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Abstract. This paper studies the provision of an essential good with time-varying uncertain

stochastic demand and capacity-constrained producers such as electricity. Due to price

regulation, public good externalities, and market power, investments are typically under-

procured by private agents. To restore efficient investment level, we analyze the design of

reservation markets where producers can sell their capacity availability before the demand is

known. While their direct effect on investment decisions is well known, we focus on indirect

effects generated by their implementation, namely how the capacity price is allocated on the

demand side and how the realized demand is accounted for in the market design. We develop

a novel approach to studying the reservation market’s interdependencies and the subsequent

production and retail markets for the essential good. We provide a sequential analytical

model of the three markets and describe how different market design regimes can indirectly

affect the equilibria in the production and retail markets in terms of prices, investment level,

and welfare. In particular, we demonstrate that the ability of the reservation market to

restore the social optimum, or at least to reach a second-best optimum, crucially depends

on the different design regimes of the reservation market, on the assumptions of policy

interventions, and the various market inefficiencies. The model results and the associated

policy implication are discussed first using a general framework and then in reference to

electricity markets where capacity reservation is often used to ensure adequate investment

to ensure the security of supplies.
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1 Introduction

For some essential goods with demand varying over time, wholesale markets’ private incentives

are not sufficient to ensure that producers make enough investments to meet peak demand in

advance of the time when the peak demand materializes.4 In such industries, due to the critical

importance of these goods, policymakers tend to intervene and implement price caps or other types

of regulation that distort the price signal and undermine investment incentives.5 Moreover, these

goods can be characterized as public goods, and they may exhibit externalities, for instance, a

cold wave with peak electricity demand or a pandemic with peak demand for medicine or medical

equipment.6 In such circumstances, the absence of adequacy between the capacity and the peak

demand, combined with the difficulty of implementing efficient rationing, leads to high costs for

society.7

One solution to restore the optimal level of investment lies in implementing a mandatory reser-

vation market in which producers commit to having capacity available to meet the expected peak

demand collectively, as prescribed by the regulator.8 On the supply side, each participating pro-

ducer makes a price-quantity offer for a capacity. If a producer sells capacity in this reservation

market, he receives a capacity price and commits to being available to produce over future periods.

4This framework fits into the more general analysis of industries in which a form of competition follows long-run
investments, such as electricity markets (De Frutos and Fabra, 2011), communication network (Acemoglu et al.,
2009), or radio spectrum (Yan, 2020)

5Policy interventions such as price caps and non-economic distortions made by a public entity lead to a Missing
Money issue that prevents sufficient revenue from being collected to cover costs (Joskow and Tirole, 2007). The
effect of price cap regulation was illustrated during the COVID-19 crisis in Italy when the government introduced
a 50-cent cap on sales price per mask, which eliminated the incentives to reconvert plants or increase production
(Fabra et al., 2021).

6This inefficiency is associated with the existence of a Missing Market issue under which producers consider their
revenue insufficient to invest optimally (Newbery, 2016). This can be caused by hedging markets being incomplete
(De Maere d’Aertrycke et al., 2017), or because of externalities associated with the public-good nature of investment
and consumption choices (Holmberg and Ritz, 2020), innovation spillovers, and climate change.

7The COVID-19 crisis offers a recent example of systemic cost induced by the lack of productive capacity. The
subject is well known in the electricity sector while remaining current, as illustrated by blackouts experienced in
China and Texas. Congestion in transport infrastructure can also be directly linked to the discussion in this paper.

8Current implementations of such mechanisms have been the prerogative of the electricity sector under the name
capacity remuneration mechanism, see for instance Doorman et al. (2016) for a technical description of potential
implementations. However, the current pandemic prompted interest in setting up such mechanisms for vaccine
supply. For instance, in Ahuja et al. (2021) they study the implementation of a capacity price for the procurement
of vaccines and state that ”to accelerate the vaccine delivery timetable, buyers should directly fund manufacturing
capacity”. Ockenfels (2021) proposes a hybrid mechanism that combines a capacity mechanism with guaranteed
prices.
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While the supply emerges naturally on those markets, the demand requires a regulatory inter-

vention. Indeed, the public-good nature of investment during high-demand periods implies that

consumers are unwilling to buy capacities in reservation markets.9 Hence, the regulator must de-

fine the demand function administratively, so the market clears and provides producers’ capacity

prices. This paper establishes a framework describing the economic impacts of different demand

designs for reservation markets and their policy implications. We focus on two interrelated ques-

tions that relate to (i) the cost allocation regime between capacity buyers and final consumers; and

(ii) the degree to which the final consumers realized demand is accounted in the market allocation

design.10 In this paper, we first describe the channel through which each possible regime impacts

the equilibrium on the demand side and ultimately how it changes investments decisions. Then, we

demonstrate how those indirect effects constrain the regulator in choosing the first best economic

level. In other words, our model allows analyzing the endogeneity between the welfare-maximizing

market outcome that regulators aim to restore through their intervention and the design of the

reservation market implemented.

The direct effect of an additional stream of remuneration on investment decisions is well under-

stood. The current literature covers a significant range of issues : (i) the outcomes in investment

decisions with and without reservations markets, (ii) the effect of market power on the capacity

price determination, (iii) the relation with risk and business cycle (iv) the discrimination between

different investment technologies.11 However, to our knowledge, there has been no formal analy-

sis of different reservation markets’ demand designs, the incentive properties of these alternative

approaches, and their ability to restore the socially optimal level of investment beyond the di-

9The absence of a ’spontaneous’ demand function has similar roots as the Missing Money issue previously
discussed. Transaction cost and asymmetric information prevent adequate transactions up to the optimal level; see
for instance Keppler et al. (2021) for a discussion in electricity markets. The insurance of having enough capacity
has a private value (how much each consumer is willing to pay to avoid inadequacy) but also a social value, as
an increase in investment reduces the probability of systemic costs (Fabra, 2018). Furthermore, it is sometimes
technologically, socially, and economically impossible to know the willingness to pay for this insurance.

10We also use interchangeability term ex-post temporality, as reservations market are set ex-ante before demand
is known; as well as the term capacity demand allocation. At the same time, while this is out of the scope of this
paper, the dynamic nature of the provision of an essential good is central. It includes the decision to invest, which
can span from many years to a few months, and the decision to consume the good. For instance, in electricity and
vaccines, the good is almost immediately consumed. On the other hand, medical equipment, intensive care units,
strategic energy reserves, or human capital are more durable goods.

11See Bublitz et al. (2019) for a detailed literature review on the theory and implementations issues of reservation
markets.
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rect effect of the increase of the marginal investment value due to the additional capacity price.12

Scouflaire (2019) is the first paper to represent retailers’ strategies in the reservation market. She

develops a theoretical model to analyze the preferences regarding information precision for uncer-

tain future demand. Contrary to our approach, she models heterogeneous price taker producers

and homogeneous buyers competing for à la Cournot under uncertainty on their level of capacity

obligation. In this paper, we take a step back from the direct price-setting approach and develop

a model that sheds light on the complex interactions between the reservation market design and

the incentives of producers and retailers. Our model provides some new and non-intuitive insights

on their incentive properties and their ability to restore the socially optimal (welfare-maximizing)

level of investment

We start our analysis with the canonical benchmark model for non-storable goods characterized

by time-varying demand, which describes the relationship between short-term production and long-

term investment decisions.13 Producers make long-run investments in a single technology in the

upstream market in order to be able to produce a homogeneous good subsequently, given an

uncertain future demand. Then, the downstream retailers aggregate and resell the goods at no

cost to the final consumers. Therefore, our model contributes to the literature by extending the

analysis of investment decisions in multiple periods where producers face an uncertain demand

when choosing the investment level. We introduce a price cap regulation which can be interpreted

as representing the effect of different types of market distortions induced by a range of market

failures and regulatory interventions, which are typical for such essential goods and can take the

form of price caps or regulations with a similar effect on price dynamics in practice.14 Such a

12On the other hand, the importance of the demand function design in the reservation market is well known. See
for instance, Hobbs et al. (2007) and Bushnell et al. (2017) Fabra (2018) Brown (2018). However, those papers still
only consider the effect of the reservation market directly on the supply side, while our paper underlines the indirect
effect of this instrument on retailers and consumers, which in turn impacts producers.

13This model was first developed in a regulated context by Boiteux (1949) for the electricity sector; it was then
extrapolated to a market with private producers by Crew and Kleindorfer (1976). This model is widely used
primarily to highlight the risk of underinvestment in production capacity.

14In their seminal paper, Joskow and Tirole (2007) demonstrate that wholesale markets with a price cap cannot
lead to the first-best solution. Following this approach, which also serves as a reference model in our paper, Zöttl
(2011) developed a theoretical result on investments under Cournot oligopoly with discrete investment and a price
cap. Using the same model, Léautier (2016) showed that market power from producers could also be a significant
cause of underinvestment. He also introduces a reservation market in the benchmark model where producers can
exercise market power. This paper serves as our reference for our implementation of the reservation market.
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price cap reduces expected revenues of producers and undermines investment compared to the

level needed to reach the welfare-maximizing level of installed capacity.

An annex contribution of our model to the literature lies in constructing the supply function in

the reservation market. To ensure the endogeneity of the investment decisions and the emergence

of equilibrium in the three markets in our model, we derive an endogenous supply function in

the reservation market. Namely, following the main theoretical view for reservation markets15,

we assume that producers offer their marginal opportunity cost of providing additional capacity.

This opportunity cost equals the marginal loss of revenue incurred by the investment level beyond

the profit-maximizing equilibrium. Our modeling proposition is central as any indirect effects

generated by the reservation market can affect the expected revenue made by the producers and

can indirectly be captured during the formation of the supply function in the reservation market.

The first market design regime studied is the canonical reservation market. We build on the

previous literature, and the design found in Léautier (2016) and Holmberg and Ritz (2020) which

relies on the assumption that the reservation market does not have any effect beyond increasing the

investment level. Following the approach of our paper, this canonical regime is similar to the cost

passthrough using a lump-sum tax. In this case, and even when considering the endogenous supply

function in the reservation market, this market design always restores the first-best optimum given

the system inefficiencies. Namely, providing that the demand function is intersecting the supply

function at the optimal level,16 the equilibrium price in the reservation market and the suboptimal

price in the subsequent markets is always equal to the price in an optimal system without price

cap.17

We then investigate the case in which the reservation price impacts the consumers at the margin.

In this case, the regime is similar to allocating the capacity price as a Pigouvian unitary tax. We

show that the existence of the reservation market indirectly modifies the provision of the essential

good on the wholesale market by redistributing the different states of the world between off-peak

15See for instance Creti and Fabra (2007)
16In this paper and unlike Hobbs et al. (2007), we do not analyze the risk of having regulatory errors.
17We also demonstrate that this result also holds for other types of inefficiencies. With the price cap, the

equilibrium reservation price equals the expected lost revenue. In the case of capacity as a public good, the price is
equal to the difference between the private value of the investment and its social value.
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and on-peak periods18, and by lowering consumers surplus. Therefore, we demonstrate that the

first-best outcomes under this regime are always lower than under the canonical regime.

In the first extension, we analyze a second inefficiency. When the price cap is reached, the

investment availability becomes a public good as the demand becomes inelastic. Due to the impos-

sibility of efficiently rationing consumers, they incur a significant welfare loss.19 This additional

assumption regarding the inefficiency of wholesale-only market design has significant implications

for the design of the reservation demand function. Indeed under this new assumption, we find

that the indirect effect created by allocating the capacity price on a unitary basis is now ambigu-

ous for social welfare. Under specific parameters value, the reservation market can bring more

social welfare at the first-best level than the initial allocation regime or the optimal wholesale-only

market.

As a third step, we extend our analysis to implementing a regime where the regulator allocates

the cost based on actual retailers’ market shares. It allows us to introduce the ex-post temporality

in the current analysis, where the design of reservation markets considers the realized demand and

analyzes the effect of retailers’ market power in the model. We first show how this design affects

at the margin the retailers who play ’à la Cournot ’ on the retail market, and then we integrate

the new equilibrium into our model with investment decisions and the reservation market. We find

that this allocation creates an intermediary outcome between the unitary tax and the lump-sum

tax while having significant redistributional properties. Finally, we can also study the effect of the

retail market structure on the equilibrium outcomes of the model.20 Depending on the assumptions

with respect to the model parameters and the inefficiencies assumptions, we find that lowering the

number of retailers can provide additional social welfare.

18That is when the capacity does not bind and binds.
19Using the same initial model Holmberg and Ritz (2020) showed that additional capacity payment is necessary

when the system includes the public-good nature of the investments. Indeed, the inadequacy between capacity and
consumption generates negative externalities. Hence, to fully internalize the effect of the capacity inadequacy, it is
necessary to generate an adder on the wholesale price. We also use in this paper the same representation of the
public-good nature of the investment. This effect of a price cap is also closely related to the concept of reliability
externality described by Wolak (2021).

20We do not consider market power on the supply side in our paper, as it is well documented in the literature,
see for instance Zöttl (2011) and Leautier (2018) for its effect on investment decision with a price cap, see Léautier
(2016) for its effect with a reservation market.

6



Finally, we analyze the case of a reservation market entirely based on the realized demand

level. To do so, retailers are obliged to cover their quantity sold on the retail market by buying

directly on the reservation market, given a penalty system. We focus on how retailers’ individual

strategies can form an aggregated demand function in the reservation market, and we analyze the

optimal capacity bought by retailers in the reservation market. We find that such an approach for

the demand function can provide the optimal level of investment under specific conditions. The

market equilibrium under this regime relies on the marginal value a capacity brings to retailers’

profit which also depends on the market structure in the retail market, the consumers’ demand

function, and the penalty system.

We finally discuss the policy relevance of our findings in reference to electricity markets where

capacity reservation is often used to ensure adequate investment to ensure the security of supplies.

We conclude by reviewing future potential extensions of our work.

We provide in Section 2 a reminder of the benchmark model that describes investment decisions

in generation capacity. In the same section, we implement the reservation market and build the

theoretical supply function. Then, we model the market designs for the demand function in Section

3 for the different cost passthrough regimes and Section 4.2 for the different ex-post temporality

regimes. The closed-form solution and the numerical application are presented in Section 5. To

conclude, we discuss possible extensions of the model in Section 6.

2 Benchmark model

2.1 Assumptions

We consider an initial economic system with three agents: producers, retailers, and final consumers.

Producers invest in capacities to produce a homogeneous good. They sell the goods on a wholesale

upstream market to retailers. Then, retailers resell it on a downstream retail market to consumers.

Model stages. The model has three stages. First, producers choose the level of investment.

Second, the wholesale market clears. Third, the retail market clears. We assume the final con-
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sumers’ demand is uncertain for all agents when making investment decisions. On the other hand,

the demand is known when the producers and retailers sell the goods. Those two stages can be

interpreted as a repetition of multiple states of the world over a given period (for example, one

year), drawn from the distribution Leautier (2018).

Investment decision Wholesale market Retail market

Uncertain

expected demand
Realized demand

Producers. We assume perfect competition on the supply side. Producers use a single tech-

nology to produce the good. It is characterized by a variable unitary cost c and a fixed unity

investment cost r. We normalized the capacity level, so one unit of capacity allows to produce one

unit of the good. The level of capacity installed is k.

Retailers. Retailers compete à la Cournout to resell the goods to final consumers but do not

behave as an oligopsony in the wholesale market. The imperfect competition is modeled using a

finite number of retailers n. We model the retail as perfectly competitive for some parts of the

paper to keep the analysis tractable (i.e., n→∞). The use of a finite number is always explicitly

indicated. We assume that retailers incur no cost when reselling from the wholesale market to the

retail market apart from the wholesale price 21.

Demand. On the retail market, final consumers, are characterized by the following assump-

tions:

• They have the same individual uncertain demand with an aggregate demand D(p, t), t being

the state of the world. The demand uncertainty is characterized by a distribution function

f(t) and a cumulative distribution function F (t). The inverse demand function is p(q, t),

with q the quantity sold on the retail market 22, such as D(p(q, t), t) = q. For convenience,

21Therefore, perfect competition implies that prices are strictly equal in the wholesale and the retail market
22We assume the quantity sold on the retail market is strictly the same quantity asked on the wholesale market

as storage is not available.
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we assume that ps(q, t) is the price on the wholesale market, and p(q, t) is the price on the

retail market.

• The demand function have the following properties 23: ∀t ∈ [0,+∞) (i) pt(q, t) > 0 (states of

the world are ordered), (ii) pq(q, t) < 0 (decreasing price with respect to q) (iii) pq(q, t)+qpqq <

0 (decreasing marginal revenue with respect to q) (iv) pt(q, t) + qpqt(q, t) > 0 (increasing

marginal revenue with respect to t) and (v) lim
q→+∞

p(q, t) < c (prices can be below the marginal

cost for some t ).

To ensure producers invest in capacities we need additional conditions: p(0, t) > c+ r ∀t and

lim
q→0

p(q, t) < c.

2.2 Optimal investment decision

We now describe the three stages in reverse order. We define the equilibrium in each stage and

find the final optimal level of investment by backward induction.

Third stage - Retail market. We assume that symmetric retailers can act strategically in

the retail market, and they take the wholesale price as given. The retailer’s profit made on the

retail market is: πri (t) = qi(p(q, t)− ps(q, t)). The first-order condition gives the equality between

the marginal revenue and the marginal cost. Thus, the inverse demand function of retailers on the

wholesale market is a downward rotation at the intercept of the final consumer demand function :

ps(q, t) = p(q, t) +
q

n
pq(q, t)

When the retail market is perfectly competitive, we have straightforwardly : ps(q, t) = p(q, t)

Second stage - Wholesale market. Producers know the final consumer demand at this stage,

so the retailers’ inverse demand function is certain. The price is determined by the investment

23For most of the functions f(x, y), fx(x, y) = ∂f
∂x

(x, y), fxx(x, y) = ∂2f
∂x2 (x, y),fxy(x, y) = ∂2f

∂x∂y
(x, y)
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level k chosen during the first stage. We assume perfectly competitive producers, so when k is not

binding, the price is equal to the marginal cost c (off-peak periods). When k is binding, the price

has to rise above marginal to ensure that supply equals demand (on-peak periods). We denote

t0(k) the first state of the world when capacity is binding, that is, when the price at the capacity

level is equal to the marginal cost: ps(k, t0(k)) = c. We also define q0(t) as the quantity bought by

final consumers when the retail price is equal to the marginal cost, such as ps(q0(t), t) = c. During

off-peak periods, when t0(k) ≥ t, the price on the wholesale market is the marginal cost c and the

price on the retail market is equal to p(q0(t)). During peak periods, when t > t0(k), the demand

function determines the price with p(k, t)+ k
npq(k, t) the price on the wholesale market, and p(k, t)

the price on the retail market.

First stage - Investment decisions. At this stage, final consumer demand is unknown, so is

the wholesale and retail price. We find the optimal first-best24 investment level k∗ by maximizing

the social welfare given in the following equation:

W (k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (1)

2.3 Market equilibrium

Essential goods are characterized by inefficiencies that prevent the market investment from reach-

ing the first-best economically efficient. Two main reasons why private investors do not provide

sufficient capacities: (1) the revenue collected on the market is insufficient to cover their produc-

tion and investment costs, (2) prices do not consider the positive externalities implied by their

availability during high demand periods. For the first rationale, we derived the inefficiency that

typically characterized essential goods such as electricity: the suboptimality of the wholesale price

modeled via a price cap25. In some extensions of the following sections, we present two other

24We use the term first-best, socially optimal and welfare-maximizing interchangeably.
25This modeling approach can represent both an explicit price cap and an implicit one. In the latter case, political

interventions due to the essential nature of the good can artificially alter the price. For instance, when the power
system operator needs to carry out technical interventions to avoid system failures.
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rationales: the public-good nature of capacity during peak-demand level and a concentrated retail

market represented via retailers’ market power.

The market outcome in terms of investments is found by estimating the expected rent φ(k).

This rent is the net marginal revenue made on the wholesale market when the capacity is binding,

which is the difference between the wholesale price and the marginal production cost. The following

equation gives the expected unitary rent:

φ(k) =

∫ +∞

t0(k)

(ps(k, t)− c) f(t)dt (2)

The market investment level k̄ of investment under imperfect competition framework is found

by solving: φ(k) = r. Under perfect competition on the retail market we have k∗ = k̄.

We implement a price cap denoted pw. In order to create inefficiencies, the price cap must be

binding for some states of the world, so it needs to be below the highest price during the highest

demand period; pw < lim
t→∞

ps(0, t). However, to allow for investment, we also need that the price

cap to be above the total unitary cost: pw > r+c Leautier (2018). Following the previous analysis,

we introduce a second threshold tw0 (k). It is the first state of the world when the price cap is binding,

that is, when the price at the capacity level is equal to the price cap: ps(k, tw0 (k)) = pw. We also

define qw0 (t) the quantity bought by retailers (or consumers under perfect competition) when the

price is equal to the marginal cost, such as ps(qw0 (t), t) = pw. The price cap does not change

the social welfare function equal to W (k) as it only redistributes surpluses between consumers,

producers, and retailers. We find the investment level quantity by estimating the expected rent.

The following equation defines this rent. It is shared between the states of the world when prices

are above the marginal cost and below the price cap and when prices are above the price cap. The

conditions on pw relatively to the marginal cost c ensure that tw0 (k) ≥ t0(k).

φw(k) =

∫ tw0 (k)

t0(k)

(ps(k, t)− c) f(t)dt+

∫ +∞

tw0 (k)

(pw − c) f(t)dt (3)
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We find the level of capacity installed in the system given the price cap kw by solving: φw(k) = r.

The following reservation shows that a price cap in the wholesale market lowers the investment

level and increases inefficiency.

Lemma 1. A binding price cap leads to a lower installed capacity compared with the optimal

investment level given by the social welfare maximization: kw ≤ k∗ ∀pw ∈ [c + r, lim
n→∞

p(0, t)[.

The optimal capacity payment zw(k) is equal to the expected difference between what should have

been the wholesale price and the price cap when it is binding :

zw(k) =

∫ +∞

tw0 (k)

(ps(k, t)− pw)f(t)dt (4)

Proof. See Appendix

2.4 The supply curve on reservation markets

We set in place a reservation market to encourage producers to increase their investment. On the

demand side, we assume in this subsection that the demand function regime in the reservation

market is unspecified. We denote its inverse demand function pc(k) with k the level of capacity

offered in the reservation market, the demand function is Dc such as Dc(pc) = k. pc(k) should be

decreasing in k and defined as pc(.) is twice derivable.

Léautier (2016) defines the equilibrium conditions for the reservation market and the supply

side: first, there are no short sells, meaning that producers cannot sell more capacity than they

own. Second, it is optimal for producers to offer all their capacities if the first condition holds.

Finally, decision timing does not matter given our current setting: results still hold if the reservation

market is set before or after the investment decision as long as it is before final consumers’ demand

is known.

We build the supply function based on the assumption that producers offer their marginal

profit loss associated with the reservation market’s participation. It is the common approach in the

literature as it represents the cost of investing beyond the optimal capacity level. However, to our

best knowledge, this is the first time a supply function in a reservation market is directly modeled
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using the benchmark framework. As we assume perfect competition in the wholesale market

compared to Léautier (2016), and Zöttl (2011), there is no marginal effect of capacity choices on

the rent.26 The full profit with a reservation market for a producer is: πsi (k) = φ(k)ki−rki+pc(k)ki.

Under perfect competition, the first-order condition gives: φ(k) − r + pc(k) = 0. Therefore, the

reservation market’s supply function equals the marginal cost associated with the deviation from

the market investment level k0, which would have been made without the reservation market.

Proposition 1. We denotes the supply function X(k) and the inverse supply function X−1(pc)

such as X−1(X(k)) = k. Following a marginalist approach, the supply function on the reservation

market is defined as follow :

X(k) =

0 if k ≤ k0

r − φ(k) k > k0

(5)

Proof. See Appendix

Below k0, the marginal cost is positive, and the supply is null. Indeed, as the wholesale market’s

profit function is concave, any marginal revenues on the left side of the optimum are above the

marginal cost of r. The marginal revenue is below the marginal cost on the right side of the optimal

investment level. Therefore any deviation to the right creates a positive opportunity cost.27

26Indeed, under perfect competition, the rent appears only when total capacity is constraining. Under imperfect
competition on the supply side, the rent also exists due to market power and can appear before the total capacity
is binding.

27Our approach to the supply function in the reservation market is similar to the theory of supply function
equilibria where bidders offer a function such as each point on this function maximizes their profit/utility Green
and Newbery (1992). In our paper, the supply function in the reservation market is built such that each producer
is indifferent between providing their investment market equilibrium or any investment on the curve in return for
the corresponding capacity price.
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3 Capacity cost allocation design

3.1 Exogenous ex-ante requirements

We start our analysis of the demand function specification by assuming a capacity demand in

which a single entity determines the whole demand of capacity in the reservation market28. To do

so, she needs to forecast the future expected demand of final consumers first, and then she builds

the demand function in the reservation market. Finally, she transfers the purchasing cost to the

retailers using an exogenous ratio or directly to consumers via a lump-sum tax. This assumption

corresponds to the traditional approach used in the literature on the reservation market. We call

this market design the exogenous ex-ante regime because (i) the allocation of capacity costs does

not depend, for instance, on retailers’ realized strategy but rather on exogenous factors such as

their past market share (ii) the design does not depend on realized demand for the final good. In

other words, this regime only describes the reservation markets’ direct effect via the incentive to

invest by the capacity price. There is no effect on the final demand because this remuneration

is simply a surplus transfer from consumers to producers. This approach’s result is that the

capacity price equals the optimal payment, allowing to restore an optimal level of capacity when

the vertical demand function for capacity is calibrated to k∗ is and whatever the type of inefficiency

is considered 29. This result is described in the following Proposition and implies that the cost

of a reservation market is strictly equal to the transfer necessary to restore the optimal level of

capacity.

Proposition 2. Assuming that

1. Producers do offer the marginal opportunity cost on a reservation market (see eq. 5), and

2. The demand function is designed such that the clearing quantity is equal to the optimal level

of investment, and

3. The underinvestment is caused by the price cap

28We do not make any assumptions on the identity or on the role of the capacity buyer in this section as it is
outside the scope of this paper.

29We demonstrate in the Appendix that the Proposition can be expanded to the inefficiencies created by retailers’
market power and by the public-good nature of capacities.
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Then the clearing price is always equal to the optimal payment needed to restore efficiency.

Proof. See Appendix

This result highlights the discussion between implementing a price or a quantity instrument

to resolve the market inefficiencies or constraints Weitzman (1974); Holmberg and Ritz (2020).

We show in this Proposition that the outcome of the reservation market is strictly equivalent to a

capacity price set by the regulator. Under this regime, the exogenous ex-ante approach is optimal

because it gives the right investment level given the inefficiencies.

Our model can also provide some comparative statics on the capacity price given the specifica-

tion of section 6. For instance, when only the price cap is considered in the model, the results are

intuitive and in line with previous works, with the capacity price being always positively impacted

by an increase of the demand intercept or by the product costs (variable and fixed), while the price

cap has a negative effect.

3.2 Endogenous ex-ante requirements

We now introduce an indirect effect of the reservation market demand function. It implies that the

capacity prices marginally impact the final consumer demand via capacity allocation. To compare

with the previous setting without this indirect effect, the first previous case can be understood

as an increase of the fixed part in a two-part tariff (or a lump sum tax), while the second case

in this subsection can be understood as an increase of the variable part (or a unitary tax). The

central idea is to enhance our understanding of an optimal investment level given a market design

by highlighting this effect. In this case, the first-best solution is endogenous to the market design

implemented to reach this first-best. We use a similar approach of the impact of a tax on a partial

equilibrium model to illustrate this endogenous effect on investment decisions. We demonstrate
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the existence of the indirect effect by repeating the steps of the previous model and using backward

induction.

Fourth stage - Retail market. Fourth stage - Retail market. Let pc(k) be the capacity price

adder for final consumers, identical to a unitary consumption tax. The final consumers demand

function shifts to the left with its new value equal to: ps(q, t) − pc(k). k is still the quantity

bought on the reservation market by the entity at a price pc(k). We denote t1(k) and q1(k) the

new thresholds for respectively the states of the world between on-peak/off-peak periods such that

ps(k, t1(k)) − pc(k) = c, and the quantity such as prices are equal to the marginal cost such that

ps(q1(t), t)− pc(k) = c.

Third stage - Wholesale market Third stage - Wholesale market While the demand is

always lower or equal to the initial demand function, the impact on the expected social welfare is

not trivial. The following Proposition summarizes the main insight and states that the new welfare

function is always lower or equal to the exogenous case.

Proposition 3. Allocating the capacity price as a unitary tax only affects the share between on-peak

and off-peak periods and the surplus’s size during off-peak periods. Namely, only the occurrence of

the two periods t0(k) and the intersection between the demand function and the marginal cost q0(t)

change, the welfare function becomes:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk

Proof. See Appendix

We can rewrite the equation by showing the initial welfare function without endogeneity:

W (k)−W1(k) = ∆W1(k). With

∆W1(k) =

∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt+

∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt > 0
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The first part of ∆W1(k) represents the loss when it is off-peak periods for both cases (indeed we

have t0(k) ≤ t1(k) as lower demand always means a higher chance of being off-peak): the consumers

fully support the loss as producers receive the marginal cost. The second part represents the loss

when the capacity level is such that it is an off-peak period with the endogenous case and an on-

peak for the other case. Therefore, the loss is shared between consumers and producers, the former

sustaining a higher price and receiving a lower margin. Note that there is no loss when both cases

are in peak periods, as the quantity on the market is strictly equal to the capacity installed. This

last remark is particularly interesting because recovering the capacity cost allocation only during

peak periods does not generate a deadweight loss. Considering the price cap does not change the

previous overall Proposition, as the price cap is binding only when both periods are on-peak. That

is when no loss is generated.

The following reservation concludes on the new optimal investment level given this endogenous

regime. It has a strong implication as we state that this regime also modifies the objective for

the regulator in terms of final investment level. Moreover we find that the endogenous regime is

always worse than the exogenous regime regarding social welfare.

Lemma 2. The new first-best solution in terms of investment level under the endogenous regime

defined as k∗1 = max
k

W1(k) is always lower or equal to the first-best solution under the exogenous

level k∗. In terms of welfare analysis, the social welfare at the optimal investment level W1(k∗1)

is always lower or equal to the social welfare at the optimal investment level under the exogenous

regime W (k∗).

Proof. See Appendix

The result stems from the analysis of the derivative of ∆W1(k) with respect to the level of

investment k, which is always positive. We now provide some comparative statistics on the differ-

ence between the two welfare function ∆W1(k) for the model specification. By construction, the

comparative statistic for the difference between the welfare has the same effect on the new first-best

solution in terms of investment level. We demonstrate that the price cap and the demand intercept

always have a negative effect on ∆W1(k). An increase of the price cap reduces the need for the

17



capacity payment through the negative value of the derivative of q1(t), with respect to the price

cap, hence the endogenous effect off the cost allocation. At first sight, a higher demand through

the demand intercept has an ambiguous effect on the difference. An increase in its value increases

the need for capacity, which also increases the payment.

On the other hand, it has a decreasing effect that materializes through the derivative of q1(t).

We find that the second effect always dominates the first, hence the net decreasing effect of the

demand intercept on the difference. Finally, an increase in the producer’s cost (fixed and variable)

always increases the delta, making the investment less profitable.

We continue the analysis of the endogenous regime by defining the main equilibrium variables

of the economic system.

Second stage - Investment decisions Producers make their investment decision based on the

expected net revenue, which is composed of the expected rent and the capacity revenue. The net

revenue is similar to the exogenous case, except for the new state of the world thresholds and the

wholesale price.

φw1 (k) =

∫ tw1 (k)

t1(k)

(ps(k, t)− pc(k)− c) f(t)dt+

∫ +∞

tw1 (k)

(pw − c) f(t)dt+ pc(k) (6)

First stage - Reservation market When a producer participates in the reservation market, he

bids its marginal opportunity cost without the capacity revenue equal to r − φw1 (k). Therefore,

following the previous stage, the equilibrium is defined with the following equality X(k) = r −

φw1 (k). The following Proposition states how the remaining equilibria are found and underline the

endogenous nature of this regime where the choice of capacity both on the supply and demand side

of a reservation market has indirect effects. In words, the endogeneity of the regime also changes

the bidding behavior in the reservation market compared to the exogenous case.
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Proposition 4. When the capacity price enters the final consumers demand as a marginal cost,

solving the following equation allows to find the supply function X1(k) in the reservations market:

X1(k) : pc(k) = r −

(∫ tw1 (k)

t1(k)

(ps(k, t)− pc(k)− c) f(t)dt+

∫ +∞

tw1 (k)

(pw − c) f(t)dt

)
(7)

Moreover, the supply function is always higher under the endogenous regime than under the

exogenous regime.

Proof. See Appendix

Regarding the reservation market, as the demand is lower under this regime, the opportunity

cost associated with providing another capacity is higher. By extension, the supply function on the

reservation market is also higher. Therefore, this regime has an ambiguous effect on the reservation

market equilibrium: capacity prices can be higher or lower than exogenous capacity prices, even

though the quantity is always lower. This implication can be summarized by defining the optimal

payment to restore the optimal level with an endogenous price. Recall that with only a binding

price cap, the optimal payment is the expected difference between what should have been the

wholesale price and the price cap when the price cap is binding. The following Lemma defines the

new optimal payment, and we compare it with the previous with the exogenous regime.

Lemma 3. The optimal payment to restore efficiency when a price cap is binding is defined as

follow:

z1(k) =

∫ t1(k)

0

∂q1(t)

∂k
(p(q1, t)− c)f(t)dt+

∫ tw1 (k)

t1(k)

r−φw1 (k)f(t)dt+

∫ +∞

tw1 (k)

(p(k, t)− pw)f(t)dt (8)

Proof. See Appendix

Compared to the initial payment zw(k), only the third part of the optimal payment is directly

related to the expected difference between the optimal wholesale price and the price cap. In this

regime, the magnitude of the loss is impacted via t1(k), which means fewer periods during which
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the price cap is binding. The first part represents the loss associated with the threshold shift for

on-peak/off-peak periods. It is negative as ∂q1(t)
∂k ≤ 0. When q1(t) decreases due to the capacity

price, the rent decreases when the capacity starts binding at t1(k). The second term is positive,

and it is directly related to the loss associated with the decrease of the demand during on-peak,

which also decreases the rent for any state of the world between t1(k) and tw1 (k).

3.3 Extension - endogenous ex-ante regime with inefficient rationing

We now introduce the public-good nature of capacity during peak demand. First, we use this

rationale to revise the comparison between the endogenous and exogenous ex-ante design for reser-

vation markets. Then, it will also be used to analyze the capacity demand allocation regime in the

next section.

At the price cap level, when it is binding, the price-elastic demand becomes inelastic30. There-

fore, we face the same rationing problem as in the literature with limited production capacities and

inelastic consumers (see for instance Joskow and Tirole (2007)). The absence of efficient discrimina-

tion between consumers with heterogeneous willingness to pay implies that investment availability

is a public good when the price cap is binding. Therefore, it is underprovided by producers when

they make their investment decisions. There is various way to describe the cost of involuntary

rationing in the literature.31 Joskow and Tirole (2007) shows that it depends if the rationing is

anticipated or not. Leautier (2018) finds that the effect of involuntary rationing can be different if

it has an impact on the expected demand level. From a modeling perspective, Holmberg and Ritz

(2020) uses a general function J(.) to represent this negative externality. The function depends on

the delta between the quantity bought at a price equal to the price cap and the investment level.

We note this cost M(k), namely :

M(k) =

∫ +∞

tw0 (k)

J(∆0k)f(t)dt (9)

30The introduction of retailers into the model does not change the intuition. At a price pw, the Cournot compe-
tition between the retailers pushes them to ask a quantity equal to qw0 (t).

31Note this is an additional cost compared to the loss of the surplus that we described previously with the price
cap.
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with ∆0k a function of the difference between the installed capacity k and the quantity bought

by retailers at the price cap qw0 .32 For instance, we can model rationing using a ratio (1−h), which

represents the share of consumers selected indifferently that is forced to stop consuming Léautier

(2014). When rationing occurs, an optimal ratio h should be endogenously chosen such as we have

(1− h(t))qw0 (t) = k. In this case, consumers sustain an additional loss proportional to their initial

surplus with efficient rationing, namely :

M(k) =

∫ +∞

tw0 (k)

(1− h(t))

∫ k

0

(p(q, t)− pw)dqf(t)dt (10)

Following Holmberg and Ritz (2020), we use the general notation M(k) =
∫ +∞
tw0 (k)

J(∆0k)f(t)dt.

The following equation describes the new social welfare function :

W bo(k) = W (k)−
∫ +∞

tw0 (k)

J(∆0k)f(t)dt (11)

We denote kbo the optimal level of investment when we maximize social welfare. Contrary

to the imperfect competition in the retail market and the price cap, the social cost of rationing

directly affects the social welfare function. The expected rent collected on the wholesale market by

producers remains unchanged when we include inefficient rationing, which only affects consumers’

welfare.33The following reservation shows that when we cannot efficiently ration final consumers

when the price cap is binding it implies a higher inefficiency.

Lemma 4. When the price cap induces involuntary rationing, the inefficiency is greater than with

voluntary rationing. In other words, the delta between the optimal level of investment and the

market outcome is greater with the first than with the latter: k∗ − kw < kbo − kw. The optimal

capacity payment zbo(k) depends on the representation of the involuntary rationing social cost.

Under our assumption, it is equal to the marginal value of an additional capacity for the system,

which decreases the cost of involuntary rationing:

32Regarding the sign of the cost and its derivatives: Mk(.) ≤ 0 < Mkk(.). Finally, note also that ∂∆0k
∂k
≤ 0 as an

increase of capacity lower the difference for a given value of qw0 .
33Some authors do include those costs in the producer profit, using a fixed reputational cost Llobet and Padilla

(2018) or a market shutdown during which producers also lose profit Fabra (2018).
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zbo(k) = −Mk(k) = −
∫ +∞

tw0 (k)

Jk(∆0k) +
J(∆0k)

∂∆0k

∂∆0k

∂k
(12)

Proof. See Appendix

Note that the two parts of the optimal payment can be opposite. For instance, given the

representation in equation 10, the first part of equation 12 is positive and is relative to the hy-

pothesis behind the cost representation: as the rationing cost is proportional to the consumer

surplus, a higher surplus is generated by the investment indirectly leads to a higher cost of ineffi-

cient rationing. The second part of the equation is negative and stands for the initial reduction in

rationing: a higher investment level reduces the need to implement inefficient rationing. The rest

of the paper assumes that the second effect is always higher than the first one to keep Mk(k) < 0.

What happens when we include the rationing cost in the previous model? Given the rationing

cost of the form M(k). The new welfare function becomes:

W bo
1 (k) = W1(k)−

∫ ∞
tw1 (k)

J(∆1k)f(t)dt

With ∆1k, the new function represents the difference between the quantity consumed at the

price cap qw1 (k)and the investment level. By construction, the main results for the rationing hold

under the endogenous regime, especially in terms of the first-best solution. It implies a higher

investment level and lower welfare than the case without inefficient rationing. Note that the

quantity at the price cap q0(k) does not depend on the level of investment under the exogenous

regime. However, when the capacity price is allocated under the endogenous regime, the quantity

q1(k) is indirectly affected by the investment level.

We focus our analysis on comparing the first-best solution under the exogenous regime and

the first-best under the endogenous regime. The following Proposition shows that with inefficient

rationing, the effect of an endogenous regime is ambiguous on the social welfare, which depends

on the size of the negative effect previously described of the capacity price and the gains in terms

of avoided rationing cost.
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Proposition 5. The delta in welfare with respect to the delta with exogenous price is:

∆W bo
1 (k) = ∆W1(k)−

∫ tw1 (k)

tw0 (k)

J(∆0k)f(t)dt−
∫ +∞

tw1 (k)

(J(∆0k)− J(∆1k))f(t)dt (13)

With W bo(k)−W bo
1 (k) = ∆W bo

1 (k). The endogenous reservation market provide a higher social

welfare compared to the exogenous case if and only if :

∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt+

∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt <

∫ tw1 (k)

tw0 (k)

J(∆0k)

+

∫ +∞

tw1 (k)

(J(∆0k)− J(∆1k))f(t)dt

Proof. See Appendix

The new surplus when the optimal level of investment is reached is higher than with an ex-

ogenous capacity price when the endogenization effect on the rationing cost (i.e., the two negative

parts of ∆W bo
1 (k), as we always have J(∆1k) ≤ J(∆0k)) is higher than on the initial welfare (i.e.,

∆W1(k)). Recall that ∆W1(k) represents the loss associated with the effect of the capacity price

on consumer demand. The first negative part in ∆W bo
1 (k) stands for the lower occurrence of on-

peak periods due to the lower demand, which reduces the rationing cost. The second negative part

represents the loss avoided because a lower consumer demand implies a lower consumer surplus,

hence a lower cost than the exogenous regime.

While there is an ambiguity regarding the new value of the welfare function, we find that the

new optimal investment level is always lower than without inefficient rationing. That is we always

have
∂∆W bo

1 (k)
∂k ≥ 0. Regarding the social welfare at the optimal investment level, it depends on

the ambiguous effects described in Proposition 5.

Regarding some comparative statistics, the effect of the model variables can be ambiguous

when we consider inefficient rationing. We start with the optimal payment to the producer defined

in equation 12 which is equal to the absolute value of the marginal surplus loss associated with

the inefficient rationing. Recall that it is composed of two distinct parts (i) a positive value for

the direct effect of the rationing on consumer welfare and (ii) a negative value for the indirect
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effect because the loss is based on consumer welfare. We find that the price cap and the demand

intercept always have opposite signs between parts (i) and (ii). For instance, an increase in the

price cap continuously decreases the positive value associated with the rationing, but because it

also decreases consumer welfare when the price cap binds, it decreases the negative value, hence

the ambiguous effect.

4 Capacity demand allocation design

4.1 Retailers realized market share allocation

4.1.1 Market equilibrium

The previous approach is based on ex-ante requirements, meaning that the quantity allocated to

the retailers (or directly to the consumers) is independent of the demand’s current realization.

This section analyzes a specific implementation of the reservation market demand where the ca-

pacity allocation depends on the retailers’ realized quantity sold to the final consumers. The main

difference with previous ex-ante requirements lies in the retailer profit function, where the capacity

cost allocation act as an additional marginal cost. We study how this new cost adder for retailers

modifies the previous results in light of different degrees of competition in the retail market. Under

competition à la Cournot, we find that having different numbers of retailers have a direct effect on

the cost allocation sustained by final consumers. Therefore, the degree of competition determines

the sign and the magnitude of the different outcomes described in the ex-ante regime.

The first implication of ex-post requirements concerns the last stage when the retail market

clears. We rewrite the retailers’ profit function by including an endogenous ratio in the retailer

profit function, as shown in the following equation. Contrary to the previous section, we do not

need to assume any tariff hypothesis for the capacity cost allocation as it directly affects retailers’

profit at the margin. We focus our analysis on symmetric equilibrium.
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πri (qi, k) = qi(p(q)− ps)− pc(k)k
qi

qi + q−i

We find the equilibrium using the first-order condition. The main results are stated in the

following Proposition:

Lemma 5. When the retail equilibrium exists it is always unique and stable. The condition for

the existence of an equilibrium is given by the following condition:

−kpc(k)

(
n− 2

n

)
1

q2
≤ pq(q) +

q

n
pqq(q)− ps

Proof. See Appendix

Using the first-order conditions and the symmetry between the retailers, the Cournot equilib-

rium in the retail markets allows to define the endogenous retailer demand function in the wholesale

market:

p̃n(q) = p(q) +
q

n
pq(q)− pc(k)k

1

q

n− 1

n

The equilibrium in this market is similar to the case with the ex-ante requirement. Therefore,

we can define the periodic threshold between on-peak/off-peak/binding price cap periods. We

respectively denote them tn(k) and twn (k), with also qn(t) and qwn (t) the quantity at which the

wholesale price p̃n is equal to respectively the marginal cost and the price cap. The wholesale mar-

ket equilibrium does not necessarily exist as the demand function is not well defined on wholesale

quantity and prices. To see this, recall the existing condition for the retail equilibrium. With a

high value of q, some retail equilibrium does not exist. Therefore the retail threshold also applies

to the wholesale market.

Given the investment and the variable revenue from the reservation market defined as follow,

we find the marginal opportunity cost that defines the supply function in the reservation market

and hence the final capacity price:
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pc(k) = r −

(∫ twn (k)

tn(k)

(p(k, t)− c− pc(k)
n− 1

n
) f(t)dt+

∫ +∞

twn (k)

(pw − c) f(t)dt

)

Note the difference with the ex-ante requirement in the first part of the integrals, where the

capacity cost adders are dependent on n. The following Proposition summarizes the main effect

of an ex-post allocation:

Proposition 6. When allocating the reservation market cost is based on retailers’ realized market

share, it generates a lower depreciating effect on the demand. The ex-post regime provides an

intermediate indirect effect between an ex-ante regime with exogenous capacity price and an ex-

ante regime with endogenous capacity.

Proof. See Appendix

To illustrate this Proposition, the capacity cost adder when n = 2 is equal to half of the cost

adder of equation 7, and it is increasing with n. When n → +∞, the capacity cost is entirely

allocated to the consumer, mimicking the ex-ante exogenous equilibrium. This Proposition states

that increasing competition in the retail market increases the burden of consumers’ capacity prices.

Hence, the negative effect observes in the regime with endogenous capacity prices is now shared

between retailers and consumers.

4.1.2 Extension - Reservation market and retail market structure

The previous results of our paper on cost allocation are independent of the market structure in

the retail market. However, in this extension and using our analytical framework, we show that

a change of market structure can have ambiguous effects both in the reservation market outcome

and with respect to the determination of the optimal capacity level. This aspect of essential goods

has been relatively less studied than the supply side. Therefore, in this extension, we describe

the effect of different market structures on the optimal and market investment level and with and

without inefficient rationing.
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The market outcome under imperfect competition is the same as previously described: k̄. The

following reservation states that market power in the retail market lowers the investment level

beyond market power’s direct effect. The market investment level is different from the optimal

investment level even when we maximize the welfare function given the market power in the retail

market.34

Lemma 6. Imperfect competition in the retail market leads to a lower installed capacity compared

with the optimal investment level given by the social welfare maximization: k̄ ≤ k∗ ∀n ∈ [2,+∞).

The optimal capacity payment z̄ is equal to the expected markup of retailers in the retail market:

zn(k) =

∫ +∞

t0(k)

−k
n
pq(k, t)f(t)dt (14)

Proof. See Appendix

We turn now to the analysis of the effect of the market structure on the model. First, suppose

there is no inefficient rationing. In that case, an increase in the number of retailers has two effects of

opposite sign : (i) an increase of the social welfare, which is the common effect of higher competition

in a canonical model à la Cournot (ii) a decrease in the social welfare due to the lowering of the

consumption associated with a higher capacity cost allocated to the consumers. Both effects are

defined in the equation 15 with the derivative of the welfare function with respect to the number

of retailers. Under our framework and without the ex-post regime, the demand is only affected by

the degree of competition during off-peak periods when t ≤ t(k),35 and the derivative is always

positive. However, the capacity cost allocation also has a depreciating effect on the demand level

at the marginal cost (recall equation 8), hence the ambiguous sign of ∂q(k)
∂n .

∂W (k)

∂n
=

∫ t(k)

0

∂q(k)

∂n
(p(q(k), t)− c)f(t)dt (15)

34This result has important regulatory implications. Indeed, we state that the welfare-maximizing investment
level given the imperfect competition in the retail market, is different from the welfare-maximizing investment level
in a perfectly competitive market. Therefore, the will to necessarily reach a competitive investment level could cause
significant harm, potentially greater than the welfare loss generated by the inefficient market equilibrium.

35We drop the subscript for simplicity.
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A similar but more complex effect arises when considering inefficient rationing. Paradoxically,

lower competition in the retail market makes the rationing occurrences less likely, which lowers the

surplus loss. Note that as the surplus loss is only associated with on-peak periods, the lowering of

competition in the retail market does not affect the size of the rationing cost but only its occurrence.

We provide in the following equation the marginal effect of an increase of the number of retailers

on the social welfare when the rationing cost is based on a ratio as described in equation 10, as in

the previous equation, the sign of ∂qw(k)
∂n is also ambiguous:

∂W (k)

∂n
=

∫ t(k)

0

∂q(k)

∂n
(p(q, t)− c)−

∫ +∞

tw(k)

(
∂qw(k)

∂n

k

qw(k)2

∫ k

0

(p(q, t)− pw)dq)f(t)dt (16)

It is sufficient that the signs of the two derivatives be different so that the effect of imperfect

competition on social welfare is clear. For instance if the increase of n increases the surplus during

the off-peak periods (∂q(k)
∂n > 0) but decreases the rationing occurrence due to the capacity cost

adder (∂q
w(k)
∂n < 0) then the social welfare increases with n. On the other hand, if n has the same

effect on both quantity thresholds q(k) and qw(k), then the role of imperfect competition on the

outcome is ambiguous. For instance, if the increase of competition increases the welfare during

off-peak periods (∂q(k)
∂n > 0) but also increases the demand at the price cap despite the capacity

cost adder (∂q
w(k)
∂n > 0), then the effect is unknown and depend on the relative size of the welfare

gain during off-peak periods and the loss occurring during rationing.

4.2 Retailers individual allocation

Figures

We provide in this section an analysis of a new regime for the demand function in reservation

markets. Each retailer must purchase their capacities in the reservation market in this implementa-

tion. An entity only monitors the level of capacities and compares it to each retailer’s consumption.
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We show that this market design can only bring additional welfare due to specific incentives when

inefficient rationing exists. 36

One of the critical features of this regime concerns the case when a retailer is in negative

deviation, i.e., has sold more on the retail market than he has bought capacity in the reservation

market. In this case, he suffers a penalty, which results in a payment from the retailer to the

entity37 by a unitary amount of S, with S ≥ 0 being an administratively fixed value38. When every

retailer has bought enough capacity, we are under the no penalty case, and no other mechanism

is implemented 39. The price in the reservation market is still noted as pc(k), and the individual

quantity contracted by a retailer i is ki. Under this regime, we process the following to describe the

equilibrium: (i) We analyze the outcome with no uncertainty. We use a simple game theoretical

framework to describe a game’s equilibrium where agents must sequentially choose a fixed capacity

first and then compete à la Cournot on a second game. (ii) Then, we extend our analysis to the

initial framework developed in the model with investment and reservation decisions made before

the demand is known.

4.2.1 Market equilibrium without uncertainty

To provide the intuition for the general case with uncertainty, we start by describing the equilibrium

in the case the demand is known when the retailer has to choose the level of capacity to be bought

in the reservation market. We show that it is a dominant strategy to integrate the penalty value

in the profit function as a marginal cost up to a point where it is optimal to stop buying capacity

and sustain the penalty.

36A comparison between the case with and without inefficient rationing for this regime would be relevant with
additional hypotheses. For instance, the quality and quantity of information detained by private agents such as
retailers in future states of the world can be seen as better or worse than the information detained by a single entity.
While those specifications are outside the scope of this work, they should call for a deeper application of the model
presented in this paper.

37Which acts like the government is the model.
38We use in this paper a linear form of the penalty system, but some implementation can encompass nonlinearities

depending on the effect desired for the penalty system.
39Some remuneration mechanism can exist so to reward retailers who have provided additional capacity, but as

we focus on symmetric equilibrium, they do not play a role in the outcome.
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Given the assumptions and notation, the retailers’ profit function during the last stage in the

retail market is:

πri (qi, ki) = qi(p(q)− ps)− pc(k)ki +


+0 if qi ≤ ki

−S(ki − qi) if qi > ki

The equilibrium on the retail market is given by the first order condition:

p(q) + qipq(q)− ps =


0 if ∀i qi ≤ ki

S if qi > ki

As the equation shows, the market design’s penalty system implies different discontinuous

retailers’ reaction functions. The first case will be called the penalty case, while the second one

the noremuneration case. It depends on the capacities bought in the reservation market by the

retailer and his competitor and their strategies on the retail market. The penalty system always

induces a lower reaction function, whatever is the sign of the retailer’s deviation from its position

in the reservation market. It is straightforward for the penalty system: a marginal increase in

the retail market’s quantity increases the marginal cost via the penalty. The capacities bought in

the reservation market do not directly affect the reaction function’s value, but it determines the

form of the reaction function between the penalty/noremuneration cases. We summarize in the

following Proposition the central insight of this game equilibrium.

Lemma 7. The set of dominant strategies in the retail market is:



[qp, qr] if pc(k) ≤ S

{0, ]qp, qr]} if pc(k) > S

∀q ∈]qpqr[ q is a solution of p(q) + qipq(q)− ps(q)− pc(q) = 0
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With qr the equilibrium quantity offered on the retail market when the retailers are in the

noremuneration case. This value is given by the solution of p(q) + qipq(q) − ps(q) = 0. qp is the

equilibrium quantity offered on the retail market when the retailers are in the penalty. This value

is given by the solution of p(q) + qipq(q)− ps(q)− S = 0.

Proof. See Appendix

The optimal quantity on the retail and reservation markets depends on the difference between

the penalty value S and the capacity price pc(k). We assumed a linear penalty system, so if

the penalty is lower than the capacity price S ≤ pc(k), then it is a dominant strategy (strict if

S < pc(k)) to buy no capacity and sustain a penalty on all the quantity sold on the retail market.

Indeed, with strict inequality, the profit function is a decreasing non-concave function with respect

to ki. On the other hand, when the penalty is higher than the price, the profit function is an

increasing non-concave function with respect to ki. The dominant strategy is to buy the same

amount of capacity as the quantity qp, which corresponds to the retail market’s corresponding

equilibrium in the penalty case.

In this regime, the capacity price is passed on to the consumers, which increases the marginal

cost equal to the capacity price. In turn, it reduces the demand function on the wholesale market.

This result follows that the demand function in the reservation market strictly mimics an equi-

librium quantity sold on the retail market when the marginal cost increases without a reservation

market. When the cap S is not binding, those equilibria are given by the set [qp, qr].

Under this no uncertainty assumption and relying on the set of dominant strategies, it is

straightforward to extend the analysis to the optimal demand of capacity. Using the results of

7, the demand function on the reservation market is a linear decreasing function caped above at

the penalty value while intersecting the null capacity price at exactly qr which is the equilibrium

without the reservation market. Any value between corresponds to the equilibrium given by the

solution of p(q) + qipq(q)− ps(q)− pc(q) = 0. To say it differently, given a capacity price, retailers

always buy the same amount of capacity that their equilibrium in the retail market unless the price

is above the penalty value
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On the supply side, following the marginalist approach, the supply function starts to be non-

null and positive at the same value qr. Therefore the equilibrium is always a null price with a level

of investment strictly equal to the regime without any reservation market. Such counter-intuitive

result stems from the fact that the reservation market is only a burden for retailers under no

uncertainty and without any other model refinement, which does not encourage them to buy more

capacities.

4.2.2 Social welfare under uncertain demand

In reality, retailers buy capacity before the demand is known. Hence, when building their demand

function in the reservation market, they must consider a range of possible outcomes relative to

the production and demand levels. They need to expect the occurrence of off-peak and on-peak

periods and the rationing case when the price cap is binding. The last situation is critical as it

determines the magnitude of the penalty payment bared by retailers. We start by providing the

link between the previous analysis with no uncertainty and the general model. First, qr is the value

qw0 (t) as it is the Cournot outcome in the retail market40. Then, denote qwd (t) the value equal to

qp, that is the threshold at which ps(q)−S is equal to the price cap pw. In other terms, this is the

Cournot equilibrium when the marginal cost for the retailers is equal to pw + S. It is similar to

assuming a decrease in demand when retailers pass the penalty cost onto the consumers. Finally,

denote twd (k) the state of the world when the price cap starts binding under the case the demand

of final consumers is equal to ps(q)− S.

Following the no uncertainty case, the set [qwd (k), qw0 (k)] defines the set of dominant strategies

in the retail market for a wholesale price equal to pw and any capacity level between 0 and the

value qw0 . To see this, let us distinguish three cases depending on the value of the installed capacity.

• (Case 1) When k > qw0 , the price cap is never binding, and the outcome is strictly identical

as a regime without a reservation market.

40In fact, every value between q0(t) and qw0 (t) are conceptually equal to qr, but we focus on the threshold case
between the periods where the price cap is binding and not binding.
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• (Case 2) For a value of k between qwd (k) and qw0 (k), we observe a paradoxical outcome;

rationing should have occurred as soon as k is below qwd (k) without a penalty. It implies that

retailers sustain the penalty, which is then passed to consumers as a marginal cost, which

lowers their demand. However, rationing is not happening, which contradicts the demand’s

decrease due to the penalty. Therefore, as in the no uncertainty case, retailers follow the

level of investment. To do so, they increase the price of their consumers by a unitary amount

of T (k) so that at any state of the world between tw0 (k) and twd (k) the demand is equal to

the capacity k,41 that is we have ps(q)− T (k) = pw.

• (Case 3) Finally, k is below qwd (k), it is now optimal for the retailers to keep their strategy

at qw0 as it is the Cournot equilibrium given the penalty value S.42.

The distinction between the two different cases ((2) and (3)) is crucial as in the former case (2)

there is no inefficient rationing as the quantity sold by the retailers is equal k, while in the latter

case (3) inefficient rationing necessary occurs because retailers ask for qwd (k) which is above k.

We can deduce the wholesale market outcomes using this set of outcomes on the retail mar-

ket. The following Proposition describes how the new welfare function encompasses the previous

implications regarding the retailer strategy when we assume that the initial capacity price is not

passed onto the consumers via a unitary payment. 43

Proposition 7. The regime ambiguously impacts the welfare function, with a negative distribu-

tional effect due to the penalty system and a positive effect due to reducing rationing costs. The

rest of the welfare function equals the no reservation market regime.

Wd(k) = W bo(k) −
∫ +∞

twd (k)

S(qwd (t) + k) +

∫ twd (k)

tw0 (k)

J(∆0k) +

∫ +∞

twd (k)

J(∆0k)− J(∆dk)f(t)dt (17)

41We could also assume the reverse mechanism where retailers pay consumers T (k) to reduce the demand in order
to avoid the penalty.

42Similarly, it is identical to the case where the benefice to pays consumers to lower their demand is above the
cost generated by the penalty.

43This additional feature of this regime would cause a similar effect as the outcome presented in the endogenous
ex-ante regime.

33



With ∆dk the new difference between the installed capacity and the quantity bought by the

retailers qwd (k)

Proof. See Appendix

The intuition behind the Proposition is as follows. For the second negative part of the welfare

function, the penalty S entirely affects the retailers’ profit margin. It implies that both the retailers

and the consumers suffered a surplus loss due to the demand reduction. Added to the penalty cost

borne by the retailer of S(qwd (k)−k), it gives the net loss for the welfare function. The rationing cost

reduction is directly linked to the shift from qw0 (k) to qwd (k). Indeed, as stated before, any capacity

k ∈]qwd (k)qw0 (k)] implies equality between the quantity sold by the retailers and the capacity level

k. Therefore, there is a net increase in welfare. Note that the last term of the welfare function is

always positive as qwd (k) ≤ qw0 (k). It is similar to the effect observed in the endogenous ex-ante

capacity price, but it is limited to the rationing period in this regime. Therefore, this regime avoids

the negative effect of lower demand when there is no rationing and optimal wholesale price.

4.2.3 Investment decision and reservation market equilibrium with uncertainty

Assuming that the capacity price is not included in the variable price in the retail market, we

state that the supply function is not impacted by the market design. Indeed, the previous analysis

shows that the demand function on the wholesale market is impacted only when the price cap

starts binding under no reservation market regime (i.e., when k ≤ qw0 (k)). In case (2), the adjusted

demand follows the capacity level, while in case (3), inefficient rationing exists, but it still implies

that demand equals capacity. Therefore, the market design does not impact the occurrence and

the magnitude of the rent. The supply function is given by the equation 5 and the undistorted

φ(k). Under this configuration, we define the aggregated retailer profit function when the demand

is uncertain in the following equation:
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πr(k, t) =

∫ t0(k)

0

−q0(t)2

n
pq(q0(t), t)f(t)dt+

∫ tw0 (k)

t0(k)

−k
2

n
pq(k, t)f(t)dt Case (1)

+

∫ twd (k)

tw0 (k)

k(p(k, t)− pw − T (k, t))f(t)dt Case (2)

+

∫ +∞

twd (k)

k(p(k, t)− pw − S)f(t)dt−
∫ +∞

twd (k)

S(qw0 − S)f(t)dt Case (3)

−pc(k)ki

The expected profit function comprises three main parts related to different values of k given a

demand level (or a different level of demand given a value of k). The two first terms are the same

with and without a reservation market as the price cap is not binding. The retail price rises while

the wholesale price is fixed and equal to the price cap for the second term. As explained in the

previous analysis, between the two states of the world tw0 (k) and twd (k), the demand decreases due

to the retailers’ actions to avoid paying the penalty. It is materialized by the transfer T (k, t) 44.

When it is not profitable to reduce the demand given the penalty (when twd (k) is reached), then

the new demand is given by qwd (k), the retailer profit is in the fourth term, inefficient rationing is

implemented, and the retailers pay the penalty in the fifth term. The last term is the capacity cost

due to the retailer’s obligation to buy their capacities. Given this expected profit, we can define

the marginal value of a capacity for the retailer, which serves as the retailers’ willingness to pay

for an additional capacity.

Proposition 8. Under the market design, the retailers aggregated demand function in the reser-

vation market is equal to the marginal value of an additional capacity for their profit function.

44Note that if we assume that retailers pay the consumers to reduce their consumption, only the sign changes.
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Dc(k) = −
∫ tw0 (k)

t0

(
2

n
kpq(k, t) +

k2

n
pqq(k, t)

)
f(t)dt +

−
∫ twd (k)

tw0 (k)

(
2

n
kpq(k, t) +

k2

n
pqq(k, t)

)
f(t)dt

∫ +∞

twd (k)

(p(k, t)− pw + kpq(k, t)) f(t)dt+

Proof. See Appendix

The value of a capacity for a retailer depends on the effect a marginal variation brings to its

profit function. When the level of capacity increases, we can distinguish three effects:

• (i) The decrease in the cost of the penalty during the case (3)

• (ii) An increase of the oligopolistic profit during on-peak periods when the quantity offered

is equal to the capacity; and

• (iii) A change in the occurrence of off-peak/on-peak and price cap-binding periods.

The effects (i) and (ii) do not directly appear in the demand function as they are entirely offset.

Indeed, for the penalty effect, while the increase of capacity lowers the marginal cost of penalty

by S, the retailer gains at the same time a marginal profit equal to p(k, t) + kpq(k, t) − pw − S.

Therefore, the marginal effect of the penalty is null, and the effect during the case (3) is limited

to an increase of the marginal profit, as illustrated in the third term of the demand function. The

effect (iii) of the occurrence of the different periods cancel each other out because when qw0 (k) is

reached, the value of T (k, t) is null. While, when qwd (k) is reached the value of T (k, t) is equal to

the penalty. Finally, note that the first and second parts, which represent the net gain from an

increase of capacity for retailers, are always positive as the marginal revenue is always decreasing

following the initial assumptions regarding p(.) with respect to q (i.e., pq(.) + qpqq(.) < 0).

The last part is ambiguous and depends on the value of k relatively to the monopoly outcome

in this model. Indeed, note that p(k, t) + kpq(k, t) − pw is the first-order condition of the retailer
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monopoly profit function with marginal cost equal to the price cap. Given its concavity, any value

of k below the monopoly quantity implies a positive third part in the demand function, while a

value of k above implies a negative third part. It is a sufficient condition that the Cournot outcome

qw0 (k) bounds from below the monopoly outcome for the third part be always positive. In other

terms, this condition holds whenever the penalty value is sufficiently high or with a low number

of retailers. This last part of the demand shows that retailers are willing to pay for capacity if it

allows them to reach (in expectation) the monopoly quantity when the price cap is binding. In

other words, they bid the expected marginal revenue that makes them indifferent between being

at the monopoly outcome or not buying more capacity, given that this third part is positive.

Finally, the general equilibrium in the system is found by solving Dc(k) = pc(k). As the supply

function is entirely independent of the outcome, the general outcome analysis is identical to the

reservation market demand function analysis. For instance, it is sufficient to state that an increase

in the demand function due to the increase of the penalty also increases the investment level. On

the other hand, it can also indirectly affect the optimal level of investment given by maximizing the

welfare function. Therefore, the comparative statistic for this regime’s welfare effect boils down to

the same approach described in the previous ex-ante case.

5 Closed-form solution and application to the electricity

market

5.1 Data for calibration to French capacity market

We now provide a closed-form solution of the model with a numerical illustration in this section.

We focus on the electricity system and consider the reservation market as a capacity market, where

producers can sell the availability of their power plant in return for a capacity price. Following our

general model, this transaction forces them to have a given level of investment in the wholesale

electricity market. This section will provide insight into the effect of each market design on an

actual economic system and allow us to give general policy recommendations for the power sector.
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The main specification is the final consumers demand function, which is assumed linear, and

where the uncertainty comes from the intercept of the linear function. We define the inverse

demand function as follow :

p(q, t) = a(t)− bq

Where a(t) is the uncertain intercept such as a(t) = a0 − a1e
−t. We assume that t follows an

exponential distribution which is characteristic of electricity consumption : f(t) = e−t.

Regarding the supply side of the system, we assume the marginal technology is a gas power

plant (CCGT) with variable cost (c) equal to 50.24 e /MWh, which includes fuel and carbon costs.

The fixed cost of the technology (r) is equal to 26.70e /MWh, which includes investment and fixed

operation costs. Those data come from the last report for the International Energy Agency and

represents an average investment in this technology for the OECD countries IEA (2020)

For the demand side, the calibration and the model results are highly sensitive to the assumption

regarding the value of the demand function. While there are many studies on the value of the

actual demand function of electricity, we still lack a proper view on the future characteristics of

the demand when all consumers are price reactive, as we assume in this paper. Therefore, we

provide in this numerical illustration some scenario sensitivity. We use three different demand

function scenarios : (i) Low elasticity such as the Value of Lost Load (VoLL)45 is equal to 20000

e /MWh (ii) Medium elasticity such as the VoLL is equal to 3000e /MWh (iii) High elasticity with

a demand characterization from Léautier (2016). In the first two cases, we proceed as follows to

find the coefficients a0, a1, and b. First, we find the maximum and minimum value of the hourly

quantity consumed on the electricity market. Given the French data, we find an amplitude of 30

000 MW and 102 000 MW for 2012-2020. Next, we assume that a price cap exists in the wholesale

market, and if its value is equal to the VoLL, then the market equilibrium should be equal to the

first-best solution in terms of investments level. Given this condition and the magnitude of the

45This concept, widely used in the electricity sector, relates to the case of inelastic demand. The VoLL is the
maximum price at which inelastic final consumers are willing to buy electricity; above it, the demand is null.
Therefore, in this numerical illustration, we expand the link between this concept and the calibration of the elastic
demand.
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demand, we can find the value of the coefficient a0, a1, and b. To give an order of magnitude, the

demand elasticity with respect to a price of 100e /MWh is equal to respectively: -0.0009, -0.04,

and -0.53. The first scenario uses a value assumed in our current system with most consumers

highly inelastic. The second scenario uses the actual price cap on the French wholesale market.

We use this value as it is never reached and given that the elasticity using this value is close to

what has been empirically found for a small share of price reactive consumers Allcott (2012). The

last scenario allows assuming a hypothetical system’s future state where consumers are fully priced

reactive and highly elastic.

Finally, regarding the price cap value, we use it as a control variable to assess the effect of

different market designs; the range used in this paper is from 200 e /MWh to 3000 e /MWh. It

allows us to represent both the current explicit price cap existing in the wholesale market (at 3000

e /MWh) and other indirect inefficiencies that can have the same effect on the expected rent for

the producers. For the inefficient rationing, we use the specification defined in equation 10.

The results of the numerical simulation are as follow. First, we provide the results with respect

to the first-best and market equilibrium, and we recall the main effect of this canonical framework.

Then, we discuss implementing a capacity market in the system with no indirect effect (exogenous

ex-ante design). Next, we show how allocating the capacity price as a tax can modify the equi-

librium (endogenous ex-ante design). Finally, we discuss the calibration of the retailers individual

regime, and we compare its outcome with the ex-ante design. An analysis of the imperfect com-

petition in the retail market is provided in the Appendix section, where we study its effect for the

canonical model, the retailers realized market share regime, and the individual allocation one.

5.2 First-best and market equilibrium investment

Following the model specification, the welfare function is concave, ensuring a first-best solution

exists. We start with the first-best analysis of the simulation without inefficient rationing, and

we provide in table 1 some critical indicators for different scenarios. First, we express optimal

investment levels in absolute terms and for the maximum demand level. Intuitively and in line
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with the theory, when comparing the different demand scenarios, we find that a higher elasticity

leads to a lower optimal investment, ranging from a delta of 0.19% of the maximal demand to

4%. However, counter-intuitively, at first sight, the equilibrium price in the wholesale and retail

market is strictly the same between the different scenarios. Indeed in the expectation, it should

always cover both the fixed and variable costs. The difference has to be found in the magnitude of

the average offpeak and on-peak prices and the occurrence of those periods. When the elasticity

increases, the average peak price significantly decreases, from 10025 e /MWh to 456e /MWh, with

a respective maximum value equal to the VoLL in the two first scenarios and to 863 e /MWh in

the last scenario. While the average peak prices are inversely correlated with the elasticity, we

find that peaks periods occur more frequently under high elasticity. Therefore, investment is more

binding with a high elasticity system but generates lower prices.

When we introduce a price cap in the wholesale market, the market equilibrium can be im-

pacted. The effect depends on the value of the cap and the elasticity, which has the opposite

effect. Namely, a higher elasticity given a price cap tends to lower the inefficiency, while a more

constraining price cap given an elasticity level tends to increase it. The inefficiency seems to be

stable for the different scenarios, with a delta in installed capacity ranging from 0.65 % (compared

to 0.19%) to 11.9% (compared to the 4%) of the maximum demand. As expected, the social and

consumer welfare is always lower than the absence of a price cap. In terms of price equilibrium, we

still have the equality of the average price with the sum of the production costs. However, due to

the price cap, the expected peak prices are lower, and due to the effect on the investment, peaks

periods are occurring more frequently.

The existence of inefficient rationing in the system significantly affects the first-best solution.

In the low elasticity case, the optimal level of investment needs to be significantly close to the

maximum level of demand (0.03%). We observe the same effect for the high elasticity with an

optimal value of 0.71% compared to the 4% without inefficient rationing. Under the market

equilibrium, this inefficiency does not impact the market outcome as it only affects the consumer

surplus. Following our assumption, the occurrence of inefficient rationing is the same as when the

price cap binds on the wholesale market. Under the low elasticity scenario, rationing occurs only
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0.89% of the time. This value increases when the elasticity is lower given a price cap, and of course,

increases when a price cap is lower. For instance, we observe a significant increase between the

two price caps under the high elasticity scenario.

From a welfare perspective, the cost associated with a price cap and the inefficient rationing

crucially depends on the assumption on the elasticity and the price cap level. The cost can vary

between almost 2 million e under the medium elasticity scenario with only the direct effect of the

price cap, up to 150 million e when inefficient rationing is considered. The consumer surplus is

lower when the elasticity is higher, hence a lower cost. However, we still find significant Figures

ranging from 600ke to 9 million e without and with inefficient rationing.
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Figure 1: Supply function on a reservation market with the optimal payments (pw = 500)

5.3 Price equilibrium with the canonical capacity market

One of the critical components of the framework is the supply function built on the reservation

market. Using a marginal approach, we assume that if the producer were to bids their investment

availability, the supply function should represent the marginal opportunity cost of providing a

capacity at the margin as in equation 5. We show in figure 1 the supply function (thick black

line) on a reservation market with perfect competition on the retail market and with a price

cap at 500 $. The supply function is null below a critical investment value equal to the market

investment equilibrium. Note that the supply function converges toward the fixed cost as the

additional rent collected on the wholesale market becomes null at a certain level of investment.

On the same figure, we have also represented the two optimal payments necessary to restore the

first-best solution, both when the price cap does not generate inefficient rationing and when it does

(with perfect competition in the retail market). As proven in the Proposition 2, the intersection

between the supply curve and the optimal payments coincides with the first-best solution in terms

of investment (represented with the two vertical lines). Consequently, the capacity price at the

equilibrium under the exogenous regime is located at the two red dots depending on the inefficiency.

43



Figure 2: Capacity prices with respect to the price cap

Following this framework, we derive some comparative statistics of the capacity price with

respect to the price cap level on the wholesale market with perfect competition in the retail

market. Figure 2 shows the different value for the capacity price given the price cap when we both

consider only the direct price cap effect and then add the inefficient rationing. Note the respective

convexity and concavity of the capacity price. This specific curvature stems from the value of the

first-best solution with respect to the price. Indeed, when only the price cap is considered, the

first-best solution is constant with respect to the price cap. On the other hand, when inefficient

rationing is considered, the first-best decreases with respect to the price cap.

We now compare the outcome of the simulation for the different scenarios, which are provided

in table 2. As described in the analytical section, the canonical framework does not generate any

indirect effect on the equilibrium compared to the first solution regarding investment level and

welfare, both for the consumer and the social surplus. However, the capacity market impacts

prices in the wholesale market and, by extension, in the retail market. First, we observe a decrease

in the average wholesale price. Therefore, the model aligns with the theory that a capacity market

depresses electricity prices compared to the optimal equilibrium. By construction, the difference

with the first-best equilibrium is strictly equal to the capacity price. Hence, we should observe

an inverse relationship between capacity prices and wholesale prices from a policy perspective.
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However, this is not strictly the case for on-peak prices. While the price cap always implies a

lower expected price than the first-best outcome, the average on-peak price is also lower than the

market equilibrium with no capacity market. We observe, for instance, that in the low elasticity

scenario, a difference of 154 e /MWh (a decrease of 6%) in the average peak price compared to

a capacity price of 19.39 e /MW. In the high elasticity scenario, a similar effect is observed, with

a decrease in the peak price of 8.88e /MWh (5%) compared to a capacity price of 17.76 e /MW.

Note that when we consider inefficient rationing in the simulation, we should expect the effect of

a capacity market on the equilibrium prices to be stronger. Indeed, the new optimal investment

level is always higher with rationing. Therefore the capacity price should also be higher.

Finally, we observe a conflicting result for the consumer under our framework. Indeed, when

assuming an inefficiency from the price cap, the consumer surplus is strictly the same as in the

optimal situation. Indeed, the capacity price simulates the missing transfer that should have

happened under the optimal framework, which has a net null effect on the consumer. On the

other hand, we find in all scenarios a negative effect for the consumer, compared to the social

welfare46. Such results stem from the fact that the consumers directly remunerate producers for

their availability to avoid inefficient rationing under the capacity market. To say it differently,

this loss can be understood from a Pigouvian view as the necessary cost of internalization of the

positive externality generated by producers, net of the benefits brought by such internalization.

Under our simulation, it ranges from 2 565 e to 52 656.36 e .

46Consumers always gain from a capacity market compared to the market equilibrium.
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5.4 Welfare effect of an endogenous ex-ante reservation market

We now study the effect of allocating the capacity price directly on the consumers via an increase in

the unitary electricity price. We have demonstrated in Proposition 3 and Lemma 2 that the effect

is negative when we only consider the price cap as a source of inefficiency. On the other hand, when

rationing is considered, then an endogenous capacity price can bring benefits in terms of social

welfare at the first-best investment level, as shown in Proposition 5. We use the methodology in

the Proposition 4 to derive the equilibrium for both cases.

We find two notable results with our numerical simulation : (i) the results are in line with the

analytical model, however (ii) the indirect effect does not bring significant changes compared to

the exogenous case. We provide in table 3 the main results for the simulation. First, note that we

do find a lower first-best investment level given this endogenous framework. However, the change

is only significant with the high elasticity case with a maximum deviation of 0.14% from the initial

optimal investment level, and only if we consider inefficient rationing.

We also find the opposite effect on the social welfare described in the analytical section from

a welfare perspective. Without inefficient rationing, the loss from allocating the cost onto the

consumers ranges from a minimum value of -1.8 e under the low elasticity case to -821.54 e for

the high elasticity case. Moreover, we find that the cost associated with this market design is

higher when the elasticity is higher and the price cap is lower. On the other hand, implementing

this market design for the capacity market always brings more social welfare for all scenarios when

inefficient rationing is considered. The gains range from 58.60 e under the medium elasticity case

to 1741.02 e under the high elasticity scenario.

Interestingly, when allocating the capacity price under this framework, the consumer always

loses in both cases compared to the previous market design. This loss can range from 982e under

the low elasticity scenario to 63239e under the high elasticity scenario. Three different effects

can explain the change in the consumer surplus between the exogenous and endogenous market

design : (i) the cost associated with the capacity market (ii) the avoid loss due to the inefficient

rationing (iii) a direct welfare loss due to the increase in the electricity price. As expected and
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similar to the social welfare effect, allocating the capacity price onto the consumer via a unitary

tax always generates the opposite effect (ii) and (iii). The first is always positive, and the second is

always negative. With the simulation, we find that the gain in rationing costs is lower with higher

elasticity, and the loss in terms of welfare is higher under higher elasticity. Therefore, the negative

effect (iii) tends to be higher when the elasticity is also higher. On the other hand, we find the

sign of the first effect to be ambiguous in our numerical illustration. Given our assumption and

changing the market design from the exogenous to the endogenous case, we should expect a loss

in terms of higher capacity market cost for consumers when the elasticity is low and a net gain

when the elasticity is high. It is explained by the ambiguous effect of changing the market design

on the capacity price. We find that under the low elasticity scenarios, capacity prices are higher,

and lower under the high elasticity scenario. 47

47Recall investment level is always lower under the endogenous market design.
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5.5 Retailers individual allocation

5.5.1 Calibrating the model

We conclude the analysis of our numerical application with the retailers individual regime. The

critical concept to understand this regime is how retailers formulate the demand function on the

reservation market and transmit incentives to consumers because of the penalty system. Given

the initial assumptions on the investment technology, we can find the equilibria on the reservation

market in terms of price and quantity for different penalty levels, price cap, and market structure.

One of the main challenges this numerical illustration raises is that the regime never restores

efficiency unless retailers do not entirely pass the penalty cost onto the final consumers. More

specifically, we introduce in the general framework a ratio such as the final consumer demand

function is only partially impacted when the price cap starts to bind and rationing occurs. 48 In

other words, retailers need to sustain an additional cost with the penalty system to induce sufficient

incentives to buy capacities.

Our first takeaway is that this penalty ratio needs to be very high for the regime to provide

enough incentives to retailers to buy capacities on the reservation market. To say it differently,

the marginal value of a capacity is relatively low for retailers whenever they can entirely pass the

penalty cost onto consumers. In this case, as shown in the general framework and under perfect

competition, the marginal value for a retailer relies on a monopoly quantity. In this numerical

application, such quantity, when computed, is also very low, which explains the findings. However,

with a high α, the penalty system induces a new value which stems from a tradeoff between buying

more capacities and sustaining the penalty cost. It translates retailers’ demand function to the

right and allows an intersection with producers’ supply function at a price above 0. We use the

numerical illustration to compute the couple value between the penalty value and the penalty

ratio that brings the same equilibrium as the first-best optimal value with inefficient rationing.

Under the three demand scenarios, the couple translates into a convex function with a minimum

48Initially, the final consumer demand when the penalty is allocated is p(q, t)− S, with a ratio α ∈ [0, 1] it boils
down to the same model except that the final demand is p(q, t)− (1−αS). If α = 1, then retailers fully sustain the
cost of the penalty system.
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value above 99.8%. To say it differently, when designing the penalty system under this regime,

policymakers need to impose to retailers to sustain 99.8% of the penalty system when inefficient

rationing occurs. Otherwise, retailers do not buy sufficient investment in the capacity market. To

give some order of magnitude, if the policy market aims at ensuring the investment level equal to

the first-best without inefficient rationing, which is always lower than the previous one, then the

ratio is still significantly high with a minimum value of 99%. Given this model calibration, we now

turn to the comparison with the ex-ante regimes.

5.5.2 Ex-ante vs ex-post regimes

This section discusses under which conditions an retailers individual market design can generate

more or less efficiency than an ex-ante market design. Note that we do not have any possibility

for regulatory errors in our model. Therefore, our results rely solely on the set of effects described

in the theoretical framework.

This approach allows us to derive the following implication: the regulator can choose the correct

combination set of penalty value, and penalty ratio such as the equilibrium in the capacity market

given the supply function and the aggregate demand function of retailers is equal to the first-

best investment level with inefficient rationing 49 However, we find that while it leads to the same

equilibrium in terms of investment level, the indirect effect of each set can be significantly different.

More precisely, we can differentiate between the set of penalty values and ratio, which gives higher

social welfare at the retailers individual regime equilibrium than the first-best social welfare in

the ex-ante regime equilibrium. We provide in table 4 the results of the simulation for the former

design under the three demand scenarios. The Max case represent the highest possible welfare

given the set of penalty value, the Min the minimum case, and Equal the penalty value such as

the equilibrium under the retailers individual regime is the same as under the ex-ante regime

We first find that it is always possible to have a set of values that gives higher welfare under the

retailers individual market design. For the three scenarios, those values vary significantly, which

49As in the theoretical framework, we do not discuss here a retailers individual market design without inefficient
rationing.

51



also illustrates the sensitivity of the retailers individual market design concerning the demand as-

sumptions when choosing the penalty system. Namely, the penalty range from 11 million e /MWh

for the low elasticity case to only 28 120.00e /MWh under the high elasticity to provide higher

social welfare than the ex-ante design. Those values are well above the actual penalty in France,

for instance. Under perfect competition in the retailer market, those findings stem from the fact

that when assessing the marginal value of an additional capacity, retailers only assess the benefits

and the costs during rationing periods when the price cap binds (see Proposition 8). Therefore,

their demand function results from an expected assumption on the rationing periods. Recall that

this period should only be occurring at a maximum of 0.266% under a first-best optimum.

Regarding the origin of the gains in terms of social welfare, which vary between 150 e to 2222

e , we find that it comes mainly from the avoided rationing cost when the price cap binds. More

precisely, our numerical results show that the retailers individual market design never generates a

rationing period compared to the ex-ante market design, which only minimizes those costs. To say

it differently, the indirect effect underlines in the theoretical framework for the retailers individual

regime fulfills its role by reducing the occurrence of such periods. Indeed, recall that the penalty

system incites retailers to reduce their consumption whenever the investment level is between the

realized demand at the price cap and the realized demand adjusted by the penalty at the price

cap, hence avoiding inefficient rationing.

Finally, we find that the gain from a retailers individual market design is higher under the

high elasticity case. This result is particularly relevant with respect to a policy perspective as it

demonstrates that such a regime seems to be more beneficial when final consumers have reached a

sufficient level for their demand elasticity with respect to price.
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6 Conclusion and discussion

This paper built a tractable framework to analyze multiple markets’ interdependences for an es-

sential good prone to underinvestment. We showed how the investment decisions are affected by

those markets, their structure (such as the degree of competition), and, most importantly, their

design. Our case study is the reservation markets that were implemented to encourage producers

to invest by providing an additional remuneration. Most of the literature on reservation markets

has focused on the supply side, where producers offer their availability on future transaction peri-

ods on the wholesale market. Therefore, the demand side has been overlooked, even though some

system efficiency effects are well known. Current implementations show many options regarding

the demand side’s design on reservation markets, as consumers do not have proper incentives to

buy capacities. Using our framework, we compare multiple market designs and their implications.

The first set of regimes is based on differentiating the capacity cost allocation. The second set

of regimes is represented by how the design can account for current demand realization. We un-

derline the different parameters that can significantly affect the outcomes of a reservation market

on investment decisions. The single entity’s quantity can significantly affect prices and quantities

on the three markets and redistribution welfare between agents for the ex-ante case. One of the

advantages of this framework relies on the possible extensions that we can implement, besides

providing a simple but complete vision. The rest of the section discusses two issues that could be

addressed in future research using this framework.

First, we initially assumed that consumers were fully reactive to retail prices. Such assumptions

do not describe the reality yet as illustrated in the electricity system, as most small final consumers

such as households are still under fixed-price contracts. The study of final consumers’ heterogeneity

and its implications for investment decisions in the power system is an emerging trend. Léautier

(2014) and Léautier (2016) provide a relevant model close to the one presented in this paper. They

show the effects of having those two types of consumers with different investment decisions and a

reservation market. However, the author does not compare demand design options for reservation

markets or consider retailers. Therefore, implementing this new extension in our model could

shed light on the issue associated with power systems’ investment decisions. It could also have
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a significant impact on retailers individual market design options. Indeed, if we consider that

some consumers cannot react to price, but retailers are still forced to cover their consumption, the

demand function’s formation in the reservation market is significantly impacted.

Finally, we assume that future final consumer demand is commonly shared between the different

agents. A single entity, potentially regulated, and retailers could access a different quantity and

quality of information. For instance, we can assume that the entity has only a global vision of the

future demand, and hence she is prone to make a more significant error forecast than retailers. On

the other hand, retailers have private access to more precise information on their client portfolio

while sharing common information on the world’s future global states. Therefore, introducing

these private/common elements in our model could shed new light on the effect of reservation

markets and their market design options. Finally, in some current implementations, the entity

based its global forecast on retailers’ information. Consequently, the comparison between the

various regimes’ cases could be analyzed using game theory and signaling.

References

Acemoglu, D., Bimpikis, K., and Ozdaglar, A. (2009). Price and capacity competition. Games

and Economic Behavior, 66(1):1–26.

Ahuja, A., Athey, S., Baker, A., Budish, E., Castillo, J. C., Glennerster, R., Kominers, S. D.,

Kremer, M., Lee, J., Prendergast, C., et al. (2021). Preparing for a pandemic: Accelerating

vaccine availability. In AEA Papers and Proceedings, volume 111, pages 331–35.

Allcott, H. (2012). Real-time pricing and electricity market design. NBER Working paper.

Boiteux, M. (1949). La tarification des demandes en pointe: Application de la théorie de la vente
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Gilmore, J., Greenhalg, J., Höschle, H., et al. (2016). Capacity mechanisms: needs, solutions

and state of affairs. CIGRÉ, Paris.
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Appendix - Securing investment for essential goods. How to

design demand functions in reservation markets?

A Discussion on the retail market structure

A.1 Retail market structure and ex-post requirements

Proposition 6 states that allocating the capacity price onto the retailers and their realized market

share provide an intermediary indirect effect on the demand side. Namely, with a less concentrated

retail market, retailers tend to pass more the capacity cost onto the consumers, mimicking the ex-

ante regime with an endogenous price. In contrast, we state that when the number of retailers

tends to converge towards the same outcome as the ex-ante regime, the difference with an ex-ante

regime with exogenous capacity price at the same degree of retail competition might differ with

respect to the market structure. This relation is illustrated in figure 3 where we draw the evolution

of the first-best investment level for different numbers of retailers. The red line stands for the

exogenous case, while the black line considers the realized market share in the outcome. While the

difference in terms of investment is relatively small for a very concentrated retail market, it tends

to widen as the number of retailers increases. Therefore, the point of convergence is different, as

shown in the figure.

One key element raised in this paper is the link between different market structures and the

evolution of social welfare. In the analysis of the welfare function with respect to the market

structure, we found that the latter can have an ambiguous effect. Indeed, recall that increasing

the number of retailers increases welfare during off-peak periods and increases the capacity price

allocated towards the consumers, hence decreasing welfare. A similar effect can be found when

we take into account inefficient rationing. In figure 4, we show the couple price cap - number of

retailers for which the effect is null. Namely, below the line on the first sub-figure, an increase

in the number of retailers always increases welfare, while above the line, it continuously decreases

welfare. This threshold is decreasing with respect to the price cap. Note the inverse relationship
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Figure 3: First-best investment level under retail Cournot competition between an ex-ante and
ex-post market design

when we consider inefficient rationing (with positive values below the line). In the first case, only

one effect is studied, while the second to opposite effect are considered. As shown in the previous

figures, the cost of inefficient rationing is high in social welfare, which explained the outweigh of

the first term by the second in the equation.

B Proof

B.1 Proof of Lemma 1

Similar to the proof of Lemma 1. Given the price cap, we define the inframarginal rent:

φw(k) =

∫ tw0 (k)

t0(k)

(p(k, t)− c)f(t)dt+

∫ +∞

tw0 (k)

(pw − c)f(t)dt (18)

The market investment level is equal to the optimal investment level only if the solution of the

following equality has the same solution as with the first-order condition of the welfare function:
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Figure 4: Threshold price cap and the market structure couples for the sign of the welfare function
derivative with respect to the number of retailers

φw(k) + zw(k) = r (19)

Which is the case if and only if :

zw(k) = φw(k)−
∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt (20)

Therefore the optimal payment is equal to the expected lost revenue between the optimal price

and the price cap:

zw(k) =

∫ +∞

tw0 (k)

(p(k, t)− pw)f(t)dt (21)
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B.2 Proof of Proposition 1

The proof is straightforward and relies on the first order condition of the producer profit function.

Recall that without a reservation market the profit function:

πsi (k) = φ(k)ki − rki (22)

As we are in a perfect competitive framework, ∂φ(k)
∂ki

= 0. Therefore the first-order condition

implies that the maximum is reached when φ(k) = r. It is the standard equilibrium condition

for investment decisions. Given that the profit function is concave, any deviation from this point

generates a loss. Consequently, the marginal cost of bringing an additional capacity when φ(k) < r

is null as it is always profitable to do so for the producer. On the other hand, when φ(k) >

r, the producer is always incited to reduce the capacity level unless given a remuneration. By

construction, at the margin and indifferent between an additional capacity against a remuneration,

the producer should receive a payment equal to r − φ(k).

B.3 Proof of Proposition 2

Recall that when the supply function in the reservation market with a price cap in the wholesale

market is positive, it is equal to

X(k) = r − φ(k) = r −
∫ tw0 (k)

t0(k)

(p(k, t)− c)f(t)dt−
∫ +∞

tw0 (k)

(pw − c)f(t)dt (23)

We then find the intersection between the supply function and the optimal payment functions

given by the following equations:

zw(k) =

∫ +∞

tw0 (k)

p(k, t)− pwf(t)dt (24)

For instance, when X(k) = zw(k), then it gives:
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r −
∫ tw0 (k)

t0(k)

(p(k, t)− c)f(t)dt−
∫ +∞

tw
(pw − c)ftdt =

∫ +∞

tw0 (k)

(p(k, t)− pw)f(t)dt (25)

When rearranged, we have:

r =

∫ +∞

tw(k)

(p(k, t)− cf(t)dt (26)

Which is the condition for the first-best to be reached. The exact process can be applied

to the two other optimal payment functions. Therefore having a demand function at the optimal

investment level given the supply function in the reservation market is strictly the same as providing

producers with a payment whose value is given by the payment function at the optimal investment

level.

B.4 Proof of Proposition 3

First, we state in this proof that allocating the reservation price on the consumer as a tax only

affects the share between on-peak and off-peak periods and the surplus’s size during off-peak

periods.

We start by defining the consumer surplus without reservation market:

W c =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dqf(t)dt+

∫ tw0 (k)

t0(k)

∫ k

0

(p(q, t)− p(k, t))dqf(t)dt+∫ +∞

tw0 (k)

∫ k

0

(p(q, t)− pw)dqf(t)dt

(27)

Next, we define the new thresholds between offpeak and on-peak periods, when the price cap

starts to bind, and the new quantity of the good asked at a price c: t1, tw1 and q1.

Then we define both the expected welfare for consumers and producers. We show that they

encompass at the same time the direct welfare loss and gain from the transfer due to the reservation
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market but also the indirect effect due to the reservation price allocation. The expected surplus

for the consumer during off-peak periods is, therefore:

W c
offpeak =

∫ t1(k)

0

(−pc(k − q1) +

∫ q1(t)

0

(p(q, t)− c− pc)dqf(t)dt

=

∫ t1(k)

0

−pck +

∫ q1(t)

0

(p(q, t)− c)dq)f(t)dt

(28)

With pc the reservation price.

For the on-peak periods when the price cap is not binding, the consumer welfare is:

W c
peak =

∫ tw1 (k)

t1(k)

−pck+

∫ k

0

(p(q, t)−p(k, t)−pc)dqf(t)dt =

∫ +∞

tw1 (k)

∫ k

0

(p(q, t)−p(k, t))dqf(t)dt (29)

For the periods when the price cap is binding, the consumer welfare is:

W c
cap =

∫ +∞

tw1

−pck +

∫ k

0

(p(q, t)− pw)dqf(t)dt (30)

On the other hand, the producer welfare during offpeak periods is:

W p
offpeak =

∫ t1(k)

0

pckf(t)dt (31)

For the on-peak periods when the price cap is not binding, the producer welfare is:

W p
peak =

∫ tw1

t1(k)

pck + k(p(k, t)− pc − c)f(t)dt =

∫ tw1

t1(k)

k(p(k, t)− c)f(t)dt (32)

For the periods when the price cap is binding, the producer welfare is:
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W c
cap =

∫ +∞

tw1

pck + k(pw − c)f(t)dt (33)

When we add the different expected welfare for consumers and producers, we have the pck

parts canceled and the price cap pw. It gives the following expected social welfare:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (34)

The proof of ∆W1(k) relies on the difference between W1(k) and W (k). There is no ambiguity

when calculating it with the integrals as we always have q1(r) < q0(t), t0(k) < t1(k) and tw0 (k) <

tw1 (k).

Recall that:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (35)

We rearrange the occurrence terms:

W1(k) =

∫ t0(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ t1(k)

t0(k)

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt

+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−
∫ t1(k)

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk
(36)

We next rearrange the first term associated with the quantity at the marginal cost and we add

the the second term with the last one :

W1(k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq f(t)dt−
∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt

+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−
∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt− rk
(37)

Note that the first and third term with is W (k). therefore

65



W1(k) = W (k)−
∫ t0(k)

0

∫ q0(t)

q1(t)

(p(q, t)− c)dq f(t)dt−
∫ t1(k)

t0(k)

∫ k

q1(t)

(p(q, t)− c)dq f(t)dt (38)

B.5 Proof of Lemma 2

The proof relies on the analysis of the derivative of ∂∆W1(k)
∂k . The derivative is equal to

∂∆W1(k)

∂k
=
∂t0(k)

∂k

∫ q0(t0)

q1(t0)

(p(q, t0)− c)dqf(t0) +

∫ t0(k)

0

−∂q1(k)

∂k
(p(q1, t)− c)f(t)dt

−∂t0(k)

∂k

∫ k

q1(t0)

(p(q, t0)− c)dqf(t0) +
∂t1(k)

∂k

∫ k

q1(t1)

(p(q, t1)− c)dqf(t1)

+

∫ t1(k)

t0(k)

(−∂q1(k)

∂k
(p(q1, t)− c) + (p(k, t)− c))f(t)dt

(39)

Note that the three terms with the derivatives of t0 and t1 are null. Therefore the equation

boils down to:

∂∆W1(k)

∂k
=

∫ t0(k)

0

−∂q1(k)

∂k
(p(q1, t)− c)f(t)dt+

∫ t1(k)

t0(k)

(−∂q1(k)

∂k
(p(q1, t)− c) + (p(k, t)− c))f(t)dt

(40)

Finally, as k increases, the reservation price also increases as producers need a higher remuner-

ation to be indifferent. Therefore, the indirect effect on the demand side is magnified. It implies

that the sign of ∂q1(k)
∂k is negative. In turn, the derivative ∂∆W1(k)

∂k is fully positive. Hence, the new

first-best solution in terms of investment level given under the endogenous regime is always lower

or equal to the first-best solution under the exogenous level.
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B.6 Proof of Proposition 4

The process is straightforward and relies on the inframarginal rent:

φw1 (k) =

∫ tw1 (k)

t1(k)

(p1(k, t)− pc − k)− c) f(t)dt+

∫ +∞

tw1 (k)

(pw − c) f(t)dt+ pc(k) (41)

We determine first the system’s main components in terms of an exogenous value representing

the reservation price. We then express the inframarginal given this value, and we equalize the

supply function r − φw1 (k) to this value. We solve the equation and isolate the reservation price.

Again, we express all the main components of the system with this new value. The rest of the

equilibrium follows.

B.7 Proof of Lemma 3

We define the expected producer welfare in the following equation:

W p
1 (k) =

∫ tw1 (k)

t1(k)

∫ k

0

(p(q, t)− c− pc)dqf(t)dt+

∫ +∞

tw1 (k)

∫ k

0

(pw − c)dqf(t)dt− rk (42)

The first order condition of the expected producer welfare function gives:

∂W p
1 (k)

∂k
= −∂t1(k)

∂k

∫ k

0

(p(q, t1)− c− pc)dqf(t1)dt+

∂tw1 (k)

∂k

∫ k

0

(p(q, tw1 )− c− pc)dqf(tw1 ) +

∫ tw1 (k)

t1(k)

(p(k, t)− c− pc)f(t)dt

−∂t
w
1 (k)

∂k

∫ k

0

(pw − c)dqf(tw1 )dt+

∫ +∞

tw1 (k)

(pw − c)f(t)dt− r

(43)

Note that p(q, t1) = c and p(q, tw1 ) = pw so the the first term is null, and the terms with the

derivative of tw1 cancel each other. It implies that:
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∂W p
1 (k)

∂k
=

∫ tw1 (k)

t1(k)

(p(k, t)− c− pc)f(t)dt

∫ +∞

tw1 (k)

(pw − c)f(t)dt− r (44)

On the other hand, the expected social welfare is:

W1(k) =

∫ t1(k)

0

∫ q1(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t1(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk

The first order condition of the expected welfare function gives:

∂W1(k)

∂k
=
∂t1(k)

∂k

∫ q1(t1)

0

(p(q, t1)− c)dq f(t1) +

∫ t1(k)

0

∂q1(k)

∂k
(p(q1, t)f(t)

−∂t1(k)

∂k

∫ k

0

(p(q, t1)− c)dqf(t1) +

∫ +∞

t1(k)

(p(k, t)− c)f(t)dt− r
(45)

Again, note that q1(t1) = k, therefore the first and the third term of the equation cancel each

other. It implies that:

∂W1(k)

∂k
=

∫ t1(k)

0

∂q1(k)

∂k
(p(q1, t)f(t) +

∫ +∞

t1(k)

(p(k, t)− c)f(t)dt− r (46)

Reaching the equality between the first-best and market equilibrium requires that the current

derivative with the additional capacity remuneration is equal to the derivative of the social welfare,

that is ∂W1(k)
∂k =

∂Wp
1 (k)
∂k + z1(k). Therefore we need to have the following equality

∫ t1(k)

0

∂q1(k)

∂k
(p(q1, t)f(t) +

∫ +∞

t1(k)

(p(k, t)− c− pc)f(t) =∫ tw1 (k)

t1(k)

(p(k, t)− c− pc)f(t)dt

∫ +∞

tw1 (k)

(pw − c)f(t)dt+ z1(k)

(47)

68



Which gives the optimal payment z1(k)

B.8 Proof of Lemma 4

In this case, the inframarginal rent is the same as the case with a price cap only. On the other

hand, the new welfare function is:

W bo(k) = W (k)−M(k) (48)

The first order condition is similar to those in the previous proof:

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−Mk(k) = r (49)

The market investment level is equal to the optimal investment level only if the solution of the

following equality has the same solution as with the first-order condition of the welfare function.

Because the inefficient rationing is due to the price cap, the optimal payment includes de facto

zw(k) to restore the optimal investment level. We derive here only the additional part relative to

the rationing.

φ(k) + zbo(k) = r (50)

Which is the case if and only if :

zbo(k) = φ(k)− (

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt−Mk(k)) (51)

Therefore the optimal payment is equal to the marginal surplus loss due to inefficient rationing.

zbo(k) = Mk(k) (52)
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B.9 Proof of Proposition 5

The first part of the difference can be found in the proof of Proposition 3. Now recall that, in

the case of an exogenous market design, or without reservation market, the system cost associated

with inefficient rationing is equal to:

M0(k) =

∫ +∞

tw0 (k)

J(∆0k)f(t)dt (53)

In the case of an endogenous market design, it becomes:

M1(k) =

∫ +∞

tw1 (k)

J(∆1k)f(t)dt (54)

With ∆1k, the new function representing the difference between the quantity consumed at the

price cap qw1 (k)and the investment level.

Therefore, it is straightforward to show that the gain or the loss can be expressed as follow:

M0(k)−M1(k) =

∫ +∞

tw0 (k)

J(∆0k)f(t)dt−
∫ +∞

tw1 (k)

J(∆1k)f(t)dt (55)

Recall that tw0 < tw1 , therefore we rearrange the expression as follow:

M0(k)−M1(k) = −
∫ tw1 (k)

tw0 (k)

J(∆0k)−
∫ +∞

tw1 (k)

(J(∆0k)− J(∆1k))f(t)dt (56)

Finally, we know that J(∆0k) > J(∆1k), as an exogenous market design, always implies higher

system costs when rationing occurs given a value of k. Indeed, everything else being equal, the

demand is lower under the endogenous case.

B.10 Proof of Lemma 5

The profit function of retailers is defined as follow:
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πri (qi, k) = qi(p(q)− ps)− pc(k)k
qi

qi + q−i
(57)

Given the retail market structure, the first-order condition of the profit function under a com-

petition à la Cournot implies that

p(q) + qipq(q)− ps − pc(k)k
q−i

(qi + q−i)2
= 0 (58)

And the second order condition:

2pq(q) + qipqq(q)− pc(k)k
q−i

(qi + q−i)3
= 0 (59)

The cross derivative of the profit function with respect to the competitor q−i is:

pq(q) + qipqq(q)− pc(k)k
q−i − qi

(qi + q−i)3
= 0 (60)

With n symmetric retailers and q the total quantity, the last equation becomes:

pq(q) +
q

n
pqq(q) + pc(k)k

(n− 2)

n

1

q2
= 0 (61)

The condition for existence requires that the cross derivative be positive, which establishes the

condition of the Lemma. The stability and the uniqueness of the equilibrium are given by the

second-order condition, which is always negative.

B.11 Proof of Proposition 6

The proof is straightforward and relies on the depressing effect generated at the margin on retailers’

profit function. In this case, this form of allocation is similar to an increase in the marginal cost

of production passed onto consumers.
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Similar to the endogenous market design, this additional marginal cost is sustained whatever

is the realization of the demand level for final consumers. Therefore, it lowers the quantity bought

in the offpeak periods and lowers the prices in the peak periods. However, the effect is not as

significant as in the endogenous case, as, under our framework, retailers do take into their welfare

part of the capacity cost allocation, and they do not fully transfer this new marginal cost onto the

consumers.

B.12 Proof of Lemma 6

The welfare function is given by

W (k) =

∫ t0(k)

0

∫ q0(t)

0

(p(q, t)− c)dq f(t)dt+

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt− rk (62)

The first order condition gives the optimal investment level:

∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt = r (63)

Regarding the market investment level, we define the inframarginal rent under Cournot com-

petition:

φ(k) =

∫ +∞

t0(k)

(ps(k, t)− c)f(t)dt (64)

The market investment level is equal to the optimal investment level only if the solution fol-

lowing equality has the same solution as with the first order condition of the welfare function:

φ(k) + zn(k) = r (65)

Which is the case if and only if :
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zn(k) = φ(k)−
∫ +∞

t0(k)

∫ k

0

(p(q, t)− c)dq f(t)dt (66)

Therefore the optimal payment is equal to the expected markup of retailers.

zn(k) =

∫ +∞

t0(k)

−k
n
pq(k, t)f(t)dt (67)

B.13 Proof of Lemma 7

We denote the value qr, the equilibrium quantity offered on the retail market without reservation

market. This value is given by the solution of p(q) + qipq(q)− ps = 0. We also denote the value qp

the equilibrium quantity offered on the retail market when the retailers sustain the penalty. This

value is given by the solution of p(q) + qipq(q) − ps − S = 0. By construction, we necessary have

qr > qp. Now that we found the equilibrium in the retail market, we can derive the reservation

market’s demand function. We characterize the symmetric equilibrium, and we left the asymmetric

equilibrium for future extensions of this paper.

By construction, if retailers buy the same quantity in the reservation market, the retail market

equilibrium is also symmetric. We start by defining which equilibrium exists in the retail market,

given the capacity level. There are only three possible cases, each with a unique equilibrium on

the retail market:

i k > qr. All retailers are in positive deviation. However, the equilibrium in the retail market

is still qr as it is the Cournot equilibrium.

ii qr ≥ k > qp. All retailers have bought the same quantity in the reservation market that they

have sold on the retail market. The equilibrium in the retail market is k.

iii qp ≥ k. All retailers have not bought enough capacity, and all retailers have to pay penalties.

The equilibrium in the retail market is qp.
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Figure 5: Best reaction functions for two retailers in a linear case

We provide in figure 5 an example of the three cases based on a different level of capacity.

The capacity level ki and k−i are represented respectively by the horizontal and vertical line. In

the first subplot, the level capacity is low, and it is an equilibrium to stay in the penalty system

(case (iii)). Notice in particular that retailer profit function is continuous but not differentiable at

qi = ki, which induces the case without the penalty at ki and k−i. In the second figure, retailers

buy the same amount of capacity (case (ii)). In the third, equilibrium is the case (i).

Next, to find the equilibria set in the reservation market, we start by determining the dominant

strategies for the three previous cases. The equilibrium is then the strategy that brings the highest

profits. It is straightforward that in cases (i) and (ii), it is a dominant strategy (strict if pc > 0) to

buy the same amount of capacity as the quantity in the retail market. Indeed, the retail’s optimal
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quantity is the same as without reservation market, and buying additional capacities does not

bring any remuneration. Therefore, it is always optimal to buy what is strictly necessary 50.

The optimal quantity of capacity bought in case (iii) depends on the difference between the

penalty value S and the reservation price pc(k). We previously assumed a linear penalty system, so

if the penalty is lower than the reservation price S ≤ pc(k), then it is a dominant strategy (strict if

S < pc(k)) to buy no capacity and sustain a penalty on all the quantity sold on the retail market.

Indeed, with strict inequality, the profit function is a decreasing non-concave function with respect

to ki. On the other hand, when the penalty is higher than the price, the profit function is an

increasing non-concave function with respect to ki. The dominant strategy is to buy the same

amount of capacity as the quantity qp which corresponds to the retail market’s corresponding

equilibrium in the penalty case. Therefore, the set of dominant strategies in the retail market is:



[qp, qr] if pc(k) ≤ S

{0, ]qp, qr]} if pc(k) > S

∀q ∈]qpqr[ q is a solution of p(q) + qipq(q)− ps(q)− pc(q) = 0

B.14 Proof of Proposition 7

The proof relies on the three cases describes in the corresponding section.

First, we showed that when the price cap is never binding (case 1), the market design does not

indirectly affect the demand side.

Second, when the price cap starts to bind, but retailers prefer to lower their demand rather

than sustaining the penalty (case (2), the indirect effect does not appear in the social welfare

50Retailer profit function is a decreasing function with respect to k as we assume retailers do not behave strate-
gically in the reservation market.
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function. Indeed, under this case, the capacity is binding, so a decrease in the demand due to a

price increase only redistributes the welfare between consumers and producers.

Finally, the only indirect effect of this design exists when inefficient rationing occurs, that is,

when retailers always sell at a quantity equal to qwd (k). This case implies that both the retailers

and the consumers suffered a surplus loss due to the demand reduction. Added to the penalty cost

borne by the retailer of S(qwd (k) − k), it gives the net loss for the welfare function. The gains in

terms of rationing cost avoided are similar to the demonstration of Proposition 5.

B.15 Proof of Lemma 8

The three indirect effects described in the market design also impact how retailers’ profit functions

can be expressed. Using the same logic as for the expected producer and consumer welfare, we

have the following expression for retailers’ expected welfare.

πr(k, t) =

∫ t0(k)

0

−q0(t)2

n
pq(q0(t), t)f(t)dt+

∫ tw0 (k)

t0(k)

−k
2

n
pq(k, t)f(t)dt+∫ twd (k)

tw0 (k)

k(p(k, t)− pw − T (k, t))f(t)dt+

∫ +∞

twd (k)

k(p(k, t)− pw − S)f(t)dt−∫ +∞

twd (k)

S(qw0 − k)f(t)dt− pc(k)ki

(68)

The demand function of retailers in the reservation market is found by the first order condition

of their profit function:
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πr(k, t) = −∂t0
∂k

q0(t0)2

n
pq(q0, t0)f(t0) +

∂t0
∂k

k2

n
pq(k, t0)f(t0)− ∂tw0

∂k

k2

n
pq(k, t

w
0 )f(tw0 )

+

∫ tw0 (k)

t0(k)

(
2k

n
pq(k, t

w
0 )− k2

n
pqq(k, t

w
0 ))f(t)dt− ∂tw0

∂k
(k(p(k, tw0 )− pw − T (k, tw0 ))f(tw0 ))

+
∂twd
∂k

(k(p(k, twd )− pw − T (k, twd ))f(twd )) +

∫ twd

tw0 (k)

(p(k, t)− pw − T (k, t) + kpq(k, t)−
∂T (k, t)

∂k
)f(t)dt

−∂t
w
d

∂k
(k(p(k, twd )− pw − S)f(twd )) +

∫ +∞

twd

(p(k, twd )− pw − S + kpq(k, t))f(twd )dt

−∂t
w
d

∂k
S(qw0 (twd )− k)f(t)−

∫ +∞

twd

−Sf(t)dt− pc(k)

(69)

Note that: q0(t0) = k, so the two first terms cancel each other. The third term is null. The

fifth term is also null as p(k, tw0 ) = pw, and T (k, t) is null at tw0 as we are at the boundary of the

case (2). Similarly, at the opposite boundary tdw we have T (k, tdw) = S, so the sixth and the eighth

term cancel each other. Finally, the eleventh term with the expected value of the penalty enters

and cancels the penalty value in the seventh term. Finally, the tenth term is null as qw0 (twd ) = k.

The first-order condition allows isolating the reservation price, which is the demand function

in the reservation market.
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