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Abstract

We introduce the leave-cluster-out (LCO) machinery for clustered samples, a gener-

alization of leave-one-out methods that prove useful for independent data. We use

LCO to construct an estimator of the asymptotic variance of the OLS estimator in a

linear regression characterized by possibly numerous regressors and arbitrary within-

cluster heteroskedasticity. We show consistency of the LCO variance estimator when

regressors may be many, regression errors may be heteroskedastic, clusters may be

unbalanced and heterogeneous, and cluster sizes may be moderately large. Simula-

tions reveal amazing robustness of the LCO estimator to regressor numerosity and

heteroskedasticity.
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1 Introduction

Given the clustered nature of many microeconomic data sets, as opposed to random samples

and hence independent data, modern econometric methods have adapted the regression the-

ory to such structures. This primarily concerns the construction of so called �cluster-robust�

asymptotic (co)variance estimates compatible with the block-diagonal structure of the error

variance matrix. It is pretty straightforward to obtain consistent estimates also robust to het-

eroskedasticity (Liang and Zeger, 1986) that generalize White�s (1980) �heteroskedasticity-

robust�variance estimation. The practical issues in cluster-robust variance estimation (or

standard error construction) are described in the surveys by see Cameron and Miller (2015)

and Imbens and Kolesár (2016). There has been an e¤ort to improve �nite-sample behav-

ior of these estimates in the spirit of HCK modi�cations (MacKinnon, 2012; Imbens and

Kolesár, 2016) to obtain �almost unbiased�variance estimates, in the sense that they are

exactly unbiased under homoskedasticity, though not in general.

The formal asymptotic theory for clustered samples is presented in Hansen and Lee

(2019) who laid out the conditions under which the large sample theory, including the cen-

tral limit theorem and consistency of the Liang and Zeger (1986) variance estimates, takes

place. In particular, they consider unbalanced clusters and allow the size of the biggest

cluster to asymptotically increase with a moderate rate, as the number of observations and

the number of clusters go to in�nity. Hansen and Lee (2019) also work out several leading

econometric models, including the regression setting. Earlier, White (1984) developed as-

ymptotic theory for the case of balanced homogeneous clusters of �xed size, Hansen (2007)

derived asymptotics for the case of balanced clusters with asymptotically increasing clus-

ter size, and Carter, Schnepel, and Steigerwald (2017) allowed unbalanced heterogeneous

clusters of di¤erent size.

In its own right, the regression theory has been moving toward tolerance to the pres-

ence of many regressors (or covariates, or controls). Because the classical tools are, in their

majority, not robust to regressor numerosity, various modi�cations have been proposed to

robustify the classical estimation and especially inference in a linear regression. For example,
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Calhoun (2011) and Anatolyev (2012) provided modi�cations of the exact F and classical trio

of asymptotic tests, respectively, so that the modi�ed tests are valid within the asymptotic

framework where the number of regressors and possibly restrictions is proportional to the

sample size, though in a conditionally homoskedastic setup. Under heteroskedasticity, Cat-

taneo, Jansson, and Newey (2018), Kline, Saggio, and Sølvsten (2020) and Jochmans (2021)

provided tools for valid inference with a �nite number of restrictions, but allowing for condi-

tional heteroskedasticity. Anatolyev and Sølvsten (2021) consider testing of asymptotically

many restrictions in a heteroskedastic environment.

One notable idea exploited in construction of some variance matrix estimates compati-

ble with heteroskedasticity is utilization of leave-out estimation �repeated estimation of the

same model when some, usually one, observations are removed from the sample. Although

the very idea of leave-out estimation has been around in the statistics and econometric liter-

atures for long (for example, in cross-validation methods, in jackknife bias reduction), only

recently has it been discovered to be useful in estimation of conditional variances of individual

observations in unbiased way. These simple but attractive estimates are due to Kline, Sag-

gio, and Sølvsten (2020), and they have been found their way into variance estimation under

heteroskedasticity and many covariates (Kline, Saggio, and Sølvsten, 2020; Jochmans, 2021),

valid inference under heteroskedasticity and many restrictions (Anatolyev and Sølvsten,

2021) and model selection (and potentially model averaging) under heteroskedasticity and

many predictors (Anatolyev, 2021).

In this paper, we introduce an analog of leave-out estimation for clustered samples,

which we call leave-cluster-out (LCO). As the name suggests, it entails estimation with the

current cluster�s observations removed from computations, which yields the LCO parameter

estimator. The LCO residuals are related to the regular OLS residuals by a relationship

that involves blocks of the orthogonal projection matrix, which neatly generalizes an analo-

gous celebrated relationship for leave-one-out estimates. On the basis of LCO residuals, we

construct unbiased estimates of cluster-wise variance matrices, which are cluster analogues

of unbiased individual variance estimates from Kline, Saggio, and Sølvsten (2020) for in-
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dependent data, and eventually develop an improved asymptotic variance estimator. This

LCO variance estimator is thus robust to clustering, to conditional heteroskedasticity, and

to many regressors. Like Hansen and Lee (2019), we allow unbalanced clustered sampling,

and allow the number of observations in the maximal cluster to slowly grow with the sample

size. The inference about linear combinations of parameters are carried out in the usual way,

relying on quantiles of the standard normal distribution. In simulations, the LCO estimator

exhibits great performance and amazing robustness to regressor numerosity.

The paper is organized as follows. Section 2 describes the setup and introduces the LCO

technology. Some important properties of the LCO estimates are derived. In Section 3,

we construct the cluster-robust LCO variance estimator and show its consistency. Section 4

discusses the results of simulation experiments, and Section 5 concludes. Proofs of theoretical

results are collected in the Appendix. Some notes on notation not explicitly introduced in

the body of the paper: �min (A) and �max (A) denote the minimal and maximal eigenvalues of

square symmetric matrix A; dg fAggGg=1 denote a square block-diagonal matrix with square

blocks Ag; kdkLp denotes the Lp-norm of vector d.

2 Regression model and LCO estimation

Consider a linear regression model where the n observations belong to G clusters, gth cluster

having ng observations:

yg;i = x
0
g;i� + eg;i; E [eg;ijXg] = 0;

where � is m� 1 regression parameter vector and Xg =
�
xg;1; ::; xg;ng

�0
is ng �m matrix of

cluster g�s regressors. De�ne, for each g = 1; :::; G; ng � 1 vectors [y]g = (yg;1; :::; yg;ng)0 and

[e]g = (eg;1; :::; eg;ng): The same notation for clusterized vectors will be sustained throughout.

The collections f[y]g ; XggGg=1 are assumed to be independent across g. The dimension m of

the regressors may be large and comparable to sample size with m � n�max1�g�G ng. One

can rewrite the model in the matrix form

y = X� + e; E [yjX] = 0;
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and also in terms of cluster-wise data:26666666666664

[y]1

[y]2
...

[y]g
...

[y]G

37777777777775
=

26666666666664

X1

X2

...

Xg

...

XG

37777777777775
� +

26666666666664

[e]1

[e]2
...

[e]g
...

[e]G

37777777777775
;

where E
h
[y]g jXg

i
= 0 for each g = 1; :::; G: Denote 
g = var (egjXg) ; so that 
 (X) =

var (ejX) = dg f
ggGg=1 : No structure on any 
g is imposed, beyond requiring all of them

being �nite, symmetric and positive semide�nite, nor is any functional form of dependence

on Xg. In turn, the dependence structure within any Xg is not restricted either, beyond

invertibility of cluster-wise submatrices of the orthogonal projection matrix (see below).

Let P = X (X 0X)�1X 0; and let Pgg be the ng � ng matrix corresponding to the gth

diagonal block of P . De�ne Mgg = Ing � Pgg: The vector of OLS residuals is ê = My; and

[ê]g is an ng � 1 vector corresponding to its gth cluster. Further, let X�g be matrix X with

the rows corresponding to the gth cluster removed, and [y]�g be vector y with the elements

corresponding to the gth cluster removed.

Denote by �̂�g the leave-cluster-out (LCO) estimator

�̂�g =
�
X 0
�gX�g

��1
X 0
�g [y]�g ;

and the leave-cluster-out (LCO) residuals for gth cluster

[ê�g]g = [y]g �Xg�̂�g:

These LCO objects are an extension of leave-one-out estimator and leave-one-out residuals

when there is no clustering, i.e. when ng = 1 for all g = 1; :::; G and G = n:

Assumption 1. For all g = 1; 2; :::; G; the matrix Mgg is non-singular.

As we will see later from Lemma 2, Assumption 1 makes sure that the LCO estimates

and residuals exist for all the clusters. This is a condition on su¢ ciently non-atomic structure
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of the distribution of regressors within each cluster. On the one extreme, if all regressors are

continuously distributed, Assumption 1 must be satis�ed provided that the biggest cluster

is of size no larger than n �m; which we have already imposed. On the other extreme, if

group dummies for the same groups are used as regressors, all matrices Mgg are singular.

As long as the con�guration in the presence of discrete regressors is not that unreasonable,

Assumption 1 is expected to hold.

Lemma 1. Under Assumption 1, the product [y]g [ê�g]
0
g is conditionally unbiased for


g; g = 1; 2; :::; G:

Lemma 1 extends the idea of constructing unbiased estimates of individual variance

components of Kline, Saggio, and Sølvsten (2020) to a regression on clustered data. Lemma

2 below is an analog of a celebrated relation between the OLS residuals and leave-one-out

residuals, ê�i = êi=Mii; i = 1; :::; n:

Lemma 2. Under Assumption 1, we have for all g = 1; 2; :::; G;

[ê�g]g =M
�1
gg [ê]g :

The result in Lemma 2, in particular, allows one to compute the LCO residuals for all

clusters without running G LCO regressions, and instead compute all of them from one set of

OLS estimates. This requires though additional G square matrix inversions of submatrices

of the orthogonal projection matrix. In addition, this relation greatly helps with proving

theoretical results.

3 Cluster-robust variance estimation

On the basis of LCO residuals, we can construct an unbiased cluster-wise variance estimate

for each 
g (Xg) ; g = 1; 2; :::; G; based on LCO residuals:


̂LCOg =
[y]g [ê�g]

0
g + [ê�g]g [y]

0
g

2
: (1)
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We have used the machinery of symmetrization in order for the variance matrix estimate to

be symmetric, as the product in Lemma 1 need not be symmetric by construction.

Having been equipped with the unbiased cluster-wise variance estimates (1), we construct

the OLS variance estimate as

V̂ LCO = (X 0X)
�1

 
GX
g=1

X 0
g
̂

LCO
g Xg

!
(X 0X)

�1
: (2)

This is an analog of the variance estimate for independent data that is robust to condi-

tional heteroskedasticity and many regressors (or covariates) proposed in Kline, Saggio, and

Sølvsten (2020) and implemented in Jochmans (2021).1 Because 
̂LCOg is conditionally un-

biased, V̂ LCO is too. This unbiasedness holds for arbitrary within-cluster heteroskedasticity

and for any number of regressors, in contrast to the members of a class of HCK variance

estimators (see, e.g., Bell and McCa¤rey, 2002; Imbens and Kolesár, 2016) �those that are

adjusted to be exactly unbiased in the special circumstance of conditional homoskedasticity.

Assumption 2. As n!1; we have G!1 and max1�g�G ng = o
�
n1=2

�
:

Assumption 2 restricts asymptotic growth of maximally sized cluster and allows moder-

ately large clusters.

Take c to be an m � 1 constant vector with kckL2 = O (1) ; and take the parameter of

interest to be c0�; so that the restriction being tested involves an asymptotically �nite subset

of parameters.

Assumption 3 below lists various technical regularity conditions.

1Jochmans (2021) follows the setup of Cattaneo, Jansson, and Newey (2018) who consider inference for

a �nite number of parameters of interest but allows moderate regressions misspeci�cation due to imperfect

approximation of the true regression by a linear function of many covariates. We stick to the standard setup

of a correctly speci�ed regression. This allows us, in particular, to be a bit more �exible in formulating

the parameter of interest. We conjecture that a moderate amount of misspeci�cation can also be allowed

without jeopardizing consistency of the LCO estimator.

7



Assumption 3.

(i) There exists C
 > 0 such that �max (
 (X)) � C
; and there exists C� > 0 such that

max1�g�Gmax1�i�ng E
h
[e]4g;i jXg

i
� C�:

(ii) There are cXX > 0 and CXc > 0 such that Pr f�min (n�1X 0X) � cXXg ! 1 as n!1

and Pr
�
max1�g�G kXgck2L2 > CXcmax1�g�G ng

	
! 0 as G!1:

(iii) The vector of coe¢ cients � is such that kX�k2L2 = OP (n) and k�kL2 = O(1):

(iv) There is cM > 0 such that Pr fmin1�g�G �min (Mgg) � cMg ! 1 as n!1:

The �rst condition in Assumption 3(i) restricts eigenvalues of the conditional variance

matrix, and automatically restricts eigenvalues of all cluster-wise blocks; its independent-

sample analog would be max1�i�nE [e2i jxi] � C
. The second condition in Assumption

3(i) restricts individual fourth moments. The �rst condition in Assumption 3(ii) restrrules

out near-collinearity of the regressors, while the second condition restricts within-cluster

growth of regressors whose coe¢ cients participate in the null restriction. The conditions

in Assumption 3(iii) preclude growth of regressors with the sample size and restrict the

explanatory power in the regression. They are needed because the LCO variance estimator,

or more precisely, the estimates of cluster-wise variances, involve levels of the dependent

variable. On the one extreme, the number of regressors may be �nite, then all of these may

have non-zero bounded coe¢ cients; on the other extreme, the number of regressors may be

proportional to the sample size, then the non-zero coe¢ cients may be asymptotically few

but �xed, many but
p
1=n-local-to-zero, or take a suitable in-between con�guration. The

condition in Assumption 3(iv) strengthens Assumption 1. It is an analog of the condition of

leverages min1�i�nMii � cM typically imposed in many-regressor literature for independent

data.

The main result is Theorem 1 below, which established consistency of the LCO variance

estimator V̂ LCO in (2). We presume that
p
n
�
c0�̂ � c0�

�
is asymptotically normal with
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mean zero and variance c0V c;where

V = (X 0X)
�1

 
GX
g=1

X 0
g
gXg

!
(X 0X)

�1
:

Theorem 1. Suppose Assumptions 2-3 hold. Then, for the LCO variance estimator

V̂ LCO, we have

n
�
c0V̂ LCOc� c0V c

�
= op (1) ;

as n!1:

The signi�cance level � asymptotic two-sided test of the null H0 : c0� = !; where ! is a

preci�ed value, is then performed in the usual way by comparing the value of the t statistic

tc0� =
c0�̂ � !p
c0V̂ LCOc

with the right (1� �=2)-quantile z1��=2 of the standard normal distribution, and the con�-

dence level 1�� asymptotic con�dence interval for c0� is constructed as c0�̂�z1��=2
p
c0V̂ LCOc:

Remark. As follows from the proof of Theorem 1, the condition kckL2 = O (1) may be

slightly relaxed as long as it is still consistent with Assumption 3(i), i.e. participation of a

moderately large number of coe¢ cients may be allowed in the combination, at the expense

of a smaller growth rate of maxg ng stated in Assumption 1. For example, if maxg ng is

asymptotically �xed, one may allow c to grow up to kckL2 = o
�
n1=2

�
:

4 Simulation evidence

We borrow elements of the simulation setup in Carter, Schnepel, and Steigerwald (2017):

yg;i = �0 +

dX
j=1

�jxg;i;j + ug;i;

where the regressors are generated by

xg;i = zg + zg;i;
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with zg and zg;i IID standard normal. Note that m = d+ 1: The error ug;i follows the error

component structure

ug;i = �g"g + �g;i�g;i;

with "g and �g;i IID standard normal. The conditional standard deviations �g and �g;i are

generated by

�g = 


 
dX
j=1

z2g

!1=2
; �g;i = 


 
dX
j=1

z2g;i

!1=2
;

with 
 = 5, which induces pretty strong heteroskedasticity. There are n = 2; 500 observations

divided into G = 100 clusters. In the �rst, �balanced�, design, all clusters are equally sized,

with ng = 25: In the second, �unbalanced�, design, there is a big dispersion in cluster sizes:

n1 = n2 = n3 = 1, n4 = n5 = 2, :::; n96 = n97 = 48. n98 = n99 = n100 = 49, so that the

average number is the same as in the balanced design. Note that max1�g�G ng is either 25

or 49, which are a bit higher �gures than what can be expected from the order o
�
n1=2

�
of

Assumption 2.

The true values of parameters are zero, �0 = �2 = ::: = �d = 0; except �1 = 1: Then,

k�kL2 = 1: We are looking at the actual sizes for the null H0 : �1 = 1; which is its true

value; so that kckL2 = 1. Two variance estimators are compared: one is the proposed LCO

estimator V̂ LCO, and the other is the benchmark clustered estimator (labeled LZ, for Liang

and Zeger, 1986)

V̂ LZ = (X 0X)
�1

 
GX
g=1

X 0
g [ê]g [ê]

0
gXg

!
(X 0X)

�1
:

Figure 1 shows the actual rejection rates, corresponding to the nominal size of 5%,

obtained from 20,000 simulations, the upper panel for the balanced design, and the lower

panel for the unbalanced design. The graphs are drawn for d running from d = 5 to d = 100

with a step of 5. One can see that the LZ estimator leads to overrejection that is uniformly

higher than that from the LCO estimator, and reaches the value of �additional�5% for d as

small as 20� 40. The size distortions from the LZ estimator seem to be increasing roughly

linearly with d; and reach 10 � 15% on top of the nominal size when d reaches 100; which

is not that large with n = 2; 500: Interestingly, these distortions are consistently higher for
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the unbalanced design than for the balanced design, by approximately 20%. In contrast,

the LCO estimator leads to uniformly small size distortions, also of the overrejection type,

of no higher than just 1%; some part of which is certainly the simulation noise. The size

distortions do not rise with d at all, for either design, even for the unbalanced design, whose

max1�g�G ng is pretty big for the o
�
n1=2

�
rule.

Note that in the previous simulation exercise, with n = 2; 500; the ratio of regressor

numerosity even with the maximal d is quite small, only � 0:04, yet the size distortions

resulted from the use of the LZ estimator, are large. We have also run experiments with

a really big number of non-constant regressors, d = 500 for the unbalanced design and

d = 1; 000 for the balanced design, with perceptible dimensionality ratios of 0:2 and 0:4,

respectively. The actual rejection rates from 5,000 simulations turned out to be around

15� 16% when the LZ variance estimator is used, while with the LCO variance estimation,

they are around 5:1� 5:3% keeping up with those in Figure 1 in much smaller dimensional

situations.

5 Conclusion

In this paper, we have used the LCO method, an extension of leave-one-out machinery

adapted for clustered data, for constructing an unbiased asymptotic OLS variance estimation

in a linear regression model with many regressors. The proposed LCO technology may turn

to be useful in other regression setups with many regressors and heteroskedasticity � for

example, in adaptation of the Mallows criterion (Anatolyev, 2021) for model selection or

model averaging, or in adaptation of testing for many restrictions (Anatolyev and Sølvsten,

2021), in case the regression errors are clustered. Potentially, it can �nd its way into other

clustered data situations where cross-validation methods are used �for example, bandwidth

selection in nonparametric models. This is an interesting agenda for future research.
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Appendix: Proofs

Proof of Lemma 1. Observe that the conditional expectation is

E
�
[y]g [ê�g]

0
g jX

�
= E

��
Xg� + [e]g

� h
X
�
� � �̂�g

�
+ e
i0
g
jX
�

= (Xg�)E
�
� � �̂�gjX

�0
X 0
g

+E
�
[e]g jX

�
E
�
� � �̂�gjX

�0
X 0
g

+(Xg�)E
�
[e]0g jX

�
+E

�
[e]g [e]

0
g jX

�
= 
g:

The �rst term here is zero as the OLS estimator is conditionally unbiased; in the second

term, expectation of the product factorizes because �̂�g does not use data from cluster g;

the third term is zero because of the regression assumption. �

Proof of Lemma 2. Denote also P�g = X (X 0X)�1X 0
g: Let us look at

[ê�g]g =
h
y �X�̂�g

i
g
=
h
y �X

�
X 0
�gX�g

��1
X 0
�gy�g

i
g
:

Using the Woodbury matrix identity (Woodbury, 1949),

�
X 0
�gX�g

��1
=

�
X 0X �X 0

gXg

��1
= (X 0X)

�1
+ (X 0X)

�1
X 0
g

�
Ing �Xg (X

0X)
�1
X 0
g

��1
Xg (X

0X)
�1

= (X 0X)
�1
+ (X 0X)

�1
X 0
gM

�1
gg Xg (X

0X)
�1
:

Then

[ê�g]g =
h
y �X (X 0X)

�1
�
Ik +X

0
gM

�1
gg Xg (X

0X)
�1
� �
X 0y �X 0

gyg
�i
g
:

Note that

y �X (X 0X)
�1
�
Ik +X

0
gM

�1
gg Xg (X

0X)
�1
�
X 0y =My � P�gM�1

gg P
0
�gy
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and

X (X 0X)
�1
�
Ik +X

0
gM

�1
gg Xg (X

0X)
�1
�
X 0
gyg = P�g

�
I +M�1

gg Pgg
�
yg = P�gM

�1
gg yg;

Therefore,

[ê�g]g =
�
My � P�gM�1

gg P
0
�gy + P�gM

�1
gg yg

�
g

= [My]g � PggM�1
gg

�
P 0�gy � yg

�
= [My]g �

�
Ing �Mgg

�
M�1
gg [�My]g

= [My]g �
�
Ing �M�1

gg

�
[My]g

= M�1
gg [ê]g :

�

Proof of Theorem 1. We will denote by C a positive generic constant, which may be

di¤erent in di¤erent instances. De�ne ng � 1 vector ag = Xg (X
0X)�1 c: First, note that

GX
g=1

kagk2L2 = c0 (X 0X)
�1

GX
g=1

X 0
gXg (X

0X)
�1
c = c0 (X 0X)

�1
c

� n�1�min
�
n�1X 0X

��1 kck2 � C kck2 n�1:
Second, note that

kagk2L2 = c0 (X 0X)
�1
X 0
gXg (X

0X)
�1
c

� n�2�min
�
n�1X 0X

��2 kXgck2 ;

hence, using Assumption 3, with probability approaching one,

max
1�g�G

kagk2L2 � n
�2 � c�2XX � CXc max

1�g�G
ng � Cn�2 max

1�g�G
ng:

Similarly,

max
1�g�G



M�1
gg ag



2
L2
� min

1�g�G
�min (Mgg)

�2 max
1�g�G

kagk2L2 � Cn
�2 max

1�g�G
ng:

Then, also using Assumptions 2 and 3, we have:
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(i)
PG

g=1 kagk
4
L2 �

�
max1�g�G kagk2L2

�PG
g=1 kagk

2
L2 � C kck

2 n�3max1�g�G ng;

(ii)
�
a0g (Xg�)

�2 � maxg kagk2L2 �0PG
g=1X

0
gXg� � Cn�2 kX�kL2 max1�g�G ng.

Let V̂0 be non-symmetrized version of V̂ LCO, then

c0V̂0c� c0V c =
GX
g=1

a0g

�
[y]g [ê]

0
gM

�1
gg � 
g

�
ag = A1 + A2 + A3;

where

A1 =
GX
g=1

a0g

�
[e]g [e]

0
g � 
g

�
ag;

A2 =
GX
g=1

a0g (Xg�) [Me]
0
gM

�1
gg ag;

A3 =
GX
g=1

a0g [e]g

GX
h=1;h 6=g

[e]0hM
0
ghM

�1
gg ag:

We now consider each of these three terms.

Take the �rst term, A1: The expectation is zero by the de�nition of 
g: Next,

var [A1jX] = var

"
GX
g=1

a0g

�
[e]g [e]

0
g � 
g

�
agjX

#
=

GX
g=1

var
h
a0g

�
[e]g [e]

0
g � 
g

�
agjXg

i
<

GX
g=1

E

��
a0g

�
[e]g [e]

0
g � 
g

�
ag

�2
jXg

�

� 2 max
1�g�G

�max

�
E

��
[e]g [e]

0
g

�2
jXg

�� GX
g=1

kagk4L2

� 2 � C� max
1�g�G

ng � kck2 n�3 max
1�g�G

ng

� O

�
kck2 n�3 max

1�g�G
n2g

�
;

also using that

max
1�g�G

�max

�
E

��
[e]g [e]

0
g

�2
jXg

��
� max

1�g�G





E ��[e]g [e]0g�2 jXg

�




F

� max
1�g�G

r
n2g max

1�i�ng
E
h
[e]4g;i jXg

i2
� C� max

1�g�G
ng:
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For the second term A2; the expectation is zero by the conditional mean zero assumption.

Let �g;i denote a n�1 unit vector with unity only in the position corresponding to observation

i in cluster g: Note that

GX
h=1

�0g1;i1M�hE [ehe
0
hjX]M 0

�h�g2;i2 = �
0
g1;i1

 
GX
h=1

M�h
hM
0
�h

!
�g2;i2 =

h
(M
M)g1g2

i
i1i2
:

Then,

var [A2jX] = var

"
GX
g=1

a0g (Xg�) [Me]
0
gM

�1
gg agjX

#

= var

"
GX
g=1

a0g (Xg�)

ngX
i=1

�
M�1
gg ag

�
i

GX
h=1

[M�heh]g;i jX
#

=
GX
h=1

var

"
GX
g=1

ngX
i=1

a0g (Xg�)
�
M�1
gg ag

�
i

�
�0g;iM�heh

�
jX
#

=
GX
h=1

GX
g1=1

ngX
i1=1

a0g1 (Xg1�)
�
M�1
g1g1
ag1
�
i1

GX
g2=1

ngX
i2=1

a0g2 (Xg2�)
�
M�1
g2g2
ag2
�
i2
�0g1;i1M�hE [ehe

0
hjX]M 0

�h�g2;i2

=
GX

g1=1

ngX
i1=1

a0g1 (Xg1�)
�
M�1
g1g1
ag1
�
i1

GX
g2=1

ngX
i2=1

a0g2 (Xg2�)
�
M�1
g2g2
ag2
�
i2

h
(M
M)g1g2

i
i1i2

=

GX
g1=1

a0g1 (Xg1�)

GX
g2=1

a0g2 (Xg2�)

ngX
i1=1

ngX
i2=1

h
(M
M)g1g2

i
i1i2

�
M�1
g1g1
ag1
�
i1

�
M�1
g2g2
ag2
�
i2

=

GX
g1=1

GX
g2=1

�
a0g1 (Xg1�)M

�1
g1g1
ag1
�0
(M
M)g1g2

�
a0g2 (Xg2�)M

�1
g2g2
ag2
�

= A0MgM
MAMg;

where A0Mg is 1 �
PG

g=1 ng = 1 � n row vector with subvectors a0g (Xg�)M
�1
gg ag as g runs
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from 1 to G. Note that

kAMgk2L2 =
GX
g=1

�
a0g (Xg�)

�2 

M�1
gg ag



2
L2

= max
1�g�G



M�1
gg ag



2
L2

GX
g=1

�
a0g (Xg�)

�2
� c�2M max

1�g�G
kagk4L2

 
�0

GX
g=1

X 0
gXg�

!

� c�2M

�
Cn�2 max

1�g�G
ng

�2
kX�k2L2

� O(n�3 max
1�g�G

n2g):

Hence,

var [A2jX] � kAMgk2L2 �max (
)�max (M)
2

� O(n�3 max
1�g�G

n2g) � C
 � 12

= O(n�3 max
1�g�G

n2g):

Finally, take the third term, A3: The expectation is zero because [e]g and [e]h do not

correlate when g 6= h: Now, going for the variance,

var [A3jX] = var

"
GX
g=1

a0g [e]g

GX
h=1;h 6=g

[e]0hM
0
ghM

�1
gg agjX

#

= E

"
GX

g1=1

a0g1 [e]g1

GX
h1=1;h1 6=g1

[e]0h1M
0
g1h1
M�1
g1g1
ag1

GX
g2=1

a0g2 [e]g2

GX
h2=1;h2 6=g2

[e]0h2M
0
g2h2
M�1
g2g2
ag2jX

#

=

GX
g=1

GX
h=1;h 6=g

E

��
a0g [e]g

�2
jX
�
E
h�
[e]0hM

0
ghM

�1
gg ag

�2 jXi
+

GX
g=1

GX
h=1;h 6=g

E
h
a0g [e]g [e]

0
gM

0
hgM

�1
hh ahjX

i
E
�
a0h [e]h [e]

0
hM

0
ghM

�1
gg agjX

�
:
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The �rst term equals to and is bounded by

GX
g=1

a0g
gaga
0
g

�
M�1
gg (M
M)ggM

�1
gg � 
g

�
ag

<

GX
g=1

�max (
g)
2 kagk2L2



M�1
gg ag



2
L2
�max (Mg)

2

� c�2M max
g
�max (
g)

2max
g
�max (Mg)

2max
g
kagk2L2

GX
g=1

kagk2L2

� COP (1)
2 �OP (1)2 � Cn�2 max

1�g�G
ng � C kck2 n�1

= O

�
kck2 n�3 max

1�g�G
ng

�
:

The second term equals to and is bounded by�����
GX
g=1

GX
h=1;h 6=g

�
a0g
gM

0
hgM

�1
hh ah

� �
a0h
hM

0
ghM

�1
gg ag

������
<

GX
g=1

GX
h=1

kMhg
gagk2L2


M�1

hh ah


2
L2

�
GX
h=1



M�1
hh ah



2
L2

GX
g=1

kMhgk2L2 k
gagk
2
L2

� c�2M max
h
kahk2L2

GX
g=1

GX
h=1

kMhg
gagk2L2

� c�2M max
h
kahk2L2 maxg �max (Mg)max

g
�max (
g)

2
GX
g=1

kagk2L2

� Cn�2 max
1�g�G

ng �OP (1) �OP (1)2 � C kck2 n�1

= O

�
kck2 n�3 max

1�g�G
ng

�
;

because
GX
h=1

kMhg
gagk2L2 =

GX
h=1

a0g
gM
0
hgMhg
gag = a

0
g
gMgg
gag

� �max (Mg)�max (
g)
2 kagk2L2 :

So, var [A3jX] = O
�
kck2 n�3max1�g�G ng

�
:
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To summarize, we have E
h
c0V̂0c� c0V cjX

i
= 0 and

var
h
c0V̂0c� c0V cjX

i
= OP

�
kck2 n�3 max

1�g�G
n2g

�
;

and hence

n
�
c0V̂0c� c0V c

�
= OP

�
kckn�1=2 max

1�g�G
ng

�
;

which is op(1) by Assumption 2. Because c0V̂ 00c = c
0V̂0c; the same relation will hold with for

the symmetrized version V̂ LCO: �
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Figure 1. Actual rejection rates corresponding to nominal size of 5%, against number of 
non-constant regressors. Upper panel: balanced design, lower panel: unbalanced design  
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