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Abstract

This paper introduces a flexible local projection that generalises the model of

Jordà (2005) to a nonparameteric setting by using Bayesian Additive Regression

Trees. Using Monte Carlo experiments, we show that the model is able to capture

non-linearities in the impulse responses. Our empirical analysis uncovers three

facts about US monetary policy shocks. First, that contractionary shocks have

stronger effects on CPI and GDP than expansionary shocks. Second, that the

effects on CPI progressively weaken out as the size of the shock increases. Third,

that contractionary shocks generate stronger and faster responses if the shock

hits the economy during expansionary periods.
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1 Introduction

Estimation of impulse responses (IRFs) via local projections (LP) by Jordà (2005) has

become increasingly common in applied Macroeconometric analysis. A key feature of

the local projection estimator is that it estimates IRFs of variable yt to an innovation

to variable xt directly via linear regressions of the form yt+h = Bhxt + dhwt + ut+h,

where wt denotes control variables. Given their flexibility, considerable attention has

been given to investigate the properties of the LP estimator, see, for instance, Stock

and Watson (2018) and Plagborg-Møller and Wolf (2021).

In their most popular specification, LP estimators impose a linearity between yt+h

and xt. This limitation implies that linear LPs cannot be used to study non-linear

effects of the shocks of interest, for instance non-linearities on the sign or size of the

shock, or on the economic conditions when the shock occurs. Some extensions of

the linear LP estimator have been proposed, but they all rely on the functional form

introduced to model the non-linearity. Jordà (2005) proposes the use of quadratic and

cubic terms. Auerbach and Gorodnichenko (2013) and Ramey and Zubairy (2018) use

a smooth transition function and a threshold function, respectively. Ruisi (2019) and

Lusompa (2021) use a time varying extension of LP based on parametric state-space

models, while Inoue et al. (2022) provides a more general framework for modelling

structural shifts.

In this paper we propose a flexible non-linear extension of the LP estimator that

does not require assumptions on the function form of the LP regression equation. We

propose a non-parametric LP estimator that uses the Bayesian Additive Regression

Trees (BART) model to approximate the unknown function mh(zt) in the more general

equation yt+h = mh(zt)+ut+h, with zt = (xt, wt). Introduced by Chipman et al. (2010),

BART uses regression trees as its building block. Regression trees split the space of

explanatory variables zt into sub-groups based on rules of the form zt,j < C, where

j = 1, 2, .., K. The function mh(zt) is approximated as a sum of a large number of

small trees. Chipman et al. (2010) show that BART is able to approximate highly
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non-linear functions accurately.

We first illustrate how BART techniques can be applied in a non-linear LP esti-

mator, and we refer to this new methodology as BART-LP. We show how to combine

BART-LP with identification of the shocks of interest using the recursive approach,

sign restrictions or external instruments. We document the performance of BART-LP

using Monte Carlo analysis. We then apply BART-LP to study the effects of mone-

tary policy shocks in the US. We document three facts about monetary policy shocks

in the US. First, CPI and GDP decrease more strongly after a monetary contraction

than they increase after a monetary expansion. Second, the response of GDP scales

up proportionally as the size of the monetary shock increases, but the effect on CPI

weakens out, suggesting a progressively weaker effect on CPI. Third, that the decrease

in GDP after a monetary contraction is faster if the shock hits the economy during

periods of high expansions, while CPI decreases more quickly.

This paper relates to the literature that studies how BART techniques can be used

in Macroeconometrics. Huber and Rossini (2021) introduce a VAR model where the

dynamics of the endogenous variables are modelled using BART. The authors model

the impact of uncertainty shocks using the proposed model. Huber et al. (2020) extend

the BART-VAR to a mixed frequency setting and evaluate the forecasting perfomance

of the model. Clark et al. (2021) show that multivariate BART regression models

perform well in terms of tail forecasting. To the best of our knowledge, our paper is

the first one to use BART in an LP framework.

The paper is also part of a broad literature that studies the advantages of IRF

estimation using LP estimators, relative to constructing IRFs on vector autoregressive

models. Several contributions document the performance of LP estimators, including

Kilian and Kim (2011), Alloza et al. (2019), Breitung et al. (2019) Herbst and Jo-

hannsen (2021), and Bruns and Lütkepohl (2022). While LP estimators are usually

proposed in a frequentist setting, we follow Miranda-Agrippino et al. (2021) and take

a Bayesian approach to LP, yet in a non-linear framework.

2



The paper is organised as follows. Section 2 presents the empirical model and

provides details on identification and estimation. Section 3 shows the application to

monetary shocks. Section 4 concludes.

2 Flexible local projections

In this section we outline the methodology, which we refer to as the BART-LP model.

We first discuss how BART approximates the unknown linear function, discuss the

prior, and outline the posterior sampler. We then discuss how to achieve identification

of the structural shocks of interest within this model.

2.1 The BART approximation

As noted above, the model is defined as:

yt+h = mh(xt, wt) + ut+h, (1)

where yt︸︷︷︸
1×1

denotes the variable of interest and h = 0, 1, ..., H is the impulse response

horizon to a change in xt. The vector wt︸︷︷︸
(K−1)×1

consists of control variables that can

include further lags of yt. The residual ut+h is assumed to be normally distributed

with a variance σ2
t+h. As noted in Jordà (2005), ut+h is serially correlated for h > 1.

The impulse response at horizon h can be calculated as:

IRFh = E (yt+h|xt = d;wt)− E (yt+h|xt, wt) , (2)

where d denotes the innovation to xt. As we describe below, the structural shock can

be identified by using appropriate control variables to implement restrictions or by

using sign restrictions or instruments for xt.
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The function mh(xt, wt) is approximated by using BART:

mh(xt, wt) ≈
J∑
j=1

f(xt, wt|Γj, µj), (3)

where f(xt, wt|Γj, µj) denotes a single regression tree. The parameters of the regression

tree are the tree structure Γj and terminal nodes (or leaves) µj and thresholds c. Each

regression tree divides the space of each explanatory variable by using binary splitting

rules. Denoting Xi as the i-th column of Xt = (xt, wt), these rules are defined as:

Xi ≤ c, (4)

Xi > c.

Observations are assigned according to these splitting rules and the terminal nodes

return the fitted value conditional on the split. The fitted value of the dependent

variable, based on a single regression tree is then given by

f(xt, wt|Γ, µ) =
B∑
b=1

I(Xi, c)µb, (5)

where I(.) denotes an indicator function that equals 1 if Xi belongs to the set defined

by the splitting rule. Note that the complexity of the tree is determined by B, the

number of terminal nodes.

The model in equation 3 approximates mh(xt, wt) by using a sum J trees. Each

tree in the sum is restricted to be small a priori to avoid overfitting and thus explains

a small proportion of yt and is a ‘weak learner’. Chipman et al. (2010) show that a low

value of J reduces predictive accuracy. As J increases, predictive performance initially

improves, but this improvement tapers off beyond a certain level. In practice, studies

such as Huber et al. (2020) note that difference in predictive accuracy is negligible for

J > 150 and complex functions can be easily approximated using J = 200 or 250.
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The BART approximation of the relationship between yt+h and xt has implications

for the properties of IRFh. As the regression trees split the space of the covariates via

rules of the type shown in equation 4, the estimated predictions on the RHS of equation

2 are dependent on their history. Similarly, the shock d can lead to predictions that

proportionally differ if the the size and sign of the shock leads to use of the covariate

space where the relationship between yt+h and xt is substantially different from the

‘average’ impact.

2.2 Estimation

The model in equation (1) can be estimated using the MCMC algorithm described in

Chipman et al. (2010).

2.2.1 Priors

The prior distributions proposed by Chipman et al. (2010) play a crucial role as they

are devised to reduce the possibility of overfitting. The prior for the tree parameters

is factored as follows:

p((Γ1, µ1), (Γ2, µ2), ..., (ΓJ , µJ)) =
J∏
j=1

p(µj|Γj)p(Γj), (6)

where p(µj|Γj) =
∏B

b=1 p(µb,j|Γj).

The prior for the tree structure Γj depends on the probability that the node at

depth d = 0, 1, 2, .. is not a terminal node. This probability is given by α(1 + d)−β

where α ∈ (0, 1) and β > 0. Higher values of β and smaller values of α reduce this

probability and impose a stronger belief that the tree has a simple structure. As

recommended by Chipman et al. (2010) we set α = 0.95 and β = 2. The prior for

c implies that this parameter is assumed to be uniform over the range of the values

taken by the variables. In the default setting, the choice of splitting variable is also

assumed to be uniform across the regressors.
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To define p(µj|Γj) Chipman et al. (2010) first tranform the dependent variable so

that it lies between −0.5 and 0.5. As a consequence, mh (xt, wt) is also expected to

lie between these values. The prior p(µj|Γj) is assumed to be normal N (0, S). The

variance S is set as 1
2κ(J0.5)

where J denotes the total number of trees and the default

value of κ recommended in Chipman et al. (2010) is 2. Under this default prior, there

is a 95% probability that the conditional mean of the dependent variable lies between

−0.5 and 0.5.

A conjugate inverse χ2 prior is used for the variance σ2
t+h. The hyperparameters of

the prior distribution are set by using σ̂2
t+s an estimate of the variance obtained from

a linear regression. If the true model is non-linear σ̂2
t+s will be biased upwards. Under

the default prior, the hyperparameters are chosen so that Pr(σt+s < σ̂t+s) = 0.9.

2.2.2 MCMC algorithm

The MCMC algorithm devised by Chipman et al. (2010) samples from the condi-

tional posterior distributions of σ2
t+h and the parameters of the regression trees in each

iteration.1 Each iteration of the algorithm samples from the following conditional

posteriors:

1. conditional on the trees, the error variance can be easily drawn from the inverse

Gamma distribution;

2. the conditional posterior distribution of the tree structure is not known in closed

form and a Metropolis Hastings algorithm is used. Define Rj as the residual:

Rj = y −
∑
i 6=j

f(xt, wt|Γj, µj). (7)

The j − th tree is proposed using the density q(Γnewj ,Γoldj ). Chipman et al.

(2010) use a proposal density that incorporates 4 moves: (i) splitting the node

1Intuitive descriptions of this MCMC algorithm can be found in Clark et al. (2021) and Hill et al.
(2020).
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into two new nodes (grow), (ii) transforming adjacent nodes to terminal node

(prune), (iii) changing the decision rule of an interior node (change), (iv) swap-

ping a decision rule between a node that is above and the node before it (swap).

The probabilities associated with these moves are fixed at 0.25, 0.25, 0.4 and 0.1

respectively. The proposed tree structure Γnewj is accepted with probability

α =
q(Γnewj ,Γoldj )p(Rj|Γnewj , σ2

t+h)p(Γ
new
j )

q(Γoldj ,Γnewj )p(Rj|Γoldj , σ2
t+h)p(Γ

old
j )

, (8)

where p(Rj|Γj, σ2
t+h) is the conditional likelihood and p(Γj) denotes the prior.

This step is repeated for j = 1, 2, .., J trees;

3. the conditional posterior distribution of the terminal node parameters is Gaus-

sian with the parameters known in closed form. Therefore, the draw of µj for

j = 1, 2, .., J can be carried out in a straightforward manner;

4. given a draw of the model parameters, the IRF is calculated by using equation

(2). This simply requires the calculation of the predicted value E (yt+h|xt, wt) =∑J
j=1 f(xt, wt|Γj, µj) where xt, wt are fixed at the required histories for the base

prediction and a shock is added to xt for the prediction conditional on the shock.

2.2.3 Autocorrelation

In the case of linear local projections, it has been shown that the residual at horizon

h follows a MA(h− 1) process (see Lusompa, 2021). Lusompa (2021) suggests a GLS

procedure whereby the autocorrelation is eliminated by including leads of the residuals

from the horizon 0 LP in the conditioning set.2

The non-parametric setting considered in this paper encompasses non-linear mod-

2Lusompa (2021) suggests an efficient strategy that transforms the dependent variable of the LP
regressions and does not require one to explicitly include the horizon 0 residuals as regressors.
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els. For the purpose of illustration consider a simple non-parametric AR(1) model:

yt+1 = f(yt;A1) + et+1. (9)

Iterating the AR forward 3 periods as an example:

yt+2 = f(f(yt;A1) + et+1;A1) + et+2,

yt+3 = f(f(f(yt;A1) + et+1;A1) + et+2;A1) + et+3.

It is useful to compare this with a flexible local projection for this horizon:

yt+3 = m3(yt;A1) + ut+3. (10)

The function m3(yt;A1) approximates the non-linear relationship between yt and its

lead, but does not account for the dependence between the dependent variable and

lagged shocks. Thus in this setting, the residual ut+3 is a non-linear function of et+1

and et+2 and has a non-linear autocorrelation structure.

In general, the Voltera expansion of any non-linear time-series shows its complex

dependence on past shocks:

yt =
∞∑
i=0

φiet−i +
∞∑
i=0

∞∑
i=j

ζijet−iet−j +
∞∑
i=0

∞∑
i=0

∞∑
k=0

φijet−iet−jet−k + ... (11)

To account for this autocorrelation, we propose to include an estimate of the shocks

êh−1 = (êt+1, êt+2,..., êt+h−1) as additional covariates in the h period flexible local pro-

jection. Following Lusompa (2021) we use the residuals of period 0 flexible local pro-

jection yt = m0(xt, wt)+ut to build the vector êh−1. Then, the flexible local projection

for period h is specified as:

yt+h = mh(xt, wt, êh−1) + ut+h. (12)
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The BART approximation of mh (xt, wt, êh−1) proxies the non-linear dependence

of yt+h on et+1, et+2,..., et+h−1 and ameliorates the autocorrelation in ut+h.

2.3 Identification

In order to interpret the responses from an economic perspective, it is crucial to

impose identifying restrictions. As discussed in Plagborg-Møller and Wolf (2021)

and Barnichon and Brownlees (2019), a recursive identification scheme can be eas-

ily implemented by using appropriate control variables. For example, if the aim is

to estimate the response of GDP to an interest rate shock that is restricted to have

a zero impact on GDP and CPI at horizon 0, then yt+h = GDPt+h, xt = Rt and

wt = GDPt, CPIt, GDPt−1, CPIt−1, Rt−1, ..., GDPt−p, CPIt−p, Rt−p. The inclusion of

GDPt in the set of control variables implies that the response at h = 0 is restricted to

be zero.

An instrumental variable approach can also be used to identify the structural im-

pulse response. Suppose that an instrument or proxy zt is available that satisfies

exogeneity and relevance. In other words, cov [z, ε−] = 0 and cov [z, ε] = α, α > 0

where ε denotes the shock of interest, while ε− denotes other shocks. Following stud-

ies such as Auerbach and Gorodnichenko (2013) and Tenreyro and Thwaites (2016), a

simple approach involves setting xt = zt with the control variables wt including lags of

yt, zt and other relevant covariates. Note that the timing of the controls implies that

zt is ordered first in a recursive setting.3

An alternative approach consists of using sign restrictions. Within BART, sign

restrictions are conveniently introduced by adding an accept/reject step in the algo-

rithm.

3In the context of linear VAR models, Plagborg-Møller and Wolf (2021) show that this recursive
approach yields valid relative impulse responses.
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3 Empirical application

We use the proposed model to investigate non-linearities in the transmission of mon-

etary policy in the US and estimate the response of GDP and CPI to a shock to the

Federal Funds rate (FFR). The model is defined as follows:

yt+h = mh(xt, wt, êh−1) + ut+h, (13)

where yt+h = ∆GDPt+h or yt+h = ∆CPIt+h where ∆ denotes the quarterly growth

rate. xt is set equal to the level of FFR. The shock is identified via timing assump-

tions: the interest rate can only affect GDP growth and inflation after a one period

lag. As discussed above, these timing restrictions can be incorporated by using the

contemporaneous values of GDP growth and CPI inflation as controls. In addition

to these, we also include 2 lags of these variables and the FFR in wt. To control for

autocorrelation, we include the vector residuals êh−1 = (êt+1, êt+2,..., êt+h−1) where êt

is obtained from the period 0 LP.

We use default prior set-up of Chipman et al. (2010), setting the number of trees

to 250. The total number of iterations is set to 2000, with a burn-in of 1000. The

data is obtained from the FRED database. As our focus is on conventional monetary

policy, the sample runs from 1966Q1 to 2007Q4.

3.1 Sign and size non-linearity

We first investigate the possibility of non-linearity associated with the sign of the

shock by computing the responses to a 1 unit increase and decrease in FFR. As the

IRFs depend on the history of the covariates, we compute the responses for a range of

histories and report the average. In particular, when approximating the expectations

in equation (2), we set the value of the covariates used to construct the predictions

E (yt+h|xt;wt) on the basis of quantiles of ∆GDP . We consider the 10th to 90th

quantiles with increments of 10.
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Figure 1: Sign non-linearity

Note: Response to shocks that change FFR by 1 unit. Black lines are response to an increase
in FFR with the shaded area showing the 68% error band. Blue dotted lines are the point
estimated and 68% error band of the response an fall in FFR. The sign of these has been reversed
for comparison.

Figure 1 shows the response to positive (black, continuous line) and negative (blue,

dashed line) shocks to FFR of one unit. Note that the sign of responses to negative

shock has been reversed ex-post for the purpose of comparison. It is clear from the

response of GDP growth that shocks that increase in FFR have a larger effect. At the

2-3 quarter horizon, the response of GDP growth to contractionary shocks is twice as

large the response to expansionary shocks. The response of CPI inflation displays a
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Figure 2: Size non-linearity

Note: Response to shocks that change FFR by 1 and 2 units. Black lines are response to an
increase in FFR by 1 unit with the shaded area showing the 68% error band. Blue dotted lines
are the point estimated and 68% error band of the response to a shock that increases the FFR
by 2 units. These responses have been divided by 2 for comaprison.

price puzzle, but becomes negative after about two years. It is interesting to note that

this negative response is substantially larger for contractionary shocks.

Figure 2 considers the possibility of non-linearity associated with the size of the

shock. It shows the response to contractionary shocks that increase the FFR by 1 unit

(black, continuous line) and 2 units (blue, dashed line), respectively. The responses to

the larger shocks are divided by 2 for comparison. The estimates indicate that there
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Figure 3: State non-linearity

Note: Response in recessions (black lines and shaded area) and booms (blue lines)

is no evidence to suggest that changing the size of the shock affects the magnitude of

the response of GDP. However, the response of CPI weakens out as the shock becomes

larger.

3.2 State dependence

To check if the magnitude of the responses is different across business cycle regimes,

we estimate the IRFs using different histories. In particular, we condition on two

histories: 1) xLt and 2) xHt where xLt corresponds to the value of covariates when GDP

growth is below the 10th percentile and xHt captures the value of the regressors when
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GDP growth is above the 90th percentile. We intepret these responses as estimates in

recessions and booms, respectively.

Figure 3 presents the estimated response to contractionary monetary policy shocks

in the two regimes. The estimated response of GDP growth during booms is substan-

tially larger – 3 quarters after the shock, the median response in recessions is 3 times

smaller the response when GDP is high. Similarly, the response of CPI inflation de-

clines much faster when the estimates are conditioned on high GDP, with the median

response negative within 4 quarters. This supports the general conclusion reached

by Tenreyro and Thwaites (2016) that monetary policy is more effective when GDP

growth is high.

4 Conclusions

Local projections are widely used in Macroeconometrics, as they provide a flexible

tool to estimate impulse responses to structural shocks of interest. However, the most

popular linear specification of local projections introduce the assumption of a linear

relationship among variables within each horizon considered. This paper introduces a

flexible local projection that generalises the model of Jordà (2005) to a non-parameteric

setting by using BART. Using Monte Carlo experiments, we show that the model is

able to capture non-linearity in the IRF due to the size and sign of the shock or because

differences in initial conditions originating from different states of the business cycle.

We apply our methodology to US monetary policy shocks. We first find that CPI

and GDP contract more after a monetary expansion than they expand after a mon-

etary contraction. We then find that the effect of a monetary contraction on CPI

progressively weakens out as the central bank generates a stronger monetary shock.

Last, we document that during periods of economic expansions, GDP and CPI respond

more and faster to a monetary contraction compared to periods of economic contrac-

tions. All in all, our results suggest the presence of non-linearities in the transmission
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of US monetary policy.
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