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Abstract

A seller offers a buyer a schedule of transfers and associated product qualities, as in
Mussa and Rosen (1978). After observing this schedule, the buyer chooses a flexible
costly signal about his type. We show it is without loss to focus on a class of mechanisms
that compensate the buyer for his learning costs. Using these mechanisms, we prove the
quality always lies strictly below the efficient level. This strict downward distortion
holds even if the buyer acquires no information or when the buyer’s posterior type is
the highest possible given his signal, reversing the “no distortion at the top” feature that
holds when information is exogenous.
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1. Introduction

The technological advancements of the last few decades have made it easier for consumers to
learn about products before trading. When choosing what information to acquire, it is natural
for buyers to rely on the set of available products and trade terms. Consider a consumer
shopping for a mobile-phone subscription, for example. To evaluate a pay-per-minute plan,
such a consumer would have to obtain a finer estimate of their expected phone usage than
they would need for evaluating a plan with unlimited calls. Because the buyer’s willingness
to pay depends on her information, the seller will likely consider the impact her menu has on
the buyer’s learning decisions when choosing what contracts to offer. For instance, there may
be no point in adding novel feature to one’s products if consumers never invest in learning
what these features are before purchasing. In this paper, we study how the need to guide the
buyer’s learning impacts the menu offered by a multiproduct monopolist.

We study a model in which a seller of vertically differentiated products decides what
menu to offer. Unlike the classical model of Mussa and Rosen (1978) and Maskin and Ri-
ley (1984), we do not assume the buyer possess private information when they first see the
monopolists’ menu. Instead, the buyer gets to choose what to learn about his type after ob-
serving the menu. The buyer’s information choice is flexible: he can use any signal structure
he wants about type. Signals come at a cost which is affine, smooth, strictly increasing in in-
formativeness, and have infinite slopes at the boundaries—we expand on these assumptions
below. The monopolist’s menu designates a schedule of qualities and associated transfers,
where the monopolist’s marginal costs are strictly increasing with quality. Our main interest
is in the structure of this menu and the efficiency of the resulting allocation with respect to
the buyer’s chosen information.

We now describe the buyer’s preferences, signal choice, and cost of information. We as-
sume the same buyer preferences as in Mussa and Rosen (1978). Specifically, we postulate
the buyer’s preferences are quasilinear in money, and that his marginal utility from quality
is constant, and equals to his type, θ ∈ Θ =

[
θ, θ̄

]
. Combined with expected-payoff max-

imization, this preference specification implies that the buyer’s posterior type estimate pins
down his payoffs from any quality-transfer pair, and through it, his selection from any menu.
Consequently, for any fixed menu, the distribution of the buyer’s posterior type estimate fully
determines trade outcomes. We therefore let the buyer choose any distribution for her pos-
terior type estimate that is consistent with some signal structure. Following Ravid, Roesler,
and Szentes (2022), we define the cost of information acquisition directly as a function of
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this distribution. We assume this function is affine and increasing in informativeness, which
we show is equivalent to the cost of each distribution being equal to its integral against a
convex function, c. Finally, we further require c to be a smooth function that admits infinite
slopes at the boundaries of Θ.

Our modeling assumptions imply the buyer’s optimal learning program is a special case
of the more general mean-measurable information design problem (Gentzkow and Kamenica,
2016; Dworczak and Martini, 2019; Arieli et al., 2020; Kleiner, Moldovanu, and Strack,
2021). Specifically, the buyer chooses a cummulative distribution function (CDF) for his
posterior-type estimate in order to maximize the integral of a function of her posterior ex-
pected type. In our case, this function equals the buyer’s net utility, which is his payoff from
truthfully reporting his realized type θ to the monopolist’s mechanism, minus c (θ). A CDF is
feasible if one can attain the true type distribution via mean-preserving spreads. Intuitively,
spreading any mass a CDF puts on θ in a mean-preserving manner corresponds to obtaining
a more informative signal that better discriminates between types above and below θ.

Our main result shows that the buyer’s chosen quality always lies strictly below the ef-
ficient level conditional on his signal realization. This strict downward distortion of quality
holds even when the buyer’s posterior type is the highest possible given his signal, a feature
that stands in contrast to the case in which the buyer’s information is fixed. In that case, it is
well known that the monopolist’s optimal allocation involves “no distortion at the top”: the
type with the highest value in the distribution receives the efficient quality level.

Our result is driven by the fact that the monopolist must leave the buyer with moral-
hazard rents due to her inability to contract on the buyer’s learning decision. For intuition,
consider the problem of maximizing the monopolist’s profits across all menus that induce
the buyer to obtain no information. With exogenous information, the buyer must remain
ignorant, and so it is optimal for the monopolist to propose a menu that extracts the buyer’s
ex-ante surplus. Specifically, the monopolist offers a menu consisting only of the ex-ante
efficient quality in exchange for the buyer’s ex-ante willingness to pay. This offer, however,
can never dissuade the buyer from learning when information is endogenous: because the
buyer’s ex-post optimal decision depends on whether his type is above or below average, the
buyer’s net utility has a convex kink at the prior mean, and so the buyer would strictly benefit
from obtaining additional information. Hence, to incentivize the buyer to remain ignorant,
the monopolist must given him a positive surplus, which, in turn, induces the monopolist to
decrease the quality she offers to the buyer.

The above moral hazard is reminiscent of the moral hazard identified in Mensch (2021),
who studies the optimal way to auction an indivisable good to buyers who flexibly acquire
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information about their value after observing the mechanism. Mensch (2021) shows that in
the single-buyer case of his model, this moral hazard results in a reduction of the auctioneer’s
revenue. However, in the indivisible goods model, this revenue reduction does not translate
to inefficient trade with the buyer with highest posterior expected value, because the seller
can always convert an increase in the probability of sale into additional revenue. By contrast,
the convex cost of quality in our model means the monopolist determines the quality she pro-
vides using a marginal cost vs. marginal revenue calculation. Consequently, the monopolist
in our model responds to a reduction in the marginal revenue she obtains from the buyer’s
highest type by reducing the quality she provides that type below the efficient level.

In addition to the difference in the monopolist’s problem, we also differ from Mensch
(2021) in the way we model the buyer’s information acqusition. More specifically, Mensch
(2021) models the buyer’s signal structure via its induced distribution over the buyer’s poste-
rior beliefs. These distributions come at a cost that is posterior separable and admits infinite
slopes at the boundaries of the simplex. By contrast, we assume the buyer’s learning costs
depend only on the distribution of her posterior type-estimate. Whereas our approaches are
equivalent when types are binary, with more types the two frameworks are incomparable,
since our buyer’s learning costs cannot have infinite slope at posteriors whose expectations
lies strictly between the highest and lowest types.

In a concurrent paper, Thereze (2022) analyzes a variant of the problem studied in our
paper but in which information acquisition is modeled using Mensch (2021)’s approach.
Like us, he concludes there is downward distortion of quality for all types, including at the
top. He also derives several comparative statics results which we do not prove on the costs
of information acquisition.

Our approach for modeling the buyer’s learning problem admits several advantages over
the framework used by Mensch (2021) and Thereze (2022). First, our approach allows us
to accommodate discrete and continuous type distributions, meaning that our model is more
comparable to the fixed information models studied in the literature, such as Mussa and
Rosen (1978) and Maskin and Riley (1984). Second, and more importantly, our approach
allows us to solve our problem using tools developed for mean-measurable information de-
sign problems (Gentzkow and Kamenica, 2016, Dworczak and Martini, 2019, Arieli et al.,
2020, Kleiner, Moldovanu, and Strack, 2021). Indeed, to solve our model, we prove a vari-
ation on Dworczak and Martini’s (2019) duality theorem that applies to our setting.1 This
theorem delivers a shadow price function, that gives the maximal benefit the buyer can ob-

1In particular, we prove a variant of the theorem that allows the net utility to have non-bounded slopes at
the edges of the interval

[
θ, θ̄
]
.
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tain from splitting any potential type-estimate via mean-preserving spreads. Using this price
function, we show it is without loss to focus on a particular class of mechanisms, which
we call information-cost canceling mechanisms. These mechanisms decompose the buyer’s
rents into two parts: one part which cancels out the buyer’s costs of learning, and another
part comes from the derivative of the buyer’s shadow price function. Using the structure of
these mechanisms, we identify different classes of perturbations that we use to prove our
main result.

Related Literature. Our paper lies in the literature studying the interaction between
flexible information acquisition and trade. In addition to the papers of Mensch (2021) and
Thereze (2022) mentioned above, the closest papers to ours are Condorelli and Szentes
(2020) and Ravid, Roesler, and Szentes (2022), both of which study models of bilateral
trade with a single indivisible good. In Condorelli and Szentes (2020), the buyer publicly
chooses the distribution of his valuation at a cost before the seller designs his mechanism,
whereas Ravid, Roesler, and Szentes (2022) study a model in which the buyer selects a costly
signal at the same time that the monopolist picks her mechanism. As mentioned previously,
we follow Ravid, Roesler, and Szentes (2022) in assuming the buyer’s learning costs are a
function of the distribution of his posterior expectation. Compared to Ravid, Roesler, and
Szentes (2022), we impose stronger assumptions on the shape of the buyer’s costs, in that
we require it to be affine.

We also contribute to the large and growing literature on information design (Aumann
and Maschler, 1995, Kamenica and Gentzkow, 2011, Bergemann and Morris, 2013). Within
this literature, our work most closely relates to papers who study the interaction between
information design and trade. Several papers study the set of possible outcomes in bilateral
trade settings with indivisable goods as one varies each party’s information—see Berge-
mann, Brooks, and Morris (2015), Roesler and Szentes (2017), Kartik and Zhong (2019).
Haghpanah and Siegel (forthcoming) study the set of attainable buyer-seller surplus pairs
when the seller has multiple products in his disposal. They show the first-best consumer
surplus is not attainable whenever the seller finds it optimal to offer multiple products. In
a related paper (Haghpanah and Siegel, 2022), the same authors show that a binary market
segmentation can create a Pareto improvement in most markets that are inefficiently served
by a multi-product monopolist. 2

This paper also contributes to the burgeoning literature on rational inattention, started by
2Armstrong and Zhou (2022) studies the effect of information on profits and consumer surplus in oligopolis-

tic competition. In addition, several papers use information design tools to study information provision in
markets. For example, see Hwang, Kim, and Boleslavsky (2019), Smolin (2020), and Yang (forthcoming).
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the seminal papers of Sims (1998; 2003), and developed into models of flexible informa-
tion acquisition by Caplin and Dean (2013; 2015), Matějka and McKay (2015), and Caplin,
Dean, and Leahy (2021) using a posterior-separable approach to modeling information costs.
Since then, there have been a number of applications of rational inattention to various eco-
nomic problems, such as global games (Yang, 2015, Morris and Yang, 2021, Denti, 2022),
bargaining (Ravid, 2020), and attention management (Lipnowski, Mathevet, and Wei 2020).
Our work expands this list of applications by showing that rational inattention can create a
new inefficiency in monopolistic screening.

Several papers use more structured learning models to explore how the buyer’s incentives
to acquire information depends on the selling mechanism in the context of auctions. Persico
(2000) shows buyers learn less information in a second price auction than in a first-price
one, provided that their signals are affiliated. Compte and Jehiel (2007) claim simultaneous
auctions generate lower revenue than dynamic ones when buyer’s have an opportunity to
learn. Shi (2012) characterizes the revenue-maximizing auction in private-value settings.
In addition to their focus on auctions, these models differ from ours in that they required
the buyer to choose among a set of signal structures that can be linearly ordered in their
informativeness.3

2. Model

There is a monopolist (she) and a buyer (he). The game begins with the monopolist offering
the buyer a contract, which is a compact set of pairs, M ⊆ [0, q̄] × R. Each menu item
(q, t) ∈ M corresponds to a transfer of t to be paid to the monopolist by the buyer, and the
quality q of the product the buyer gets in exchange. The buyer’s utility from (q, t) depends
on her type, θ, a random variable distributed over Θ = [θ, θ̄] ⊆ R+ according to a CDF F0.
We denote the prior-expected type by θ0 :=

∫
θF (dθ), and assume F0 includes θ and θ̄ in its

support. Given θ, the buyer’s utility from (q, t) is

u (θ, q, t) = θq − t.

3Another strand of the literature studies the seller’s benefits from revealing information about the buyers’
valuations prior to participating in an auction; see, for example, Milgrom and Weber (1982), Ganuza (2004),
Bergemann and Pesendorfer (2007), Ganuza and Penalva (2010), and Li and Shi (2017).
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The monopolist’s payoff from the buyer’s choosen menu item (q, t) is

π (q, t) = t − κ (q) ,

where κ : R+ → R+ is a strictly increasing, continuously differentiable, and strictly convex
function satisfying κ (0) = 0, κ′ (0) ≤ θ and κ′ (q̄) > θ̄ . We require the monopolist to give
the buyer the option of not buying the monopolist’s product, which is equivalent to requiring
M to include the option (0, 0). Both the monopolist and the buyer wish to maximize their
expected utility.

Neither the monopolist nor the buyer know θ, but the buyer can choose to learn about
it after observing the monopolist’s menu. The buyer’s information acquisition is flexible,
meaning he can use any signal s in order to learn about θ. Our assumption on the buyer’s
utility mean his expected payoff from any menu item depends on her posterior mean, E [θ|s].
Therefore, the marginal distribution of E [θ|s] pins down the buyer’s expected trade surplus
from any menu. This distribution also determines the probability the buyer purchases any
menu item, which, in turn, is sufficient for calculating the monopolist’s profits and opti-
mal menu. In other words, trade outcomes depend only on the marginal distribution of the
buyer’s posterior mean, and so we identify each signal with the CDF of this marginal.4 More
precisely, letting F be the set of all CDFs over Θ, we let the buyer choose any element of
F that can arise as the marginal CDF of E [θ|s] for some s. We denote this set by I and
describe it formally below.

As observed by Gentzkow and Kamenica (2016), F is the CDF of the marginal distri-
bution of the buyer’s posterior mean for some signal if and only if it is a mean-preserving
contraction of the prior, F0. Recall that F ∈ F is a mean-preserving spread of F ′ ∈ F
(denoted by F ⪰ F ′) if and only if

∫
θ̃≤θ

(F − G)
(
θ̃
)

dθ̃ ≥ 0 ∀θ ∈ Θ, with equality at θ = θ̄.

The CDF F is a strict mean-preserving spread of F ′ (denoted by F ≻ F ′) if both F ⪰ F ′

4This method of modeling flexible information is common in the information-design literature---see, for
example, Gentzkow and Kamenica (2016), Roesler and Szentes (2017), Kolotilin (2018), and Dworczak and
Martini (2019).
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and F ′ , F .5 Letting

IF : Θ → R,

θ 7→
∫

[θ,θ]
(F0 − F )

(
θ̃
)

dθ̃,

one can then define the set of feasible posterior-mean distributions I as

I =
{
F ∈ F : IF (θ) ≥ 0 for all θ, and IF

(
θ̄
)

= 0
}

.

In what follows, we refer to CDFs in I as signals.
Information acquisition comes at a cost. Our model of the buyer’s costs of learning

follows Ravid, Roesler, and Szentes (2020). In general, different information structures
generating the same distribution of posterior expectations might come at different costs.
However, because the buyer’s expected payoff from trade depends only on the distribution
of this posterior expectation, F , she would always use the least expensive signal structure
that leads to F . In fact, the buyer may even randomize to get F . Thus, we can evaluate the
cost of F by the expected cost of the cheapest randomization that generates it, resulting in a
convex indirect cost function,

C : I → R+.

We follow Ravid, Roesler, and Szentes (2020), and state our assumptions directly in terms of
this C. We assume C is continuous, affine, and strictly increasing in informativeness—i.e.,
C (F ) > C (F ′) whenever F is a strict mean-preserving of F ′. In the appendix, we prove
these properties imply the existence of some continuous, strictly convex function c : Θ →
R+ such that

C (F ) =
∫

c (s) F (ds) .

Moreover, we show it is without loss for c to attain its minimum at θ0. In addition, we
require c to be a twice continuously differentiable function that admits infinite slope at the
boundaries—that is, 6

lim
θ→θ̄

c′ (θ) = − lim
θ→θ

c′ (θ) = ∞.

After choosing F , the buyer gets to see its realization, θ ∈ Θ, and chooses whether to
participate in the mechanism, and if so, what item to select from the menu to maximize her

5Notice ⪰ is reflexive and anti-symmetric, meaning F ⪰ F ′ and F ′ ⪰ F if and only if F = F ′.
6In an extension, we relax this assumption, allowing for additional cost functions, e.g. quadratic, as long as

the slope at the boundaries is sufficiently steep.
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expected utility.
To summarize, the game begins with the monopolist choosing a menu. Next, the buyer

observes the menu, and chooses what signal F ∈ I to acquire. The buyer then sees her signal
realization θ ∈ Θ, and chooses an item from the monopolist’s menu. We are interested in
finding the menu that maximizes the monopolist’s expected profits.

Theorem 1. A monopolist optimal menu exists.

Our timing assumptions mean the buyer’s interim expected payoff is fully determined
by her posterior-value estimate. Hence, the revelation monopolist implies it is sufficient to
focus on direct revelation mechanisms. Such mechanisms can be described with two maps,

Q : Θ → [0, q̄] , T : Θ → R+,

where Q (θ) and T (θ) correspond to the quality and transfer pair chosen by a buyer with
signal realization θ. These mappings must satisfy the standard incentive compatibility and
individual rationality constraints,

θQ (θ) − T (θ) ≥ θQ (θ′) − T (θ′) ∀θ, θ′ ∈ Θ, (1)

θQ (θ) − T (θ) ≥ 0 ∀θ ∈ Θ. (2)

Usual envelope style reasoning (Myerson, 1981) delivers that a Q and T satisfy the above
two conditions if and only if Q is increasing and

T (θ) = θQ (θ) −
∫ θ

θ
Q
(
θ̃
)

dθ̃ − u, (3)

where u is the utility granted to the lowest possible type,

u = θQ (θ) − T (θ) .

It follows that u and Q are sufficient for pinning down every feasible IC and IR mechanism.
Letting Q be the set of all increasing functions from Θ to [0, q̄], we refer to a Q ∈ Q as an
allocation, to (Q, u) ∈ Q ×R+ as a mechanism, and let TQ,u denote the transfer implied by
(3). Observe this implies that a type θ buyer’s utility from truthful reporting under (Q, u) is

VQ,u (θ) := u + θQ (θ) − T (θ) = u +
∫ θ

θ
Q
(
θ̃
)

dθ̃.
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Given an allocation Q, take

θ̄Q := inf{θ : Q(θ) = Q(θ̄) and

θQ := sup{θ : Q(θ) = Q(θ)

to be last a first types at which Q changes, respectively.
We now state the monopolist’s problem of choosing a profit maximizing (Q, u). Given a

mechanism (Q, u), the buyer’s utility from using signal F ∈ I is

U (Q, u, F ) =
∫

(VQ,u [(θ) − c (θ)] F (dθ) .

We refer to a mechanism-signal tuple (Q, u, F ) as an outcome, and say the outcome is
incentive compatible (IC) if F maximizes the buyer’s utility given (Q, u) ,

F ∈ argmax
F ′∈I

U (Q, u, F ′) .

Consistent with this terminology, whenever (Q, u, F ) is IC, we say (Q, u) is F -incentive
compatible (F -IC) and F is (Q, u)-incentive compatible ((Q, u)-IC). Denote the monopo-
list’s payoff when the buyer reports a signal realization of θ by

πQ,u (θ) := TQ,u (θ) − κ (Q (θ)) = θQ (θ) − VQ,u (θ) − κ (Q (θ)) .

Then, we can write the monopolist’s profit from using offering (Q, u) when the buyer uses
F as

Π (Q, u, F ) =
∫

πQ,u

(
θ̃
)

F
(
dθ̃
)

,

and so the monopolist’s problem is given by

max
(Q,u,F )

∫
πQ,u

(
θ̃
)

F
(
dθ̃
)

s.t. (Q, u, F ) is IC.

3. Cost-Canceling Mechanisms

In this section, we show it is without loss to restrict the monopolist to a special class of mech-
anisms. We begin by characterizing the solution to the buyer’s optimal learning problem. To
obtain our characterization, we first prove a variant of Dworczak and Martini’s (2019) duality
theorem that can be applied to our setting. To state the theorem, we require a few additional
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definitions. We say a function P : Θ → R is an F -shadow price if it is Lipschitz continu-
ous, convex, and affine on any interval overwhich F ’s mean-preserving-spread constraint is
slack) that is, over any interval

(
θ0, θ̄0

)
⊆ {θ : IF (θ) > 0}. Given an upper semicontinuous

function ϕ : Θ → R, we say P is an F -shadow price for ϕ (or, equivalently, that ϕ admits
P as an F -shadow price) if P is an F -shadow price that majorizes ϕ, and equals to it for all
θ over F ’s support. Let

I0 =
{

F ∈ F :
∫

θF (dθ) = θ0

}
to be the set of CDFs over Θ with a mean of θ0. Say the function ϕ satisfies edge-irrelevance
if an F̃ ∈ argmaxF ∈I0

∫
ϕ(θ)F (dθ) exists such that supp F̃ ⊂

(
θ, θ̄

)
. Geometrically, edge

irrelevance is equivalent the existence of a line that lies everywhere above ϕ, and touches it
at two points, one from each side of θ0.

Theorem 2. Fix some upper semicontinuous ϕ : Θ → R and F ∗ ∈ I. If ϕ admits an

F ∗-shadow price, then

F ∗ ∈ argmax
F ∈I

∫
ϕ(θ)F (dθ). (4)

Moreover, if ϕ satisfies edge-irrelevance, the converse also holds—i.e., F ∗ satisfies (4) only

if ϕ admits an F -shadow price.

The first part of the theorem is just a restatement of Theorem 1 from Dworczak and
Martini (2019).7 The theorem’s second part is a variation on Dworczak and Martini’s (2019)
Theorem 2. In particular, their theorem (as well as the generalization by Dizdar and Kováč
(2020)) requires ϕ to have a bounded slope at the vacinity of θ̄ and θ. This requirement
makes the theorem unapplicable to our setting, because the slope of the buyer’s objective,
VQ,u −c, explodes the edges of the interval

[
θ, θ̄

]
. To accommodate the buyer’s objective, our

theorem replaces the bounded slope condition with edge irrelevance. We now show VQ,u − c

satisfies edge irrelevance for all mechanisms the monopolist can offer.

Lemma 1. For any mechanism (Q, u), the function ϕ = VQ,u − c satisfies edge irrelevance.

The intuition for the lemma is straightforward. Because the slope of c explodes as θ

approaches θ and θ̄, the buyer’s objective VQ,u − c must be strictly concave on the edges of
Θ. As such, one can improve upon any distribution in I0 that puts positive mass around any
one of Θ’s edges.

7Dworczak and Martini (2019) replace the requirement that P is affine on any open interval over which
IF (θ) > 0 with the condition that

∫
PdF =

∫
PdF0. Since P is convex, one can show the two conditions are

equivalent.
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Figure 1: Construction of a F -ICC allocation for an F that satisfies IF (θ∗) = 0.

An immediate implication of the above results is that, F can be optimal given (Q, u)
only if F is supported on the interior of Θ. Moreover, the mean-preserving spread constraint
must be slack at the edges of F ’s support. To state this result, let

θF := min supp F and θ̄F := max supp F

be the lowest and highest realizations in the support of F , respectively.

Corollary 1. Suppose (Q, u) is F -IC. Then, [θF , θ̄F ] ⊆
(
θ, θ̄

)
. Moreover, an ϵ > 0 exists

such that IF (θ) > 0 holds for θ ∈ Bϵ (θF ) ∪ Bϵ

(
θ̄F

)
.8

Next, we use the above results to show it is without loss to focus on the class of information-
cost canceling mechanisms which we now define. A function p : Θ → R is an F -shadow
derivative if it is bounded, increasing, constant on any interval (θ′, θ′′) ⊆ {x : IF (x) > 0},
and satisfies p (θF ) ≥ −c′ (θF ) and p

(
θ̄F

)
≤ q̄ − c′

(
θ̄F

)
. Given an F -shadow derivative p,

define the induced allocation Qp via

Qp(θ) = min
{
(p (θ) + c′ (θ))+ , q̄

}
=


p(θ) + c′(θ), θ ∈ [θF , θ̄F ]

max{p(θF ) + c′(θ), 0}, θ < θF

min{p(θ̄F ) + c′(θ), q̄}, θ > θ̄F .

(5)

We say an allocation Q is F -information cost-canceling (F -ICC) if Q = Qp for some F -
shadow derivative p. We say p F -verifies (Q, u) whenever Q = Qp, and let pQ be the function
that F -verifies Q. A mechanism (Q, u) is an F -information cost canceling mechanism if
Q is an F−ICC allocation.

8Here, Bϵ (θ) := (θ − ϵ, θ + ϵ) refers to the ϵ > 0 ball around θ.
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Our next result shows every F -ICC is F -IC. Moreover, every F -IC mechanism admits
an equivalent F -ICC mechanism.

Theorem 3. Every F -ICC mechanism is F -IC. Moreover, if
(
Q̃, ũ

)
is an F -IC mechanism,

then an F -ICC mechanism (Q, u) exists such that u ≥ ũ, and for all θ ∈ supp F , both

Q (θ) = Q̃ (θ) and VQ,u (θ) = VQ̃,ũ (θ) hold.

We first sketch the argument establishing that every F -ICC mechanism (Q, u) is F -IC.
The argument relies on showing that the function

PQ,u (θ) = VQ,u (θF ) − c (θF ) +
∫ θ

θF

p
(
θ̃
)

dθ̃. (6)

is an F -shadow price for VQ,u − c. For a sketch, observe PQ,u admits p as a derivative almost
everywhere by the fundamental theorem of calculus. Thus, PQ,u is convex and Lipschitz
because p is increasing and bounded, and whenever F ’s mean-preserving spread constraint
is slack, P is affine because p is constant. It follows PQ,u is an F -shadow price. It is also easy
to see that PQ,u(θ) = (VQ,u − c)(θ) for all θ in F ’s support: by definition, PQ,u and VQ,u − c

are equal at θF and admit the same derivative everywhere over the interval
[
θF , θ̄F

]
, which

includes supp F . In the appendix, we use the structure of Q and p outside of
[
θF , θ̄F

]
to

show PQ,u ≥ VQ,u − c holds for all θ, and so establish PQ,u is a F -shadow price for VQ,u − c.
For the converse direction, the theorem’s proof transforms an F -IC mechanism

(
Q̃, ũ

)
into a payoff-equivalent F -ICC mechanism (Q, u). To do so, we observe that, since the
buyer’s objective VQ̃,ũ − c satisfies edge-irrelevance, Theorem 2 delivers a shadow price P

for VQ̃,ũ − c. Noting P is differentiable almost everywhere by convexity, we show one can
find a version p of the derivative of P that equals Q̃ − c′ over F ’s support. Using this p, we
then construct an F -ICC allocation Q as in equation (5). Our choice of p guarantees Q = Q̃

on the support of F . We also show one can choose u so that P equals the shadow price PQ,u,
which then implies VQ,u equals VQ̃,ũ over the desired range. We then show this u is larger
than ũ.

4. Quality Under-Provision

In this section, we prove our main theorem: the monopolist provides quality strictly below
the efficient level to all types in the support of the buyer’s information structure. As a pre-
liminary step, observe setting u = 0 is always optimal for the monopolist. Thus, from here
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on we abuse notation, writing πQ := π(Q,0) and VQ := VQ,0, and use (Q, F ) to refer to the
outcome (Q, 0, F ).

We begin the analysis by introducing two classes of perturbation to the buyer’s infor-
mation, holding the allocation fixed. Clearly, whenever (Q∗, F ∗) is monopolist-optimal, the
monopolist cannot benefit from having the buyer change her information to any other sig-
nal F —so long as F is Q∗-IC. Thus, to meaningfully perturb the buyer’s information, we
must identify other signals that optimal for the buyer given a fixed allocation. As we now
explain, finding such signals is particularly easy whenever Q∗ is F ∗-ICC. The reason is that,
the F ∗-shadow derivative pQ∗ is also an F -shadow derivative for any F that is supported in[
θQ∗ , θ̄Q∗

]
and whose mean-preserving spread constraint is slack over intervals where p is

constant—that is, IF (θ) > 0 only if p is constant in the neighborhood of θ. It follows any
such F is also Q∗-IC. Hence, the monopolist cannot benefit from the buyer switching her
information to any such F . In the appendix we use this observation to obtain the following
lemma.

Lemma 2. Let (Q∗, F ∗) be a monopolist optimal pair in which Q∗ is F ∗-ICC with associated

F ∗-shadow derivative pQ∗ . Suppose pQ∗ is constant over [θ∗, θ∗] ⊆
[
θQ, θ̄Q

]
, and (θ∗, θ∗) ∩(

θF , θ̄F

)
, ∅. Then,

1. If θ1, θ2 ∈ supp F ∗ (·|θ ∈ [θ∗, θ∗]), then

πQ∗ (αθ1 + (1 − α) θ2) ≤ απQ∗ (θ1) + (1 − α) πQ∗ (θ2) (7)

for all α ∈ [0, 1].

2. If IF (θ) > 0 for all θ ∈ [θ1, θ2] ⊆ [θ∗, θ∗], then

πQ∗ (αθ1 + (1 − α) θ2) ≥ απQ∗ (θ1) + (1 − α) πQ∗ (θ2) (8)

for all α ∈ [0, 1] such that αθ1 + (1 − α) θ2 ∈ supp F ∗ (·|θ ∈ [θ∗, θ∗]).

For intuition, consider the lemma’s part 1, and suppose first F ∗ has atoms at θ1 and θ2. As
explained above, that pQ∗ is constant on [θ∗, θ∗], means that one can pool together some mass
from θ1 and θ2 without violating the buyer’s incentive constraints. It follows such pooling
cannot benefit the monopolist—that is, (7) must hold. To prove the result without atoms, we
approximate each θ with a shrinking neighborhood.9 The intuition for part 2 of the lemma is

9This argument is similar to the proof of Proposition 1 in Ravid, Roesler, and Szentes (2022).
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similar: if equation (8) did not hold, the monopolist would strictly benefit from having the
buyer spread the mass he puts on (a small neighbrohood around) αθ1 + (1 − α) θ2 across θ1

and θ2, thereby violating optimality of F ∗. The lemma follows.
Next, we turn to our paper’s main result: the quality that the monopolist allocates to any

interim type θ is below the efficient level. We do this by showing that for any other mech-
anism, we can construct a perturbation that generates a strict improvement. This contrasts
with the standard results with exogenous information, in which there is “no distortion at
the top:” the highest type in the support, θ̄F , receives the efficient quality level (Mussa and
Rosen (1978), Maskin and Riley (1984)). Our theorem also shows that the monopolists ex-
pected marginal cost is strictly below its fixed information whenever the lowest type receives
positive quality.

Theorem 4. Every monopolist optimal outcome (Q∗, F ∗) admits an allocation Q such that

Q = Q∗ F ∗-almost surely, (Q, F ∗) is also monopolist optimal, and

θ > κ′ (Q (θ)) for all θ ∈ supp F ∗.

Moreover, if Q(θF ) > 0, then

∫
κ′(Q(θ))F (dθ) = θQ < θF .

To prove the theorem, we begin by replacing Q∗ with an F -almost surely equal F -ICC
mechanism Q. Next, we use the following observation of Mussa and Rosen (1978):10 the
quality sold to any type θ∗ < θ̄F must be inefficiently low whenever the monopolist’s average
cost conditional on θ ≥ θ∗ is below θ∗. Formally, for any θ∗ ∈ [θF , θ̄F ), κ′ (Q (θ∗)) < θ∗

must hold whenever ∫
θ≥θ∗

κ′ (Q (θ)) F ∗ (dθ|θ ≥ θ∗) ≤ θ∗. (9)

To see why this inequality implies the quality provided to θ∗ is inefficiently low, note that,
because Q is F -ICC, it is is strictly increasing over [θF , θ̄F ). Since the marginal cost for
quality provision is strictly increasing as well, equation (9) implies that

κ′ (Q (θ∗)) <
∫

θ≥θ∗
κ′ (Q (θ)) F ∗ (dθ|θ ≥ θ∗) < θ∗,

that is, Q (θ∗) lies strictly below its efficient level.

10See equation (8) in Mussa and Rosen (1978) and the subsequent discussion.
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Mussa and Rosen (1978) establish equation (9) for any θ∗ at which Q is strictly increas-
ing by slightly reducing the quality provided to all types above θ∗ − ε for a sequence of
shrinking ε > 0. As ε vanishes, the monopolist’s cost savings converge to the left hand side
of the above equation, whereas the reduction in the monopolist’s revenue converges to the
inequality’s right hand side. Intuitively, while the monopolist charges a price he θ∗ for the
marginal quality increment provided to type θ∗, the buyer’s incentive constraint prevent the
monopolist from charging a higher price for this increment from higher types. Equation (9)
says that, at the optimum, the total revenue generated by the marginal quality increment must
be weakly larger than the associated costs, which equals the monopolist’s average marginal
cost across all types above θ∗.

Because changing the buyer’s allocation may cause the buyer to change his signal, one
cannot directly apply Mussa and Rosen (1978)’s argument in our environment. As a result,
equation (9) need not hold at the optimum for all θ∗. One can, however, adapt Mussa and
Rosen (1978)’s argument to establish (9) for θ∗ at which Q’s F ∗-shadow derivative pQ is
strictly increasing. To do so, we show that, whenever pQ strictly increases at θ∗, one can
obtain a new F ∗−shadow derivative by slightly decreasing quality for all types above θ∗ − ϵ

for some ϵ ≥ 0. Using this new derivative, one can construct a new F ∗-ICC that equals Q∗

for types below θ∗ − ϵ, and slightly reduces quality for all types above θ∗ − ϵ. In fact, we
prove one can construct these allocations for a vanishing sequence of ϵ. Using this sequence,
we can then follow Mussa and Rosen (1978)’s argument to establish (9) holds for all θ∗ at
which p is strictly monotone. Since reducing all of pQ by a constant also leads to a new
F ∗-shadow derivative, similar reasoning shows quality must also be inefficiently low at θF .

Next, we sketch the argument showing quality is inefficiently low when pQ is constant in
the neighborhood of θ∗ > θF . Note θ∗ = θ̄F falls within this case, because IF ∗ is continuous
and IF ∗

(
θ̄F

)
> 0 by Corollary 1. The key to our argument is the observation that the slope

of πQ is positive at some θ if and only if Q (θ) lies below the efficient level. To gain some
intuition for this equivalence, suppose pQ is differentiable at θ. Then a simple application of
the envelope theorem reveals that

π′
Q (θ) = (θ − κ′ (Q (θ)))

(
c′′ (θ) + p′

Q (θ)
)

.

Because c′′ > 0 and p′ ≥ 0, the above implies π′
Q (θ) > 0 if and only of θ > κ′ (Q (θ)).

For the more general case, we show quality being inefficiently low at θ is equivalent to the
slope of π being positive just to the right of θ. To see why this equivalence is useful, observe
first that πQ is differentiable at θ∗, because pQ is constant in the neighborhood of θ∗. Let
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θ∗ be the lowest value of θ in
[
θF , θ̄F

]
such that pQ(θ) = pQ(θ∗). Since p must strictly

increase just to left of θ∗, Q (θ∗) must be inefficiently low. Moreover, because pQ is constant
over the interval [θ∗, θ∗], Lemma 2 part 1 implies that the line connecting (θ∗, πQ (θ∗)) with
(θ∗, πQ (θ∗)) lies weakly above πQ over the interval [θ∗, θ∗]. It follows π′

Q (θ∗) must be
weakly higher than the slope of this line, which in turn, must be larger than the slope of
πQ when θ∗ is approached from the right. But since quality is under provided at θ∗, this
latter slope is strictly positive, meaning π′

Q (θ∗) is strictly positive, too. Hence Q (θ∗) is
inefficiently low—that is, κ′(Q(θ∗)) < θ∗.

5. An Example

In this section, we illustrate how to use our tools to solve a simple binary state example. As
we show, this example results in the buyer acquiring no information. Suppose the buyer’s
learning costs are given by

c(θ) = θ ln θ + (1 − θ) ln(1 − θ) − ln 0.5,

the seller’s production costs are

κ(q) = eq − q − 1,

and that the buyer’s type equals θ̄ = 1 or θ = 0 with equal probability, meaning θ0 = 0.5.
Since the state space is binary, and all posteriors θ ∈ supp F are interior, the information
constraint never ever binds on supp F . It follows that p is an F -shadow price if and only if
equals some constant p0 ∈ R for all θ. Abusing notation, we let

Qp0 (θ) = min
{
(p0 + c′ (θ))+ , q̄

}
be the implied F -ICC mechanism. Observe the highest θ to which Q assigns zero quality,
θQp0

, solves the equation
p0 + c′

(
θQp0

)
= 0.

Hence, one can parameterize the set of information-cost canceling allocations by the highest
type that does not participate in the mechanism, θQ. Fixing θQ, one can explicitly solve for
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the value of the associated information-cost canceling allocation within the interval
[
θQ, θ̄Q

]
,

Q(θ) = c′(θ) − c′(θQ) = ln
(

θ

1 − θ

)
− ln

(
θQ

1 − θQ

)
.

As such, the buyer’s indirect utility is given by

VQ(θ) =
∫ θ

θQ

[c′(θ̃) − c′(θQ)]dθ̃

= c (θ) − c
(
θQ

)
− c′

(
θQ

) (
θ − θQ

)
.

Thus, conditional on the buyer’s type realization being θ, the monopolist’s profit is given by

πQ(θ) = Q(θ)θ − VQ(θ) − κ(Q(θ))

= ln
(

θ

θQ

)
+ 2 ln

(
1 − θQ

1 − θ

)
−

θ(1 − θQ)
θQ(1 − θ) .

We now witness that πQ is concave for every feasible θQ. To do so, observe the second
derivative of πQ is given by

π′′
Q(θ) = 2

(1 − θ)2 − 1
θ2 −

(
1 − θQ

θQ

)(
2

(1 − θ)3

)
.

Now, because p is an F -shadow derivative, c′ (θF ) ≥ p (θF ) = p0 = c′
(
θQ

)
. It follows

θQ ≤ θF ≤ θ0 = 0.5, meaning

π′′
Q(θ) ≤ 2

(1 − θ)2 − 1
θ2 − 2

(1 − θ)3

≤ 2
(
(1 − θ)−2 − (1 − θ)−3

)
≤ 0,

where the last inequality is strict for all θ < 1. It follows πQ (θ) is strictly concave for any
information cancelling allocation Q.

We now use the above concavity to argue the buyer must obtain no information in the
monopolist’s optimal outcome, (Q∗, F ∗). To see why, notice if the support of F ∗ includes
two distinct signal realizations θ , θ′, then

πQ∗ (0.5θ1 + 0.5θ2) ≤ 0.5πQ∗ (θ1) + 0.5πQ∗ (θ2) < πQ∗ (0.5θ1 + 0.5θ2) ,
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where the first inequality follows from Lemma 2, and the second from πQ∗ being strictly
concave. Hence, supp F ∗ must be a singleton—that is, F ∗ is uninformative.

It remains only to find the monopolist optimal allocation. Since the buyer learns nothing
at the monopolist’s optimal outcome, the optimal allocation is determined by the θQ that
solves

max
θQ∈[0,0.5]

ln 2 + 2 ln
(
1 − θQ

)
− ln

(
θQ

)
−
(

1 − θQ

θQ

)
.

One can show the solution to the above problem is unique, and given by θQ =
√

2 − 1.
The resulting profit for the monopolist is Π

(
Q, 1[0.5,∞)

)
≈ 0.09, and the buyer’s utility is

VQ (0.5) ≈ 0.01.
To conclude, we demonstrate that quality is distorted downwards. Given the buyer’s

decision not to learn, efficiency requires the buyer to get the quality q∗ that solves eq∗ − 1 =
0.5—i.e., q∗ = ln 1.5 ≈ 0.41. By contrast, the monopolist provides the buyer with quality

c′ (0.5) − c′
(√

2 − 1
)

≈ 0.35.

6. Concluding Remarks

We conclude our paper with a few brief remarks regarding our assumptions and results.

Support vs. positive probability. Theorem 4 implies that with endogenous information,
the monopolist may shade downward the quality she provides to all buyer types, including
the one whose valuation is maximal. This result stands in contrast to the conclusion one
obtains when information is exogenous, where highest buyer type is allocated the efficient
quality. As such, our paper suggests that an analyst who examines the market under the
assumption that information is exogenous may come to erroneous conclusions regarding
the efficiency of the market’s allocation. However, one might wonder whether this error
actually occurs: since the buyer’s type distribution is endogenous, it is possible that the
buyer chooses an F that assigns zero probability to the top of its support. It turns out,
however, that in our model, it is without loss for F to put positive probability on θ̄F . To see
why, suppose the optimal F does not generates θ̄F with positive probability. Then F must
assign positive probability to the interval

(
θ̄F − ϵ, θ̄F

)
for all sufficiently small ϵ > 0. Since

IF

(
θ̄F

)
> 0, one can choose ϵ > 0 so that the mean-preserving spread constraint is slack

over
[
θ̄F − ϵ, θ̄F

]
. Consider now what happens if we alter F by splitting all the mass F puts

on interval
(
θ̄F − ϵ, θ̄F

)
to the interval’s edges, θ̄F − ϵ and θ̄F . Because the seller is using an
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F−ICC mechanism, the strict positivity of IF means VQ − c is affine over
[
θ̄F − ϵ, θ̄F

]
, and

so this spread is IC for the buyer. Moreover, this spread cannot hurt the seller by Lemma 2.
It follows there is always an optimal F that assigns a positive probability to the top of its
support.

Infinite slopes. Throughout the paper, we assumed c admits infinite slopes at the edges
of Θ. We use this assumption to prove that the support of the buyer’s signal always lies in
the interior of Θ. An important consequence is that the mean-preserving spread constraint is
always slack at θ̄F . This slack enables us to obtain restrictions on Q

(
θ̄F

)
using perturbations

to the buyer’s information. One can show this logic continues to hold even when the slope of
c is bounded, but sufficiently high around θ̄. However, if c′

(
θ̄
)

is sufficiently low, our results
no longer hold, because it is possible that θ̄F = θ̄. Whenever this equality holds, IF (θ̄F ) = 0,
and so the monopolist can freely increase the quality she provides to θ̄F without influencing
the buyer’s information. In this case, one can apply the usual reasoning of Mussa and Rosen
(1978) to obtain quality must be efficient at θ̄F , thereby reversing our result.

Quality upper bound. We also limited the monopolist to offering qualities that lie below
an upper bound q̄ that lies above the efficient quality for the highest possible type, θ̄. Since
this latter quality lies strictly above the efficient quality for any type below θ̄, Theorem 4
implies this upper bound never binds. It follows the exact value of q̄ has no impact on the
monopolist’s optimal menu.
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Ganuza, Juan-José and Jose S Penalva. 2010. “Signal Orderings Based on Dispersion and
the Supply of Private Information in Auctions.” Econometrica 78 (3):1007–1030.

Gentzkow, Matthew and Emir Kamenica. 2016. “A Rothschild-Stiglitz Approach to
Bayesian Persuasion.” American Economic Review 106 (5):597–601.

Haghpanah, Nima and Ron Siegel. 2022. “Pareto Improving Segmentation of Multi-Product
Markets.” Tech. rep., Working paper.

21



———. forthcoming. “The Limits of Multi-Product Price Discrimination.” American Eco-

nomic Review: Insights .

Hwang, Ilwoo, Kyungmin Kim, and Raphael Boleslavsky. 2019. “Competitive Advertising
and Pricing.” mimeo .

Kamenica, Emir and Matthew Gentzkow. 2011. “Bayesian Persuasion.” American Economic

Review 101 (October):2590–2615.

Kartik, Navin and Weijie Zhong. 2019. “Lemonade from Lemons: Information Design and
Adverse Selection.” .

Kleiner, Andreas, Benny Moldovanu, and Philipp Strack. 2021. “Extreme points and ma-
jorization: Economic applications.” Econometrica 89 (4):1557–1593.

Kolotilin, Anton. 2018. “Optimal Information Disclosure: A Linear Programming Ap-
proach.” Theoretical Economics 13 (2):607–635.

Li, Hao and Xianwen Shi. 2017. “Discriminatory Information Disclosure.” American Eco-

nomic Review 107 (11):3363–85.

Lipnowski, Elliot, Laurent Mathevet, and Dong Wei. 2020. “Attention management.” Amer-

ican Economic Review: Insights 2 (1):17–32.

Luenberger, David G. 1997. Optimization by Vector Space Methods. John Wiley & Sons.

Maskin, Eric and John Riley. 1984. “Monopoly with incomplete information.” The RAND

Journal of Economics 15 (2):171–196.
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A. Proofs

A.1. Cost Function Characterization

In this section we show a continuous cost function C : I → R is affine and strictly increasing
in informativeness if and only if a strictly convex continuous function c : Θ → R exists such
that C (F ) =

∫
c (θ) dF (θ) . To prove this result, note the Riesz representation theorem

implies C is continuous and affine if and only if C (F ) =
∫

c̃ (θ) dF (θ) for some continuous
c̃ : Θ → R. All that remains is to show c̃ must be strictly convex. For this purpose, fix any
x, y, z ∈

(
θ, θ̄

)
such that y = βx + (1 − β) z for some β ∈ (0, 1). By Lemma 6 in Ravid,

Roesler, and Szentes (2020), one can find F ′, F ′′ ∈ I such that F ′ ≻ F ′′, and

F ′ − F ′′ = γ
(

β1[x,θ̄] + (1 − β) 1[z,θ̄] − 1[y,θ̄]
)

.

Since C is strictly increasing in ⪰, it follows

0 < C (F ′) − C (F ′′) = γ (βc̃ (x) + (1 − β) c̃ (z) − c̃ (y)) .

The claim follows.

A.2. Proof of Theorem 1

We begin by formally defining the buyer’s maximization problem holding the monopolist’s
menu fixed. Let X = [0, q̄] × R+, and endow the set of Borel measures over X × Θ,
∆ (X × Θ), with the weak* topology. Given a menu M , the buyer’s program can be written
as

max
ξ∈∆(X×Θ)

∫
(θq − t) dξ (q, t, θ) − C (margΘ µ)

s.t.supp µ ⊆ M × Θ,

margΘµ ⪯ F0.

Observe the above program involves the maximization of a continuous objective over a com-
pact constraint set, and so the set of solution, Ξ (M), is non-empty for every compact M .
Letting M be the collection of compact subsets of X that contain (0, 0), the monopolist’s
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program can be written as

max
(ξ,M)∈∆(X×Θ)×M

∫
(t − κ (q)) dξ (q, t, θ)

s.t. ξ ∈ Ξ (M) .

Notice it is without loss to assume M ⊆ X̄ = [0, q̄] ×
[
0, θ̄q̄

]
,because the buyer strictly

prefers (0, 0) over any menu item that includes a transfer strictly above θ̄q̄. Letting K
(
X̄
)

be the set of all compact non-empty subsets of X̄ endowed with the Hausdorff metric,

d (A, B) = max
{

max
b∈B

min
a∈A

d (b, a) , max
a∈A

min
b∈B

d (a, b)
}

,

and take M̄ to be the elements of K
(
X̄
)

that contain (0, 0). Taking Ξ̄ to be the restriction
of Ξ to M̄, it follows the monopolist’s problem can be rewritten as

max
(M,ξ)∈Gr Ξ̄

∫
(t − κ (q)) dξ (q, t, θ) . (10)

Observe M̄ is a closed subset of K
(
X̄
)
, and so because K

(
X̄
)

is compact (Aliprantis and
Border (2006), Theorem 3.85), M̄ must be compact as well. It follows, by Berge’s theorem
of the maximum, that Ξ̄ is upper-hemicontinuous, and that Ξ̄ has a closed graph (Aliprantis
and Border (2006), Theorem 17.10). Hence, this graph must be compact because it is a
subset of M̄ × ∆

(
X̄ × Θ

)
, which is compact. That (10) admits a solution follows.

A.3. Proof of Implementability

In what follows, denote the set of all Lipschitz functions from Θ to R by Lip (Θ). As the
forward direction of 2 is the same as in Dworczak and Martini (2019), it remains to prove the
converse direction of the theorem. Take ca+Θ to be the set of (countably additive) positive
Borel measures over Θ. For any [θ′, θ′′] ⊆ Θ, define the set Iθ′,θ′′ ⊆ F as the set of all CDFs
for which IF (θ) ≥ 0 holds for all θ ∈ Θ \ [θ′, θ′′] ,and such that IF

(
θ̄
)

= 1. Observe this
set is convex. The following lemma readily follows from Luenberger (1997), Theorem 1 in
Section 8.3.

Lemma 3. Suppose F ∗ satisfies (4). Then for every [θ′, θ′′] ⊂
(
θ, θ̄

)
, a convex Λ ∈ Lip (Θ)

exists such that

(i) F ∗ ∈ argmaxF ∈Iθ′,θ′′

∫
(ϕ − Λ) (·) dF .
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(ii) Λ is affine on any convex subset of {θ : IF ∗ > 0} ∪ [θ, θ′) ∪ (θ′′, θ̄].

Proof. Fix any [θ′, θ′′] ⊂
(
θ, θ̄

)
, and observe F ∈ I if and only if F ∈ Iθ′,θ′′ and IF (θ) ≥ 0

for all θ ∈ [θ′, θ′′]. Therefore, F ∗ satisfies (4) if and only if it solves the following constrained
concave optimization problem,

max
F ∈Iθ′,θ′′

∫
ϕ(θ)F (dθ)

s.t. IF |[θ′,θ′′] ≥ 0,

where 0 is defined as the zero function from [θ′, θ′′] to R. Viewing IF |[θ′,θ′′] as a mapping from
F to C [θ′, θ′′] (where C [θ′, θ′′] is equipped with the supnorm) and observing that I1[θ0,∞) (θ)
is strictly positive for all θ ∈ [θ′, θ′′] (due to [θ′, θ′′] ⊂

(
θ, θ̄

)
), one can apply Theorem 1 in

section 8.3 of Luenberger (1997) to obtain an element λ∗ ∈ (C [θ′, θ′′])∗ such that

F ∗ ∈ argmax
F ∈Iθ′,θ′′

∫
ϕ (·) dF + ⟨λ∗, IF ⟩ ,

and ⟨λ∗, IF ⟩ = 0. Appealing to the Riesz representation theorem, we get a λ ∈ ca+ [θ′, θ′′]
such that ⟨λ∗, φ⟩ =

∫
φdλ for all φ ∈ C [θ′, θ′′]. Extending λ to Θ by setting λ

(
Θ̃
)

=
λ
(
Θ̃ ∩ [θ′, θ′′]

)
then delivers a measure with the following properties:

1. F ∗ ∈ argmaxF ∈Iθ′,θ′′

∫
ϕ (θ) F (dθ) +

∫
IF (θ) λ(dθ)

2. λ
(
{θ : IF ∗ > 0} ∪ [0, θ′) ∪ (θ′′, θ̄]

)
= 0.

Now, define λ̃ : Θ → R via λ̃ (θ) = λ [θ, θ], and let

Λ : Θ → R

θ 7→
∫ θ

θ
λ̃ (·) dθ̃.

Property 2 above implies λ̃ is constant on {θ : IF ∗ > 0} ∪ [0, θ′) ∪ (θ′′, θ̄], meaning Λ sat-
isfies (ii). To see that Property 1 implies (i), observe Λ is increasing, Lipschitz, and right
continuous, and that

∫
IF (·) dλ =

∫
IF (·) dλ̃ = −

∫
λ̃ (·) dIF

=
∫

λ̃ (·) (F − F0) (·) dθ =
∫

(F − F0) (·) dΛ =
∫

Λ (·) dF,
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where the second and last equalities follow from integration by parts, and the third (fourth)
equality from F − F0 (λ̃) being the almost everywhere derivative of the absolutely contin-
uous function IF (Λ). Since

∫
Λ (·) dF0 is independent of F , it can be dropped from the

maximization. The proof is now complete. □

The previous lemma notes that the usual Lagrange relaxation can be applied to any com-
pletely interior interval of Θ. The following lemma uses the theorem’s regularity condition
to extend this relaxation to the interval’s edges.

Lemma 4. Suppose F ∗ satisfies (4), and that an F̃ ∈ argmaxF ∈I0

∫
ϕdF exists such that

suppF̃ ⊂
(
θ, θ̄

)
. Then a convex Λ ∈ Lip (Θ) exists such that

(i) F ∗ ∈ argmaxF ∈I0

∫
(ϕ − Λ) (·) dF .

(ii) Λ is affine on any convex subset of {θ : IF ∗ > 0}.

Proof. Let θ̃1 = min supp F̃ and θ̃2 = max supp F̃ , and observe θ < θ̃1 ≤ θ0 ≤ θ̃2 < θ̄.
Take some a ∈

(
θ, θ̃1

)
and some b ∈

(
θ̃2, θ̄

)
, and let Λ ∈ Lip (Θ) be the function from

Lemma 3 applied for [a, b]. Notice Λ is affine on any convex subset of {θ : IF ∗ > 0}, and
so proving (i) is all that remains, which we do by contradiction. Thus, suppose (i) is not
satisfied. Since (I0, ⪰) forms a lattice, and because ⪰ is continuous, the set

argmax
F ∈I0

∫
(ϕ − Λ) (θ) dF (dθ)

admits a ⪰-minimal element, which we denote by F̂ . Being ⪰ −minimal, F̂ has at most
two elements in its support. Thus, we can write supp F̂ =

{
θ̂1, θ̂2

}
, where θ̂1 ≤ θ0 ≤ θ̂2.

If F̂ = F ∗, we are done. Thus, suppose F̂ , F ∗. By Lemma 3, F̂ < Ia,b, meaning a
θ∗ ∈ [θ, a) ∪ (b, θ̄] exists such that IF̂ (θ∗) < 0. Suppose without loss of generality that
θ∗ < a. Since IF (θ) = 0 for all θ ≤ θ̂1, it follows θ̂1 < θ∗ < a < θ̃1 ≤ θ0, and so
θ̂2 > θ0. Thus, we can write F̂ = p̂1[θ̂1,∞) + (1 − p̂) 1[θ̂2,∞) for some p̂ ∈ (0, 1). Moreover,(
θ̂1, θ̂2

)
⊃ (a, θ0) ∋ θ̃1, and so θ̃1 = qθ̂1 + (1 − q) θ̂2 must hold for some q ∈ (0, 1). Take

any ϵ < min {p̂, 1 − p̂} ,and observe

F̂ = p̂1[θ̂1,∞) + (1 − p̂) 1[θ̂2,∞)

≻ (p̂ − qϵ) 1[θ̂1,∞) + (1 − p̂ − ϵ (1 − q)) 1[θ̂2,∞) + ϵ1[θ̃1,∞) =: Fϵ.
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Next, we establish
∫

(ϕ − Λ) (·) dF̂ ≤
∫

(ϕ − Λ) (·) dFϵ, implying

Fϵ ∈ argmax
F ∈I0

∫
(ϕ − Λ) (θ) F (dθ)

, a contradiction to ⪰-minimality of F̂ . To obtain this contradiction, let ϕ̂ be the concave
envelope of ϕ—that is, the lowest concave and upper semicontinuous function that majorizes
ϕ. Since F̃ ∈ argmaxF ∈I0

∫
ϕ (·) dF , ϕ must coincide with its concave envelope over the

support of F̃ . Thus,

ϕ
(
θ̃1
)

= ϕ̂
(
θ̃1
)

≥ qϕ̂
(
θ̂1
)

+ (1 − q) ϕ̂
(
θ̂2
)

≥ qϕ
(
θ̂1
)

+ (1 − q) ϕ
(
θ̂2
)

,

where the first inequality follows from Jensen, and the second from ϕ̂ majorizing ϕ. In
addition, convexity of Λ delivers

Λ
(
θ̃1
)

≤ qΛ
(
θ̂1
)

+ (1 − q) Λ
(
θ̂2
)

.

Therefore,

∫
(ϕ − Λ) (·) d

(
Fϵ − F̂

)
=ϵ

[
ϕ̂
(
θ̃1
)

−
(
qϕ
(
θ̂1
)

+ (1 − q) ϕ
(
θ̂2
))]

− ϵ
[
Λ
(
θ̃1
)

−
(
qΛ
(
θ̂1
)

+ (1 − q) Λ
(
θ̂2
))]

≥ 0,

as required. The proof is now complete. □

Next, we prove a simple multiplier result regarding the auxiliary problem

max
F ∈I0

∫
φ (θ) dF (θ) , (11)

for some upper-semicontinuous φ : Θ → R.

Lemma 5. The CDF F ∗ solves the program (11) if and only if a γ ∈ R exists such that

F ∗ ∈ argmax
F ∈F

∫
φ (θ) + γθdF (θ) .
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Proof. Suppose a γ as above exists. Then for every F ∈ I0,

0 ≥
∫

φ (θ) + γθd (F − F ∗) (θ) =
∫

φ (θ) d (F (θ) − F ∗ (θ)) + γ
∫

θd (F − F ∗) (θ)

=
∫

φ (θ) d (F (θ) − F ∗ (θ)) + γ (θ0 − θ0)

≥
∫

φ (θ) d (F (θ) − F ∗ (θ)) ,

that is, F ∗ solves (11). For the converse, write first the program (11) as

max
F ∈F0

∫
φ (θ) dF (θ) s.t.

∫
θ − θ0dF ≥ 0 and

∫
θ0 − θdF ≥ 0.

The Convex-Multiplier rule (Pourciau, 1983) delivers a (γ0, γ1, γ2) ∈ R3
+ \ {0}such that

γ1 (
∫

θ − θ0dF ) = 0, γ2 (
∫

θ0 − θdF ) = 0, and

F ∗ ∈ argmax
F ∈F

∫
γ0φ (θ) + (γ1 − γ2) (θ − θ0) dF (θ) .

We now argue γ0 > 0. To do so, note that if γ0 = 0, then either γ1 or γ2 are strictly positive,
but not both. Suppose γ1 > 0 (the argument for γ2 > 0 is symmetric). Then

F ∗ ∈ argmax
F ∈F

∫
γ1 (θ − θ0) dF (θ) =

{
1[θ̄,∞)

}
,

a contradiction to F ∗ ∈ I0. Thus, λ0 > 0, and so

argmax
F ∈F

∫
γ0φ (θ) + (γ1 − γ2) (θ − θ0) dF (θ) = argmax

F ∈F

∫
φ (θ) +

(
γ1 − γ2

γ0

)
θdF (θ) .

Setting γ =
(

γ1−γ2
γ0

)
completes the proof. □

We now show that one can modify the multiplier Λ in such a way that preserves (ii) and
extends (i) to the entire set of CDFs over Θ.

Lemma 6. Suppose F ∗ satisfies (4), and that an F̃ ∈ argmaxF ∈I0

∫
ϕdF exists such that

suppF̃ ⊂
(
θ, θ̄

)
. Then a convex Λ ∈ Lip (Θ) exists such that

(i) F ∗ ∈ argmaxF ∈F
∫

(ϕ − Λ) (·) dF .

(ii) Λ is affine on any convex subset of {θ : IF ∗ > 0}.
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Proof. Begin by applying Lemma 4 to obtain a convex Λ̃ ∈ Lip (Θ) satisfying (ii) above and
such that F ∗ solves

max
F ∈I0

∫ (
ϕ − Λ̃

)
(θ) F (dθ) = max

F ∈F

∫ (
ϕ − Λ̃

)
(θ) F (dθ)

s.t.
∫

θF (dθ) = θ0.

By Lemma 5, a λ ∈ R exists such that

F ∈ argmax
F ∈F

∫
(ϕ − Λ) (θ) + λθdF (θ) .

Thus, defining Λ (θ) = Λ̃ (θ) + λ (θ − θ0) completes the proof. □

Given a function from a convex set X ⊆ R into the reals, φ : X → R, we use the
following notational conventions. If ϕ is increasing, we let φ− (x) = supy<x φ (y) and
φ+ (y) = infy>x f (y). If φ is convex, we let φ′

− and φ′
+ denote its left and right derivatives,

respectively, whenever those exist. We now proceed to prove Theorem 2.

Proof of Theorem 2. Suppose first F ∗ ∈ I is such that a P exists for which the theorem’s
condition (i) and (ii) hold. Observe

∫
P (θ) d (F ∗ − F0) (θ) =

∫
(F0 − F ∗) (θ) P (dθ)

=
∫

(F0 − F ∗) (θ) P
′

+ (θ) dθ

=
∫

P
′

+ (θ) IF ∗ (dθ)

= −
∫

IF ∗ (θ) P
′

+ (dθ) = 0,

where the first and penultimate equalities follow from integration by parts, the second (third)
equality following from P

′
+ (F0−F ∗) being an almost everywhere derivative of the absolutely

continuous function P (IF ∗), and the last equality from P being affine on any interval over
which IF > 0. That F ∗ solves (4) then follows from Theorem 1 in Dworczak and Martini
(2019).

Next, suppose F ∗ ∈ I solves (4) and that F̃ ∈ argmaxF ∈I0

∫
ϕdF exists such that

suppF̃ ⊂
(
θ, θ̄

)
. By Lemma 6, a Λ ∈ Lip (Θ) exists satisfying condition (i) and (ii) of

the lemma. Define P (θ) := Λ (θ) + max (ϕ − Λ) (Θ), and observe that the theorem’s con-
dition (i) obviously holds. To see the theorem’s condition (ii) holds, note first supp F ∗ ⊆
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argmaxθ∈Θ ϕ (θ) − Λ (θ), meaning P = ϕ for all θ ∈ supp F ∗. Second, observe

ϕ (θ) = Λ (θ) + ϕ (θ) − Λ (θ) ≤ Λ (θ) + max (ϕ − Λ) (Θ) = P (θ) .

Thus, P also satisfies condition (i). The proof is now complete. □

Next, we prove the regularity condition required by Theorem 2 applies for any bounded
mechanism the seller may offer the buyer.

Proof of 1. We prove the lemma by contradiction. Suppose (the argument for θ is symmetric)
that θ̄ ∈ supp F ∗. By Lemma 5, a λ ∈ R exists such that supp F ∗ ⊆ VQ (θ) − c (θ) + λθ =:
φ (θ). Since φ is continuous, a strictly increasing sequence {θn} exists such that θn ↗ θ̄,
θn < θ̄, and φ (θn+1) ≥ φ (θn) for all n. Therefore,

0 ≤ φ (θn+1) − φ (θn)
θn+1 − θn

= (θn+1 − θn)−1 [VQ (θn+1) − VQ (θn) + λ (θn+1 − θn) − (c (θn+1) − c (θn))]

≤ Q (θn+1) + λ +
(

c (θn) − c (θn+1)
θn+1 − θn

)

≤ q̄ + λ +
(

c (θn) − c (θn+1)
θn+1 − θn

)

≤ q̄ + λ + c′ (θn)
(

θn − θn+1

θn+1 − θn

)
= q̄ + λ − c′ (θn) → −∞,

where the second and fourth inequality follow from VQ and c being convex, the third inequal-
ity from Q ≤ q̄, and convergence from c′ (θ) → ∞ as θ ↗ θ̄.

[Proof of Theorem 3]As a preliminary step, suppose F is IC for some mechanism, and
that we have some F -ICC allocation Q̂ that is F -verified by p̂. We make two observations.
First, since θF > θ (Corollary 1), and because c′ is continuous, strictly increasing and sat-
isfies limθ↘θ c′ (θ) = −∞, θQ̂ ∈ (θ, θF ] is the unique solution to p̂ (θF ) + c′

(
θQ̂

)
= 0.

Second, that limθ↗θ̄ c′ (θ) = ∞ together with θ̄F < θ̄ implies θ̄Q̂ is the unique element in
[θ̄F , θ̄) such that p̂(θ̄F ) + c′(θ̄Q̂) = q̄. Below we use these observations to prove the theorem.

Next, we show every F -ICC mechanism is F -IC. Let Q be an F -ICC allocation, and
consider the shadow price PQ,u defined in equation (6). As explained after Theorem 3,
PQ,u = VQ,u − c for every θ ∈

[
θF , θ̄F

]
. It remains to show PQ,u ≥ VQ,u − c for all

θ ∈ Θ \
[
θF , θ̄F

]
. In the next paragraph we claim VQ,u − c is concave on [θ, θF ] and on[

θ̄F , θ̄
]
. Using this claim, one can deduce that PQ,u ≥ VQ,u −c using the following inequality
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chain,

PQ,u (θ) = PQ,u (θF ) −
∫ θF

θ
p
(
θ̃
)

dθ̃

= PQ,u (θF ) −
∫ θF

θ
p (θF ) dθ̃

=
(
VQ,u − c

)
(θF ) −

∫ θF

θ
Q (θF ) − c′ (θF ) dθ̃

≥
(
VQ,u − c

)
(θF ) −

∫ θF

θ
Q
(
θ̃
)

− c′
(
θ̃
)

dθ̃ = VQ,u (θ) − c (θ) ,

where the second equality follows from observing that F ’s mean preserving spread constraint
is slack on θ ∈

(
θ, θ̄

)
\
[
θF , θ̄F

]
meaning p is constant over this set, the third and fourth

equality from PQ,u (θ) =
(
VQ,u − c

)
(θ) and p (θ) = Q (θ) − c′ (θ) holding at θ = θF , and

the inequality from the claim that VQ,u − c being concave on [θ, θF ]. A similar inequality
chain delivers PQ,u ≥ VQ,u − c for the range

[
θ̄F , θ̄

]
.

To conclude the proof that every F -ICC mechanism is F -IC, we now argue VQ,u − c

is concave over [θ, θF ] (the argument for
[
θ̄F , θ̄

]
is similar). For this, it is sufficient to

show Q − c′ is decreasing over said interval. Thus, pick any θ < θ′ in [θ, θF ]. We show
(Q − c′) (θ) ≥ (Q − c′) (θ′). The inequality obviously holds if θ, θ′ ∈

[
θ, θQ

]
, because

c′ is strictly increasing and Q is constant over said interval. The inequality also holds if
θ, θ′ ∈

[
θQ, θF

]
, because then we have (Q − c′) (θ) = p (θF ) = (Q − c′) (θ′). Finally,

suppose θ ≤ θQ ≤ θ′. Then,

(Q − c′) (θ) ≥ (Q − c′)
(
θQ

)
= p (θF ) + c′

(
θQ

)
− c′

(
θQ

)
= p (θF ) = (Q − c′) (θ′) ,

where the first equality follows from p
(
θQ

)
= p (θF ), and the last equality from the defini-

tion of Q. This concludes the argument that every F -ICC mechanism is F -IC.
Next, we argue every F -IC mechanism admits an equivalent F -ICC mechanism. By

Theorem 2, a mechanism Q̃ is F -IC if and only if a shadow price P : Θ → R exists such
that P (θ) ≥ VQ̃,u − c, with equality holding for all θ ∈ supp F . Since P is convex and
Lipschitz, an increasing p : Θ → R exists such that for all θ, both p (θ) ∈ [P ′

− (θ) , P
′
+ (θ)]

and
P (θ) = P (θ) +

∫ θ

θ
p (s) ds (12)

hold. Moreover the above holds for every p : Θ → R such that p (θ) ∈ [P ′
− (θ) , P

′
+ (θ)],
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and every such p is bounded and increasing. We now argue we can choose p so that p (θ) =
Q̃ (θ) − c′ (θ) for all θ ∈ supp F . To do so, let ṽ = VQ̃ − c, and observe that it is left and
right differentiable, because both VQ̃,u and c are. Moreover, for every θ ∈ supp F ,

ṽ
′

− (θ) = lim
ϵ↘0

1
ϵ

[ṽ (θ) − ṽ (θ − ϵ)] = lim
ϵ↘0

1
ϵ

[
P (θ) − uQ̃ − ṽ (θ − ϵ)

]
≥ lim

ϵ↘0

1
ϵ

[P (θ) − P (θ − ϵ)] = P
′

− (θ) ,

and

ṽ
′

+ (θ) = lim
ϵ↘0

1
ϵ

[ṽ (θ + ϵ) − ṽ (θ)] ≤ lim
ϵ↘0

1
ϵ

[
P (θ + ϵ) − uQ̃ − ṽ (θ)

]
= lim

ϵ↘0

1
ϵ

[P (θ + ϵ) − P (θ)] = P
′

+ (θ) .

Because Q̃ (θ) − c′ (θ) ∈
[
ṽ

′
− (θ) , ṽ

′
+ (θ)

]
for all θ, it follows

Q̃ (θ) − c′ (θ) + uQ̃ ∈
[
P

′

− (θ) , P
′

+ (θ)
]

.

Hence, we can set p (θ) = Q̃ (θ) − c′ (θ) for all θ ∈ supp F in a way that satisfies (12).
Define the F−ICC allocation Q from p as in equation (5), and set

u := P (θF ) + c(θF ) − VQ(θF ).

Note that

u = P (θF ) + c(θF ) − VQ(θF )

= P
(
θQ

)
+ c

(
θQ

)
+
∫ θF

θQ

p (θ) + c′ (θ) − Q (θ) dθ

= P
(
θQ

)
+ c

(
θQ

)
+
∫ θF

θQ

p (θ) − Q̃(θF ) + c′(θF )dθ

= P
(
θQ

)
+ c

(
θQ

)
+
∫ θF

θQ

p (θF ) − Q̃(θF ) + c′(θF )dθ = P
(
θQ

)
+ c

(
θQ

)
.

where the second equality follows from the first fundamental theorem of calculus, the third
from the definition of Q and the fact that p (θF ) = Q̃ (θF ) + c′ (θF ) for all θ ∈

(
θQ, θF

)
, the

fourth from IF (θ) > 0 for all θ ∈
[
θQ, θF

]
(and therefore p is constant on

[
θQ, θF + ϵ

]
for

some ϵ > 0), and the last equality from p (θF ) = Q̃ (θF ) − c′ (θF ).
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We now argue P = PQ,u, where PQ,u is defined as in equation (6),

PQ,u (θ) = VQ,u (θF ) − c (θF ) +
∫ θ

θF

p
(
θ̃
)

dθ̃.

Towards this goal, observe first that

PQ,u (θF ) = VQ,u (θF ) − c (θF )

= u − c
(
θQ

)
+
∫ θF

θQ

Q (θ) − c′ (θ) dθ

= P
(
θQ

)
+
∫ θF

θQ

p (θF ) dθ

= P
(
θQ

)
+
∫ θF

θQ

p (θ) dθ = P (θF ) ,

where the third equality follows u = P
(
θQ

)
+c

(
θQ

)
, and the fourth equality from IF (θ) >

0 for all θ ∈
[
θQ, θF

]
(and therefore p (θ) is constant and equal to p (θF ) on

[
θQ, θF + ϵ

]
for

some ϵ > 0). We therefore get the following equality chain

PQ,u (θ) = VQ,u (θF ) − c (θF ) +
∫ θ

θF

p
(
θ̃
)

dθ̃ = P (θF ) +
∫ θ

θF

p
(
θ̃
)

dθ̃ = P (θ) .

It follows P (θ) ≥ VQ,u (θ) − c (θ) for all θ, with equality whenever θ ∈ supp F . Therefore,
for every θ ∈ supp F we have

VQ,u (θ) − c (θ) = P (θ) = VQ̃,ũ (θ) − c (θ) ,

meaning VQ,u (θ) = VQ̃,ũ (θ) holds for all such θ, as required. All that remains is to show
that u ≥ ũ, which follows from observing that

u = P
(
θQ

)
+ c

(
θQ

)
≥ VQ̃,ũ

(
θQ

)
≥ ũ.

The proof is now complete. □
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A.4. Proof of Corollary 1

Let us first argue that if (Q, u) is F -IC, then supp F ⊆
(
θ, θ̄

)
. For this goal, let P be some(

F, VQ,u − c
)
-shadow price, and note

M ≥ 1
ϵ

(P (θF + ϵ) − P (θF )) ≥ 1
ϵ

[(
VQ,u − c

)
(θF + ϵ) −

(
VQ,u − c

)
(θF )

]
,

where M is the P ’s Lipchitz constant. Since limθ↘θ c′ (θ) = −∞, if θF = θ , the above
equation’s right hand side would go to ∞, which is impossible. A similar argument implies
θ̄F < θ.

We now claim IF must be strictly positive in the neighborhood of θF and θ̄F . Since IF is
continuous, to prove the claim it is enough to show IF (θF ) > 0 and IF

(
θ̄F

)
> 0 both hold.

For this purpose, note that, because
{
θ, θ̄

}
⊆ supp F0, F0 is strictly positive on (θ, θF ), and

strictly below 1 on
(
θ̄F , θ̄

)
. Therefore,

IF (θF ) =
∫ θF

θ
(F0 − F ) (θ) dθ =

∫ θF

θ
F0 (θ) dθ > 0,

and

IF

(
θ̄F

)
=
∫ θ̄F

θ
(F0 − F ) (θ) dθ

=
∫ θ̄

θ
(F0 − F ) (θ) dθ −

∫ θ̄

θ̄F

(F0 − F ) (θ) dθ =
∫ θ̄

θ̄F

(1 − F0) (θ) dθ > 0.

The corollary follows.

A.5. Proofs of Feasible Perturbations

A.5.1. Proof of Lemma 2

Observe first that both parts trivially hold when θ1 = θ2 or when α ∈ {0, 1}. Therefore,
suppose (without loss of generality) that θ1 < θ2. The proof of both of the Lemma’s parts
proceeds as follows. Using that pQ is constant on [θ∗, θ∗], we construct a family of informa-
tional deviations which are incentive-compatible for the buyer and that are indexed by ϵ > 0.
As ϵ vanishes, the difference between these deviations and F ∗ converges to the difference
between an atom at αθ1 + (1 − α) θ2 and a split of that atom’s mass between an atom on θ1

and an atom on θ2 for the first part, and vice-versa for the second part. Then, we show the
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desired inequality using optimality of (Q∗, F ∗) and continuity of πQ∗|[θ∗,θ∗] (where the latter
is implied by continuity of c′ and pQ being constant over [θ∗, θ∗]).

Proof. As a preliminary step, let G = F ∗ (·|θ ∈ [θ∗, θ∗]), H = F ∗ (·|θ < [θ∗, θ∗]), and β =
F ∗ (θ∗) − F ∗

− (θ∗), and observe F ∗ = βG + (1 − β) H . In addition, notice that (V − c) is
affine on [θ∗, θ∗], because for any θ ∈ [θ∗, θ∗] ⊆

[
θQ, θ̄Q

]
,

VQ∗ (θ) − c (θ) = VQ∗ (θ∗) − c (θ∗) +
∫ θ

θ∗
(Q∗ − c′) (θ) dθ

= VQ∗ (θ∗) − c (θ∗) +
∫ θ

θ∗
pQ∗ (θ) dθ = VQ∗ (θ∗) − c (θ∗) + pQ (θ∗) (θ − θ∗) ,

where the last equality follows from pQ being constant on [θ∗, θ∗] ⊆
[
θQ, θ̄Q

]
.

Proof of Part 1. We begin by constructing the above-mentioned class of informational
deviations. Take any ϵ ∈

(
0, 1

2 (θ2 − θ1)
)

(which implies [θ1 − ϵ, θ1 + ϵ] ∩ [θ2 − ϵ, θ2 + ϵ] =
∅), and define the following objects:

G0,ϵ = G (·|θ < [θ1 − ϵ, θ1 + ϵ] ∪ [θ2 − ϵ, θ2 + ϵ]) ,

G1,ϵ = G (·|θ ∈ [θ1 − ϵ, θ1 + ϵ]) ,

G2,ϵ = G (·|θ ∈ [θ2 − ϵ, θ2 + ϵ]) ,

γ1,ϵ = G(θ1 + ϵ) − G−(θ2 − ϵ),

γ2,ϵ = G(θ2 + ϵ) − G−(θ2 − ϵ),

γ0,ϵ = 1 − γ1,ϵ − γ2,ϵ.

Clearly, G = ∑2
i=0 γi,ϵGi,ϵ. Moreover, since θ1, θ2 ∈ supp G, both γ1,ϵ and γ2,ϵ are strictly

positive for all ϵ > 0. For any ϵ ∈
(
0, 1

2 (θ2 − θ1)
)
, define

θϵ =
∫

θ d (αG1,ϵ + (1 − α)G2,ϵ) ,

γ̃ϵ = min{γ1,ϵ, γ2,ϵ} > 0, and

Gϵ = γ0,ϵG0,ϵ + ηϵ1[θϵ,∞) + (γ1,ϵ − αηϵ)G1,ϵ + (γ2,ϵ − (1 − α)ηϵ)G2,ϵ.

In words, Gϵ alters G by pooling αγ̃ϵ mass from the ϵ-ball around θ1 and (1 − α)γ̃ϵ mass
from the ϵ-ball around θ2 and pooling them to create an γ̃ϵ > 0 mass on θϵ—that is,

Gϵ − G = γ̃ϵ

(
1[θϵ,∞) − (αG1,ϵ + (1 − α)G2,ϵ)

)
.
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With the above in hand, we can finally define our informational pertubation—specifically,
take Fϵ = βGϵ + (1 − β) H .

Next, we argue Fϵ ∈ I and that Q∗ is Fϵ−IC. For the first claim, observe that, because
αG1,ϵ + (1 − α)G2,ϵ ≻ 1[θϵ,∞), Gϵ is less informative than G, and so Fϵ ⪯ F ∗ ⪯ F0. That
Fϵ ∈ I follows from ⪯ being transitive. To see Q∗ is Fϵ-IC for all ϵ ∈

(
0, 1

2 (θ2 − θ1)
)
,

observe

∫
(VQ∗ − c) d (Fϵ − F ∗) = β

∫
(VQ∗ − c) d (Gϵ − G)

= βγ̃ϵ

[∫
(VQ∗ − c) d

(
1[θϵ,∞) − (αG1,ϵ + (1 − α)G2,ϵ)

)]
= 0,

where the last equality follows from αG1,ϵ + (1 − α)G2,ϵ ≻ 1[θϵ,∞), the support of αG1,ϵ +
(1 − α)G2,ϵ being contained in [θ∗, θ∗] ⊆

[
θQ, θ̄Q

]
, and VQ∗ − c being affine on [θ∗, θ∗].

Now, because (Q∗, F ∗) is monopolist-optimal, that Q∗ is Fϵ−IC all small ϵ > 0 means
that

∫
πQ∗dFϵ ≤

∫
πQ∗dF . Rearranging this inequality, dividing by βγ̃ϵ, and taking ϵ to zero

delivers

0 ≤ 1
βγ̃ϵ

∫
πQ∗ d(F ∗ − Fϵ) = 1

γ̃ϵ

∫
πQ∗d (G − Gϵ)

=
[
α
∫

πQ∗ dG1,ϵ + (1 − α)
∫

πQ∗ dG2,ϵ

]
− πQ∗(θϵ)

→ (απQ∗(θ1) + (1 − α)πQ∗(θ2)) − πQ∗ (αθ1 + (1 − α)θ2) ,

where convergence follows from continuity of πQ∗|[θ∗,θ∗], convergence of F1,ϵ and F2,ϵ to
1[θ1,∞) and 1[θ2,∞) respectively, and θϵ → αθ1 + (1 − α)θ2. □

Proof of Part 2. Suppose now [θ1, θ2] ⊆ [θ∗, θ∗] is such that IF ∗(θ′) > 0 holds for
all θ′ ∈ [θ1, θ2], and that α ∈ (0, 1) is such that θα := αθ1 + (1 − α)θ2 ∈ supp G. We
begin by defining the above-mentioned family of deviations. For any strictly positive ϵ <

min {θ − θ1, θ2 − θ}, define

G0,ϵ(·) := G(·|θ < [θα − ϵ, θα + ϵ]),

G1,ϵ(·) := G(·|θ ∈ [θα − ϵ, θα + ϵ]),

θϵ :=
∫

θ dG1,ϵ (θ)

γϵ := G(θα + ϵ) − G−(θα − ϵ).

Clearly, G = (1 − γϵ)G0,ϵ + γϵG1,ϵ. Observe γϵ > 0, because θα ∈ supp G, and that an
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αϵ ∈ (0, 1) exists such that
θϵ = αϵθ1 + (1 − αϵ)θ2,

by our choice of ϵ. Obviously, θϵ → θα, and αϵ → α. For a given γ̃ ∈ (0, γϵ), define

Gη,ϵ = (1 − γϵ)G0,ϵ + (γϵ − γ̃)G1,ϵ + γ̃
(
αϵ1[θ1,∞) + (1 − αϵ)1[θ2,∞)

)
.

Clearly, Gγ̃,ϵ is a CDF.
We now construct our informational deviation: set Fγ̃,ϵ := βGγ̃,ϵ + (1 − β) H for all ϵ

and γ̃ satisfying the above conditions. We begin by arguing that this deviation is a signal—
that is, Fγ̃,ϵ ∈ I—whenever γ̃ is sufficiently small (holding ϵ fixed). To do so, observe that
the function F 7→ IF (θ) is affine for all θ, meaning that

IF ∗ − IFγ̃,ϵ = γ̃β
(
αϵI1[θ1,∞) + (1 − αϵ)I1[θ2,∞) − IG1,ϵ

)
< 0, (13)

where the inequality follows from G1,ϵ ≺ αϵ1[θ1,∞) + (1 − αϵ)1[θ2,∞). Since the support of
G1,ϵ, 1[θ1,∞), and 1[θ2,∞) is contained in [θ1, ∞), it follows IFγ̃,ϵ (θ) = IF ∗ (θ) ≥ 0 for all
θ ≤ θ1. Next, observe that for any F ∈ F and any θ ≥ max (supp F ),

∫
θ′≤θ F (θ′) dθ′ =

θ −
∫

θ′dF (θ′), IG1,ϵ (θ) = αϵI1[θ1,∞) (θ) − (1 − αϵ)I1[θ2,∞) (θ) for all θ ≥ θ2, meaning that
IFγ̃,ϵ (θ) = IF ∗ (θ) ≥ 0 holds for all such θ. Consider now the case θ ∈ (θ1, θ2). That
IF is continuous for all F , combined with IF ∗ being strictly positive over [θ1, θ2] implies a
ζ := min IF ∗ ([θ1, θ2]) > 0 and that

ξϵ := min
θ∈[θ1,θ2]

(
αϵI1[θ1,∞) + (1 − αϵ)I1[θ2,∞) − IG1,ϵ

)
> −∞.

Recalling that ξϵ ≤ 0, one can see that whenever γ̃ < −ζ/βξϵ, θ ∈ [θ1, θ2] implies

IFγ̃,ϵ (θ) ≥ IF ∗ (θ) + γ̃βξϵ ≥ ζ + γ̃βξϵ ≥ 0.

Thus, we have shown Fγ̃,ϵ ∈ I for all γ̃ < −ζ/βξϵ.
We now argue Q∗ is Fγ̃,ϵ-IC for all above-mentioned ϵ and all γ̃ < −ζ/βξϵ. To see this,

observe

∫
(VQ∗ − c) d (Fγ̃,ϵ − F ∗) = γ̃β

∫
(VQ∗ − c) d

(
αϵ1[θ1,∞) + (1 − αϵ)1[θ2,∞) − G1,ϵ

)
= γ̃β (αϵ (VQ∗ − c) (θ1) + (1 − αϵ) (VQ∗ − c) (θ2) − (VQ∗ − c) (θϵ)) = 0,
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where the last equality follows from αϵ1[θ1,∞) + (1 − αϵ)1[θ2,∞) ⪰ G1,ϵ, the support of
αϵ1[θ1,∞) + (1 − αϵ)1[θ2,∞) and G1,ϵ being contained in [θ∗, θ∗], and VQ∗ − c being affine on
[θ∗, θ∗].

For the proof’s last step, observe that, because Q∗ is Fγ̃,ϵ-IC for the buyer for all small ϵ

and γ̃, monopolist optimality of (Q∗, F ∗) implies

0 ≥ 1
γ̃

∫
πQ∗d (Fγ̃,ϵ − F ∗) = αϵπQ∗ (θ1) + (1 − αϵ) πQ∗ (θ2) − π (θϵ)

ϵ→0−→ απQ∗ (θ1) + (1 − α) πQ∗ (θ2) − π (θα) ,

where convergence follows from θϵ → θα, αϵ → α, and πQ∗ being continuous on [θ∗, θ∗].
The desired inequality follows.

A.5.2. Allocation Perturbations

In this section, we prove two lemmas. The first result shows the set of allocations that are
F -IC is convex.

Lemma 7. Suppose Q and Q̃ are both F -IC. Then, (1 − β) Q + βQ̃ is also F -IC for all

β ∈ [0, 1].

Proof. Note that for any two allocations Q, Q̃, and any β ∈ [0, 1] ,

V(1−β)Q+βQ̃ (θ) =
∫ θ

θ

(
(1 − β) Q

(
θ̃
)

+ βQ̃
(
θ̃
))

dθ̃

= (1 − β)
∫ θ

θ
Q
(
θ̃
)

dθ̃ + β
∫ θ

θ
Q̃
(
θ̃
)

dθ̃ = (1 − β) VQ (θ) + βVQ̃ (θ) .

Therefore, if both Q, Q̃ are F -IC, one obtains the following inequality for all F̃ ,

∫ (
V(1−β)Q+βQ̃ − c

)
(θ) dF (θ) = (1 − β)

∫
(VQ − c) (θ) dF (θ) + β

∫ (
VQ̃ − c

)
(θ) dF (θ)

≥ (1 − β)
∫

(VQ − c) (θ) dF̃ (θ) + β
∫ (

VQ̃ − c
)

(θ) dF̃ (θ)

=
∫ (

V(1−β)Q+βQ̃ − c
)

(θ) dF̃ (θ) ,

meaning (1 − β) Q + βQ̃ is also F -IC. □

Next, we obtain a first order condition for the monopolist’s optimal outcome by perturb-
ing the allocation while keeping the buyer’s information fixed.
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Lemma 8. Let (Q∗, F ∗) be monopolist optimal. Suppose Q also incentivizes F ∗. Then,

∫
(θ − κ′ (Q∗ (θ))) (Q − Q∗) (θ) − (VQ − VQ∗) (θ) dF ∗ (θ) ≤ 0.

Proof. Suppose (Q∗, F ∗) is monopolist optimal, and let Q be any other F−IC allocation.
Defining the allocation Qε := Q∗ + ϵ (Q − Q∗) for every ϵ ∈ (0, 1), it follows from the
previous lemma that Qϵ is also F -IC. Therefore, it must be that (Qϵ, F ∗) must be weakly
worse for the monopolist than (Q∗, F ∗) . In other words, we must have

∫
(πQϵ (θ) − πQ (θ)) dF ∗ (θ) ≤ 0

for all ϵ. Dividing this inequality by ϵ > 0, and taking the limit as ϵ ↘ 0 gives

0 ≥ 1
ϵ

∫
(πQϵ (θ) − πQ (θ)) F ∗(dθ)

=
∫

θ (Q − Q∗) (θ) − (VQ − VQ∗) (θ) F ∗(dθ)

−
∫ 1

ϵ
(κ (Q∗ (θ) + ϵ (Q − Q∗) (θ)) − κ (Q∗ (θ))) F ∗(dθ)

→
∫

θ (Q − Q∗) (θ) − (VQ − VQ∗) (θ) F ∗(dθ)

−
∫

κ′ (Q∗ (θ)) (Q − Q∗) (θ) F ∗(dθ),

where convergence follows from Beppo Levi’s Theorem (e.g., Aliprantis and Border (2006)
Theorem 11.18).11 The lemma follows. □

A.6. Proof of Theorem 4

Before proving the theorem, we recall a few of our notational conventions. Given a function
from a convex set X ⊆ R into the reals, φ : X → R, we use the following notational
conventions. If ϕ is increasing, we let φ− (x) = supy<x φ (y) and φ+ (y) = infy>x f (y). If
φ is convex, we let φ′

− and φ′
+ denote its left and right derivatives, respectively, whenever

those exist.
We begin our proof by showing one can find an F -almost surely equal version of Q that

is left or right continuous whenever κ′ ◦ Q+ (θ) < θ and κ′ ◦ Q− (θ) > θ, respectively.

Lemma 9. A mechanism Q̃ exists that is F -almost surely equal to Q such that
(
Q̃, F

)
is

11Because κ is convex, the function ϵ 7→ 1
ϵ (κ (q + ϵ (q̃ − q)) − κ (q)) is decreasing in ϵ for all q̃ and q.
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monopolist optimal, and for which Q̃+ (θ) = Q̃ (θ) whenever κ′ ◦ Q̃+ (θ) < θ and Q̃− (θ) =
Q̃ (θ) whenever κ′ ◦ Q̃− (θ) > θ.

Proof. Define the mechanism Q̃ via

Q̃ (θ) := argmax
q∈[Q−(θ),Q+(θ)]

θq − κ (q) ,

which is well-defined because the objective is strictly concave and so admits a unique maxi-
mizer. Obviously,

∫
(θQ (θ) − κ (Q (θ))) −

(
θQ̃ (θ) − κ

(
Q̃ (θ)

))
F (dθ) ≤ 0,

with equality holding if and only if Q̃ equals Q F -almost surely. Observe Q̃ satisfies the
desired properties and is equal to Q at any θ at which Q is continuous, and so VQ = VQ̃,
because Q can only have countably many discontinuities. It follows

(
Q̃, F

)
is incentive

compatible for B. Since (Q, F ) is monopolist optimal,

0 ≤
∫

πQ (θ) − πQ̃ (θ) dF (θ) =
∫

(θQ (θ) − κ (Q (θ))) −
(
θQ̃ (θ) − κ

(
Q̃ (θ)

))
dF (θ) ≤ 0.

Hence, Q̃ equals Q F -almost surely, as desired. □

From now on, we assume Q is an F -ICC mechanism satisfying the conditions of Lemma
9. We now obtain a sufficient condition for inefficiently low quality.

Lemma 10. Fix any θ∗ ∈ [θF , θ̄F ), and suppose one of the following two conditions hold:

∫
θ>θ∗

κ′ ◦ Q (θ) dF (θ) ≤ (1 − F (θ∗)) θ∗ (14)∫
θ≥θ∗

κ′ ◦ Q (θ) dF (θ) ≤ (1 − F− (θ∗)) θ∗. (15)

Then κ′ ◦ Q (θ∗) < θ∗. Morever, (14) implies (15).

Proof. We first show (14) implies κ′ ◦ Q (θ∗) < θ∗, and then show the same strict inequality
follows from (15). Thus, assume (14) holds, and suppose κ′◦Q (θ∗) ≥ θ∗ for a contradiction.
Because Q is F -ICC, it is strictly increasing on

[
θF , θ̄F

]
⊇
[
θ∗, θ̄F

]
, and so κ′ ◦ Q (θ) >

κ′ ◦ Q (θ∗) for all θ > θ∗, because κ′ is strictly increasing. Therefore,

θ∗ <
∫

κ′◦Q (θ) dF
(
θ|θ ∈ (θ∗, θ̄F ]

)
=
∫

κ′◦Q (θ) dF (θ|θ > θ∗) =
∫

θ>θ∗ κ′ ◦ Q (θ) dF (θ)
1 − F (θ∗) ,

(16)
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contradicting (14). We now show (15) also implies κ′◦Q (θ∗) < θ∗. If F− (θ∗) = F (θ∗), then
(15) implies (14), so we are done. Assume then F− (θ∗) < F (θ∗), and suppose κ′ ◦Q (θ∗) ≥
θ∗ for a contradiction. Then κ′ ◦ Q (θ) > θ∗ for all θ > θ∗, because κ′ is strictly increasing.
Therefore, equation (16) holds, meaning that

∫
θ≥θ∗

κ′ ◦ Q (θ) dF (θ) =
∫

θ>θ∗
κ′ ◦ Q (θ) dF (θ) + (F (θ∗) − F− (θ∗)) κ′ ◦ Q (θ∗)

> (1 − F (θ∗)) θ∗ + (F (θ∗) − F− (θ∗)) κ′ ◦ Q (θ∗)

≥ (1 − F (θ∗)) θ∗ + (F (θ∗) − F− (θ∗)) θ∗ = (1 − F− (θ∗)) θ∗,

where the first inequality follows from (16), and the second from the contradiction assump-
tion. As the above inequality contradicts (15), we are done. Finally, we show (14) implies
(15). To do so, observe (14) delivers

∫
θ≥θ∗

κ′ ◦ Q (θ) dF (θ) =
∫

θ>θ∗
κ′ ◦ Q (θ) dF (θ) + (F (θ∗) − F− (θ∗)) κ′ ◦ Q (θ∗)

≤ (1 − F (θ∗)) θ∗ + (F (θ∗) − F− (θ∗)) θ∗ = (1 − F− (θ∗)) θ∗.

The proof is now complete. □

We now proceed to show quality is inefficient low for any θ∗ that is at the bottom of the
support of F . As already remarked, in this case, pQ is constant in the neighborhood of θ∗

(due to Corollary 1).

Lemma 11. Quality is inefficiently low at θF —i.e., κ′ ◦ Q (θF ) < θF . Moreover, equation

(15) holds at θF whenever Q (θF ) > 0.

Proof. Because θF > θ, the lemma is obvious if Q (θF ) = 0. Suppose then that Q (θF ) > 0.
For any ε ∈ (0, Q (θF )), let θε = inf {θ : Q (θ) ≥ ε} , and define pε (·) := p (·) − ε. Observe
pε is an F -shadow derivative, because p is. Let Qε be the F -ICC allocation defined by pε as
in (5) (note Qε is well-defined because Q (θF ) > ε). Obviously, θε ≤ θF , and

Qε (θ) = pQ (θ) + c′ (θ) − ε = Q (θ)

for all θ ∈
[
θε, θ̄F

]
. Noting that for all θ ≥ θF ,

VQε (θ) − VQ (θ) =
∫ θ

θε

−ε dθ̃ +
∫ θε

θ
−Q

(
θ̃
)

dθ̃ = ε (θε − θ) − VQ (θε) ,
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and so by Lemma 8 we have

0 ≥
∫

(θ − κ′ ◦ Q (θ)) (−ε) − ε (θε − θ) + VQ (θε) dF (θ)

=
∫

(κ′ ◦ Q (θ) − θε) ε + VQ (θε) dF (θ) .

This inequality, however, implies that

ε
∫

θ≥θF

κ′ ◦ Q (θ) dF (θ) = ε
∫

κ′ ◦ Q (θ) dF (θ)

≤
∫

εθε − VQ (θε) dF ≤ εθε ≤ εθF = εθF (1 − F− (θF )) ,

where the second inequality follows from VQ ≥ 0. Dividing both sides of the above inequal-
ity by ε > 0 gives equation (15), and so κ′ ◦ Q (θF ) < θF holds by Lemma (10). □

Next, we show quality is inefficiently low whenever pQ jumps at θ∗.

Lemma 12. Suppose θ∗ ∈
[
θF , θ̄F

]
be such that pQ− (θ∗) < pQ+ (θ∗). Then, (15) holds at

θ∗ and κ′ ◦ Q (θ∗) < θ∗.

Proof. Observe Q being F -ICC and pQ− (θ∗) < pQ+ (θ∗) means I (θ∗) = 0, and so θ∗ > θF .
For any ε ∈ (0, pQ+ (θ∗) − pQ− (θ∗)) , define

pε (θ) =


pQ (θ) if θ < θ∗,

pQ (θ∗) ∧ (pQ+ (θ∗) − ε) if θ = θ∗,

pQ (θ) − ε if θ > θ∗.

It is easy to verify that pε is an F -shadow price derivative because pQ is and I (θ∗) = 0. Let
Qε be the F -ICC mechanism associated with pε. It follows Qε is F -IC, and so can apply
Lemma 8 to get the following inequality for every ε ∈ (0, pQ+ (θ∗) − pQ− (θ∗)) ,

0 ≥
∫

θ>θ∗
(θ − κ′ ◦ Q (θ)) (−ε) − ε (θ∗ − θ) dF (θ)

+ (F (θ∗) − F− (θ∗)) (θ∗ − κ′ ◦ Q (θ∗)) (pε (θ∗) − pQ (θ∗))

=
∫

θ>θ∗
(κ′ ◦ Q (θ) − θ∗) εdF (θ)

+ (F (θ∗) − F− (θ∗)) (θ∗ − κ′ ◦ Q (θ∗)) (pε (θ∗) − pQ (θ∗)) .
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Rearranging gives

∫
θ>θ∗

κ′ ◦ Q (θ) dF (θ) ≤ (1 − F (θ∗)) θ∗ (17)

+ (F (θ∗) − F− (θ∗)) (θ∗ − κ′ ◦ Q (θ∗))
(

pε (θ∗) − pQ (θ∗)
ε

)
.

We now distinguish between two cases. Suppose first pQ (θ∗) < pQ+ (θ∗). Then for all small
enough ε > 0, pε (θ∗) − pQ (θ∗) = 0, and so equation (17) is equivalent to (14). The lemma
then follows from Lemma 10. Suppose then pQ (θ∗) = pQ+ (θ∗). Then pε (θ∗)−pQ (θ∗) = ε.
Substituting into (17) and rearranging gives (15), and so again Lemma 10 delivers the desired
conclusion. □

Our next task is to show quality is inefficiently low at θ∗ when pQ is non-constant just
below θ∗ or just above θ∗. Towards this goal, we prove the following lemma that enables us
to move from one F -ICC mechanism to another.

Lemma 13. Suppose θ1, θ2 ∈ (θF , θ̄F ] are such that θ1 < θ2 and IF (θ1) = IF (θ2) = 0 and

that Q is F -ICC. Define δ = pQ (θ2) − pQ (θ1)

p̃ (θ) =


pQ (θ) if θ ≤ θ1

pQ (θ) − δ if θ ≥ θ2

pQ (θ1) if θ ∈ [θ1, θ2] .

Then p̃ is an F -shadow derivative. Moreover, the allocation Q̃ defined from p̃ using equation

(5) is well-defined.

Proof. The result follows immediately from pQ being an F -shadow derivative, and Q being
a well-defined F -ICC allocation. □

We now prove quality is inefficiently low at θ∗ whenever pQ is non-constant just below
it.

Lemma 14. Suppose θ∗ ∈ (θF , θ̄F ] satisfies pQ− (θ∗) = pQ+ (θ∗) and pQ− (θ∗) > pQ (θ)
holds for all θ < θ∗. Then (15) holds at θ∗ and κ′ (θ∗) < θ∗.

Proof. Suppose θ∗ satisfies the lemma’s premise. We begin by arguing that we can find a
sequence {θn}n∈N in

[
θF , θ̄F

]
such that θn ↗ θ∗, IF (θn) = 0 for all n, and pQ (θn) <

pQ (θn+1) for all n. We then use this sequence to construct a sequence of allocations that keep
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F incentive compatible for B. This allocation sequence, combined with Lemma 8 delivers a
sequence of first-order conditions whose limit delivers (15) at θ∗. That κ′ (Q(θ∗)) < θ∗ then
follows.

Let us find the sequence {θn}n∈N. For every δ > 0, pQ is non-constant on [θ∗ − δ, θ∗], for
if it was, pQ− (θ∗) = pQ (θ∗ − δ) < pQ− (θ∗). It follows we can find a sequence

{
θ̃n

}
n∈N

in

(θF , θ∗) with θ̃n ↗ θ∗ such that pQ

(
θ̃n

)
< pQ

(
θ̃n+1

)
for all n. It follows pQ is non-constant

on
[
θ̃m, θ̃n

]
for any m < n, and so every m < n admits some θm,n ∈

[
θ̃m, θ̃n

]
for which

IF (θm,n) = 0. Choosing θn := θ2n,2n+1, we have θn ↗ θ∗, and

pQ (θn) = pQ (θ2n,2n+1) ≤ pQ

(
θ̃2n+1

)
< pQ

(
θ̃2n+2

)
≤ pQ

(
θ2(n+1),2(n+1)+1

)
= pQ (θn+1) ,

meaning {θn}n∈N is as desired.
We now construct an F -ICC mechanism for every θn in the above sequence. For this

purpose, let δn = pQ (θ∗) − pQ (θn) > 0,

pn (θ) =


pQ (θ) if θ ≤ θn

pQ (θ) − δn if θ ≥ θ∗

pQ (θn) if θ ∈ [θn, θ∗] ,

and let Qn be the allocation induced by pn via (5). In view of Lemma 13, to argue Qn is
F -ICC, it is sufficient to argue IF (θ∗) = 0, because IF (θn) = 0. But IF (θ∗) = 0 is obvious,
since {θ : IF (θ) = 0} is closed (because IF is continuous), IF (θm) = 0 holds for all m, and
θn ↗ θ. Thus, Qn is F -ICC.

Our next goal is to apply Lemma 8 to get a first-order condition indexed by n. For this
purpose, observe

VQn (θ) − VQ (θ) =
∫ θ∗∧θ

θn∧θ

(
pQ (θn) − pQ

(
θ̃
))

dθ̃ − δn (θ − θ∗ ∧ θ) .
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Therefore, Lemma 8 delivers the following inequality for all n,

0 ≥
∫

θ≥θ∗
(θ − κ′ ◦ Q (θ)) (−δn) dF (θ) +

∫
θ∈[θn,θ∗)

(θ − κ′ ◦ Q (θ)) (pQ (θn) − pQ (θ)) dF (θ)

−
∫

θ≥θn

∫ θ∗∧θ

θn

(
pQ (θn) − pQ

(
θ̃
))

dθ̃dF (θ) −
∫

θ≥θ∗
−δn (θ − θ∗) dF (θ)

=
∫

θ≥θ∗
(κ′ ◦ Q (θ) − θ∗) δndF (θ) +

∫
θ∈[θn,θ∗)

(θ − κ′ ◦ Q (θ)) (pQ (θn) − pQ (θ)) dF (θ)

−
∫

θ≥θn

∫ θ∗∧θ

θn

(
pQ (θn) − pQ

(
θ̃
))

dθ̃dF (θ) .

Rearranging and noting that pQ (θn) ≤ pQ (θ) for all θ ≥ θn delivers

∫
θ≥θ∗

κ′ ◦ Q (θ) dF (θ) ≤
∫

θ≥θ∗
θ∗dF (θ) −

∫
θ∈[θn,θ∗)

(θ − κ′ ◦ Q (θ)) 1
δn

(pQ (θn) − pQ (θ)) dF (θ)

+
∫

θ≥θn

∫ θ∗∧θ

θn

1
δn

(
pQ (θn) − pQ

(
θ̃
))

dθ̃dF (θ)

≤
∫

θ≥θ∗
θ∗dF (θ) −

∫
θ∈[θn,θ∗)

(θ − κ′ ◦ Q (θ)) 1
δn

(pQ (θn) − pQ (θ)) dF (θ)

≤
∫

θ≥θ∗
θ∗dF (θ) +

∫
θ∈[θn,θ∗)

|θ − κ′ ◦ Q (θ)|
∣∣∣∣ 1
δn

(pQ (θn) − pQ (θ))
∣∣∣∣ dF (θ)

(18)

We now show taking the limit of equation (18) as n → ∞ delivers equation (15). To do so,
observe |pQ (θn) − pQ (θ)| ≤ δn for all θ ∈ [θn, θ∗), and that θ−κ′◦Q (θ) ≤ θ̄F +κ′◦Q

(
θ̄F

)
for all θ ∈ [θn, θ∗). Therefore, an M exists such that |θ − κ′ ◦ Q (θ)|

∣∣∣ 1
δn

(pQ (θn) − pQ (θ))
∣∣∣ ≤

M for all n. Substituting back into (18) and taking limit with n delivers

∫
θ≥θ∗

κ′ ◦ Q (θ) dF (θ) ≤
∫

θ≥θ∗
θ∗dF (θ) + M (F− (θ∗) − F (θn)) →

∫
θ≥θ∗

θ∗dF (θ) .

Hence (15) holds at θ∗, completing the proof in view of Lemma 10. □

We now replicate the argument behind Lemma 14, with some minor adjustments, to show
quality is inefficiently low at any θ∗ above which pQ is non-constant.

Lemma 15. Suppose θ∗ ∈ (θF , θ̄F ] satisfies pQ− (θ∗) = pQ+ (θ∗) and pQ+ (θ∗) < pQ (θ)
holds for all θ > θ∗. Then κ′ ◦ Q (θ∗) < θ∗ and (14) (and a fortiori (15)) holds at θ∗.

Proof. We begin by finding a sequence {θn}n∈N in
[
θF , θ̄F

]
such that θn ↘ θ∗, IF (θn) = 0

for all n, and pQ (θn) > pQ (θn+1) for all n. We then construct a corresponding sequence
of allocations that keep F incentive compatible for the buyer. This allocation sequence,
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combined with Lemma 8 delivers a sequence of first-order conditions whose limit delivers
(15) at θ∗. That κ′ ◦ Q (θ∗) < θ∗ follows from Lemma 10.

Let us find the sequence {θn}n∈N. Observe that for every δ > 0, pQ is non-constant on
[θ∗, θ∗ + δ], for if it was constant, pQ+ (θ∗) = pQ (θ∗ + δ) > pQ+ (θ∗). It follows we can find
a sequence

{
θ̃n

}
n∈N

in
(
θ∗, θ̄

)
with θ̃n ↘ θ∗ such that pQ

(
θ̃n

)
> pQ

(
θ̃n+1

)
for all n. To

define {θn}n∈N, observe pQ is non-constant on
[
θ̃m, θ̃n

]
for any m < n, and so every m < n

admits some θm,n ∈
[
θ̃m, θ̃n

]
for which IF (θm,n) = 0. Choosing θn := θ2n,2n+1, we have

θn ↘ θ∗, and

pQ (θn) = pQ (θ2n,2n+1) ≥ pQ

(
θ̃2n+1

)
> pQ

(
θ̃2n+2

)
≥ pQ

(
θ2(n+1),2(n+1)+1

)
= pQ (θn+1) .

Finally, observe IF (θ) = 0 and θ < θ̄ implies θ < θ̄F . Hence, because θn is strictly
decreasing, it has at most one element weakly above θ̄F , and so it is without loss to take
{θn}n∈N to be strictly below θ̄F , as desired.

We now construct an F -ICC mechanism for every θn in the above sequence. Let δn :=
pQ (θn) − pQ (θ∗) > 0. Define

pn (θ) =


pQ (θ) if θ ≤ θ∗

pQ (θ) − δn if θ ≥ θn

pQ (θ∗) if θ ∈ [θ∗, θn] ,

and let Qn be the allocation induced by pn via equation (5). We now argue Qn is F -ICC. In
view of Lemma 13, it is sufficient to show IF (θ∗) = 0, because IF (θn) = 0. But IF (θ∗) = 0
is obvious, since {θ : IF (θ) = 0} is closed (because IF is continuous), IF (θm) = 0 holds
for all m, and θn ↘ θ. Thus, Qn is F -ICC.

Our next goal is to apply Lemma 8 to get a first-order condition indexed by n. For this
purpose, observe

VQn (θ) − VQ (θ) =
∫ θn∧θ

θ∗∧θ

(
pQ (θ∗) − pQ

(
θ̃
))

dθ̃ − δn (θ − θn ∧ θ) .
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Therefore, Lemma 8 delivers the following inequality for all n:

0 ≥
∫

θ≥θn

(θ − κ′ ◦ Q (θ)) (−δn) dF (θ) +
∫

θ∈[θ∗,θn)
(θ − κ′ ◦ Q (θ)) (pQ (θ∗) − pQ (θ)) dF (θ)

−
∫

θ≥θ∗

∫ θn∧θ

θ∗

(
pQ (θ∗) − pQ

(
θ̃
))

dθ̃dF (θ) −
∫

θ≥θn

−δn (θ − θn) dF (θ)

=
∫

θ≥θn

(κ′ ◦ Q (θ) − θn) δndF (θ) +
∫

θ∈[θ∗,θn)
(θ − κ′ ◦ Q (θ)) (pQ (θ∗) − pQ (θ)) dF (θ)

−
∫

θ≥θ∗

∫ θn∧θ

θ∗

(
pQ (θ∗) − pQ

(
θ̃
))

dθ̃dF (θ) .

Dividing both sides by δn and noting that pQ (θ∗) ≤ pQ (θ) for all θ ≥ θ∗ delivers

0 ≥
∫

θ≥θn

(κ′ ◦ Q (θ) − θn) dF (θ) −
∫

θ∈[θ∗,θn)
(κ′ ◦ Q (θ) − θ)

(
pQ (θ∗) − pQ (θ)

δn

)
dF (θ)

≥
∫

θ≥θn

(κ′ ◦ Q (θ) − θn) dF (θ) −
∫

θ∈[θ∗,θn)
|κ′ ◦ Q (θ) − θ|

∣∣∣∣∣pQ (θ∗) − pQ (θ)
δn

∣∣∣∣∣ dF (θ) .

(19)

We now show taking the limit of equation (19) as n → ∞ delivers equation (14). To do so,
observe first 1[θn,∞) (θ) (κ′ ◦ Q (θ) − θn) converges pointwise to 1(θ∗,∞) (θ) (κ′ ◦ Q (θ) − θ∗).
Second, notice |pQ (θ∗) − pQ (θ)| ≤ δn for all θ ∈ [θn, θ∗), and that θ−κ′ ◦Q (θ) ≤ θ̄F +κ′ ◦
Q
(
θ̄F

)
for all θ ∈ [θn, θ∗). Therefore, an M exists such that |θ − κ′ ◦ Q (θ)|

∣∣∣ 1
δn

(pQ (θn) − pQ (θ))
∣∣∣ ≤

M for all n. Substituting these facts back into (19) gives

0 ≥
∫

θ≥θn

(κ′ ◦ Q (θ) − θn) dF (θ) −
∫

θ∈[θ∗,θn)
|κ′ ◦ Q (θ) − θ|

∣∣∣∣∣pQ (θ∗) − pQ (θ)
δn

∣∣∣∣∣ dF (θ)

≥
∫

1[θn,∞) (θ) (κ′ ◦ Q (θ) − θn) dF (θ) − M (F− (θn) − F (θ∗))

→
∫

1(θ∗,∞) (θ) (κ′ ◦ Q (θ) − θ∗) dF (θ) =
∫

θ>θ∗
κ′ ◦ Q (θ) dF (θ) − θ∗ (1 − F (θ∗)) .

where convergence follows from right continuity of F and Lebesgue dominated convergence
theorem. Hence, (14) holds. Appealing to Lemma 10 therefore completes the proof. □

We now complete the proof by considering the last remaining case: pQ is constant around
θ∗.

Lemma 16. Suppose θ∗ ∈ supp F is such that pQ is constant on [θ∗ − δ, θ∗ + δ] for some

δ > 0. Then κ′ ◦ Q (θ∗) < θ∗.

Proof. Let θ∗ = inf {θ ≥ θF : pQ+ (θ) = pQ (θ∗)} . We now argue (15) holds at θ∗. There are
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three cases to consider. If θ∗ = θF , the desired inequality follows from Lemma 11. Suppose
θ∗ > θF . Then pQ+ (θ) < pQ (θ∗) for all θ < θ∗, and so either pQ− (θ∗) < pQ+ (θ∗)—in
which case (15) follows from Lemma 12—or pQ− (θ∗) = pQ+ (θ∗) and pQ− (θ∗) > pQ (θ)
for all θ < θ∗ , and so (15) follows from Lemma 14. Either way, (15) holds at θ∗.

Taking θ̄∗ = (θ∗ + δ) ∧ θ̄F , let G := F
(
·|θ ∈

[
θ∗, θ̄∗

])
. We claim (15) holds for θ′ =

min (supp G). Clearly we are done if θ′ = θ∗. If θ′ > θ∗, then θ∗ < supp G, and so
F− (θ∗) = F (θ∗) = F− (θ′). We therefore have the following inequality chain:

(1 − F− (θ′)) θ′ > (1 − F− (θ′)) θ∗ = (1 − F (θ∗)) θ∗

≥
∫

θ>θ∗
κ′ ◦ Q (θ) dF (θ) =

∫
θ≥θ′

κ′ ◦ Q (θ) dF (θ) ,

where the weak inequality follows from (15) holding at θ∗— that is, (14) holds at θ′, and so
(15) holds as well (see Lemma 10).

If θ∗ = θ′, Lemma 10 delivers κ′ ◦ Q (θ∗) < θ∗, and so there is nothing left to prove.
Thus, we suppose θ∗ , θ′ from here on . Since θ∗ ∈ supp G, we must have θ∗ > θ

′ .
We now argue pQ is constant on

[
θ′, θ̄∗

]
. To do so, notice κ′ ◦ Q (θ′) < θ′ implies

Q (θ′) = Q+ (θ′) in view of Q being selected via Lemma 9. Hence,

pQ (θ′) = Q (θ′) − c′ (θ′) = Q+ (θ′) − c′ (θ′) = pQ+ (θ′) = pQ (θ∗) ,

where the last equality follows from θ′ ≥ θ∗. It follows pQ is constant on [θ′, θ∗] ∪ [θ∗ −
δ, θ̄∗) = [θ′, θ̄∗). Recalling θ̄∗ = min

{
θ̄F , θ∗ + δ

}
, it follows

pQ (θ∗) ≤ pQ

(
θ̄∗
)

≤ pQ+
(
θ̄∗
)

= pQ (θ∗) .

In other words, pQ is constant on
[
θ′, θ̄∗

]
.

Consider now the line segment connecting (θ′, πQ (θ′)) with (θ∗, πQ (θ∗)),

φ : [θ′, θ∗] → R,

θ 7→ πQ (θ′) +
(

πQ (θ∗) − πQ (θ′)
θ∗ − θ′

)
(θ − θ′) .

We claim φ (θ) ≥ πQ (θ) for all θ ∈ [θ′, θ∗]. Obviously, φ (θ) = πQ (θ) whenever θ ∈
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{θ′, θ∗}. For θ ∈ (θ′, θ∗), we get the following inequality,

φ (θ) =
(

θ∗ − θ

θ∗ − θ′

)
φ (θ′) +

(
θ − θ′

θ∗ − θ′

)
φ (θ∗)

=
(

θ∗ − θ

θ∗ − θ′

)
πQ (θ′) +

(
θ − θ′

θ∗ − θ′

)
πQ (θ∗) ≥ πQ (θ) ,

where the inequality follows from Lemma 2 part 1, which applies because pQ is constant on[
θ′, θ̄∗

]
.

Next, we show
(

πQ(θ∗)−πQ(θ′)
θ∗−θ′

)
is strictly positive. For this purpose, fix any ϵ ∈ (0, θ∗ − θ′).

Observe

Q (θ′ + ϵ) − Q+ (θ′) = Q (θ′ + ϵ) − Q (θ′) = c′ (θ′ + ϵ) − c′ (θ′) ,

because pQ is constant on
[
θ′, θ̄∗

]
. It follows Q′

+ (θ′) = c′′ (θ′), delivering the following
inequality chain,

(
πQ (θ∗) − πQ (θ′)

θ∗ − θ′

)
= 1

ϵ
[φ (θ′ + ϵ) − φ (θ′)]

≥ 1
ϵ

[πQ (θ′ + ϵ) − πQ (θ′)]

= 1
ϵ
θ′ (Q (θ′ + ϵ) − Q (θ′)) − 1

ϵ
[κ ◦ Q (θ′ + ϵ) − κ ◦ Q (θ′)]

+ Q (θ′ + ϵ) − 1
ϵ

[VQ (θ′ + ϵ) − VQ (θ′)]

→ (θ′ − κ′ ◦ Q (θ′)) c′′ (θ′) > 0,

where convergence follows from the chain rule and V
′

Q+ (θ′) = Q+ (θ′), and the strict in-
equality from c being strictly convex.

We now turn to establishing κ′ ◦Q (θ∗) < θ∗, thereby concluding the proof. Towards this
goal, notice again that for any ϵ ∈ (0, θ∗ − θ′),

Q (θ∗) − Q (θ∗ − ϵ) = c′ (θ∗) − c′ (θ∗ − ϵ) .

because pQ is constant on
[
θ′, θ̄∗

]
. Therefore, Q′

− (θ∗) = c′′ (θ′). We therefore obtain the
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following inequality chain,

0 <

(
πQ (θ∗) − πQ (θ′)

θ∗ − θ′

)
= 1

ϵ
[φ (θ∗) − φ (θ∗ − ϵ)]

≤ 1
ϵ

[πQ (θ∗) − πQ (θ∗ − ϵ)]

= 1
ϵ
θ∗ (Q (θ∗) − Q (θ∗ − ϵ)) − 1

ϵ
[κ ◦ Q (θ∗) − κ ◦ Q (θ∗ − ϵ)]

+ Q (θ∗ − ϵ) − 1
ϵ

[VQ (θ∗) − VQ (θ∗ − ϵ)]

→ (θ∗ − κ′ ◦ Q (θ∗)) c′′ (θ∗) ,

where convergence follows from the chain rule and V
′

Q− (θ∗) = Q− (θ∗). Since c′′ (θ∗) > 0,
the above inequality implies κ′ ◦ Q (θ∗) < θ∗, as required. □
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