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Abstract

Taking consumer preferences as the primitive and a linear demand system as
the desideratum, I investigate how the two are related via a novel approach to de-
mand integrability that relies on some recent results in Diasakos and Gerasimou
(2022). The methodology applies irrespectively of whether prices are normalized
with respect to a numeraire or income, leading to a complete characterization of
linear demand systems in terms of the underlying rational preference relation and
analytical solutions for the direct utility function. The results provide a proper mi-
crofoundation for linear demand systems that fills some potentially misleading
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1 Introduction

Linear demand functions have been used extensively in economics as a convenient
modelling tool to showcase important properties of market systems. The reliance on
linear demand has been long standing in the modern theory of industrial organization
(see Amir et al. (2017) or Kopel et al. (2017) for insightful overviews) and important
in the empirical estimation of consumer demand (see Deaton (1974b)-(1978) but also
Deaton (1974a) for aggregate demand) as well as of labour supply (see Stern (1984)
for an overview). Linear demand functions are also common in economic textbooks
to demonstrate various properties of consumer or market demand. Given these ob-
servations, it is somewhat surprising that incomplete progress has been made with
respect to a proper characterization of the underlying preferences which can rational-
ize linear demand systems.

It is well known that linear demand is not easily generated by rational preferences
or market structures. With respect to preferences, the existing literature has looked at
the problem from the classical perspective on demand integrability: the (Marshallian)
demand function of interest is assumed to satisfy enough regularity conditions (e.g.,
smoothness, the Law of Demand, injectivity, or the Slutsky matrix being symmetric
and negative semi-definite) for the corresponding system of PDEs to be solved by
an appropriate expenditure function, which leads to a utility function via duality (see
Houthakker (1960), Epstein (1981), or Jackson (1986); see also Epstein (1982), LaFrance
(1990) or Nocke and Schutz (2017) for incomplete demand systems). In this spirit,
LaFrance (1985) established that individual linear demand places strong restrictions
on the underlying preference: it requires a quadratic or Leontief quasi-direct utility
function. In a similar spirit, Alperovich and Weksler (1996) solve for the underlying
direct utility in the two-commodities case with income-normalized prices. With re-
spect to market structures, Jaffe and Weyl (2010) but also Jaffe and Kominers (2012)
have shown that multi-product aggregate linear demand cannot easily result from
smooth rational discrete-choice models.1 More recently, Amir et al. (2017) investi-
gated the required properties for a quasi-linear/quadratic utility function to generate
a linear demand function satisfying the Law of Demand; as it turns out, these prop-
erties have important implications for some widely used theoretical frameworks in
industrial organization.

Their important contributions notwithstanding, these studies fail to assign unam-
biguously the key desirable properties of linear demand to the requisite characteristics

1More precisely, as follows also from the analysis in Armstrong and Vickers (2015), smooth discrete-
choice models are not compatible with linear demand if the support of the underlying valuation den-
sity function is to include an open set of full dimensionality.
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of rational choice. As a result, they fall short from actually characterizing the micro-
foundations of linear demand - an important desideratum as linear demand models
are deployed mainly to obtain basic economic intuition to facilitate predictions and
policy making (see, for instance, Berry and Haile (2021) for a discussion on the ad-
vantages of preference-based demand estimation).

In contrast to the existing literature, the present study takes consumer preferences
as the primitive and a most general formulation of a linear demand system as the
desideratum. To analyse how the two are related, I take a novel approach to demand
integrability that relies on some recent results in Diasakos and Gerasimou (2022).
They refer to a weak notion of smooth preferences which admits geometric interpreta-
tion via the concept of a preference gradient and the associated property of preference
differentiability. Diasakos and Gerasimou (2022) establish that this is fundamentally
linked to the invertibility of the resulting demand function.

The present study begins by showing that this notion of smooth preferences pro-
vides also theoretical underpinnings for a ubiquitous assumption in the literature on
the microfoundations of linear demand; namely, that we refer to incomplete demand
systems. More precisely, there are k ∈ N \ {0} commodities whose demand levels
are observed, but also m + 1 commodities (m ∈ N) with unobserved demands. The
observed demand function is linear (i.e., exhibits constant coefficients) with respect to
the prices of the k commodities.

Another feature that sets the present approach apart from the extant literature is
that it applies for either of the two possible price-normalization regimes (with respect
to the price of a numeraire commodity or income). I proceed to establish that, under
either price-normalization regime, a linear demand function is generated by a dif-
ferentiable preference relation if and only if (i) the unobserved part of the demand
system comprises but one commodity (i.e., m = 0) while (ii) the matrix of constant co-
efficients on the prices of the observed commodities is non-singular (see Theorems 1
and 3 below). Combining preference differentiability with properties (i)-(ii) facilitates
a straightforward integrability exercise via the inverse demand function. This leads to
analytical solutions for the underlying utility function (see Theorems 2 and 4 below).

Somewhat unexpectedly perhaps, when prices are normalized with respect to a
numeraire, the combination of preference differentiability and properties (i)-(ii) above
dictates that the linear demand cannot depend on income. As to be expected, on the
other hand, the utility function takes the quasi-linear/quadratic form; hence, by well-
known arguments, the Slutsky matrix of the total demand system is symmetric and
negative semi-definite. Given these observations, it follows that the matrix of constant
coefficients is symmetric and negative definite; thus, the linear demand obeys the
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strict Law of Demand.
This translates into important messages with respect to the quest for micro-foundations

of linear demand systems (such as multi-variate linear demand functions for differen-
tiated products in oligopolistic markets). Linear demand systems that do not satisfy
the strict Law of Demand or are income dependent are not rationalizable by smooth
preferences. By contrast, linear demand systems that are income independent and
satisfy the strict Law of Demand are fully consistent with continuous, strictly mono-
tonic, strictly convex, and weakly smooth rationalizing preferences. Yet we should
note not only that such demand systems are incomplete, but more importantly that
their unobserved part plays an integral role for the underlying preference relation: it
depicts a numeraire commodity whose marginal utility is constant.

The next section introduces the notational and theoretical backdrop. Section 3
presents the main analysis itself along with the underlying intuition. In Section 4, we
compare our results with those in the relevant literature and discuss their implica-
tions for micro-founding linear demand functions. Section 5 concludes. The proofs
that have been omitted from the main analysis are presented in Section 6 while some
additional supporting results can be found in the Appendix.

2 The theoretical framework

As our consumption set, we consider an open and convex X ⊆ Rn
++ where n ∈ N :

n ≥ 2. The consumer’s preferences are captured by a continuous weak order % on
X (i.e. by a complete and transitive binary relation whose graph is a closed subset of
X× X). For A ⊆ X, we let

max
%

A := {x ∈ A : x % y for all y ∈ A}

denote the set of all %-greatest elements in A. Given some set Y ⊆ Rn
++ of income-

normalized strictly positive prices, the budget correspondence B : Y � X is defined
by2

B(p) := {x ∈ X : px ≤ 1}

We will say that % generates the demand function ξ : Y� X if the latter is defined by

ξ(p) := max
%

B(p)

2Throughout the paper, for any x, y ∈ Rk and 1 < k ≤ n the dot-product pᵀx will be denoted simply
by px.
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We will refer to such a demand correspondence as rational. A rational demand cor-
respondence is onto if, for all x ∈ X there exists p ∈ Y such that x ∈ ξ(p). If ξ(·) is
single-valued (hence a demand function), it is said to be injective if for all p, p′ ∈ Y,
p 6= p′ implies ξ(p) 6= ξ(p′). A demand function ξ : Y → X that is both injective and
onto is invertible. If ξ(·) has this property, then the inverse demand given by

p(x) := {p ∈ Y : x = ξ(p)}

is itself a well-defined bijective function p : X → Y.
Proposition 1 in Diasakos and Gerasimou (2022) establishes that, within the realm

of continuous preferences, a rational demand function ξ : Y → X requires that the
generating preference relation% is strictly convex and strictly monotone on X.3 Their
analysis proceeds to show that, within the realm of strictly convex, strictly monotone
and continuous preferences, the generated demand function is invertible (in fact, an
homeomorphism) if and only if the underlying preference relation satisfies a particu-
lar notion of smoothness, weak smoothness.

The first notion of smooth preferences in the literature was proposed in Debreu
(1972), where a preference relation% on a consumption set X was defined to be smooth
of order r (Cr for short) if the graph of the indifference relation (i.e., the set {(x, y) ∈
X × X : x ∼ y} ⊂ X × X) is a Cr-manifold on X × X.4 A monotonic preference
relation on X is Cr if and only if it is representable by a Cr (i.e., r-times continuously
differentiable) utility function. Generalizing Debreu’s notion, Neilson (1991) defined
a preference relation on X as weakly smooth of order r if each of its indifference sets (Ix :=
{z ∈ X : z ∼ x}, x ∈ X) is a Cr-manifold on X. In Diasakos and Gerasimou (2022),
a preference relation that is weakly smooth of order 1 is referred to simply as weakly
smooth.

More recently Rubinstein (2006) defined the preference relation % on X to be dif-
ferentiable if for every x ∈ X there exists px ∈ Rn \ {0} such that

{z ∈ Rn : px · z > 0} = {z ∈ Rn : ∃λ∗z > 0, x + λz � x ∀λ ∈ (0, λ∗z)} (1)

3For two distinct vectors x, y ∈ Rn, we write x > y [resp. x � y] whenever xi ≥ yi [resp. xi > yi]
for all i ∈ {1, . . . , n}. The preferences are said to be convex if, for all x, y ∈ X and any α ∈ [0, 1], x % y
implies αx + (1− α)y % y, and monotonic if x � y implies x � y. They are strictly convex if, for all
x, y ∈ X and α ∈ (0, 1), x % y implies αx + (1− α)y � y, and strictly monotonic if x > y implies x � y.

4Let A ⊆ Rn. A function f : A → Rn is an homeomorphism if it is injective, continuous, and its
inverse function is continuous on f (A). Letting A be in addition open, a Cr function f : A→ Rn is a Cr

diffeomorphism if it is an homeomorphism with a Cr inverse function. A set M ⊆ Rn is a Cr k-dimensional
(k ≤ n) manifold if for every x ∈ M there is a Cr diffeomorphism f : A → Rn (A ⊆ Rn open) which
carries the open set A ∩ (Rk × {0n−k}) onto an open neighborhood of x in M. For more details and
some economic-theoretic examples, see Chapter 1.H in Mas-Colell (1985).
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To interpret this geometrically, for distinct bundles x and z in X, call z an improvement
direction at x if there exists λ∗ > 0 such that x + λz � x for all λ ∈ (0, λ∗), assum-
ing (x + λz) ∈ X. In light of this definition, the right-hand side of (1) defines the
set of all improvement directions at x. The left-hand side of (1) defines the set of all
directions that get strictly positive valuation by some vector px. Preference differen-
tiability means that there exists some px such that the set of all directions that receive
strictly positive valuations coincides with the set of all improvement directions of %
at x. Such a vector px will be referred to as a preference gradient at x.5

To relate these notions to the present investigation, for any x ∈ X consider the
projection of Ix along the ith dimension of Rn

+,

I i
x := {zi ∈ R+ : there exists z−i ∈ Rn−1

+ such that z ∈ Ix},

and define the set

I−i
x := {z−i ∈ Rn−1

+ : there exists zi ∈ R+ such that z ∈ Ix}

analogously, as the projection of Ix on Rn−1
+ (the resulting subspace when the ith

dimension is removed from Rn
+). We can construct then the indifference-projection cor-

respondence li(·|x) : I−i
x � I i

x for good i by requiring

zi ∈ li(z−i|x) ⇐⇒ z ∈ Ix

whose graph is the indifference set Ix. As established in Diasakos and Gerasimou
(2022), for% continuous, strictly convex and strictly monotonic, the mapping li(·|x) is
a locally convex and thus also continuous function. As a result, its local subdifferential
∂li(z−i|x), which comprises the collection of the function’s local subgradients at z−i,
is non-empty and fundamentally linked to its smoothness: li(·|x) is differentiable at
z−i if and only if ∂li(z−i|x) is a singleton, in which case the unique local subgradient
coincides with the gradient.

With regard to economic interpretation, when li(·|x) is differentiable at z−i the jth
entry ∂li(z−i|x)/∂zj of the gradient∇li(z−i|x) defines the marginal rate of substitution
of good i for good j 6= i. Indeed, if % is representable by a utility function u : X → R

5An intuitive interpretation for the entries of px is that they represent the consumer’s “subjective
values” of the different goods relative to the reference bundle x: “Starting from x, any small move in a
direction that is evaluated by this vector as positive is an improvement” (Rubinstein, 2006 p. 71). The notion
of preference gradient can also be viewed as a generalization of the notion of valuation equilibrium in
Radner (1993).
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that is continuously differentiable at z, we have

∂li (z−i|x)
∂zj

= −

∂u(z)
∂zj

∂u(z)
∂zi

(2)

The right-hand side of this equation depicts the textbook definition of the marginal
rate of substitution of good i for good j. The definition rests upon invoking the Im-
plicit Function Theorem; thus, upon assuming that u(·) is a C1 function (equivalently,
that % is itself C1). By contrast, the left-hand side of (2) exists and is continuous in a
more general environment: when % is differentiable - see Proposition 2 in Diasakos
and Gerasimou (2022). And given that it is continuous, strictly convex and strictly
monotonic, % being differentiable is equivalent to % being weakly smooth - see The-
orem 1 in Diasakos and Gerasimou (2022).

More importantly for our purposes, % being differentiable is equivalent to % gen-
erating a unique, homeomorphic demand function ξ : Y → X with Y an open subset
of Rn

++ - see Proposition 3 in Diasakos and Gerasimou (2022). Specifically, letting
q−i(x) denote the negative of the gradient li(·|x) at x, the preference gradient px coin-
cides with p(x), the value of the inverse demand at this bundle. Formally, we have

q−i(x) := −∇li(x−i|x) (3)

qi(x) =
1

xi + q−i(x) · x−i
(4)

p(x) = qi(x)
(
1, q−i(x)

)
(5)

where q−i(x) ∈ Rn−1
++ , qi(x) > 0, and p(x) ∈ Rn

++. Notice finally that, although taking
distinct index goods i and j in the above system leads to distinct vectors (qi(x), q−i(x))
and (qj(x), q−j(x)), the preference gradient, p(x), is invariant with respect to the
choice of the index good. Moreover, that qi(x) = pi(x) for the index good i is due
to the fact that we normalize prices with respect to income.

3 Linear demand

The preceding overview of the key theoretical concepts was given in terms of prices
that are normalized with respect to income. Yet most of the literature on linear de-
mand concerns itself with the case when prices are normalized with respect to a nu-
meraire commodity.
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3.1 When prices are normalized with respect to a numeraire

Taking the nth commodity as the numeraire, we can deploy (5) above to define the
functions w : Yn → R++ and q−n : Y → Rn−1

++ , respectively, by w(pn) := 1/pn

and q−n(p) = p−n/pn. We then have a mapping between the income-normalized
prices p ∈ Y from the preceding section and the corresponding vector of numeraire-
normalized prices and income, (q−n, w) ∈ Q×W - where qn := q−n(p) while W :=
w(Yn) and Q := q−n(Y). This mapping gives also the numeraire-normalized (i.e.,
Marshallian) demand ξ̃ : Q×W → X as ξ̃(q−n, w) := ξ((1, q−n(p)/w). Clearly, since
w(·) is an homeomorphism, if% is continuous, strictly convex, strictly monotonic and
differentiable on X then ξ̃(·) is itself an homeomoprhism and thus Q×W is open in
Rn−1

++ ×R++.
We will restrict attention to demand functions ξ̃ : Q×W → X that satisfy both of

the following conditions.

(A) The domain Q×W has non-empty interior:6

∃(q, ε) ∈ (Q×W)×R++ : Bq(ε) ⊂ Q×W

(B) For at least one of the non-numeraire commodities its quantity demanded re-
sponds to a change in its own relative price, other things being equal:

∃ (j, q, δ) ∈ {1, . . . , n− 1}× (Q×W)×R\ {0} : q+ δej ∈ Q×W ∧ ξ̃ j
(
q + δej

)
6= ξ̃ j (q)

Together conditions (A)-(B) above provide the theoretical underpinnings (see Claim
2 and Remark (ii) in Appendix A) for a key assumption in the literature on linear
demand: namely, that the observed linear demand system is incomplete. Specifically,
linear demand models always assume that, for some k ∈N : 1 ≤ k < n, the demands
of the commodities indexed by M := {k + 1, . . . , n} are unobserved. The observed
linear form depicts the demands of the commodities indexed by K := {1, . . . , k}; their
demand exhibits constant coefficients with respect to the prices q1, · · · , qk.

We will depict the unobserved demands by the vector z ∈ XM and the observed
ones by x ∈ XK. Moreover, for M0 := M \ {n}we denote the respective relative prices
by qM0 ∈ QM0 and qK ∈ QK.7 Letting then x(·) denote the observed components of

6For y ∈ Rn and ε > 0, Bε (y) denotes the open ball in Rn with center y and radius ε. For i ∈ N :=
{1, . . . , n}, ei denotes the vector in Rn with 1 as its ith entry and zeroes everywhere else.

7Take A ⊂ N . For y ∈ Rn and S ⊆ Rn, we let yA and SA denote, respectively, the projections of y
and S on the subspace that results from Rn when the dimensions in N \A are removed.
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ξ̃(·), a linear demand system is given by

x (qK, qM0 , w) := α (qM0 , w) + BqK (6)

where B is a k × k matrix of constants while a : QM0 ×W → Rk is a continuous
function.

A theoretical justification for the formulation in (6) is given by the assumption that
the total demand system ξ̃(·) satisfies conditions (A)-(B) above simultaneously. With
respect to (B), given condition (A), it suffices for (??) that B has a non-zero diagonal
element or a symmetric principal minor (see Remarks (iii)-(iv) in Appendix A). With
respect to condition (A), if the demand system is generated by a continuous, strictly
monotonic, strictly convex, and differentiable preference relation then Q×W itself is
open. In fact, differentiability of the underlying preference relation places additional
restrictions not only on the formulation for the observed linear demand but also on
the total commodity system itself.

Theorem 1 Let % be a continuous, strictly convex, and strictly monotonic weak order on X
which generates the observed demand function in (6). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular, M0 = ∅, and α(·) is a constant.

Proof. That (i)⇒ (ii) is due to the following results (see Section 6 for the correspond-
ing proofs).

Lemma 3.1 Let the continuous, strictly convex and strictly monotonic weak order % on X
generate the demand function ξ̃ : Q → X whose projection on the dimensions in K, x :
QM0 × QK ×W → XK, is given by x (qM0 , qK, w) := α (qM0 , w)− BqK for some function
a : QM0 ×W → Rn. Then % is differentiable only if B is non-singular.

Lemma 3.2 Let the continuous, strictly convex and strictly monotonic weak order % on X
generate the demand function ξ̃ : Q → X whose projection on the dimensions in K, x :
QM0 × QK ×W → XK, is given by x (qM0 , qK, w) := α (qM0 , w)− BqK for some function
a : QM0 ×W → Rn. Then % is differentiable only if M0 = ∅.

Lemma 3.3 Let the continuous, strictly convex and strictly monotonic weak order % on X
generate the demand function ξ̃ : Q → X whose projection on the dimensions in K, x :
QM0 × QK ×W → XK, is given by x (qM0 , qK, w) := α (qM0 , w)− BqK for some function
a : QM0 ×W → Rn. Then % is differentiable only if α (·) is a constant.
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To show that (ii) ⇒ (i), observe first that, by Theorem 1 in Diasakos and Gerasimou
(2022), % is differentiable if the total demand ξ̃(·) is injective. To see that the latter
property does hold under the hypotheses in (ii), let α(·) := α and take (q1, w1), (q′′, w2) ∈
QK ×W with (q′, w1) 6= (q′′, w2). There are two cases to consider. If q′ 6= q′′, we can-
not have α + Bq′ = x(q′) = x(q′′) = α + Bq′′ given that B is non-singular; clearly,
we must have ξ̃(q′, w1) 6= ξ̃(q′′, w2). If q′ = q = q′′ and w1 6= w2, notice that
ξ̃(q, w1) = (z, x(q)) = ξ̃(q, w2) only if w1 − qx(q) = z = w2 − qx(q); i.e., only if
w1 = w2.

The involved arguments concern the “only if” direction of the theorem. Lemma
3.1 shows that % is differentiable only if B is non-singular; it does so by an argument
ad absurdum which can be outlined intuitively as follows. If B is singular, there exists
v ∈ Rk \ {0} such that Bv = 0; hence, such that x(q0

M0
, q0

K + λv, w0) = x(q0
M0

, q0
K, w0)

for some (q0
M0

, q0
K, w0) ∈ Q×W and λ ∈ R \ {0} sufficiently small. It is straightfor-

ward to show that this leads to a violation of the WARP when vx(q0
M0

, q0
K, w0) = 0 or

vx(q0
M0

, q0
K, w0) = vx(q0

M0
, q0

K, w′) for some w′ ∈ W with w′ 6= w0. If vx(qM0 , qK, w) 6=
vx(qM0 , qK, q, w′) for all (qM0 , qK) ∈ Q and all w, w′ ∈ W with w′ 6= w, we fix the
unobserved part of the demand at the bundle z0 := z(q0

M0
, q0

K, w0) and restrict atten-
tion to the relationship between the n-dimensional price-income space Q ×W and
the k-dimensional space of observed demand bundles {(z0, x), x ∈ XK}. The latter is
open in Rk, and thus can be covered by a collection of hyperplanes {x ∈ XK : vx =

ρ, ρ ∈ L} from some interval L ⊆ R. Letting x0 := x(q0
M0

, q0
K, w0), we show that

the hyperplane {x ∈ XK : vx = vx0} embeds the set X(z0,x0) := {x ∈ XK : x =

x(q0
M0

, qK, w0), qK ∈ Bq0
K
} for some neighbourhood Bq0

K
of q0

K in QK. But this is absurd
as % is differentiable only if the demand system is an homeomorphism; being the
image of Bq0

K
under an homeomorphic demand, X(z0,x0) must be open in Rk.

Given this result, Lemma 3.2 establishes that % is differentiable only if the set of
unobserved commodities is a singleton. To do so we exploit the fact that preference
differentiability allows for direct demand integrability along each indifference set via
the function qK(·) - recall equation (3). Under the functional form in (6) and as B is
invertible, this leads to a quasi-indirect utility function which is quasi-linear in the
unobserved demands. To complete the argument we show that the linear part cannot
admit a multi-dimensional consumption vector.

Finally, Lemma 3.3 shows that % is differentiable only if the function α(·) is inde-
pendent of income - its only possible argument since QM0 is empty (Lemma 3.2). The
argument is once again ad absurdum; it exploits the functional form in (6) and that B
is invertible. Dropping the subscript K from our notation, we fix again the unobserved
part at z0 := z(q0, w0) and look at the relationship between the (k + 1)-dimensional
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space QK ×W and the k-dimensional space {(z0, x), x ∈ XK}. A contradiction obtains
now by considering the set X(z0,x0) := {x ∈ XK : x = x(q, w), (q, w) ∈ B(q0,w0)

} for
some neighbourhood B(q0,w0)

of (q0, w0) in QK ×W. As B(q0,w0)
is open in Rk+1, so

should be its image under the homeomorphic demand. Yet the latter lies in X(z0,x0) ⊂
Rk.

In light of these results, under preference differentiability (6) reads as follows

x (q) := α + Bq, q ∈ QK (7)

where α ∈ Rk is a constant and B is non-singular, while M = {n}. Moreover, in-
tegrability of the preference gradient function traces out now the indifference sets
analytically. This leads to a complete characterization of the linear demand function
in terms of the generating preference relation.

Theorem 2 Let % be a continuous, strictly convex, and strictly monotonic weak order on X
which generates the observed demand function in (7). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular.
(iii). % is represented by the utility function u : X → R given by

u (z, x) := z− xB−1α + xB−1x/2 (8)

(iv). B is symmetric and negative definite.
(v). x(·) satisfies the strict Law of Demand:

(q′ − q′′)(x(q′)− x(q′′)) < 0 ∀q′, q′′ ∈ QK : q′ 6= q′′

Proof. That (i)⇔ (ii) is due to Theorem 1 while (iv)⇒ (v) holds trivially. Moreover,
QK being open, (v) necessitates that B is non-singular.8 It remains to show that (ii)⇒
(iii)⇒ (iv).
(ii)⇒ (iii). Let B be non-singular (and, thus, % be differentiable). We can write then
q = B−1(x− α) where q = −∇xlz(x|(z, x)) - recall equation (3). For any (z0, x0) ∈ X,
therefore, we must obey the system of differential equations

∂z/∂xi =
(

B−1 (α− x)
)

i
, i = 1, . . . , k (9)

8Let q′ ∈ QK. If B is singular, there exists v ∈ Rk \ {0} such that Bv = 0; i.e., such that x(q′ + λv) =
x(q′) for any λ ∈ R \ {0} sufficiently small to give q′ + λv ∈ QK. This contradicts (v).
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along the indifference curve I(z0,x0). Integrating along this curve gives

z = xB−1α− xB−1x/2 + c, (z, x) ∈ I(z0,x0)

where c remains constant along I(z0,x0). To get the claim set u(z, x) := c.
(iii)⇒ (iv). The UMP for the objective in (8) results in the inverse demand q(x) =

B−1(α − x). Observe also that, being represented by the C1 utility function in (8),
% is itself C1 and thus differentiable. As a result, by Proposition 2 in Diasakos and
Gerasimou (2022), q(·) must be injective; hence, B−1 must be non-singular. Clearly,
the total demand is ξ̃(·) := (z(·), x(·)) where x(·) is given by (7) while z(q, w) :=
w− qx(q). It is trivial to check now that ξ̃(·) satisfies the hypotheses of Theorem 1 in
Hurwicz and Uzawa (1971). As a result, the Slutsky matrix of ξ̃(·) must be symmetric
and negative semi-definite. And as its kth principal minor, the Slutsky matrix for
x(·), coincides with B, the latter is also symmetric and negative semi-definite; more
precisely, symmetric and negative definite given that it is non-singular.9

Remark. Within the realm of Theorem 2, the requirement that % be monotonic im-
poses the following restriction on its domain:

X ⊆ R++ ×
{

x ∈ Rn−1
++ : 0� B−1 (α− x)

}

3.2 When prices are normalized with respect to income

Turning now to the case of income-normalized prices, the underlying intuition is es-
sentially the same as before. We will restrict attention to demand functions ξ : Y → X
that satisfy both of the following conditions.

(A*) The domain Y has non-empty interior:

∃(p, ε) ∈ Y×R++ : Bp(ε) ⊂ Y

(B*) For at least one of the commodities its quantity demanded responds to a change
in its own relative price, other things being equal:

∃ (i, p, δ) ∈ {1, . . . , n} ×Y×R \ {0} : p + δei ∈ Y ∧ ξi (p + δei) 6= ξi (p)
9Recall that a symmetric (square) matrix is positive semidefinite [resp. positive definite] if and only

if all of its eigenvalues are nonnegative [resp. strictly positive], while a (square) matrix is non-singular
if and only if all of its eigenvalues are non-zero.
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Similarly to the case where prices were normalized relative to a numeraire, condi-
tions (A*)-(B*) above provide the theoretical underpinnings for the premise that the
observed linear demand system is incomplete (see Claim 1 and Remark (iii) in Ap-
pendix A). The relative prices will be depicted now by pM ∈ YM and pK ∈ YK while
the observed linear demand system is given by

x (pM, pK) := α (pM) + BpK (pM, pK) ∈ Y (10)

where B is a k× k matrix of constants while a : YM → Rk is a continuous function.
A theoretical justification for the formulation in (10) is given by the assumption

that ξ(·) satisfies conditions (A*)-(B*). Given condition (A*), it suffices for condition
(B*) that B has a non-zero diagonal element or a symmetric principal minor (see Re-
marks (iii)-(iv) in Appendix A). With respect to condition (A*), if the demand system
is generated by a strictly monotonic, strictly convex and differentiable preference re-
lation then Y is necessarily open. And as before, differentiability of the underlying
preference relation places additional restrictions not only on the formulation for the
observed linear demand but also on the total demand system itself.

Theorem 3 Let % be a continuous, strictly convex, and strictly monotonic weak order on X
which generates the observed demand function in (10). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular and M = {n}.

Proof. That (i)⇒ (ii) is due to the following results (see Section 6 for the correspond-
ing proofs).

Corollary 3.1 Let the continuous, strictly convex and strictly monotonic weak order % on
X generate the demand function ξ : Y → X whose projection on the dimensions in K, x :
PM × PK → XK given by x (pM, pK) := α (pM) − Bp for some function α : PM → Rn.
Then % is differentiable only if B is non-singular.

Corollary 3.2 Let the continuous, strictly convex and strictly monotonic weak order % on
X generate the demand function ξ : Y → X whose projection on the dimensions in K, x :
PM × PK → XK given by x (pM, pK) := α (pM) − Bp for some function α : PM → Rn.
Then % is differentiable only if M0 = ∅.

The argument for (ii) ⇒ (i) is trivially similar to the respective part in the proof of
Theorem 1.
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Given these results, under preference differentiability and assuming that α(·) is
also a linear function, the expression in (10) above reduces to the following

x (pn, pK) := α + γpn + BpK, (pn, pK) ∈ Y (11)

where α, γ ∈ Rk are constants while M = {n}. In light of Theorem 3, preference
differentiability allows for direct integrability of the formulation in (11) along the in-
difference sets via the preference gradient function. As before, this leads to a complete
characterization of the linear demand function in terms of the properties of the under-
lying generating preference.

Theorem 4 Let % be a continuous, strictly convex, and strictly monotonic weak order on X
which generates the demand function in (11). The following are equivalent.
(i). % is differentiable.
(ii). B is non-singular.
(iii). % is represented by the utility function u : X → R given by

u (z, x) :=

{ (
z− xB−1γ

)
exp

(∫
X0

K

B−1(x−α)
1−xB−1(x−α)

dx
)

x ∈ X0
K

0 x ∈ XK \ X0
K

(12)

where X0
K =: {x ∈ XK : xB−1(x− α) 6= 1}.

Proof. That (i) ⇔ (ii) is due to Theorem 3. Moreover, since u(·) is C1 so must be %.
Hence, the preference is weakly smooth and that (iii)⇒ (i) is due to Proposition 2 in
Diasakos and Gerasimou (2022). It remains to show that (ii)⇒ (iii).
(ii)⇒ (iii). Let B be non-singular (and, thus,% be differentiable). Recall also equations
(3)-(5). We have p = pnqK with qK = −∇xlz(x|(z, x)) and pn = 1/(z + qKx). The
given demand schedule can be written therefore as follows

x = α + pn (BqK + γ)

or

qK = B−1
(

p−1
n (x− α)− γ

)
= B−1 ((z + qKx) (x− α)− γ)

= B−1 (x− α) qKx + B−1 (z (x− α)− γ)

which implies(
1− xᵀB−1 (x− α)

)
qKx− xᵀB−1 (x− α) z = −xᵀB−1γ (13)
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For any given (z0, x0) ∈ X, therefore, we must obey the differential equation

(1− f (x))
k

∑
j=1

xj∂z/∂xj + f (x) z = g (x) γ (14)

along I(z0,x0), where f : XK → R and g : XK → Rk are given by f (x) := xB−1(x− α)

and g(x) := xB−1.
Define the functions h1 : X1 → S and hj : S× Xj → R++ for j ∈ K \ {1}, respectively,
by h1(x1) := ln x1 and hj(τ, xj) := xj/h1(τ) where S := {τ ∈ R++ : eτ ∈ X1}. For any
x1 ∈ X1, letting τ = h1(x1) we have now the following parametrization: x1 = eτ and
xj = eτhj(τ, xj) for j ∈ K \ {1}.
Let then the vector-valued function h : S × X−1 → R++ be given by h (τ, x−1)j :=
hj
(
τ, xj

)
j ∈ K \ {1} and fix an arbitrary x−1 ∈ X−1. As we have xi = ∂xi/∂τ for any

i ∈ K, we can transform the PDE in (14) to the following ODE

(1− f (τ, h (τ, x−1)))dz/dτ + f (τ, h (τ, x−1)) z = g (τ, h (τ, x−1)) γ

Restricting attention to the set X0
K, this equation can be re-written as follows

dz/dτ +
f (τ, h (τ, x−1)) z

1− f (τ, h (τ, x−1))
=

g (τ, h (τ, x−1)) γ

1− f (τ, h (τ, x−1))

with the solution

z =
1

µ (x−1)

(∫
µ (x−1) g (τ, h (τ, x−1)) γ

1− f (τ, h (τ, x−1))
dτ + c

)
(15)

where

µ (x−1) := exp
(∫ f (τ, h (τ, x−1))

1− f (τ, h (τ, x−1))
dτ

)
Moreover, we also have

∆ (eτµ (x−1)) = µ (x−1)∆eτ + eτ∆µ (x−1)

= eτ

(
1 +

f (τ, h (τ, x−1))

1− f (τ, h (τ, x−1))

)
µ (x−1)∆τ =

eτµ (x−1)

1− f (τ, h (τ, x−1))
∆τ
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and thus

∆ (µ (x−1) g (τ, h (τ, x−1))) = ∆

(
µ (x−1)

k

∑
j=1

B−1
j hj

(
τ, xj

))

= ∆

(
µ (x−1)

k

∑
j=1

B−1
j eτxj

)

= ∆ (eτµ (x−1))
k

∑
j=1

B−1
j xj

=
eτµ (x−1)

1− f (τ, h (τ, x−1))

k

∑
j=1

B−1
j xj∆τ

=
µ (x−1)

1− f (τ, h (τ, x−1))

k

∑
j=1

B−1
j hj

(
τ, xj

)
∆τ

=
µ (x−1) g (τ, h (τ, x−1))

1− f (τ, h (τ, x−1))
∆τ

That is,∫
µ (x−1) g (τ, h (τ, x−1))

1− f (τ, h (τ, x−1))
dτ = µ (x−1) g (τ, h (τ, x−1))

and (15) reads

z = (c + µ (x−1) g (τ, h (τ, x−1)) γ) /µ (x−1)
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To complete the argument observe also that

∆ ln µ (x−1) =
∆µ (x−1)

µ (x−1)

=
f (τ, h (τ, x−1))∆τ

1− f (τ, h (τ, x−1))

=
xB−1 (x− α)∆τ

1− f (τ, h (τ, x−1))

=

(
∑i∈K ∑j∈K xiB−1

ij
(
xj − αj

))
∆τ

1− f (τ, h (τ, x−1))

=
∑i∈K

(
∑j∈K B−1

ij
(
xj − αj

))
xi∆τ

1− f (τ, h (τ, x−1))

=
∑i∈K

(
B−1

i (x− α)
)

∆xi

1− f (x)
=

B−1
i (x− α)∆x

1− xB−1
i (x− α)

Hence, we have

∫ f (τ, h (τ, x−1))

1− f (τ, h (τ, x−1))
dτ = int

B−1(x− α)

1− xB−1 (x− α)
dx

The claim now follows by setting u
(
z0, x0) := c. On the set {(z, x) ∈ X : x 6∈ X0

K}
we have f (x) = 1 and z = xᵀB−1γ. Let u(z, x) = 0 along the indifference curve{
(z, x) ∈ X : z = xᵀB−1γ ∧ f (x) = 1

}
.

Finally, to verify our solution on the set X0
K, using (13) we get that

p−1
n = qKx + z =

xB−1 (x− α) z− xB−1γ

1− xB−1 (x− α)
+ z =

z− xB−1γ

1− xB−1 (x− α)

Thus, (12) gives

qK =
∇xu (z, x)

∂u (z, x) /∂z
= −B−1γ+

(
z− xB−1γ

) B−1(x− α)

1− xB−1 (x− α)
= −B−1γ+ p−1

n B−1 (x− α)

as required.

Remark. Within the realm of Theorem 4, the requirement that % be monotonic im-
poses the following restriction on its domain:

X ⊆
{
(z, x) ∈ Rn

++ :
(

z− xB−1γ
) B−1(x− α)

1− xB−1 (x− α)
� B−1γ

}
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To conclude our analysis, comparisons between Theorems 1 and 3, but also be-
tween Theorems 2 and 4 above, are noteworthy. With respect to the former pair, both
theorems establish that % being differentiable is fundamentally related to B being
non-singular and M being singleton. A key feature in the proofs of Lemmas 3.1-
3.2 renders the argument supporting Theorem 3 for its most part a corollary of that
supporting Theorem 1. Whenever we appeal to the linearity of (6) in the proofs of
Lemmas 3.1-3.2, we do so while holding income constant. We can do this also in the
realm of (10): x(·) is linear in qK for a given pn. Yet, in sharp contrast to Theorem 1,
Theorem 3 above does not claim that α(·) must be a constant. In the proof of Lemma
3.3 we use that the linear part of x(·) in (6) is independent of income.10 This does not
obtain under the formulation in (10).

The discrepancy between Theorems 1 and 3 accounts in turn for the difference
in scope between Theorems 2 and 4. The fact that α(·) is constant in the realm of
the former theorem ensures that the kth principal minor of the Slutsky matrix for ξ̃(·)
coincides with B. Being also non-singular, the matrix must be symmetric and negative
definite; as a result, x(·) must also obey the strict Law of Demand. By contrast, under
(10) there is no immediate mapping between the Slutsky matrix for ξ(·) and B.

Finally, we should note that Alperovich and Weksler (1996) investigate the de-
mand formulation in (11) when n = 2. In this case, k = 1 and (14) reads

(β− x (x− α))dz/dx + (x− α) z = γ (16)

where α, γ, and β are all scalars. For this special case, Alperovich and Weksler (1996)
obtain a closed-form solution for the utility function in (12).11 Notice also that re-
stricting attention to the incomplete demand system in (11) can be justified by the
conjunction of conditions (A*)-(B*) for the complete demand system. With respect to
condition (A*), it suffices that the domain Y is open - an assumption to be found in
Alperovich and Weksler (1996). Regarding condition (B*), given condition (A*), it suf-
fices that the matrix B has a non-zero diagonal element (see Remark (iii) in Appendix
A). B is a non-zero scalar in Alperovich and Weksler (1996).

10As the linear part of x(·) in (6) is separated from the part that varies with income, ε(·) as defined
by (30) is independent of qK.

11(16) above is equivalent to (5) in Alperovich and Weksler (1996) - once a typo in their second term
has been corrected.
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4 Discussion and related literature

The studies most relevant for the preceding analysis are LaFrance (1985) and Amir
et al. (2017). LaFrance (1985) examines the demand formulation in (6) distinguishing
between two cases: whether or not a(·) is function of income. For the latter case, he
takes B to be symmetric and negative semidefinite and establishes that the underly-
ing quasi-direct (conditional upon the relative prices of the unobserved commodities)
utility function must be quasi-linear/quadratic. For the case where a(·) does vary
with income, LaFrance (1985) shows that the quasi-direct (conditional also upon in-
come in this case) utility function must be Leontief. Amir et al. (2017) take the set of
unobserved commodities to be a singleton and the demand formulation to be given
by (7). They show that this can be generated by the utility function in (8) if B−1 is a
symmetric, negative definite matrix with non-zero diagonal entries.

As we have seen already, restricting attention to the incomplete demand systems
in (6)-(7) can be justified by the conjunction of conditions (A)-(B) for the complete de-
mand system. With respect to condition (A), it suffices that the domain Q×W is open
- an assumption to be found in both aforementioned studies. Regarding condition (B),
given condition (A), it suffices that B has a non-zero diagonal element or a symmetric
principal minor (see Remarks (iii)-(iv) in Appendix A). The former restriction is as-
sumed in Amir et al. (2017), where the diagonal elements of B are all non-zero. The
latter restriction can be found in LaFrance (1985) where B itself is symmetric.12

With respect to the restrictions placed on B, under the formulation in (7), the ma-
trix being symmetric and negative semidefinite can be justified by assuming that the
Slutsky matrix of the complete demand system itself is symmetric and negative semi-
definite. Yet our analysis facilitates a direct connection with the underlying rational-
izing preference. By Theorem 1, as long as the preference relation is weakly smooth,
B must also be non-singular; hence, B being negative semi-definite is equivalent to
B being negative definite. Moreover, the possibility of more than one unobserved
commodities in LaFrance (1985) is a vacuous generalization while his argument for
the case where a(·) does vary with income should be read as ad absurdum - that a
weakly smooth preference must be Leontief is absurd. As for the analysis in Amir
et al. (2017), Theorem 1 provides underpinnings for the theoretical framework itself.
Their starting point is a continuously differentiable utility function; hence, a utility
representation for preferences that are weakly smooth. A linear demand system gen-
erated by such preferences can only have the form in (7).

12It should be noted that condition (B) cannot admit the case where the complete demand system
ξ̃ j (·) is constant everywhere. The underlying intuition is the same as that in Jaffe and Weyl (2010)
which shows that a complete demand system cannot be linear under discrete choice.
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Our analysis relates also to the study in Nocke and Schutz (2017). This investigates
the integrability of demand systems of the form x(q) - i.e., the observed demands are
independent of income - that satisfy the Law of Demand and for which there exists
a function v(·) such that ∇qv(q) = −x(q). Nocke and Schutz (2017) establish the
existence of a rationalizing objective function, z + φx(q), where the convex function
φx(q) := infq>>0{qx + v(q)} is minimized at qx: x = x(qx). Yet their objective lends
itself to a direct utility function if and only if x(·) is invertible; for we need to be
able to define the inverse demand function q(·) before proceeding to get u(z + x) =

z + φx(q(x)). When x(·) is in particular linear, the demand system investigated in
Nocke and Schutz (2017) coincides with that in (7). In this case, x(·) is invertible if
and only if B is non-singular (Theorem 1). And as the latter property requires that
B is also symmetric (Theorem 2), we get that v(q) = −αq − qᵀBq/2 while φx(q) =

qᵀxx− qxBqx/2 with qx: x = α + Bqx. That is, qx = B−1(x− α) and u(·) takes the form
in (8).

The present results bear also implications regarding the quest for microfounda-
tions of demand estimation. Theorems 1-2 place strong restrictions on the quadratic
utility the applied economist may appeal to. For instance, the form (x− α)A(x− α) -
see Deaton (1978) - is valid if and only if the (n− 1)-th principal minor of A is symmet-
ric and negative definite while Ann = 0 = Ajn + Anj for j = 1, · · · , n− 1. Similarly,
an additive utility function - see Houthakker (1960) - is consistent with linear demand
if and only if it is of the form u(z, x) = z + ∑n−1

j=1 (αjxj + bjx2
j ) while, for all j, αj = 0

implies bj = 0; the matrix B of the corresponding linear demand is diagonal.
Most importantly perhaps, our results shed new light on the quest for microfoun-

dations of linear demand systems especially in the context of applications in theoret-
ical industrial organization. Amir et al. (2017) suggest that models of multi-variate
linear demand functions for differentiated products ought to be regarded with some
suspicion when the demand functions in question do not satisfy the Law of Demand.
Their tone is understandably cautious given their key hypothesis of an underlying
strictly concave quasi-linear/quadratic utility function. By contrast, based on a com-
plete characterization of linear demand functions in terms of the underlying rational-
izing preferences, our approach leads to far more commanding conclusions. Multi-
variate linear demand functions for differentiated products that do not satisfy the
(strict) Law of Demand or are income dependent are not rationalizable - at least not
by rational preferences smooth enough to allow for tractable utility functions.

By contrast, linear demand systems that do satisfy the strict Law of Demand and
are income independent are fully consistent with continuous, strictly monotonic, strictly
convex, and weakly smooth rationalizing preferences. Furthermore, the scope of this
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rationalizability allows linear aggregate demand but also linear market demand that
results from horizontally or vertically differentiated products to be microfounded on
continuous rational preferences.

Consider for instance a market where individuals indexed by some finite set H
exhibit the observed demands xh (p) = αh + Bh p for h ∈ H. By Theorem 2, the
individual demands are rationalizable only if Bh is symmetric and negative definite
for all h ∈ H. In this case, the matrix ∑h∈H Bh will also be symmetric and negative
definite; hence, the aggregate demand, x (p) = ∑h∈H αh + (∑h∈H Bh)p, will itself be
rationalizable by a single hypothetical agent. Her preferences are continuous, strictly
convex, strictly monotonic, differentiable and represented by the utility function in
(8) with α = ∑h∈H αh and B = ∑h∈H Bh.13

Alternatively, we can consider the model of vertically differentiated products in
Amir et al. (2016) where the typical product j has quality qj with qj < qj+1 for 1 ≥ j < k
(k ∈ N: k ≥ 2). There is a continuum of consumers uniformly distributed on [0, 1]
with each consumer purchasing at most one good. If she buys good i at price pi, she
obtains a surplus of θqj − pj. Each consumer chooses the product with the highest
surplus, provided it is nonnegative. The resulting market demand is given by

x1 =
p2 − p1

q2 − q1
− p1

q1
, xk = 1− pk − pk−1

qk − qk−1
, xj =

pj+1 − pj

qj+1 − qj
−

pj − pj−1

qj − qj−1
, 1 < j < k

Amir et al. (2016) present also a model of spatially differentiated products on a star-
shaped city with k selling locations. The city has k− 1 roads radiating from a center
and stretching indefinitely into suburbs. There is one shop at the center and one
branch along each road at a distance of one unit from the center. The central shop
offers consumers a value v1 at price p1 while the typical branch offers value vj at price
pj. Along each road, there is a continuum of consumers uniformly distributed with
each consumer incurring travel costs of τ per unit of distance. Each consumer seeks
to maximize her surplus vj − pj − τs where s is the distance of the jth shop from her
location. The resulting market demand is given by

x1 =
(k− 1) (τ − v1 − p1)−∑k

j=2
(
vj − pj

)
2τ

, xj =
τ + 3vj − 3pj − v1 + p1

2τ
, j > 1

As we show in Appendix B, in either case the demand system for these differentiated
products can be written as x (p) = α+ Bp with B symmetric and negative definite. By

13Of course, this hypothetical agent is not a representative agent. Her demand, x (p) = α + Bp,
depicts the market demand for the economy consisting of the individuals in H under the restriction
that her aggregate consumption bundle x (p) gets allocated in a particular way, as {xh}h∈H where
xh = αh + Bh p.
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Theorem 2, either market demand schedule can be generated by a single agent whose
preferences are represented by the utility function in (8).

Of course, rationalizing linear demand systems such as the above via continuous,
strictly monotonic, strictly convex, and weakly smooth preferences entails two caveat
properties. On the one hand, there is an unobserved part in the complete demand
system consisting solely of the numeraire commodity for which the marginal utility
is always constant. On the other hand, the range of the observed linear demand may
correspond to only a subset of the domain of the rationalizing preference relation;
beyond the observed range, the preference will exhibit a bliss point with respect to
the observed commodities.

Both properties have an important role to play in the justification of using linear
demand models for economic applications. They point towards situations where the
observed choice bundles correspond to quantities and expenditure that are relatively
small. For instance, when shopping in supermarkets, most people seldom face strictly
binding budget constraints - especially if we allow also for lending and borrowing in
which case the real budget constraint should be lifetime earnings. Moreover, most
people would certainly reach a bliss point if they were to face unlimited quantities
of supermarket products. Similarly, most firms seldom face strictly binding budget
constraints when purchasing inputs. And under most models of industrial organi-
zation, processing unlimited amounts of inputs would eventually bring a firm to a
loss-making position. It is common situations of this type that could be described by
linear demand models of consumption behaviour or industrial organization. Being
far from exhausting the total bank account, the welfare-maximizing consumer’s or the
cost-minimizing manager’s estimate of how much an additional pound is worth, the
marginal utility of money, remains constant in the background. What really matters
then for the optimization problem at hand is the relative prices of the choice variables.

It should be noted finally that similar results obtain also in the case where prices
are normalized with respect to income - instead of a numeraire. In this case, linear de-
mand systems of the form x (pn, pK) = α (pn)+ BpK where (pn, pK) ∈ Y are consistent
with continuous, strictly monotonic, strictly convex, and weakly smooth rationalizing
preferences as long as B is non-singular. The unobserved part of the complete demand
system consists solely of a single commodity while beyond the observed range the
preference will exhibit a bliss point with respect to the observed commodities. How-
ever, the marginal utility of the unobserved commodity is no longer constant while
x (·) does not necessarily obey the Law of Demand.
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5 Concluding remarks

Taking rational consumer preferences as the primitive and a linear demand system
as the desideratum, we obtain a complete characterization in terms of the proper-
ties for the underlying rationalizing preference relation and analytical solution for the
corresponding direct utility function. Yet the desideratum of microfounding linear
demand on rational preferences that are smooth in the least sense to be representable
by tractable utility functions demands that we are not agnostic about the unobserved
part of the demand system. The latter cannot be hidden under the ”ceteris paribus”
carpet, nor behind the curtain of sufficiently high income remaining unspent in the
background. Rationalizing linear demand systems with smooth preferences renders
the unobserved part of the total system an integral component of the underlying pref-
erence relation.

In the case where the prices are normalized with respect to a numeraire, an ob-
served linear demand system implies that the unobserved part comprises solely the
numeraire commodity for which the marginal utility is always constant. If we want
to interpret this as some basket of goods and services, a Hicksian composite com-
modity, we have to accept that there can be no substitution effects within the basket,
nor between the basket and the observed commodities.14 When the prices are instead
income-normalized, preference characterization allows more leeway in terms of the
interpretation of the (again single) commodity that comprises the unobserved part of
a linear demand system. As its marginal utility is no longer constant, we can view it
now as a Hicksian composite commodity for which there can be substitution effects
within the basket as well as between the basket and the observed commodities. Alas
this comes at the expense of a cumbersome utility representation.

6 Proofs

Proof of Lemma 3.1

To establish the contrapositive statement, let B be singular; that is, let there be v ∈
Rn \ {0} such that Bv = 0. Take an arbitrary x0 ∈ XK. Since the complete demand
system ξ̃(·) generated by % is onto - see Proposition 1 in Diasakos and Gerasimou
(2022) - there exists (q0

M0
, q0

K, w0) ∈ QM0 × QK ×W such that x0 = x(q0
M0

, q0
K, w0).

To argue ad absurdum, suppose also that % is differentiable. As this implies that
QM0 × QK ×W is open - see Theorem 1 in Diasakos and Gerasimou (2022) - we may

14For details on the concept of “Hicksian composite commodity,” see Woods (1979).
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take λ0 ∈ R++ sufficiently small so that (q0
M0

, q0
K + λv, w0) ∈ QM0 × QK ×W for all

λ ∈ (−λ0, λ0). Define then the function q : (−λ0, λ0)→ QK by q(λ) := q0
K + λv. This

gives x(q0
M0

, q(·), w0) = x0. Moreover, letting z0 := z(q0
M0

, q0
K, w0), we have

z0
n + q0

M0
z0 + q (λ) x0 = w0 +

(
q (λ)− q0

K

)
x0 = w0 + λvx0 (17)

and

zn

(
q0

M0
, q (λ)

)
+ q0

M0
z−n

(
q0

M0
, q (λ)

)
+ q0

Kx
(

q0
M0

, q (λ)
)

= w0 +
(

q0
K − q (λ)

)
x
(

q0
M0

, q (λ)
)
= w0 − λvx0 (18)

If vx0 = 0, the desired contradiction obtains immediately. For, on the one hand, the
bundle (z0, x0) is affordable at the price vector (q0

M0
, q(λ), w0) while at the same time

(z(q0
M0

, q(λ)), x(q0
M0

, q(λ))) is affordable at (q0
M0

, q0
K, w0). Yet, on the other hand, % is

differentiable only if the demand system is injective - see again Theorem 1 in Diasakos
and Gerasimou (2022). The two bundles being thus distinct, we have a violation of
the WARP.15

Suppose next that vx(qM0 , qK, w) 6= 0 for all (qM0 , qK, w) ∈ QM0 × QK ×W. We must
consider the following cases.
Case I: There exists w′ ∈W \ {w0} such that vx(q0

M0
, q0

K, w′) = vx0.
Observe first that, letting ∆α(q0

M0
, w0) := α(q0

M0
, w′)− α(q0

M0
, w0), we have

x
(

q0
M0

, q0
K, w′

)
−∆α

(
q0

M0
, w0

)
= x

(
q0

M0
, q0

K, w0

)
= x0 = x

(
q0

M0
, q0

K + λv, w0

)
(19)

Letting also ∆w := w′ − w0 and λ := −∆w/vx0 we get that

w0 − λvx0 = w′ = zn

(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+ q0

Kx
(

q0
M0

, q0
K, w′

)
= zn

(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+ q0

K

(
x0 + ∆α

(
q0

M0
, w0

))
= zn

(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)

+w0 − z0
n − q0

M0
z0 + q0

K∆a
(

q0
M0

, w0

)
and thus

zn

(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
= z0

n + q0
M0

z0− λvx0− q0
K∆a

(
q0

M0
, w0

)
(20)

15The demand system ξ̃(·) results from the maximization of the rational and strictly convex prefer-
ence %. It is well known that ξ̃(·) must satisfy the Weak Axiom of Revealed Preference.
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However, (19) and (20) together imply that

zn

(
q0

M0
, q0

K, w′
)
+ q0

M0
z−n

(
q0

M0
, q0

K, w′
)
+
(

q0
K + λv

)
x
(

q0
M0

, q0
K, w′

)
= z0

n + q0
M0

z0 − λvx0 − q0
K∆α

(
q0

M0
, w0

)
+
(

q0
K + λv

) (
x0 + ∆α

(
q0

M0
, w0

))
= z0

n + q0
M0

z0 + q0
Kx0 + λv∆α

(
q0

M0
, w0

)
= w0 + λv

(
x
(

q0
M0

, q0
K, w′

)
− x

(
q0

M0
, q0

K, w0

))
= w0

as well as that

zn

(
q0

M0
, q0

K + λv, w0

)
+ q0

M0
z−n

(
q0

M0
, q0

K + λv, w0

)
+ q0

Kx
(

q0
M0

, q0
K + λv, w0

)
= w0 +

(
q0

K −
(

q0
K + λv

))
x
(

q0
M0

, q0
K + λv, w0

)
= w0 − λvx0 = w′

another violation of the WARP.
Case II: vx(qM0 , qK, w′) 6= vx(qM0 , qK, w) for all (qM0 , qK, w), (qM0 , qK, w′) ∈ QM0 ×
QK ×W.
Consider the sets

Q0 :=
{
(qM0 , qK, w) ∈ QM0 ×QK ×W : z (qM0 , qK, w) = z0

}
X0

K :=
{
(z, x) ∈ X : z = z0

}
Since X is open in Rn

++, the set X0
K is open in Rk

++. Since the total demand is an
homeomorphism so is its restriction x : Yz0 → X0

K; hence, Yz0 is also open in Rk
++.

Moreover, the hyperplane

X∗K :=
{

x ∈ X0
K : vx = vx0

}
being open in Rk−1

++ , so is the preimage

Q∗ :=
{
(qM0 , qK, w) ∈ Q0 : x(qM0 , qK, w) ∈ X∗K

}
Observe now that, for any x(q1

M0
, q1

K, w1), x(q2
M0

, q2
K, w2) ∈ X∗K, we have

0 = vx
(

q1
M0

, q1
K, w1

)
− vx

(
q2

M0
, q2

K, w2

)
= vx

(
q1

M0
, q1

K, w1

)
− vx

(
q2

M0
, q2

K, w1

)
+vx

(
q2

M0
, q2

K, w1

)
− vx

(
q2

M0
, q2

K, w2

)
(21)
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As a result, x(q2
M0

, q2
K, w1) ∈ X∗K renders the first difference on the right-hand side of

(21) above zero, necessitating in turn that vx(q2
M0

, q2
K, w1) = vx(q2

M0
, q2

K, w2). Yet the
latter equality contradicts the very hypothesis that defines the case under considera-
tion. Clearly, for any w1 6= w2, we have x(q2

M0
, q2

K, w1) 6∈ X∗K if x(q2
M0

, q2
K, w2) ∈ X∗K.

Similarly, we have that

0 = vx
(

q1
M0

, q1
K, w1

)
− vx

(
q2

M0
, q2

K, w2

)
= vx

(
q1

M0
, q1

K, w1

)
− vx

(
q1

M0
, q1

K, w2

)
+vx

(
q1

M0
, q1

K, w2

)
− vx

(
q2

M0
, q2

K, w2

)
(22)

And as the first difference on the right-hand side of (22) cannot be zero, for any
(q1

M0
, q1

K) 6= (q2
M0

, q2
K), we must have x(q1

M0
, q1

K, w2) 6∈ X∗K if x(q2
M0

, q2
K, w2) ∈ X∗K.

Let now Q∗n and Q∗M0∪K be, respectively, the projections of Q∗ along the income and
the remaining n − 1 price dimensions. The preceding argument means that there
must exist a bijection f : Q∗n → Q∗M0∪K such that any x(qM0 , qK, w) ∈ X∗K can be
written as x( f (w), w). However, since Q∗M0∪K is open in Rk−2

++ while X∗K is open in
Rk−1

++ , this is absurd. For, on the one hand, the homeomorphism f (·) necessitates that
k− 2 = 1. On the other hand, the graph of f (·) being open in R++, the homeomor-
phism x(graph f (·)) on X∗K necessitates that k− 1 = 1.
Given the preceding contradiction, we conclude that income remains constant (at w0)
along the hyperplane X∗K. We will show now that, for any q1

K, q2
K ∈ QK with q1

K 6= q2
K,

we cannot have vx(q0
M0

, q1
K, w0) 6= vx(q0

M0
, q2

K, w0) . To argue by contradiction, let

vB
(

q2
K − q1

K

)
= vx

(
q0

M0
, q2

K, w0

)
− vx

(
q0

M0
, q1

K, w0

)
6= 0

Choose (κ, w) ∈ (0, 1)× Bw0 such that vα(q̃0, w) = vα(q̃0, w0)− κvB(q2
K − q1

K).
16 Let-

ting q3
K := κq2

K + (1− κ)q1
K, we now have

v
(

x
(

q0
M0

, q1
K, w0

)
− x

(
q0

M0
, q3

K, w
))

= v
(

B
(

q1
K − q3

K

)
+ α

(
q̃0, w0

)
− α

(
q̃0, w

))
= κvB

(
q1

K − q2
K

)
+ v

(
α
(

q̃0, w0

)
− α

(
q̃0, w

))
= 0

16By hypothesis, in this case, α(q̃0, ·) is a non-constant function; hence, by continuity, vα(q̃0, ·) is one-
to-one on a sufficiently small neighbourhood of w0. Observe also that, choosing κ sufficiently small,
brings w arbitrarily close to w0. The existence of w follows from the continuity of α(q̃0, ·).
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This contradicts though that income remains constant along X∗K.
Clearly, we have{

x ∈ X0
K : x = x

(
q0

M0
, qK, w0

)
, qK ∈ QK

}
⊆ X∗K (23)

Take now ε ∈ R++ sufficiently small so that Bq0
K
(ε) ⊂ Q0

K - where Q0
K is the projection

of Q0 on QK. Consider also the budget sets

B(qK) :=
{

x ∈ X : qKx = w0 − q0
M0

z0
}

, qK ∈ QK

The restriction of the preference relation % on X ×
{

z0} being strictly convex, strictly
monotonic, and continuous, we obtain an homeomorphic demand function x̃ : Q∗K →
X where Q∗K is an open subset of the set (w0 − q0

M0
z0)−1QK. Letting now

κ1 = min{1, 1/(w0 − q0
M0

z0)}

and comparing x̃(·) with x0(·) := x(q0
M0

, ·, w0) on Bq0
K
(κ1ε) reveals the desired con-

tradiction. For we must have (z0, x0(qK)) % (z0, x̃(qK)) everywhere on Bq0
K
(κ1ε). Yet,

x̃(·) being an homeomorphism, the image set x̃(Bq0
K
(κ1ε)) is an open neighbourhood

of x0 in Rk
++ while (23) necessitates that x0(Bq0

K
(κ1ε)) ⊆ X∗K, which is open in Rk−1

++ .
The contradiction is due to the monotonicity of %. �

Proof of Corollary 3.1

Recall how the two sets of normalized prices are related: (pM, pK) = pn((1, qM0), qK)

and pn = 1/w. The argument in the preceding proof remains valid once we replace
w0, w′, w, w1, and w2, respectively, by 1/p0

n, 1/p′n, 1/pn, 1/p1
n, and 1/p2

n.
A slight adjustment must be in Case I. Letting now ∆α(q0

M0
, p0

n) := α(q0
M0

, p′n) −
α(q0

M0
, p0

n), we have

x
(

q0
M0

, q0
K, p′n

)
− ∆α

(
q0

M0
, p0

n

)
− ∆pBq0

K = x
(

q0
M0

, q0
K, p0

n

)
= x0

= x
(

q0
M0

, q0
K + λv, p0

n

)
(24)
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where ∆p0
n := p′n − p0

n and λ := ∆p0
n/(p0

n p′nvx0). That is,

1/pn − λvx0 = 1/p′n
= zn

(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)
+ q0

Kx
(

q0
M0

, q0
K, p′n

)
= zn

(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)

+q0
K

(
x0 + ∆α

(
q0

M0
, p0

n

)
+ ∆p0

nBq0
K

)
= zn

(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)

+1/p0
n − q0

M0
z0 + q0

K

(
∆α
(

q0
M0

, p0
n

)
+ ∆p0

nBq0
K

)
and thus

zn

(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′
)

= z0
n + q0

M0
z0
−n − λvx0 − q0

K

(
∆α
(

q0
M0

, p0
n

)
+ ∆p0

nBq0
K

)
(25)

Now (24)-(25) imply that

zn

(
q0

M0
, q0

K, p′n
)
+ q0

M0
z−n

(
q0

M0
, q0

K, p′n
)
+
(

q0
K + λv

)
x
(

q0
M0

, q0
K, p′n

)
= z0

n + q0
M0

z0
−n − λvx0 − q0

K

(
∆α
(

q0
M0

, p0
n

)
+ ∆p0

nBq0
K

)
+
(

q0
K + λv

) (
x0 + ∆α

(
q0

M0
, p0

n

)
+ ∆pBq0

K

)
= z0

n + q0
M0

z0
−n + q0

Kx0 + λv
(

∆a
(

q0
M0

, p0
n

)
+ ∆p0

nBq0
K

)
= 1/p0

n + λv
(

x
(

q0
M0

, q0
K, p′n

)
− x0

)
= 1/p0

n

as well as

zn

(
q0

M0
, q0

K

)
+ q0

M0
z−n

(
q0

M0
, q0

K + λv, p0
n

)
+ q0

Kx
(

q0
M0

, q0
K + λv, p0

n

)
= 1/p0

n +
(

q0
K −

(
q0

K + λv
))

x
(

q0
M0

, q0
K + λv, p0

n

)
= 1/p0

n − λvx0 = 1/p′n

Yet

p0
nzn

(
q0

M0
, q0

K, p′n
)
+ p0

nq0
M0

z−n

(
q0

M0
, q0

K, p′n
)
+ p0

n

(
q0

K + λv
)

x
(

q0
M0

, q0
K, p′n

)
= 1

= p′nzn

(
q0

M0
, q0

K + λv, p0
n

)
+ p′nq0

M0
z−n

(
q0

M0
, q0

K + λv, p0
n

)
+ p′nq0

Kx
(

q0
M0

, q0
K + λv, p0

n

)
is a violation of the WARP. �
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Proof of Lemma 3.2

To argue ad absurdum, let j ∈ M0 6= ∅. Recall first that % is differentiable at
(z, x) if and only if the vector of relative prices (qM0 , qK) is the unique subgradient
of ln(·|(z, x)) at (z−n, x). Hence, % being differentiable, we have

ln ((z−n, x) | (z, x)) + qM0z−n + qKx ≤ ln ((z̃−n, x̃) | (z, x)) + qM0 z̃−n + qK x̃

for any (z̃−n, x̃) ∈ I−i
(z,x). And as ln(·|(z, x)) is differentiable everywhere along the

latter set, this necessitates in fact that

0 = ∇z−n ln ((z−n, x) | (z, x)) + qM0 (26)

0 = ∇xln ((z−n, x) | (z, x)) + qK (27)

Take now (q0
M0

, q0
K, w0) ∈ QM0 × QK ×W, and let z0 := z(q0

M0
, q0

K, w0) and x0 :=
x(q0

M0
, q0

K, w0). Obviously, the system (26)-(27) must hold everywhere on the indif-
ference set I(z0,x0). Given this, if we restrict attention to relative price changes in the

set
{

q0
M0

}
× QK, we move along I(z0,x0) as long as we obey the following system of

partial differential equations

∂zn/∂zj = −q0
j , j ∈ M0

∂zn/∂xj = −qj (w, x) =
(

B−1
(

α
(

q0
M0

, w
)
− x
))

j
, j ∈ K

where the last equality above uses the fact that B is non-singular (recall Lemma 3.1).
Integrating then along I(z0,x0), we have

zn = xB−1α
(

q0
M0

, w
)

B−1 − xB−1x/2− q0
M0

z−n + c0, (z, x) ∈ I(z0,x0)

where c0 remains constant along I(z0,x0). We can define thus a quasi-indirect utility
function v : X×M→ R by setting v(z0, x0, q0

M0
) := c0; that is, by letting

v (z, x, qM0 , w) := −xB−1α (qM0 , w) B−1 + xB−1x/2 + qM0z−n + zn

= −xB−1x/2 + q (x, qM0 , w) x + qM0z−n + zn

Notice now that, as X is open in Rn
++, taking ε0 > 0 sufficiently small, the hyperplane

X∗M :=
{
(z, x0) ∈ X : z := (z0

n + q0
j ε, z0

j − ε, z0
−(n,j)), ε ∈ (0, ε0)

}
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lies in X and is open in Rn−k−1
++ . Consider also renormalizing the prices relative to

income. As p0
n := 1/w0 and p0

j = q0
j /w0, we get that

p0
Mz = p0

Mz0 +
(

p0
nq0

j − p0
j

)
ε = p0

Mz0 (28)

or equivalently p0
Mz0 + p0

Kx0 = 1 = p0
Mz + p0

Kx0. Clearly, (z0, x0) � (z, x0) for any
(z, x0) ∈ X∗M.
Observe next that the hyperplane

Y∗−(n,j) :=
{
(pM0\j, pK) ∈ YM0\{j} ×YK : pM0\jz

0
M0\j + pKx0 = 1− (p0

nz0
n + p0

j z0
j )
}

is open in Rn−3
++ , and restrict the homeomorphic total demand ξ(·) to the domain

Yj × Yn × Y∗−(n,j). The restriction itself being homeomorphic, the image set ξ(Yj ×
Yn × Y∗−(n,j)) must be also open in Xj × Xn ×Rn−3

++ . Moreover, since (p0
M, p0

K) ∈ Yj ×
Yn × Y∗−(n,j), ξ(Yj × Yn × Y∗−(n,j)) must include a neighbourhood of (z0, x0) in Xn ×
Xj ×Rn−3

++ . That is, ξ(Yj ×Yn ×Y∗−(n,j)) ∩ X∗M 6= ∅.

Choosing, therefore, a sufficiently small ε1 ∈ (0, ε0), we can find (p1
M, p1

K) ∈ Yj×Yn×
Y∗−(n,j) such that z1 = z(p1

M, p1
K) and x0 = x(p1

M, p1
K) where z1 := (z0

n + q0
j ε1, z0

j −
ε1, z0

−(n,j)). Now, since (z1, x0) ∈ X∗M, we must have (z0, x0) � (z1, x0). Taking w1 :=

1/p1
n and q1

j = w− 1p1
j , this necessitates that

0 < p1
M

(
z0 − z1

)
+ p1

K

(
x0 − x0

)
= −

(
p1

nq0
j − p1

j

)
ε1 = −

(
q0

j − q1
j

)
ε1/w1

i.e., that q1
j > q0

j . Yet as we also have

p0
nz0

n + p0
j z0

j = 1−
(

p1
M\{j}z

0
−(n,j) + p1

Kx0
)

= p1
nz1

n + p1
j z1

j

=
(

z1
n + q1

j z1
j

)
/w1

>
(

z1
n + q0

j z1
j

)
/w1

=
w0

w1

(
p0

nz1
n + p0

j z1
j

)
=

w0

w1

(
p0

nz0
n + p0

j z0
j

)
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we get in fact that w0 < w1. This implies in turn that

z0
n + q0

M0
z0
−n + q0

Kx0 = w0

< w1

= z1
n + q1

M0
z1
−n + q1

Kx0

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + q0
M0

z1
−n

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + w0p0
M\{n}z

1
−n

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0

+w0

(
p0

M\{n}z
0
−n + p0

n

(
z0

n − z1
n

))
= z1

n +
(

q1
M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0

+w0

(
p0

M\{n}z
0
−n − p0

nε1

)
< z1

n +
(

q1
M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + w0p0
M\{n}z

0
−n

= z1
n +

(
q1

M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 + q0

Kx0 + q0
M0

z0
−n

where the penultimate equality above follows from (28). Clearly, we have that

z1
n − z0

n +
(

q1
M0
− q0

M0

)
z1
−n +

(
q1

K − q0
K

)
x0 > 0 (29)

But then we must have

v
(

z1, x0, q1
M0

, w1

)
= −xB−1x/2 + q

(
x0, q1

M0
, w1

)
x0 + q1

M0
z1
−n + z1

n

= −xB−1x/2 + q1
Kx0 + q1

M0
z1
−n + z1

n

> −xB−1x/2 + q0
Kx0 + q0

M0
z0
−n + z0

n

= −xB−1x/2 + q
(

x0, q0
M0

, w0

)
x0 + q0

M0
z0
−n + z0

n = v
(

z0, x0, q0
M0

, w0

)
the inequality above due to (29). And as this means that (z1, x0) � (z0, x0), the desired
contradiction follows from the absurdity (z1, x0) � (z0, x0) � (z1, x0). �

Proof of Corollary 3.2

Recall again how the two sets of normalized prices are related: (pM, pK) = pn((1, qM0), qK).
The preceding proof applies as is - with the slight adjustment that B above should be
replaced by pnB. �
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Proof of Lemma 3.3

Let % be differentiable. As M0 = ∅ (Lemma 3.2), α(·) can be a function only of
income. In what follows, we will drop the subscript K from the members of QK and
write (6) as x(q, w) := α(w) + Bq. To argue ad absurdum, suppose that α(·) is not
constant around the arbitrary point w0 ∈ W. Letting then λ0 ∈ R++ be sufficiently
small, we must have α(w) 6= α(w0) for all w ∈ (w0− λ0, w0 + λ0) \ {w0}. Take also an
arbitrary q0 ∈ QK and let x0 := x(q0, w0) and z0 := z(q0, w0). Consider also the sets

QKz0 := {q ∈ QK : z (q, w0) = z0}
Xz0 := {(z, x) ∈ X : z = z0}

Since X is open in Rn
++, the set Xz0 is open in Rn−1

++ . Since the total demand is an home-
omorphism so is the mapping x : Yz0 → Xz0 ; hence, QKz0 is also open in Rn−1

++ . And as
(z0, x0) ∈ Xz0 , taking ε0, ρ0 ∈ R++ both sufficiently small ensures that Bx0(ε0) ⊂ Xz0

and Bq0(ρ0) ⊂ QKz0 .
Recall now that, % being differentiable, B is non-singular (Lemma 3.1). As a result,
the function

x0(q) := α(w0) + Bq

defines an homeomorphism x0 : Bq0(ρ0) → Bx0(ε0). Moreover, since α(w0 + λ) 6=
α(w0), we have x(q, w0) 6= x(q, w0 + λ) for all (λ, q) ∈ (−λ0, λ0)× Bq0(ρ0). In fact,
letting λ1 ∈ (0, λ0) and ρ1 ∈ (0, ρ0) both sufficiently small so that ||α(w0 + λ) −
α(w0)|| < ε0/2 for all λ ∈ (−λ1, λ1) and x(q, w0) ∈ Bx0(ε/2) for all q ∈ Bq0(ρ1), we
have

||x (q, w0 + λ)− x0|| ≤ ||x (q, w0 + λ)− x (q, w0) ||+ ||x (q, w0)− x0||
= ||α (w0 + λ)− α (w0) ||+ ||x (q, w0 + λ)− x0|| < ε0

That is, x(q, w0 + λ) ∈ Bx0(ε0) for all (λ, q) ∈ (−λ1, λ1)× Bq0(ρ1). And as x0(·) is an
homeomorphism, we have that

∃! qλ ∈ Bq0(ρ0) : x(q, w0 + λ) = x0(qλ)

Define then the (−λ1, λ1) → Bq0(ρ0) function ε(q, λ) := qλ − q, and observe that the
last relation above can be also written as

x(q, w0 + λ) = x(q + ε(q, λ), w0)
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Clearly, for all (λ, q) ∈ (−λ1, λ1)×Bq0(ρ1), we have

ε (q, λ) = ε (λ) := B−1 (α (w0 + λ)− α (w0)) (30)

This implies in turn that

x (q− ε (λ) , w0 + λ) = B (q− ε (λ)) + α (w0 + λ)

= Bq− (α (w0 + λ)− α (w0)) + α (w0 + λ) = x (q, w0)

and thus

w0 + λ = z (q− ε (λ) , w0 + λ) + (q− ε (λ)) x (q− ε (λ) , w0 + λ)

= z (q− ε (λ) , w0 + λ) + (q− ε (λ)) x (q, w0)

= z (q− ε (λ) , w0 + λ) + w0 − z (q, w0)− ε (λ) x (q, w0)

or, equivalently,

z (q− ε (λ) , w0 + λ) = z (q, w0) + λ + ε (λ) x (q, w0) (31)

Recall now the quasi-indirect utility function we obtained in the proof of Lemma 3.2.
As M0 = ∅, this reads here

v (z, x, w) = xB−1x/2 + q (x, w) x + z

That is,

v (q− ε (λ) , w0 + λ) = x (q− ε (λ) , w0 + λ) B−1x (q− ε (λ) , w0 + λ) /2

+ (q− ε) x (q− ε (λ) , w0 + λ) + z (q− ε (λ) , w0 + λ)

= x (q, w0) B−1x (q, w0) /2 + (q− ε) x (q, w0)

+z (q, w0) + λ + ε (λ) x (q, w0)

= v (q, w0) + λ (32)

which implies in turn that λ 7→ z(q, λ) := z(q− ε(λ), w0 +λ) is an injective function.17

Hence, for any q ∈ Bq0(ρ1), the image of z(q, λ) on (−λ1, λ1) is an open neighbour-
hood around the point z(q, w0).
Take now δ0 ∈ R++ such that the neighbourhood Bz0(δ0) lies within the domain. Let

17To see first that z(q, ·) is a function, notice that we cannot have z′, z′′ ∈ z(q, λ) with z′ 6= z′′. For
(32) would imply then that (z′, x(q, w0)) ∼ (z′′, x(q, w0)), an absurdity under monotonicity. To see now
that z(q, ·) must be injective, observe that we cannot have z(q, λ′) = z(q, λ′′) with λ′ 6= λ′′. For, letting
z′ := z(q, λ1), (32) would imply now that (z′, x(q, w0)) � (z′, x(q, w0)).
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also z0(λ) := z(q0, λ). By the preceding argument, taking λ2 ∈ (0, λ1) sufficiently
small, z0(·) on (−λ2, λ2) maps onto Bz0(δ1) for some δ1 ∈ (0, δ0).
Fix now some λ ∈ (−λ2, λ2) and consider the sets

QKz0(λ) :=
{
(q, w0 + λ) ∈ QK : z (q− ε (λ) , w0 + λ) = z0 (λ)

}
Xz0(λ) :=

{
(z, x) ∈ X : z = z0 (λ)

}
By the same argument as in the opening paragraph above, Xz0(λ) and QKz0(λ) are
open in Rn−1

++ . And as q0 ∈ QKz0(λ), choosing ρλ ∈ (0, ρ1) sufficiently small, we get
Bq0(ρλ) ⊂ QKz0(λ). Moreover, using (31) above, we have that

0 = z(q− ε (λ), w0 + λ)− z0 (λ)

=
(

z (q, w0) + λ + ε (λ) x (q, w0)− z
(

q0, w0

)
− λ− ε (λ) x

(
q0, w0

))
=

(
z0 + λ + ε (λ) x (q, w0)− z0 − λ− ε (λ) x0

)
= ε (λ)

(
x0 (q)− x0

)
∀q ∈ Bq0 (ρλ)

As though x0(·) is an homeomorphism, it maps Bq0(ρλ) onto Bx0(ελ) for some ελ ∈
(0, ε0). We have established thus that ε(λ)(x− x0) = 0 for every x ∈ Bx0(ελ); equiva-
lently, that ε(λ) = 0. To complete the argument, recall (30). Since B−1 is non-singular,
ε(λ) = 0 implies that α(w0 + λ) = α(w0). And as λ above was chosen arbitrarily, α(·)
must remain constant on (w0 − λ2, w0 + λ2). �

Appendices

A An incomplete demand system

To make the exposition in this section less cumbersome, for y ∈ Rn and i ∈ N we
will use the notation yi and y−i in lieu of y{i} and yN\{i}, respectively. That is, yi and
y−i will denote, respectively, the projections of y on the ith dimension of Rn and on
the subspace that results from Rn when the ith dimension is removed. Taking also
j ∈ N \ {i}, we will use the notation y−(i,j) in lieu of yN\{i,j}; i.e., y−(i,j) will denote
the projection of y on the subspace that results from Rn when both the ith and jth
dimensions are removed. Finally, ||y|| denotes the Euclidean norm of y.

Claim 1 Let the demand system ξ : Y → X be given by ξ(p) := α + Ap, where α and A
are, respectively, a constant n-dimensional real vector and an n× n real matrix. Suppose also
that ξ(·) satisfies Walras’ law. Then at least one of conditions (A*) in the main text and
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(C*) ∃ε ∈ Rn \ {0} such that εAε 6= 0,

cannot hold.

Proof. To establish the claim arguing ad absurdum, suppose that both conditions hold
simultaneously. Letting (p, ε) ∈ Y×R++ be as in (A*) and ε ∈ Rn \ {0} be as in (C*),
take λ ∈ (0, 1) sufficiently small so that λ||ε|| ≤ 1 and define the (−ε, ε)→ Y function
p(δ) := p + δλε. By Walras’ law we ought to have

pα + pAp = pξ (p) = 1 = p (δ) ξ (p (δ))

= p (δ) α + p (δ) Ap (δ)

= pα + pAp + δλεα + δλεAp + δ2λ2εAε + δλpAε

As this implies in turn that

δ = −εα + εAp + pAε

λεAε
∀δ ∈ (−ε, 0) ∪ (0, ε) (33)

the desired contradiction obtains immediately.

Claim 2 Let the demand system ξ̃ : Q×W → X be given by ξ̃(q) := α + Aq, where α and
A are, respectively, a constant n-dimensional real vector and an n× n real matrix. Suppose
also that ξ̃(·) satisfies Walra’s law. Then at least one of conditions (A) in the main text and

(C) ∃ε ∈ Rn \ {0} such that ε−i A−iε 6= 0 - where A−i denotes the (n− 1)× n matrix
that results from A when its ith row is removed, -

cannot hold.

Proof. Letting (q, ε) ∈ Y × R++ be as in (A) and ε ∈ Rn \ {0} be as in (C), take
λ ∈ (0, 1) sufficiently small so that λ||ε|| ≤ 1 and define the (−ε, ε) → Y function
q(δ) := q + δλε. Using Walras’ law again we now have

δλ = w + δλ− w

= ξi (q + δλε) + (q−i + δλε−i) ξ−i (q + δλε)− (ξi (q) + q−iξ−i (q))

= ξi (q + δλε)− ξi (q) + q−i (ξ−i (q + δλε)− ξ−i (q)) + δλε−iξ−i (q + δλε)

= δλ (Ar
i ε + q−i A−iε + ε−iα−i + ε−i A−iq + δλε−i A−iε)

where Ar
i denotes the ith row of A. As the last equality above means that

δ =
1−

(
Ar

i ε + q−i A−iε + ε−iα−i + ε−i A−iq
)

λε−i A−iε
∀δ ∈ (−ε, 0) ∪ (0, ε)
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the claim follows.

Remarks
(i). Notice that (B*) in the main text is a sufficient condition for hypothesis (C*) in
Claim 1. To see this, suppose that condition (C*) above does not hold. We have then
εAε = 0 for all ε ∈ B0(1). Letting ε := ei/2 we get that Aii = 0 for all i ∈ {1, . . . , n}.
But then (B*) cannot hold.

(ii) Similarly, (B) in the main text is a sufficient conditon for hypothesis (C) in Claim
2. To see this, suppose that (C) above does not hold. We have then ε−i Aε = 0 for all
ε ∈ B0(1). Letting ε := ej/2 we get that Ajj = 0 for all j ∈ {1, . . . , n} \ {i}. But then
(B) cannot obtain.

(iii). Condition (B*) [resp. (B)] in the main text is equivalent to the requirement that
one of the diagonal elements of A [resp. A−i] is not zero.

(iv). For hypothesis (C*) [resp. (C)] to hold, it suffices that one of the principal minors of
A [resp. A−i] is symmetric.
To see this for hypothesis (C*), suppose again that εAε = 0 for all ε ∈ B0(1). Letting
now ε := ei + ej for arbitrary i, j ∈ {1, . . . , n} with i 6= j, we get that Aii + Aij + Aji +

Ajj = 0; i.e., that Aij + Aji = 0 (for, as observed above, we also have Aii = 0 = Ajj).
For hypothesis (C), suppose again that ε−i A−iε = 0 for all ε ∈ B0(1). Letting now
ε := ej + ek for arbitrary j, k ∈ {1, . . . , n} \ {i} with j 6= k, we get that Ajj + Ajk +

Akj + Akk = 0; i.e., that Ajk + Akj = 0 (for we also have Ajj = 0 = Akk).

B Market demand for differentiated products

Vertically differentiated products

Letting q0 := 0 and ∆qj−1 := qj− qj−1, the market demand for vertically differentiated
products in Amir et al. (2016) is given by x (p) = α + Bp where αᵀ = (0, . . . , 0, 1) and

B = −



1
∆q0

+ 1
∆q1

−1
∆q1

0 . . . . . . . . . . . . . . . 0
−1
∆q1

1
∆q1

+ 1
∆q2

−1
∆q2

0 . . . . . . . . . . . . 0
...

...
...

...
...

...
...

...
...

0 . . . 0 −1
∆qj−1

1
∆qj−1

+ 1
∆qj

−1
∆qj

0 . . . 0
...

...
...

...
...

...
...

...
...

0 . . . . . . . . . . . . . . . −1
∆qk−2

1
∆qk−2

+ 1
∆qk−1

−1
∆qk−1

0 . . . . . . . . . . . . . . . 0 −1
∆qk−1

1
∆qk−1


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This matrix is symmetric. To see that it is also negative definite, observe that any
x ∈ Rk \ {0} gives

Bx =



−
(

1
∆q0

+ 1
∆q1

)
x1 +

x2
∆q1

x1
∆q1
−
(

1
∆q1

+ 1
∆q2

)
x2 +

x3
∆q2

...
xk−2

∆qk−2
−
(

1
∆qk−2

+ 1
∆qk−1

)
xk−1 +

xk
∆qk−1

xk−1
∆qk−1

− xk
∆qk−1


Thus, we have

xBx = −
k−1

∑
j=1

(
1

∆qj−1
+

1
∆qj

)
x2

j + 2
k

∑
j=2

xj−1xj

∆qj−1
−

x2
k

∆qk−1
= −

k

∑
j=2

(
xj−1 − xj

)2

∆qj−1
−

k−1

∑
j=1

x2
j

∆qj
< 0

as required.

Horizontally differentiated products

The market demand for horizontally differentiated products in Amir et al. (2016) is
given by x (p) = α + Bp where

α =
1

2τ


(k− 1) (τ + v1)−∑k

j=2 vj

τ − v1 + 3v2
...

τ − v1 + 3vk


and

B =
1

2τ



− (k− 1) 1 . . . . . . . . . . . . . . . 1
1 −3 0 . . . . . . . . . . . . 0
...

...
...

...
...

...
...

...
1 0 . . . 0 −3 0 . . . 0
...

...
...

...
...

...
...

...
1 0 . . . . . . . . . . . . 0 −3


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This matrix is symmetric. To see that it is also negative definite, observe that any
x ∈ Rk \ {0} gives

Bx =


− (k− 1) x1 + ∑j∈K\{1} xj

x1 − 3x2
...

x1 − 3xk


Thus, we have

xBx = − (k− 1) x2
1 + 2 ∑

j∈K\{1}
x1xj− 3 ∑

j∈K\{1}
x2

j = −2 ∑
j∈K\{1}

x2
j − ∑

j∈K\{1}

(
x1 − xj

)2
< 0

as required.
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