in Equation 24 with C ≤ 0.

A.3 Optimal Contracts with Lower Threshold Contractibility (Proof

of Proposition 1)

We first solve for optimal consumption under lower threshold contractibility.
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Proposition 7. Let D be a lower threshold disposal correspondence with parameter c. Con-

sumption in the optimal contract is given by:

φ∗ = min
{

max
{
c, φA

}
, φP

}
(61)

Proof. By Lemma 2, any optimal consumption function must solve:

max
φ

∫
Θ

J(φ(θ), θ) dF (θ)

s.t φ(θ′) ≥ φ(θ), φ(θ) ≤ max{δ(φ(θ)), φA(θ)}, θ, θ′ ∈ Θ : θ′ ≥ θ

(62)

Define the set of fixed points of δ as Cδ = {x ∈ X : δ(x) = x} and define the corre-

spondence Sδ : Θ ⇒ X as Sδ(θ) = [0, φA(θ)] ∪ Cδ. Observe that the constraint φ(θ) ≤
max{δ(φ(θ)), φA(θ)} is equivalent to the constraint φ(θ) ∈ Sδ(θ). Moreover, in the case of

lower threshold contractibility we have that Cδ = [0, c] so Sδ(θ) = [0,max{φA(θ), c}].
Consider now the family of problems for each θ ∈ Θ:

max
x∈Sδ(θ)

{J(x, θ)} (63)

As J is strictly quasiconcave in x, there is a unique maximum in this problem, which we call

φ∗(θ). Moreover, whenever φP (θ) < max{φA(θ), c}, we know that φ∗(θ) = φP (θ). Otherwise

φ∗(θ) = max{φA(θ), c}. Thus, the solution of this pointwise problem is:

φ∗(θ) = min
{

max
{
c, φA(θ)

}
, φP (θ)

}
(64)

If in addition φ∗ is monotone increasing, then φ∗ is the unique solution to Problem

1. We now verify this monotonicity. We assumed that J satisfies single-crossing in (x, θ).

Moreover, J is quasisupermodular in x by the fact that x ∈ X ⊂ R; X is a lattice; Θ is

partially ordered; and the correspondence Sδ(θ) = [0,min{c, φA(θ)}] is increasing. Thus, by

Theorem 4′ in Milgrom and Shannon (1994), we have that φ∗(θ) is increasing in θ. This

completes the proof.

We now prove Proposition 1 by explicitly constructing the claimed supporting tariffs and

purchases.

Proof. Free disposal corresponds to lower threshold contractibility with c = 0. Thus, optimal

consumption is given by:

φ∗ = min{φA, φP} (65)
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By the envelope formula from Lemma 2, we then have that:

T ∗(x) = u(x∗, 0) +

[∫ min{x,x∗}

x∗

ux(s, φ
∗−1

(s)) ds

]+

(66)

where x∗ = φ∗(0), x∗ = φ∗(1), and [·]+ denotes the positive part. We now show that this

optimal level of consumption is supported by any selection from Ξφ∗ and only by selections

from Ξφ∗ . To this end, consider the selection ξ ∈ Ξφ∗ defined as ξ = max Ξφ∗ . We want to

show that the triple (ξ, φ, T ∗ ◦ ξ) is incentive compatible for all price schedules schedule T ∗

defined as above, where we adopt the notation that t = T ∗ ◦ ξ. We verify that the three

constraints in Problem 1 hold under this selection.

Consider the first constraint that for all θ ∈ Θ:

φ(θ) ∈ arg max
x∈D(ξ(θ))

u(x, θ) (67)

Observe that φ ∈ D(ξ) by construction of ξ. Moreover, toward a contradiction, suppose that

there exists θ ∈ Θ and x ∈ D(ξ(θ)) such that u(φ(θ), θ) < u(x, θ). There are two cases:

1. If φ(θ) < φA(θ), then by construction x ≤ ξ(θ) = φ(θ) < φA(θ) implying that

u(φ(θ), θ) ≥ u(x, θ) by strict quasiconcavity of u(·, θ), hence yielding a contradiction.

2. If φ(θ) = φA(θ), then by construction u(φ(θ), θ) ≥ u(x, θ) yielding again a contradic-

tion.

Given that θ ∈ Θ was arbitrarily chosen, the proposed triple satisfies the constraint that it

is optimal for any type θ to consume φ(θ) when they purchase ξ(θ).

Consider now the constraint that for all θ ∈ Θ:

ξ(θ) ∈ arg max
y∈X

{
max
x∈D(y)

u(x, θ)− T (y)

}
(68)

and define g(y, θ) = maxx∈D(y) u(x, θ). Toward a contradiction, suppose that there exist

θ, θ′ ∈ Θ such that:

g(ξ(θ), θ)− t(θ) < g(ξ(θ′), θ)− t(θ′) (69)

There are two cases to consider:

1. If φ(θ′) < φA(θ′), then define θ′′ = θ′ and note that

g(φ(θ), θ)− t(θ) = g(ξ(θ), θ)− t(θ) < g(ξ(θ′), θ)− t(θ′) = g(φ(θ′′), θ)− t(θ′′) (70)

where the last equality follows by construction of ξ and θ′′.
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2. If φ(θ′) = φA(θ′), then define θ′′ = inf
{
θ̂ ∈ Θ : θ̂ ≥ θ′, φ(θ̂) < φA(θ̂)

}
. Note that, by

monotonicity of φ and by construction of ξ, we have φ(θ′′) = ξ(θ′′) = ξ(θ′). Moreover,

by construction we necessarily have that [θ′, θ′′] ⊆
{
θ̂ ∈ Θ : φ(θ̂) = φA(θ̂)

}
. Therefore,

by the previous claim on t, we have t(θ′) = t(θ′′). Altogether, we have

g(φ(θ), θ)− t(θ) = g(ξ(θ), θ)− t(θ) < g(ξ(θ′), θ)− t(θ′) = g(φ(θ′′), θ)− t(θ′′) (71)

In both cases, there exists θ′′ ∈ θ such that

g(φ(θ), θ)− t(θ) < g(φ(θ′′), θ)− t(θ′′) (72)

This contradicts the fact that (φ∗, φ∗, T ∗) is implementable (see Proposition 5). Thus, the

second constraint is satisfied.

The third constraint that for all θ ∈ Θ:

u(φ∗(θ), θ)− T ∗(ξ(θ)) ≥ 0 (73)

is unaffected as, by Lemma 4, T ∗ is monotone on all intervals where types receive their bliss

points.

This proves that (φ∗, ξ, T ∗) is implementable and therefore optimal. Finally, note that for

any other selection ξ ∈ Ξφ∗ , the triple (φ∗, ξ, T ∗) is necessarily implementable and therefore

optimal. Indeed, by way of contradiction, suppose that the latter is not implementable.

It follows that (φ∗, ξ, T ∗) is not implementable either as all the feasible deviations under

purchase function ξ are still feasible under ξ. However, this contradicts our previous claim.

We finally show that if ξ 6∈ Ξφ∗ , then it is not part of an optimal contract. We will

use the observation that all agents’ payments to the seller are pinned down by the envelope

formula for t. There are two cases to consider. First, suppose that there exists a θ ∈ Θ such

that ξ(θ) 6= φ∗(θ) and φ∗(θ) < φA(θ). If ξ(θ) < φ∗(θ), then φ∗(θ) 6∈ D(ξ(θ)), which makes

φ∗ infeasible. If ξ(θ) > φ∗(θ), then, as φ∗(θ) < φA(θ), t(θ) is strictly increasing at θ. Thus

T (ξ(θ)) > t(θ), which is a contradiction. Second, suppose that there exists a θ ∈ Θ such that

ξ(θ) 6∈ [φA(θ), infθ′∈[θ,1]

{
φ∗(θ′) < φA(θ′)

}
and φ∗(θ) = φA(θ). Once again if ξ(θ) < φ∗(θ),

then φ∗(θ) 6∈ D(ξ(θ)), which makes φ∗ infeasible. If ξ(θ) > infθ′∈[θ,1]

{
φ∗(θ′) < φA(θ′)

}
, then

as before T (ξ(θ)) > t(θ), which is a contradiction.

40



A.4 Characterizing Zero Marginal Pricing (Proof of Proposition

2)

In this Appendix, we prove Proposition 2 as stated.

Proof. ( =⇒ ) We first prove that H(x) > 0 implies that T (x) = Tφ∗(x) is flat at x, for

any x ∈ X∗. Consider first any x ∈ Int(X∗), where Int(·) denotes the interior of a set.

Recall by Proposition 1 that φ∗ = min{φP , φA}. Moreover, u and J are strictly single-

crossing, so we have that φP and φA are strictly increasing over Θ. Thus, we have that φ∗

is strictly increasing over θ ∈ Θ and is therefore invertible at any x ∈ X∗ = φ∗(Θ). Suppose

now that H(x) = Jx(x, (φ
A)−1(x)) > 0 and define θ(x) = (φ∗)−1(x). It is either the case

that x = x (which is not in Int(X∗)), or φA(θ(x)) < φP (θ(x)). Thus, when H(x) > 0,

φA(θ(x)) < φP (θ(x)), so φ∗(θ(x)) = φA(θ(x)). As φA and φP are continuous functions by

the Theorem of the Maximum and invertible at x, we can find a neighborhood O(x) of x,

such that for all x′ ∈ O(x), and corresponding θ′ = (φ∗)−1(x′), we have that φ∗(θ′) = φA(θ′).

In Lemma 4, we showed that transfers must be constant on such an O(x).

We now show that transfers are increasing over Θ. First, we know that transfers are a.e

differentiable and that φ∗ is a.e. differentiable as it is monotone. Thus, to show that t is

monotone increasing it suffices to show that t′ ≥ 0 whenever it exists. Moreover, whenever

t′ exists, it is given by:

t′(θ) = ux(φ
∗(θ), θ)φ∗

′
(θ) (74)

We know that φ∗
′ ≥ 0 as φ∗ is monotone. We also know that ux(φ

∗(θ), θ) ≥ 0 for all θ ∈ Θ

as u is quasiconcave and φ∗ ≤ φA. Monotonicity of transfers, combined with the fact that

φ∗ is increasing over Θ and x ∈ X∗ implies that:

T (x) = Tφ∗(x) = inf
θ∈Θ
{t(θ) : x ≤ φ(θ)} = t(θ(x)) (75)

As this is constant for all x′ ∈ O(x), we have shown that Tφ∗(x) is flat for all x ∈ Int(X∗)

whenever H(x) > 0.

It remains to consider all x 6∈ Int(X∗). However, continuity of φ∗ implies the result for

the boundary points of X∗.

(⇐= ) We now prove that, for every x ∈ X∗, if T (x) = Tφ∗(x) is flat at x, then H(x) ≥ 0.

First, consider x ∈ Int(X∗). From the first part of the proof, we have that Tφ∗(x) = t(θ(x)),

where θ(x) = (φ∗)−1(x). As φA and φP are strictly increasing, we have that θ(x) is strictly

increasing in x. Thus, if Tφ∗(x) is flat at x, there must exist a neighborhood of O(x) of x

such that t(θ(x′)) = t(θ(x)) for all x ∈ O(x). Toward a contradiction, suppose that H(x) < 0

at x. This implies that φP (θ(x)) < φA(θ(x)), and so θ(x) = (φP )−1(x). By continuity of
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φP , there must exist some neighborhood O′(x) ⊆ O(x) such that θ(x′) = (φP )−1(x′) for all

x′ ∈ O′(x). But then we have that almost everywhere in O′(x) that transfers are strictly

increasing:

t′(θ(x′)) = ux(φ
P (θ(x′)), θ)φP

′
(θ(x′)) > 0 (76)

where the above inequality follows as u is strictly quasiconcave and φP (θ(x′)) < φA(θ(x′)),

so ux(φ
P (θ(x′)), θ) > 0, while the fact that φP is strictly increasing implies that φP

′
(θ(x′)).

But we know that t(θ(x′)) = t(θ(x)) for all x ∈ O(x), so this is a contradiction. It follows

that H(x) ≥ 0. It remains to consider all x 6∈ Int(X∗). As before, continuity of H implies

the result for the boundary points of X∗.

A careful reader may ask why it is not true that Tφ∗(x) is flat at any x ∈ X implies

H(x) > 0. Counterexamples arise to this claim when φP and φA do not strictly cross and

instead coincide for positive Lebesgue measure of outcomes. In particular, suppose that

φP ≡ φA; economically, this means the principal’s unconstrained optimum coincides with

the agents’. We have that Tφ∗(x) is flat everywhere but H(x) ≡ 0.

A.5 Welfare (Proofs of Propositions 3 and 4)

We first prove Proposition 3 in the more general case with lower threshold monitoring.

Proof. We first prove the part for a fixed price schedule T with corresponding (φ, ξ). We can,

for this part, in fact prove a more general result comparing disposal correspondences in the

sense of how much contractibility they feature. We say that D features more contractibility

than D′, if we have that D(y) ⊆ D′(y) for all y ∈ X. Consider the value to any agent of

type θ ∈ Θ of reporting any other type θ′ ∈ Θ and optimally disposing of ξ(θ′):

V (θ′; θ, T,D) = max
x∈D(ξ(θ′))

{u(x, θ)} − t(θ′) (77)

When D features more contractibility than D′, we have that D(ξ(θ′)) ⊆ D′(ξ(θ′)). It follows

that V (θ′; θ, a) ≤ V ′(θ′; θ, a) for all θ, θ′ ∈ Θ, a ∈ A. Thus:

V (θ;T ) = max
θ′∈Θ
{V (θ′; θ, T )} ≤ max

θ′∈Θ
{V ′(θ′; θ, T )} = V ′(θ;T ) (78)

for all θ ∈ Θ, T . As D features more contractibility that D, it immediately follows that

V (θ;T ) ≥ V (θ;T ).

We now turn to comparing welfare under the principal optimal mechanism. With perfect

contractibility, the optimal allocation is φ∗(θ) = φP (θ). With lower threshold contractibility,

the optimal allocation is φ∗(θ) = min{max{φA(θ), c}, φP (θ)}. Compare two regimes with
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lower threshold contractibility indexed by c′ ≤ c with corresponding φ∗
′

and φ∗. It follows

that φ∗
′
(θ) ≤ φ∗(θ) for all θ ∈ Θ. Using the formula for agent welfare under the optimal

mechanism, we can then see that:

V (θ;T ∗
′
, c′) =

∫ θ

0

uθ(φ
∗′(s), s) ds ≤

∫ θ

0

uθ(φ
∗(s), s) ds = V (θ;T ∗, c) (79)

for all θ ∈ Θ, where the inequality follows as u is single-crossing in (x, θ) and φ∗
′ ≤ φ∗.

Setting c′ = 0 and c = 1 yields the claim in the proposition.

For the principal, by Proposition 5 we proved that a consumption allocation φ is incentive

compatible if and only if φ is monotone over Θ and φ(θ) ≤ max{δ(φ(θ)), φA(θ)} for all

θ ∈ Θ. Moreover, if D features more contractibility than D′, we have that δ ≥ δ′. Thus,

this constraint is weaker under D than D′ and the set of incentive compatible allocations is

larger. As the monopolist optimizes over a larger set under D than D′, it is immediate that

Π(T ∗) ≥ Π(T ∗
′
).

We now prove Proposition 4.

Proof. We first use the envelope formula for agent welfare under the optimal mechanism to

derive:

∆V (θ) =

∫ θ

0

(
uθ(φ

∗(s), s)− uθ(φ∗
′
(s), s)

)
ds (80)

for all θ ∈ Θ. Using the virtual surplus formulation of the principal’s payoff, we moreover

obtain that:

∆Π =

∫ 1

0

(
J(φ∗(θ), θ)− J(φ∗

′
(θ), θ)

)
dF (θ) (81)

See moreover that:

Jx(x, θ) = πx(x, θ) + ux(x, θ)−
1− F (θ)

f(θ)
uxθ(x, θ) (82)

Thus, if (i) πx(·, θ) pointwise increases for all θ ∈ Θ, (ii) F decreases in the hazard rate order,

then we have that Jx(·, θ) pointwise increases for all θ ∈ Θ. As J is strictly quasiconcave

in x, we have that φP (θ) increases for all θ under (i), or (ii). Moreover, π and F have no

impact on φA. Finally, see that we can write:

J(x, θ) = J(0, θ) +

∫ x

0

Jx(s, θ) ds (83)

As Jx(·, θ) increases pointwise, we have that J(·, θ) increases pointwise for all θ ∈ Θ so

long as u(0, θ) does not decrease under (i), or (ii) for any θ ∈ Θ. To see this, observe that
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u(0, θ) = π(0, θ) = 0 by assumption. Thus, uθ(0, θ) = 0 also. It then follows that:

J(0, θ) = π(0, θ) + u(0, θ)− 1− F (θ)

f(θ)
uθ(0, θ) = 0 (84)

for all θ ∈ Θ and does not change under (i), or (ii). Hence, any change according to (i), or

(ii), leads φP and J to increase pointwise while φA is unchanged.

Denote the φP and J after the change in πx or F as φ̂P and Ĵ . To prove the given claims,

we need to show that:

∆̂V (θ)−∆V (θ) =∫ θ

0

[(
uθ(φ̂

∗(s), s)− uθ(φ̂∗
′
(s), s)

)
−
(
uθ(φ

∗(s), s)− uθ(φ∗
′
(s), s)

)]
ds ≥ 0

(85)

and:

∆̂Π −∆Π =∫ 1

0

[(
Ĵ(φ̂∗(θ), θ)− Ĵ(φ̂∗′(θ), θ)

)
− (J(φ∗(θ), θ)− J(φ∗′(θ), θ))

]
dF (θ) ≥ 0

(86)

Consider first the welfare of consumers. In any case when we have D, we have that φ∗(s) =

φP (s) and φ̂∗(s) = φ̂P (s). There are three possible cases for each s ∈ Θ to compute the

integrand, which we address in sequence:

i φP (s) < φA(s) and φ̂P (s) < φA(s), so φ∗
′
(s) = φP (s) and φ̂∗

′

(s) = φ̂P (s). In this case,

the value of the integrand is zero.

ii φP (s) < φA(s) and φ̂P (s) ≥ φA(s), so φ∗
′
(s) = φP (s) and φ̂∗

′

(s) = φA(s). Thus, the

value of the integrand is uθ(φ̂
P (s), s)− uθ(φA(s), s) ≥ 0 by single-crossing of u.

iii φP (s) ≥ φA(s) and φ̂P (s) ≥ φA(s), so φ∗
′
(s) = φA(s) and φ̂∗

′

(s) = φA(s). Thus, the

value of the integrand is uθ(φ̂
P (s), s)− uθ(φP (s), s) ≥ 0 by single-crossing of u.

Thus, the integrand is positive for all s ∈ Θ and the claimed inequality holds.

Consider now the welfare of the principal. Again, we have that φ∗(s) = φP (s) and

φ̂∗(s) = φ̂P (s), and there are three cases:

i φP (s) < φA(s) and φ̂P (s) < φA(s), so φ∗
′
(s) = φP (s) and φ̂∗

′

(s) = φ̂P (s). In this case,

the value of the integrand is zero.

ii φP (s) < φA(s) and φ̂P (s) ≥ φA(s), so φ∗
′
(s) = φP (s) and φ̂∗

′

(s) = φA(s). In this case,

the value of the integrand is Ĵ(φ̂P (s), s)− Ĵ(φA(s), s) ≥ 0 as φ̂P is Ĵ maximal.

iii φP (s) ≥ φA(s) and φ̂P (s) ≥ φA(s), so φ∗
′
(s) = φA(s) and φ̂∗

′

(s) = φA(s). In this case,

the value of the integrand is
(
Ĵ(φ̂P (s), s)− Ĵ(φA(s), s)

)
−
(
J(φP (s), s)− J(φA(s), s)

)
,

44



where we wish to show that this is positive. Now observe that we can write this

inequality as:

∫ φ̂P (s)

φP (s)

Ĵx(z, s) dz +

∫ φP (s)

φA(s)

(
Ĵx(x, s)− Jx(z, s)

)
dz ≥ 0 (87)

As Ĵ is strictly quasiconcave and φ̂P is Ĵ maximal, we know that
∫ φ̂P (s)

φP (s)
Ĵx(z, s) dz ≥ 0.

Moreover, as Ĵx ≥ Jx, we have that
∫ φP (s)

φA(s)

(
Ĵx(x, s)− Jx(z, s)

)
dz ≥ 0. The claimed

inequality follows.

We have shown that the integrand is positive for all s ∈ Θ, and the initially claimed inequality

follows.
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Online Appendix

B Additional Proofs of Results in the Main Text

B.1 Proof of Corollary 1

Proof. If H(minX∗) > 0, we observe that there is automatically a flat region for sufficiently

low x. There is then one additional flat region for every two times the functionH(x) “strictly”

crosses zero from below. Thus, the number of flat regions is 1 +
⌊
k(H)

2

⌋
. To see this formally,

first suppose that H is strictly increasing or decreasing at any x such that H(x) = 0. In

this case, k(H) = | {x ∈ X∗ : ∃ε > 0,∀y ∈ (x− ε, x), ∀y′ ∈ (x, x+ ε), H(y) < 0, H(y′) > 0} |,
and the result is immediate by Proposition 2. When H is neither strictly increasing nor

decreasing at x such that H(x) = 0, there are three cases. First, H(x) = 0 and there exists

ε > 0 such that H(y) < 0 for all y ∈ (x− ε, x) and H(y′) ≥ 0 for all y′ ∈ (x, x + ε). These

values of x imply the existence of a flat region by Proposition 2. Second, if H(x) = 0 but

there exists ε > 0 such that H(y) = 0 for all y ∈ (x − ε, x). These values of x occupy a

flat region, but they do not index a tier as they are necessarily preceded by an x that falls

into the first category. Third, H(x) = 0 but there exists ε > 0 such that H(y) < 0 for all

y ∈ (x − ε, x + ε). In this case, H hits 0 but the price schedule is not flat at x. Thus, we

must “remove” all such from k(H). Performing these removals yields the claimed k(H).

Conversely, if H(0) < 0, there is one flat region the first time that H(x) crosses zero, and

a further flat region every two times the function H(x) “strictly” crosses zero from below.

By the same arguments, the number of flat regions is
⌈
k(H)

2

⌉
.

B.2 Proof of Corollary 2

Proof. Each part follows immediately from Proposition 2.

B.3 Proof of Corollary 3

Proof. By Proposition 2, if H(x) > 0 at φA(1), then the price schedule is flat at φ∗(1) =

φA(1). Moreover, at x = φA(1), we have H(φA(1)) = f(1)πx(φ
A(1), 1). It follows that

when πx(φ
A(1), 1) > 0, that H(φA(1)) > 0 and the price schedule features a premium tier.

Likewise, if H(x) > 0 at φA(0), then the price schedule is flat at φ∗(0) = φA(0). Moreover, at

x = φA(0), we have that H(φA(0)) = f(0)πx(φ
A(0), 0)− uxθ(φA(0), 0). It follows that when

f(0)πx(φ
A(0), 0) − uxθ(φA(0), 0) > 0 that H(φA(0)) > 0 and the price schedule features a

trial tier.
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B.4 Proof of Lemma 1

Proof. Let D : X ⇒ X be a regular disposal correspondence and define δ(x) = minD(x)

for all x ∈ X. We next show that δ satisfies all the properties in the statement. First,

note that δ is well-defined given that D is closed-valued. Also, note that δ(x) ≤ x for all

x ∈ X, given that D satisfies no over-utilization and δ is increasing given monotonicity

of D and the properties of the strong set order. Next, observe that, for every x ∈ X, it

holds D(x) ⊆ [δ(x), x] since δ(x) = minD(x) and x = maxD(x). Assume by contradiction

that there exists x ∈ X and y ∈ [δ(x), x] such that y ∈ X \ D(x). In this case, we would

have y = max{y, δ(x)} and δ(x) = min{y, δ(x)} with δ(x) ∈ D(x) but y ∈ D(y) and

y ∈ X \ D(x), which contradicts monotonicity of D in the strong set order. With this,

we must have D(x) = [δ(x), x] for all x ∈ X. Next, we claim that, for every x, y ∈ X, if

y ∈ [δ(x), x], then δ(y) = δ(x). Fix x, y ∈ X and assume that y ∈ [δ(x), x]. We already know

that δ(y) ≤ δ(x). Suppose by contradiction that δ(y) < δ(x). But then, given the other

properties of δ, for all z ∈ (δ(y), δ(x)) we would have that z ∈ D(y) but z ∈ X \D(x) which

would contradict transitivity as y ∈ D(x) = [δ(x), x]. This establishes necessity. Conversely,

fix a function δ : X → X as in the statement. We want to show that D : X ⇒ X defined

as D(x) = [δ(x), x] for all x ∈ X is a regular disposal correspondence. Clearly, D satisfies

reflexivity, no over-utilization, closed-valuedness, and monotonicity given that δ is increasing.

Next, fix x ∈ X and let y ∈ D(x). Given the properties of δ we have δ(y) = δ(x). But then

we have D(y) = [δ(y), y] = [δ(x), y] ⊆ [δ(x), x]. Given that x was arbitrarily chosen this

shows that D satisfies transitivity and that is a regular disposal correspondence concluding

the proof.

B.5 Proof of Lemma 2

Proof. We begin by eliminating the proposed allocation and transfers from the objective

function of the seller. From the proof of Proposition 5, we have that transfers for any

incentive compatible triple (ξ, φ, t) are given by:

t(θ) = C + u(φ(θ), θ)−
∫ θ

0

uθ(φ(s), s) ds (88)

for some constant C ∈ R. Thus, any ξ that supports φ leads to the same seller payoff and

can therefore be made equal to φ without loss of optimality. Moreover, we know that φ being

incentive compatible is equivalent to φ being monotone increasing and φ ≤ max{δ ◦ φ, φA}.
Finally, it is not optimal for the seller to exclude any agent from the mechanism as it is

without loss to allocate any agent x = 0 rather than exclude them owing to the fact that
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π(0, ·) = 0, u(0, ·) = 0, u(x, ·) is monotone increasing over Θ, and u(x, θ) has single-crossing

in (x, θ). In particular, for any incentive compatible allocation that excludes some type θ, it

is without loss of optimality to instead set φ(θ) = ξ(θ) = t(θ) = 0. Each agent is indifferent

between participation and not, and this does not change the principal’s payoff.

Plugging in the expression (88), we can simplify the expression for the seller’s total

transfer revenue as the following:∫
Θ

t(θ) dF (θ) =

∫
Θ

(
C + u(φ(θ), θ)−

∫ θ

0

uθ(φ(s), s) ds

)
dF (θ)

=

∫
Θ

(C + u(φ(θ), θ)) dF (θ)−
∫ 1

0

∫ θ

0

uθ(φ(s), s) ds dF (θ)

(89)

Using this expression for total transfer revenue, and the characterization of implementation

from Proposition 5, we write the seller’s problem as

max
φ,C

∫
Θ

(
π(φ(θ), θ) + C + u(φ(θ), θ)−

∫ θ

0

uθ(φ(s), s) ds

)
dF (θ)

s.t. φ(θ′) ≥ φ(θ), φ(θ) ≤ max{δ(φ(θ)), φA(θ)} ∀θ, θ′ ∈ Θ : θ′ ≥ θ

u(φ(θ), θ)−
(
C + u(φ(θ), θ)−

∫ θ

0

uθ(φ(s), s) ds

)
≥ 0 ∀θ ∈ Θ

(90)

We further simplify this by applying integration by parts on the double integral of uθ(φ(s), s)

over θ and s:∫ 1

0

∫ θ

0

uθ(φ(s), s) ds dF (θ) =

[
F (θ)

∫ θ

0

uθ(φ(s); s) ds

]1

0

−
∫ 1

0

F (θ)uθ(φ(θ), θ) dθ

=

∫ 1

0

(1− F (θ))uθ(φ(θ), θ) dθ

=

∫ 1

0

(1− F (θ))

f(θ)
uθ(φ(θ), θ) dF (θ)

(91)

Plugging into the seller’s objective, we find that the principal solves:

max
φ,C

∫
Θ

(J(φ(θ)) + C) dF (θ)

s.t. φ(θ′) ≥ φ(θ), φ(θ) ≤ max{δ(φ(θ)), φA(θ)} ∀θ, θ′ ∈ Θ : θ′ ≥ θ

u(φ(θ), θ)−
(
C + u(φ(θ), θ)−

∫ θ

0

uθ(φ(s), s) ds

)
≥ 0 ∀θ ∈ Θ

(92)
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It follows that it is optimal to set C ∈ R as large as possible such that:

V (θ) = u(φ(θ), θ)−
(
C + u(φ(θ), θ)−

∫ θ

0

uθ(φ(s), s)ds

)
≥ 0 ∀θ ∈ Θ (93)

We know that V ′(θ) = uθ(φ(θ), θ) ≥ 0 as u(x, ·) is monotone over Θ. Thus, the tightest such

constraint occurs when θ = 0. Hence, the maximal C must satisfy:

V (0) = −C ≥ 0 (94)

Which implies that C is optimally 0 and ensures that the (IR) constraint holds for all types.

Hence, the seller’s program is:

max
φ

∫
Θ

J(φ(θ)) dF (θ)

s.t. φ(θ′) ≥ φ(θ), φ(θ) ∈ [0, φA(θ)] ∪ {x ∈ X : δ(x) = x} ∀θ, θ′ ∈ Θ : θ′ ≥ θ

(95)

This completes the proof.

B.6 Proof of Proposition 6

Proof. The upper-threshold disposal correspondence is given by:

D(x) =

[0, x] if x < c,

{x} if x ≥ c.
(96)

Consider the resulting pointwise maximization problem of the seller:

max
x∈X

J(x, θ) s.t. I[x < c]
(
φA(θ)− x

)
≥ 0 (97)

where the constraint is the capping constraint derived in Proposition 5 in this context. The

solution to this pointwise problem, by strict quasi-concavity of J in x for all θ ∈ Θ, is given

by:

φ∗(θ) =



φP (θ) if φP (θ) ≥ c,

φP (θ) if φP (θ) < c, φP (θ) ≤ φA(θ),

φA(θ) if φP (θ) < c, φP (θ) > φA(θ), J(φA(θ), θ) ≥ J(c, θ),

c if φP (θ) < c, φP (θ) > φA(θ), J(φA(θ), θ) < J(c, θ).

(98)

Recall that φ∗ it is implementable when it is monotone by Proposition 5. Moreover, when
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it is implementable, it is optimal as it solves the program in Lemma 2. We now argue that

the fact that ∆c(θ) crosses zero from below at most once is sufficient for φ∗ to be monotone.

Concretely, either (i) ∆c(θ) does not cross zero and only one of cases 3 and 4 above apply

or (ii) ∆c(θ1) = 0 and case 3 applies for θ < θ1 and case 4 applies for θ ≥ θ1. In cases 3

and 4, φA(θ) < φP (θ) < c, so going from φA(θ) to c at θ1 leads φ∗ to increase. Moreover, we

have that φP crosses φA from below at θ̂. Thus, case 2 obtains for θ ≤ θ̂. Then, if θ̂ < c,

case 3 obtains for θ ≤ θ1 and case 4 then holds from θ1 until φP (θ) = c, which happens at

θ2. Thus, the contract is of the form claimed in the result. Moreover, it is monotone and

therefore both implementable and optimal. This concludes the proof.

We can also provide conditions such that ∆c(θ) is single-crossing. A sufficient condition

is that ∆′c(θ) ≥ 0. We can compute:

∆′c(θ) = Jθ(c, θ)− Jθ(φA(θ), θ)− Jx(φA(θ), θ)
(
φA
)′

(θ) (99)

This is greater than zero exactly when:∫ c

φA(θ)

Jxθ(x̃, θ) dx̃ ≥ Jx(φ
A(θ), θ)

(
φA
)′

(θ) (100)

B.7 Proof of Lemma 4

Proof. First, we observe by monotonicity of φ and Lemma 1 that there are three cases to

consider: (i) φ(s) = δ0 for all s ∈ [θ, θ′] (ii) φ(s) > δ0 for all s ∈ [θ, θ′] and (iii) there exists

some θ̂ ∈ [θ, θ′] such that φ(s) > δ0 for all s > θ̂ and φ(s) = δ for all s ≤ θ̂. In the first case,

observe that allocations are constant and so too are transfers. In the second case, fix any

s, s′ ∈ [θ, θ′] such that s′ ≥ s. By our construction of t, it is almost everywhere differentiable.

Denote the countable set of discontinuity points of φ between any two types s, s′ as D(s, s′).

It follows that we may write that:

t(s′)− t(s) =
∑

d∈D(s,s′)

∆td +

∫ s′

s

t′(z) dz (101)

where we define for any two monotone sequences {sn}n∈N such that sn →+ d and {s′n}n∈N
such that s′n →− d, for any discontinuity point, the value ∆td = limn→∞ t(s′n)−limn→∞ t(sn).

It is simple to see that t′(s) = ux(φ(s), s)φ′(s) ≥ 0 as φ(s) ≤ φA(s) and φ′ ≥ 0. We

have that, φ(s′n)→− φ and φ(sn)→+ φ for some φ ≤ φ as φ(s′n) and φ(sn) are respectively
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monotone decreasing and increasing in n ∈ N and bounded. Hence, we can write:

∆td = lim
n→∞

t(s′n)− lim
n→∞

t(sn)

= lim
n→∞

[
u(φ(s′n), s′n)−

∫ s′n

0

uθ(φ(z), z)dz

]

− lim
n→∞

[
u(φ(sn), sn)−

∫ sn

0

uθ(φ(z), z)dz

]
= lim

n→∞
u(φ(s′n), s′n)− u(φ(sn), sn)

= u(φ, d)− u(φ, d)

≥ 0

(102)

as φ ≤ φA(d) by the fact that φ(s) ≤ φA(s) for all s, s′ ∈ [θ, θ′], and u is strictly quasiconcave.

Thus, we have that t(s′) ≥ t(s), as claimed.

For the third case, see that we can write:

t(s′)− t(s) = t(s′)− t(ŝ) + (t(ŝ)− t(s)) ≥ 0 (103)

The first term is positive by the argument made in case two, and the second term is zero by

the argument made in case one.

C Additional Results

C.1 Optimal Bunching and Free Disposal

As anticipated earlier in the paper (Section 3), this section extends our main analysis with

D = D to cover cases in which the virtual surplus function J does not satisfy single-crossing.

To achieve this relaxation and study scenarios where bunching is optimal, we apply tech-

niques from Nöldeke and Samuelson (2007) to study the inverse problem of assigning types

to consumption under the restriction that J is concave. Only to simplify exposition, we also

assume that the agent’s payoff function u admits a continuous third cross derivative uxxθ.

To this end, denote an inverse consumption function with ψ : X → Θ. This will be

interpreted as a suitable inverse of the standard consumption function φ from our earlier

analysis. In particular, ψ assigns to each outcome a type, whereas φ assigns to each type an

outcome. For any monotone ψ, define further the correspondence:

Ψ(x) =

[
lim
y→−x

ψ(y), lim
y→+x

ψ(y)

]
(104)
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which “fills in” discontinuities in the inverse consumption function.31

Our first result concerns implementation in this setting.

Lemma 5. A consumption allocation φ is incentive compatible if and only if there exists an

inverse consumption ψ : X → Θ that is monotone increasing, satisfies ψ(x) ≥
(
φA
)−1

(x)

for all x ∈ X, and is such that θ ∈ Ψ(φ(θ)) for all θ ∈ Θ.

Proof. This follows immediately from the proof of Proposition 5 and from Lemma 1 and

Lemma 2 in Nöldeke and Samuelson (2007).

Our previous result about the cap on optimal assignments of outcomes (Proposition

1) now translates into a floor in the inverse consumption function. The corresponding

supporting price schedule can then be solved for in integral from:

Tψ(x) = C +

∫ x

0

ux(z, ψ(z)) dz (106)

Most importantly, we now provide the solution to the principal’s screening problem taking

bunching into account. Toward simplifying the principal’s problem, we define the following

function:

Ĵ(x, θ) = ux(x, θ)(1− F (θ)) +

∫ 1

θ

πx(x, s) dF (s) (107)

Using this function and Lemma 5, we can re-express the principal’s problem as:

max
ψ

∫ x

0

Ĵ(x, ψ(x)) dx

s.t. ψ(x′) ≥ ψ(x), ψ(x) ≥
(
φA
)−1

(x), ∀x′, x ∈ X : x′ ≥ x

(108)

This program can be solved pointwise under our assumptions:

Proposition 8. The principal’s Problem (1) is solved by the inverse consumption ψ∗ defined

for each x ∈ X as:

ψ∗(x) = max

{
arg max

θ∈[(φA)−1(x),1]
Ĵ(x, θ)

}
(109)

Proof. We first show that Ĵ is supermodular. We follow Lemma 6 in Nöldeke and Samuelson

(2007) and observe that the cross partial derivative of Ĵ is:

31Where we follow the convention from Nöldeke and Samuelson (2007) that:

lim
y→−0

ψ(y) = 0, lim
y→+x

ψ(y) = 1 (105)
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Jx,θ(x, θ) =− [uxx(x, θ) + πxx(x, θ)] f(θ)− [1− F (θ)]uxxθ(x, θ) (110)

=− Jxx(x, θ)f(θ) (111)

Given that J is concave, it follows that Ĵ is supermodular. Next, we argue that the corre-

spondence x 7→ [(φA)−1(x), 1] is monotone in the SSO. Indeed, this immediately follows from

the fact that (φA)−1 is strictly increasing. With this, we can apply Theorem 4’ in Milgrom

and Shannon (1994) to argue that ψ∗ is monotone increasing. Given that by construction

we have ψ∗ ≥ (φA)−1, the inverse consumption function ψ∗ is implementable and a fortiori

optimal.

As in Nöldeke and Samuelson (2007), bunching manifests in the solution to this problem

as discontinuity in the resulting inverse consumption function ψ. In particular, whenever ψ

is discontinuous the outcome at the discontinuity is assigned to a positive measure of types.

C.2 Competition and Free Disposal

In this Appendix, we study the relationship between competition and optimal pricing under

free disposal. We do this by comparing the monopoly screening benchmark with perfect

competition. We show that our results are robust to this extension by demonstrating that

zero marginal pricing is in fact more prevalent under perfect competition.

The nature of perfect competition we consider is that our monopolist faces a perfectly

fringe of firms that can enter and displace them to serve the entire market. We make this

simplifying assumption to avoid the complicated issue of endogenous market segmentation

under competitive screening and study the cleanly competition’s impact. In this case (as in

e.g., Grubb, 2009), the equilibrium contract maximizes expected consumer surplus subject

to our usual implementation constraints and a new constraint that the monopolist actually

wishes to serve the market. That is, the screening problem becomes:

sup
φ,ξ,T

∫
Θ

(u(φ(θ), θ)− T (ξ(θ))) dF (θ)

s.t. φ(θ) ∈ arg max
x∈D(ξ(θ))

u(x, θ) for all θ ∈ Θ

ξ(θ) ∈ arg max
y∈X

{
max
x∈D(y)

u(x, θ)− T (y)

}
for all θ ∈ Θ

u(φ(θ), θ)− T (ξ(θ)) ≥ 0 for all θ ∈ Θ∫
Θ

(π(φ(θ), θ) + T (ξ(θ))) dF (θ) ≥ 0

(112)

55



The last constraint encodes the effects of competition, and we refer to it as “monopolist’s

IR (individual rationality).” Toward characterizing the solution of this problem, define the

total surplus function as:

S(x, θ) = π(x, θ) + u(x, θ) (113)

In analogy to our assumptions that J is strictly single-crossing and quasiconcave, we assume

that S is strictly single crossing in (x, θ) and strictly quasiconcave in x. We further define

the total surplus maximizing consumption level as:

φO(θ) = arg max
x∈X

S(x, θ) (114)

Proposition 9. The equilibrium consumption level under perfect competition is given by:

φPC = min{φA, φO} (115)

Proof. As in the proof of Lemma 2, we observe that agents’ transfers under any locally

incentive compatible menu are given by:

t(θ) = C + u(φ(θ), θ)−
∫ θ

0

uθ(φ(s), s)ds (116)

We can therefore rewrite the objective as:

− C +

∫
Θ

1− F (θ)

f(θ)
uθ(φ(θ), θ)dF (θ) (117)

By integrating over types, we can then express the monopolist’s IR constraint as:∫
Θ

(
π(φ(θ), θ) + u(φ(θ), θ)− 1− F (θ)

f(θ)
uθ(φ(θ), θ)

)
dF (θ) + C ≥ 0 (118)

Thus, any optimal C sets:

− C =

∫
Θ

(
π(φ(θ), θ) + u(φ(θ), θ)− 1− F (θ)

f(θ)
uθ(φ(θ), θ)

)
dF (θ) (119)

Which implies that the objective function can be written as:∫
Θ

(π(φ(θ), θ) + u(φ(θ), θ)) dF (θ) (120)

Moreover, by the same arguments as in Proposition 5, the remaining implementation con-
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straints are that φ(θ) ≤ φA(θ) for all θ ∈ Θ, φ is monotone increasing and u(φ(0), 0)− t(0) ≥
0. Thus the problem under perfect competition solves:

max
φ

∫
Θ

S(φ(θ), θ) dF (θ)

s.t φ(θ) ≤ φA(θ) for all θ ∈ Θ

φ is monotone increasing

u(φ(0), 0)− t(0) ≥ 0

(121)

By identical arguments to Proposition 7 (as TS is strictly single-crossing and quasiconcave),

it follows that the optimal consumption levels satisfy:

φPC(θ) = min{φA(θ), φO(θ)} (122)

which is monotone. Moreover, t(0) = C+u(φPC(0), 0) ≤ 0 as C is negative and u(φPC(0), 0) ≥
0 as φPC(0) ∈ [0, φA(0)].

We now highlight the key difference between perfect competition and monopoly screening:

zero marginal pricing is in fact more prevalent under perfect competition. To see this, observe

that φO ≥ φP . Thus, the constraint of free disposal is in fact more often binding under perfect

competition than under monopoly. As a result, heightened competition in fact leads to a

greater incentive for zero marginal pricing. The intuition behind this result is that there are

no quantity distortions from information rents under the competitive solution. Thus, total

surplus maximizing consumption is greater than virtual surplus maximizing consumption,

and the inability of consumers to commit to consuming more leads to more frequent zero

marginal pricing. This discussion is formalized in the following corollary:

Corollary 4. The set of outcomes at which there is flat pricing under perfect competition

includes the set of outcomes at which there is flat pricing under monopoly pricing.

Proof. Define HPC(x) = Sx

(
x,
(
φA
)−1

(x)
)

. We have that for all x ∈ X:

HPC(x) = Sx

(
x,
(
φA
)−1

(x)
)

= ux

(
x,
(
φA
)−1

(x)
)

+ πx

(
x,
(
φA
)−1

(x)
)

≥ ux

(
x,
(
φA
)−1

(x)
)

+ πx

(
x,
(
φA
)−1

(x)
)
−

1− F
((
φA
)−1

(x)
)

f
(
(φA)−1 (x)

) uxθ

(
x,
(
φA
)−1

(x)
)

= Jx

(
x,
(
φA
)−1

(x)
)

= H(x)

(123)
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Thus, H(x) ≥ 0 =⇒ HPC(x) ≥ 0. Hence, by an identical argument to Proposition 2,

whenever T ∗ is flat, so too is T PC .

C.3 Optimal Bundling of Advertisements and Goods

For the main analysis, we took the principal’s revenues π as given. In the context of digital

goods pricing, as we have explained, it is common for a principal to derive revenue from

advertising. Of course, the choice of how to integrate advertising into the product is often

a choice variable, selected to balance consumer usage of the platform and revenue derived

from advertising. In this section, we show how such an upstream bundling consideration can

be studied as an extension of our main analysis, and show in an example how the scope for

under-utilization reduces the optimal level of advertising that is bundled with the good.

The principal can choose some level of advertising α ∈ [α, α] to bundle with the product.

When they choose α, this leads to an agent utility function u(·;α) and principal revenue

function π(·;α). Conditional on the choice of α, under our maintained assumptions, we

have that the optimal contract is given by φ∗(θ;α) = min{φP (θ;α), φA(θ;α)}. Therefore the

principal’s payoff given a choice of advertising level is:

Λ(α) =

∫ 1

0

J(φ∗(θ;α), θ;α) dF (θ) (124)

or the payoff from the optimal contract conditional on α. The principal’s problem is then

to choose α ∈ [α, α] to maximize Λ. Denoting an optimal choice should one exist by α∗,

one can interpret the model in the main text as taking agent utility as u(·;α∗) and principal

revenue as π(·;α∗).
Of most interest given our analysis is understanding how under-utilization shapes the

optimal level of advertising. To build intuition for this trade-off, we study a simple example

in the remainder of this appendix. Agent type θ has payoffs:

u(x, θ;α) = (θ − κα)x− x2

2
(125)

for some κ ∈ [0, 1] which indexes how much advertising reduces agents’ enjoyment of the

good. The types are uniformly distributed on [0, 1]. The principal’s utility is given by:

π(x, θ;α) = αx (126)

and advertising is such that α ∈ [0, 1]. In this model, advertising at intensity α creates

(1− κ)a units of surplus per unit of consumption x, taking the difference of direct revenues
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and consumer annoyance in units of willingness to pay.

Plugging these payoff functions into our main analysis, we derive the virtual surplus

function

J(x, θ; a) = (2θ + (1− κ)α− 1)x− x2

2
(127)

and the agent and principal optimal assignments

φA(θ;α) = θ − κα
φP (θ;α) = 2θ + (1− κ)α− 1

(128)

where we have assumed that X = [−M,M ], for some sufficiently large M . Thus, the

optimum for given α is given by:

φ∗(θ;α) = min {θ − κα, 2θ + (1− κ)α− 1} (129)

and the principal’s objective (124) can be readily calculated in terms of primitives.

Let the optimal choice of advertising given free disposal be α∗(D) and the optimal choice

of advertising given full contractibility of consumption be α∗(D). The result below establishes

that advertising is weakly lower under free disposal, or α∗(D) ≤ α∗(D). Intuitively, when

agents can under-utilize the good, the impact of advertising reducing agents’ bliss points and

tightening the obedience constraint reduces the marginal benefit of additional advertising;

or, more loosely, a world of feasible “pay to click” businesses would feature more advertising

overall.

Corollary 5. The optimal level of advertising is lower with free disposal than with perfect

contractibility of consumption, α∗(D) ≤ α∗(D).

Proof. Define Λ(α), and Λ(α) respectively as Λ(α) under D (free disposal) and D (perfect

contractibility). A sufficient condition for α∗(D) ≤ α∗(D) is that Λ(α)− Λ(α) is decreasing

in α for all α ∈ [0, 1]. Observe that we can write:

Λ(α)− Λ(α) =

∫
{θ:φA(θ;α)≤φP (θ;α)}

(
J(φA(θ;α), θ;α)− J(φP (θ;α), θ;α)

)
dθ (130)

In our parametric example, we have that φA(θ;α) crosses φP (θ;α) from above at some

θ̃(α) = 1− α ∈ [0, 1]. Thus, we can simplify this expression to:

Λ(α)− Λ(α) =

∫ 1

θ̃(α)

(
J(φA(θ;α), θ;α)− J(φP (θ;α), θ;α)

)
dθ (131)
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We can then compute:

d

dα

[
Λ(α)− Λ(α)

]
= −θ̃′(α)

(
J(φA(θ̃(α);α), θ̃(α);α)− J(φP (θ̃(α);α), θ̃(α);α)

)
+

∫ 1

θ̃(α)

d

dα

[
J(φA(θ;α), θ;α)− J(φP (θ;α), θ;α)

]
dθ

(132)

Observe that the term on the first line is negative as θ̃′(α) is negative and the integrand is

negative by optimality of φP . To show that d
dα

[
Λ(α)− Λ(α)

]
≤ 0 for all α ∈ [0, 1], it then

suffices to show that for all θ ∈ [θ̃(α), 1]:

d

dα

[
J(φA(θ;α), θ;α)− J(φP (θ;α), θ;α)

]
≤ 0 (133)

Given our parametric assumptions, simple algebra reveals that:

d

dα

[
J(φA(θ;α), θ;α)− J(φP (θ;α), θ;α)

]
= θ + α− 1 ≤ 0 (134)

whenever θ ≥ θ̃(α) = 1− α, completing the proof.

D Microfoundations of Revenue from Usage

In this appendix, we describe four more detailed microfoundations that describe how sellers

may derive external revenue π in the manner described by our model from: Nash bargaining

with external advertisers (D.1); cross-agent platform externalities (D.2); irrational addiction

(D.3); and overconfidence (D.4), as in Grubb (2009).

D.1 Advertisements

In the main text, we assumed that the principal receives payoff π(x, θ) when a type θ con-

sumes x. In the advertising revenue interpretation of our model, we argued that this corre-

sponds to physical revenue earned by the advertiser: when an agent of type θ spends x units

of time on the platform, they will spend in expectation π(x, θ) on the good being advertised

by the advertiser. Of course, at a deeper level, this interpretation can only arise as the

outcome of some bargaining procedure between the platform (i.e., the “seller” in our main

analysis) and the advertiser. In this appendix, we show that if the platform and advertiser

engage in Nash bargaining, then the direct revenue is exactly correct, providing a deeper

justification for the interpretation we provide.

By the taxation and revelation principles, as in our earlier analysis, it is without loss
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of generality to suppose that the platform and advertiser must, as the outcome of some

bargaining process, design a tariff T : X → R. When the tariff is fixed, agents choose initial

allocations:

ξT (θ) ∈ arg max
y∈X

max
x∈D(y)

u(x, θ)− T (y) (135)

Moreover, agents choose consumption:

φT (θ) = arg max
x∈D(ξT (θ))

u(x, θ) (136)

We suppose that payments between the platform and advertiser are possible and both

have quasilinear preferences over money, the platform is a revenue maximizer, and as above

that when an agent of type θ spends x units of time on the platform, they spend π(x, θ) on

the good being advertised by the advertiser. Thus, total producer surplus under tariff T is

given by:

S(T ) =

∫
Θ

[π(φT (θ), θ) + T (ξT (θ))] dF (θ) (137)

Note that this is the objective function we have considered throughout the paper.

The outside option of the advertiser is normalized to zero (they obtain no revenue in

the absence of agreement) and the outside option of the principle is the total revenue under

the revenue maximizing mechanism (i.e., when π ≡ 0), which we denote by R. The Nash

bargaining outcome (with bargaining weight ω for the advertiser) is then obtained as the

solution of the following problem:

max
T

max
v1,v2

vω1 (v2 −R)1−ω

s.t v1 + v2 ≤ S(T ), v1 ≥ 0, v2 ≥ R
(138)

The ultimate choice of T in this program maximizes S(T ). Thus, the mechanism selected

by the Nash bargaining mechanism is the same as the optimal mechanism described in the

main text. In other words, it is as if the principal treats the advertising revenues as its own.

Moreover, this conclusion would be true under any efficient bargaining procedure.

D.2 Platform Externalities

Our main analysis motivates, and solves for the optimal contract in, a model in which

the principal gets direct external revenue from usage. But this model ignores another,

complementary reason why providers prefer higher usage: they may make the platform

intrinsically more valuable for other end users. Examples include matching services (e.g.,

dating apps like Tinder, Match.com, or OK Cupid), online games (e.g., Fortnite or World
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of Warcraft), and also the previously mentioned social media websites. We show how a

variant model of that introduced in Section 2 with separable externalities born by the agent

is almost identical to the model studied above.

To model this, we introduce a function W : X ×Θ→ R+ which maps each agent’s con-

sumption to a positive externality. Agents’ payoffs if they participate, given a consumption

function φ, are:

v
(
x, θ, (φ(z))z∈[0,1]

)
= u(x, θ) +

∫ 1

0

W (φ(z), z) dF (z) (139)

with the maintained assumption of a zero outside option otherwise. The rest of the model

is as in Section 2. The externality of others’ usage is obtained by an agent whenever they

use the platform at the extensive margin. This makes the model amenable to settings where

an agent may gain from participating, even if they do not regularly use the platform. One

leading example among social media is the professional networking website LinkedIn. Having

a LinkedIn profile generates the “passive” benefit of being findable by job recruiters, even if

the user spends essentially zero time using the website.

The proof that this model is isomorphic to our general framework shows that the ex-

ternality can be expressed as a payoff function for the principal through its appearance in

the IR constraint. This summarizes two ideas. First, an agent of type θ contributes total

surplus W (x, θ) via the externality when they consume x, provided that all types participate.

Second, since the externality is excludable or not available to agents that do not participate

in the mechanism, the principal can extract the full value of the externality as part of a

“participation fee.”

The formal argument is described and proven in the Lemma below:

Lemma 6. Consider a variation of the baseline environment in which agents’ preferences

are given by the utility function in Equation 139. Suppose moreover that the modified virtual

surplus function

J†(x, θ) = π(x, θ) + u(x, θ) +W (x, θ)− 1− F (θ)

f(θ)
uθ(x, θ) (140)

is strictly quasiconcave in x and single-crossing in (x, θ). The optimal allocation is given by

φ∗(θ) = min{φA(θ), φP (θ)}, where φA(θ) = arg maxx u(x, θ) and φP (θ) = arg maxx J
†(x, θ).

Proof. The non-standard feature is the externality. Observe first that the externality cannot

affect the obedience constraint since it has no dependence on consumer choice. Observe next
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that, fixing an allocation φ, the reporting problem for type θ is

max
θ′

u(φ(θ′), θ)− t(θ′) +

∫ 1

0

W (φ(z), z) dF (z) (141)

Because the externality is linearly separable and type-independent, it does not affect the

reporting problem, so honesty is unaffected. The only relevant change is to the individual

rationality constraint. The envelope theorem of Milgrom and Segal (2002) implies the same

expression for transfers

t(θ) = C + u(x, θ)−
∫ θ

0

uθ(φ(z), z) dF (z) (142)

The same arguments from the proof of Lemma 2 imply that, without loss of optimality, we

can restrict attention to allocations in which all agents participate (as W ≥ 0) and such that

C =
∫ 1

0
W (φ(z), z) dF (z) and the objective of the monopolist is:∫ 1

0

(
π(φ(θ), θ) +W (φ(θ), θ) + u(φ(θ), θ)− 1− F (θ)

f(θ)
uθ(φ(θ), θ)

)
dF (θ) (143)

Observe that the externality is effectively an additional component of the principal’s instru-

mental payoff. The claim of the result then follows by application of Proposition 1.

A further implication, of course, is that appropriately amended versions of our results

about pricing plans, welfare, and intermediate contractibility apply in this platform model.

We omit formal versions of these results for brevity, as they all can be proved via the

appropriate substitution of Lemma 6 for Proposition 1.

D.3 Irrational Addiction

As highlighted in the main text, addicted users are commonly cited as a major source of

revenue in the context of apps and other digital goods (see, e.g., Allcott, Gentzkow, and Song,

2021). In this appendix, we describe a simple microfoundation of how external revenue could

be derived from irrational addiction of consumers. That is, consumers’ consuming more today

is valuable because it increases their future willingness-to-pay and can lead to future revenue

for the seller.

Suppose that agents live for two periods but are myopic. Let x ∈ X be the agent’s

consumption today (t = 0) and x̃ ∈ X their consumption tomorrow (t = 1). An agent of

type θ ∈ Θ believes they have lifetime payoff from consumption x given by u(x, θ), where

u satisfies our running assumptions. In reality, however, the agent also values consumption
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tomorrow. Moreover, the more (or less) that they consumed today the more (or less) they

value consumption tomorrow. Thus, at t = 1, the agent has utility function ũ : X2×Θ→ R,

where u(x, x̃, θ) is their payoff. This complete myopia can be thought of as an extreme form

of the inattention toward habit formation that Allcott, Gentzkow, and Song (2021) find is

necessary to empirically rationalize total demand for six ubiquitous mobile apps (Facebook,

Instagram, Twitter, Snapchat, web browsers, and YouTube).

Observe that given a full-revelation mechanism (or equivalently under observation of

agent consumption under an implementable mechanism), the seller knows the agent’s type

tomorrow. Thus, when agents consume x today and their type is θ, tomorrow the monopolist

sells them x̃∗(x, θ) ∈ arg maxx̃∈X ũ(x, x̃, θ) and charges a transfer of:

π(x, θ) = ũ(x, x̃∗(x, θ), θ) (144)

to extract full surplus. Thus, from the perspective of today, the monopolist faces the non-

linear pricing problem we study in the main text, with an external revenue function given by

Equation 144, which can capture the gains from addicting a user through contemporaneous

consumption and extracting this surplus from them in the future.

To interpret our conditions for the presence and shape of multi-part tariffs, it is useful

to calculate marginal usage-based revenues

πx(x, θ) = ũx(x, x̃
∗(x, θ), θ) + ũx̃(x, x̃

∗(x, θ), θ)x̃∗x(x, θ)

= ũx(x, x̃
∗(x, θ), θ)

(145)

where the second equality applies the envelope theorem. Thus, the marginal revenue of

consumption today comes from its marginal payoff consequence tomorrow. The concavity of

usage-based revenues is similarly

πxx(x, θ) = ũxx(x, x̃
∗(x, θ), θ) + ũx̃x̃(x, x̃

∗(x, θ), θ)(x̃∗x(x, θ))
2 + ũx̃(x, x̃

∗(x, θ), θ)x̃∗xx(x, θ)

= ũxx(x, x̃
∗(x, θ), θ) + ũx̃x̃(x, x̃

∗(x, θ), θ)(x̃∗x(x, θ))
2

(146)

where we again apply the envelope theorem in the second step. Concavity arises if payoffs

are directly concave in previous consumption, or if payoffs are concave in contemporaneous

consumption and contemporaneous consumption increases in previous consumption. The

latter combination of assumption is standard in the theoretical literature on addiction as

habit (Becker and Murphy, 1988) and empirically verified in the structural estimation of

Allcott, Gentzkow, and Song (2021).
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D.4 Overconfidence

Here, we study over-confidence at the participation stage, as in Grubb (2009). We show ex-

plicitly, building on results in Grubb’s original analysis, how to recast agents’ over-confidence

about being a high-demand type as a source of revenue for the principal, which depends on

agents’ forecasted consumption rather than forecasted allocation.

A natural reason why a principal may allocate more of a good than an agent wants ex post

is that the agent actually wanted even more ex ante, via different and inconsistent preferences.

Such a story is at the heart of Grubb (2009)’s analysis of selling to overconfident consumers

and his leading example of pricing cell phone plans, a context in which individuals regularly

(based on anecdotes and empirical exploration) over-estimate their demand in advance. We

now illustrate how over-confidence at the participation stage nests naturally in our framework

as an example of a positive payoff externality.

This model is nested in the canonical monopoly pricing model, with zero payoff external-

ities and zero production costs, with one twist: agents decide whether to participate ex ante

without knowing their type θ, but with a prior belief θ ∼ F̌ (θ) which may differ from the

objective truth θ ∼ F (θ). The common individual rationality constraint for all consumers is

that the expected payoff at the allocation (φ(θ), ξ(θ), t(θ))θ∈Θ exceeds the outside option 0,

or ∫ 1

0

(u(φ(θ), θ)− t(θ)) dF̌ (θ) ≥ 0 (147)

As demonstrated in Grubb (2009), the above after substituting in the envelope expression

for transfers (local incentive compatibility) translates to the following upper bound for the

transfer for the lowest type agent:

t(0) ≤ u(φ(0), 0) +

∫ 1

0

(1− F̌ (θ))uθ(φ(θ), θ) dθ (148)

Observe first that, in a classical model with correctly specified expectations F̌ (θ) = F (θ),

(148) reveals that consumers of every type, lacking any private information, must surrender

all expected surplus (information rents) to the planner ex ante. With mis-specified F̌ (θ) 6=
F (θ), it means that consumers of every type pay for the surplus they expect to receive, which

may be incorrect.

Using this expression, and the principal’s desire for individual rationality to bind at

equality, leads to the following simplification of the problem which has equivalent content to

part 1 of Proposition 1 in Grubb (2009):

Lemma 7. The optimal assignment in the monopoly problem studied by Grubb (2009) is
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identical to the assignment from the problem introduced in 2 with external revenue

π(x, θ) =
1− F̌ (θ)

f(θ)
uθ(x, θ) (149)

Proof. This follows immediately from comparing our Lemma 2 and Proposition 1 in Grubb

(2009).

Intuitively, this says that the marginal cost of “producing” x for type θ is negative, in

proportion to how much it increases agents’ expectations of surplus (from information rents)

ex ante. It results in an equivalent allocation to the original problem but a different transfer,

off by the integral term in (148) which is now rebated to the producer as negative production

cost.

The main takeaway from this analysis is that the combination of time-inconsistency and

free disposal in Grubb (2009) generates multi-part tariffs for the same reason highlighted in

Corollary 1. Our comparative statics results can be applied directly to this context. Our

normative analysis applies given the appropriate re-interpretations of consumer surplus being

based on ex post preferences or the objective type distribution.

E Additional Applications

E.1 Regulation With Quality Grades

In this appendix, we study the problem of a government regulating a monopolist with un-

known costs, as formalized by Baron and Myerson (1982). The original analysis shows how

the regulator can optimally design such a contract under the assumption that the regulator

can actually monitor and/or contract upon the choice variable, which we may interpret as

the “quality” of the provided service. But, in practice, an attribute like “quality” (e.g., for

an infrastructure project like a bridge or airport) may not be easily described ex ante under

the payoff-relevant, continuous measure, but instead only in coarser bins. This maps to our

grades model of partial contractibility from Section 4.

We now use our framework to illustrate the economic consequence of limited, grade-

based contractibility in the simplest possible case of Baron and Myerson (1982) with constant

marginal cost and linear demand.32 Firms can produce quality levels x ∈ [0, x] and customers

have an inverse demand curve P (x) = x−x, where x > 2, which reflects decreasing marginal

32This is the simplest illustrative case under which we have the required concavity of the monopolist’s
revenue function and the virtual surplus function. It would be trivial to extend our results to a larger class
of demand and cost functions under the appropriate assumptions.
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willingness to pay for quality. Firms are differentiated by their marginal cost 1 − θ, where

θ ∼ U [0, 1]. Firms’ payoffs, as a function of their type θ and quantity x, are their profits:

u(x, θ) = (x− x) · x− (1− θ) · x (150)

The government maximizes the sum of consumer surplus, the transfers, and a fraction

τ ∈ [0, 1) of the producer surplus. It is simple to derive that consumer surplus is given by
x2

2
. With some minor algebraic manipulation, the regulator’s payoff from a producer of type

θ producing x is then:

π(x, θ) + t(θ) =
x2

2
+ τ · u(x, θ) + (1− τ)t(θ) (151)

We capture the aforementioned scope for non-contractibility and lack of monitoring with

the disposal correspondence Dg introduced in Section 4.1. There is a “high grade” defined

by quality x ∈ [c, x] and a “low grade” defined by quality x ∈ [0, c). A producer called upon

to produce a good of quality y can actually provide any lower quality within the grade in

which y lies, or faces the disposal correspondence

Dg(y) =

[0, y] if y < c,

[c, y] if y ≥ c.
(152)

To describe the optimal contract, we first define the following function which, as we will

soon see, defines the government’s preferred level of quality under full contractibility:

φP (θ) = min {x− (2− τ)(1− θ), x} (153)

We next define the monopolist’s profit maximizing choice absent any regulation as

φA(θ) =
x

2
− 1− θ

2
(154)

Using these expressions, we now state the following result which describes the optimal

contract:

Corollary 6. In the optimal allocation, the contracted quality is

φ∗(θ) =


φP (θ) if θ < θ0,

φA(θ) if θ ∈ [θ0, θ1),

max{c, φA} if θ ≥ θ1

(155)
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where

θ0 = 1− x

3− 2τ

θ1 = θ0 +
c

3− 2τ

(156)

Proof. We first derive the expressions given in the main text for φA and φP . See that firms’

profits are given by

u(x, θ) = (x− x) · x− (1− θ) · x (157)

The principal maximizes the expected value of expression (151). It is equivalent if the

principal maximizes the expected value of this objective divided by (1−τ). The transformed

objective has the form π̃(x, θ) + t(θ) with

π̃(x, θ) =
1

1− τ
x2

2
+

τ

1− τ · u(x, θ) (158)

The associated virtual surplus is

J(x, θ) =
1

1− τ
x2

2
+

τ

1− τ · u(x, θ) + u(x, θ)− 1− F (θ)

f(θ)
uθ(x, θ)

=
1

1− τ

(
x · x− x2

2
− (2− τ)(1− θ)x

) (159)

where the second line uses the definition of u(x, θ), the hazard rate expression (1−F (θ))/f(θ) =

1 − θ for the uniform distribution, and the substitution uθ(x, θ) = x. This virtual surplus

function is strictly concave in x, strictly single-crossing in (x, θ) and maximized at

φP (θ) = x− (2− τ)(1− θ) (160)

We now derive consumption in the optimal contract. Combining Lemma 2 with the

characterization of grades contractibility via its minimal selection

δg(y) =

0 if y < c

c if y ≥ c
(161)

we can re-write the point-wise program

φ∗pw(θ) ∈ arg max
x

J(x, θ)

s.t.

x ≤ φA(θ) if x < c

x ≤ max{φA(θ), c} if x ≥ c

(162)
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Moreover, if φ∗pw is monotone increasing, then φ∗ = φ∗pw.

Since J(·, θ) is quasiconcave for any θ, we can show that φ∗pw has the following form:

φ∗pw(θ) =


φP (θ) if φP (θ) ≤ φA(θ)

φA(θ) if φP (θ) > φA(θ), J(φA(θ), θ) ≥ J(c, θ)

c if φP (θ) > φA(θ), J(φA(θ), θ) < J(c, θ)

(163)

Moreover, since J(·, θ) is quadratic for any θ, strictly concave, and maximized at φP (θ), we

observe that J(φA(θ), θ) ≥ J(c, θ) if and only if |φA(θ) − φP (θ)| ≤ |c − φP (θ)|. Using this

observation, and direct calculation, we can derive Equation 155 as a proposed point-wise

solution to the problem, and then immediately verify that it is monotone. This completes

the proof.

The contract of Corollary 6 can take on a number of forms depending on the value of

primitives. One particularly interesting case is obtained when φP > φA for all θ ∈ Θ, or

the principal would strictly prefer higher quality than the market would provide in autarky

regardless of the firm’s costs. In this case, it is straightforward to note that θ0 < 0 and hence

the optimal allocation takes the form

φ∗(θ) =

φA(θ) if θ < θ1

max{c, φA} if θ ≥ θ1

(164)

By inspection, given that all firms are producing either at their bliss points or at the cut-off

c, it is evident that the government cannot subsidize production of quality on the margin.

They can, however, provide a lump sum payment to firms that produce quality in excess of

the grade threshold c. We can in fact calculate explicitly the tariff as

T (x) =

u(φA(0), 0) if x < φA(θ1)

u(c, θ1)− u(φA(θ1), θ1) + u(φA(0), 0) if x ≥ c
(165)

For low-type (high-cost) firms, the government tolerates monopoly and charges an entry fee

that extracts fully the willingness to pay of the highest-cost firm. For high-type (low-cost)

firms, the government pays a subsidy u(φA(θ1), θ1)− u(c, θ1) that compensates the marginal

high-grade firm for producing at c. In practice, this contract looks like a two-tiered lump-sum

payment to high-cost and low-cost firms.
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E.2 Optimal Income Taxation with Over-reporting

Here, we study optimal income taxation envisioned as a screening problem in the tradition

of Mirrlees (1971), and augmented with externalities. A common claim by politicians and

lobbying groups is that high income taxes stifle innovation and job creation. In more for-

mal economic language, productive effort may have positive productivity spillovers, as in

many leading models of economic growth, or demand externalities, as in standard Keynesian

macroeconomic models.33 We introduce a stylized model of taxation of such a scenario to

study the implications for taxation with and without the ability to monitor agents over-

reporting their income.

Agents have a payoff over consumption c and human capital investment x ∈ [0, x] that

is quasilinear in consumption and quadratic in human capital investment U(c, x, θ) = c −
(1− θ)x2

2
. A higher type θ corresponds with lower costs to obtaining human capital. Types

are distributed θ ∼ U [0, 1]. Each agent has a budget constraint c ≤ y − t which bounds

consumption by income y net of the tax t. Income depends on both one’s own human capital

and an average human capital externality, or y = x +
∫
e(φ(z)) dF (z) defined up to some

increasing, differentiable, and concave e : R+ → R+. Using the constraint and definition of

income, the payoff function for agents of type θ when they have human capital x and and

all other agents have human capital given by φ is given by:

u
(
x, θ; (φ(z))z∈Θ

)
= x− (1− θ)x

2

2
+

∫
e(φ(z)) dF (z) (166)

The government’s payoff is the sum of government revenues plus utilitarian welfare multiplied

by some τ ∈ [0, 1). This objective can be written as the following:

π
(
x, θ; (φ(z))z∈Θ

)
+ t(θ) = τu

(
x, θ; (φ(z))z∈Θ

)
+ (1− τ)t(θ) (167)

As highlighted above, the existence of externalities might prompt the government to subsidize

agents’ incomes via a negative marginal tax. However, the government may not have the

ability to observe an agent over-reporting their income to take advantage of such a policy.

Formally, this corresponds to an agent with allocated human capital investment of ξ(θ)

actually making a human capital investment of x ∈ D(ξ(θ)). The optimal mechanisms, and

some salient properties thereof, are summarized below:

Corollary 7 (Taxation and Monitoring). The optimal mechanism with full monitoring D =

33This basic idea animates a recent literature on optimal income taxation with externalities (see, e.g.,
Rothschild and Scheuer, 2016; Lockwood, Nathanson, and Weyl, 2017; Badel, Huggett, and Luo, 2020).
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D allocates

φP (θ) ∈ arg max
x∈[0,x]

{
x− (2− τ)(1− θ)x

2

2
+ τe(x)

}
(168)

for all θ ∈ [0, 1]. The optimal mechanism without monitoring D = D allocates

φ∗(θ) =

φP (θ) if φP (θ) < (1− θ)−1

min {x, (1− θ)−1} if φP (θ) ≥ (1− θ)−1
(169)

to all agents θ ∈ [0, 1]. Moreover, the following properties hold:

1. Both with and without monitoring, worker welfare surplus increases in τ ;

2. Workers benefit from from full monitoring relative to the free-disposal benchmark.

Proof. First, see that the consumer utility function

u(x, θ; (φ(z))z∈Θ) = x− (1− θ)x
2

2
+

∫
e(φ(z)) dF (z) (170)

satisfies, for every fixed value of the externality term, single-crossing with respect to (x, θ),

is monotone increasing in θ, and is strictly quasiconcave in x. Thus it satisfies the conditions

for our implementation result in Proposition 5.

Next, we apply the same technique from the proof of Corollary 6 to re-scale the principal’s

objective to put weight 1 on transfers. In particular, we define

π̃(x, θ; (φ(z))z∈Θ) =
τ

1− τ

(
x− (1− θ)x

2

2
+

∫
e(φ(z)) dF (z)

)
(171)

Since 1/(1− τ) > 0, maximizing the expected value of (167) is the same as maximizing the

expected value of π̃(x, θ) + t(θ). Moreover, the principal’s total payoff simplifies to∫
Θ

J(φ(θ), θ) dF (θ) =
1

1− τ

∫
Θ

(
φ(θ) + τe(φ(θ))− (2− τ)(1− θ)φ(θ)2

2

)
dF (θ) (172)

See that the new form of the objective, up to scale, implies an outcome-equivalent model

in which the planner’s objective function is π̂(x, θ) = τe(x); the agent’s utility function is

û(x, θ) = x − (1 − θ)x
2

2
; and the outside option is 0. We can use Lemma 6 to derive the

optimal contract with and without free disposal, with the caveat that type-specific utility

V̂ (θ) in this model corresponds with the actual model’s utility minus the externality, or

V (θ) = V̂ (θ) +

∫
e(φ(z)) dF (z) (173)
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We now prove the comparative statics results. Observe first that increasing τ weakly

increases φP (θ). Since the program defining φP (θ) is continuous, twice-differentiable, and

globally concave, it is sufficient to verify the following:

∂2

∂x∂τ

(
x− (2− τ)(1− θ)x

2

2
+ τe(x)

)
= (1− θ)de(x)

dx
≥ 0 (174)

where the inequality follows as e(·) is an increasing function. Welfare for type θ is given in

the optimal mechanism by

V (θ) =

∫ θ

0

uθ(φ
∗(s), s) ds+

∫ 1

0

e(φ∗(s)) ds =

∫ θ

0

(φ∗(s))2

2
ds+

∫ 1

0

e(φ(s)) ds (175)

Both integrands weakly increases point-wise, so V (θ) also increases.

For the second comparative statics result, we first apply Proposition 3 to show that

V̂ (θ; a∗) ≤ V̂ (θ; a∗
′
), where a∗, a∗′ are respectively the optimal allocations under free disposal

and no disposal. See next that

V (θ; a∗)− V (θ; a∗
′
) =

(
V̂ (θ; a∗)− V̂ (θ; a∗

′
)
)

+

(∫
(e(φ∗(s))− e(φ∗′(s))) ds

)
(176)

or the increase in welfare can be decomposed into the component characterized above and

the increase in the externality between the two optimal mechanisms. But φ∗′(θ) ≥ φ∗(θ) is

established in the proof of Proposition 3; this implies that e(φ∗(s)) ≤ e(φ∗′(s)). Putting the

two ingredients together implies V (θ; a∗)− V (θ; a∗
′
) ≤ 0, which proves the claim.

The government wants to boost human capital investment beyond the bliss point when

the externality is sufficiently high. With a concave external benefits function, marginal

externalities are highest for the lowest type workers. The policymaker, without monitor-

ing, implements a zero marginal tax for these workers; with monitoring, they implement a

negative marginal tax.

The negative marginal tax for low incomes resembles the Earned Income Tax Credit

(EITC) in the United States. Our model micro-founds why such negative marginal taxes may

exist; why monitoring lower incomes is essential for supporting this system; and why, despite

the implication of standard Mirleesian models that the only relevant deviations of agents are

to under -report income, the US Tax Code uniformly treats under- or over-reporting income

as equivalent forms of tax fraud.34 Our welfare results moreover show that, through the

34See Title 26, Section 7206, of the US Tax Code (“Fraud and false statements”) available at: https:

//www.law.cornell.edu/uscode/text/26/7206.

72

https://www.law.cornell.edu/uscode/text/26/7206
https://www.law.cornell.edu/uscode/text/26/7206


lens of the current model, the monitoring underlying successful implementation of the EITC

benefits all agents in the economy. Every dollar given as subsidy to an EITC recipient is quite

literally a dollar saved by agents earning any higher income in our model, because higher

retention (lower taxes) is required to incentivize truthful reporting. Thus our model implies

very broad benefits, across incomes, of having the legal capacity to implement negative

marginal tax rates for low incomes.
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