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Abstract

I propose a machine learning (ML) based approach for estimating treatment
effect heterogeneity in event studies with staggered adoption. The first step is to
use ML algorithms to predict counterfactual outcomes in the absence of treatment,
which can then be used to estimate a distribution of treatment effects. From this
distribution it is possible to estimate different causal parameters according to the
researcher’s objective. With simulations in the context of high-frequency air pol-
lution data, I show that the ML estimates are unbiased and more efficient than
estimates from conventional approaches. My proposal serves as an alternative to
standard two-way fixed effects regressions which, for example, have been shown
to be near-term biased in the presence of dynamic treatment effects. I conclude
with an application of the method to real data from a residential retrofit program,
revealing substantial heterogeneity of energy savings depending on the types and
levels of upgrades performed.
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1 Introduction

The recent surge in data availability is associated with both challenges and oppor-

tunities in modern research in environmental and energy economics. Thanks to remote

sensing, smart meters, smartphone and internet applications, for example, researchers

now face increasingly large volumes of complex information. On the one hand, as the

quantity of observations and variables increases, so might processing time and computing

memory required for analyses (Jin et al., 2015). On the other hand, with more informa-

tion researchers can, for example, control for more confounders or test more competing

hypotheses, which could potentially lead to more nuanced insights about a given topic

(Ghanem and Smith, 2021; Coble et al., 2018). For that purpose, novel statistical meth-

ods and machine learning (ML) are becoming increasingly popular. New applications in

economics and other social sciences, for example, show that these tools can be helpful

to evaluate the effects of policy changes, field experiments, weather shocks, and others.1

In this paper, I propose a machine learning-based approach to estimate heterogeneous

effects, specifically for event studies with staggered adoption: settings in which obser-

vational units are exposed to a policy change/treatment at different points in time. I

demonstrate the approach within two contexts: (1) for the evaluation of (simulated) poli-

cies to reduce air pollution (PM10) concentrations; and (2) for estimating heterogeneous

effects of a residential energy efficiency program.

A standard approach for treatment effect estimation within panel data settings

would be to regress an outcome of interest on a treatment indicator variable (equal

to one for unit-by-time observations exposed to treatment), plus unit fixed effects (e.g.,

indicators for each individual, household, or home in the sample) and time fixed effects

(e.g., indicators for each hour, day, or month in the sample). The associated coefficient

of the treatment variable is typically referred to as a Two-Way Fixed Effects estimator

(henceforward denoted TWFE). The interpretation of TWFE is clear in settings with

only two units (treated and control) and two time periods (before and after treatment):

1For reviews, see: Athey (2019); Storm, Baylis, and Heckelei (2019); Ghoddusi, Creamer, and
Rafizadeh (2019); Weersink et al. (2018).
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it represents the average treatment effect on the treated (ATT, formally defined in section

2). For that estimate to be valid, a necessary assumption is that the outcomes for treated

and control units would have followed a same path (parallel trends) in absence of treat-

ment (Angrist and Pischke, 2008). Nonetheless, even when that assumption holds, recent

literature finds that the interpretation of TWFE may not be trivial for high-dimensional

panel data settings with more than two units and more than two time periods, especially

in the presence of time-varying (dynamic) treatment effects.2

Borusyak, Jaravel, and Spiess (2021) were among the first to show how the coefficient

obtained from a “static” TWFE will be a weighted average of effects over time.3 Further,

some of the weights can be negative, especially for time periods long after treatment,

such that the estimator can be biased towards near-term effects. Goodman-Bacon (2021)

extends those results and provides a framework to decompose which time periods and

groups of units (e.g., untreated, early, mid, or late adopters) contribute most to the

estimate. The paper shows that estimation weights depend not only on the size of each

of those groups, but also on the variance of treatment assignments. For example, a

standard regression approach will assign more weight to portions of the sample with higher

treatment variance (i.e., portions with substantial overlap between treatment and control

units). For event studies with staggered adoption, the implication is that observations in

the middle of the panel (mid-adopters) will receive greater weights relative to early- and

late-adopters.4 This can be problematic in the presence of treatment effect heterogeneity

over time and across units, and to the extent that the researcher may not be particularly

interested in an estimator that accentuates the effects of mid-adopters.

To overcome these issues, I propose an estimation approach that builds on recent

advances in machine learning algorithms. With simulations, I show that the machine

learning approach does not suffer from the biases related to standard TWFE. This paper

2See, for example: Baker, Larcker, and Wang (2022); Ghanem and Smith (2021); Borusyak, Jaravel,
and Spiess (2021); Goodman-Bacon (2021); Kropko and Kubinec (2020); Imai and Kim (2020); Strezh-
nev (2018).

3This result was already present in an earlier version of the working paper, published in 2017 (Borusyak
and Jaravel, 2017).

4Note that for event studies with staggered adoption both the beginning and the end of the panel have
low treatment variance because the beginning of the panel contains few treated units, while the end of
the panel contains few control units.
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is related to a growing literature that proposes alternatives to the standard TWFE for

settings with staggered adoption.5 Sun and Abraham (2021) propose an extended TWFE

specification that includes cohort-specific indicators interacted with indicators for time

relative to the treatment event. This allows for heterogeneity over time and across cohorts.

One key limitation is that their approach does not consider the inclusion of covariates. In

contrast, the methods from Callaway and Sant’Anna (2021) and Wooldridge (2021) allow

for pre-determined covariates. Callaway and Sant’Anna (2021) propose a doubly-robust

estimator that relies on the estimation of counterfactual outcomes and of (treatment)

propensity scores to re-weight the unit/time-varying effects. The approach is doubly-

robust in a sense that it requires the correct functional form specification of only one of the

two estimating equations. Wooldridge (2021) also proposes an extension of TWFE, in line

with Sun and Abraham (2021), but adding pre-determined covariates under assumptions

of linearity and via a Mundlak device (Mundlak, 1978).

In turn, my proposal outlined in this paper does not restrict treatment effect hetero-

geneity, and does not require re-weighting or estimation of auxiliary propensity scores. In

particular, my proposal allows for the inclusion of exogenous covariates that can change

over time. This is important for settings where covariates are known to affect the out-

come of interest. When estimating the effects of interventions on energy consumption

or air pollution, for instance, researchers typically control for weather conditions, such

as temperature and precipitation, assumed to be exogenous to treatment assignment.

Within these settings, the proposed method can be summarized as follows: first, us-

ing only pre-treatment data, build a model for flexible prediction of the full distribu-

tion of post-treatment counterfactual outcomes using machine learning tools;6 second,

subtract observed (true) post-treatment outcomes from the predicted counterfactuals to

obtain a full distribution of treatment effects; third, summarize the treatment effects

with (sub)sample averages, or by projecting them onto available covariates (to obtain

5Among others, see: Sun and Abraham (2021); Callaway and Sant’Anna (2021); Wooldridge (2021); Athey
and Imbens (2022); Marcus and Sant’Anna (2021). Also, de Chaisemartin and D’Haultfoeuille (2020)
present a general framework, not restricted to staggered adoption designs. For a survey, see Chaisemartin
and D’Haultfoeuille (2021).

6A formal definition of “counterfactuals” is presented in Section 2.
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conditional averages).

My proposal is closely related to independent work from Borusyak, Jaravel, and

Spiess (2021), Liu, Wang, and Xu (2021), and Gardner (2021), who focus on direct “im-

putation” of counterfactuals estimated with fixed effects least squares regressions. Con-

firming their findings, I show that imputation approaches do not suffer from the problems

of standard TWFE. I further show how machine learning algorithms can result in better

prediction accuracy, as measured through root-mean-square errors, thus leading to more

efficient estimation of treatment effects. One additional advantage of machine learning is

that, when sufficient covariates are available, it can produce accurate predictions without

the inclusion of unit fixed effects. This is useful for imputing counterfactuals even for

units for which no pre-treatment data are available. Finally, some ML algorithms are

agnostic about the functional forms and the importance of variables used for prediction.

The predictive step will thus be less susceptible to researcher bias in model selection.

Concerning inference, I build on insights from Borusyak, Jaravel, and Spiess (2021),

who propose a formula for clustered standard errors that are conservatively adjusted for

errors in the first step (of counterfactual predictions). As an extension, I emphasize the

role of cross-validation, which serves to reduce bias in the estimation of the errors from

the predictive step.7 I show that in-sample (as opposed to cross-validated/out-of-sample)

residuals underestimate errors in the predictive step, which translates to higher risk of

over-rejection of hypotheses of null treatment effects.

In Section 2, I conceptually define a few causal parameters that may be of interest,

based on the Neyman-Rubin potential outcomes framework (Neyman, 1923; Rubin, 1974).

I introduce identifying assumptions under which my proposed estimands identify these

causal parameters. In Section 3, I formalize my estimation approach, and propose tests

for the identifying assumptions. In Section 4, I use simulations with semi-synthetic data

to demonstrate the properties of my approach, compared to other imputation methods

and standard TWFE. My simulations are performed with publicly-available data from air

pollution monitors and weather stations across Spain (MITECO, 2020; AEMET, 2020).

7For a survey on cross-validation approaches, see Arlot and Celisse (2010).
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These can be considered high-dimensional data in a sense that they are recorded daily

and at 311 distinct locations. First, I show that an ML algorithm can provide reliable

predictions of air pollution (PM10) concentrations in this setting. Second, I show that

my ML-based estimation approach is accurate for estimating simulated heterogeneous

effects, and does not suffer from the established biases from standard TWFE. Third, I

find that the ML approach is more efficient (has smaller standard errors), which can be

especially important for estimating nuanced effects of programs/policies.

In Section 5, I further demonstrate my approach with an application to real data

from the Illinois implementation of the Weatherization Assistance Program, which is

a large residential retrofit program in the US. I have access to administrative and en-

ergy billing data from over 34 thousand homes served by the Program between 2006

and 2016. While previous evaluations focus on average effects (Fowlie, Greenstone, and

Wolfram, 2018; Allcott and Greenstone, 2017; Zivin and Novan, 2016), I provide novel

evidence on heterogeneity of energy savings from these types of programs. For exam-

ple, I find that insulation measures are associated with substantial energy consumption

reduction, while the effects of window replacements are close to zero. I also show that

furnace repairs and re-tuning can increase energy consumption, providing evidence of

a rebound effect in this context (Gillingham, Rapson, and Wagner, 2016). Conversely,

full furnace replacements are among the highest energy-saving measures. Estimation of

fine-scale heterogeneity also allows me to perform upgrade-specific cost-benefit analyses.

With those, I find that, among a comprehensive suite of measures performed in these

homes, only insulation upgrades are associated with positive net benefits, depending on

lifespan and carbon price assumptions.8 This does not imply that other measures should

not be performed, as my analyses do not incorporate health, safety, and comfort benefits,

for example. Nevertheless, my proposed method and the results documented here may

help guide future efforts to identify and target high-savings measures or homes, in order

to improve the cost-effectiveness of residential retrofit programs.

This paper contributes to a growing literature that demonstrates how machine learn-

8Longer lifespans and a larger social cost of carbon can lead other measures to be cost-effective as well.
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ing tools can be leveraged for estimation of causal effects, with parallels to g-computation

(Robins, 1986; Yu and van der Laan, 2002), double machine learning (Chernozhukov,

Chetverikov, et al., 2017), targeted maximum likelihood estimation (van der Laan and

Rubin, 2006; Balzer, Petersen, and van der Laan, 2016), synthetic control (Abadie, Di-

amond, and Hainmueller, 2010), and causal trees (Wager and Athey, 2018; Athey and

Imbens, 2016). That body of work and recent applications (e.g., Allcott and Kessler, 2019;

Prest, 2020; Miller, 2020; Burlig et al., 2020; Christensen et al., 2021; Abrell, Kosch, and

Rausch, 2022) have highlighted some advantages of these novel methods, compared to

standard impact evaluation: more efficient estimation, which allows for recovering more

nuanced treatment effects; variable selection; potential bias reduction from explicit mod-

elling of propensity of treatment; construction of robust comparison groups in settings

where data for “pure controls” are not available; and potential for improved targeting of

treatment assignments. The method I introduce is not only applicable to the analysis of

interventions on air pollution and energy consumption. Rather, it can be applied gener-

ally to event studies with staggered adoption, as long as the identifying assumptions hold

(see Section 2) and the data availability allows for robust prediction of counterfactuals

(see Section 3).

2 Setup and Identification

Consider a panel data setting, with i = 1, ..., I units (e.g., homes, household, indi-

viduals, or states) observed over time periods t = 1, ..., T . Let Yi,t denote an outcome of

interest. Building on the Neyman-Rubin potential outcomes framework (Neyman, 1923;

Rubin, 1974), let there be two potential states for the outcome of interest: treated, Yi,t(1),

in case unit i in time t has been exposed to some “treatment” (policy change, program,

experiment etc.); or untreated, Yi,t(0), in absence of exposure. The effect of treatment

for unit i at time t can then be defined as the difference between the outcomes at both

potential states:

bi,t = Yi,t(1)− Yi,t(0) .
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At a given point in time, a unit is either treated or untreated, such that, in practice,

researchers can only observe outcomes at one of those two potential states. For the

remainder of this paper, I use the term “counterfactuals” to refer to the outcomes at

their alternative, unobservable state. In the proposed setting, units can be treated at

different moments in time and they remain treated for all the subsequent periods. Let

unit i be first treated at period t = qi. Then i is untreated from t = 1, ..., qi−1 and treated

from t = qi, ..., T . Considering a binary treatment, and that all units’ treatment regimes

are observable, I define a variable Di,t equal to one for all unit-by-time observations that

are exposed to treatment (i.e., t ≥ qi), and zero otherwise.9 The sample may contain

units that are “never treated,” with qi = ∞, such that Di,t = 0 for those units during

the full sample period (i.e., T <∞).

Finally, let there exist a set of covariates Xi,t, which can vary by units and over

time, and which may affect the outcome of interest.10 Note that the covariates are not

assumed to be predetermined (i.e., they need not be fixed over time, or determined prior

to the treatment), but must be not affected by the treatment status (see Assumption 3

below).

2.1 Causal Parameters of Interest

The elements presented above serve as building blocks for defining causal parameters

of interest. The focus of this paper will be on recovering average treatment effects on the

treated (ATT). Let the ATT be a function of X as follows:

ATT (X) = E[bi,t|Xi,t, Di,t = 1] .

Since ATT (X) depends on covariates, it allows for heterogeneity of effects based on

Xi,t. However, researchers may be particularly interested in the average effects irrespec-

9This paper focuses on settings in which treatment can be considered binary. For a discussion on
differences-in-differences with varying treatment “intensity,” or continuous treatment, see Callaway,
Goodman-Bacon, and Sant’Anna (2021).

10For ease of notation, throughout this paper I use bold print to indicate vectors such that, for example,
Xi,t = [x1i,t, ..., x

K
i,t] represents K distinct covariates.
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tive of covariates:

ATT = E[ATT (X)|Di,t = 1]

= E[bi,t|Di,t = 1] , by the Law of Iterated Expectations (LIE).

(1.1)

The research might also be interested in the ATT for r periods of exposure relative

to the treatment time, which is defined as:

ATT (r) = E[bi,t|Di,t = 1, t− (qi − 1) = r], for r > 0. (1.2)

It may also be useful to get a sense of treatment effects for different subgroups or

subsamples of the population, based on the covariates. Let c denote a set of conditions or

rules on the covariates Xi,t. Then a conditional average treatment effect on the treated

(CATT) can be defined as:

CATT (c) = E[bi,t|Xi,t = c, Di,t = 1] . (2)

To recover the parameters described above, the fundamental problem of causal in-

ference is that the untreated counterfactuals Yi,t(0) are not observable in post-treatment

periods. I thus propose an estimation approach which requires, as a first step, the direct

prediction of untreated counterfactuals, similar to the imputation method from Borusyak,

Jaravel, and Spiess (2021). The key difference is that I allow for more flexible functional

forms for the identification of the counterfactual, which relies on the following assump-

tions.

2.2 Identifying Assumptions

Assumption 1: Random sampling.

{Yi,1, Yi,2, ..., Yi,T ,Xi,1,Xi,2, ...,Xi,T , Di,1, Di,2, ..., Di,T}Ii=1 (Asm. 1)

is independent and identically distributed (iid).
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Assumption 1 states that the researcher has access to panel data. Note that it does

not rule out time series dependence. Next, I assume that soon-to-be-treated units do not

change their behavior in anticipation of treatment. The assumption of “no anticipatory

effects” can then be formalized as:

Assumption 2: No anticipatory effects.

Yi,t = Yi,t(0) , for all t < qi (Asm. 2)

such that the observed pre-treatment outcomes are in fact outcomes in an untreated state.

Further, I assume that covariates Xt are exogenous, such that:

Assumption 3: Covariates are not affected by the treatment.

Xi,t = Xi,t(0) = Xi,t(1), for all t . (Asm. 3)

Assumption 3 allows the inclusion of covariates that change over time, even in the

post-treatment period.11 Adding some structure, let there exist a function g() that relates

untreated potential outcomes with observable covariates Xi,t, as follows:

Yi,t(0) = g(Xi,t(0)) + εi,t ,

such that E[Yi,t(0)|Xi,t, Di,t = 0] = g(Xi,t(0)) .

Also let the conditional expectation of the treated potential outcome be given as follows:

E[Yi,t(1)|Xi,t, Di,t = 1] = f(Xi,t(1)) ,

where Yi,t(1) =f(Xi,t(1)) + εi,t .

Allowing different functions for potential outcomes implies that there might be a

change in the functional form of Y with respect to the covariates as a result of treatment.

This warrants another key assumption, that, in expectation, the functional form of the

11In the absence of Assumption 3, for example, it would also be necessary to predict counterfactual
realizations of covariates Xi,t(0) for t ≥ qi, which is out of the scope of this paper.
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potential outcome would not have changed in the absence of treatment. I formalize this

assumption below:

Assumption 4: Stability of the counterfactual function.

E[Yi,t(0)|Xi,t, Di,t = 1] = g(Xi,t(1)) . (Asm. 4)

Assumption 4 is analogous to the Conditional Parallel Trends assumption in the

Difference-in-Differences literature. In the absence of treatment, the treated and control

units would have followed a similar trajectory with respect to the covariates X, which

is determined by the function g(). This assumption implies that g() can be used to

understand the untreated counterfactuals also in the post-treatment periods.

Theorem 1: Under Assumptions 2 through 4, the ATT can be identified as follows.12

ATT = E[Yi,t − g(Xi,t)|Di,t = 1] ,

ATT (r) = E[Yi,t − g(Xi,t)|Di,t = 1, t− (qi − 1) = r], r > 0 .

The identification of the CATT (c) requires a more restrictive version of Assumption

4, namely:

Assumption 4’: Conditional stability of the counterfactual function.

E[Yi,t(0)|Xi,t = c, Di,t = 1] = E[g(Xi,t(1))|Xi,t = c, Di,t = 1], for all t . (Asm. 4’)

Assumption 4’ requires that, for each level of covariates X, the counterfactual po-

tential outcome for the treated is given, in expectation, by function g().

Theorem 2: Under Assumptions 2 through 4’, the CATT (c) can be identified as follows.

CATT (c) = E[Yi,t − g(Xi,t)|Xi,t = c, Di,t = 1] .

12Assumption 1 is only required for consistency.
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Proofs for Theorems 1 and 2 are provided in Appendix A. In the following section,

I show how to estimate these causal parameters of interest using my proposed method.

3 Proposed Estimation Method

Within the setting described above, I propose an estimation approach based on di-

rect prediction of untreated counterfactuals. The approach can be summarized in three

steps: (i) building and selecting the predictive model; (ii) estimating the full distribution

of treatment effects; and (iii) summarizing the estimated treatment effects. For the first

step, I build on insights from the machine learning literature. I propose employing algo-

rithms that allow for flexible relationships between the outcome and available covariates.

Further, I show how cross-validation can be used for systematic model selection, and to

help assess the validity of identifying assumptions.

3.1 Step 1: Building and selecting the predictive model

Given the assumptions and data structure described in Section 2, I propose the esti-

mation of the treatment effects of interest based on the prediction of the counterfactuals

Yit(0) for the treated units. The first step is to estimate the function g(), for which the

researcher should only use the pre-treatment sample (Di,t = 0).

In Economics, least squares regressions are often the method of choice. However,

those often impose linear functional forms which may not be ideal for prediction accu-

racy, as I show later in Section 4. Rather, for this step I propose using more flexible

approaches, such as tree-based methods, deep learners and neural networks, or support

vector machines. Machine learning algorithms have been shown to outperform conven-

tional approaches, especially with regards to out-of-sample prediction accuracy (Athey

and Imbens, 2019; Varian, 2014). The properties of these algorithms are thus well aligned

with the main objective of this first step: to predict counterfactuals that are in essence

unobservable. To assess whether this objective has been met, it is key perform a careful

and systematic analysis of out-of-sample prediction errors. This is standard within a
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machine learning framework, and is typically done via cross-validation. In the context of

this paper, cross-validation will also serve to assess the validity of the main identifying

assumptions.

3.1.1 Cross-validation and model selection

In-sample and out-of-sample predictive performance of a given model may differ

substantially. For example, the model may be excessively accurate (overfitted) for the

sample in which it was trained, such that it cannot be generalized for other samples.

This is problematic in the context of predicting counterfactuals that are, by definition,

out-of-sample. I therefore propose cross-validation to systematically assess and compare

accuracy of models being considered for this step. Cross-validation is also used for tuning

hyperparameters,13 and for defining the variables to be included, as well as their functional

forms.

In this paper, I employ 5-fold cross validation as such:14 (i) randomly split the pre-

treatment sample into five equally sized subsamples; (ii) use four of these subsamples as

the training set to estimate Yit with a given model (and with a given set of hyparameter

configurations), leaving one subsample aside as the validation set ; (iii) using the model

estimated in (ii), predict Yit for the validation set; (iv) repeat steps (ii) and (iii) four

times, such that all subsamples serve once as the validation set. It is then possible to

obtain cross-validated predictions (Ŷ cv
it ) and residuals (ε̂cvi,t = Yi,t−Ŷ cv

i.t ) for the full sample.

The above process should be repeated for all the models and all the hyperparameter

sets being considered. The researcher should then compare the validation set residuals

13Hyperparameters are set by the researcher prior to estimation, imposing some structure on the models
being considered. Conventional parameters, are those estimated by the models. Examples of hyper-
parameters include: the maximum number regression trees for an ensemble; the minimum number of
observations in the terminal nodes of the regression trees; the learning rate or weights associated with
each new tree added to the ensemble.

14A different number of folds, or other cross-validation approaches may be considered, depending on the
underlying data-generating process. For example, if the researcher is concerned about serial correla-
tion in their setting, then they may apply some form of time series cross-validation (Hyndman and
Athanasopoulos, 2018). If the researcher is further concerned about external validity, they may consider
stratified subsampling such that, for example, the validation set never includes any observations from
individuals in the training set. The best cross-validation approach will be context-specific, thus further
guidelines on that are out of the scope of this paper. For a survey, see Arlot and Celisse (2010).
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across all models, using metrics such as root-mean-square error (RMSE).15 The algo-

rithm and hyperparameter configurations that minimize cross-validated RMSE should be

selected as the predictor for the function g().

3.1.2 Assessing the identifying assumptions

Once the algorithm has been selected, the researcher can also assess whether As-

sumptions 2, 4, and 4’ are likely to hold. Given that the counterfactual is not observed,

assumptions 4 and 4’ should be mostly based on economic knowledge (institutional, the-

oretical). In traditional difference-in-differences designs, researchers usually infer the

validity of parallel trends based on the analysis of pre-treatment trajectories. As an

alternative, within a machine learning framework I propose comparing predicted and

observed outcomes (i.e., assessing the residuals from the predictive model).

Note that, by design, average residuals for most algorithms are very close to zero in

the training set, but not necessarily in the validation set. The researcher should then first

check if average cross-validated residuals are also close to zero. This will serve to assess

if ĝ() is accurate and stable for a new set of observations, thus providing insights on the

validity of Assumptions 2 and 4. If cross-validated residuals are not close to zero, then

there can be bias in Step 2 below, where prediction errors may be mistaken for treatment

effects.

I propose a procedure that is similar to analyzing pre-trends in difference-in-differences

settings. The researcher should run the following event study regression using pre-

treatment periods only:

ε̂cvi,t =
∑
r≤0

βr1[r = t− (qi − 1)] + ui,t , for all t < qi , (3)

where ε̂cvi,t are the cross-validated residuals; 1[r = t − (qi − 1)] are indicators equal to

one for r periods relative to the treatment time, zero otherwise; and ui,t are idiosyncratic

errors. The coefficients β̂r will capture the average cross-validated residuals at r periods

15In this step, the researcher may choose to assess other error metrics as well, such as mean absolute error
(MAE), R-squared, or others.
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relative to treatment time. The researcher may graphically inspect β̂r to check for any

potential pretrends, and should perform an F-test to test if βr are jointly zero, for all

r ≤ 0.

If the researcher is interested in heterogeneous treatment effects, then cross-validated

prediction errors should be assessed for all the subsamples for which heterogeneity is

expected. This is analogous to assessing the validity of Assumption 4’. If heterogeneity

is expected to be a function of covariates, then I propose regressing:

ε̂cvi,t = βXi,t + vi,t , for all t < qi , (4)

where Xi,t are the covariates along which potential treatment effect heterogeneity is

expected. The variables to be included, and their functional forms, should be determined

by the researcher, according to their prior knowledge of the field, or depending on which

dimensions of heterogeneity seem particularly interesting. The researcher may visually

inspect β̂ for potential patterns in the errors, and should test if β are equal to zero.

Essentially, the researcher should be able to show supporting evidence that cross-validated

prediction errors are uncorrelated with the covariates that may drive treatment effect

heterogeneity.16

In Section 4 and in Appendix D, I present details about the cross-validation results in

a setting where the main target is to predict counterfactual air pollution concentrations.

I compare results from both training and validation set prediction errors for algorithms

considered in this paper. Further, in the context of simulations I am able to compare

estimated errors to “true” counterfactual prediction errors (this is impossible in real data

settings, given that the counterfactuals are never observed). I find that validation set

residuals, as opposed to in-sample residuals, are a better proxy for the true prediction

errors. I also find, for the real data application (Section 5), that my chosen prediction

algorithm produces residuals that are not significantly correlated with any of the included

covariates.

16The same independent variables from equation (4) will be used for summarizing the treatment effects in
Step 3 below.
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3.2 Step 2: Estimating the full distribution of treatment effects

For this second step, the researcher should evaluate the estimated function g() at

Xi,t for the treated units in the the post-treatment sample as follows:

Ŷi,t(0) = ĝ(Xi,t) , for all Di,t = 1 .

If step one was performed correctly, then it is possible to obtain the full distribution

of Ŷit(0) (i.e., for all treated units and for all post-treatment periods). Recall that those

predictions are based on a model built with pre-treatment observations only, such that

they can be viewed as counterfactual predictions for the treated units.

Unit-by-time treatment effects can then be estimated by:

b̂i,t = Yi,t − Ŷi,t(0) , for all Di,t = 1.

which gives us the full distribution of treatment effects. b̂i,t are the building blocks

necessary to obtain the sample analogue of the causal parameters of interest described in

Section 2, and whose estimation is described in the next step.

3.3 Step 3: Estimating the causal parameters of interest

The most prominent parameter of interest, especially in economics, is the average

treatment effect on the treated (ATT), which can be estimated in this setting as:

ÂTT =

∑I
i=1

∑T
t=1 b̂i,t1{Di,t = 1}∑I

i=1(T − (qi − 1))1{qi ≤ T}
,

which is an average of all b̂it obtained in Step 2. Alternatively, ATTs can be summarized

as percentages, dividing by the sample average predicted counterfactual:

%ÂTT = ÂTT

/ ∑I
i=1

∑T
t=1 Ŷi,t(0)1{Di,t = 1}∑I

i=1(T − (qi − 1))1{qi ≤ T}
,

where, again, all elements necessary for the above parameter have already been obtained
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from steps 1 and 2. Consistency properties are discussed in Appendix A. Note that the

above expressions for both ÂTT and %ÂTT weight post-treatment observations equally.

However, the researcher may choose to calculate these averages with different weights

when, for example, data come from a survey where each individual represents a known

portion of the population. For a discussion on when alternative weights are appropriate,

see Solon, Haider, and Wooldridge (2015).

For describing heterogeneity in effects, it can be useful to calculate the above aver-

age parameters for different subsamples. For example, if the researcher is interested in

heterogeneous effects depending on time of exposure to the treatment, then the ATT(r)

can be estimated as follows:

ÂTT (r) =

∑I
i=1 b̂i,t1{t− (qi − 1) = r}∑I
i=1 1{t− (qi − 1) = r}

, r > 0 .

In addition, a researcher might hypothesize that a certain subpopulation experiences

treatment effects that are different than the ATT. If covariates allow that subpopulation

to be identified, then the researcher can estimate:

ĈATT (c) =

∑I
i=1

∑T
t=1 b̂i,t1{Di,t = 1}1{Xi,t = c}∑I

i=1(T − (qi − 1))1{qi ≤ T}1{Xi,t = c}
,

where c denotes a set of conditions on Xi,t that identify a subpopulation of interest. The

%ĈATT can also easily be obtained by imposing conditions on %ÂTT . Note that these

are simply conditional averages of the treatment effects. For continuous covariates, c is a

range of values that the covariate X can assume, which needs to be defined parsimoniously

such that a large number of observations is found in X = c and Assumption 4’ holds.

If the researcher believes that treatment effects exhibit a more complex structure,

then a linear regression can be considered:

b̂i,t = βXi,t + ui,t , for all Di,t = 1 , (5)

where ui,t is an idiosyncratic error term; and β captures the relationship between treat-
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ment effects and covariates of interest. The flexibility of that relationship will depend on

the functional forms and interactions of Xi,t. Note that the linear regression equation 5 is

simply used to obtain conditional averages, and alternative methods may be considered.

Further, identification still relies on the assumptions described in Section 2.

3.4 Inference

To obtain standard errors for each of the estimators described above, I follow a

conservative approach from Borusyak, Jaravel, and Spiess (2021). Specifically, I propose

a slight modification of their Theorem 3:

σ̂2
cv =

∑
i

( ∑
t;Di,t=0

γi,tε̂
cv
i,t +

∑
t;Di,t=1

γi,tε̃i,t

)2
, (6)

where I refer to σ̂2
cv as the cross-validated variance; ε̂cvi,t are cross-validated residuals in the

pre-treatment sample; ε̃i,t = b̂i,t − ˆ̄bi,t are deviations of the estimated treatment effects

(b̂i,t) from average effects (ˆ̄bi,t); and γi,t are sampling weights.17 From Equation (6), it is

possible to obtain standard errors clustered at the unit level, thus to perform inference

according to the hypotheses to be tested.

The first term from the right-hand side of (6) is intended to capture errors from Step

1 (the predictive step). Different from Borusyak, Jaravel, and Spiess (2021), I propose

using cross-validated residuals for that term, rather than in-sample residuals. This is

because, as discussed in Section 3.1, cross-validated residuals are likely more accurate

proxies for the true counterfactual prediction errors. Even under this conservative ad-

justment, I show that my proposal estimates treatment effects more efficiently compared

to alternative approaches.

The choice of ˆ̄bi,t is up to the researcher, who should keep in mind a tradeoff between

consistency and the size of σ̂2
cv. On the one hand, a conservative choice would be to take

17For the applications in this paper, all observations are weighted equally. This may not be ideal for all
settings. The proposal from Borusyak, Jaravel, and Spiess (2021) involves calculating weights for efficient
estimation of ATT. See Solon, Haider, and Wooldridge (2015) for a discussion on when and how to use
alternative sampling weights.
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a single average ˆ̄bi,t for the full post-treatment sample.18 Note that for ĈATT (c) the

variance in (6) needs to be estimated for each group of observations defined by the set of

conditions c. In that case, the averages for ˆ̄bi,t may be taken separately for these groups

for which heterogeneity is expected. The key is that the subsamples should be large

enough to retain consistency.

For cases where a complex heterogeneity structure is expected, as in equation (5),

I recommend bootstrapping as a yet more conservative approach for estimating stan-

dard errors. Chernozhukov, Fernández-Val, and Luo (2018) show that bootstrapping can

improve estimates of confidence bands in settings with substantial heterogeneity. The

proposed bootstrap algorithm is presented in Appendix B, where I also show that the

stability of estimated standard errors and the optimal number of bootstrap iterations are

context specific.

4 Simulations

I demonstrate the method proposed in Section 3 with simulations using semi-synthetic

data. That is, I use real-world data as the basis of my simulations but change some of the

observed outcomes depending on each simulation’s objectives. The outcome of interest is

ambient particulate matter (PM10) concentrations measured at 311 air quality monitors

across Spain (MITECO, 2020).19 Particulate matter concentrations are recorded daily.

I use observations from the 1st of January 2014 to the 31st of December 2019. I match

those with daily weather data from 271 stations across the country.20 These weather sta-

tions provide the following key control variables: wind direction, wind speed, atmospheric

pressure, precipitation, min, max, and median temperatures (AEMET, 2020).

I have additionally collected the following variables that might be related to air pollu-

tion concentrations: national-level daily electricity generation by fuel type (ESIOS, 2020);

18Note that the variance in equation (6) is inflated by treatment effect deviations from the calculated

average effect ˆ̄bi,t.
19I focus on monitors located in urban or suburban areas, dropping those in rural areas.
20Each air quality station is matched with the nearest weather station, based on simple linear distances

between stations’ coordinates.
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province-level annual GDP, population, and employment (INE, 2020); province-level

monthly entry and exit of firms (INE, 2020); and national-level annual hectares of for-

est area burned by wildfires (MITECO, 2021). Finally, the ML algorithms also include

seasonality controls (year, month, and day of year FE, holidays, and a monthly trend),

as well as characteristics from the air quality monitors (station type; altitude; urban or

suburban location; industrial, commercial, or residential location). Descriptive statistics

for the outcome variable and the full set of included controls are presented in Appendix

C.

Using these data, I simulate scenarios consistent with the focus of this paper (i.e.,

staggered adoption). First, I assign random “artificial” treatment dates to each air qual-

ity station, thus allowing the identification of pre and post-treatment observations. Then,

depending on the illustrative intent of each simulation, I impose a simulated treatment

effect by changing the outcome (air quality concentrations) for post-treatment observa-

tions, leaving pre-treatment data unchanged. The outcome change (simulated effect)

constitutes of lowering the PM10 concentrations after treatment, by subtracting a given

percentage of the original value.21 With this setup, I observe both simulated treatment

effects and “ground truth” counterfactuals that can be used to assess performance of

different estimation techniques.

For Step 1 of my proposed approach, I employ a machine learning algorithm called

XGBoost, which is a computationally efficient implementation of gradient boosted trees

(Chen and Guestrin, 2016). I perform ML prediction using the pre-treatment sample,

defined based on the artificially allocated treatment dates. In Appendix D, I present

performance metrics for XGBoost, which exhibits high cross-validated prediction accu-

racy in this setting.22 As discussed in Section 3, cross-validation is essential for this

step, given that I aim to predict counterfactuals which are unobservable by definition.

To Illustrate this point, Figure 1 Panel A compares the distributions of in-sample versus

true counterfactual residuals, while Panel B compares cross-validated versus true counter-

21This can be thought of as the effects of implementing low emission zones in cities, or mandating the
installation of scrubbers in industrial facilities, for example.

22I use root-mean squared error (RMSE) as a measure of prediction accuracy. However, other metrics,
such as R-squared or mean absolute error (MAE), may also be considered.
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factual residuals. Note that in-sample and cross-validated residuals were obtained with

pre-treatment data only, while true counterfactuals were obtained with post-treatment

data. A comparison of Panels A and B reveals that in-sample residuals, as expected, are

relatively better centered around zero, compared to cross-validated residuals. However,

Panel B shows that cross-validated residuals exhibit better overlap with the true coun-

terfactual residuals. The implication is that in-sample residuals would underestimate the

errors from the predictive step. This highlights why cross-validated residuals are more

appropriate for testing the identifying assumptions (as proposed in section 3.1.2), as well

as for adjusting the variance for inference in equation (6).

[FIGURE 1 HERE]

In real data settings, however, a comparison between cross-validated and true coun-

terfactual residuals is not feasible, since true counterfactuals cannot be observed. Alter-

natively, a researcher may choose to assess residuals in a separate “test” sample, which

was not used for model selection or tuning. The assumption is that this “test” sample will

be free from any biases introduced during the tuning process, and will accurately repre-

sent predictive performance for a completely new set of observations. The procedure for

appropriately defining a test sample will be context specific, depending on the underlying

data-generating process. For further discussion how to define training, validation, and

testing samples, see Arlot and Celisse (2010).

I also assess no anticipatory effects and the stability of my estimated counterfactual

function by regressing cross-validated residuals on indicators of time relative to treat-

ment, as shown in equation (3). This is analogous to a “pre-trends” test in traditional

difference-in-differences settings. Coefficient estimates and 95% confidence intervals from

this regression are shown in Figure 2. Note that only one of the coefficients may be con-

sidered statistically significant (coefficient for 10 months prior to treatment). However,

with an F-statistic of 1.11 (top right corner of the Figure) for a test of joint significance

of the coefficients, I cannot reject that all the coefficients are jointly equal to zero, thus

providing supporting evidence for Assumptions 2 and 4.
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[FIGURE 2 HERE]

I next proceed by applying Steps 2 and 3 outlined in Section 3 to recover simulated

treatment effects. I compare the performance of my proposed ML approach to standard

TWFE, and to an imputation method that uses ordinary least squares for the predictive

step (Step 1). Note that I consider several simulation scenarios, described in detail

below, to highlight different features of my proposed approach. The predictive step of

my approach, however, will remain the same for all simulations presented in this paper.

4.1 Treatment Effect Variation Across Time

For these simulations, I impose effects that are either increasing or decreasing over

time. The rationale is to verify if my method is robust to dynamic treatment effects, in

contrast to standard two-way-fixed effects regressions, which have been shown to suffer

from near-term bias (e.g., Goodman-Bacon, 2021). For these analyses, first I restrict the

sample such that each air quality station will have no more than 2 years (24 months)

of data before and after treatment. I also restrict the sample to observations for which

outcomes Yit and covariates Xit are always jointly observable.23 One implicit assumption

is that observations are missing at random, such that missingness is orthogonal to treat-

ment and other relevant factors. Then I impose simulated treatment effects by reducing

post-treatment PM10 concentrations by a given percentage.

I start by simulating effects that decrease over time. I impose that PM10 reductions

will be 20% for the first semester after treatment, 15% for the second semester, 10% for

the third semester, and 5% for the fourth semester. In the context of pollution abatement

policies, this can be viewed as a simulation with abatement technology depreciation over

time. I then proceed by comparing ML estimates with the “ground truth” simulated

23That is necessary for the algebra of regression analyses: the number of rows of the outcomes’ vector must
be equal to the number of rows of the covariates’ matrix. Researchers typically impose that by dropping
rows with missing observations for a few key variables, which is the strategy that I also employ in the
application of this paper.
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effects, as well as with standard two-way fixed effects (TWFE) specifications such as:

Yi,t = β ×Di,t + αi + αt + ui,t , (7)

where Di,t is equal to one if air quality station i has been treated in day of sample

t, zero otherwise; β is the TWFE parameter of interest, which captures a weighted

average of the dynamic treatment effects; αi and αt are station and day of sample fixed

effects, respectively; and ui,t is the error term. I also try variations of the above TWFE

specification by interacting station and calendar month fixed effects, by including day

of sample by province fixed effects, and by adding time-varying controls (i.e., weather

variables).

My proposed ML estimates are also compared to those from a simpler imputation

method, following Borusyak, Jaravel, and Spiess (2021), that uses ordinary least squares

for predictions of counterfactuals. For that, I use equation (7) above, restricted to the

pre-treatment sample, to estimate a model for the counterfactuals. For this simpler

imputation approach, standard errors are adjusted based on in-sample, rather than cross-

validated residuals.

Results for all specifications are presented in Table 1 Panel A. Column (1) presents

the “true” effect which serves as the benchmark. Column (2) presents results from my ML

approach. Columns (3) and (4) are for standard TWFE approaches. Columns (5) and (6)

are for an imputation approach that uses OLS for prediction of untreated counterfactuals.

I present the estimated effects as well as the standard errors (in parentheses) according

to each approach. Standard errors from standard TWFE are clustered by air quality

station. Standard errors for the ML approach are also clustered by station and are

further adjusted using cross-validated residuals from the predictive step, according to

equation 6. Finally, for comparison, conservative bootstrapped standard errors for the

ML approach are presented in square brackets.

Results suggest that, compared to the ground truth, the machine learning approach

provides an accurate estimation of the ATT. On the other hand, the coefficient obtained

from standard TWFE overestimates the true savings by about 54%. Adding finer-scale
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fixed effects and time-varying controls does not seem to significantly improve the accuracy

of standard TWFE. Consistent with results from Borusyak, Jaravel, and Spiess (2021),

the OLS imputation approaches outperform standard TWFE both in terms of bias and

efficiency. However, standard errors from OLS imputation are about 60% larger than

those obtained with the ML approach. One additional advantage of the ML approach is

that it allows the researcher to retain more observations in the sample. That is because the

ML predictive step does not include fine-scale fixed effects which, for the other approaches,

need to be available in both pre- and post-treatment samples.

For Table 1 Panel B, I repeat the exercise above, but with treatment effects that

are increasing over time. Now I impose that PM10 reductions will be 5% for the first

semester after treatment, 10% for the second semester, 15% for the third semester, and

20% for the fourth semester. For this case, I find that standard TWFE underestimate

the true effect. Taken together, Panels A and B show that standard TWFE exhibit a

near-term bias in this setting, as suggested in prior literature. This bias, however, is not

present in the ML and OLS imputation methods.

[TABLE 1 HERE]

Returning to the simulation with effects that decrease over time, I aim to test the

performance of estimators for recovering ATT(r), which are the effects at given semesters

after treatment. For TWFE, this can be estimated with a variant of equation (7) that

includes a interactions of Di,t with indicators for semesters post-treatment. For the ML

and OLS imputation approaches, ATT(r) can be estimated by taking averages of the

unit-by-time effects (b̂i,t) over each of the semesters of interest. Inference for ML and

OLS imputation procedures is also based on the adjustment shown in equation (6), but

with each element calculated within the subsamples determined by each semester.

Results for ATT(r) are shown in Table 2. It can be noted that all the approaches

provide unbiased estimates of the effects across semesters. This suggests that TWFE

should not be dismissed for settings in which heterogeneity is only expected across time

(i.e., when heterogeneity over other covariates is expected to be limited). For those cases,
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a fully dynamic specification of TWFE can be unbiased, as shown in prior literature

(e.g., Sun and Abraham, 2021). I highlight, however, that the ML approach exhibits

substantial gains in efficiency, compared to the other methods. Note that, for all the

semesters, the standard errors from the ML approach are smaller than those from the

other methods. Next I assess the performance of these methods under treatment effect

heterogeneity both across time and by other observable characteristics (Xi,t).

[TABLE 2 HERE]

4.2 Treatment Effect Heterogeneity Across Time and by Ob-

servable Characteristics

For this simulation, I consider a more complex treatment structure. Following what

was done for the above simulations, I impose effects that decrease over time. Additionally,

I use a covariate (altitude of air quality stations) to non-randomly split all the observations

into four groups which will get different “bonus” treatment effects. As shown in column

(1) of Table 3, stations with altitude below 35 meters get the strongest bonus effect,

with resulting average PM10 reduction of about 7 µg/m3. Stations with altitude between

35 and 150 meters have an average PM10 reduction of about 4.16 µg/m3. Stations with

altitude between 150 and 500 meters have an average PM10 reduction of about 1.2 µg/m3.

Stations with altitude higher than 500 meters experience no PM10 reductions.24

Now suppose that the researcher is interested in estimating treatment effects for each

of the groups defined above, but is not particularly interested in (or chooses to ignore)

how effects change over time. They should thus aim to estimate CATT, as defined by

equation (2). For this, it is first necessary to test if the identifying assumptions hold

for each group, by implementing the regression specification (4). As such, in Appendix

Figure D.1, I show that the ML cross-validated prediction errors are not correlated with

bins of altitude of the air quality stations.

24Note that I create four groups of stations based on their actual measures of altitude. For this illustrative
simulation, I could have picked any other variable that satisfies the assumptions laid out in section 2.2.
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I then proceed to estimate CATT with different approaches. Results are presented

in Table 3. As for the case of (unconditional) ATT, it is clear that standard TWFE

estimates are biased, with the coefficients being more representative of the near-term

effects (that occur right after treatment). In contrast, ML and OLS imputation more

accurately estimate the extent to which the stations were affected over the full two years

after treatment. OLS imputation, however, exhibits bias in estimating the effects for

the last altitude bin: the point estimate is close to a PM10 increase of 1 µg/m3, while

the benchmark effect is actually zero. The ML approach does not exhibit such bias, and

further retains the advantages described in the previous section: more efficient estimation

and no loss of observations.

[TABLE 3 HERE]

I next turn to an application of the ML approach for estimating CATT using real

data from the Weatherization Assistance Program.

5 Real Data Application: Heterogeneous Effects of

the Illinois Weatherization Assistance Program

Primary data from this application comes from the Illinois implementation of the

Weatherization Assistance Program (WAP). WAP is a large federally-funded energy-

efficiency program in the US which targets low-income families and provides full subsi-

dies for improving the conditions of the HVAC (heating, ventilation and air conditioning)

systems of their homes. This is an ideal setting for demonstrating the properties of the

method proposed in this paper for a few reasons. First, WAP allows for a data-rich envi-

ronment: I have access to data from over 34 thousand homes served by WAP from 2006

to 2016 in the state of Illinois. Detailed information about these homes are available,

including energy billing, housing structure, local weather, and demographic variables.25

25Without considering interactions or transformations, I have access to 29 variables, described in detail in
Appendix F. Summary statistics of the outcome of interest (monthly natural gas usage) and available
covariates can be found in Appendix E.
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Second, these homes were served by the program at different points in time (i.e., con-

stituting staggered adoption). Finally, this is a setting in which significant treatment

effect heterogeneity is expected. For example, effects may vary depending on year of

treatment, due to differences in program implementation guidelines. Depreciation of the

HVAC systems may also play a role. Importantly, effects are expected to significantly

vary across homes, which may inherently need different types of upgrades.

For this application, the outcome of interest is natural gas usage, measured in

MMBtu. The main objective is to recover heterogeneity of effects across homes that

received different levels of WAP spending on diverse measures. I also investigate het-

erogeneity of savings across housing structure and demographics. For that purpose, I

estimate conditional average treatment effects on the treated (CATT). The CATT esti-

mates are then used for measure-specific cost-benefit analyses. XGBoost is used for the

first (predictive) step of the method.26 To train the (counterfactual) model, I restrict

the sample to all (actual) pre-treatment observations. Further I restrict the sample to

observations within a window of 2 years before and after treatment. This helps with the

argument that Assumption 4 (stability of counterfactual function) is likely to hold, and

implies that I focus on near-term estimates of the effects of the program. With the tests

proposed in section 3.1.2, in Appendix F, I show that prediction errors are unlikely to be

correlated with the available covariates of interest.

5.1 Estimates of Heterogeneous Treatment Effects

To assess heterogeneity of program savings, I estimate CATT according to step three

from my proposed ML approach. Specifically, after obtaining home-by-month treatment

effects, I run the following linear regression to decompose them:

b̂i,t = α0 +
K∑
k=1

βkC
k
i,t +

G∑
g=1

γgX
g
i,t + ui,t , for all Di,t = 1 , (8)

where b̂i,t are natural gas savings (MMBtu) for home i in the post-treatment (Di,t = 1)

26In Appendix F, I show that XGBoost achieved high out-of-sample (cross-validated) prediction accuracy
for this real data application.
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months t; α0 is a constant; Xg
i,t includes the following covariates: housing structure (air

sealing, blower door reading, attic R-value, floor area, number of stories, heating unit

size, and vintage); demographics (household income, householder age, and family size);

natural gas and electricity prices; and weather controls (average minimum temperature,

average maximum temperature, and average precipitation). Ck
i,t are categories of program

spending: air conditioning, air sealing, attic, baseload, doors, foundation, furnace, health

and safety, wall insulation, water heater, windows, and other incidentals. Variables are

flexibly included via binning. Bins can vary in size, depending on the distribution of the

variable considered.

I compare the machine learning estimates with those from a fully interacted two-

way fixed effects model where I regress natural gas consumption on home by calendar

month FE, plus month of sample by county FE, in addition to covariates interacted with

the binary treatment indicator. For this TWFE estimator, the coefficients of interest

are those associated with the interactions between treatment and covariates (especially

related to program spending).

Figures 3 and 4 present estimates of heterogeneous treatment effects for selected

upgrades or home characteristics. I focus on covariates that are expected to be closely

related to energy consumption. The graphs should be interpreted as follows: the vertical

axes represent natural gas savings (MMBtu) attributed to WAP, while the horizontal axes

represent bins of amount spent on upgrades or other relevant home characteristics. To

avoid collinearity, for each variable it was necessary to drop one of the bins, to serve as the

omitted comparison group the estimating equation. For the spending categories, I drop

the first bin of zero amount spent. For all other cases, I drop the bin which includes the

median value along a given dimension. The presented coefficients should be interpreted

as heterogeneity in energy savings, compared to the omitted bin. Blue triangles represent

coefficients according the ML estimator, while the red squares are those from TWFE.

First, comparing ML versus TWFE coefficients, it can be noted that they generally

trend in the same directions, and reveal strikingly similar patterns of heterogeneity. How-

ever, ML estimates are more precise. Furthermore, there are some notable discrepancies
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between the estimates. Focusing on Wall Insulation and Attics, for example, TWFE

suggest stronger treatment effects compared to ML. That may be attributed to TWFE

not accurately capturing the temporal variation of effects. As simulation results from

Section 4 reveal, TWFE coefficients will be overestimated in case the true underlying

effects are stronger in the months right after treatment. That scenario is consistent with

depreciation of the upgrades performed by WAP.

Focusing on interpreting the preferred ML specification, the graphs reveal several

interesting patterns of heterogeneity for this context, which had not been previously

documented in the literature. When looking at furnaces, for example, it can be noted

that spending below $1,500 is associated with an increase in energy usage. On the other

hand, significant energy savings are achieved with furnace spending above $1,800. Lower

levels of furnace spending correspond to repair and re-tuning, which may be associated

with rebound effects (residents using their furnaces more often), without substantial

improvement to the efficiency of the furnace. However, high levels of furnace spending

correspond to installing new (likely more efficient) furnaces, thus leading to significant

reduction in energy consumption.27 That is an intuitive result but the magnitudes or the

importance of the savings from replacing furnaces should not be understated. In section

5.2, I provide more insight about the cost-effectiveness of furnace replacements versus

repairs.

Graphs labelled as Attic, Wall Insulation, and Foundation collectively represent the

majority of insulation measures performed by the program. As expected, those reveal

that insulation is crucial for energy savings in the context of WAP. Virtually any level

of insulation spending is associated with some energy savings. Further, the relationship

between savings and spending on insulation seems to be mostly linear. Only high levels

of spending (above $1,200) on windows are significantly associated with some energy

savings.

I also show that homes with a larger pre-treatment heating unit achieve better

27Appendix E presents the histograms for each of the WAP spending categories. It can be noted, for
example, that the distribution is bimodal for furnaces, thus suggesting a separation between simple
repair/re-tuning versus complete replacements. This is corroborated by assessing more specific descrip-
tions of measures performed in each home, available in the raw Program administrative data.
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energy savings. Those large units may therefore have been replaced with smaller ones

(which use less energy). Otherwise, the units may have been replaced by newer models

that are more efficient regardless of size. That is consistent with the results from furnace

spending.

In terms of demographics, the machine learning estimates suggest U-shaped rela-

tionships between energy consumption and family size, as well as between energy energy

consumption and householder age. Compared to the median, both younger and older

householders, as well as smaller and bigger families consume more energy after treat-

ment. The differences along those dimensions are small, nevertheless significant. Co-

efficients on householder age from TWFE differ substantially from those from machine

learning. However, potential sources of bias along those dimensions are unclear.

[FIGURE 3 HERE]

[FIGURE 4 HERE]

5.2 Upgrade-Specific Cost-Benefit Analyses

In this section, I investigate if each of the categories of WAP investments are cost-

effective. Measure-specific costs were obtained from administrative data. They incor-

porate both labor and materials costs. I assume that benefits accrue through reduced

energy savings only, according to the parameters estimated in the above section.28 I focus

on the measures that were associated with significant energy savings.

For each measure and each bin of spending, I compute the monetized benefits of

reduced natural gas usage. I take into account social marginal benefits, incorporating

the social costs of carbon following the procedure as described in Davis and Muehleg-

ger (2010). The average citygate natural gas prices in Illinois from 2007-2016 represent

marginal private costs, to which I add the social costs of carbon of $40 per ton. Emissions

28WAP may also be associated with indoor air quality, and health benefits, for example. The investigation
of those benefits is left for future research.
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factors for natural gas were obtained from EPA (1998). The resulting price is assumed

for the first post-treatment month, after which escalation is applied based on indices from

Rushing, Kneifel, and Lippiatt (2012).

Different measures are assumed to have different lifespans. Baseline scenarios fol-

low lifespan recommendations from official WAP documentation: 25 years for insulation

measures; 20 years for furnaces; 15 years for windows. Measures are assumed to fully

depreciate after those lifespans. However, there is uncertainty regarding those lifespans,

and recent engineering literature suggests that they could be longer (Kono et al., 2016).

Therefore, I also consider the following alternative lifespans: 50 years for insulation; 30

years for furnaces and windows. Finally, to obtain the present value of benefits, I use a

discount rate of 3%, which is the recommended rate for evaluation of several governmental

programs, including WAP (Rushing, Kneifel, and Lippiatt, 2012).

I subtract monetized benefits from per-measure costs to obtain net benefits for all

the bins of spending.29 Results are presented in Figure 5. First, it can be noted that

only insulation measures, especially for attics, are associated with positive net benefits.

Attic spending exhibits a clear pattern of diminishing returns. Further, net benefits are

sensitive to lifespan assumptions. Comparing both lifespan scenarios, the difference in

net benefits can be up to $3,000 for attics, for example. Foundation and wall insulation

are at the margin of cost-effectiveness with baseline assumptions. With longer lifespans,

those measure are therefore associated with positive net benefits.

Furnace and windows are generally associated with negative net benefits. The bi-

modal distribution for furnace is again clear in these cost-benefit analyses, suggesting

that expensive furnace repairs ($600 - $1,800) are less cost-effective than full furnace re-

placements (above $1,800). In this context, negative net benefits do not necessarily imply

that some measures should be performed. It is important to note that WAP measures

may be complementary. For example, better wall insulation can enhance the benefits

from a more efficient furnace. Analyses of complex interactions between measures are

left for future work.

29I use average costs within each bin.
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The methods and results presented in this paper complement the analyses in Chris-

tensen et al. (2021). That paper provides insight about the mechanisms that can explain a

wedge between ex-ante projected and ex-post realized energy savings from WAP. Results

suggest that biases in projected savings are especially associated with systematic engi-

neering modelling errors and workmanship, while changes in consumer behavior (rebound

effects) are not significant in this setting.

[FIGURE 5 HERE]

6 Conclusions

I introduce a novel method to estimate heterogeneous treatment effects for event

studies with staggered adoption. I contribute to a growing literature that proposes alter-

natives to the standard TWFE in these settings. The proposed method employs highly

flexible machine learning algorithms to predict counterfactuals, which in turn are used to

estimate treatment effects. Within this framework, I propose tests to assess the validity

of the assumptions required to identify certain causal parameters of interest. Further, I

emphasize the role of cross-validation to assess the performance of the model for coun-

terfactual predictions, and to account for that model’s potential errors when performing

inference. I perform my analyses within a data-rich environment, which allows a deep

exploration of the several dimensions of heterogeneity.

With simulations using publicly-available air pollution data from Spain, I test the

performance of the proposed machine learning method, contrasting it with standard two-

way fixed effects regression and with imputation approaches that model counterfactuals

through OLS. I show that, consistent with prior literature, TWFE can be near-term

biased in cases where treatment effects are dynamic (time-varying). Conversely, the

ML and OLS imputation approaches are shown to be unbiased. Further, my ML based

proposal is more efficient than imputation via standard OLS. Other advantages of the ML

approach, in particular, are: it allows the researcher to be agnostic about the specification
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of the model for counterfactuals; provides a straightforward framework for assessing the

validity of identifying assumptions; and is less subject to loss of observations (as one may

not need to include unit fixed effects in the ML specifications).

I conclude with an application of the ML approach to real data from the Weather-

ization Assistance Program. I am able to identify substantial heterogeneity of program

effects, which had not been empirically documented in the literature. For example, I

find that even though insulation measures are among the most important drivers of

energy savings in this program, the cost-effectiveness of these measures is sensitive to

assumptions regarding their lifespans. I also find evidence that furnace replacements are

more cost-effective than particularly expensive furnace repairs/re-tuning. Since the ML

method allows estimation of fine-scale heterogeneity, it may be useful to aid in an exer-

cise to identify high-return homes, to which funds may be targeted more cost-effectively.

I also reiterate that the approach proposed in this paper is not only applicable to re-

search in energy and environmental economics. Rather, the method can be considered

for recovering heterogeneity in event studies within data-rich environments, as long as

the identifying assumptions hold.
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url: https://opendata.aemet.es/centrodedescargas/inicio.

Allcott, Hunt and Michael Greenstone (2017). “Measuring the Welfare Effects of Resi-
dential Energy Efficiency Programs”. NBER Working Paper( 23386).

Allcott, Hunt and Judd B. Kessler (2019). “The Welfare Effects of Nudges: A Case
Study of Energy Use Social Comparisons”. American Economic Journal: Applied
Economics 11(1), pp. 236–76.

Angrist, J. D. and J. Pischke (2008). Mostly Harmless Econometrics: An Empiricist’s
Companion. Princeton University Press.

32



Arlot, Sylvain and Alain Celisse (2010). “A survey of cross-validation procedures for
model selection”. Statistics Surveys 4, pp. 40–79. url: https://doi.org/10.1214/
09-SS054.

Athey, Susan (2019). “21. The Impact of Machine Learning on Economics”. The Eco-
nomics of Artificial Intelligence: An Agenda. Ed. by Ajay Agrawal, Joshua Gans,
and Avi Goldfarb. University of Chicago Press, pp. 507–552. url: https://doi.
org/10.7208/9780226613475-023.

Athey, Susan, Mohsen Bayati, Guido Imbens, and Zhaonan Qu (2019). “Ensemble Meth-
ods for Causal Effects in Panel Data Settings”. arXiv Working Paper. url: https:
//arxiv.org/abs/1903.10079.

Athey, Susan and Guido Imbens (2016). “Recursive partitioning for heterogeneous causal
effects”. Proceedings of the National Academy of Sciences 113(27), pp. 7353–7360.
url: https://www.pnas.org/content/113/27/7353.

Athey, Susan and Guido W. Imbens (2019). “Machine Learning Methods That Economists
Should Know About”. Annual Review of Economics 11(1), pp. 685–725. eprint:
https://doi.org/10.1146/annurev-economics-080217-053433. url: https:
//doi.org/10.1146/annurev-economics-080217-053433.

Athey, Susan and Guido W. Imbens (2022). “Design-based analysis in Difference-In-
Differences settings with staggered adoption”. Journal of Econometrics 226(1). An-
nals Issue in Honor of Gary Chamberlain, pp. 62–79. url: https://www.sciencedirect.
com/science/article/pii/S0304407621000488.

Baker, Andrew, David F. Larcker, and Charles C. Y. Wang (2022). “How Much Should
We Trust Staggered Difference-In-Differences Estimates?” Journal of Financial Eco-
nomics. (Forthcoming). url: http://dx.doi.org/10.2139/ssrn.3794018.

Balzer, Laura B., Maya L. Petersen, and Mark J. van der Laan (2016). “Targeted estima-
tion and inference for the sample average treatment effect in trials with and without
pair-matching”. Statistics in Medicine 35(21), pp. 3717–3732.
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Tables

Table 1: Simulation Results – Performance of Estimators for ATT Under Dynamic
Treatment Effects

Panel A: Treatment Effects Decreasing Over Time

(1) (2) (3) (4) (5) (6)
Simulated

(benchmark)
Machine Learning OLS TWFE OLS TWFE

(saturated)
OLS Imputation OLS Imputation

(saturated)

ÂTT -3.1840 -3.1350 -4.9006 -4.5487 -3.0367 -2.7432
Standard Errors (0.1281) (0.2891) (0.3457) (0.2548) (0.2118)
Bootstrapped Standard Errors [0.2272]

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Panel B: Treatment Effects Increasing Over Time

ÂTT -2.2199 -2.1709 -0.9287 -0.4429 -2.0691 -1.6989
Standard Errors (0.1244) (0.2869) (0.3334) (0.2563) (0.2153)
Bootstrapped Standard Errors [0.2199]

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Station FE NA Yes No Yes No
Day of sample FE NA Yes No Yes No
Station × Month FE NA No Yes No Yes
Day of sample × Province FE NA No Yes No Yes
Additional controls NA No Yes No Yes

Notes: This table presents the performance of alternative methods for estimating ATT under dynamic treatment effects. The outcome
variable is PM10 particulate matter concentrations, measured in µg/m3. The simulations impose a reduction in PM10 for the post-
treatment sample. The ATT aims to recover the full post-treatment sample average of that reduction. Panel A is for results with
treatment effects that decrease in magnitude over time, while Panel B is for results with treatment effects that increase over time.
Column (1) presents the “true” effect which serves as the benchmark. Column (2) presents results from my ML approach. Columns
(3) and (4) are for standard TWFE approaches. Columns (5) and (6) are for an imputation approach that uses OLS for prediction
of untreated counterfactuals. Standard errors from standard TWFE are clustered by air quality station. Standard errors for the ML
approach are also clustered by station and are further adjusted using cross-validated residuals from the predictive step, according to
equation (6). Conservative bootstrapped standard errors (200 iterations) for the ML approach are presented in square brackets. Standard
errors for the OLS imputation approach are adjusted, but using in-sample residuals from the predictive step. As described in section 3.4,

this adjustment also takes into account deviations from an average effect (ˆ̄bi,t), which I calculate as averages for each month of sample.
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Table 2: Simulation Results – Performance of Estimators for Heterogeneous Treatment
Effects Over Time

(1) (2) (3) (4) (5) (6)
Simulated

(benchmark)
Machine Learning OLS TWFE OLS TWFE

(saturated)
OLS Imputation OLS Imputation

(saturated)

ÂTT (1): Semester 1 -4.2808 -4.2578 -4.5397 -4.0435 -4.2057 -3.5697
Standard Errors (0.1568) (0.2967) (0.3733) (0.2386) (0.3176)
Bootstrapped Standard Errors [0.2258]

ÂTT (2): Semester 2 -3.1807 -3.2693 -3.4408 -2.9358 -3.0351 -2.8437
(0.1814) (0.4054) (0.4179) (0.2969) (0.3106)
[0.2572]

ÂTT (3): Semester 3 -2.1932 -2.0567 -2.3363 -1.7575 -1.9510 -1.6892
(0.2619) (0.5098) (0.5406) (0.4209) (0.4430)
[0.3369]

ÂTT (4): Semester 4 -1.1405 -0.8112 -1.3540 -0.2796 -0.8908 -0.8406
(0.3677) (0.5721) (0.5758) (0.5169) (0.4410)
[0.4187]

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Station FE NA Yes No Yes No
Day of sample FE NA Yes No Yes No
Station × Month FE NA No Yes No Yes
Day of sample × Province FE NA No Yes No Yes
Additional controls NA No Yes No Yes

Notes: This table presents the performance of alternative methods for estimating ATT(r). That is, for recovering a different effect for
each semester after treatment. The outcome variable is PM10 particulate matter concentrations, measured in µg/m3. The simulation
imposes an effect that becomes weaker in magnitude over time, as shown in column (1) of the “true” benchmark effects. Column (2)
presents results from my ML approach. Columns (3) and (4) are for standard TWFE approaches. Columns (5) and (6) are for an
imputation approach that uses OLS for prediction of untreated counterfactuals. Standard errors from standard TWFE are clustered by
air quality station. Standard errors for the ML approach are also clustered by station and are further adjusted using cross-validated
residuals from the predictive step, according to equation (6). Conservative bootstrapped standard errors (200 iterations) for the ML
approach are presented in square brackets. Standard errors for the OLS imputation approach are adjusted, but using in-sample residuals

from the predictive step. As described in section 3.4, this adjustment also takes into account deviations from an average effect (ˆ̄bi,t),
which I calculate as averages for each month of sample.
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Table 3: Simulation Results – Performance of Estimators for CATT

(1) (2) (3) (4) (5) (6)
Simulated

(benchmark)
Machine Learning OLS TWFE OLS TWFE

(saturated)
OLS Imputation OLS Imputation

(saturated)

ĈATT : Altitude ≤ 35m -7.0897 -6.9100 -8.3251 -7.9242 -6.6679 -6.4911
Standard Errors (0.2885) (0.4644) (0.4796) (0.4471) (0.4048)
Bootstrapped Standard Errors [0.4069]

ĈATT : 35m < Altitude ≤ 150m -4.1586 -4.0815 -5.5698 -5.4877 -4.6664 -4.2504
(0.1982) (0.3555) (0.4692) (0.5500) (0.2942)
[0.2891]

ĈATT : 150m < Altitude ≤ 500m -1.2035 -1.1198 -2.8135 -2.7120 -1.0951 -0.4605
(0.2662) (0.4679) (0.6323) (0.4719) (0.5502)
[0.4055]

ĈATT : Altitude > 500m 0.0000 -0.2662 -1.3353 -0.2348 0.8703 1.2154
(0.3053) (0.4479) (0.8139) (0.4615) (0.4980)
[0.5459]

Observations 170,484 170,484 170,484 154,999 170,133 128,718

Station FE NA Yes No Yes No
Day of sample FE NA Yes No Yes No
Station × Month FE NA No Yes No Yes
Day of sample × Province FE NA No Yes No Yes
Additional controls NA No Yes No Yes

Notes: This table presents the performance of alternative methods for estimating conditional average treatment effects on the treated
(CATT). That is, for recovering a different effect for each group that identifies the altitude of an air quality station. The outcome variable
is PM10 particulate matter concentrations, measured in µg/m3. The simulation imposes an effect that becomes weaker in magnitude over
time, and that varies with altitude. Column (1) shows the “true” benchmark effects for each group. Column (2) presents results from my
ML approach. Columns (3) and (4) are for standard TWFE approaches. Columns (5) and (6) are for an imputation approach that uses OLS
for prediction of untreated counterfactuals. Standard errors from standard TWFE are clustered by air quality station. Standard errors for
the ML approach are also clustered by station and are further adjusted using cross-validated residuals from the predictive step, according to
equation (6). Conservative bootstrapped standard errors (200 iterations) for the ML approach are presented in square brackets. Standard
errors for the OLS imputation approach are adjusted, but using in-sample residuals from the predictive step. As described in section 3.4, this

adjustment also takes into account deviations from an average effect (ˆ̄bi,t), which I calculate as averages for each of the four groups defined
based on altitude.
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Figures

Panel A: In-Sample Residuals
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Panel B: Cross-Validated Residuals
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Figure 1: Histograms for In-Sample, Cross-Validated, and True Counterfactual
Residuals from the ML Approach

Notes: This Figure presents histograms of residuals for the first step of my ML approach, applied within
the simulation setting. These are residuals according to the best-performing XGBoost configuration for
predicting PM10 particulate matter concentrations (measured in µg/m3). Panel A compares in-sample
(in red) and true counterfactual (in gray) residuals. Panel B compares cross-validated (in blue) and true
counterfactual (in gray) residuals.
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F-stat = 1.113
P-value of F-stat = 0.329
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Figure 2: Assessing Anticipatory Effects and the Stability of the Counterfactual
Function

Notes: This Figure plots coefficient estimates and 95% confidence intervals from a regression of cross-
validated residuals on indicators for time relative to treatment (equation 3). This is for testing Assump-
tion 2 (no anticipatory effects), and Assumption 4 (stability of the counterfactual function). This is
analogous to “pre-trends” tests in traditional difference-in-differences settings. The top right corner of
the Figure shows the resulting F-statistic and associated P-value for a test of joint significance of the
coefficients.
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Savings by Air Sealing Spending Savings by Attic Spending

Savings by Foundation Spending Savings by Furnace Spending

Savings by Wall Insulation Spending Savings by Windows Spending

Figure 3: ML Heterogeneous Treatment Effect Estimates for Program Spending

Notes: The figures above present machine learning estimates of heterogeneous treatment effects for
selected WAP categories of spending. Negative coefficients should be interpreted as percent energy
savings attributed to WAP treatment. ML standard errors were bootstrapped (200 iterations). For
two-way fixed effects, standard errors are clustered by household.
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Savings by Householder Age Savings by Family Size

Savings by Heating Unit Size

Figure 4: ML Heterogeneous Treatment Effect Estimates for Selected Covariates

Notes: The figures above present machine learning estimates of heterogeneous treatment
effects for selected covariates. Negative coefficients should be interpreted as percent
energy savings attributed to WAP treatment. ML standard errors were bootstrapped
(200 iterations). For two-way fixed effects, standard errors are clustered by household.
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Net Benefits from Attic Net Benefits from Foundation

Net Benefits from Wall Insulation Net Benefits from Furnace

Net Benefits from Windows

Figure 5: Cost-Effectiveness of Main WAP Spending Categories

Notes: The figures above present results from cost-benefit analyses for the main cate-
gories of WAP spending. Blue triangles represent net benefits with baseline assumptions:
shorter lifespans, and 3% discount rate. The red circles represent net benefits assuming
longer lifespans. Standard errors were bootstrapped (200 iterations).
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Online Appendix

A Proofs

Proof of Theorem 1: Based on the Neyman-Rubin potential outcomes framework

and Assumption 2, the observed outcome can be written as:

Yi,t = Yi,t(0) +Di,t[Yi,t(1)− Yi,t(0)]⇐⇒

Yi,t − Yi,t(0) = Di,t · bi,t

Taking the conditional expectation in both sides, from Assumption 4, we can rewrite

the left-hand side in terms of the function g():

E[Yi,t − Yi,t(0)|Xi,t, Di,t = 1] = E[Di,t · bi,t|Xi,t, Di,t = 1]

⇐⇒

E[Yi,t|Xi,t, Di,t = 1]− g(Xi,t(1)) = E[bi,t|Xi,t, Di,t = 1]

Taking now the conditional expectation for Di,t = 1:

E[E[Yi,t|Xi,t, Di,t = 1]− g(Xi,t(1))|Di,t = 1] = E[E[bi,t|Xi,t, Di,t = 1]|Di,t = 1] .

Therefore, it follows from Assumption 3 and the LIE:

E[Yi,t − g(Xi,t)|Di,t = 1] = E[bi,t|Di,t = 1] .

The proof for the ATT (r) follows by taking all the conditional expectations also

with respect to t − (qi − 1) = r, for r > 0. Since Assumption 4 holds for all t, it also

holds for t = (qi − 1) + r ,r > 0.

Proof of Theorem 2:

Now, we take the conditional expectation on Xi,t = c in both sides.

E[Yi,t − Yi,t(0)|Di,t = 1,Xi,t = c] = E[bi,t|Di,t = 1,Xi,t = c]

1
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Assumption 4’ implies the following:

E[Yi,t − g(Xi,t(1))|Xi,t = c, Di,t = 1] = E[bi,t|Xi,t = c, Di,t = 1]

Therefore, it follows from Assumption 3:

E[Yi,t − g(Xi,t)|Xi,t = c, Di,t = 1] = E[bi,t|Xi,t = c, Di,t = 1] .

Consistency Properties:

The Machine Learning algorithm (XGboost, from Chen and Guestrin, 2016) used in

this paper relies on numerical optimization in function space. The optimization minimizes

the expected value of a loss function based on the Euclidean distance between the observed

outcome and the predicted value from a linear combination of many regression trees.

Consistency properties of this algorithm are shown in Biau and Cadre (2021).

Under the Law of Large Numbers and the consistency of ĝ(), we can show that ÂTT

is a consistent estimator of the ATT .

ÂTT =

∑I
i=1

∑T
t=1 b̂i,t1{Di,t = 1}∑I

i=1(T − (qi − 1))1{qi ≤ T}

=

∑I
i=1

∑T
t=1[Yi,t − Ŷi,t(0)]1{Di,t = 1}∑I

i=1(T − (qi − 1))1{qi ≤ T}

=

∑I
i=1

∑T
t=1 Yi,t1{Di,t = 1}∑I

i=1(T − (qi − 1))1{qi ≤ T}
−
∑I

i=1

∑T
t=1 ĝ(Xi,t)1{Di,t = 1}∑I

i=1(T − (qi − 1))1{qi ≤ T}
p→ E[Yi,t|Di,t = 1]− E[g(Xi,t)|Di,t = 1]

where the term of convergence identifies the ATT according to Theorem 1.
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B Proposed Bootstrap Algorithm

As described in section 3.4, for inference with the machine learning estimates, I also

need to take into account that there is uncertainty in the predictive step of the method.

It is reasonable to assume that the predictive model behaves differently depending on

the sample with which it is trained. Chernozhukov, Fernández-Val, and Luo (2018)

propose bootstrapping for improving confidence bands in settings with heterogeneity.

Therefore, as an alternative for the procedure from equation (6), I propose implementing

a conservative algorithm that uses bootstrapped standard deviations of the parameters

of interest as an approximation for their standard errors. The bootstrap algorithm can

be summarized as follows.

Bootstrap Algorithm: Let N be the total number of observations in the sample. Let

b = 1...B denote a bootstrap iteration. (1) Draw (ω1, ..., ωN), which is a vector of N

nonnegative bootstrap weights attributed to each observation in the sample. Once those

weights are applied to the original sample, a new bootstrapped sample is constructed. To

obtain the weights, employ stratified (by home) random sampling with replacement, such

that Nb ≈ N (i.e., bootstrap sample should be approximately the same size as the original

sample). (2) Run the machine learning predictive model with the bootstrap sample and ob-

tain predictions. (3) Transform the predictions (e.g., calculate averages, run regressions),

and return the parameter of interest βb (e.g., WAP treatment effect). (4) Repeat steps

1 through 3 for total of B bootstrap iterations. (5) Compute the bootstrapped standard

error as σ =
∑B

b=1(βb−β̂)2
B

(i.e., the standard deviation of the parameter of interest across

bootstrap samples). (6) Compute confidence bands around the parameter of interest as

β− = β − 1.96× σ (lower bound), and β+ = β + 1.96× σ (upper bound).

Within the simulated setting (Spanish air pollution data), I test the stability of

standard errors generated with the algorithm described above. Figure B.1 plots the

evolution of standard deviations (SDs) of the ML estimates of ATT in Table 1 Panel A.

Substantial instability can be noted during the first 50 iterations. However, the variation

in SDs becomes negligible after 60 iterations (ranging between 0.23 and 0.24). Further,

3
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the trend seems to be decreasing, such that machine learning estimates could potentially

be even more precise with more iterations. In this context, however, there is a tradeoff

between compute time and precision of the estimates.

I similarly test the stability of the bootstrapped standard errors within the real

data application (evaluation of the Weatherization Assistance Program). Figure B.2

shows the standard deviations after each bootstrap iteration of ATT estimates for the

Program. After 90 iterations, the standard deviations stabilize, ranging from 0.0027 to

0.0028. A comparison of Figures B.1 and B.2 reveals that the optimal number of bootstrap

iterations, to reach stability of estimated standard errors, depends on the underlying data

structure and on the research context.
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Figure B.1: Stability of Bootstrapped Standard Deviations
(for ML estimates of ATT simulations in Table 1A)
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Figure B.2: Stability of Bootstrapped Standard Deviations
(for ML estimates of ATT from the Illinois Weatherization Assistance Program)
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C Descriptive Statistics for Data Used in Simula-

tions

Here I present descriptive statistics for the variables used in the simulations from

section 4. All data from the simulations are publicly available and will be shared along

with the replication packet.

Table C.1: Air Quality and Weather in Spain

Average Std Dev Min Max
PM10 Concentration (µg/m3) 21.54 13.88 0.00 691.00
Min Temperature (C) 12.21 6.36 -15.60 28.90
Median Temperature (C) 16.79 6.39 -8.40 35.70
Max Temperature (C) 21.38 7.05 -6.90 45.40
Precipitation(mm) 1.69 5.81 0.00 144.90
Wind Direction (degrees) 19.58 10.55 0.00 36.00
Wind Speed (m/s) 3.25 2.04 0.00 21.90
Max Atmospheric Pressure (hPa) 990.63 28.55 774.80 1044.00
Min Atmospheric Pressure (hPa) 986.13 28.72 769.30 1040.40

Number of Observations 170,484

Notes: Air pollution data collected from 311 monitors across Spain
(MITECO, 2020), with coverage from 2014 to 2019. Several monitors have
missing data for some dates, such that this constitutes an unbalanced panel.
These were matched with daily weather data from 271 stations across the
country, obtained from AEMET (2020).
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Table C.2: Air Quality Station Details and Wildfires in Spain

Average Std Dev Min Max

Station Zone (percent):
Industrial 5.47 22.77 0.00 100.00
Residential 22.83 42.04 0.00 100.00
Residential/Commercial 25.40 43.60 0.00 100.00
Residential/Industrial 21.22 40.95 0.00 100.00
Other 25.08 43.42 0.00 100.00

Station Location (percent):
Urban 56.27 49.69 0.00 100.00
Suburban 43.73 49.69 0.00 100.00

Station Type (percent):
Industrial 35.05 47.79 0.00 100.00
Traffic 27.33 44.64 0.00 100.00
Background 37.62 48.52 0.00 100.00

Number of Stations 311

Wildfires (hectares burned) 85,512.82 54,195.02 23,911.89 178,482.38

Number of Years 6

Notes: Details from air quality stations obtained from MITECO (2020). An-
nual national-level wildfire data from Spain obtained from MITECO (2021).

Table C.3: Electricity Generation in Spain

Average (MWh) Std Dev Min Max
Total Generation 669,251.58 71,634.19 480,778.91 889,030.50
Hydro 15,484.06 6,225.23 3,883.10 30,592.30
Nuclear 150,882.93 19,711.13 83,788.80 175,915.50
Natural Gas 84,461.27 52,748.13 15,061.10 315,329.81
Wind 135,819.19 72,028.49 17,787.00 406,145.41
Solar PV 21,844.07 7,009.55 4,684.70 34,844.20
Solar Thermal 14,438.02 10,265.74 6.00 33,380.90
Natural Gas Cogeneration 67,403.91 7,486.51 34,026.90 88,428.40
Biomass 9,546.50 2,686.70 4,343.40 15,528.30

Number of Observations 2,191

Notes: This table presents statistics for national level electricity generation by fuel
in Spain. All values are in MWh and are recorded daily. Data obtained from ES-
IOS (2020).
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Table C.4: Demographics in Spain

Average Std Dev Min Max
Total Population (thousands) 1,087.61 1,178.24 134.14 6,578.08
Male Population 534.74 571.43 67.93 3,147.87
Female Population 552.87 606.91 66.21 3,430.21
Total Employment 438.99 555.04 55.20 3,427.40
Agriculture Employment 19.10 14.51 2.70 72.90
Industry Employment 52.00 67.59 5.60 383.20
Manufacturing Employment 46.18 61.26 4.50 350.00
Construction Employment 25.77 29.33 4.30 187.70
Commerce Employment 141.86 184.59 14.50 1,144.70
Finance Employment 65.18 115.45 4.50 774.70
Public Sector Employment 135.08 167.81 17.20 1,101.30
Total GDP (billion Euros) 25.92 35.72 3.22 230.81
Agriculture GDP 0.76 0.51 0.09 2.50
Industry GDP 3.97 5.52 0.49 31.23
Manufacturing GDP 3.10 4.64 0.26 27.24
Construction GDP 1.39 1.58 0.24 9.95
Commerce GDP 6.31 9.94 0.64 68.98
Finance GDP 5.66 9.28 0.48 64.75
Public Sector GDP 5.41 6.63 0.77 43.55

Number of Observations 175

Notes: Demographic data recorded annually and at the province level.
Data obtained from INE (2020).

Table C.5: Firm Entries and Exits Across Provinces in Spain

Average Std Dev Min Max
Firm Exits 37.44 60.93 0.00 947.00
Firm Entries 190.63 300.14 3.00 2,118.00
Firms’ Capital (million Euros) 10,079.31 24,603.35 24.00 413,001.00

Number of Observations 2,042

Notes: Firm entries, exits, and total capital at the province-by-month level.
Data obtained from INE (2020).
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D Machine Learning Model Tuning and Diagnostics

– Simulations

To predict air pollution (PM10) concentrations, I supply the above control vari-

ables to a machine learning algorithm called XGBoost, which is a computationally fast

implementation of gradient boosted trees, developed by (Chen and Guestrin, 2016). Con-

sistency properties of this algorithm are shown in Biau and Cadre (2021). The concept of

boosted trees involves iteratively combining ‘weak’ predictive trees to form an ensemble.

Each tree is constructed with a fraction of the set of the available control variables. More

weights are given to the trees with better predictive accuracy. By default, the algorithm

uses mean squared errors (MSE) as a measure of accuracy. With this algorithm, a re-

searcher can therefore be agnostic in terms of which variables to include for prediction,

as well as their functional forms. Note that regression trees intrinsically consider vari-

able interactions and binning. As the tree “depth” increases, interactions become more

complex. With more tree “branches,” I allow for more flexibility in how each variable is

included.

To increase predictive accuracy of machine learning models, it is common practice

to “tune” the (hyper)parameters that control factors such as maximum tree depth. The

following section describes the configurations that I considered for the model.

D.1 Hyperparameter Tuning – Simulations

Prior to settling on a model that performs well in terms of predictions, I perform

hyperparameter tuning via 5-fold cross-validation. This was implemented through the

“SuperLearner” package in R (Polley et al., 2018). Sample splits for the validation folds

9
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are random.30 I consider the variations to following XGBoost hyperparameters:

• Number of trees/iterations: determines the total number of models of which the

ensemble XGBoost is constituted. (either 2000 or 3000)

• Maximum tree depth: correlated with the complexity of the model and variable

interactions. (either 10 or 30)

• Shrinkage/step-size/learning-rate/eta: a rate between 0 and 1, that determines the

contribution of each new tree to the ensemble. Lower values are more conservative

and prevent overfitting. (set at 0.05)

• Minimum observations per node: correlated with the frequency of branch splits,

which also determines the sizes of bins considered for each variable. Smaller nodes

imply more flexible models, but may also lead to overfitting. (either 20 or 60)

Other XGBoost hyperparameters were set at their defaults. Therefore, I test a total

of 8 hyperparameter configurations. Table D.1 below presents performance diagnostics

for each hyperparameter combination. Model ID 2, highlighted in gray, was the best-

performing one, with a RMSE of 6.524.

30In panel data settings one may consider “vertical” or “horizontal” cross-validation. For the simulations in
this paper, vertical CV implies stratifying sample splits by air quality station, while horizontal CV means
splitting across time. For ex-post evaluation settings, I recommend the latter. Stratification can lead to
overfitting the model for stations that are in the training set, such that accuracy will be lower in the
validation set (constituted of completely “unseen” stations). However, for this paper, “out-of-sample”
is defined as an unseen set of dates (as opposed to stations), such less biased prediction errors can be
obtained by splitting across time. Athey, Bayati, et al. (2019) provide a more complete discussion of
vertical versus horizontal cross-validation. See Arlot and Celisse (2010) for a survey on cross-validation
techniques.
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Table D.1: Hyperparameter Tuning – Simulated Setting

Model ID Number of Trees Max Tree Depth Min Obs per Node Shrinkage In Sample RMSE Cross-Validated RMSE
1 2000 10 20 0.05 2.793 6.574
2 3000 10 20 0.05 2.149 6.524
3 2000 30 20 0.05 0.203 6.852
4 3000 30 20 0.05 0.068 6.853
5 2000 10 60 0.05 3.818 6.686
6 3000 10 60 0.05 3.248 6.601
7 2000 30 60 0.05 1.029 6.618
8 3000 30 60 0.05 0.598 6.627

Notes: Performance metrics for XGBoost (Chen and Guestrin, 2016) algorithms for prediction of PM10

air pollution concentrations measured in µg/m3. Control variables are presented in Appendix C. As a
reference, the RMSE may be compared to the standard deviation of the outcome variable, in this case
equal to 13.88 µg/m3. The best-performing model (Model ID 2) is highlighted in gray.
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D.2 Prediction Errors by Covariates – Simulations

Figure D.1 presents in-sample versus cross-validated prediction errors (residuals) by

selected covariates used in the simulations. These were obtained by running equation

(4) from the main text. As already shown in Figure 1, in-sample residuals are smaller,

thus potentially masking some sources of biases. Nevertheless, cross-validated errors in

this setting are close to zero throughout almost all tested bins. Importantly, errors by

altitude bins (mid-right panel) are not significantly different from zero, which supports

the heterogeneity analyses from the simulations in section 4.2.
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Figure D.1: Simulation Prediction Errors by Selected Covariates
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E Summary Statistics for the Weatherization Assis-

tance Program Sample

Table E.1 presents descriptive statistics for the main variables collected during the

Weatherization Assistance Program application process and pre-treatment home energy

audits. In terms of demographics, it can be noted that the sample of treated households

is constituted primarily of low-income families (average yearly income around $17,220).

They are also mostly middle aged (∼54 years) homeowners (94%). The variables related

to housing structure reveal that very diverse homes are weatherized by the program:

there is significant variation in floor area, pre-treatment blower door tests, number of

bedrooms, and even vintage.

Figure E.1 represents the histogram of pre-teatment natural gas usage for homes

served by the program. The average usage is around 11 MMBtu, but with significant

variation. Notably, a lot of the distribution is concentrated at lower levels, likely during

summer of warmer months when natural gas is not needed so much.

Table E.1: WAP Descriptive Statistics

Average Standard Deviation Min Max

Income($/1000) 17.32 10.33 0.00 52.48
N Occupants 2.97 1.73 1.00 9.00
Householder Age 54.83 15.54 22.00 89.00
Female Householder (%) 0.66 0.47 0.00 1.00
Renter (%) 0.06 0.23 0.00 1.00
Seniors 65+ (%) 0.39 0.49 0.00 1.00
Children Under 18 (%) 0.17 0.38 0.00 1.00
Blower Door Pre (CFM50) 3645.46 1662.58 980.00 13662.00
Heating Unit Size (kBTU) 87.10 38.56 0.00 150.00
Floor Area (sqft) 1543.70 600.28 600.00 3774.00
N Bedrooms 4.74 0.74 1.00 5.00
N Windows 16.91 5.73 2.00 26.00
Has Multiple Stories (%) 0.45 0.50 0.00 1.00

Number of Homes 34,497
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Figure E.1: Histogram of Pre-Treatment Energy Usage
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Figure E.2: Histograms for Categories of WAP Spending

15



Online Appendix Souza, 2022

Figure E.2 (cont.): Histograms for Categories of WAP Spending
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F Machine Learning Model Tuning and Diagnostics

– Real Data Application

The machine learning model for the real data application (WAP sample) was trained

only with data available prior to weatherization, namely: pre-treatment billing data, en-

ergy audit information, housing structure variables, household demographics, and weather

variation. Specifically, I include the following variables: energy usage in MMBtu (out-

come), min. outdoor temperature, max. outdoor temperature, precipitation, floor area

(square feet), family size, number of windows, number of stories, number of bedrooms,

vintage, county indicator, building shielding class (measure of shielding provided by struc-

tures surrounding home), pre-treatment blower door test (CFM50), main heating system

type, main heating system capacity (Btu), attic R-value, household income, indicators for

householder’s race, presence of disable occupant, presence of children, presence of elderly,

home priority rank, audit date (month, year, and day), program year of audit, month of

year, year of sample, number of days in billing cycle, monthly average natural gas prices

in Illinois, and monthly average electricity prices in Illinois. The outcome (natural gas

usage) varies by home and by month of sample (billing period). Weather also varies by

month of sample, while information collected during WAP audit/application varies only

across homes.

F.1 Hyperparameter Tuning – Real Data Application

For the WAP real data application, I also focus on gradient boosted trees (XGBoost;

Chen and Guestrin, 2016). Diagnostics presented in Table F.1 below were obtained via

5-fold cross-validation, with sample splits defined at random (not stratified).

Table F.1: Results from Hyperparameter Tuning – Real Data Application

Model ID Num. Trees (Iterations) Max. Tree Depth Shrinkage Min. Observations per Node Mean Squared Error Ensemble Weight
1 1000 20 0.05 30 14.144 0.475
2 2000 20 0.05 30 14.232 0.000
3 1000 30 0.05 30 14.148 0.466
4 2000 30 0.05 30 14.227 0.000
5 1000 20 0.5 30 17.477 0.000
6 2000 20 0.5 30 17.477 0.057
7 1000 30 0.5 30 17.686 0.000
8 2000 30 0.5 30 17.686 0.003
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The second-to-last column of Table F.1 reports the mean-squared errors according

to each configuration. Rather than choosing a single configuration, for this application

the selected machine learning algorithms is an ‘ensemble’ model which combines predic-

tions across several configurations. The SuperLearner R package (Polley et al., 2018)

automatically builds the ensemble, giving higher weights (based on non-negative least

squares) to the configurations with lowest MSE. Results suggest that models with lower

learning rate (shrinkage = 0.05) were generally more accurate. Further, the ensemble

seems to favor less complexity (number of trees = 1000). Note that model IDs 1 and 3

have the highest weights and constitute 94% of the ensemble.
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F.2 Prediction Errors – Real Data Application

I test Assumption 2 (no anticipatory effects) and Assumption 4 (stability of the

counterfactual function) within the real data setting. For that, I regress cross-validated

residuals on indicators for time relative to treatment, as described in equation (3) of the

main text. Results are presented in Figure F.1. Note that the coefficients are no larger

than 0.04 MMBtu and no smaller than -0.05 MMBtu. This attests to the remarkable

predictive performance of the ML algorithm. Further, when evaluated at the 5% or 1%

significance level, an F-test rejects the joint significance of the coefficients.

Figures F.2 and F.3 present ML in-sample and cross-validated residuals plotted

against bins of monthly energy consumption on the horizontal axis. I note that the

model performs extremely well in general, with in-sample residuals generally not greater

than 0.5 MMBtu. The cross validated residuals are also small, except for months when

gas usage is above 30 MMBtu. But for those cases, errors in percentage point temrs can

also be considered small. Further, the graph also shows that those are sparse regions of

the sample.
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F-stat = 1.725
P-value of F-stat = 0.055
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Figure F.1: Assessing Anticipatory Effects and the Stability of the Counterfactual
Function – Real Data Application

Notes: This Figure plots coefficient estimates and 95% confidence intervals from a regression of cross-
validated residuals on indicators for time relative to treatment (equation 3) for the real data application.
This is for testing Assumption 2 (no anticipatory effects), and Assumption 4 (stability of the counter-
factual function). This is analogous to “pre-trends” tests in traditional difference-in-differences settings.
The top right corner of the Figure shows the resulting F-statistic and associated P-value for a test of
joint significance of the coefficients.
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Figure F.2: In-Sample Pre-Treatment Residuals (MMBtu) - real data

Figure F.3: Cross-Validated Pre-Treatment Residuals (MMBtu) - real data
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The following Figure F.4 also shows that prediction errors are not correlated with

any of the covariates that are relevant in this context. Again, these were produced with

real Weatherization Assistance Program data.

Figure F.4: Cross-Validated Pre-Treatment Residuals (MMBtu) By Covariates
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Figure F.4 (continued): Cross-Validated Pre-Treatment Residuals (MMBtu) By
Covariates
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Figure F.4 (continued): Cross-Validated Pre-Treatment Residuals (MMBtu) By
Covariates
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