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Abstract

A recent literature considers causal inference using noisy proxies for unobserved

confounding factors. The proxies are divided into two groups that are independent

conditional on the confounders. One set of proxies are `negative control treatments'

and the other are `negative control outcomes'. Existing work applies to low-dimensional

settings with a �xed number of proxies and confounders. In this paper we consider high-

dimensional linear models with many proxies and possibly many confounders. A key

insight is that if each group of proxies is strictly larger than the number of confounding

factors this implies rank restrictions on matrices of nuisance parameters. We can

exploit the rank-restriction to reduce the number of free parameters to be estimated.

The number of unobserved confounders is not known a priori but we show that it is

identi�ed, and we apply penalization methods to adapt to this quantity. We develop

doubly-robust estimation and inference methods. We provide asymptotic analysis and

provide simulation evidence that our methods are e�ective.

Introduction and Related Literature

The key challenge for causal inference is the presence of confounding factors: variables that
cause both treatments and outcomes. In observational studies some important confounders
may be absent from the available covariates or subject to substantial measurement error.
For example, suppose we wish to assess the e�ects of some intervention on a student's
educational attainment. The pupil's academic ability is a potential confounding factor, and
even the best measurements of ability (test scores, grades etc.) are likely subject to error.
If some confounders are unmeasured or mismeasured then standard methods that adjust for
observed covariates do not recover a causal e�ect.

Miao et al. (2018b) sparked a recent literature that considers identi�cation and estima-
tion of causal e�ects when a researcher observes noisy proxies for unobserved confounding
factors. For example, one may observe test scores which are proxies for academic abil-
ity. `Proxy' here refers simply to a covariate that is informative about, but mismeasures,
some variable of interest. Two groups of proxies are required and these two sets must be
uncorrelated conditional on confounders. One group of proxies is a set of negative con-
trol treatments: variables that have no direct causal e�ect on outcomes. The other group
of proxies are negative control outcomes: variables that are not directly a�ected by the
treatments. We refer to these proxies for the unobserved confounders as `proxy controls'.
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Compared to standard factor-analytic methods, the proxy control approach has the
advantage that the factor structure itself need not be identi�ed. More precisely, one need
not identify the distribution of unobserved confounders nor their causal e�ects. Thus proxy
control methods may be applied even when the assumptions required for identi�cation of
the factor structure do not hold.

The proxy control approach is particularly apt for causal inference with high-dimensional
data, that is, data that contain many covariates. In these settings one may hope to use these
covariates to adjust for confounding. But the availability of many covariates is no guarantee
that standard methods recover a causal e�ect. Despite their numbers, the covariates may still
provide only a noisy signal for the underlying confounders. However, the high-dimensional
covariates are a rich source of potential proxies.

Miao et al. (2018b) provides conditions under which the average structural function
is nonparametrically identi�ed using proxy controls. Additional identi�cation results are
provided in Deaner (2021) and Tchetgen et al. (2020) among others.

Nonparametric estimation with proxy controls was considered in Deaner (2019), and
later by Tchetgen et al. (2020), Singh (2020), Cui et al. (2020), Kallus et al. (2021) and
others. Miao et al. (2018a) consider estimation in parametric models when a `confounding
bridge' function is identi�ed. Existing work applies to low-dimensional settings in which the
number of proxies and confounding factors is small and treated as �xed.

In this work we consider identi�cation, estimation, and inference in linear models when
the set of proxy controls and the set of confounding factors are high-dimensional. In high-
dimensional settings standard asymptotic approximations based on a �xed number of proxies
and confounders may be misleading. Thus our asymptotic analysis allows the number of
proxies and confounders to grow with the sample size.

A key insight in this work is that if there are strictly fewer unobserved confounders than
there are proxies in each group, then two matrices of nuisance parameters have a low-rank
structure. We exploit this low-rank structure to reduce the number of free parameters to
be estimated. This allows for more e�cient estimation, particularly when the number of
proxies is large. The number of confounders is generally unknown, and so we propose model
selection methods that allow us to adapt to this quantity. The model selection methods
are based on techniques from the literature on reduced-rank regression, particularly Bunea
et al. (2011).

A pleasing feature of our analysis is that the sparsity (in the form of rank restrictions)
follows from the structure of the model, and the degree of sparsity is tied directly to an
interpretable feature of the model, namely the number of unobserved confounders. This
contrasts with standard high-dimensional regression methods which typically assume some
form of sparsity on the nuisance parameters a priori.

Our proposed procedure is an example of a Double Machine Learning 2 (DML2) esti-
mator of the kind analyzed in section 3.2 of Chernozhukov et al. (2018). Chernozhukov
et al. (2018) shows that DML2 estimators are root-n consistent, asymptotically unbiased,
and asymptotically Gaussian, under relatively weak conditions on the nuisance parame-
ter estimates. Our estimator is based on a doubly-robust score function. The estimator
and corresponding con�dence intervals have a closed-form, which ensures they are easy to
compute.

The use of a linear model allows us to weaken the identifying assumptions in nonpara-
metric proxy control analysis. We need only assume variables are uncorrelated rather than
independent, we can replace statistical completeness with more intuitive full-rank assump-
tions, and we avoid the need for regularity conditions like Assumption A3 in Miao et al.
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(2018a).
Linear proxy control models have a long history in economics, dating back to work by

Zvi Griliches in the 1970s (Griliches & Mason (1972) and Griliches (1977), see also Gary
Chamberlain's unpublished PhD dissertation). Griliches (1977) considers two scalar proxies
for a single confounding factor in a model that can be understood as a special case of the
one we present here. To the best of our knowledge no existing work exploits the dimension
reduction when there are fewer confounders than proxies, nor does any existing work allow
for a growing number of proxies or confounders.

In sum, our contributions are as follows. We provide a set of identifying assumptions
in the linear proxy control model. We present novel estimation methods that allow us to
exploit the low-rank structure in the nuisance parameters when the number of unobserved
confounders is less than the number of proxies in each group. We develop asymptotic theory
for the estimator and an associated inference method, and we provide simulation evidence
of the e�cacy of our methods.

1 Model and Identi�cation

Let Yi be an outcome of interest and Xi a vector of treatments. Let Wi be a vector of
unobserved confounding factors. We assume the researcher has access to two sets of proxies
Vi and Zi for the unobserved confounders Wi.

The assumptions on the proxies Vi di�er from those on the proxies Zi. Vi is a vector of
`negative control outcomes', which means that treatment has no direct e�ect on Vi. Zi is a
vector of `negative control treatments' which means that Zi has no direct causal e�ect on
the outcome Yi.

In addition the researcher may have access to a vector of observable confounders which
we denote by Di. Table 1 lists the relevant variables.

Table 1: List of Variables

Variable Dimension Description

Yi 1 Outcome of interest.
Xi dX Vector of treatments.
Wi dW Vector of unobserved confounding factors.
Di dD Vector of observed confounding factors.
Vi dV Vector of proxies for W (negative control outcomes).
Zi dZ Vector of proxies for W (negative control treatments).

We assume the following linear models for the scalar outcome Yi and the vector of
negative control outcome proxies Vi. Our interest is in β0, the vector of coe�cients on the
treatments Xi in (1), which we assume has some causal interpretation. In order to avoid
the need to include intercepts we assume Di contains a constant.

Yi = β′0Xi +A0Wi + L0Di + εi (1)

Vi = B0Wi +R0Di + υi (2)

Assumption 1.1 (Model and Exclusion restrictions). i. Equations (1) and (2) hold.
ii. E[εi(X

′
i, Z
′
i, D

′
i)] = 0 and E[υi(X

′
i, Z
′
i, D

′
i)] = 0.
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Assumption 1.1 places conditions on the residuals from equations (1) and (2). In order
to justify Assumption 1.1 we suggest applied researchers specify a complete linear causal
model for Yi, Vi, Zi, Xi, Wi, and Di, and check whether the exclusion restrictions in that
model imply Assumption 1.1. This task is made easier with the use a causal diagrams.
Some examples of models in which Assumption 1.1 holds are given in Figure 1.1.

Figure 1.1: Causal Structure of Proxy Controls

(a) Linear Causal Model

YiXi

Wi

ViZi

Di

Yi=β
′
0Xi + a1Vi + a2Wi + a3Di + UY,i

Xi=a4Zi + a5Wi + a6Di + UX,i

Vi=a7Wi + a8Di + UV,i

Zi=a9Wi + a10Di + UZ,i

Wi=a11Di + UW,i

Di=UD,i

UY,i, UX,i, UV,i, UZ,i, UW,i, UD,i all uncorrelated.

(b) Additional Models
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The causal diagram in Sub�gure 1.1.(a) is associated with the linear causal model to the
right of this sub-�gure. If there is an arrow pointing from a variable A to a variable B in
the diagram, then A is said to be a `parent' of B. In the corresponding linear causal model,
each variable is a linear function of all of its parents. The coe�cients on each variable are
non-random and the error terms UY,i, UX,i, etc. are all uncorrelated with each other.

The diagram is `causal' in that there is an arrow from A to B if and only if A has a
direct causal e�ect on B (by `direct' we mean that the e�ect is not mediated by any included
variables), and there are no omitted variables that jointly cause (or `confound') any of those
variables included in the diagram. Thus if a A is excluded from the equation for B, this
should be taken to mean that A does not directly cause B. The coe�cients β0, a1, a2,...,a11

are understood to measure average causal e�ects. The absence of omitted confounders
justi�es the lack of correlation in the error terms. If UY,i and UX,i were correlated this
would suggest there exists an omitted joint cause of Yi and Xi.

The linear causal model in Sub�gure 1.1.(a) implies that Assumption 1.1 holds with β0

the average causal e�ect of Xi on Yi. This is not the only linear causal model that implies
Assumption 1.1. All of the causal diagrams in Sub�gure 1.1.(b) imply Assumption 1.1 with
β0 the causal e�ect of Xi on Yi. These examples are not exhaustive. For a given causal
diagram one can apply the tools in Pearl (2009) to determine whether Assumption 1.1 holds
with β0 a causal e�ect. In the rightmost diagram the dashed arrows indicate there are
additional variables that jointly cause both Zi and Xi, and also additional variables that
jointly cause both Yi and Vi.
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Some of the causal diagrams in Figure 1.1 are also featured in Miao et al. (2018b), Deaner
(2021), and elsewhere.

Before we state our �rst result let us introduce some additional notation. We will de�ne
variables with the observed confounders Di and treatments Xi partialled out. De�ne the
following objects for H = W, V, Z, Y, X:

γH,0 = E[DiD
′
i]

+E[DiH
′
i]

ωH,0 = E[(X ′i, D
′
i)
′(X ′i, D

′
i)]

+E[(X ′i, D
′
i)
′H ′i]

H̃i(γ) = Hi − γ′Di

H̄i(ω) = Hi − ω′(X ′i, D′i)′

The notation M+ denotes the Moore-Penrose pseudo-inverse of the matrix M . For
notational convenience we sometimes write H̃i = H̃i(γH,0) and H̄i = H̄i(ωH,0). So for

example, X̃i is Xi with Di partialled out and Z̄i is Zi with both Di and Xi partialled out.
It will also be useful to de�ne the matrices C0, G0, which are of dimensions dW × dZ

and dW × dX respectively and are given below.

(C0, G0) = E[W̃i(Z̃
′
i, X̃

′
i)]E[(Z̃ ′i, X̃

′
i)
′(Z̃ ′i, X̃

′
i)]

+

Note that (C0, G0) is a block matrix consisting of C0 concatenated horizontally with G0.
We use this notation thoughout.

Theorem 1. Under Assumption 1.1 the following moment conditions hold:

E

[((
Ṽi

Ỹi − β′0X̃i

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̃i
X̃i

))
(Z̃ ′i, X̃

′
i)

]
= 0 (3)

Theorem 1 states that under Assumption 1.1 a matrix of moment conditions hold. As-
sumptions 1.2-1.4 below ensure that the moment conditions in Theorem 1 identify β0 as
well as the number of confounding factors dW .

Assumption 1.2 (Vi is su�ciently informative about Wi). B0 has full column rank.

Assumption 1.3 (Zi is su�ciently informative about Wi). C0 has full row rank.

Assumption 1.4 (Full support). The matrix E[(X ′i, Z
′
i, D

′
i)
′(X ′i, Z

′
i, D

′
i)] is non-singular.

Assumption 1.2 requires that the vector Vi is a su�ciently informative proxy for the con-
founders Wi. The assumption replaces the statistical completeness condition on Vi required
in the nonparametric setting. If E[υiWi] = 0 and Assumption 1.4 holds, this assumption is
equivalent to full row rank of E[W̄iV̄

′
i ]. This is precisely the rank condition for identi�ca-

tion in linear instrumental variables (IV) estimation: Wi takes the role of the endogenous
regressors, Di and Xi take the role of the exogenous regressors, and Vi acts as a vector of
instruments.

Similarly, Assumption 1.3 requires that after accounting for the treatments and observed
controls, Zi is su�ciently informative about the confounders. Under Assumption 1.4 the
condition is equivalent to full row rank of E[W̄iZ̄

′
i]. Again, this is the same condition

required for identi�cation in a linear IV model in which Zi is a vector of instruments for
Wi, and the variables Xi and Di are exogenous regressors.

Note that Assumptions 1.2 and 1.3 imply an order condition: Zi and Vi must each have
weakly larger dimension than Wi.
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Assumption 1.4 is a very mild condition that none of the components of Xi, Zi, and Di

are perfectly co-linear.

Theorem 2. Under Assumptions 1.1-1.4, β0 and dW are identi�ed. More precisely, suppose
that for some r, β ∈ RdX , A ∈ R1×r, B ∈ RdV ×r, C ∈ Rr×dZ , and G ∈ Rr×dX satisfy the
moment conditions below and B has full column rank:

E

[((
Ṽi

Ỹi − β′X̃i

)
−
(
BC BG
AC AG

)(
Z̃i
X̃i

))
(Z̃ ′i, X̃

′
i)

]
= 0 (4)

Then β = β0, dW = rank(BC) = rank
(
B(C,G)

)
= rank

(
(B′, A′)′C

)
. Moreover,

BC = B0C0, BG = B0G0, AC = A0C0, and AG = A0G0.

Theorem 2 shows that under Assumptions 1.1-1.4 the object of interest β0 and the
number of confounders dW are identi�ed from the moment conditions in Theorem 1. In
addition, the nuisance parameters B0C0, B0G0, A0C0, and A0G0 are also identi�ed. Note
that it is only these products that are identi�ed: A0, B0, C0, and G0 are not themselves
identi�ed.1

The theorem shows that the number of confounding factors dW determines the rank of
some matrices of nuisance parameters in the moment condition. If dW is small then this
constraint on the rank constitutes a substantial dimension reduction in the nuisance param-
eters, which is useful for estimation. The number of unobserved confounders is generally
unknown, but since it is identi�ed this suggests we can adapt to this quantity using model
selection methods.

A subtle point in the theorem is the condition that B, like B0, has full column rank.
There could be a β, A, B, C, and G that satisfy (4) so that β 6= β0, but then B must not
have full column rank. It would also be su�cient to impose that C has full row rank.

Under Assumptions 1.1-1.4, β0 could be estimated directly from the moment conditions
in Theorem 1 using the Generalized Method of Moments (GMM) (Hansen (1982)). However,
this presents some computational di�culty. Suppose that dW were known and we apply
GMM enforcing one of more of the rank constraints, for example rank(B0C0) = dW . If
dW < min{dV , dZ} then the GMM minimization problem does not have a closed-form
solution and the problem is non-convex.

In order to avoid this computational problem we suggest a method to estimate β0 by
sequential method of moments. The sequential method also allows us to use existing penal-
ized reduced-rank regression methods to estimate and adapt to the number of unobserved
confounders. In a �rst-stage one estimates the relevant nuisance parameters and then in a
second-stage estimates β0 by inverting a moment condition with the nuisance parameter es-
timates plugged in. The sequential method allows for estimates with a closed-form solution,
even in the case with dW unknown.

Corollary 1 states the moment conditions that we use for the sequential estimator. The
corollary �rst provides an alternative set of moment conditions that identify β0. We prove
in Lemma 1 that this characterization of β0 is in fact equivalent to that in Theorem 2. The
alternative moment conditions depend on two nuisance parametersM0 and ξ0. The corollary
then states that these nuisance parameters can be identi�ed from moment conditions that
do not involve β0 and which are linear in parameters.

1A0, B0, C0, and G0 are only identi�ed up to non-singular transformations. More precisely, if A, B, C,
and G satisfy (4) then so do matrices Ã, B̃, C̃, and G̃ of the same dimensions where (B̃, Ã′)′ = (B′, A′)′Ω
and (C̃, G̃) = Ω−1(C,G) for any non-singular matrix Ω.
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Corollary 1. Under Assumptions 1.1-1.4 β0 is identi�ed from the moment conditions below:

E
[(
Ṽi −M0(Z̃ ′i, X̃

′
i)
′)(Z̃ ′i, X̃ ′i)] = 0 (5)

E
[(
Ỹi − β0X̃i − ξ0Ṽ ′i

)
(Z̃ ′i, X̃

′
i)
]

= 0 (6)

M0 = B0(C0, G0) is the unique solution to (5) and rank(M0) = dW . (6) is satis�ed by
any ξ0 that solves ξ0B0C0 = A0C0, and there exists a solution with ||ξ0||0 ≤ dW . B0C0 and
A0C0 (and thus the set of solutions ξ0) are identi�ed by the moment conditions below, which
have unique solution Q0 = (B′0, A

′
0)′C0 and rank(Q0) = dW :

E
[(

(V̄ ′i , Ȳ
′
i )′ −Q0Z̄i

)
Z̄i
]

= 0 (7)

Corollary 1 suggest three di�erent means of adapting to the number of confounding
factors dW . Firstly, dW is the rank of M0. Secondly, dW is the rank of Q0. Thirdly, there
is a ξ0 that satis�es the moment conditions with dW non-zero entries.

1.1 Comparison to Existing Results

Our results are related to those of Miao et al. (2018a) and Griliches (1977). However, our
results di�er in important respects. We link the rank of the nuisance parameter matrices
to the number of unobserved confounders dW which we show is identi�ed, and we provide
additional moment conditions that help identify β0 when dW is smaller than dV or dZ . The
rank restrictions can result in a substantial dimension reduction which can greatly reduce
estimation error, particularly when there are many available proxies.

First let us compare with Miao et al. (2018a). For simplicity let us assume there are no
observed confounders Di. Miao et al. (2018a) assume the existence of a function that they
call a `confounding bridge' which then plays a key role in their analysis. This is a function
b with the property that for each x in the support of Xi, with probability 1:

E[Yi|Wi, Xi = x] = E[b(Vi, x)|Wi, Xi = x]

Suppose our Assumptions 1.1-1.4 hold and εi and υi are mean independent of Wi (rather
than just uncorrelated with Wi), then our model admits a confounding bridge of the form
b(v, x) = β′0x+ ξ0v, where ξ0 is any solution to ξ0B0C0 = A0C0 (just as in Corollary 1).

Miao et al. (2018a) impose assumptions that imply the confounding bridge is unique
and point identi�ed. In our model it may be neither unique nor point identi�ed. In fact,
under Assumptions 1.1-1.4 the confounding bridge is generally not unique unless dV = dW ,
otherwise it is generically true that there are multiple solutions to ξ0B0C0 = A0C0.

2 Even if
the confounding bridge is unique, in order to identify the bridge, Zi must be a vector relevant
instruments for Vi after controlling for Xi (see Assumption 5 in Miao et al. (2018a)). Again,
under our assumptions this is only possible when dV = dW . Thus the analysis of Miao et al.
(2018a) can only apply in our model when there are the same number of negative outcome
proxies as instruments.

Applying the methods of Miao et al. (2018a) in our model amounts to using GMM to esti-
mate solutions β0 and ξ0 to the moment condition (6) without any of the constraints related

2Under Assumptions 1.1-1.4 C0 has full row rank and so there is a unique solution if and only if A0 is
in the row space of B0. Since the row space of B0 is of dimension dW and A0 is a row vector of length dV ,
this is generically false.
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to dW .3 Griliches (1977) suggests estimation using instrumental variables that amounts to
the use of the moment condition (6) but the analysis of Griliches (1977) is limited to scalar
proxies and unobserved confounders. Corollary 1 imposes an additional moment condition
(5) which is important when dW is smaller than the number of proxies. For some intuition
note that (5) and (6) together imply the following moment condition:

E
[(
Ỹi − β0X̃i − ξ0M0(Z̃ ′i, X̃

′
i)
)
(Z̃ ′i, X̃

′
i)
]

= 0

In the moment condition above ξ′0 can be replaced by its projection onto the dW -dimensional
column space of M0, and thus ξ0 is e�ectively of dimension dW rather than dV . This is
related to the result in Corollary 1 that there exists a sparse solution ξ0 which has no more
than dW non-zero entries. The additional moment conditions in Corollary 1 suggest multiple
means of estimating, and thus adapting to dW .

In sum, our analysis, unlike existing results, applies to cases in which the number of
proxies in Vi is strictly greater than the number of unobserved confounders. Moreover, our
results show how one can adapt to the unknown number of confounders dW and thus reduce
the number of free nuisance parameters to be estimated when dW is smaller than dV or dZ .

2 Estimation and Inference

We now present an estimator motivated by the results in Corollary 1. In a �rst stage one
estimates nuisance parameters M0, ξ0, the parameters involved in partialling out Di, and
an additional matrix µ0 which we introduce in Subsection 3.1. µ0 is used to orthoganize
the moment conditions (5) and (6) to the nuisance parameters so that the resulting moment
condition is doubly robust. In a second stage we plug the nuisance parameter estimates into
an empirical doubly robust moment condition and solve for an estimate of β0.

The estimator is an example of a DML 2 (Double Machine Learning 2) estimator as
developed in Chernozhukov et al. (2018). Following Chernozhukov et al. (2018) we use
sample-splitting to reduce bias.

In order to adapt to the number of latent confounding factors dW , we estimate M0

by penalized reduced-rank regression and likewise for Q0, which we then use to obtain
an estimate of ξ0. These procedures produce an estimate of dW as a byproduct. In the
appendix we also specify an alternative method for estimating ξ0 which uses the fact (stated
in Corollary 1) that there is a sparse solution ξ0 with at most dW non-zero entries.

The estimator has a closed-form. In Subsection 3.1 we specify the doubly-robust moment
condition and our second stage estimator. In Subsection 3.2 we present estimates of the
nuisance parameters. Subsection 3.3 speci�es con�dence intervals ans standard errors.

Let us introduce some additional notation. We assume we have access to a sample of
size n, {Yi, Xi, Zi, Vi, Di}ni=1. We let X be the matrix whose ith row is X ′i and similarly for
Z, V , Y , and D. For a matrix M we let M[a:b,c:d] be the sub-matrix of M consisting of the
entries in rows a to b and columns c to d. M[a:b,:] is the sub-matrix of M consisting of rows
a to b and M[:,c:d] is the sub-matrix of columns c to d. M[a:b,c] is shorthand for M[a:b,c:c] and
similarly for M[a,c:d] = M[a:a,c:d].

3Miao et al. (2018a) allow the instruments (Z′i, X
′
i) to be replaced with any vector of transformations

q(Zi, Xi) with �nite variance. However, in our model if q is nonlinear then the resulting moment condi-
tions are valid only when the zero correlation conditions in Assumption 1.1.ii are strengthened to mean
independence.
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2.1 Doubly-Robust Score and Second-Stage Estimator

We now de�ne an estimator of β0 which uses nuisance parameter estimates obtained in
a �rst stage. We develop methods for obtaining the nuisance parameter estimates in the
subsequent subsection. The estimator is a DML 2 estimator of the kind in Chernozhukov
et al. (2018). The estimator solves an empirical moment condition with a doubly robust
score function. The score function is motivated by the moment conditions (5) and (6) in
Corollary 1.

For notational convenience let us collect the parameters involved in partialling out Di

into a single parameter γ0 = (γ0,X , γ0,Z , γ0,X , γ0,Z , γ0,V , γ0,Y ). Note that we duplicate γ0,X

and γ0,Z . This is because γ0,X and γ0,Z appear in the moment conditions in two places and
it is useful for analytical purposes to treat these instances as di�erent parameters.

To de�ne the doubly robust score, let us de�ne the vector-valued random function gi to
be the score function from the moment condition (6):

gi(β;M, ξ, γ) =

(
Z̃i(γZ,1)

X̃i(γX,1)

)(
Ỹi(γY )− β′X̃i(γX,2)− ξṼi(γV )′

)
In the above γ = (γX,1, γZ,1, γX,2, γZ,2, γV , γY ). We can then rewrite (6) as follows:

E
[
gi(β0; ξ0, γ0)

]
= 0

The moment condition above is not doubly robust. If ξ0 is replaced by some choices of
ξ 6= ξ0 the condition no longer holds.

However, the moment conditions are robust to each component of γ0. For example
suppose we replace γ0 by γ = (γX,1, γ0,Z , γ0,X , γ0,Z , γ0,V , γ0,Y ) for some γX,1 6= γ0,X , the
moment conditions still hold, that is E

[
gi(β0;M0, ξ0, γ)

]
= 0.

Estimation of β0 is based on a moment condition with a doubly robust score function
ψi of the form below:

ψi(β0; ξ0, γ0, µ0) = µ0gi(β0; ξ0, γ0) (8)

If the moment conditions in Corollary 1 hold then E
[
ψi(β0; ξ0, γ0, µ0)

]
= 0. The doubly

robust score depends on an additional matrix of nuisance parameters µ0 of dimension dX ×
(dZ + dX). To de�ne µ0 let us �rst de�ne a matrix Gη.

Gη = −E[(Z̃ ′i, X̃
′
i)
′(Z̃ ′i, X̃

′
i)]M

′
0

Note that Gη is the matrix of derivatives of E[gi(β0; ξ0, γ0)] with respect to ξ0.
Let Gβ be some (dZ + dX) × dX matrix and Ω a non-singular (dZ + dX) × (dZ + dX)

matrix. We then de�ne µ0 by:

µ0 = G′βΩ−1 −G′βΩ−1Gη(G′ηΩ−1Gη)+G′ηΩ−1 (9)

With µ0 de�ned in this way the score function (8) is doubly robust. We take Ω to be
the variance-covariance matrix of gi(β0;M0, ξ0, γ0) and set Gβ as follows:

Gβ = −E
[
(Z̃ ′i, X̃

′
i)
′X̃ ′i
]

With µ0 de�ned as above, the score (8) is e�cient in the sense that it yields a GMM
estimate that has smallest asymptotic variance out of all GMM estimators based on a linear
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combination of the components of gi (see e.g., subsection 2.2.2 of Chernozhukov et al. (2018)
for discussion).

An estimate of β0 is obtained by solving the empirical analogue of the moment condition
E
[
ψi(β0; ξ0, γ0, µ0)

]
= 0. Recent work including Chernozhukov et al. (2016) and Cher-

nozhukov et al. (2018) shows that there are advantages to sample-splitting in doubly robust
and locally robust estimators. Before we specify the estimator that employs sample-splitting
it may be helpful to �rst describe an estimate that does not use sample splitting.

Let ξ̂, γ̂, and µ̂ be estimates of ξ0, γ0, and µ0. γ̂ can be further decomposed into γ̂X , γ̂Z ,
γ̂V , and γ̂Y , which estimate γ0,X , γ0,Z , γ0,V , and γ0,Y . We let X̂i = X̃i(γ̂X) and similarly

for Ẑi, V̂i, and Ŷi.
An estimate of β0 that does not employ sample-splitting solves the empirical moment

condition
∑n
i=1 ψi(β; ξ̂, γ̂, µ̂) = 0. This estimate β̂ has the following formula:

β̂ =
( n∑
i=1

X̂i(Ẑ
′
i, X̂

′
i)µ̂
′)+ n∑

i=1

µ̂(Ẑ ′i, X̂
′
i)
′(Ŷi − ξ̂V̂ ′i )

The estimator with sample splitting is similar to the above. We partition the data into
J sub-samples. Let {Ij}Jj=1 be a partition of {1, ..., n} and let nj be the number of entries

in Ij . Thus each index i = 1, ..., n is a member of precisely one subset Ij and
∑J
j=1 nj = n.

We will use the shorthand I−j to denote all the elements of {1, ..., n} that are not in Ij (i.e.,
the complement of Ij).

For each j = 1, ..., J the researcher evaluates each of the nuisance parameter estimates
using only the observations with indices in I−j , that is, the data outside of the jth subsample.
Thus, for each j, one obtains estimates ξ̂j , µ̂j , and γ̂j of ξ0, µ0, and γ0. The estimate β̂
with sample-splitting solves the equation below:

J∑
j=1

∑
i∈Ij

ψi(β̂; ξ̂j , γ̂j , µ̂j) = 0

In the formula for β̂, which is given below, X̂j,i = X̃i(γ̂j,X) where γ̂j,X is the component

of γ̂j that estimates γ0,X , and similarly for Ẑj,i, V̂j,i, and Ŷj,i.

β̂ =
( J∑
j=1

∑
i∈Ij

X̂j,i(Ẑ
′
j,i, X̂

′
j,i)µ̂

′
j

)+ J∑
j=1

∑
i∈Ij

µ̂j(Ẑ
′
j,i, X̂

′
j,i)
′(Ŷj,i − ξ̂V̂ ′j,i) (10)

2.2 Nuisance Parameter Estimates

We now present estimates of the nuisance parameters ξ0, µ0, and γ0 which can then be
plugged into the second stage estimator (10). The doubly-robust estimator with sample-
splitting requires that for each j = 1, ..., J we estimate the nuisance parameters using only
data outside the jth sub-sample i.e., with indices in I−j . Here we describe estimators that
use the whole sample but these can easily adapted to the sample-splitting case by dropping
the data with indices in Ij .

First let us consider estimators for γ0 which is composed of γ0,X , γ0,Z , γ0,V , and γ0,Y . If
the vector of additional covariates Di is relatively low-dimensional then we can use ordinary
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least-squares. For H = V, Z, Y, X we estimate γ0,H as follows:

γ̂H = (D′D)+D′H (11)

Ĥi = H̃i(γ̂H)

In some cases Di may be high-dimensional. In addition, we may believe that only a
subset of these covariates are linearly predictive of Vi, Zi, Xi, and Yi. In this case γH,0 may
be sparse or approximately sparse for some H ∈ {V,Z,X, Y }.

To exploit this sparsity or approximate sparsity we suggest Lasso regression (Tibshirani
(1996)) instead of ordinary least squares. For H = V, Z, X, Y let λH,n,γ be a scalar penalty
parameter and de�ne the Lasso estimate γ̂H as follows:

γ̂H = argmin
γ∈RdD

n∑
i=1

(Hi − γDi)
2 + λH,n,γ ||γ||1

Where || · ||1 is the `1-norm. A number of methods exist for choosing the penalty
parameters in Lasso regression, for example cross-validation.

We also de�ne variables with both Di and Xi partialled out in the sample. For H =
Z, V, Y we de�ne the following.

ω̂H =
(
(X,D)′(X,D)

)+
(X,D)′H

Ȟi = H̄i(ω̂)

Again, if Di is high-dimensional we could use Lasso to estimate ω̂H :

ω̂H = argmin
ω∈RdD

n∑
i=1

(Hi − (X ′i, D
′
i)ω)2 + λH,n,ω||ω||1

Corollary 1 states thatM0 and Q0 are the unique solutions to the moment conditions (5)
and (7). These are standard least-squares moment conditions and so M0 and Q0 minimize
sum-of-squares objectives. The corollary also states that M0 and Q0 are each of rank dW .
Thus if r ≥ dW then the matrices M0 and Q0 are the solutions to the constrained least-
squares problems below.

M0 = argmin
rank(M)≤r

E
[
||Ṽi −M(Z̃ ′i, X̃

′
i)
′||2
]

Q0 = argmin
rank(Q)≤r

E
[
||(Ṽ ′i , Ȳi)′ −QZ̄i||2

]
To estimate M0 and Q0 given a value of r ≥ dW we can minimize empirical analogues

of the above. Instead of an expected sum of squares we use the sample expectation and we
partial out Di and Xi using the data. An estimate M̂r of M0 and Q̂r of Q0 are given below.

M̂r = argmin
rank(M)≤r

||V̂ − (Ẑ, X̂)M ′||2F (12)

Q̂r = argmin
rank(Q)≤r

||(V̌ , Y̌ )− ŽQ′||2F (13)

11



Where || · ||2F is the squared Frobenius norm (the sum of the squared entries of the matrix).

M̂r and Q̂r are reduced-rank regression estimates and thus have closed-form solutions
(Reinsel & Velu (1998), Izenman (1975)). The formulas are as follows. Let Σ̂ẐX̂ =

(Ẑ, X̂)′(Ẑ, X̂)/n and Σ̂Ž = Ž ′Ž/n and de�ne ÊM and ÊQ by:

ÊM = eigen
(
V̂ ′(Ẑ, X̂)Σ̂+

ẐX̂
(Ẑ, X̂)′V̂

)
ÊQ = eigen

(
(V̌ , Y̌ )′ŽΣ̂+

Ž
Ž ′(V̌ , Y̌ )

)
Then we have:

M̂r = Σ̂+

ẐX̂
(Ẑ, X̂)′V̂ ÊM,[:,1:r]Ê

′
M,[:,1:r]

Q̂r = Σ̂+
Ž
Ž ′(V̌ , Y̌ )ÊQ,[1:r,:]Ê

′
Q,[1:r,:]

Note that r determines the number of free parameters in the minimization problem. If
r is small compared to min{dV , dZ} then the constraint imparts a considerable dimension
reduction. Ideally we would set r = dW . However, dW is generally not known a priori, but
since it is identi�ed we can adapt to this quantity.

In order to adapt to the unknown number of confounders dW we replace the constrained
least-squares problems (12) and (13) with unconstrained penalized least-squares problems
as follows:

M̂ = argmin
rank(M)≤dZ

||V̂ − (Ẑ, X̂)M ′||2F + λM,nrank(M), (14)

Q̂ = argmin
rank(Q)≤dV

||(V̌ , Y̌ )− ŽQ′||2F + λQ,nrank(Q) (15)

λM,n and λQ,n are positive scalars that control the degree of regularization.
One could replace the rank penalties with some other penalty that induces a low-rank

structure. For example, instead of rank(M) in (14) we could instead use the nuclear norm
of M , commonly denoted ||M ||∗.4 Penalizing the rank has the advantage that the solution
has a closed-form.

Bunea et al. (2011) provide the formula for the solution to a penalized reduced-rank
regression problem like (14) and (15). Their results show M̂ = M̂r̂M and Q̂ = Q̂r̂Q , where
r̂M and r̂Q are estimators of the number of unobserved confounders dW . In particular, r̂M is

whichever is smaller: dZ or the number of eigenvalues of the matrix V̂ ′(Ẑ, X̂)Σ̂+

ẐX̂
(Ẑ, X̂)′V̂

that exceed λM,n. Similarly r̂Q is the minumum of dV and the number of eigenvalues of

(V̌ , Y̌ )′ŽΣ̂+
Ž
Ž ′(V̌ , Y̌ ) that exceed λQ,n.

The penalty parameters λM,n and λQ,n can be chosen in a number of ways. Bunea
et al. (2011) suggest plug-in formulas that are motivated by the assumption that the regres-
sion residuals are independent and normally distributed. In our simulations we choose the
penalty parameters by cross-validation.

Corollary 1 states that ξ0 solves ξ0B0C0 = A0C0. B0C0 and A0C0 sub-matrices of Q0. If
we replace B0C0 and A0C0 with the corresponding sub-matrices of Q̂ the resulting equation
is ξ0Q̂[1:dV ,:] = Q̂[dV +1,:]. Our estimate ξ̂ is the solution with smallest Euclidean norm and
has the following formula:

4See Chen et al. (2013) for some analysis of nuclear norm penalization in reduced-rank regression.
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ξ̂ = Q̂[dV +1,:]Q̂
′
[1:dV ,:]

(Q̂[1:dV ,:]Q̂
′
[1:dV ,:]

)+

For the estimate of µ0 we replace the objects in (9) with their sample analogues. An
estimate Gη is given below:

Ĝη = − 1

n

n∑
i=1

(Ẑ ′i, X̂
′
i)
′(Ẑ ′i, X̂

′
i)M̂

′

The estimate of µ0 is then given by:

µ̂ = Ĝ′βΩ̂−1 − Ĝ′βΩ̂−1Ĝη(Ĝ′ηΩ̂−1Ĝη)+Ĝ′ηΩ̂−1

Ĝβ and Ω̂ are estimates of Gβ and Ω. Gβ can be estimated by its sample analogue below:

Ĝβ = − 1

n

n∑
i=1

(Ẑ ′i, X̂
′
i)
′X̂ ′i

The e�cient choice of Ω is the variance matrix of gi(β0; ξ0, γ0). Let β̃ be an initial estimate

of β̂ that uses the identity in place of Ω̂. We can then estimate the e�cient Ω by letting Ω̂
be the sample variance-covariance matrix of gi(β̃; ξ̂, γ̂).

2.3 Inference

Chernozhukov et al. (2018) suggests a variance estimator for DML2 estimators. In the case

of our estimator β̂ the variance estimate is as follows:

σ̂2 =
1

n

J∑
j=1

∑
i∈Ij

Ŝ−1ψ̂iψ̂
′
i(Ŝ
−1)′

The matrix Ŝ is de�ned below:

Ŝ =
1

n

J∑
j=1

∑
i∈Ij

µ̂j(Ẑ
′
i, X̂

′
i)
′X̂ ′i

Note that the above is estimate of S0 = µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]. For each j ∈ 1, ..., J and i ∈ Ij

we de�ne ψ̂i = ψi(β̂; ξ̂j , γ̂j , µ̂j).

If the variance estimator is consistent and β̂ is asymptotically Gaussian centered at β0,
then a con�dence interval for l′β0 (where l is some vector) can be obtained as follows:

CI =
[
l′β̂ ± Φ−1(1− α/2)

√
l′σ̂2l/n

]
The formula above is suggested in Chernozhukov et al. (2018). Φ is the cumulative distri-
bution function of a standard Gaussian random variable.
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3 Consistency and Asymptotic Normality

The methods in the previous section estimate a parameter of interest β0 in the presence of
possibly high-dimensional nuisance parameters. We take the standard approach to asymp-
totic analysis in such settings which is to �nd conditions under which the estimates are
root-n consistent and admit an asymptotic Gaussian approximation.

The doubly-robust estimator is a Double-Machine Learning 2 (DML2) estimator of the
kind analyzed in section 2 in Chernozhukov et al. (2018). DML2 estimators (along with the
DML1 estimators in Chernozhukov et al. (2018)) have the advantage that they are root-n
consistent and asymptotically normal centered at the true parameter under relatively weak
conditions on the rates at which the nuisance parameters converge.

We now present high-level assumptions for root-n consistency and asymptotic normality
of the doubly-robust estimator with sample splitting as de�ned in (??). Note that our results
apply for any choice of estimators for the nuisance parameters not just those speci�ed in
Section 2.

Our asymptotic analysis is based on Theorems 3.1 and 3.2 in Chernozhukov et al. (2018).
The Assumptions 1.1-1.4 and 3.1-3.2 (stated below) act as primitive conditions for the
assumptions in that paper.

In order to derive results that are uniform over some parameter space, we suppose that
for each sample size n, the data generating process, denoted by P , belongs to some set Pn.
The Assumptions below then restrict Pn.

It is helpful to introduce some additional notation. For any random column vector Hi

we let ΣH = E[HiH
′
i], however in the case of Hi = (Z̃ ′i, X̃

′
i)
′ we write ΣZ̃X̃ . If b is a vector

then ||b|| is the Euclidean norm of b. If A is a matrix then ||A|| = supb∈Rd:||b||=1 ||Ab||. For
sequences an and bn the notation an - bn means that there exists a constant C so that
an ≤ Cbn for all n. an ≺ bn means that an - bn but not bn - an. Finally, we de�ne ε̃i as
follows:

ε̃i = Ỹi − X̃ ′iβ0 − Ṽ ′i ξ′0
Assumption 3.1 (Convergence rates of the nuisance parameter estimates). There
is a sequence αn with αn → 0 so that if P ∈ Pn then with probability at least 1 − αn the

following hold for j = 1, ..., J . i. ||(µ̂j − µ0)Σ
1/2

Z̃,X̃
|| - δµ. ii. ||Σ1/2

Ṽ
(ξ̂j − ξ0)|| ≤ δξ. iii. For

H = X,V , ||Σ−1/2

H̃
(γ̂H,j − γH,0)Σ

1/2
D || - δγ,H and in addition:

||Σ−1/2

Z̃,X̃
(γ̂′Z,j − γ′Z,0, γ̂′X,j − γ′X,0)′Σ

1/2
D || - δγ,Z + δγ,X

||Σ1/2
D

(
(γY − γ0,Y )− (γV − γ0,V )ξ′0 − (γX − γ0,X)β0

)
|| - δγ,ε

Assumption 3.2 (Restrictions on the DGP). If P ∈ Pn the following hold: i. E[ε̃2i ] - 1,
||ΣX̃ || - 1. ii. There is a constant q > 2 so that for each Hi ∈ {X̃i, Ṽi, (Z̃

′
i, X̃

′
i)
′, Di, ε̃i}:

E
[
||Σ−1/2

H HiD
′
iΣ
−1/2
D ||q

]1/q
-
√
dHdD

Where ΣH = E[HiH
′
i] and dH is the length of Hi. Similarly:

E
[
||Σ−1/2

Ṽ
Ṽi(Z̃

′
i, X̃

′
i)Σ
−1/2

Z̃X̃
||q
]1/q
-
√
dV (dX + dZ)

iii. There is a constant c so that for eachHi ∈ {Ṽi, (Z̃ ′i, X̃ ′i)′}, ||E[Σ
−1/2
H HiH

′
iΣ
−1/2
H |Di]|| ≤ c,

and for each Hi ∈ {Ṽi, ε̃i}, ||E[Σ
−1/2
H HiH

′
iΣ
−1/2
H |Z̃i, X̃i]|| ≤ c. In both cases ΣH = E[HiH

′
i].

14



iv. ||Σ1/2

X̃
β0||, ||Σ1/2

X̃
ξ′0||, ||µ0Σ

1/2

Z̃X̃
||, and ||Σ1/2

Z̃X̃
M ′0Σ

−1/2

Ṽ
|| are all uniformly bounded above

and below away from zero. v. E
[
||ψi(β0; ξ0, γ0, µ0)||q

]1/q
- 1, E

[
||µ0(Z̃ ′i, X̃

′
i)
′X̃ ′i||q

]1/q
- 1.

Assumption 3.1 imposes convergence rates for each of the nuisance parameter estimates.
Note that the convergence rates are required to hold uniformly over sequences of DGPs in
{Pn}∞n=1.

Assumption 3.2 imposes bounds on the rates at which the magnitudes of some popu-
lation objects grow with the sample size. Note that Assumption 3.2.ii requires that some
higher-order moments exist. Existence of higher-order moments is a standard assumption
in problems with growing dimension as an assumption of this kind is generally required for
an application of a multivariate central limit theorem. Assumption 3.2.iii states that some
conditional moments are almost surely bounded by a �xed constant.

To motivate the rates in Assumption 3.2.ii note that:

E
[
||Σ−1/2

H HiD
′
iΣ
−1/2
D ||q

]1/q ≤√E[(||Σ−1/2
H Hi||2 · ||Σ−1/2

D Di||2
)q]1/q

The term ||Σ−1/2
H Hi||2·||Σ−1/2

D Di||2 can be written as a sum of dDdH scalar random variables.
Thus the RHS above is the square-root of the Lq norm of the sum of dDdH random scalars.
This is bounded by the square root of the sum of the Lq norms of the dDdH random variables.
Thus, if the norms of each of these scalars is uniformly bounded we get a rate

√
dDdH .

Theorem 3. Suppose that for each n, P ∈ Pn so that Assumptions 1.1-1.4, 3.1, and 3.2
hold. In addition, suppose that the singular values of S0 are bounded uniformly below and
away from zero, and the eigenvalues of E[ψiψ

′
i] are bounded uniformly above and below away

from zero.

Moreover, suppose that the following conditions hold, δµ - d
−1/2
X (dX + dZ)−1/2, δξ -

(dX + dZ)−1/2d
−1/2
V , δγ,Z - d

−1/2
X d

−1/2
D , and:

δγ,X , δγ,ε, δγ,V δξ - (dX + dZ)−1/2d
−1/2
D

Moreover, suppose that δµδξ ≺ n−1/2,(δγ,X+δγ,Z)(δγ,ε+δγ,V δξ) ≺ min{n−1/2, d−1
D } and:

δµ, δξ, δγ,ε, δγ,V δξ, δγ,Z , δγ,X ≺ d−1/2
X

Then uniformly over all P ∈ Pn, β̂ is root-n consistent and asymptotically normal:

√
nσ−1(β0 − β̂) N(0, I)

Where the asymptotic variance σ is given by: σ = S−1
0 E[ψiψ

′
i](S

−1
0 )′. Moreover, the

variance estimator σ̂ is consistent for σ and the con�dence described earlier in this section
have asymptotically correct coverage.

Theorem 3 establishes uniform root-n consistency of the estimator and asymptotic valid-
ity of the con�dence intervals. In addition to Assumptions 1.1-1.4, 3.1, and 3.2, the theorem
requires a number of conditions on the rates at which the nuisance parameters converge. In
e�ect, these additional conditions restrict the rate at which the dimensions of the variables
can grow with the sample size.

The condition that the singular values of S0 are bounded uniformly below and that
E[ψiψ

′
i] has eigenvalues bounded uniformly above, ensures that the asymptotic variance of

the estimator is uniformly bounded.
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4 Simulation Study

In order to assess the e�cacy of the methods we present in Section 2 we carry out a Monte
Carlo simulation. We implement our methods on a number of simulated datasets. For each
simulation, we draw observations independently and identically from the following model:

Vi = B0Wi + υi

Xi = T0Wi + εi

Zi = C0Wi +G0Xi + ηi

Yi = X ′iβ0 + F0Wi + χ0Vi + ei

The residuals υi, εi, ηi, and ei are drawn independently of each other from zero mean
Gaussian distributions: Wi ∼ N(0, I), υi ∼ N(0,ΣV ), εi ∼ N(0,ΣX), ηi ∼ N(0,ΣZ), and
ei ∼ N(0,ΣY ). Note that we do not include additional controls Di in our simulations
however in estimation we include an intercept (i.e, we treat Di as a constant).

In each simulation we must choose parameters β0, B0, C0, G0, T0, F0, χ0, ΣY , ΣV ,
ΣX , and ΣZ . Rather than use a �xed value of each parameter in all of our simulations, we
draw the parameters at random in each simulation. Thus our simulation results show the
weighted average performance of our estimators over a parameter space.

We draw the parameters as follows. The elements of the coe�cient matrices β0, G0,
T0, F0, and χ0 are all independently mean-zero normal with variance equal to the square
root of the number of columns of the matrix. For example, the elements of F0 are all
independent with distribution N(0, 1/

√
dW ). This choice of the variances of the normal

distributions ensures that the ratio of the variance in each variable to the residual variance
remains roughly constant as the dimension changes.

The matrices B0 and C0 are generated so that their non-zero singular values are equal
to s. Let N1 be a dV × dV matrix of independent random normals and N2 be a dW × dW
matrix of random normals. We set B0 ∼ s(N ′1N1)−1/2N1(I, 0)′N ′2(N ′2N2)−1/2 and similarly
for C0.

The covariance matrices have a re-scaled inverse Wishart distribution, for example
dV pΣ

−1
V ∼ WdV (I, dV p). The natural number p is a hyper-parameter that determines the

degrees of freedom of the Wishart distribution.
We are left with hyperparameters s, p, dW , dX , dV , dZ , and the sample size n. In all of

our simulations we let dX = 1 so that there is a single treatment of interest. We set p = 2
which means the covariance matrices are concentrated around the identity. In all of our
simulations dZ = dV so there are the same number of proxies in Zi as in Vi. We carry out
simulations for a range of choices for the remaining hyperparameters s, dW , dV , and n.

Figure 4.1 shows the median-squared errors of alternative estimators for a variety of
di�erent hyperparameters. In all cases in Figure 4.1 we set s = 1. The estimators that
are compared are: (in blue) a naive least-squares estimator that simply treats Vi as a
set of controls, (in red) the proxy control estimator with no rank restriction, (in yellow) an
infeasible estimator that imposes the rank restriction dW , and (in purple) our doubly-robust
estimator.5

Keeping the number of confounders �xed but increasing the number of proxies leads
to remarkably little loss in performance for the doubly robust estimator (in purple). The

5For the infeasible estimator we perform ordinary least-squares regression of Ỹi on X̃i and M̃(Z̃′i, X̃
′
i)
′,

where M̃ is a reduced-rank regression estimate of M0 that imposes the rank dW on the estimate.
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(a) dW = 6

(b) dW = 12

Figure 4.1: Simulated Median Squared Errors, s = 1
Median Squared Errors on the y-axes are the medians of ||β̂ − β0||2 over 1000 simulated datasets for various

estimators β̂. The di�erent �gures correspond to di�erent choices for the number of confounding factors dW , and

the numbers of proxies dV and dZ .

doubly robust estimator achieves a performance that is near indistinguishable in all but the
smallest samples from that of the infeasible estimator (in yellow). As we move from left
to right in Figure 4.1 we see that the median squared error of this estimator stays roughly
constant, with the only apparent exception occurring in the smallest sample size in the the
rightmost sub-�gures.

The proxy control estimator with no rank restriction (in red) is equivalent to the two-
stage least squares strategy of Griliches (1977) in which Vi is a vector of endogenous re-
gressors, Xi is a vector of exogenous regressors, and Zi is a vector of instruments. When
the number of proxies in each group is equal to the number of confounders (the leftmost
sub-�gures) this estimator has nearly identical performance to our doubly robust procedure.
This is to be expected as in these sub-�gures there is no rank restriction for our estimator to
exploit. However, unlike the doubly robust estimator, this procedure exhibits substantially
worse performance as the number of proxies increases. This loss is apparent even in large
samples.

The naive estimator (in blue) is inconsistent in this model, and this is clear from Figure
4.1 which shows that the median squared error of this estimator does not fall as the sample
size grows. Nonetheless, in the setting with 12 confounders and 60 proxies in each group,
the naive estimator outperforms the proxy estimator with no rank restrictions. The doubly-
robust estimator has a lower median-squared error than the naive estimator in nearly all
cases, the exceptions occurring in the leftmost sub-�gures where the estimators have almost
identical performance.

Figure 4.2 contains the same results for the case in which s = 0.5. Recall that s is
the level of the singular values of B0 and C0, and thus controls the informativeness of the
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proxies relative to noise levels. A smaller value of s is thus likely to be less favorable for
our analysis. Indeed, all of the estimators perform worse in this setting (including the
naive estimator) and the proxy estimators perform worse relative to the naive estimator.
Nonetheless, our estimator still outperforms the naive estimator apart from in the smaller
samples, and attains a level of performance that is close to that of the naive estimator,
particularly with large sample sizes.

As in the case of s = 1, the estimator that does not impose a rank restriction performs
substantially worse when there are many proxies compared to the number of unobserved
confounders.

(a) dW = 6

(b) dW = 12

Figure 4.2: Simulated Median Squared Errors, s = 0.5
Median Squared Errors on the y-axes are the medians of ||β̂ − β0||2 over 1000 simulated datasets for various

estimators β̂. The di�erent �gures correspond to di�erent choices for the number of confounding factors dW , and

the numbers of proxies dV and dZ .

Figure 4.3 shows the percentage of simulations in which 99%, 95%, and 90% con�dence
intervals cover the true parameter β0 (recall β0 is drawn at random in each simulation).
The con�dence intervals are those based on a Gaussian approximation for the doubly-robust
estimator as described in Section 3. In all cases the coverage is close to nominal level in
large samples. In small samples the coverage is close to nominal apart from in the case with
a very large number of proxies (dV = dZ = 60 in the bottom right sub-�gure).

Figure 4.4 shows the coverage in the less favorable setting with s = 0.5. There is
substantial undercoverage in the rightmost sub-�gures with many proxies, although this
appears to improve with the sample size. The middle sub�gures show that with a moderate
number of proxies compared to unobserved confounders the con�dence intervals severely
undercover in small samples and moderately undercover in larger samples.

In Table 1 we give the proportion of simulations in which the rank of the estimated
nuisance parameter M̂ , is equal to the number of confounders dW (which is the rank of
the matrix M0). The estimate M̂ is attained using the full sample. The �gures in Table 1
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(a) dW = 6

(b) dW = 12

Figure 4.3: Simulated Con�dence Interval Coverage, s = 1
Con�dence interval coverage of the treatment parameter. on the y-axes are percentages of 1000 simulated datasets

in which con�dence intervals contain β0. The di�erent �gures correspond to di�erent choices for the number of

confounding factors dW , and the numbers of proxies dV and dZ .

correspond to the favorable s = 1 case, whereas those in Table 2 are for the less favorable
s = 0.5 setting.

In each case the proportion is generally increasing with the sample size. In Table 1 we
see that in small samples (n = 1000) the rank selection is less accurate when the ratio of
the number of proxies to the number of unobserved confounders is larger. Curiously, for
n > 1000 the worst performance occurs for dV /dW = 1.5. When s = 0.5 there is a similar
trend in the case of dW = 6 although worse performance when dV /dW = 1.5 only occurs
for the largest samples. One possible explanation is that this nonlinearity re�ects a change
in the balance between two opposing e�ects. On the one hand many proxies provide many
signals regarding the latent factors, which increases accuracy, but on the other hand the
presence of many proxies increases the risk that sample correlation between the components
of Z̃i and Ṽi creates the illusion of additional factors.

5 Conclusion

We present novel identi�cation results for the linear model with proxy controls. Our iden-
ti�cation results suggest method of moments estimators that can take advantage of the
dimension reduction when the number of unobserved confounding factors is smaller than
the number of proxies. We present model selection methods that adapt to the unknown
number of confounding factors. We provide conditions for uniform root-n consistency of our
estimates and asymptotic validity of an inference procedure. Our simulation results suggest
that our estimators are more e�ective than proxy control methods that do not exploit the
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(a) dW = 6

(b) dW = 12

Figure 4.4: Simulated Con�dence Interval Coverage, s = 1
Con�dence interval coverage of the treatment parameter. on the y-axes are percentages of 1000 simulated datasets

in which con�dence intervals contain β0. The di�erent �gures correspond to di�erent choices for the number of

confounding factors dW , and the numbers of proxies dV and dZ .

dimension reduction, particularly when the the number of proxies substantially exceeds the
number of unobserved confounders. In the latter case inference based on our doubly-robust
adaptive proxy control method performs well.

References

Bunea, Florentina, She, Yiyuan, & Wegkamp, Marten H. 2011. Optimal selection of reduced
rank estimators of high-dimensional matrices. The Annals of Statistics, 39.

Chen, K., Dong, H., & Chan, K.-S. 2013. Reduced rank regression via adaptive nuclear
norm penalization. Biometrik, 100, 901�920.

Chernozhukov, Victor, Escanciano, Juan Carlos, Ichimura, Hidehiko, Newey, Whitney K.,
& Robins, James M. 2016. Locally Robust Semiparametric Estimation. July.

Chernozhukov, Victor, Chetverikov, Denis, Demirer, Mert, Du�o, Esther, Hansen, Chris-
tian, Newey, Whitney, & Robins, James. 2018. Double/debiased machine learning for
treatment and structural parameters. The Econometrics Journal, 21, C1�C68.

Cui, Yifan, Pu, Hongming, Shi, Xu, Miao, Wang, & Tchetgen, Eric Tchetgen. 2020 (Nov.).
Semiparametric proximal causal inference.

Deaner, Ben. 2019. Proxy Controls and Panel Data. Dec.

Deaner, Ben. 2021. Proxy Controls and Panel Data. Jan.

20



Table 2: Frequency of Correct Rank Selection, s = 1

Sample Size
dW dV = dZ 1000 5000 10000 25000

6 6 0.994 1 1 1
6 9 0.830 0.884 0.896 0.903
6 30 0.755 0.999 0.998 0.998
12 12 0.994 1 1 1
12 18 0.795 0.939 0.956 0.960
12 60 0.033 1 1 1

Figures are the proportion of the 1000 simulated datasets in which the estimated rank ofM0 is equal to the number

of unobserved confounders dW . Rows corresponds to di�erent choices of dW , dV , and dZ , columns correspond to

di�erent choices of the sample size n.

Table 3: Frequency of Correct Rank Selection, s = 0.5

Sample Size
dW dV = dZ 1000 5000 10000 25000

6 6 0.803 0.956 0.991 0.998
6 9 0.236 0.734 0.826 0.876
6 30 0 0.129 0.738 0.983
12 12 0.526 0.965 0.995 1
12 18 0.018 0.538 0.783 0.908
12 60 0 0 0.041 0.907

Figures are the proportion of the 1000 simulated datasets in which the estimated rank ofM0 is equal to the number

of unobserved confounders dW . Rows corresponds to di�erent choices of dW , dV , and dZ , columns correspond to

di�erent choices of the sample size n.

Griliches, Zvi. 1977. Estimating the Returns to Schooling: Some Econometric Problems.
Econometrica, 45, 1.

Griliches, Zvi, & Mason, William M. 1972. Education, Income, and Ability. Journal of
Political Economy, 80, S74�S103.

Hansen, Lars Peter. 1982. Large Sample Properties of Generalized Method of Moments
Estimators. Econometrica, 50, 1029.

Izenman, Alan Julian. 1975. Reduced-rank regression for the multivariate linear model.
Journal of Multivariate Analysis, 5, 248�264.

Kallus, Nathan, Mao, Xiaojie, & Uehara, Masatoshi. 2021. Causal Inference Under Unmea-
sured Confounding With Negative Controls: A Minimax Learning Approach. Mar.

Miao, Wang, Shi, Xu, & Tchetgen, Eric Tchetgen. 2018a. A Confounding Bridge Approach
for Double Negative Control Inference on Causal E�ects. Aug.

Miao, Wang, Geng, Zhi, & Tchetgen, Eric J. Tchetgen. 2018b. Identifying causal e�ects
with proxy variables of an unmeasured confounder. Biometrika, 105, 987�993.

Pearl, Judea. 2009. Causality: Models, Reasoning, and Inference (Second Edition). Cam-
bridge University Press.

21



Reinsel, Gregory C., & Velu, Raja P. 1998. Multivariate Reduced-Rank Regression.

Singh, Rahul. 2020. Kernel Methods for Unobserved Confounding: Negative Controls, Prox-
ies, and Instruments. Dec.

Tchetgen, Eric J. Tchetgen, Ying, Andrew, Cui, Yifan, Shi, Xu, & Miao, Wang. 2020 (Sept.).
An Introduction to Proximal Causal Learning. Appeared on Arxiv 23 Sep 2020.

Tibshirani, Robert. 1996. Regression Shrinkage and Selection Via the Lasso. Journal of the
Royal Statistical Society, 58, 267�288.

A An alternative estimate of ξ0

In Section 2 we develop an estimator of ξ0 that is a simple function of the reduced-rank
estimators ofM0 and Q0. However, one can also estimate ξ0 directly. In this case, instead of
using the rank restrictions onM0 and Q0 for dimension reduction we instead take advantage
of the sparsity result in Corollary 1.

To motivate the estimator, note that the moment conditions in Corollary 1 imply the
following condition.

E
[
M0,[:,1:dZ ]Z̄i(Ȳi − ξ′0M0,[:,1:dZ ]Z̄i)

]
= 0

ξ0 satis�es the condition above if and only if it minimizes the following least squares
criterion:

E
[
(Ȳi − ξ′0M0,[:,1:dZ ]Z̄i)

2
]

Recall that Corollary 1 states there is a solution ξ0 to the moment conditions which has at
most dW non-zero entries. To estimate ξ0, we minimize a penalized empirical analogue of
the criterion above. The penalization induces sparsity in the estimate of ξ0. In particular,
our estimate of ξ0 is the vector ξ that minimizes the empirical objective below:

||Y̌ − ŽM̃ ′[:,1:dZ ]ξ||
2
F + δn||ξ||1 (16)

Where || · ||1 is the `1 norm and δn is a penalty parameter. M̃ is the matrix of regression
estimates from multiple linear regression of Ṽi on (Z̃ ′i, X̃

′
i)
′.

Minimization of (16) is an `1-penalized least squares problem and can be solved using
any standard Lasso algorithm. A number of methods are available for selecting the penalty
parameter in Lasso regression. For example, δn could be chosen using cross-validation.

B Proofs

Proof Theorem 1. By Assumption 1.1.ii E[εi(Z
′
i, X

′
i)] = 0 and E[εiD

′
i] = 0 and so E[εi(Z̃

′
i, X̃

′
i)] =

0 and by the same reasoning E[υi(Z̃
′
i, X̃

′
i)] = 0

Partialling out Di from both sides of (1) and (2) and using that E[εiD
′
i] = 0 and

E[υiD
′
i] = 0 we get:

Ṽi = B0W̃i + ui

Ỹi = β′0X̃i +A0W̃i + εi
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And so:

E
[
(Ṽi −B0W̃i)(Z̃

′
i, X̃

′
i)
]

= 0 (17)

E
[
(Ỹi − β′0X̃i −A0W̃i)(Z̃

′
i, X̃

′
i)
]

= 0 (18)

Recall the de�nition of C0 and G0:

(C0, G0) = E
[
W̃i(Z

′
i, X

′
i)
]
E
[
(Z ′i, X

′
i)
′(Z ′i, X

′
i)
]+

The rows of E
[
W̃i(Z

′
i, X

′
i)
]
must all be in the row space of E

[
(Z ′i, X

′
i)
′(Z ′i, X

′
i)
]
, and so

by elementary prioperties of the pseudo-inverse:

(C0, G0)E
[
(Z ′i, X

′
i)
′(Z ′i, X

′
i)
]

= E
[
W̃i(Z

′
i, X

′
i)
]

Using the above to substitute out E
[
W̃i(Z

′
i, X

′
i)
]
from (17) and (18) we get:

E
[
(Ṽi −B0(C0, G0)(Z̃ ′i, X̃

′
i)
′)(Z̃ ′i, X̃

′
i)
]

= 0

E
[(
Ỹi − β′0X̃i −A0(C0, G0)(Z̃ ′i, X̃

′
i)
′)(Z̃ ′i, X̃ ′i)] = 0

Stacking the condition above into a block matrix we get the result.

Proof Theorem 2. Step 1: Prove the rank conditions on the nuisance parameters
Under Assumption 1.4 C ′0 = E[Z̄iZ̄

′
i]
−1E[Z̄iW̃

′
i ] and so by Assumption 1.3 C0 has

full row rank. By Assumption 1.1 E[Diυ
′
i] = 0 and E[Wiυ

′
i] = 0 and so E[W̃iυi] = 0.

Since Ṽi = B0W̃i + υi we then have B0 = E[ṼiW̃
′
i ]E[W̃iW̃

′
i ]
−1. Also by Assumption 1.1,

E[Xiυ
′
i] = 0 and E[Diυ

′
i] = 0, which implies E[X̃iυ

′
i] = 0 and thus Ṽi = V̄i and thus

B0 = E[ṼiW̃
′
i ]E[W̃iW̃

′
i ]
−1. So by Assumption 1.2 B0 has full column rank.

Since B0 has rank dW and C0 full row rank, the product B0C0 has rank dW . Moreover,
(C0, G0) must have row rank of at least dW and so B0(C0, G0) has rank dW , and since
(B′0, A

′
0)′ has column rank of at least dW , (B′0, A

′
0)′C0 has rank dW .

Step 2:
From Theorem 1 we have:

E

[((
Ṽi

Ỹi − β0X̃i

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̃i
X̃i

))
(Z̃ ′i, X̃

′
i)

]
= 0

Suppose the following holds:

E

[((
Ṽi

Ỹi − βX̃i

)
−
(
BC BG
AC AG

)(
Z̃i
X̃i

))
(Z̃ ′i, X̃

′
i)

]
= 0

Under Assumption 1.4, E
[
(Z̃ ′i, X̃

′
i)
′(Z̃ ′i, X̃

′
i)
]
is non-singular, and so we get the following

four equalities:

B0C0 = BC (19)

B0G0 = BG (20)

A0C0 = AC (21)

A0G0 − β′0 = AG− β′ (22)

23



It follows immediately from the above and the rank restrictions on B0C0, B0(C0, G0),
and (B′0, A

′
0)′C0 that BC, B(C,G), and (B′, A′)′C each have rank dW .

Recall that C0 has full row rank and thus C0C
′
0 is non-singular. De�neM = C ′0(C0C

′
0)−1G0.

Post-multiplying both sides of (21) by M we get A0G0 = ACM and substituting this into
(22) gives:

ACM − β′0 = AG− β′ (23)

Now, post-multiplying both sides of (19) by M we get B0G0 = BCM . Substituting into
(20) BG = BCM . Premultiplying both sides by A(B′B)−1B′ (recall B has full column
rank and so B′B is non-singular) we get AG = ACM . Substituting into (23) we get β = β0,
as required.

Lemma 1. There exist matrices A, B, C, and G with so that B has full column rank and
β, A, B, C, and G satisfy (4) if and only if there exists a matrix M and a vector ξ so that:

E
[(
Ṽi −M(Z̃ ′i, X̃

′
i)
′)(Z̃ ′i, X̃ ′i)] = 0

E
[(
Ỹi − β′X̃i − ξ′M(Z̃ ′i, X̃

′
i)
′)(Z̃ ′i, X̃ ′i)] = 0

Proof of Lemma 1. First let us prove the `if'. B has full column rank and so B′B is non-
singular, so letting ξ = A(B′B)−1B′ we have AC = ξBC and AG = ξBG. Substituting
into (??) we get:

E

[((
Ṽi

Ỹi − β′X̃i

)
−
(
B(C,G)
ξ′B(C,G)

)(
Z̃i
X̃i

))
(Z̃ ′i, X̃

′
i)

]
= 0

Let M = B(C,G), then we get the result. Now the `only if'. Any matrix M of can
be written as the product M = M1M2 where M1 has full column rank. So let B = M1,
(C,G) = M2, and A = ξ′B and we are done.

Proof of Corollary 1. Theorem 2 and Lemma 1 together show that (5) and (6) identify β0.
By Theorem 1 (5) is satis�ed by M0 = B0(C0, G0). By Assumption 1.4 E[(Z̃ ′i, X̃

′
i)(Z̃

′
i, X̃

′
i)
′]

is non-singular and so thisM0 is the unique solution. By Theorem 2 we then have rank(M0) =
dW . Next we show that ξ0 satis�es (6) if and only if ξ0B0C0 = A0C0. Substituting
M0 = B0(C0, G0) and combining (5) and (6) we get:

ξ0B0(C0, G0)E[(Z̃ ′i, X̃
′
i)(Z̃

′
i, X̃

′
i)
′] = A0(C0, G0)E[(Z̃ ′i, X̃

′
i)(Z̃

′
i, X̃

′
i)
′]

Again, using that E[(Z̃ ′i, X̃
′
i)(Z̃

′
i, X̃

′
i)
′] is non-singular we get ξ0B0(C0, G0) = A0(C0, G0)

and thus ξ0B0C0 = A0C0 which proves the `if'. For the `only if', Theorem 2 states that
C0 has full row rank and so ξ0B0C0 = A0C0 implies ξ0B0 = A0 and thus ξ0B0(C0, G0) =
A0(C0, G0). Using M0 = B0(C0, G0) we get ξ0M0 = A0(C0, G0), substituting into (3) gives
the result.

Next we will show that there exists a ξ0 with ||ξ0|| ≤ dW . By Theorem 2, rank(B0C0) =
dW . Since B0C0 has rank dW , for any vector ξ, there is a ξ0 with at most dW non-zero
entries so that ξ0B0C0 = ξB0C0. Since there exists at least one ξ so that ξB0C0 = A0C0 it
follows that there is at least one ξ0 with at most dW non-zero entries and ξ0B0C0 = A0C0.

Finally we show that Q0 = (A′0, B
′
0)′C0 (which is of rank dW by Theorem 2) is identi�ed

from (7). First note that Z̄i is a linear combination of Z̃i and X̃i and so (3) implies:

E

[((
Ṽi

Ỹi − β0X̃i

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̃i
X̃i

))
Z̄ ′i

]
= 0
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By the properties of partialling out, E[Z̃iZ̄
′
i] = E[Z̄iZ̄

′
i], E[ṼiZ̄

′
i] = E[V̄iZ̄

′
i], etc. and

X̄i = 0, and so the above is equivalent to the following:

E

[((
V̄i
Ȳi

)
−
(
B0C0 B0G0

A0C0 A0G0

)(
Z̄i
0

))
Z̄ ′i

]
= 0

Multiplying out

(
B0C0 B0G0

A0C0 A0G0

)(
Z̄i
0

)
and substituting Q0 = (A′0, B

′
0)′C0 we get (7).

Q0 is the unique solution to (7) because E[Z̄iZ̄
′
i] is non-singular by Assumption 1.4.

Lemma 2. Under Assumptions 1.1-1.4 ψi(β0;M0, ξ0, γ0, µ0) is doubly robust.

Proof of Lemma 2. Recall that ψi(β, ξ, γ, µ) = µgi(β, ξ, γ) where gi is given by:

gi(β, ξ, γ) =

(
Z̃i(γZ,1)

X̃i(γX,1)

)(
Ỹi(γY )− β′X̃i(γX,2)− ξṼi(γX,2)′

)
Step 1: Show the score is robust to µ0.

Corollary 1 immediately implies that E
[
gi(β0; ξ0, γ0)

]
= 0 and so for any µ:

E
[
ψi(β0; ξ0, γ0, µ)

]
= µE

[
gi(β0; ξ0, γ0)

]
= 0

And so the score function is doubly robust with respect to µ0.
Step 2: Show the score is robust to ξ0.
Consider the derivatives of E

[
ψi(β; ξ, γ, µ)

]
with respect to ξ with the other arguments

set to their true values. With a little work one can show the derivatives are as follows:

∂

∂ξ
E
[
ψi(β0;M, ξ, γ0, µ0)

]
= −µ0E[(Z̃ ′i, X̃

′
i)
′Ṽ ′i ]

The derivatives does not depend on ξ. Therefore, if the derivative with respect to ξ is
zero at ξ0 then it is zero for all ξ. As in the main text, de�ne Gη by:

Gη =
∂

∂ξ
E
[
gi(β0; ξ, γ0)

]∣∣
ξ=ξ0

Substituting the above we get:

∂

∂ξ
E
[
ψi(β0; ξ, γ0, µ0)

]∣∣
ξ=ξ0

= µ0Gη

Substituting the de�nition of µ0 the RHS becomes:

µ0Gη = (G′βΩ−1 −G′βΩ−1Gη(G′ηΩ−1Gη)+G′ηΩ−1)Gη

= 0

The �nal equality follows by the elementary property of the Moore-Penrose pseudo-
inverse that for any matrix A, A(A′A)+A′A = AA+A = A, even if A is nonsingular.
So ∂

∂ξE
[
ψi(β0; ξ, γ0, µ0)

]∣∣
ξ=ξ0

= 0 and thus ∂
∂ξE

[
ψi(β0; ξ, γ0, µ0)

]
= 0 for all ξ. Since

E
[
ψi(β0; ξ0, γ0, µ0)

]
= 0 it follows that E

[
ψi(β0; ξ0, γ0, µ0)

]
= 0 for all ξ.
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Step 3: Show the score is robust to the components of γ0.
Suppose γ di�ers from γ0 only in that γY 6= γ0,Y . By the properties of partialling out,

for any γY :

E
[
(Z̃ ′i, X̃

′
i)Ỹi(γY )

]
= E[(Z̃ ′i, X̃

′
i)Yi]− E[(Z̃ ′i, X̃

′
i)D

′
i]γY

= E[(Z̃ ′i, X̃
′
i)Ỹi]

γY only enters E
[
ψi(β0;M, ξ0, γ, µ0)

]
= 0, through the expression above, so we are

robust to the γY component of γ0. By the same reasoning:

E
[
(Z̃ ′i, X̃

′
i)Ṽi(γV )′

]
= E[(Z̃ ′i, X̃

′
i)Ṽ
′
i ]

And so we are robust to γV . We can follow similar steps to show we are robust to γ1,X ,
γ2,X , γ1,Z , and γ2,Z .

Note this is why we treat γ0,X as two di�erent parameters in the two places it enters

the score function and likewise for γ0,Z . If γX 6= γ0,X when in general E[X̃i(γX)X̃i(γX)′] 6=
E[X̃iX̃

′
i] but E[X̃i(γX,1)X̃i(γ0,X)′] = E[X̃iX̃

′
i] regardless of γX,1.

Proof of Theorem 2. To prove the result we con�rm that the conditions for Theorems 3.1
and 3.2 in Chernozhukov et al. (2018) hold. The result follows immediately from those
theorems.

Theorems 3.1 and 3.2 in Chernozhukov et al. (2018) require Assumptions 3.1 and 3.2
in that paper. Let us begin with Assumption 3.1. This states that a) the true parameter
(β0 in our case) satis�es the moment condition. b) That the moment condition is linear
in this parameter. c) That the map from the parameters to the moment is twice continu-
ously Gateux di�erentiable, and d) that the score is Neyman orthogonal (or `near Neyman
orthogonal') e) S0 has eigenvalues bounded above and below away from zero. By Lemma
2 the moment condition is valid so a) hold. By Lemma 2 the score is doubly-robust and
therefore Neyman-orthogonal so d) holds. The score is linear in β0 and it is linear in each
of its arguments and is thus continuously twice Gauteax di�erentiable, so b) and c) hold.
Condition (e) holds by supposition. Thus Assumption 3.1 of Chernozhukov et al. (2018) is
satis�ed.

We now show that Assumption 3.2 of Chernozhukov et al. (2018) holds. this constitutes
the bulk of the proof. Below we restate this assumption as it applies in our setting. It will
be convenient to collect all the nuisance parameters into one single parameter. In particular,
let η0 contain the true values of all the nuisance parameters so that:

η0 = (µ0, ξ0, γ0)

In the above, the parentheses indicate an ordered set rather than horizontal concatenation
of matrices. Similarly, let η̂j be the collection of all the nuisance parameter estimates for
the jth subsample:

η̂j = (µ̂j , ξ̂j , γ̂j)

Moreover, for some η = (µ, ξ, γ) we de�ne ψi(β, η) = ψi(β; ξ, γ, µ) and use ψi as shorthand
for ψi(β0, η0).

Assumption 3.2 of Chernozhukov et al. (2018) states that there are sequences αn → 0
and δn → 0, constants c0 and c1, and a sequence of sets Tn so that for each n if P ∈ Pn the
conditions below all hold.
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1. With probability at least 1− αn, η̂j ∈ Tn for all j = 1, ..., J .

2. supη∈Tn E
[
||ψi(β0, η)||q

]1/q ≤ c1
3. supη∈Tn E

[
||µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||q

]1/q ≤ c1
4. supη∈Tn ||µ0E[(Z̃ ′i, X̃

′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]|| ≤ δn

5. supη∈Tn E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2 ≤ δn
6. supr∈(0,1),η∈Tn ||

∂2

∂r2E

[
ψi
(
β0, η0 + r(η − η0)

)]
|| ≤ δn/

√
n

7. The eigenvalues of E[ψi(β0, η0)ψi(β0, η0)′] are bounded below by a constant c0.

Note that condition 7 holds by supposition. For conditions 4, 5, and 6 we derive the following
three rates:

sup
η∈Tn

||µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

-δµ + (δγ,Z + δγ,X)δγ,X

sup
r∈(0,1),η∈Tn

E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2
-
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+dD(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

sup
r∈(0,1),η∈Tn

|| ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
||

-δµδξ + (δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

This implies that conditions 4, 5, and 6 hold with:

δn -
√
nδµδξ

+
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+ (
√
n+ dD)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Which is o(1) under the conditions in the Theorem.
We will consider conditions 1-6 in turn. In order to reduce the complexity of some of

the expressions in the arguments below, we use the following notation: γR = (γ′Z , γ
′
X)′,

γH = (γ′Y , γ
′
V , γ

′
X)′, R̃i(γR) = (Z̃i(γZ)′, X̃i(γX)′)′, H̃i(γH) = (Ỹi(γY ), Ṽi(γV )′, X̃i(γX)′)′

and ζ = (1,−ξ,−β′0)′. In addition let γR,0 = (γ′Z,0, γ
′
X,0)′, γH,0 = (γ′Y,0, γ

′
V,0, γ

′
X,0)′, let

R̃i = R̃i(γR,0) and H̃i = H̃i(γH,0). De�ne β̄ = ||Σ1/2

X̃
β0||, ξ̄ = ||Σ1/2

X̃
ξ′0||, µ̄ = ||µ0Σ

1/2

Z̃X̃
||, and

M̄ = ||Σ1/2

Z̃X̃
M ′0Σ

−1/2

Ṽ
||.
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Condition 1
Under Assumption 3.1, the set Tn de�ned as follows satis�es Condition 1 for some αn →

0. η ∈ Tn if and only if ||(µ− µ0)Σ
1/2

Z̃,X̃
|| ≤ δµ, ||Σ1/2

Ṽ
(ξ − ξ0)′|| ≤ δξ, and:

||Σ−1/2

Ṽ
(γV − γV,0)Σ

1/2
D || ≤ δγ,V

||Σ−1/2

X̃
(γX − γX,0)Σ

1/2
D || ≤ δγ,X

||Σ−1/2

Z̃X̃
(γ′Z − γ′Z,0, γ′X − γ′X,0)Σ

1/2
D || ≤ δγ,Z + δγ,X

||
(
(γY − γY,0)− (γX − γX,0)β0 − (γV − γV,0)ξ′0

)
Σ

1/2
D || ≤ δγ,ε

In our discussion of the remaining conditions we take Tn to be this set.
Condition 2
We show that:

sup
η∈Tn

E
[
||ψi(β0, η)||q

]1/q
- 1

Using notation introduced above we have:

E
[
||ψi(β0; ξ, γ, µ)||q

]1/q
=E

[
||µR̃i(γR)

(
Ỹi(γY )− Ṽi(γV )′ξ − X̃i(γX)′β0

)
||q
]1/q

Using the triangle inequality and the de�nition of the operator norm:

E

[
||µR̃i(γR)

(
Ỹi(γY )− Ṽi(γV )′ξ − X̃i(γX)′β0

)
||q
]1/q

≤E
[
||ψi(β0, η0)||q

]1/q
+ ||(µ− µ0)Σ

1/2

Z̃X̃
||E
[
||Σ−1/2

Z̃X̃
R̃iε̃i||q

]1/q
+||µΣ

1/2

Z̃X̃
|| · ||Σ−1/2

Z̃X̃
(γR − γR,0)Σ

1/2
D ||E

[
||Σ−1/2

D Diε̃i||q
]1/q

+||µΣ
1/2

Z̃X̃
||E
[
||Σ−1/2

Z̃X̃
R̃iṼ

′
i Σ
−1/2

Ṽ
||q
]1/q||Σ1/2

Ṽ
(ξ − ξ0)′||

+||µΣ
1/2

Z̃X̃
||Σ−1/2

Z̃X̃
(γR − γR,0)Σ

1/2
D ||E

[
||Σ−1/2

D DiṼ
′
i Σ
−1/2

Ṽ
||q
]1/q||Σ1/2

Ṽ
(ξ − ξ0)′||

+||µΣ
1/2

Z̃X̃
||
(
E
[
||Σ−1/2

Z̃X̃
R̃iD

′
iΣ
−1/2
D ||q

]1/q
+ ||Σ−1/2

Z̃X̃
(γR − γR,0)Σ

1/2
D ||E

[
||Σ−1/2

D DiD
′
iΣ
−1/2
D ||q

]1/q)
×
(
||Σ1/2

D

(
(γY − γ0,Y )− (γV − γ0,V )ξ′0 − (γX − γ0,X)β0

)
||

+ ||Σ1/2
D (γV − γ0,V )Σ

−1/2

Ṽ
|| · ||Σ1/2

Ṽ
(ξ − ξ0)′||

)
For η ∈ Tn we have:
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E

[
||µR̃i(γR)

(
Ỹi(γY )− Ṽi(γV )′ξ − X̃i(γX)′β0

)
||q
]1/q

-E
[
||ψi(β0, η0)||q

]1/q
+ ||(µ− µ0)Σ

1/2

Z̃X̃
||E
[
||Σ−1/2

Z̃X̃
R̃iε̃i||q

]1/q
+(δµ + µ̄)(δγ,X + δγ,Z)E

[
||Σ−1/2

D Diε̃i||q
]1/q

+(δµ + µ̄)δξE
[
||Σ−1/2

Z̃X̃
R̃iṼ

′
i Σ
−1/2

Ṽ
||q
]1/q

+(δµ + µ̄)(δγ,X + δγ,Z)E
[
||Σ−1/2

D DiṼ
′
i Σ
−1/2

Ṽ
||q
]1/q

δξ

+(δµ + µ̄)

(
E
[
||Σ−1/2

Z̃X̃
R̃iD

′
iΣ
−1/2
D ||q

]1/q
+ (δγ,X + δγ,Z)E

[
||Σ−1/2

D DiD
′
iΣ
−1/2
D ||q

]1/q)
× (δγ,ε + δγ,V δξ)

Using Assumption 3.2:

E

[
||µR̃i(γR)

(
Ỹi(γY )− Ṽi(γV )′ξ − X̃i(γX)′β0

)
||q
]1/q

-1 + δµ(dX + dZ)1/2 + (δµ + µ̄)(δγ,X + δγ,Z)d
1/2
D

+(δµ + µ̄)δξ(dX + dZ)1/2d
1/2
V + (δµ + µ̄)(δγ,X + δγ,Z)d

1/2
D d

1/2
V δξ

+(δµ + µ̄)

(
(dX + dZ)1/2d

1/2
D + (δγ,X + δγ,Z)dD

)
(δγ,ε + δγ,V δξ)

Under the conditions of the theorem the right-hand side is O(1).
Condition 3
We now show that:

sup
η∈Tn

E
[
||µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||q

]1/q
-1

Given our notation we have:

E
[
||µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||q

]1/q
=E

[
||µR̃i(γR)X̃i(γX)′||q

]1/q

Using the triangle inequality and de�nition of the operator norm:
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E

[
||µR̃i(γR)X̃i(γX)′||q

]1/q

≤E
[
||µ0R̃iX̃

′
i||q
]1/q

+||(µ− µ0)Σ
1/2

Z̃X̃
||
(
E
[
||Σ−1/2

Z̃X̃
R̃iX̃

′
i||q
]1/q

+||µΣ
1/2

Z̃X̃
||||Σ−1/2

Z̃X̃
(γR − γR,0)Σ

1/2
D ||E

[
||Σ−1/2

D DiX̃
′
i||q
]1/q

+||µΣ
1/2

Z̃X̃
||
(
E
[
||Σ−1/2

Z̃X̃
R̃iD

′
iΣ
−1/2
D ||q

]1/q
+ ||Σ−1/2

Z̃X̃
(γR − γR,0)Σ

1/2
D ||E

[
||Σ−1/2

D DiD
′
iΣ
−1/2
D ||q

]1/q)
× ||Σ1/2

D (γX − γ0,X)Σ
−1/2

X̃
|| · ||Σ1/2

X̃
||

For η ∈ Tn we have:

E

[
||µR̃i(γR)X̃i(γX)′||q

]1/q

-E

[
||µ0R̃iX̃

′
i||q
]1/q

+ δµE
[
||Σ−1/2

Z̃X̃
R̃iX̃

′
i||q
]1/q

+(µ̄+ δµ)(δγ,Z + δγ,X)E
[
||Σ−1/2

D DiX̃
′
i||q
]1/q

+(µ̄+ δµ)δγ,X

(
E
[
||Σ−1/2

Z̃X̃
R̃iD

′
iΣ
−1/2
D ||q

]1/q
+ (δγ,Z + δγ,X)E

[
||Σ−1/2

D DiD
′
iΣ
−1/2
D ||q

]1/q)
Using Assumption 3.2 we then get:

E

[
||µR̃i(γR)X̃i(γX)′||q

]1/q

-1 + δµ(dZ + dX)1/2d
1/2
X

+(µ̄+ δµ)(δγ,Z + δγ,X)d
1/2
D d

1/2
X

+(µ̄+ δµ)δγ,X

(
(dZ + dX)1/2d

1/2
D + (δγ,Z + δγ,X)dD

)
Under the conditions of the theorem the right-hand side is O(1).
Condition 4
Next we show that:

sup
η∈Tn

||µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

-δµ + (δγ,Z + δγ,X)δγ,X

By the triangle inequality and de�nition of the matrix norm:

||µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

≤||(µ0 − µ)Σ
1/2

Z̃X̃
|| · ||E[Σ

−1/2

Z̃X̃
(Z̃ ′i, X̃

′
i)
′X̃ ′iΣ

−1/2

X̃
]|| · ||Σ1/2

X̃
||

+(||(µ0 − µ)Σ
1/2

Z̃X̃
||+ ||µ0Σ

1/2

Z̃X̃
||)||E[Σ

−1/2

Z̃X̃
(Z̃ ′i, X̃

′
i)
′X̃ ′i]− E[Σ

−1/2

Z̃X̃
(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||
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Using the properties of partialling out:

E[Σ
−1/2

Z̃X̃
(Z̃ ′i, X̃

′
i)
′X̃ ′i]− E[Σ

−1/2

Z̃X̃
(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]

=E[Σ
−1/2

Z̃X̃

(
(Z̃ ′i, X̃

′
i)
′ − Z̃i(γZ)′, X̃i(γX)′)

)
(X̃i(γX)′ − X̃ ′i)]

=Σ
−1/2

Z̃X̃
(γ′Z,0 − γ′Z , γ′X,0 − γ′X)′ΣD(γX,0 − γX)

And so:

||E[Σ
−1/2

Z̃X̃
(Z̃ ′i, X̃

′
i)
′X̃ ′i]− E[Σ

−1/2

Z̃X̃
(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

≤||Σ−1/2

Z̃X̃
(γ′Z,0 − γ′Z , γ′X,0 − γ′X)′Σ

1/2
D || · ||Σ

1/2
D (γX,0 − γX)Σ

−1/2

X̃
|| · ||Σ1/2

X̃
||

Combining we get:

||µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

≤||(µ0 − µ)Σ
1/2

Z̃X̃
|| · ||E[Σ

−1/2

Z̃X̃
(Z̃ ′i, X̃

′
i)
′X̃ ′iΣ

−1/2

X̃
]|| · ||Σ1/2

X̃
||

+(||(µ0 − µ)Σ
1/2

Z̃X̃
||+ ||µ0Σ

1/2

Z̃X̃
||)

× ||Σ−1/2

Z̃X̃
(γ′Z,0 − γ′Z , γ′X,0 − γ′X)′Σ

1/2
D || · ||Σ

1/2
D (γX,0 − γX)Σ

−1/2

X̃
|| · ||Σ1/2

X̃
||

Note that:
||E[Σ

−1/2

Z̃X̃
(Z̃ ′i, X̃

′
i)
′X̃ ′iΣ

−1/2

X̃
]|| ≤ 1

And so, if η ∈ Tn and Assumption 3.2 holds we get:

||µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

-δµ + (δµ + µ̄)(δγ,Z + δγ,X)δγ,X

Under the conditions of the Theorem we then have:

||µ0E[(Z̃ ′i, X̃
′
i)
′X̃ ′i]− µE[(Z̃i(γZ)′, X̃i(γX)′)′X̃i(γX)′]||

-δµ + (δγ,Z + δγ,X)δγ,X

Condition 5
We will show that:

sup
η∈Tn

E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2
-
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+dD(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

In the notation introduced earlier in the proof:

E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2
=E
[
||µ0R̃iH̃

′
iζ0 − µR̃i(γR)H̃i(γH)′ζ||2

]1/2
Using the triangle inequality and de�nition of the operator norm:
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E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2
≤E
[
||(µ− µ0)(Z̃ ′i, X̃

′
i)
′||2ε̃2i

]1/2

+E

[
||µ(Z̃ ′i, X̃

′
i)
′||2||Ṽ ′i (ξ − ξ0)||2

]1/2

+E

[
||µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ||2
]1/2

(24)

Under Assumption 3.2.iii, the �rst term on the RHS is bounded by:

E

[
||(µ− µ0)(Z̃ ′i, X̃

′
i)
′||2ε̃2i

]1/2

=E

[
||(µ− µ0)(Z̃ ′i, X̃

′
i)
′||2E[ε̃2i |Z̃i, X̃i]

]1/2

≤cE
[
||(µ− µ0)(Z̃ ′i, X̃

′
i)
′||2
]1/2

≤
√
dXc||(µ− µ0)Σ

1/2

Z̃X̃
||

-
√
dXδµc

Where the �nal inequality above assumes η ∈ Tn. For the second term on the RHS of
(24), if η ∈ Tn then:

E

[
||µ(Z̃ ′i, X̃

′
i)
′||2||Ṽ ′i (ξ − ξ0)||2

]1/2

=E

[
||µ(Z̃ ′i, X̃

′
i)
′||2||E[Σ

−1/2

Ṽ
Ṽ ′i ṼiΣ

−1/2

Ṽ
|Z̃i, X̃i]

1/2Σ
1/2

Ṽ
(ξ − ξ0)′||2

]1/2

≤E
[
||µ(Z̃ ′i, X̃

′
i)
′||2||E[Σ

−1/2

Ṽ
Ṽ ′i ṼiΣ

−1/2

Ṽ
|Z̃i, X̃i]||

]1/2

||Σ1/2

Ṽ
(ξ − ξ0)′||

-δξE

[
||µ(Z̃ ′i, X̃

′
i)
′||2
]1/2

-δξ
√
dX ||µΣ

1/2

Z̃X̃
||

-δξ
√
dX(δµ + µ̄)

Next we will show that:
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E

[
||µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ||2
]1/2

-
√
dX(µ̄+ δµ)(δγ,ε + δγ,V δξ)σZ̃X̃|D

+2
√
dX(µ̄+ δµ)(δγ,Z + δγ,X)(σε̃|D + δξσṼ |D)

+(δµ + µ̄)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)σ4,D (25)

To see this, we �rst apply the triangle inequality and Young's inequality to get:

E

[
||µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ||2
]1/2

≤E
[
||µR̃i||2||D′i(γH,0 − γH)′ζ||2

]1/2
+2E

[
||µ(γR,0 − γR)Di||2ε̃2i

]1/2
+2E

[
||µ(γR,0 − γR)Di||2|Ṽ ′i (ξ − ξ0)|2

]1/2
+E
[
||µ(γR,0 − γR)DiD

′
i(γH,0 − γH)′ζ||2

]1/2
(26)

To bound the above �rst note that under Assumption 3.2:

E[||µR̃i||2|Di] ≤ dX ||µΣ
1/2

Z̃X̃
E[Σ

−1/2

Z̃X̃
R̃iR̃

′
iΣ
−1/2

Z̃X̃
|Di]

1/2||2

≤ dX ||µΣ
1/2

Z̃X̃
||2 · ||E[Σ

−1/2

Z̃X̃
R̃iR̃

′
iΣ
−1/2

Z̃X̃
|Di]||

- dX(µ̄+ δµ)2

Where the �nal inequality above assumes η ∈ Tn. Similarly:

E[||µ(γR,0 − γR)Di||2] ≤ dX ||µ(γR,0 − γR)Σ
1/2
D ||

2

≤ dX ||µΣ
1/2

Z̃X̃
||2 · ||Σ−1/2

Z̃X̃
(γR,0 − γR)Σ

1/2
D ||

2

- dX(µ̄+ δµ)2(δγ,Z + δγ,X)2

And moreover, if Assumption 3.2 holds and η ∈ Tn:

E[|Ṽ ′i (ξ − ξ0)|2|Di] ≤ ||Σ1/2

Ṽ
(ξ − ξ0)′||2 · ||E[Σ

−1/2

Ṽ
ṼiṼ

′
i Σ
−1/2

Ṽ
|Di]||

- δ2
ξ

If η ∈ Tn, then the using the de�nition of ζ, γH , and γH,0:

E
[
||D′i(γH,0 − γH)′ζ||2

]1/2
=||Σ1/2

D (γH,0 − γH)′ζ||

≤||
(
(γY − γY,0)− (γX − γX,0)β0 − (γV − γV,0)ξ′0

)
Σ

1/2
D ||

+||Σ1/2
D (γV,0 − γV )′Σ

−1/2

Ṽ
|| · ||Σ1/2

Ṽ
(ξ − ξ0)′||

-δγ,ε + δγ,V δξ

33



If Assumption 3.2 holds, then using the law of iterated expectations and the above we
get from (26):

E

[
||µ
(
R̃i(γR)H̃i(γH)′ − R̃iH̃ ′i

)
ζ||2
]1/2

-
√
dX(µ̄+ δµ)(δγ,ε + δγ,V δξ)

+
√
dX(µ̄+ δµ)(δγ,Z + δγ,X)(1 + δξ)

+E
[
||µ(γR,0 − γR)DiD

′
i(γH,0 − γH)′ζ||2

]1/2
(27)

Finally, with repeated application of the properties of the matrix norm:

E
[
||µ(γR,0 − γR)DiD

′
i(γH,0 − γH)′ζ||2

]
≤E
[
||µ(γR,0 − γR)Σ

1/2
D ||

2 · ||Σ−1/2
D DiD

′
iΣ
−1/2
D ||2 · ||Σ1/2

D (γH,0 − γH)′ζ||2
]

≤||µΣ
1/2

Z̃X̃
||2 · ||Σ1/2

D (γR,0 − γR)′Σ
1/2

Z̃X̃
||2 · ||Σ1/2

D (γH,0 − γH)′ζ||2E[||Σ−1/2
D DiD

′
iΣ
−1/2
D ||2]

-dD(δµ + µ̄)2(δγ,X + δγ,Z)2(δγ,ε + δγ,V δξ)
2

Where the last line assumes η ∈ Tn and uses E[||Σ−1/2
D DiD

′
iΣ
−1/2
D ||2] - dD from As-

sumption 3.2.
Combining we get (25) and in all:

E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2
-
√
dXδµ + δξ

√
dX(δµ + µ̄)

+
√
dX(µ̄+ δµ)(δγ,ε + δγ,V δξ)

+
√
dX(µ̄+ δµ)(δγ,Z + δγ,X)(1 + δξ)

+dD(µ̄+ δµ)(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Under the conditions of the theorem we get:

E
[
||ψi(β0, η0)− ψi(β0, η)||2

]1/2
-
√
dX(δµ + δξ + δγ,ε + δγ,V δξ + δγ,Z + δγ,X)

+dD(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Condition 6
Next we show that

sup
r∈(0,1),η∈Tn

|| ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
||

-δµδξ + (δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)

Twice di�erentiating we get:
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∂2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
=2(µ− µ0)ΣZ̃X̃M

′
0(ξ0 − ξ)′

+2µ0(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD

×
(
(γY − γ0,Y )− (γV − γ0,V )′ξ′0 − (γX − γ0,X)′β0

)
+6rµ0(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD(γV − γ0,V )′(ξ0 − ξ)′

+6r(µ− µ0)(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD

×
(
(γY − γ0,Y )− (γV − γ0,V )′ξ′0 − (γX − γ0,X)′β0

)
+12r2(µ− µ0)(γ′Z − γ′Z,0, γ′X − γ′X,0)′ΣD(γV − γ0,V )′(ξ0 − ξ)′

Where we have used that E[(Z̃ ′i, X̃
′
i)
′Ṽ ′i ] = ΣZ̃X̃M

′
0. Applying the triangle inequality

and the de�nition of the operator norm:

|| ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
||

≤2||(µ− µ0)Σ
1/2

Z̃X̃
|| · ||Σ1/2

Z̃X̃
M ′0Σ

−1/2

Ṽ
|| · ||Σ1/2

Ṽ
(ξ0 − ξ)′||

+2||µ0Σ
1/2

Z̃X̃
|| · ||Σ−1/2

Z̃X̃
(γ′Z − γ′Z,0, γ′X − γ′X,0)′Σ

1/2
D ||

× ||Σ1/2
D

(
(γY − γ0,Y )− (γV − γ0,V )ξ′0 − (γX − γ0,X)β0

)
||

+6r||µ0Σ
1/2

Z̃X̃
|| · ||Σ−1/2

Z̃X̃
(γ′Z − γ′Z,0, γ′X − γ′X,0)′Σ

1/2
D || · ||Σ

1/2
D (γV − γ0,V )Σ

−1/2

Ṽ
|| · ||Σ1/2

Ṽ
(ξ0 − ξ)||

+6r||(µ− µ0)Σ
1/2

Z̃X̃
|| · ||Σ−1/2

Z̃X̃
(γ′Z − γ′Z,0, γ′X − γ′X,0)′Σ

1/2
D ||

× ||Σ1/2
D

(
(γY − γ0,Y )− (γV − γ0,V )ξ′0 − (γX − γ0,X)β0

)
||

+12r2||(µ− µ0)Σ
1/2

Z̃X̃
|| · ||Σ−1/2

Z̃X̃
(γ′Z − γ′Z,0, γ′X − γ′X,0)′Σ

1/2
D || · ||Σ

1/2
D (γV − γ0,V )Σ

1/2

Ṽ
|| · ||Σ−1/2

Ṽ
(ξ0 − ξ)||

The expression above is maximized over r ∈ [0, 1] by r = 1. If η ∈ Tn then we get:

|| ∂
2

∂r2
E
[
ψi
(
β0, η0 + r(η − η0)

)]
||

-δµδξM̄

+(δγ,X + δγ,Z)(δγ,ε + δγ,V δξ)(δµ + µ̄)

The conditions in the theorem then give the result.
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