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Abstract

This paper provides a generalization of a model confidence set (MCS) procedure, as originally

introduced by Hansen et al. (2011) for univariate models, to systems of N > 1 dependent vari-

ables. A (1− α) level MCS collects the set of models with equal predictive ability, based on a

sequential elimination procedure that relies on an equivalence test. I introduce supremum-type

t and Hotelling-type T 2 statistics which account for correlation between loss differentials. I

assess the performance of 14 candidate asset pricing models using the Fama and French re-

search portfolios, with monthly data for the period 1972-2013. Under quadratic loss, I find

that for out-of-sample tests with the T 2 statistic using 12, 18 and 25 portfolios, the prominent

Fama and French (2015) model is the only selected model at the 1-year prediction horizon, but

the MCS often includes multiple competing models at the 2- and 5-year horizons, featuring

liquidity and mispricing factors. For in-sample tests, models are much harder to distinguish,

particularly when the number of test assets is small. Overall, out-of-sample tests and a larger

number of more heterogenous test assets provide more information to disentangle models. The

market-based capital asset pricing model is never included in the MCS. The procedure shows

good size and power properties in simulations.
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1 Introduction

In this paper, I provide a generalization of Hansen et al. (2011)’s model confidence set (MCS)

procedure to systems of N > 1 dependent variables, and apply it to asset pricing factor models.

Formally, a (1−α) level MCS can be defined as the set of models with equal predictive ability, where

the latter is assessed in- or out-of-sample through a sequential elimination procedure that uses an

equivalence test. Systems of N > 1 predictive equations raise dimensionality problems that have

not been addressed to date. This paper is motivated by this fact, particularly because empirical

asset pricing models commonly aim to explain returns on many test assets.

The usefulness of the MCS procedure can best be illustrated through the many published em-

pirical models in the beta pricing context. Lewellen et al. (2010) qualify these findings as “an

embarrassment of riches”, and in his seminal contribution, Harvey (2017) draws serious attention

to the underlying multiple testing problems, and suggests raising the hurdle for the discovery of

new factors: “our standard testing methods are often ill-equipped to answer the questions that we

pose”. Harvey et al. (2016) documents more than 300 possible risk factors since 1964. Given this

abundance of potential factors, numerous papers attempts to decipher which factors best explain

variation in asset returns. As recent empirical work points to more stringent statistical standards

to achieve factor significance (Harvey and Liu (2019), Gospodinov and Robotti (2021), Lewellen

et al. (2010)), the MCS procedure provides a formal confidence set with known coverage probability

(1− α), to infer the set of models with equal predictive ability.

Recently, numerous approaches have been developed to compare asset pricing models; namely

using Sharpe ratio-based statistics (Fama and French (2018), Kan et al. (2019), Barillas et al.

(2020)), machine learning methods (Feng et al. (2020), Gu et al. (2020), Kozak et al. (2020)),

mispricing distance measures (Gospodinov et al. (2013), Gagliardini and Ronchetti (2020), Zhang

et al. (2021)), and Bayesian methods (Barillas and Shanken (2018), Bryzgalova et al. (2019)).1

While these newly introduced techniques may be sensitive to (i) distributional assumptions, (ii)

hyperparameter tuning, and (iii) factor tradability assumptions, the MCS procedure provides a

flexible framework for the evaluation of asset pricing models, which can accommodate tradable or

non-tradable factors for a variety of loss functions, and aims to control coverage, i.e., the probability

of including the true unknown set of superior models. Moreover, the MCS procedure remains

agnostic to the modelling approach, and can be viewed as a model-free approach: one can receive

series of candidate predictions, and compute the MCS to obtain the set of modelling approaches

with equal predictive ability.

In this paper, I propose to use the MCS procedure, which controls the asymptotic family-

wise error rate at level α, to address these issues. Specifically, in view of the dimensionality, I

propose supremum t and Hotelling T 2 statistics, which account for potential correlations across

1See Weigand (2019) for a review of machine learning applications in empirical asset pricing, and Barillas and
Shanken (2017), Hou et al. (2018), Huang et al. (2018) and Pukthuanthong et al. (2018) for factor models comparison.
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the N -variate loss differentials. Statistical properties are illustrated in simulations. The empirical

analysis provides an alternative perspective on underlying asset pricing issues, in particular, on the

relevance of various anomalies, the information content of in- and out-of-sample assessments, and

of predictions across short and long term horizons. Additionally, I highlight issues relating to (i)

the temporal stability of the factor structure, and (ii) the number of models that are selected as

the result of model selection procedures.

The MCS, denoted M̂∗
1−α, is the set of best models from a collection of candidate models M0,

i.e., the set of models that survived a sequential selection procedure based on an equivalence test

δM and an elimination rule eM, both determined by the user. Similarly to confidence intervals for

point estimates, the MCS selects a set of models for some coverage probability (1−α): M̂∗
1−α covers

the set of models with equal predictive ability with probability (1−α). I apply this procedure to a

set of popular multivariate asset pricing factor models. Factor models are widely used in empirical

finance to relate expected asset or portfolios returns to exposure to risk factors. Examples of early

factor models are the Capital Asset Pricing Model (CAPM), resulting from the independent work

of Treynor (1961, 1962), Sharpe (1964), Lintner (1965), and Mossin (1966), where the factor is

the return of the market portfolio over the risk-free rate. The Fama and French (1993, 2015)

three- and five-factor models include the CAPM factor along with the 2 and 4 novel factors. In

recent years, Pástor and Stambaugh (2003), Moskowitz et al. (2012), and Asness et al. (2013)

introduced liquidity and momentum factors. The MCS has been applied extensively to univariate

macroeconomic models, see Samuels and Sekkel (2017), Aslanidis et al. (2018), and Champagne

et al. (2020). Hansen et al. (2003) applies the MCS to stochastic volatility models (prior to the

publication of Hansen et al. (2011)) and compares it to Bonferroni-type bounds. They find that

the MCS surpasses the Bonferroni method. In contrast to test of superior predictive ability (see

Hansen (2005), Giacomini and White (2006), and Li et al. (2020)), the MCS procedure uses an

equal predictive ability test, implying that choosing a benchmark model is not required.

First, I provide an extension to multivariate losses of the MCS procedure, using a supremum t

(or sup t) statistic and a Hotelling T 2 statistic. The latter is adapted from the multivariate test of

equal predictive ability of Mariano and Preve (2012). Both statistics account for the correlations

between loss differentials via a moving block bootstrap. Second, I present simulation results that

reflect the conventional size and power properties. I present a design with dependent losses drawn

from a multivariate normal distribution, with varying parameter values for between-model and

within-model correlations. The procedure works well in terms of both size and power. In the case

of a single “best” model, the MCS behaves as predicted theoretically in Corollary 1 of Hansen et al.

(2011). For multiple “best” models, the procedure attains the conventional coverage probability

for reasonable sample sizes, and in most cases, all inferior models are eliminated for sample sizes

smaller than 1,000. Empirically, I provide an analysis of a large set of candidate factor models using

the model confidence set approach, using the Fama and French research portfolios as dependent

variables with monthly data for the period 1972-2013. Using the T 2 statistic, I find that the Fama
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and French (2015) is only the surviving model for out-of-sample predictions at the 1-year horizon for

12, 18, and 25 portfolios. Multiple candidate models are selected at longer horizons, including the

Stambaugh and Yuan (2017) and Liu (2006) models. For in-sample predictions, candidate models

are not easily differentiable, especially for 5 test portfolios. The MCS never selects the capital asset

pricing model for the out-of-sample tests. All things considered, using out-of-sample predictions

and a greater number of dependent variables helps in distinguishing models. Section 2 outlines the

theoretical framework and the MCS procedure. I present simulation results in Section 3, and the

empirical analysis in Section 4. Section 5 concludes.

2 Framework

This section details the model confidence set procedure for multivariate loss functions, and presents

the proposed sup t and Hotelling T 2 statistics. Section 2.1 details the econometric framework of

the MCS. In Section 2.2, I outline the MCS procedure and its asymptotic properties. I describe the

multivariate statistics and the moving block bootstrap procedure in Section 2.3.

2.1 Multivariate Test of Equal Predictability

Consider the multivariate stochastic process W ≡ {Wt : Ω→ RKi+N , i ∈ {1, . . . ,m}, t = 1, . . . , T}
where Ki is the number of predictor variables in model i, N is the number of dependent variables,

m is the number of models under consideration, and T is the sample size. W is defined on the

complete probability space (Ω,F , P ), where Ω is a sample space, F is a σ-field on Ω, and P is a

probability measure. Define Wt = (Y ′t ,X
′
t), where Yt : Ω → RN denotes a vector of dependent

variables, Xt : Ω → RKi denotes a vector of independent variables, and Ft = σ(W1, . . . ,Wt)

denotes the σ-field generated from the history of Wt. In the N -equation multivariate framework,

we can arrange the Yt vectors into the (T ×N) matrix of observations

Y = [Y ′1 . . .Y
′
T ]′, (2.1)

and the values of Y predicted by model i at time t for a sample of size T are given by

f̂i,t,T = fi(Wt,Wt−1, . . . ,Wt−T+1; β̂i,t,T ), (2.2)

where fi is a measurable-Ft forecasting function for model i, and β̂i,t,T is a (Ki × N) vector of

estimated parameters. I evaluate each forecasting model using a loss function

Li,t = L(Yt, f̂i,t,T ) (2.3)
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which depends on the observed values Yt and the predicted values f̂i,t,T . A popular choice for the

loss function includes the multivariate quadratic loss

Li,t = [(Y
(1)
t − f̂ (1)

i,t,T )2 . . . (Y
(N)
t − f̂ (N)

i,t,T )2], (2.4)

where Y
(n)
t is the observations for the nth dependent variable at time t, and at f̂

(n)
i,t,T is the forecast

for the nth dependent variable at time t. Based on a loss function for each model and a σ-field Gt, I

can formulate the null hypothesis of conditional equal predictive ability between models i and j is

H0,M : E[L(Yt, f̂i,t,T )−L(Yt, f̂j,t,T )|Gt] = E[dij,t|Gt] = 0N for all i, j ∈M. (2.5)

where dij,t is the loss differential between models i and j. I focus on the case where the conditioning

set is the σ-field Gt = {∅,Ω}, which is equivalent to a null hypothesis of unconditional equal

predictive ability

H0,M : E[L(Yt, f̂i,t,T )−L(Yt, f̂j,t,T )] = E[dij,t] = 0N for all i, j ∈M. (2.6)

I characterize the dependence properties of the sequences of loss differentials {dij,t}i,j∈M0,t≥1 through

moment conditions, following the notation of White (2014). Denote Bt0+t1t0 = σ(dij,t0 , . . . ,dij,t0+t1)

as the Borel σ-field generated by {dij,t, t = t0, . . . , t0 + t1}, and Bt0−∞ and B∞t0+t1 as the Borel σ-

fields encompassing the past information contained in {dij,t}i,j∈M0,t≥1 up to time t0, and the future

information contained in {dij,t}i,j∈M0,t≥1 from time t0 + t1, respectively. Denote the measure of

dependence between Bt0−∞ and B∞t0+t1 as

α(Bn0
−∞,B∞t0+t1) ≡ sup

B0∈B
t0
−∞, B1∈B∞t0+t1

|P (B0 ∩B1)− P (B0)P (B1)|. (2.7)

For the sequence {dij,t} with Bt0−∞ and B∞t0+t1 , the mixing coefficient is

α(t1) ≡ sup
t0

α(Bt0−∞, B∞t0+t1). (2.8)

Definition 2.1. (α-mixing process) If the mixing coefficient α(t1) −→ 0, as t1 −→∞, the sequence

{dij,t} is said to be α-mixing or strong-mixing. Moreover, if E[|dij,t|r] < ∞ for r > 2, {dij,t} is

α-mixing of size −r/(r − 2).

Definition 2.1 states that observations that are sufficiently far apart tend towards independence. As

the mixing coefficient α(t1) tends to 0, equation (2.7) approaches the familiar formula P (B0∩B1) =

P (B0)P (B1), which states that the probability of the union of two events B0 and B1 is equal to the

product of their probabilities if B0 and B1 are independent. Suppose that:

Assumption 1. {dij,t}i,j∈M0 is mixing of size −r/(r − 2) with mixing coefficients α(l), for r > 2

5



Additionally, E‖dij,t‖r <∞ and
∑∞

l=1 α(l)1−2/r <∞.

Assumption 2. {dij,t}i,j∈M0 is covariance stationary.

I propose to use a Hotelling T 2 statistic to test hypothesis 2.5. Then, the multivariate counterpart

of Hansen et al. (2011)’s “set of superior objects” is

M∗ ≡
{
i ∈M0 : µij ≤ 0N for all j ∈M0

}
, (2.9)

where 0N is the N -dimensional vector of zeros. The central idea of the MCS procedure is to

determine whether a given model i belongs to the set of superior objects. The number of models in

M is m, such that the elements in M are i1, . . . , im. In the following section, I describe the MCS

procedure.

2.2 MCS Procedure

Following the notation of Hansen et al. (2011), the MCS procedure relies on an equivalence test

δM to test H0,M and an elimination rule eM to eliminate model M. The equivalence test takes on

values δM = 0 if H0,M is not rejected, and δM = 1 if H0,M is rejected. The elimination rule eM

determines the model removed from M when δM = 1. Hansen et al. (2011) outlines the procedure

for determining M̂∗
1−α as follows:2

Step 0: Initially set M =M0.

Step 1: Test H0,M using δM at level α.

Step 2: If H0,M is accepted, define M̂∗
1−α =M otherwise, use eM to eliminate an object from

M and repeat the procedure from Step 1.

The output of this algorithm is M̂∗
1−α, the model confidence set. The assumptions of Hansen et al.

(2011) with regards to asymptotic level and power apply to the multivariate case, and are stated

in Appendix A.2 for completeness. The MCS procedure also produces p-values. The p-value p̂i for

model i defined as the smallest p-value such that model i belongs to the MCS. Thus, a model with

p̂i = 1 will be included in the confidence set. This p-value is given by p̂eMj
= maxi≤jPH0,Mi

, PH0,Mi
,

for the corresponding null hypothesis H0,M. In a multivariate setting, we can test H0,M using a sup

t and a Hotelling T 2 statistic.

2.3 Statistics and Bootstrap Procedure

Both supremum- and Hotelling-type statistic can be used to test hypothesis H0,M. One advantage of

the sup t statistic is that it does not require the inversion of a possibly high dimensional covariance

2Hansen et al. (2011), p. 459, using their exact wording.
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matrix. The sup t statistics are written as follows:

tnM,sup = supi,j t
n
ij = supi,j

[
d̄nij/

√
var(d̄nij)

]
for n = 1, . . . , N, (2.10)

and

tM,sup = supnt
n
M,sup, (2.11)

where var(d̄nij) estimated via bootstrap. The proof of bootstrap validity of Hansen et al. (2011)

applies to the supremum-type t statistics. Additionally, I use the Hotelling-type T 2 statistic based

on Mariano and Preve (2012)’s test for equal predictive ability. Define the vector of losses Lt ≡
(Li1,t . . . Lim,t)

′, where Lij ,t = [l1ij ,t . . . l
N
ij ,t

]′, for j = 1, . . . ,m. The vector sample averages over t is

L̄ ≡ T−1
T∑
t=1

Lt. (2.12)

Consider the two statistics

d̄ij = T−1
T∑
t=1

dij,t (2.13)

and

d̄i· = m−1
m∑
j=1

d̄ij, (2.14)

corresponding to the sample counterpart of µij and the multivariate sample loss across models,

respectively. From equations (2.13) and (2.14), we can construct the Hotelling T 2 statistics

T 2
ij = T (d̄ij − µ0

ij)
′Σ−1ij (d̄ij − µ0

ij), (2.15)

and

T 2
i· = T (d̄i· − µ0

i·)
′Σ−1i· (d̄i· − µ0

i·), (2.16)

where Σij = T−1(dij − d̄ij)(dij − d̄ij)′, Σi· = T−1(di· − d̄i·)(di· − d̄i·)′, and µ0
ij and µ0

i· are the

value of µij under H0,M. The resulting can be written as TR,M ≡ maxi,j∈M
∣∣T 2
ij

∣∣. Similarly, the
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multivariate sample loss across models is given by the following a (1×N) row vector

d̄i· = m−1
m∑
j=1

d̄ij = m−1
[
d̄i1 + . . .+ d̄im

]
= m−1

[
T−1

T∑
t=1

(d1i1,t + . . .+ d1im,t) . . . T
−1

T∑
t=1

(dNi1,t + . . .+ dNim,t)

]

= m−1
m∑
j=1

[
T−1

T∑
t=1

(L1
i,t − L1

j,t) . . . T−1
T∑
t=1

(LNi,t − LNj,t)

]
.

(2.17)

In practice, we can compute bootstrap critical values to circumvent the estimation of large covariance

matrices. The block bootstrap procedure for multivariate loss functions is detailed below, following

the notation of Hansen et al. (2011).

1. Compute the bootstrap indexes.

(a) Select the block-length bootstrap l.3

(b) For the first bootstrap replication b = 1, draw a random variable ξb1 from a uniform

distribution with support [1, T ], and let (τb,1, . . . , τb,l) = (ξb1 , ξb1 + 1, . . . , ξb1 + l − 1).

(c) For the second bootstrap replication b = 2, draw a random variable ξb2 from a uniform

distribution with support [1, T ], and let (τb,l+1, . . . , τb,2l) = (ξb2 , ξb2 + 1, . . . , ξb2 + l − 1).

(d) Continue until the random variable ξbQ is generated, where Q = T/l denotes the number

of blocks if T/l is an integer. If T/l is not an integer, then create dT/le blocks, where

d·e is the ceiling function, and truncate the last block to size T − (Q− 1)l.

2. Compute the sample and the bootstrap statistics.

(a) Compute the bootstrap equivalent of Li,t:

L∗b,i,t = Li,τb,t for b = 1, . . . , B, i = 1, . . . ,m, t = 1, . . . , T. (2.18)

(b) Compute the bootstrap sample average:

L̄∗b,i =
1

T

T∑
t=1

L∗b,i,t. (2.19)

3. Compute the difference between the sample and the bootstrap statistics:

ζ∗b,i = L̄∗b,i − L̄i. (2.20)

3For the asymptotic theory associated multivariate block bootstraps and block length selection criteria, see Jentsch
et al. (2015).
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4. Test the hypotheses:

(a) Set M =M0.

(b) Compute the average over the number of models for the sample and the bootstrap statis-

tics:

L̄· =
1

m

m∑
i=1

L̄i and ζ∗b,· =
1

m

m∑
i=1

ζ∗b,i. (2.21)

(c) Compute either the sup t or the Hotelling T 2 statistic. For the Hotelling T 2 statistic:

T 2
i· = T (d̄i· − µ0

i·)
′Σ−1i· (d̄i· − µ0

i·), (2.22)

where Σi· =
1

B
(ζ∗b,i − ζ∗b,·)(ζ∗b,i − ζ∗b,·)′.

(d) Compute the test statistic Tmax = maxi Si·, where Si· is either statistic computed in step

(c).

(e) Compute either sup t or the Hotelling T 2 bootstrap statistics. For the Hotelling T 2

statistic:

T 2
b,i· = T (ζ∗b,i − ζ∗b,·)′Σ−1i· (ζ∗b,i − ζ∗b,·), (2.23)

(f) Compute the bootstrap statistic T ∗b,max = maxi Sb,i·, where Sb,i· is either statistic com-

puted in step (e).

(g) Compute the p-value for the hypothesis H0,M:

PH0,M =
1

B

B∑
b=1

1{Tmax>T ∗b,max}. (2.24)

(h) Reject HM,0 if PH0,M < α and remove eM = arg maxi Si· from M.

(i) Repeat steps (4b) to (4h) until HM,0 is not rejected. The (1− α) model confidence set,

denoted by M̂∗
1−α, consists of the remaining models.

In the next section, the moving block bootstrap procedure is implemented in simulations for a

design with dependent losses.

3 Simulation Results

I consider a simulation design similar to Design I.B of Hansen et al. (2011), with the adaption to

multivariate models that the vector of losses within a model can admit some degree of dependence.
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I consider different parameter values for cross correlation of a covariance matrix with Kronecker

structure. The block bootstrap length is set to l = 2 and the number of bootstrap iterations

to B = 1,000. The number of simulation replications is set to C = 2,500 for each sample size

T ∈ {25, 50, 75, 100, 200, 300, 400, 500, 600, 800, 1000, 1500, 2000, 3000, 4000, 5000}.

3.1 Simulation Design with Dependent Losses

Let m0 denote the number of best models from a set of m candidates models. This design uses

a (T × mN) matrix of losses L = [Li1 , . . . ,Lim ] drawn from a multivariate normal distribution

NmN(θ,Σ). Each dependent variable in a model admits a loss with mean 0 if the model belongs

to M∗, and mean 1/(m − m0) otherwise. The covariance matrix is set as Σ = Σφ ⊗ Σρ. Σ is

parameterized so that the covariance matrix between the losses of models i and j, Li and Lj,

is Σφ; and that for a given model i, the covariance between each (T × 1) loss vector lni for any

given dependent variable n, is Σρ. The (n, q)th and (i, j)th elements of Σφ and Σρ are defined as

Σφ(n, q) = φ|n−q| and Σρ(i, j) = ρ|i−j| for n, q = 1, . . . , N and i, j = 1, . . . ,m, respectively. Σφ and

Σρ are of dimension (N × N) and (m ×m), respectively. The results of the simulation for m0 =

1, 2 and 5 best models, m = 10 candidate models, and N = 5 dependent variables are presented

in Figures 1 to 3 for the supremum t statistic, and in Figure 4 to 6 for the Hotelling T 2 statistic.

Additional simulation results using the supremum t statistic for N = 10 dependent variables are

available in Appendix A.4. The top panel of each figure plots the frequency at which the best model

is selected by the MCS procedure. This frequency reflects the ability of the procedure to include the

best model(s), and is interpreted as the size property of the procedure. The bottom panel of each

figure plots the average cardinality (the number of elements in the set) of the MCS. This property

illustrates the ability of the procedure to eliminate the inferior models.

Overall, the procedure behaves well and delivers the expected coverage probability and number

of selected models. The top panels in Figures 1 and 4 verify Corollary 1 of Hansen et al. (2011)

stated in Appendix A.2 for both considered statistics, which implies that if the cardinality of the

true MCS M∗ is 1, then the coverage probability P (M∗ = M̂∗
1−α) of the MCS is 1 in the limit.

This result is attained for sample sizes greater than 600 for the sup t statistic, and greater than

1,000 for the T 2 statistic. In conjunction with their bottom panels, the top panels in Figures 1 and

4 show that not only the procedure includes the best model in the MCS asymptotically, but only

the best model, with probability 1. For parameterizations where there exists more than one best

model (Figures 2, 3, 5 and 6), the frequency at which the best models are included in the MCS

reaches the 95% coverage probability rapidly, and even exceeds that threshold for small sample sizes

when m0 = 2 (Figures 2 and 5). When there are 5 best models, frequency with the sup t statistic

reaches 95% coverage after 1,000 observations - faster than with the T 2 statistic. This happens at

the expense of power, especially for low values of the within-model correlation parameter ρ. For

ρ = 0, the T 2 statistic selects close to 5 models for sample sizes as low as 200, where the sup t
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statistic requires at least T = 500.

The bottom panels of each figure captures the power properties of the MCS procedure. All

else equal, the average number of selected models decreases for greater values of the between-

model correlation parameter φ. This additional power reflects the information captured by φ,

making it easier for the procedure to reject incorrect models. However, greater values of the within-

model correlation parameter ρ increase the average number of selected models, making it harder to

reject incorrect models, in contrast with the results of Hansen et al. (2011). This pattern remains

consistent for m0 = 1, 2 and 5 best models and holds true for both statistics. For the size property,

there is no consistent pattern with respect to the different values of the correlation parameters. In

the next section, I propose to test a large number of asset pricing factors models that have received

support in the literature using the MCS procedure.
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Figure 1: Simulation design for the supremum t statistic with dependent losses, m = 10 candidate models,
m0 = 1 best model, N = 5 dependent variables, and α = 0.05. In the top panel, the vertical axis shows
the frequency at which the best model is included in the estimated model confidence set M̂∗1−α, and in the

bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set M̂∗1−α.
In both panels, the horizontal axis shows the sample size. In the top panel, the frequency curve remains
the same for sample sizes larger than T = 600 and is truncated for clarity.
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Figure 2: Simulation design for the supremum t statistic with dependent losses, m = 10 candidate models,
m0 = 2 best models, N = 5 dependent variables, and α = 0.05. In the top panel, the vertical axis shows
the frequency at which the best models are included in the estimated model confidence set M̂∗1−α, and in
the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set
M̂∗1−α. In both panels, the horizontal axis shows the sample size.
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Figure 3: Simulation design for the supremum t statistic with dependent losses, m = 10 candidate models,
m0 = 5 best models, N = 5 dependent variables, and α = 0.05. In the top panel, the vertical axis shows
the frequency at which the best models are included in the estimated model confidence set M̂∗1−α, and in
the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set
M̂∗1−α. In both panels, the horizontal axis shows the sample size.
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Figure 4: Simulation design for the Hotelling T 2 statistic with dependent losses, m = 10 candidate
models, m0 = 1 best model, N = 5 dependent variables, and α = 0.05. In the top panel, the vertical axis
shows the frequency at which the best model is included in the estimated model confidence set M̂∗1−α, and
in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set
M̂∗1−α. In both panels, the horizontal axis shows the sample size. In the top panel, the frequency curve
remains the same for sample sizes larger than T = 1000 and is truncated for clarity.
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Figure 5: Simulation design for the Hotelling T 2 statistic with dependent losses, m = 10 candidate
models, m0 = 2 best models, N = 5 dependent variables, and α = 0.05. In the top panel, the vertical axis
shows the frequency at which the best models are included in the estimated model confidence set M̂∗1−α,
and in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence
set M̂∗1−α. In both panels, the horizontal axis shows the sample size.
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Figure 6: Simulation design for the Hotelling T 2 statistic with dependent losses, m = 10 candidate
models, m0 = 5 best models, N = 5 dependent variables, and α = 0.05. In the top panel, the vertical axis
shows the frequency at which the best models are included in the estimated model confidence set M̂∗1−α,
and in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence
set M̂∗1−α. In both panels, the horizontal axis shows the sample size.
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4 Empirical Analysis

In my empirical analysis, I apply the MCS procedure to a large set of multivariate asset pricing factor

models. Smaller subsets of models determined by category of factors are available in Appendix A.5.

I consider the following multivariate linear factor model:

E[Rn − rf ] = βnE[f ], (4.1)

where Rn represents the returns of portfolio n, rf is the risk-free rate, βn is a vector of factor

loadings for portfolio n defined as βn = [β1,n β2,n . . . βK,n], and f is a vector of factors defined as

f = [f1 f2 . . . fK ]′. The expected returns model states that expected excess returns on the test

portfolios are proportional to the expected returns on the factors. The loadings or sensitivities on

the factors can be obtained by estimating the following time series regression:

Rn,t − rft = αn + f1,tβ1,s + . . .+ fK,tβK,n + εn,t, for t = 1, . . . , T, (4.2)

where Rn,t, r
f
t , and fk,t are the time-t counterpart of the variables in equation (4.1), and εn,t is the

error term associated with portfolio n at time t. When the factors are themselves tradable, the

loadings are interpreted as portfolio weights. If the test portfolio returns Rn,t are in excess of a

benchmark rate (often the risk-free rate), the well-known mean-variance efficiency conditions imply

that the regression intercepts must equal zero, i.e. αn = 0 for n = 1, . . . , N . I impose this additional

restriction in my empirical results for robustness. In equation (4.2), the factors are identical across

the N equations and I allow for cross-correlations across portfolios. The multivariate regression is

equivalent to a system of seemingly unrelated equations (SUR), which can be estimated via ordinary

least squares (OLS). I use the Fama and French research portfolios available on Professor French’s

website as test portfolios.4 The return series are value-weighted monthly portfolio returns of U.S.

stocks on the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and the

NASDAQ Stock Market. Portfolios are rebalanced each June and are sorted by characteristics. The

characteristics are the market equity (size) (N = 18), the double-sorted size and book-to-market

(N = 25), and the industry (N = 5, N = 12, and N = 49), as suggested by Lewellen et al. (2010).

The portfolios formed on size are sorted according to the firm’s market equity value (ME), and the

portfolios formed on size and book-to-market are the intersection 5 portfolios formed on size and 5

portfolios formed on book-to-market (BE/ME). For both the size and the book-to-market portfolios,

we use the lowest 30%, the middle 40%, and the top 40% portfolios returns, along with the quintile

and the decile portfolios returns. The industry portfolios are sorted according to the industry that

the issuing firm falls under using the Compustat Standard Industrial Classification (SIC) codes for

the previous fiscal year, or the Center for Research in Security Prices (CRSP) SIC code if the latter

4http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html#Research
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is unavailable. Summary statistics and industry classifications for the test portfolios are presented

in Appendix A.3. I consider the time-t quadratic loss:

Li,t = [(R1,t − R̂i
1,t)

2, . . . , (RN,t − R̂i
N,t)

2]. (4.3)

To compute each statistic, I use a moving-block bootstrap with block length l = 12 for in-sample

tests and l = 3 for out-of-sample test.

4.1 Candidate Factors Models

I consider 14 popular asset pricing models over a time period from July 1972 to June 2013, totaling

492 observations. As seen in the simulation results, this sample size is often sufficient to achieve

(1− α) coverage. I estimate the model parameters using the Fama and French test portfolios. The

candidate models are as follow:

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + en,t (FF3)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nUMDt + en,t (CAR)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nLIQt + en,t (PS)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nRMWt + β5,nCMAt + en,t (FF5)

Rn,t = αn + β1,nMKTt + β2,nICRFt + en,t (HKM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nDHMLt + en,t (AF)

Rn,t = αn + β1,nMKTt + β2,nHML∗t + β3,nUMD∗t + β4,nPMU∗t + en,t (NM)

Rn,t = αn + β1,nMKTt + β2,nMOMt + β3,nTRENDt + en,t (HZZ)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nMGMTt + β4,nPERFt + en,t (SY)

Rn,t = αn + β1,nMKTt + β2,nLIQZt + en,t (LIU)

Rn,t = αn + β1,nMKTt + β2,nPEADt + β3,nFINt + en,t (DHS)

Rn,t = αn + β1,nMKTt + β2,nMOMEVt + β3,nV ALEVt + en,t (AMP)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nUMDQt + β5,nQMJt + en,t (AFP)

For the capital asset pricing model (CAPM), the MKT factor is defined as the return on the market

portfolio net of the risk-free rate, which varies over time. The Small Minus Big (SMB) and High

Minus Low (HML) factors of the Fama and French (1993) (FF3) are defined as follows:

SMB = (Small Value + Small Neutral + Small Growth)/3,

− (Big Value + Big Neutral + Big Growth)/3,

HML = (Small Value + Big Value)/2− (Small Growth + Big Growth)/2.
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The SMB factor represents the spread between the mean return of three small portfolios and

three big portfolios, and the HML factor represents the spread between the mean return of two

value portfolios and the mean return of two growth portfolios. Value stocks are stocks considered

underpriced by the market, while growth stocks are stocks expected to grow significantly in the

future. The Up Minus Down (UMD) factor in the Carhart (1997) (CAR) model is computed

as the spread between the mean return of winning stocks and losing stocks. It represents the

momentum in a stock, i.e., the tendency of the return to be positive if the last period return was

also positive, and vice-versa for negative returns. Pástor and Stambaugh (2003) (PS) uses the Fama

and French (1993) factors and a liquidity factor, LIQ. This liquidity factor proxies for aggregate

market liquidity. Fama and French (2015) (FF5) defines the Robust Minus Weak (RMW ) and

Conservative Minus Aggressive (CMA) factors as follows:

RMW = (Small Robust + Big Robust)/2− (Small Weak + Big Weak)/2,

CMA = (Small Conservative + Big Conservative)/2− (Small Aggressive + Big Aggressive)/2.

The RMW is the spread between the mean return of a robust portfolio and a weak portfolio, in

terms of operating profitability. The CMA is the spread between the mean return of a conservative

portfolio and an aggressive portfolio. The ICRF factor of He et al. (2017) (HKM) is the innovations

of the autoregressive involving the intermediary capital ratio and its lagged value. The intermediary

capital ratio (ICR) is defined as

ICR = Market Capitalization/(Market Capitalization + Book Asset - Book Equity).

The devil’sHML factor of Asness and Frazzini (2013) (AF) is theHML factor with the modification

that the portfolios are sorted based on the book-to-price ratio instead of the traditional price-to-

book ratio. Novy-Marx (2013) (NM) uses an industry-adjusted version of the HML factor, the Up

Minus Down (UMD∗) factor, which represents the momentum in a stock, i.e., the tendency of the

return to be positive if the last period return was also positive, and vice-versa for negative returns,

as well as an industry-adjusted profitability factor, PMU∗, defined as the spread between gross

profits-to-assets ratios for profitable and unprofitable firms. The Han et al. (2016) (HZZ) model

use the MOM momentum factor, and the TREND trend factor, which reflects the short, medium,

and long term moving average prices at different time horizons. The Stambaugh and Yuan (2017)

(SY) uses two mispricing factors, MGMT and PERF , which summarizes information in mispricing

related to firm management and firm performance, respectively. The LIQZ factor of Liu (2006)

(LIU) acts as a proxy for the proportion of zero daily volume for a given number of days. Daniel

et al. (2020) (DHS) factors exploit mispricing in both the short and long term: the PEAD factor

captures post earnings announcement drift anomalies, i.e., the subdued reaction of market to those

earnings surprises, and the FIN factor captures the long term mispricing. Asness et al. (2013)

(AMP) uses value (the ratio of book value to market value) and momentum factors, categorized by
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asset class. The QMJ factor, or “quality minus junk”, of Asness et al. (2019) (AFP) reflects the

quality premium earned by high quality stocks over low quality stocks.

4.2 Results

The empirical analysis highlights two key facts. First, there are stark differences between the in-

sample and out-of-sample results. The in-sample MCS consistently contains more models than the

out-of-sample MCS. Second, as the number of test portfolios grows, the MCS includes fewer equally

predictable models for out-of-sample tests. Notably, the capital asset pricing model containing only

the market premium factor is never included in MCS for out-of-sample predictions. Tables 1 to 6

present the 95% and 75% model confidence sets for the 14 candidate models for the two considered

statistics. The left panels display the results of the in-sample tests, and the right panels that of the

out-of-sample tests, for the 12-, 24- and 60-month horizons. In each case, I also perform the MCS

procedure imposing the mean-variance efficiency condition by suppressing the regression intercept.

Tables 1 and 4 show the results for the 5- and 12-industry portfolios, Tables 2 and 5 show the results

for the 18 size-sorted and 25 size- and book-to-market-sorted portfolios, and Tables 3 and 6 show

the results for the 49-industry portfolios.

Table 1 presents the results for the 5 and 12 industry-sorted portfolios as test assets using the

sup t statistic. For in-sample predictions at the 95% confidence level, the candidate models are

indistinguishable in their capacity to explain variation in five-industry portfolio returns. For the

75% MCS, the set consists only of the Fama and French (2015) model in all 4 cases (for the 5- and

12-industry portfolios, with and without mean-variance conditions); however the confidence level

is lower. For out-of-sample tests with a 12-month horizon, the MCS contains fewer models than

for in-sample predictions. Only the Fama and French (1993), the Pástor and Stambaugh (2003),

and the Stambaugh and Yuan (2017) models survive the procedure. When imposing αn = 0, the

Fama and French (2015) model is selected in addition to these 3 models. For a 24-month horizon, 4

and 3 models are included in the MCS with and without mean-variance efficiency, respectively. For

h = 60, the Asness and Frazzini (2013), Stambaugh and Yuan (2017), and Liu (2006) models are

included for both restricted and unrestricted regressions. When using the 12-industry portfolios,

12 of the 14 candidate models are selected by the in-sample MCS. The picture becomes clearer

in out-of-sample results: for short time horizon (12 and 24 months), the Fama and French (2015)

model is the only included model in the MCS. The out-of-sample results underscore the short term

stability of the RMW and the CMA factors, as the three-factor model (Fama and French (1993)) is

never selected alongside the five-factor model. This finding does not hold for the 60-month horizon,

however. Table 2 displays the results for 18 size-sorted, and 25 size- and book-to-market-sorted

portfolios. The short term out-of-sample results show that the procedure only retains at most 2

models for the size-sorted test portfolios, and only the Fama and French (2015) model for the 25

size- and book-to-market-sorted test portfolios. At 5-year horizon, the 6 models are selected for 18
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portfolios. Table 3 shows the results for the 49-industry portfolios. For in-sample predictions, 7

of the 14 candidate models are selected by the procedure. For the out-of-sample predictions, the

liquidity model of Pástor and Stambaugh (2003) is the only model selected at the 12- and 24-month

horizons for unrestricted regressions. For longer horizons (h = 60), the Asness and Frazzini (2013)

model is the only selected model. For restricted regressions, the Fama and French (2015) model

is selected at the 12-month horizon, while the Pástor and Stambaugh (2003) model remains the

best model for 24-month horizons. At the 60-month horizon, the Fama and French (1993) and the

Asness et al. (2019) models survive the procedure.

Tables 4, 5, and 6 show the results of the MCS procedure for the Hotelling T 2 statistic. For

the industry portfolios, the T 2 statistic eliminates significantly more models in-sample than the

sup t statistic. This pattern also holds in simulations when the within-model correlation parameter

ρ is close to 0. For out-of-sample predictions with 5 test portfolios, the results are mixed. In

the short term (h = 12), the Stambaugh and Yuan (2017) mispricing model is the only included

candidate for unrestricted regressions, but the Fama and French (2015) is declared winner for

restricted regressions. These two models are also included in the MCS for h = 24 under mean-

variance efficiency conditions. At the h = 60 horizon, only the Stambaugh and Yuan (2017) and

Liu (2006) models remain. For the 12-industry test portfolios, the Fama and French (2015) model

is again the only included model for out-of-sample test at the 1- and 2-year horizons. For a 5-year

horizon, the Asness and Frazzini (2013) model is the only selected model. The results for the in-

sample predictions based on the 18 size-sorted portfolios are robust to using the T 2 statistic, as

displayed in Table 5. For 25 portfolios however, the MCS based on the T 2 statistic eliminates all

models but the Fama and French (2015) model, for in-sample and out-of-sample predictions. For

49-industry portfolios, the Fama and French (2015) model is again declared winner for in-sample

tests. The results of out-of-sample predictions for the Hotelling statistic are consistent with that of

the supremum statistic, with the exception that only the Asness et al. (2019) model is selected for

unrestricted regressions at the 60-month horizon.

Temporal instabilities in the estimated coefficients are a well-documented fact in the context of

beta pricing models. To address these concerns, I divide the original sample period into 10-year

sub-periods so that the variation in the coefficients is small enough to offer short-term stability.5

Tables 18 to 23 in Appendix A.5 show the results of in-sample tests for the 4 sub-periods. Using

the sup t statistic, the Fama and French (2015) model dominates the 1992 to 2002 period for the

industry portfolios. The results for other time periods are a testimony of the temporal instabilities,

as no single model stands out. Moreover, for the period surrounding the 2007-2008 financial crisis,

the data appears too noisy to distinguish the models: between 4 and 14 models are selected in the

MCS. Using the Hotelling T 2 statistic, the results are clear-cut. At most 2 models remain for every

period, and the Fama and French (2015) model emerges as the winner in most time periods, and

5See Fama and MacBeth (1973), Roll and Ross (1980), and Gibbons (1982) on the use of short time periods and
Gagliardini et al. (2016) for an alternative approach via a time-varying parameter model.
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most portfolio types. Notably, the Carhart (1997) and the Pástor and Stambaugh (2003) are also

occasionally selected.

5 Conclusion

This paper provides a multivariate extension of the model confidence set procedure originally pro-

posed by Hansen et al. (2011) for univariate models, and proposes two statistics to test equal

predictive ability: a supremum-type t statistic and a Hotelling-type T 2 statistic. Both statistics

summarize the information contained in the systems of equations to test equal predictive ability.

The extensive simulation study showcases the asymptotic size and power properties of procedure.

The procedure is adequately sized, even in small samples. In many cases, the desired coverage

probability is achieved in samples as small as T = 500, and the procedure can eliminate all inferior

models around T = 800 when there are a large number of good models. Simulations also show that

one of the key properties of the MCS procedure, namely that the estimated MCS converges to the

true MCS in probability when the latter is a singleton, holds true in the multivariate case.

The empirical analysis answers several outstanding questions with regards to the factor prolifer-

ation problems encountered in asset pricing. Namely, how do models featuring recently discovered

factors compare, and does a particular model stand out? I apply the MCS procedure to a set of

14 candidate models and I find that the prominent Fama and French (2015) five-factor model is

declared winner for out-of-sample tests with a large number of dependent variables. This finding

is consistent for both statistics. For in-sample predictions, the candidate models are often indistin-

guishable in their capacity to explain expected returns. To address concerns relating to temporal

instabilities, the sample is divided into 10-year periods, and the MCS is performed in-sample over

4 different periods. Although the selected models change often, the Fama and French (2015) model

is the only model selected for the 1992 to 2002 period for the industry portfolios.

A confidence set approach provides valuable insights and has significant strengths. First, the

candidate models do not need to follow a certain structure, e.g. with respect to nesting or factor

tradibility; second, a baseline model is not required; and third, the model confidence set procedure

allows models to be viewed as statistically equal. In the context of beta pricing model, the model

confidence set procedure also allows us to establish the significance of models, as opposed to the

marginal contributions of new factors.
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A Appendix

A.1 Assumptions and Theorems in Hansen et al. (2011)

The following assumptions and theorems do not depend on the dimension of L, d, or µ, and can

be applied to multivariate loss functions.

Assumption 3. For anyM⊂M0, (a) lim supn→∞ P (δM = 1|H0,M) ≤ α, and (b) limn→∞ P (δM =

1|HA,M) = 1.

Additionally, a given model i must not by eliminated by eM asymptotically if it belongs to the set

of superior objects:

Assumption 4. (Hansen et al. (2011)) limn→∞ P (eM ∈M∗|HA,M) = 0.

Given Assumptions 3 and 4, Theorem 1 and Corollary 1 of Hansen et al. (2011) also apply to the

multivariate case and are stated without proof.

Theorem A.1. Under Assumptions 3 and 4, (i) lim infn→∞ P (M∗ ⊂ M̂∗
1−α) ≥ 1 − α and (ii)

limn→∞ P (i ∈ M̂∗
1−α) = 0 for all i /∈M∗.

Corollary A.1.1. Under Assumptions 3 and 4, and thatM∗ is a singleton, we have limn→∞ P (M∗ =

M̂∗
1−α) = 1.

Theorem A.2. Suppose that P (δM = 1, eM ∈M∗). Then,

P (M∗ ⊂ M̂∗
1−α) ≥ 1− α. (A.1)
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A.2 Summary Statistics

Table 7: Summary statistics for the monthly factors, from July 1972 to June 2013: monthly average,
standard deviation, minimum, and maximum.

MKT SMB HML UMD LIQ RMW CMA ICRF DHML HML∗ UMD∗ PMU∗

Mean 0.0049 0.0017 0.0043 0.0069 0.0045 0.0029 0.0039 -0.0003 0.0043 0.0043 0.0062 0.0027
S.d. 0.0465 0.0314 0.0297 0.0451 0.0352 0.0236 0.0201 0.0683 0.0364 0.0149 0.0289 0.0118
Min -0.2324 -0.1687 -0.1110 -0.3439 -0.1278 -0.1833 -0.0688 -0.2795 -0.1798 -0.0502 -0.2338 -0.0462
Max 0.1610 0.2171 0.1290 0.1836 0.1119 0.1331 0.0958 0.3965 0.2700 0.0656 0.1218 0.0679

MOM TREND MGMT PERF LIQZ PEAD FIN MOMEV VALEV UMDQ QMJ

Mean 0.0069 0.0099 0.0069 0.0065 0.0059 0.6535 0.8208 0.0052 0.0039 0.0067 0.0038
S.d. 0.0451 0.0347 0.0288 0.0392 0.0371 1.8576 3.9457 0.0284 0.0275 0.0433 0.0236
Min -0.3439 -0.1667 -0.0893 -0.2145 -0.1321 -9.0283 -24.5554 -0.1427 -0.1887 -0.3456 -0.0910
Max 0.1836 0.1716 0.1458 0.1852 0.1417 11.9816 20.4176 0.1647 0.1658 0.1707 0.1239

Table 8: Correlation between monthly factors, from July 1972 to June 2013.

MKT SMB HML UMD LIQ RMW CMA ICRF DHML HML∗ UMD∗ PMU∗

MKT 1.0000 0.2613 -0.2896 -0.1419 0.0210 -0.2625 -0.3984 0.7622 -0.1226 -0.0558 0.0320 0.0338
SMB 1.0000 -0.2197 0.0008 0.0020 -0.4305 -0.1320 0.0913 -0.1076 -0.0212 0.0166 0.0029
HML 1.0000 -0.1680 0.0508 0.1333 0.6922 -0.0098 0.7727 -0.0103 -0.0376 0.0277
UMD 1.0000 -0.0346 0.1095 0.0261 -0.2651 -0.6504 0.0934 0.0329 -0.1457
LIQ 1.0000 -0.0054 0.0143 -0.0005 0.0975 0.0152 -0.1309 -0.0460
RMW 1.0000 0.0314 -0.1679 -0.0249 0.0772 -0.0429 0.0165
CMA 1.0000 -0.1994 0.4850 -0.0140 -0.0654 0.0318
ICRF 1.0000 0.1245 -0.0765 0.0261 0.0727
DHML 1.0000 -0.0519 -0.0415 0.0894
HML∗ 1.0000 -0.1817 -0.2241
UMD∗ 1.0000 0.2804
PMU∗ 1.0000

MOM TREND MGMT PERF LIQZ PEAD FIN MOMEV VALEV UMDQ QMJ

MKT -0.1421 0.1024 -0.5396 -0.2603 -0.6594 -0.0998 -0.5130 -0.0653 -0.0722 0.0093 -0.5242
SMB 0.0007 0.0436 -0.3904 -0.0943 -0.1968 0.0204 -0.4871 0.0043 -0.0555 -0.0131 -0.4652
HML -0.1676 -0.0292 0.7204 -0.3034 0.4776 -0.1532 0.6529 -0.1857 0.3761 -0.0513 -0.0448
UMD 1.0000 -0.0972 0.0572 0.7188 0.1717 0.4615 0.0960 0.5142 -0.3150 0.0974 0.2902
LIQ -0.0346 0.0250 -0.0162 0.0200 0.0050 -0.0176 0.0133 -0.1018 0.0960 -0.0817 -0.0243
RMW 0.1096 -0.0367 0.2684 0.4411 0.3477 -0.0920 0.5629 0.0285 0.0791 -0.0078 0.7613
CMA 0.0264 -0.0029 0.7710 -0.0454 0.5077 -0.0028 0.5961 -0.0788 0.2552 -0.0581 0.0591
ICRF -0.2651 0.1622 -0.2717 -0.4179 -0.4324 -0.1850 -0.2767 -0.1473 0.0584 -0.0026 -0.4532
DHML -0.6502 0.0406 0.4858 -0.6371 0.2373 -0.4072 0.4087 -0.4046 0.4578 -0.0620 -0.2640
HML∗ 0.0935 -0.0512 0.0741 0.0891 0.0808 0.0073 0.0598 0.0957 -0.0568 0.0263 0.1074
UMD∗ 0.0330 -0.0682 -0.0415 0.0134 -0.0729 0.0736 -0.0464 0.0634 -0.0314 0.0933 -0.0375
PMU∗ -0.1458 0.1289 -0.0286 -0.0914 0.0168 -0.0326 0.0055 -0.0422 0.0098 0.0437 -0.0306
MOM 1.0000 -0.0970 0.0573 0.7186 0.1718 0.4614 0.0960 0.5144 -0.3150 0.0972 0.2901

TREND 1.0000 -0.0041 -0.0879 -0.0327 -0.1077 -0.0202 -0.0621 0.0123 -0.0211 -0.0154
MGMT 1.0000 0.0096 0.6265 -0.0027 0.7993 -0.0365 0.2581 0.0040 0.3458
PERF 1.0000 0.1781 0.3841 0.1509 0.3721 -0.2286 0.0256 0.6570
LIQZ 1.0000 0.0181 0.6376 0.0308 0.1414 -0.0239 0.4273
PEAD 1.0000 -0.0473 0.2883 -0.2300 0.1320 0.1401
FIN 1.0000 -0.0340 0.2697 -0.0308 0.5285

MOMEV 1.0000 -0.5884 0.1221 0.1267
VALEV 1.0000 -0.0843 -0.0221
UMDQ 1.0000 -0.0062
QMJ 1.0000
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A.3 Additional Simulation Results

Figure 8: Simulation design for the supremum t statistic with dependent losses, m = 10 candidate models,
m0 = 1 true model, N = 10 dependent variables, and α = 0.05. In the top panel, the vertical axis shows
the frequency at which the true model is included in the estimated model confidence set M̂∗1−α, and in the

bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set M̂∗1−α.
In both panels, the horizontal axis shows the sample size. In the top panel, the frequency curve remains
the same for sample sizes larger than T = 800 and is truncated for clarity.
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Figure 9: Simulation design for the supremum t statistic with dependent losses, m = 10 candidate models,
m0 = 2 true models, N = 10 dependent variables, and α = 0.05. In the top panel, the vertical axis shows
the frequency at which the true models are included in the estimated model confidence set M̂∗1−α, and in
the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set
M̂∗1−α. In both panels, the horizontal axis shows the sample size.
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Figure 10: Simulation design for the supremum t statistic with dependent losses, m = 10 candidate
models, m0 = 5 true models, N = 10 dependent variables, and α = 0.05. In the top panel, the vertical axis
shows the frequency at which the true models are included in the estimated model confidence set M̂∗1−α,
and in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence
set M̂∗1−α. In both panels, the horizontal axis shows the sample size.
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Figure 11: Simulation design for the Hotelling T 2 statistic with dependent losses, m = 10 candidate
models, m0 = 1 true model, N = 10 dependent variables, and α = 0.05. In the top panel, the vertical axis
shows the frequency at which the true model is included in the estimated model confidence set M̂∗1−α, and
in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence set
M̂∗1−α. In both panels, the horizontal axis shows the sample size. In the top panel, the frequency curve
remains the same for sample sizes larger than T = 800 and is truncated for clarity.
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Figure 12: Simulation design for the Hotelling T 2 statistic with dependent losses, m = 10 candidate
models, m0 = 2 true models, N = 10 dependent variables, and α = 0.05. In the top panel, the vertical
axis shows the frequency at which the true model is included in the estimated model confidence set M̂∗1−α,
and in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence
set M̂∗1−α.

500
1,000

1,500
2,000

2,500
3,000

3,500
4,000

4,500
5,000

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

ρ = 0, φ = 0 ρ = 0, φ = 0.5 ρ = 0, φ = 0.75
ρ = 0.5, φ = 0 ρ = 0.5, φ = 0.5 ρ = 0.5, φ = 0.75
ρ = 0.75, φ = 0 ρ = 0.75, φ = 0.5 ρ = 0.75, φ = 0.75

500
1,000

1,500
2,000

2,500
3,000

3,500
4,000

4,500
5,000

1

2

3

4

5

6

7

8

9

10

ρ = 0, φ = 0 ρ = 0, φ = 0.5 ρ = 0, φ = 0.75
ρ = 0.5, φ = 0 ρ = 0.5, φ = 0.5 ρ = 0.5, φ = 0.75
ρ = 0.75, φ = 0 ρ = 0.75, φ = 0.5 ρ = 0.75, φ = 0.75

40



Figure 13: Simulation design for the Hotelling T 2 statistic with dependent losses, m = 10 candidate
models, m0 = 5 true models, N = 10 dependent variables, and α = 0.05. In the top panel, the vertical
axis shows the frequency at which the true model is included in the estimated model confidence set M̂∗1−α,
and in the bottom panel, the vertical axis shows the average cardinality of the estimated model confidence
set M̂∗1−α.
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A.4 Additional Empirical Results

A.4.1 Augmented Fama and French (1993) models

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + en,t (FF3)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nRMWt + β5,nCMAt + en,t (FF5)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nUMDQt + β5,nQMJt + en,t (AFP)

Table 12: MCS p-values for augmented Fama and French (1993) models, using the supremum t statistic,
using the quadratic loss function, for in-sample and out-of-sample tests, at the monthly frequency from
January 1964 to October 2014. For out-of-sample tests, the horizon h is 12, 24, and 60. R5IND, R12IND,
RME , RME/BEME , and R49IND denote the portfolio returns for the 5-industry, 12-industry, size-sorted,
size- and book-to-market-sorted, and 49-industry portfolios, respectively. Inclusion in the 95% and the
75% MCS is denoted by ∗ and ∗∗, respectively. αn 6= 0 denotes the presence of regression intercept. The
block bootstrap length is l = 12 for in-sample tests and l = 3 for out-of-sample tests. The number of
bootstrap iterations is set to B = 10,000.

In-sample Out-of-sample

January 1964 - October 2014 h = 12 h = 24 h = 60
Portfolio type Model αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0

R5IND CAPM 0.0640∗ 0.0560∗ 0.0020 0.0040 0.0060 0.0030 0.0140 0.0050
FF3 0.0640∗ 0.0560∗ 1.0000∗∗ 0.0430 0.0060 0.0040 0.1880∗ 0.1420∗

FF5 1.0000∗∗ 1.0000∗∗ 0.3030∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0140 0.0230
AFP 0.0640∗ 0.0560∗ 0.0020 0.0040 0.0060 0.0030 1.0000∗∗ 1.0000∗∗

R12IND CAPM 0.0150 0.0340 0.0090 0.0070 0.0000 0.0000 0.0060 0.0020
FF3 0.0530∗ 0.0360 0.0310 0.0070 0.0000 0.0000 0.5490∗∗ 0.1180∗

FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0060 0.0020
AFP 0.0530∗ 0.0360 0.0090 0.0070 0.0000 0.0000 1.0000∗∗ 1.0000∗∗

RME CAPM 0.0000 0.0000 0.0080 0.0220 0.0010 0.0040 0.0000 0.0000
FF3 0.8470∗∗ 0.8160∗∗ 0.0080 0.5330∗∗ 0.0010 0.0140 0.1040∗ 0.1680∗

FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

AFP 0.8470∗∗ 0.8160∗∗ 0.5270∗∗ 0.6810∗∗ 0.0010 0.0140 0.0930∗ 0.1680∗

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020
FF3 0.2050∗ 0.2060∗ 0.0000 0.0000 0.0000 0.0000 0.0240 0.0130
FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

AFP 0.2050∗ 0.2060∗ 0.0000 0.0000 0.0000 0.0000 0.0240 0.0130

R49IND CAPM 0.0010 0.0020 0.0020 0.0000 0.0000 0.0010 0.0080 0.0030
FF3 0.1360∗ 0.1370∗ 0.0130 0.0000 1.0000∗∗ 1.0000∗∗ 0.3900∗∗ 0.2850∗∗

FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0000 0.0000 0.0080 0.0030
AFP 0.1360∗ 0.1370∗ 0.0090 0.0000 0.3880∗∗ 0.1170∗ 1.0000∗∗ 1.0000∗∗
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A.4.2 Modified Fama and French (1993) factor models

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + en,t (FF3)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nDHMLt + en,t (AF)

Table 13: MCS p-values for modified Fama and French (1993) models, using the supremum t statistic,
using the quadratic loss function, for in-sample and out-of-sample tests, at the monthly frequency from
January 1964 to October 2014. For out-of-sample tests, the horizon h is 12, 24, and 60. R5IND, R12IND,
RME , RME/BEME , and R49IND denote the portfolio returns for the 5-industry, 12-industry, size-sorted,
size- and book-to-market-sorted, and 49-industry portfolios, respectively. Inclusion in the 95% and the
75% MCS is denoted by ∗ and ∗∗, respectively. αn 6= 0 denotes the presence of regression intercept. The
block bootstrap length is l = 12 for in-sample tests and l = 3 for out-of-sample tests. The number of
bootstrap iterations is set to B = 10,000.

In-sample Out-of-sample

January 1964 - October 2014 h = 12 h = 24 h = 60
Portfolio type Model αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0

R5IND CAPM 0.1100∗ 0.1360∗ 0.0180 0.0030 0.0040 0.0020 0.0270 0.0470
FF3 1.0000∗∗ 0.3440∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

AF 0.3070∗∗ 1.0000∗∗ 0.0330 0.0030 0.0040 0.0020 0.4430∗∗ 0.3290∗∗

R12IND CAPM 0.0250 0.0310 0.0260 0.0140 0.0010 0.0000 0.0190 0.0460
FF3 1.0000∗∗ 0.3950∗∗ 1.0000∗∗ 1.0000∗∗ 0.0030 0.0020 0.3980∗∗ 0.5580∗∗

AF 0.3470∗∗ 1.0000∗∗ 0.0260 0.0140 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

RME CAPM 0.0000 0.0000 0.0040 0.0060 0.0010 0.0030 0.0000 0.0000
FF3 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

AF 0.3500∗∗ 0.4470∗∗ 0.0550∗ 0.0510∗ 0.1310∗ 0.2080∗ 0.0450 0.0500∗

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020
FF3 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

AF 0.0010 0.0040 0.0020 0.0120 0.1140∗ 0.1210∗ 0.1000∗ 0.1210∗

R49IND CAPM 0.0120 0.0200 0.0000 0.0000 0.0050 0.0010 0.0360 0.0240
FF3 0.6970∗∗ 0.7610∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0360 0.0280
AF 1.0000∗∗ 1.0000∗∗ 0.0000 0.0340 0.0110 0.0040 1.0000∗∗ 1.0000∗∗
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A.4.3 Modified Fama and French (2015) models

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nRMWt + β5,nCMAt + en,t (FF5)

Rn,t = αn + β1,nMKTt + β2,nHML∗t + β3,nUMD∗t + β4,nPMU∗t + en,t (NM)

Table 14: MCS p-values for modified Fama and French (2015) models, using the supremum t statistic,
using the quadratic loss function, for in-sample and out-of-sample tests, at the monthly frequency from
January 1964 to October 2014. For out-of-sample tests, the horizon h is 12, 24, and 60. R5IND, R12IND,
RME , RME/BEME , and R49IND denote the portfolio returns for the 5-industry, 12-industry, size-sorted,
size- and book-to-market-sorted, and 49-industry portfolios, respectively. Inclusion in the 95% and the
75% MCS is denoted by ∗ and ∗∗, respectively. αn 6= 0 denotes the presence of regression intercept. The
block bootstrap length is l = 12 for in-sample tests and l = 3 for out-of-sample tests. The number of
bootstrap iterations is set to B = 10,000.

In-sample Out-of-sample

January 1964 - October 2014 h = 12 h = 24 h = 60
Portfolio type Model αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0

R5IND CAPM 0.0610∗ 0.0610∗ 0.0180 0.0670∗ 0.0340 0.0560∗ 0.1620∗ 0.1640∗

FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

NM 0.0610∗ 0.0610∗ 0.0320 0.0670∗ 0.0340 0.0560∗ 0.1620∗ 0.1640∗

R12IND CAPM 0.0130 0.0260 0.0590∗ 0.0090 0.0000 0.0000 0.0350 0.0280
FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

NM 0.0130 0.0260 0.0590∗ 0.0190 0.0000 0.0000 0.0350 0.0280

RME CAPM 0.0000 0.0000 0.0070 0.0000 0.0000 0.0030 0.0000 0.0000
FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

NM 0.0000 0.0000 0.0080 0.0080 0.0000 0.0030 0.0020 0.0000

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

NM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0030

R49IND CAPM 0.0020 0.0010 0.0000 0.0000 0.0000 0.0000 0.0720∗ 0.0300
FF5 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

NM 0.0020 0.0020 0.0100 0.0000 0.0000 0.0000 0.0720∗ 0.0300
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A.4.4 Liquidity-based models

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nLIQt + en,t (PS)

Rn,t = αn + β1,nMKTt + β2,nLIQt + en,t (LIU)

Table 15: MCS p-values for liquidity-based models, using the supremum t statistic, using the quadratic
loss function, for in-sample and out-of-sample tests, at the monthly frequency from January 1964 to October
2014. For out-of-sample tests, the horizon h is 12, 24, and 60. R5IND, R12IND, RME , RME/BEME , and
R49IND denote the portfolio returns for the 5-industry, 12-industry, size-sorted, size- and book-to-market-
sorted, and 49-industry portfolios, respectively. Inclusion in the 95% and the 75% MCS is denoted by ∗

and ∗∗, respectively. αn 6= 0 denotes the presence of regression intercept. The block bootstrap length is
l = 12 for in-sample tests and l = 3 for out-of-sample tests. The number of bootstrap iterations is set to
B = 10,000.

In-sample Out-of-sample

January 1964 - October 2014 h = 12 h = 24 h = 60
Portfolio type Model αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0

R5IND CAPM 0.1030∗ 0.1960∗ 0.0250 0.0070 0.0010 0.0000 0.0150 0.0200
PS 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0190 0.0290 0.0150 0.0200
LIU 0.2430∗ 0.3080∗∗ 0.0750∗ 0.1000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

R12IND CAPM 0.0090 0.0100 0.0020 0.0100 0.0000 0.0000 0.0160 0.0220
PS 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0160 0.0220
LIU 0.0130 0.0300 0.0020 0.0100 0.0040 0.0130 1.0000∗∗ 1.0000∗∗

RME CAPM 0.0000 0.0000 0.0030 0.0050 0.0010 0.0020 0.0000 0.0000
PS 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

LIU 0.0000 0.0000 0.0000 0.0010 0.0010 0.0020 0.0000 0.0000

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0030
PS 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

LIU 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0030

R49IND CAPM 0.0140 0.0220 0.0010 0.0020 0.0040 0.0010 0.0280 0.0100
PS 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

LIU 0.0160 0.0240 0.0010 0.0020 0.0340 0.0230 0.0280 0.0130
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A.4.5 Momentum-based models

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nHMLt + β4,nMOMt + en,t (CAR)

Rn,t = αn + β1,nMKTt + β2,nMOMt + β3,nTRENDt + en,t (HZZ)

Rn,t = αn + β1,nMKTt + β2,nMOMt + β3,nV ALt + en,t (AMP)

Table 16: MCS p-values for momentum-based models, using the supremum t statistic, using the quadratic
loss function, for in-sample and out-of-sample tests, at the monthly frequency from January 1972 to De-
cember 2017. For out-of-sample tests, the horizon h is 12, 24, and 60. R5IND, R12IND, RME , RME/BEME ,
and R49IND denote the portfolio returns for the 5-industry, 12-industry, size-sorted, size- and book-to-
market-sorted, and 49-industry portfolios, respectively. Inclusion in the 95% and the 75% MCS is denoted
by ∗ and ∗∗, respectively. αn 6= 0 denotes the presence of regression intercept. The block bootstrap length
is l = 12 for in-sample tests and l = 3 for out-of-sample tests. The number of bootstrap iterations is set to
B = 10,000.

In-sample Out-of-sample

January 1972 - December 2017 h = 12 h = 24 h = 60
Portfolio type Model αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0

R5IND CAPM 0.0630∗ 0.0820∗ 0.0090 0.0130 0.2180∗ 0.0020 0.0140 0.0120
CAR 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 0.0000 1.0000∗∗ 0.0140 1.0000∗∗

HZZ 0.0630∗ 0.0820∗ 0.0080 0.0000 1.0000∗∗ 0.0240 0.7250∗∗ 0.0120
AMP 0.0630∗ 0.0820∗ 0.0080 0.0030 0.5790∗∗ 0.0000 1.0000∗∗ 0.0120

R12IND CAPM 0.0150 0.0190 0.0010 0.0000 0.0000 0.0000 0.0190 0.0170
CAR 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

HZZ 0.0310 0.0190 0.0210 0.1040∗ 0.0040 0.0000 0.0230 0.0480
AMP 0.0310 0.0190 0.0010 0.0000 0.0000 0.0000 0.0190 0.0170

RME CAPM 0.0000 0.0000 0.0000 0.0000 0.0010 0.0030 0.0000 0.0000
CAR 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

HZZ 0.0000 0.0000 0.0000 0.0000 0.0010 0.0030 0.0000 0.0000
AMP 0.0000 0.0000 0.0000 0.0000 0.0090 0.0070 0.0000 0.0000

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
CAR 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

HZZ 0.0000 0.0000 0.0070 0.0000 0.0000 0.0010 0.0000 0.0010
AMP 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0010 0.0040

R49IND CAPM 0.0220 0.0290 0.0020 0.0000 0.0000 0.0000 0.0470 0.0000
CAR 1.0000∗∗ 1.0000∗∗ 0.0020 0.0000 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

HZZ 0.0180 0.0210 0.0020 0.0000 0.0000 0.0090 0.0700∗ 0.0500∗

AMP 0.0220 0.0290 1.0000∗∗ 1.0000∗∗ 0.0000 0.0000 0.0700∗ 0.0500∗
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A.4.6 Market-based models

Rn,t = αn + β1,nMKTt + en,t (CAPM)

Rn,t = αn + β1,nMKTt + β2,nICRFt + en,t (HKM)

Rn,t = αn + β1,nMKTt + β2,nSMBt + β3,nMGMTt + β4,nPERFt + en,t (SY)

Rn,t = αn + β1,nMKTt + β2,nPEADt + β3,nFINt + en,t (DHS)

Table 17: MCS p-values for market-based models, using the supremum t statistic, using the quadratic
loss function, for in-sample and out-of-sample tests, at the monthly frequency from July 1972 to December
2016. For out-of-sample tests, the horizon h is 12, 24, and 60. R5IND, R12IND, RME , RME/BEME , and
R49IND denote the portfolio returns for the 5-industry, 12-industry, size-sorted, size- and book-to-market-
sorted, and 49-industry portfolios, respectively. Inclusion in the 95% and the 75% MCS is denoted by ∗

and ∗∗, respectively. αn 6= 0 denotes the presence of regression intercept. The block bootstrap length is
l = 12 for in-sample tests and l = 3 for out-of-sample tests. The number of bootstrap iterations is set to
B = 10,000.

In-sample Out-of-sample

July 1972 to December 2016 h = 12 h = 24 h = 60
Portfolio type Model αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0 αn 6= 0 αn = 0

R5IND CAPM 0.0670∗ 0.0650∗ 0.0800∗ 0.1790∗ 0.0000 0.0060 0.1500∗ 0.1590∗

HKM 0.0930∗ 0.0670∗ 0.0870∗ 0.1880∗ 0.0710∗ 0.1150∗ 0.4240∗∗ 0.2610∗∗

SY 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗ 1.0000∗∗ 1.0000∗∗

DHS 0.0930∗ 0.0810∗ 0.0870∗ 0.1880∗ 0.0710∗ 0.1150∗ 0.1500∗ 0.1590∗

R12IND CAPM 0.0180 0.0260 0.0000 0.0000 0.0000 0.0000 0.1850∗ 0.0970∗

HKM 0.0500∗ 0.1050∗ 0.0000 0.0000 0.0000 0.0010 0.3360∗∗ 0.1110∗

SY 1.0000∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗ 1.0000∗∗ 1.0000∗∗

DHS 0.0180 0.0260 0.1790∗ 0.2510∗∗ 0.2150∗ 0.1990∗ 0.2360∗ 0.1110∗

RME CAPM 0.0000 0.0000 0.0200 0.0000 0.0000 0.0040 0.0000 0.0010
HKM 0.0000 0.0000 0.0030 0.0000 0.0000 0.0040 0.0000 0.0010

SY 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

DHS 0.0000 0.0000 0.0200 0.0000 0.0000 0.0040 0.0000 0.0010

RME/BEME CAPM 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010
HKM 0.0000 0.0000 0.0000 0.0010 0.0010 0.0030 0.0000 0.0010

SY 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

DHS 0.0000 0.0000 0.0000 0.0000 0.0000 0.0010 0.0000 0.0010

R49IND CAPM 0.0080 0.0130 0.0000 0.0000 0.0000 0.0010 0.0380 0.0330
HKM 0.0080 0.0130 0.0000 0.0000 0.0000 0.0010 0.0380 0.0330

SY 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗ 1.0000∗∗

DHS 0.0080 0.0130 0.0180 0.0640∗ 0.0040 0.0010 0.0380 0.0330
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