
Should we increase or decrease public debt? Optimal fiscal policy
with heterogeneous agents∗

François Le Grand Xavier Ragot†

February 15, 2022

Abstract

We analyze optimal fiscal policy in a heterogeneous-agent model with capital accumulation
and aggregate shocks, where the government uses public debt, capital tax and non-linear
labor tax to finance public spending. First, we prove that the existence of a steady-state
equilibrium depends on three conditions, which have different economic interpretations: a
Laffer condition, a Blanchard-Kahn condition and a Straub-Werning condition. We identify
two new results in a simplified version of the model. First, we show that the equilibrium
can feature both a positive level of public debt and a positive capital tax at the steady
state. Second, we prove that optimal public debt increases if persistence of a positive public
spending shock is low, whereas it decreases when the persistence is high. We show that our
results still hold in a quantitative version of the model, where the optimal dynamics of the
whole set of fiscal tools is analyzed. The quantitative model also provides new results on
optimal tax progressivity and on the size of the fiscal multiplier.
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1 Introduction

What is the optimal level of public debt? Should it increase or decrease when public spending is
increasing? Should the government increase temporarily capital tax or other distorting taxes,
affecting the progressivity of the tax system? These old questions are likely to stay relevant in the
coming years in many countries. Heterogeneous-agent models are a useful laboratory to explore
such questions, as they include both necessary general equilibrium considerations and detailed
redistributive effects, as in the Bewley-Huggett-Imohoroglu-Aiyagari literature (Bewley, 1983;
Imrohoroğlu, 1989; Huggett, 1993; Aiyagari, 1994; Krusell and Smith, 1998). We thus study the
optimal time-varying fiscal policy after a public spending shock in an heterogeneous-agent model
with capital and labor tax, public debt and where the tax progressivity can be time-varying.

This analysis first requires some clarifications about optimal fiscal policy in heterogeneous-
agent models, both for the steady state and for the dynamics. Indeed, some contributions,
reviewed below, have questioned the ability of such model to deliver relevant insights regarding
fiscal policies, in the context of Ramsey program with commitment. Hence, we first solve a
tractable model, where optimal policies can be analytically derived, and then we show that the
results are preserved in a quantitative model. The tractable model relies on deterministic income
fluctuations and possibly occasionally-binding credit constraints, in the spirit of Woodford (1990),
and on a utility function exhibiting no wealth effect of labor supply as in Diamond (1998).1 The
Ricardian equivalence does not hold when the planner cannot use lump-sum taxes, consistently
with Bhandari et al. (2017), and thus public debt is uniquely determined. We prove three results.
First, we show that a steady state equilibrium exists if three conditions are fulfilled: A Laffer
condition, a Straub-Werning condition, and a Blanchard Kahn condition. These three conditions
have different economic interpretation: The Laffer condition states that public spending should
not be too high, otherwise distorting taxes cannot levy enough resources. The Straub-Werning
condition, elaborating on Straub and Werning (2020) states that the public spending must be
low enough, otherwise the planner wants to deviate from the steady state by decreasing the
capital stock (although it could levy enough resources at the steady state). The Blanchard-Kahn
condition is a stability condition, that requires the planner not to deviate from the steady state
by increasing the capital stock. In addition, we identify two new thresholds. The first one is
a cut-off level of public spending below which both the optimal level of capital tax and public
debt are positive in a stable steady-state equilibrium. This result confirms the claim of Aiyagari
(1995) and Aiyagari and McGrattan (1998) that heterogeneous-agent model can deliver positive
capital tax and public debt as an optimal outcome. Interestingly, this result only depends on
occasionally-binding credit constraints, and not on market incompleteness (as income fluctuations
are deterministic). The second threshold concerns the persistence of the public spending shock.

1This environment allows studying the concavity of the problem and the qualification of the constraints, and
the dynamics stability of the steady state, when it exists.
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We show that for when the shock has a low persistence, public debt increases on impact, whereas
it decreases when the persistence is high. Importantly, in both cases, the initial positive shock is
identical. The reason for this result is that when the persistence is low, an increase in public debt
allows the planner to smooth tax. A small increase in taxes finances the public debt reduction
after its initial increase. When the persistence is high, the planner wants to decrease public
debt, and related future interest repayment. This mitigates the long-lasting increase in public
spending.

We then show that these properties remain valid in a quantitative heterogeneous-agents
model with aggregate spending shock, where utility function is general, and where the planner
can use a non-linear labor tax, a capital tax, and public debt to finance a temporary increase
in public debt. We use and improve the methodology developed in LeGrand and Ragot (2022)
to derive the first-order conditions of the planner and simulate the dynamics of the optimal
allocation. We follow Heathcote et al. (2017) representation of the US tax system. In the same
vein as Heathcote and Tsujiyama (2021), we estimate the social welfare function to reproduce a
realistic steady-state fiscal system, calibrated on the US economy. Starting from this economy,
we implement a temporary increase in public spending. Public debt is found to increase when
the low persistence of public spending shock is low, while its increases for higher persistence. We
find that the cut-off value for persistence is approximately 0.81, when the public spending shock
follow a first-order autoregressive process.2 In addition, we show that the size of the cumulative
multiplier on public spending depends on the persistence, where higher persistence implies higher
cumulative multiplier.

The paper is related to the recent literature on optimal policies in heterogeneous-agents model.
It is first related to tractable models, allowing to derive optimal policies, (Bilbiie, 2008, Gottardi
et al., 2014 Heathcote et al., 2017, Bilbiie and Ragot, 2020, Acharya et al., 2020, Heathcote and
Tsujiyama, 2021 among many others). In this literature, we find that the framework of Woodford
(1990) is particularly useful to study optimal fiscal policy.

Second, there is a recent, and relatively thin, quantitative literature studying optimal Ramsey
policies in heterogeneous-agents models considering transitions (e.g., Conesa et al., 2009, Açikgöz
et al., 2018, Dyrda and Pedroni, 2018, Nuño and Thomas, 2020, Bhandari et al., 2020). In
this literature, we use LeGrand and Ragot (2022) who use a Lagrangian approach (taken from
Marcet and Marimon, 2019) to derive the first-order conditions of the planner. Following, the
literature we assume that the solution is interior and follow a first-order approach. We then use
a truncation procedure to simulate the model. In LeGrand et al. (2021), we consider optimal
monetary-fiscal policy in a nominal framework featuring price rigidities, and show that monetary
tools are redundant when a rich set of fiscal tools are available. In the current paper, we derive
new results on equilibrium properties and on the optimal dynamics of public debt.

2The annual persistence of a standard public spending shock is 0.89 on US data – see Chari et al. (1994) or
Farhi (2010).
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Finally, the paper is related to the literature on optimal capital taxation (Chari et al.,
1994, Farhi, 2010, Chari et al., 2016, or Straub and Werning, 2020 among other), optimal tax
redistribution and progressivity (e.g., Bassetto, 2014 or Heathcote et al., 2017), and the size of
the fiscal multiplier in heterogeneous-agent models (Ferriere and Navarro, 2020).

The rest of the paper is organized as follows. In Section 2, we present the general environment.
We solve the tractable model in Section 3. The general model is solved in Section 4. Section 5
concludes.

2 The environment

Time is discrete and indexed by t = 0, 1, . . . The economy is populated a continuum of mass two
of agents distributed along a set I with measure `. We follow Green (1994) and assume that the
law of large numbers holds. The economy features production and a benevolent government that
raises discretionary taxes to finance exogenous public spending.

2.1 Risks

The economy is plagued by two risks: an aggregate risk and an idiosyncratic risk. The aggregate
shock solely affects public spending, denoted by (Gt)t≥0 and is therefore assimilated to public
spending. Furthermore, we assume that the whole path of public spending (Gt)t≥0 becomes
known to all agents in period 0. We will solve for the optimal adjustment of economy after such
a shock, also known as a MIT shock.3

In addition to aggregate risk, agents face an uninsurable productivity risk, denoted by y.
Individual productivity levels follow independent first-order Markov chains, whose state-space
is the finite set {y1, . . . , yK} and the transition matrix is denoted by Π. We assume that the
Markov chain admits a stationary distribution that is denoted by the K-dimensional vector ny,
verifying ny = Πny.4 When an agent is endowed with productivity y, she will earn a before-tax
labor wage w̃yl, where l denotes her labor supply and w̃ is the before-tax hourly wage.

2.2 Production

The production sector is standard. The unique consumption good of the economy is produced by
a profit-maximizing representative firm. At any date t, the firm production function combines
labor Lt and capital Kt−1 – that needs to be installed one period in advance – to produce Yt
units of the consumption good. The production function is assumed to be of the Cobb-Douglas

3It is known that one can derive a first-order approximation of the dynamics of the model in the presence of
aggregate shocks, using the information obtained from MIT shocks (Boppart et al., 2018, Auclert et al., 2019)

4In the quantitative analysis of Section 4, the Markov chain can be shown to be irreducible and aperiodic –
hence nyexists and is unique. In the theoretical investigation of Section 3, the matrix is anti-diagonal.
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type featuring constant returns to scale and capital depreciation. The TFP is normalized to one.
Formally, the production is defined as:

Yt = F (Kt−1, Lt) = Kα
t−1L

1−α
t − δKt−1,

where α ∈ (0, 1) is the capital share and δ ∈ (0, 1) the capital depreciation rate.
The firm rents labor and capital at respective factor prices w̃t and r̃t. The profit maximization

conditions of the firm implies the following expressions for factor prices:

w̃t = FL(Kt−1, Lt) and r̃t = FK(Kt−1, Lt). (1)

2.3 Assets

In addition to capital, the economy also features public debt, whose size is denoted by Bt in
period t. Public debt consists of one-period bonds issued by a benevolent government, that
are assumed default-free. We assume the existence of a risk-neutral financial intermediary that
collects the whole stock of public debt and capital. This intermediary issues shares that are the
sole tradable assets for agents. This market arrangement allows to consider two different asset
classes, without a portfolio choice (e.g., Gornemann et al., 2016, Bhandari et al., 2020). We will
denote by at the agents’ holdings in fund shares. We assume that agents are prevented from
borrowing more than the exogenous amount a.

Finally, the absence of arbitrage of the fund no-profit condition imply that the fund shares and
public debt must pay the same interest rate as capital. There is therefore a unique (before-tax)
interest rate r̃t at date t in the economy.

2.4 Government

A benevolent government has to finance the exogenous stream of public spending (Gt)t≥0, by
levying distortionary taxes on capital and labor and issuing public debt. The tax on capital is
linear, with a rate (τKt )t≥0 and levied on fund shares holdings of agents. There is no distinction
between public debt bonds or capital shares for taxation.5 The tax on labor income is assumed
to be non-linear, and possibly time-varying. We denote by Tt(w̃yl) the amount of labor tax
paid by an agent earning the labor income w̃yl by supplying l hours at a wage rate w̃ and a
productivity y. We follow Heathcote et al. (2017) (henceforth, HSV) and consider the following
functional form:

Tt(w̃yl) := w̃yl − κt(w̃yl)1−τt , (2)

where κ captures the level of labor taxation and τ the progressivity. Both parameters are assumed
to be time-varying and will be planner’s instruments. When τt = 0, labor tax is linear with rate

5The financial intermediary is not taxed and simply considered as a market arrangement.
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1− κt. Oppositely, the case τt = 1 corresponds to full income redistribution, where all agents
earn the same post-tax income κt. Functional form (2), combined with the linear capital tax,
allows one to realistically reproduce the actual US system and its progressivity (see Ferriere and
Navarro, 2020).6

Using the public debt description of Section 2.3, the government budget constraint can thus
be written as:

Gt + (1 + r̃t)Bt−1 =
ˆ
Tt(w̃tyilit)`(di) + τKt r̃t(Bt−1 +Kt−1) +Bt. (3)

To simplify the government budget constraint, we introduce in the spirit of Chamley (1986),
generalized post-tax factor prices, that are denoted without a tilde. We define the gross and net
interest rates rt and Rt, as well as the wage rate wt, as follows:

wt := κt(w̃t)1−τt , (4)

Rt := 1 + rt = 1 + (1− τKt )r̃t. (5)

The model can analytically be expressed using the pair of post-tax rates (Rt, wt) rather than
pre-tax ones (r̃t, w̃t). This considerably simplifies the model exposition and its tractability. The
values of the fiscal instruments τKt , κt, and τt can then be recovered from the allocation.

With the post-tax notation and taking advantage of the property of homogeneity of the
production function, we deduce that the governmental budget constraint (3) can also be written
as follows:

Gt +RtBt−1 + (Rt − 1)Kt−1 + wt

ˆ
i
(yitlit)1−τt`(di) = F (Kt−1, Lt) +Bt. (6)

2.5 Agents’ program and resource constraints

At each date t, agents consume a unique good in quantity ct and supply labor in quantity lt. They
derive an instantaneous utility from consumption and labor supply denoted by U(ct, lt). The
utility function will be specified later on. Agents are expected utility maximizers with standard
additive intertemporal preferences. The discount factor is constant and denoted β ∈ (0, 1). Agents
maximize at date 0 the expected discounted value of future utilities, equal to E0

[∑∞
t=0 β

tU(ct, lt)
]
,

where E0 is the unconditional expectation over the aggregate risk and over the agent’s own
idiosyncratic risk.

Agents can save When choosing their plans for consumption (ct)t≥0, labor supply (lt)t≥0, and
savings (in fund shares) (at)t≥0 to maximize their expected utility, agents face two constraints:
(i) a budget constraint, and (ii) a credit constraint. Their budget constraints states that

6The literature uses either the combination of a linear tax and of a lump-sum transfer (e.g., Dyrda and Pedroni,
2018, Açikgöz et al., 2018) or the HSV structure. Heathcote and Tsujiyama (2021) show that the HSV structure is
quantitatively more relevant. Opting for the HSV tax structure enables us to discuss t he dynamics of optimal tax
progressivity, following a public spending shock.
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agents’ consumption and savings should be solely financed out of net labor income and net
capital income. Using the post-tax rate definition (4), the post-tax labor income amounts to
w̃ty

i
tl
i
t − Tt(w̃tyitlit) = wt(yitlit)1−τt for an agent supplying labor lit with productivity yit. The

post-tax capital income is equal to Rtait−1 for an agent with beginning-of-period wealth ait−1.
Formally, the program of an agent i can be expressed as:

max
{cit,lit,ait}t≥0

E0

∞∑
t=0

βtU(cit, lit), (7)

cit + ait = Rta
i
t−1 + wt(yitlit)1−τt , (8)

ait ≥ −a, cit > 0, lit > 0. (9)

Denoting by βtνit ≥ 0 the Lagrange multiplier on the agent’s credit constraint, the consumption
Euler equation can be written as:

Uc(cit, lit) = βEt
[
RtUc(cit+1, l

i
t+1)

]
+ νit , (10)

where Uc and Ul denote the derivatives of U with respect to the first and second variables,
respectively. Note that, because of our assumption of MIT shocks, the expectation operator in
(10) as well as in the rest solely concerns idiosyncratic shocks.

The labor Euler equation yields:

−Ul(cit, lit) = (1− τt)wt(yitlit)−τtUc(cit, lit). (11)

We now express economy-wide constraints. The clearing of financial and labor markets
implies the following relationships:

At = Kt +Bt and
ˆ
yitl

i
t`(di) = Lt. (12)

The clearing of the goods market reflects that the sum of aggregate consumption, public
spending and new capital stock balances the output production and past capital:

ˆ
i
cit`(di) +Gt +Kt = Kt−1 + F (At,Kt−1, Lt). (13)

We can now formulate our definition of a sequential equilibrium in this economy.

Definition 1 (Competitive equilibrium) A competitive equilibrium is a collection of individ-
ual variables (cit, lit, ait)t≥0,i∈I , of aggregate quantities (Kt, Lt, Yt)t≥0, of price processes (w̃t, r̃t)t≥0,
of fiscal policy (τKt , κt, τt, Bt)t≥0 and of public spending (Gt)t≥0 such that, for an initial distribu-
tion of wealth and productivity (ai−1, y

i
0)i∈I , and for initial values of the aggregate shock z0 and

of capital stock and public debt verifying K−1 +B−1 =
´
i a
i
−1`(di), we have:

1. given prices, individual strategies (cit, lit, ait)t≥0,i∈I solve the agent’s optimization program in
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equations (7)–(9);

2. financial, labor, and goods markets clear: for any t ≥ 0, equations (12) and (13) hold;

3. the government budget is balanced: equation (3) holds for all t ≥ 0;

4. pre-tax factor prices (w̃t, r̃t)t≥0 are consistent with the firm’s program (1);

2.6 The Ramsey equilibrium

The Ramsey program consists in characterizing the fiscal policy that corresponds to the com-
petitive equilibrium with the highest aggregate welfare. This problem is difficult. The labor
tax directly affects the labor supply, the capital tax directly affects the saving incentives, public
debt directly affects the capital stock for a given total private saving. All these instruments have
general equilibrium effect on prices and thus on the welfare of heterogeneous agents. As mentioned
in the introduction, the existence of stationary equilibria with strictly positive values for the
instrument is an open question. We first provide a characterization in a simple environment,
before presenting quantitative investigation.

We now turn to the formal expression of the Ramsey program. The first step is thus to define
an aggregate welfare criterion. We assume that the aggregate welfare is the weighted sum of
individual intertemporal utilities. The weight attached to a given agent i at date t is assumed to
depend on their productivity at date t: ωit := ω(yit), as in Heathcote and Tsujiyama (2021). In
consequence, two agents sharing the same productivity will have the same weight. Formally, the
planner’s aggregate welfare criterion can be expressed as:

W0 = E0

[ ∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

]
. (14)

The Ramsey problem thus consists in choosing the fiscal instruments (τKt , κt, τt, Bt)t≥0 (as
a function of the realization of the aggregate shock and of the initial distribution of the state
variables of agents) which correspond to the competitive equilibrium with the highest aggregate
welfare. Formally, the Ramsey program ca, be written as follows:
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max
(rt,wt,Bt,Kt,Lt,(ait,cit,lit,νit)i)t≥0

∞∑
t=0

βt
ˆ
i
ωit(u(cit)− v(lit))`(di), (15)

(16)

Gt +RtBt−1 + (Rt − 1)Kt−1 + wt

ˆ
i
(yitlit)1−τt`(di) = F (Kt−1, Lt) +Bt (17)

for all i ∈ I: ait + cit = Rta
i
t−1 + wt(yitlit)1−τt , (18)

ait ≥ −ā, νit(ait + ā) = 0, νit ≥ 0, (19)

Uc(cit, lit) = βEt
[
RtUc(cit+1, l

i
t+1)

]
+ νit , (20)

− Ul(cit, lit) = (1− τt)wtyit(yitlit)−τtUc(cit, lit), (21)

Kt +Bt =
ˆ
i
ait`(di), Lt =

ˆ
i
yitl

i
t` (di) , (22)

Formally, the Ramsey program consists for the planner to maximize aggregate welfare W0

subject to the governmental budget constraint (16) and to the constraints characterizing the
competitive equilibrium: individual budget constraints (8), individual Euler equations (10) and
(11), individual credit and positivity constraints (9), market clearing conditions (12) and factor
price definitions (1), (4), and (5). We solve this program using a Lagrangian approach, presented
in LeGrand and Ragot (2022).7

We denote as βtλic,t the Lagrange multiplier on the period t Euler equation of agents i,
equation (20). When the credit constraints of agents i is binding ait = −ā, and λic,t = 0, as the
Euler equation is not a constraint. It is shown in LeGrand and Ragot (2022) that (when the
credit constraint does not bind), the equilibrium can feature either λic,t > 0 or λic,t < 0 depending
on whether the agents save too much or too little seen from the planner perspective. Similarly,
we denote by βtλil,t, the Lagrange multiplier on the labor supply (21), and by βtµt the Lagrange
multiplier on the government budget constraint (16)

To save some place, we derive the first-order conditions of the planner in Appendix A. Note
that we follow the literature and assume the solution are interiors and first-order conditions of
the planner are sufficient to characterize the optimal allocation, as Straub and Werning (2020)
among many others. We provide some quantitative checks below.

To simplify the interpretation of the first-order conditions of the Ramsey program, we
7In LeGrand and Ragot (2022), we show that this method can be used with occasionally binding credit

constraints, taking limits of penalty functions. See also Açikgöz et al. (2018) to solve for policies with a utilitarian
social welfare function.

9



introduce the marginal social valuation of liquidity for agent i, defined as:

ψit := ωitUc(cit, lit)−
(
λic,t − (1 + rt)λic,t−1

)
Ucc(cit, lit) (23)

+ λil,t

(
Ucl(cit, lit)− (1− τt)wt(yit)1−τt(lit)−τtUcc(cit, lit)

)
.

This complex expression has a simple interpretation. It is the net value for the planner of
transferring one unit of resources to agents i (if it could). First, the gain for the planner would
be to increase marginal utility, bedighted with the relevant weight ωitUc(cit, lit). Second, one
additional unit of resources to agent i changes the incentive to save from period t− 1 to period t,
captured by the term with λic,t−1. Third, it also affects the incentive to save from period t to
period t+ 1, captured by the term with λic,t. Fourth, it affects the incentive to work , captured
by the terms in λil,t. For these last three terms, the effect is multiplied by the marginal change in
the marginal utility of consumption, which is the term Ucc(cit, lit).

From (23), we also define the net social valuation of liquidity than accounts for the opportunity
cost of liquidity, measured by the Lagrange multiplier :

ψ̂it := ψit − µt. (24)

With this notation, the first order conditions of the planner can be easily interpreted. First, for
an unconstrained agent i, the planner implements a liquidity smoothing condition:

ψ̂it = βEt
[
Rt+1ψ̂

i
t+1

]
. (25)

Equation (25) is a generalized version of the Euler equation (10) (and it is actually the same
equation, when all Lagrange multipliers are 0), in which the planner internalizes in the definition
of ψ̂it the general equilibrium externalities when setting individual savings.

The first-order condition with respect to labor can be written as:

ψil,t = (1− τt)wtyit(yitlit)−τtψ̂it (26)

+ µtFL,ty
i
t − λil,t(1− τt)τtwtyit(yitlit)−τtUc(cit, lit)/lit,

where we have defined:

ψil,t := −ωitUl(cit, lit)− λil,tUll(cit, lit) (27)

+ (λic,t −Rtλic,t−1 − λil,t(1− τt)wt(yit)1−τt(lit)−τt)Ucl(cit, lit).

Similarly to ψit for consumption, the quantity ψil,t is the social marginal value of labor supply
by agent i. The Ramsey first-order condition (26) is a generalized version of the labor Euler
equation (11).
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The first-order condition with respect to public debt can be written as:

µt = β(1 + r̃t+1)µt+1, (28)

without expectation operator thanks to the MIT shock assumption. Equation (28) shows that
the planner aims at smoothing the shadow cost of the government budget constraint through
time.

The other first-order conditions with respect to Rt, wt, and τt can respectively be written as:

0 =
ˆ
j

(
ψ̂jta

j
t−1 + λjc,t−1Uc(c

j
t , l

j
t )
)
`(dj), (29)

0 =
ˆ
j
(yjt l

j
t )1−τt

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

)
`(dj), (30)

0 =
ˆ
j
(yjt l

j
t )1−τt

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

)
ln(yjt l

j
t )(dj) (31)

+
ˆ
j
λjl,t(y

j
t l
j
t )1−τt(Uc(cjt , l

j
t )/l

j
t )`(dj).

All these equations have a similar interpretation. They involve equalizing the net valuation
of liquidity weighted aggregated over the whole population with the relevant weight (e.g.,´
j ψ̂

j
ta
j
t−1`(dj) in the case of the interest rate) to the general-equilibrium distortion of the

instrument (e.g., distortion of savings incentives for the interest rate).
The analytical characterization of the dynamics is a first step to determine the optimal policy.

However, standard recursive techniques cannot be used to compute the policy. The problem
of the planner could be written recursively, but in this case the state space would include the
joint distribution of beginning-of-period wealth and Lagrange multipliers on consumption Euler
equations (i.e., the joint distribution of (ait−1, λ

i
c,t−1)i). Indeed, beginning-of-period wealth ait−1

and past value of the Lagrange multiplier λit−1 both appear in the first-order conditions of the
Ramsey program. To compute the solution, we again follow LeGrand and Ragot (2022) and we
consider a truncated representation of this problem. We provide the details of the computational
implementation – including all the required analytical developments –in Appendix E. This
numerical solution can be of independent interest as the solution of this type of Ramsey problem
is both new and not straightforward.

3 Analytical results

In this section, we derive analytical results regarding the Ramsey equilibrium of Section 2.6.
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3.1 Model specification

To obtain a tractable framework we specify a number of model aspects. These specifications
are only valid in the analytical analysis of this section and a more general framework will be
considered in the quantitative exercise of Section 4. The first assumption concerns the functional
form of labor taxes that are assumed to be linear.

Assumption A We assume that the labor tax is linear. Formally, we set in (2) τt = 0 and
denote τLt := 1− κt, such that:

Tt(wyl) := τLt wyl.

Our second assumption is about the specification utility function.

Assumption B We assume that the instantaneous utility function U is of the GHH-type:

U(c, l) := ln
(
c− χ−1 l1+1/ϕ

1 + 1/ϕ

)
,

where ϕ > 0 is the Frisch elasticity of labor supply, and χ > 0 scales labor disutility.

Assumption B simplifies the algebra for the Ramsey program by avoiding wealth effects for the
labor supply. The log function implies that income and substitution effects exactly compensate
each other.

The third assumption is about the productivity process.

Assumption C We assume that there are only two productivity levels, equal to zero and one
respectively: Y = {0, 1}. Furthermore, the transition matrix is anti-diagonal:

Π =
[

0 1
1 0

]
, (32)

while the initial distribution is such that: (i) a mass one of agents have productivity 1 with an
identical beginning-of-period wealth; and (ii) a mass one of agents have productivity 0 with an
identical beginning-of-period wealth (but possibly different from the one of employed agents).

The main implication of Assumption C is to simplify the equilibrium wealth distribution.
First, there are only two productivity levels. The first one corresponds to a null productivity, and
hence to a null labor supply. This zero productivity state will be called unemployment. The other
productivity level is normalized to one and will correspond to employment. Second, equation
(32) implies that the transitions to and out of unemployment are deterministic. Currently
unemployed agents become employed in the next period and the other way around. Coupled with
the assumption regarding the initial wealth distribution, Assumption C implies that at any date,
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the equilibrium only features two types of agents and two wealth levels. Our setup is thus similar
to the one of Woodford (1990), in which 2 agents switch deterministically between employment
and unemployment. For the sake of simplicity, the two types of agents will be called according
to their current employment status: “employed” (subscript e) and unemployed (subscript u).

The fourth and last assumption is about the credit constraint.

Assumption D The credit-constraint is normalized to zero: a = 0.

3.2 The Ramsey program

Taking advantage of Assumptions B–D, we specify further the environment. Using the peculiar
equilibrium structure, the individual budget constraints (8) become:

ce,t + ae,t = Rtau,t−1 + wtle,t, (33)

cu,t + au,t = Rtae,t−1, (34)

for employed (subscript e) and unemployed (subscript u), respectively. Note that the definitions
(4) and (5) of the post-tax rates Rt and wt are still valid (with τt = 0 and κt = 1− τLt ). We can
already state a first result regarding employed agents.

Result 1. In any equilibrium, employed agents cannot be credit-constrained at any date.

This is a direct consequence of budget constraint (34) with cu,t > 0. Should we have ae,t = 0
at some date t, we would have cu,t+1 = −au,t+1 ≤ 0, which would contradict the consumption
positivity constraint. A consequence of Result 1. is that we only have two possible types of
(steady-state) equilibria: one in which unemployed agents are not constrained, and one in which
they are.

Taking advantage of the GHH property of the utility function and of the linearity of labor
taxes, the labor Euler equation (11) for employed agents simplifies into:

le,t = (χwt)ϕ, (35)

which only depends on the hourly wage wt. The labor and financial market clearing conditions
become in this set-up:

Lt = le,t and Bt +Kt = ae,t + au,t. (36)

The governmental budget constraint (6) can be simplified using (35) and (36) as follows:

Gt +Bt−1 + (Rt − 1)(ae,t−1 + au,t−1) + wt(χwt)ϕ = (37)

Bt + F (At, ae,t−1 + au,t−1 −Bt−1, (χwt)ϕ).
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Finally, using budget constraints (33) and (34) and labor Euler equation (35), we deduce
that Euler equations for consumption (10) can be expressed as:

β

(
Rtau,t−1 − ae,t + wt(χwt)ϕ

1 + ϕ

)
= ae,t − au,t+1/Rt+1, (38)

Rt+1au,t − ae,t+1 + wt+1(χwt+1)ϕ

1 + ϕ
≥ βRt+1(Rtae,t−1 − au,t), (39)

where the first Euler equation holds with equality at all dates as a consequence of Result 1..
Expectations have been dropped from Euler equations due to MIT shocks and the deterministic
transition between income levels.

We now investigate the two possible types of Ramsey equilibria: one in which unemployed
agents are not credit-constrained and that will correspond to the first best allocation, the other
one in which unemployed agents are constrained.

3.3 The first-best equilibrium

The first-best allocation is characterized by perfect risk-sharing and no tax. In other words, no
agent is credit-constrained and the Euler equation (39) of unemployed agent holds with equality.
The public debt will be negative and will therefore consist of governmental asset holdings, whose
payoffs will finance the governmental public spending. We will focus here on the steady state
allocation only and we will use a FB subscript to denote first-best quantities. We already know
that τKFB = τLFB = 0.

The first observation is that since the unemployed agent is no credit-constrained, her Euler
equation (39) holds with equality. By combining the two Euler equations (38) and (39), we
obtain: (cu,FB)−1 = (βRFB)2(cu,FB)−1, where (cu,FB)−1 = Rae,FB − au,FB > 0. This implies
that we have:

βRFB = 1 = β(1 + r̃FB), (40)

where the second inequality comes from τKFB = 0. Since taxes are null, βRFB = 1 first allows us
to compute the public debt from the governmental budget constraint (3):

BFB = − β

1− βG < 0, (41)

reflecting that public debt is always negative. The government actually owns assets that enables it
to finance public spending out of asset holding payoffs – at the gross rate β. Second, equality (40)
allows us deduce from the definitions (1) of r̃t and w̃t he capital-to-labor ratio kFB := KFB/LFB,
the post-tax wage rate wFB, and the GDP YFB := Kα

FBL
1−α
FB :

kFB =
(
α( 1
β

+ δ − 1)−1
) 1

1−α
, wFB = (1− α)kαFB, YFB = (χ(1− α))ϕkα(1+ϕ)

FB . (42)
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Note that in absence of tax, output, capital, and real wage are independent of public spending.
They only depend on production and preference parameters. Combining equations in (42), with
financial market clearing condition and Euler equation (38) allows us to compute agents’ asset
holdings:

au,FB = β(g1 − gFB)
2(1− β) YFB, (43)

ae,FB = au,FB + β

1 + β

wFB(χwFB)ϕ

ϕ+ 1 , (44)

where we have denoted:

g1 = 1− β
β

α

1/β + (δ − 1) −
1− β
1 + β

1− α
ϕ+ 1 , (45)

gFB = G

YFB
. (46)

The quantity gFB can be interpreted as the public spending-to-GDP ratio. Equation (44) shows
that the gap in asset holdings between employed and unemployed agents is always positive
– reflecting that employed save more than unemployed – and independent of public spending.
Equation (43) implies that the savings of unemployed agents is a share of aggregate output YFB
and that this share diminishes with public spending. The reason is that higher public spending
implies a more negative public debt – or equivalently a larger public asset holding – which crowds
out private savings. This crowding-out effect has two consequences. First, it harms aggregate
welfare. Indeed, computing individual allocations from asset holdings (43) and (44) yields:

ce −
1
χ

l
1+ 1

ϕ
e

1 + 1
ϕ

= cu,FB = 1− β
β

au,FB + 1
1 + β

wFB(χwFB)ϕ

ϕ+ 1 , (47)

where perfect risk-sharing is reflected in the equal period utility levels for unemployed and
employed agents. Equation (47) makes it clear that individual allocations – and hence aggregate
welfare – diminishes with public spending, resulting from the crowding-out of private savings.

A second consequence of the crowding-out of private savings by public savings is that when
public spending becomes too large (in particular when gFB > g1), sustaining the first-best
allocation would require unemployed agents to provide private liquidity to the government to
allow it to hold a sufficiently large asset position to finance public spending. However, private
borrowing being prevented by Assumption D, the first-best equilibrium can only exist for not-
too-large levels of public spending. It stops existing when financing public spending requires the
government to borrow from agents.

The following proposition summarizes these results.

Proposition 1 If gFB ≤ g1, the Ramsey problem of Section 3.2 admits a first-best steady-state
equilibrium characterized by equations (40)–(47) and that features: (i) zero taxes: τLFB = τKFB = 0,
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and (ii) a perfect risk-sharing between the two agent types.

The proof can be found in Appendix B. A corollary of Proposition 1 is that a necessary
condition for the first-best equilibrium does not exist when g1 < 0 – which is for instance always
the case when α sufficiently small.

Corollary 1 When g1 < 0, no first-best equilibrium exists, independently of the level of public
spending.

3.4 The equilibrium with binding credit constraints

We now turn to the only other equilibrium that admits a interior steady state.8 To rule out the
possibility of a first-best equilibrium, we make the following assumption.

Assumption E We assume:
gFB > g1.

This equilibrium features binding credit constraint for unemployed agents. In that case,
unemployed agents hold no asset at any date: au,t = 0. The Euler equation (38) of employed
agents implies:

ae,t = β

1 + β

wt(χwt)ϕ

1 + ϕ
> 0, (48)

which is positive whenever wt > 0. Substituting the expression (48) of ae,t and using au,t = 0,
the financial market clearing condition becomes:

Bt +Kt = β

1 + β

wt(χwt)ϕ

1 + ϕ
. (49)

3.4.1 The Ramsey program

We now turn to the expression of the Ramsey program of Section 2.6. The first option would be
to directly use the first-order conditions (25)–(31) that we derived in the general case and use
them with the specifications of Assumptions A–D. One of the difficulty raised with this general
approach is that the solution is subject to a number of caveats – notably because the optimization
program includes non-linear constraints. To circumvent this difficulty, we take another route
that takes advantage of the tractability of our analytical setup. This direct approach allows
us to prove that some constraint qualifications hold, such that the optimum of the Ramsey
program indeed solves the Karush–Kuhn–Tucker conditions – i.e., the FOC of the Lagrangian
(see Section 3.4.2). A second benefit is that we can formally check that the solutions to the
first-order conditions (computed in Section 3.4.3) are an actual maximum, since we can formally

8We explain in Section C.5 below that no other equilibrium with interior steady state exists.
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check the second-order conditions (Section 3.4.4). We show in Appendix C.2 that the first-order
conditions we derive with this new approach are identical to those derived in the general case.

To simplify the Ramsey program of Section 2.6, we proceed in two steps. First, we use
individual budget constraints (33) and (34) and the Euler labor equation (35) to express the
Ramsey program in terms of savings choices and of the three instruments of fiscal policy
(wt, Rt, Bt)t≥0. Second, we use the savings expression (48) of employed agents (that reflects
employed agents’ Euler equation) and au,t = 0 to express the Ramsey solely as a function of the
fiscal policy (Bt, wt, Rt)t≥0 and with a unique constraint (the government budget constraint):

max
(Bt,wt,Rt)t≥0

E0

∞∑
t=0

βt
(

log
( 1

1 + β

wt(χwt)ϕ

ϕ+ 1

)
+ log(Rt

β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
)
)
, (50)

s.t. G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
+ wt(χwt)ϕ = (51)

F ( β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
−Bt−1, (χwt)ϕ) +Bt,

with furthermore the Euler inequality (39) stating than unemployed are actually credit-constrained.
At the steady-state, this condition is equivalent to βR < 1 – which will always hold in this
equilibrium. Two other constraints are implicit in the above program: (i) wt > 0, and (ii) Rt > 0,
which correspond to the positivity of consumption levels for employed and unemployed agents.

Before deriving first-order conditions of the Lagrangian problem, we show that the Karush–
Kuhn–Tucker conditions can apply to our problem. To do so, we verify that the so-called
constraint qualification hold in our set-up

3.4.2 Constraint qualification

In our problem, even though the objective function is concave, the equality constraints are not
linear and the standard Slater (1950)’s conditions do not apply. However, we can check that
the linear independence constraint qualification (LICQ) holds in our problem. This constraint
qualification requires the gradients of equality constraints to be linearly independent at the
optimum (or equivalently that the gradient is locally surjective). At any date t, two constraints
matter for the instruments of date t. These are the constraints at dates t and t + 1. We can
check that their gradient can be written as: 1 ϕ(χwt)ϕ w̃twt − (ϕ+ 1)(χwt)ϕ − β

1+β
wt−1(χwt−1)ϕ

1+ϕ
−r̃t+1 − 1 β

1+β (χwt)ϕr̃t+1 − (Rt+1 − 1) β
1+β

wt(χwt)ϕ
1+ϕ 0

 , (52)

which forms a matrix of rank 2. Indeed, looking at first and third columns of the matrix in (52)
makes it clear that a sufficient condition is (1 + r̃t+1)wt−1 6= 0. This condition must hold at the
optimum, since: (i) equation (1) implies r̃t+1 ≥ 0, and (ii) we must have wt−1 > 0.
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3.4.3 First-order conditions

The FOCs associated to the Ramsey program (50)–(51) can be written as (for t ≥ 0):

(1 + β)(1 + ϕ) =
(

1− (1 + β)ϕ τLt
1− τLt

)
µtwt(χwt)ϕ, (53)

µt = β(1 + r̃t+1)µt+1, (54)

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
, (55)

where we still denote by βtµt the Lagrange multiplier on the governmental budget constraint
and also define w−1 as the solution of a−1 = β

1+β
w−1(χw−1)ϕ

1+ϕ .
Equation (53) characterizes the labor tax, while (55) characterizes the capital tax. Equation

(54) is an Euler-like equation for the Lagrange multiplier on the governmental budget constraint
– and does not feature any expectation operator because of MIT shocks. We show in Appendix
C.2 that the first-order conditions (53)–(55) are implied by those derived in the in the general
case of Section 2.6.

An implication of the above FOCs and of wt, Rt > 0 is that we must have at all dates µt > 0,
and τLt < 1

1+(1+β)ϕ . We summarize this in the following result.

Result 2. The equilibrium with a binding credit constraint features the following restrictions:

wt, Rt, µt > 0 and τLt < τLSW , (56)

where: τLSW = 1
1 + (1 + β)ϕ < 1. (57)

The restriction on the labor tax implies that the labor tax cannot be too large for the Ramsey
equilibrium with binding credit constraint to exist. This constraint is actually connected to the
positivity of the Lagrange multiplier µt. Indeed, the FOC (53) makes it clear that we have:

µt = (1 + β)(1 + ϕ)(1− τLt )
τLSW − τLt

τLSW
wt(χwt)ϕ

,

which becomes negative when τLSW < τLt < 1. As we will make it clearer in later (see the
discussion of Proposition 2), the mechanism when τLt > τLSW is similar to the one at play
in Straub and Werning (2020). We will therefore refer to the constraint τLt < τLSW as the
Straub-Werning (henceforth, SW) constraint.

FOC (55) implies that the SW constraint also relates to the positivity of the post-tax gross
rate. Indeed, when the SW constraint does not hold and τLt > τLSW , the gross interest rate is
negative, which in turns implies a negative consumption for unemployed agents. The intuition
is that when public spending becomes higher than a given threshold, their financing requires a
capital tax that is so high that the gross post-tax interest rate becomes negative.
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Before turning to the steady-state analysis, let us say a word about second-order conditions
and the fact that our first-order conditions are actually picking up a local maximum.

3.4.4 Second-order conditions

In the program (50)–(51), we can use the constraint (51) to substitute for the expression of Rt.
We can further use financial market constraint (49) to express the public debt Bt as a function of
capital Kt and wage post-tax wage wt. The planner’s program (104)–(105) can be equivalently
rewritten as a function of Kt and wt:

max
(Kt,wt)t

E0

∞∑
t=0

βt (log (wt(χwt)ϕ) + log(Kt−1 + F (Kt−1, (χwt)ϕ)

+ β

1 + β

wt(χwt)ϕ

1 + ϕ
−Kt −Gt − wt(χwt)ϕ)

)
.

We can further modify this program by defining Wt = wt(χwt)ϕ and dropping constants:

max
(Kt,wt)t

E0

∞∑
t=0

βt
(

log(Wt) (58)

+ log
(
Kt−1 + F (Kt−1, χ

ϕ
1+ϕW

ϕ
1+ϕ
t )− 1 + ϕ+ ϕβ

(1 + β)(1 + ϕ)Wt −Kt −Gt
))

. (59)

The function (Wt,Kt−1) 7→ F (Kt−1, χ
ϕ

1+ϕW
ϕ

1+ϕ
t ) is a concave as the the composition of concave

and increasing functions. We thus deduce that the mapping defined by (Wt,Kt−1,Kt) 7→
log (Wt)+ log

(
Kt−1 + F (Kt−1, χ

ϕ
1+ϕW

ϕ
1+ϕ
t )− 1+ϕ+ϕβ

(1+β)(1+ϕ)Wt −Kt −Gt
)
is concave. Any interior

optimum characterized by first-order conditions must be a maximum.

3.4.5 Steady-state analysis

Steady-state characterization. We will denote steady-state quantities with no subscript. For
instance, R will be the steady-state gross post-tax interest rate. First, note that the restrictions
of Result 2. still holds at the steady state. In particular, µ > 0 implies from FOC (54) that:

r̃ = 1− β
β

, (60)

as in the first-best equilibrium. We also have, as in the first-best K/L = KFB/LFB, as well as
w̃ = wFB, w = (1 − τL)wFB, and Y = (1 − τL)ϕYFB. Using R = 1 + (1 − τK)r̃ and (60), we
obtain the following expression for the capital tax:

τK = ϕ
1 + β

1− β
τL

1− τL , (61)
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which is an increasing function of the labor tax. Note that the capital tax is positive whenever
the labor tax is and even though the capital tax expression is unbounded from above when the
labor tax approaches 1 (τK →τL→1 ∞), the steady-state version of Result 2. actually provides an
upper bound: τK < 1

1−β . Reaching the upper bound on the capital tax τKSW := 1
1−β is equivalent

to reaching the SW upper bound τLSW on the labor tax. Both correspond to the public spending
gSW , defined by:

gSW = g1 + (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
(1− τKSW )ϕ. (62)

The SW constraint can thus also be expressed as:

gFB < gSW . (63)

As explained before, a public spending higher than the SW bound would imply a high capital
tax that is so high that the post-tax return on agents’ assets is negative and hence that the
consumption of unemployed agents is negative.

Determining the labor tax. The labor tax is determined as the tax that enables the
government to balance its budget constraint. At the steady state, the governmental budget
constraint (51) implies after some algebra that τL is a solution of the following equation:

T (τL) = 0, (64)

where: T :τ ∈ (−∞, 1) 7→ τ − 1
1− α

gFB(1− τ)−ϕ − g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
. (65)

The mapping τ 7→ T (τ) is akin to a Laffer curve. Indeed, we can check that T is continuously
differentiable, strictly concave, with a unique maximum over (−∞, 1). In consequence, the
function T admits either zero, one, or two solutions. The number of solutions depends on the
level of public spending through gFB in (65). When public spending are too high, there is no
level of labor tax that make this public spending sustainable: T (τ) < 0 for all τ ∈ (−∞, 1).
When the public spending is sustainable, T typically admits two roots, which correspond to the
typical Laffer trade-off between tax rate and tax base. The smaller root corresponds to a low
tax and a high labor supply, while the higher root corresponds to a high tax and a low labor
supply. There is a third case that is the limit between sustainability and no sustainability. In
this situation, there is a unique tax rate that enables public spending to be financed. We plot
the three possibilities in Figure 1.

The limit case of the Laffer curve happens when the extremum point of the Laffer curve is
the only root of the function. It can be checked that this corresponds to the tax level τLLa that
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Figure 1: Examples of three Laffer curves τ 7→ T (τ) of equation (65), for three different values of
gFB. The three cases correspond to: (i) two admissible tax values; (ii) a unique limit tax value;
(iii) no admissible tax. The parametrization is: β = 0.97, α = 0.3, φ = 0.5, δ = 1.0, and gFB
takes one of the three values in [0.2, 0.3631, 0.6].

verifies T (τLLa) = T ′(τLLa) = 0, or equivalently to:

τLLa = 1
1 + ϕ

− 1
1− α

ϕ

1 + ϕ

g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
. (66)

This corresponds to a public spending gLa, defined as:

gLa = 1− α
ϕ

(
1 + 1− β

1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
(1− τLLa)1+ϕ. (67)

So, any public spending such that gFB > gLa is not sustainable and cannot be financed by any
tax system. Oppositely, when gFB < gLa, two different tax levels enable the government to
finance public spending and the planner will always opt for the lowest tax rate. Indeed, taxes
have an unambiguously negative impact on consumption levels, since they can be written as:

ce = 1
1 + β

(1− τL)ϕ+1wFB(χwFB)ϕ

1 + ϕ
, cu = (1− (1− β)τK)ce. (68)

So larger taxes decrease consumption and hence individual welfare.
We will henceforth refer to the restriction gFB < gLa as the Laffer constraint. Note that

whether the Laffer constraint is more stringent than the SW constraint depends on parameters
and in general both restrictions must be considered.

The steady-state equilibrium existence. The following proposition summarizes our findings
regarding equilibrium existence.

21



Proposition 2 When g1 ≤ gFB, gFB ≤ gSW , and gFB < gLa, there exists a steady-state
equilibrium with binding credit constraint for unemployed agents. The tax rate τL is determined
as:

τL = min{τ ∈ (−∞, 1) : T (τ) = 0}, (69)

where T is defined in (65). The equilibrium allocation is then characterized by:

1. positive taxes τL and τK whose expressions are given in (61) and (64);

2. positive consumption allocations (68);

3. a positive gross interest rate R and a positive long-run multiplier µ.

We can verify that g1 ≤ gSW and g1 ≤ gLa. The former inequality is proved in Appendix C,
while the later is a direct implication of the definition (62). Therefore, the credit-constrained
equilibrium always exists for some values of public spending. It can also be observed that when
gFB = g1, equations (61) and (64) implies τL = τK = 0, as in the perfect risk-sharing equilibrium.
In consequence, there is no discontinuity between the first-best and the credit-constraint equilibria
around gFB = g1.

We will conclude by two remarks regarding equilibrium existence. The first one is related to
fact that we have only mentioned two equilibria so far: the first-best and the credit-constrained
one. The latter features sizable inequalities. For instance, the inequality in consumption,
measured by the ratio ce

cu
, is an increasing function of taxes. Formally:

ce
cu

= 1
1− (1− β)τK = 1

1− (1 + β)ϕ τL

1−τL
,

which can become infinitely large when τL → τLSW . We could thus wonder whether a full
risk-sharing equilibrium with positive labor tax (and hence null capital tax) would not sometimes
exist. The answer is twofold: yes such an equilibrium can exist, but it always dominated (in
terms of aggregate welfare) by the credit-constrained equilibrium of Proposition 2. The intuition
is that the full risk-sharing arrangement imposes a zero capital tax, which means that public
spending should be solely financed out of the labor tax. The distortions implied by this high
labor tax involve a high burden on agents and make the aggregate welfare lower than in an
equilibrium where public spending financing relies on both capital and labor taxes. In other
words, for any level of public spending, financing this public spending through a combination of
capital and labor taxes generates smaller distortions than a financing relying solely on labor tax.
This is proved formally in Appendix C.5.

The second and last remark concerns situations where gSW < gFB ≤ gLa. The public
spending level is smaller than the Laffer bound, implying that the public spending can be
financed. However, because the public spending is higher than the SW bound, the financing of
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this public spending implies negative values at the steady state for Lagrange multiplier, gross
interest, and unemployed consumption. As previously explained, such situations cannot be
ruled out and are possible for some parametrization. However, even though a steady-state
equilibrium does not exist in these situations, we can check that there exists a non-stationary
equilibrium, where the Lagrange multiplier on the governmental budget constraint diverges to
infinity: µt →t ∞ and the gross interest rate converges to Rt →t 0. In other words, this situation
is similar to the one in Straub and Werning (2020), where the stationary equilibrium does not
exist but a non-stationary one does. It is noteworthy that a similar pattern emerges despite
the differences between our set-ups. We have time-varying agents’ types (although the switch
deterministic), endogenous credit constraint, distorting tax on endogenous labor supply, and
public debt.

A key difference with Straub and Werning (2020) or with Lansing (1999) is that a steady-state
equilibrium (including a finite Lagrange multiplier) exists for some public spending levels, even
for log utilities and equal weight between agents. Proposition 2 shows that a crucial determinant
for the existence of a steady-state equilibrium is the level of public spending.

Public debt. We now turn to the expression of public debt in the credit-constrained equilibrium.
The financial market clearing condition implies that the steady-state public debt B can be written
as follows:

B = β

1− β

(
−1− β

1 + β

1− α
1 + ϕ

τl − g1

)
(χw)ϕ

(
K

L

)α
, (70)

where the labor tax is defined in equation (69) of Proposition 2. We deduce that the equilibrium
features a positive public debt is positive iff:

τL <
1 + ϕ

1− α
1 + β

1− β (−g1). (71)

A necessary condition for the public debt to be positive is g1 to be negative – which precludes
from Proposition 1 the existence of a first-best equilibrium. An equivalent condition to condition
(71) is that public spending gFB is not too large. Indeed, it can be seen from (70) that public
debt decreases with labor tax and hence with public spending. The higher public spending, the
smaller the public debt. We know from equation (41) that in the first-best equilibrium, the
public debt is negative and decreases – becomes more negative – with public spending. A positive
public debt with the credit-constrained equilibrium is thus not compatible with the continuity of
equilibrium around gFB = g1 since this would require a negative public debt for gFB < g1 and a
positive one for gFB > g1. In consequence, positive public debt imposes the non-existence of the
first-best equilibrium. This is summarized in the following result.

23



Result 3. Steady-state public is positive: B ≥ 0 iff g1 ≤ 0 and gFB ≤ gpos, where:

gpos = (−g1)(1 + 2ϕ)(1 + β)
1− β

((1 + 2ϕ)(1 + β)
1− α

α

1 + β(δ − 1)

)ϕ
. (72)

The proof is in Appendix C.4.
In the credit-constrained equilibrium, a positive public debt enables the planner to provide

public liquidity to agents. This enables agents to smooth out the unemployment shock through
private savings. However, when public spending increases, the planner needs to raise higher
taxes.

A positive public debt only exists in our economy when the first-best equilibrium does not
exist. Furthermore, public debt is decreasing with public spending: the higher public spending,
the lower public debt (in absolute value). The reason is that an increase in public spending leads
the planner to increase labor and capital taxes, which are both distortionary. This crowds out
private savings and hence diminishes the room for public debt.

3.4.6 Dynamic analysis

The first-order dynamic system. After the thorough analysis of the steady-state equilibrium,
we investigate the dynamic in this equilibrium. We focus on a special case, with full capital
depreciation: δ = 1. We will denote with a hat the relative deviation to the steady-state value:
x̂t = xt−x

x for generic variable xt with steady-state value x. The public spending shock is assumed
to be defined as follows:

Ĝt =

σGεG,0 if t = 0,

ρGĜt−1 if t > 0,
(73)

where: εG,0 ∼ N (0, 1),

and σG > 0 and ρG ∈ (−1, 1). The shock only happens at date t = 0 and then persists with
parameter ρG – as is consistent with our assumption of MIT shock. The dynamic of the economy
can be summarized by the capital as a unique state variable and the public spending shock. It
can be computed thanks to a first-order development around the steady-state allocation. The
outcome is gathered in the following result.

Result 4. The dynamics of the capital stock and of the shadow cost of the governmental budget
constraint is given by the following system:

K̂t = ρKK̂t−1 + σKĜt, (74)

µ̂t = ρµK̂t−1 + σµĜt, (75)
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where the expressions of coefficients are given in Appendix D.2. These coefficients solely depend
on model parameters and not on those of the dynamics of (Ĝt)t≥0.

The dynamic system (74)–(75) is stable when the autoregressive coefficient ρK is smaller than
one in absolute value. In our setup, this is equivalent to verifying Blanchard-Kahn conditions.
The result regarding system stability is summarized in the following proposition.

Proposition 3 The system (74)–(75) is stable – |ρK | < 1 – iff:

α ≤ 1
1 + (1− β)(1 + ϕ) . (76)

We furthermore have:
σµ > 0 > σK . (77)

The dynamic system is stable under the condition (76), which imposes an upper bound on α.
Note that this upper bound is always strictly smaller than one and hence can be binding. This
condition on α always holds when public debt is positive, i.e., when g1 < 0. A second result of
Proposition 3 is that σµ > 0 > σK . Equation (75) implies thus that at impact, an increase in
public spending increases the shadow cost of governmental budget constraint, while it diminishes
capital. This reflects the fact that the governmental budget constraint becomes more binding,
while it crowds out some resources out of capital.

Role of the persistence of public spending shock ρG. The analysis of the role of the
persistence ρG is split into three parts: (i) the role at impact on capital and governmental budget
shadow cost, (ii) the role on the dynamics of capital; (iii) the role on public debt. We assume
here that we consider a positive public spending shock: Ĝ0 > 0.

Regarding the first aspect we have the following result.

Result 5. We have:
∂σµ
∂ρG

> 0 and ∂σK
∂ρG

> 0.

In words, a higher persistence of the public spending shock strengthens the variation of µ̂t at
impact: the higher ρG,the more the Lagrange multiplier µt increases at impact. This reflects
that a higher persistence of the public spending shock means greater public funding requirements
in the subsequent periods, and hence raises the shadow cost of governmental budget constraint.
The result is opposite for the capital. A higher persistence dampens the decrease of capital at
impact. This is related to the effect of persistence on public debt described in Proposition 4.
Regarding capital, we can obtain additional results. By induction, we can derive from (73) and
(74) the closed-form expression of the capital IRF:

K̂t = σKĜ0
ρt+1
K − ρt+1

G

ρK − ρG
, (78)
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Figure 2: Examples of three IRFs t 7→ K̂t of equation (78), for three different values of the
persistence ρG of the public spending shock. The shock at impact is normalized to −1 (i.e.,
σKĜ0 = −1). The parametrization is the same as in Figure 1: β = 0.97, α = 0.3, φ = 0.5,
δ = 1.0, but for gFB set to 0.3. This corresponds to ρK ≈ 0.7290.

which allows us to completely characterize the capital path following a public spending shock.
At impact, the relative variation of capital is negative by a quantity σKĜ0 < 0. Then, the
profile is the capital variation is humped-shaped: it starts decreasing further, before increasing
and reverting back to zero. The length of the capital depreciation (during which K̂t diminishes
following the initial shock) can be shown to be an increasing function of the persistence ρG:
the higher ρG, the longer the recession. The impact on the depth of recessions is in general
ambiguous, but it can be shown that (i) when the persistence is sufficiently high, it increases
recession depth; (ii) the threshold value decreases with ρK . This is illustrated on Figure 2.

Finally, regrading public debt, we have the following result.

Proposition 4 Denoting by B̂0 the public debt variation at impact, we have:

∂B̂0
∂ρG

< 0.

Proposition 4 states that the variation of public debt at impact is dampened for larger persistence
of the public debt shock. The intuition is rather straightforward. A very transitory shock will
be recovered very quickly and can be smoothed out by public debt, whose increase will also be
transitory. Conversely, a very persistent shock will require steady increase in taxes. Diminishing
the variation of public debt (typically, a decrease for very persistent process) enables the planner
to limit the crowding-out of impact and thus the overall impact of the shock on the economy.

In general, the sign of B̂0 is ambiguous and can be positive or negative, depending in particular
on the magnitude of the persistence ρG of the public spending shock.
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4 Quantitative analysis

We relax the assumptions of Section 3 to simulate the dynamics of capital and public debt in a
quantitatively relevant environment. The quantitative strategy is as follows. First to calibrate
standard parameters to obtain a realistic steady-state allocation with the actual US fiscal policy.
Second, following the inverse taxation problem (Bourguignon and Amadeo, 2015, Heathcote
and Tsujiyama, 2021, Chang et al., 2018), we identify an “empirically motivated” social welfare
function, such that this steady-state allocation is optimal for the planner. The gain of this
methodology is to observe the dynamics of the tax system, considering a quantitatively realistic
initial (and final) equilibrium. Starting from this allocation, we implement a period-0 shock on
public spending to observe the dynamics of fiscal instruments after the public spending shock.

4.1 Calibration

The period is a quarter.

Preferences. The utility function is now assumed to be separable in labor, which is a quanti-
tatively more relevant option than the GHH utility function for incomplete-market economies
(see Auclert et al., 2021):

U(c, l) = u(c)− v(l),

with: u(c) = c1−σ − 1
1− σ and v(l) = 1

χ

l
1+ 1

φ

1 + 1
φ

.

We set the inverse of intertemporal elasticity of substitution to σ = 2, which is a standard value
used in the literature. For the disutility of labor, we choose φ = 0.5 to match a Frisch elasticity
for labor supply of 0.5, which is the value recommended by Chetty et al. (2011) for the intensive
margin in heterogeneous-agent models. The scaling parameter is set to χ = 0.05, which implies
normalizing the aggregate labor supply to 1/3. Finally, the discount factor is β = 0.99.

Second, households productivity levels can be arbitrary high, where the transition probabilities
are calibrated to match the actual labor market dynamics in the US. Third, the tax on labor is
non-linear and it has the form used by Heathcote et al. (2017) (henceforth, the HSV tax system)
to reproduce the progressivity of the actual US system.

The period utility function over consumption is u(c) = c1−σ−1
1−σ ,
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Idiosyncratic risk. We calibrate the productivity process to match the actual labor market
dynamics in the US. We focus on a standard AR(1) process:

log yt = ρy log yt−1 + εyt ,

where: εyt
iid∼ N (0, σ2

y).

Following the strategy of Castaeneda et al. (2003), we choose the parameters (ρy, σy) to target
some key moments.9 We choose three targets. The first one is the variance of the logarithm
of consumption, that enables us to capture consumption inequality. Heathcote and Tsujiyama
(2021) report a value of Var(log c) = 0.23 . We also target the log-variance of wages to match
income inequality, which is found to be Var(logw) = 0.47 by Heathcote and Tsujiyama (2021).
The third target is the debt-to-GDP ratio which allows us to replicate a realistic financial market
equilibrium. We target a value of B/Y = 61.5%, which is the mean ratio over the period (Dyrda
and Pedroni, 2018). Calibrating these three moments yields ρy = 0.993 and σy = 0.082. These
parameters are close to those from a direct estimation of the productivity process on PSID data,
which corresponds to ρy = 0.9923 and σy = 0.0983 (see Boppart et al., 2018 and Krueger et al.,
2018). The data targets and their model counterparts are reported in Table 1. This simple

Data Model

Variance of log consumption Var(logc) 0.23 0.20
Variance of log income Var(logy) 0.47 0.49

Debt-to-GDP ratio B/Y 61.5% 61.4%

Table 1: Model calibration: targets and model counterparts.

representation is doing a good job in matching the three targeted moments. Furthermore, we
can check that this calibration generates a reasonable wealth distribution, even though we do
not calibrate it explicitly.10 Indeed, the calibrated model implies a Gini coefficient of wealth
equal to 0.66, which is close, even though below, its empirical counterpart of 0.77. It is known
that additional model features must be introduced to match the high wealth inequality in the
US, such as heterogeneous discount rates (see Krusell and Smith, 1998), or entrepreneurship
(Quadrini, 1999), or stochastic financial returns, which are not considered here.

Finally, we discretize the productivity process using the Rouwenhorst (1995) procedure with
7 idiosyncratic states.

9More precisely, we minimize the quadratic difference between the model-generated moments and their empirical
counterpart, following the Simulated Method of Moments. In the current environment, we see this procedure as a
“sophisticated” calibration, rather than an actual SMM – as we equally weight the three moments.

10For the problem under consideration, we consider matching the dispersion of consumption may be more
important than the distribution of wealth, which motivates the exclusion of this moment from our calibration
strategy.

28



Technology . The production function is Cobb-Douglas: F (K,L) = KαL1−α − δK. The
capital share is set to α = 36% and the depreciation rate to δ = 2.5%, as in Krueger et al. (2018)
among others.

Taxes and government budget constraint. The capital tax is taken from Trabandt and
Uhlig (2011), who use the methodology of Mendoza et al. (1994) on public finance data prior
to 2008. Their estimation for the US in 2007 (before the financial crisis) yields a capital tax
(including both personal and corporate taxes) of τK = 36%. For the labor we consider the HSV
functional form of equation (2). The progressivity of the labor tax is taken from Heathcote et al.
(2017), who report an estimate τ = 0.181. We choose κ to match a public-spending-to-GDP ratio
equal to 19%, as in Heathcote and Tsujiyama (2021).

Summary. Table 2 provides a summary of the model parameters.

Parameter Description Value

Preference and technology

β Discount factor 0.99
α Capital share 0.36
δ Depreciation rate 0.025
ā Credit limit 0
χ Scaling param. labor supply 0.05
ϕ Frisch elasticity labor supply 0.5

Shock process

ρy Autocorrelation idio. income 0.993
σy Standard dev. idio. income 0.082

Tax system

τK Capital tax 36%
κ Sacaling of Labor tax 0.75
τ Progressivity of tax 0.181

Table 2: Parameter values in the baseline calibration. See text for descriptions and targets.

4.2 Truncation and estimating Pareto weights

Standard recursive techniques cannot be used to compute the optimal Ramsey policy. The
problem of the planner, as derived analytically in Section 2.6, could be written recursively, but
the state space would include the joint distribution of beginning-of-period savings and Lagrange
multipliers on consumption Euler equations (i.e., (a, λc)), as past values of Lagrange multipliers

29



(λc,t−1) appear in the first-order condition of the planner. To compute the solution, we follow
LeGrand and Ragot (2022) and we consider a truncated representation of this problem. We
provide a detailed account of the computational implementation that can be of independent
interest as solving such Ramsey problems is not straightforward.

More precisely, to investigate the optimal dynamics of the instruments after a shock, we start
with providing an exact truncated aggregation of the steady-state model, and we then follow the
dynamics of the truncated representation using perturbation methods. The algebra is provided
in Appendix E.

The truncation length is set to N = 3, which is shown to be provide a good representation
of the dynamics. We have to to estimate the weights of the social welfare function, such that
the first-order conditions of the planner at the steady state are consistent with actual US tax
system (as described in Section 4.1). However, the problem is in general under-identified, since
we have only two constraints (for the capital and labor tax) but seven different weights (one
per productivity level). Following Heathcote and Tsujiyama (2021), we introduce productivity
weights which depend on the productivity level and define a parametric quadratic representation
of weights, as follows:

logωy := θ1 log y + θ2 (log y)2 .

As explained in Appendix E, matching capital and labor tax yields θ1 = 0.603597 and θ2 =
0.325546. In an environment without saving, Heathcote and Tsujiyama (2021) estimate the
relationship logωy = θ log y and find θ = 0.517. Our estimate is pretty close from theirs and the
quantitative difference mostly comes from the additional instruments we use.11

4.3 Model dynamics

We now simulate the optimal dynamics of the four fiscal tools (τκt , Bt, κt, τt) after a public
spending shock occurring in period t = 0. The dynamics of the shock is the same as in equation
(73) of the analytical section. After a initial shock in period 0, public spending reverts back to
equilibrium at a rate ρG. We present a first-order approximation of the dynamics, implying that
the initial shock should be considered to be not too large.

We first plot the dynamics of the model for two values of the persistence of the shock ρG = 0.99
and ρG = 0.90. Figure 3 plots the dynamics of public debt B, labor income tax (level κ and
progressivity τ), capital tax τK , output Y , capital K, aggregate labor L, and consumption C in
both cases.

Panel 1 represents the dynamics of public spending over GDP, it increases by 1% and goes
back to equilibrium at a rate ρG = 0.90 (black solid line) or ρG = 0.99 (blue dashed line). Panel
2 plots the dynamics of public debt-to-GDP ratio. It can be observed that public debt increases

11We cannot strictly reproduce the specification of Heathcote and Tsujiyama (2021) within our framework, as
we need two parameters for matching planner’s first-order conditions.
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Figure 3: Dynamics of selected variables. G/Y , B/Y, κ, τ, τK are absolute deviation (%).
Y,K,L,C are proportional deviation (%). The black solid line is for ρG = 0.90. The blue dashed
line is for ρG = 0.99

for the low value of the persistence ρG, whereas it decreases for the high value. Panel 3 plots the
dynamics of the level of labor tax κ. It increases in both cases but more when the shock is more
persistent. When the level persistence is high, progressively increase on impact by 0.2% and then
decreases. it is more stable when the persistence is low. Note that the deviation of progressively
is low compared to the deviation of the level of tax κ. Overall, as shown below, the overall return
on the tax on labor income fluctuates less than the capital tax. Indeed, Panel 5 show that the
capital tax increase by 30% when persistence is high, and by 10% when persistence is low. The
increase in the resources of the state mainly comes from the change of capital tax, which is
more volatile than labor tax. GDP increases in both cases, but less when the persistence is low.
We discuss below the implications for the multiplier of public spending. When the persistence
is high, capital decreases less and aggregate labor increases more compared to the case where
persistence is low (Panel 7 and 8). This generates the higher output when persistence is high,
which is necessary to finance the increase in G. Finally, the fall in consumption is higher when
persistence is high.
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Dynamics of tax return. We now plots the overall return on labor tax and capital tax as a
percentage of steady-state GDP to observe how the state finances it spending.

Figure 4: Overall return on labor tax (Panel 1) and capital tax (Panel 2), as a percentage of
steady-state GDP.

One can observe that the capital tax over GDP (Panel 2) is more volatile than the labor
tax return (Panel 1). The increase in capital tax is used to finance the increase in G but also a
decrease in labor tax return.

Cumulative multipliers. As typically done in the empirical literature (see Ramey and
Zubairy, 2018 for instance), we compute the spending multiplier mh at horizon h as follows:

mh =
∑h
t=0 (Yt − Y )∑h
t=0 (Gt −G)

.

Note that m1 is the impact multiplier. Figure 5 plots the multiplier as a function of the time t
after the shock.

One can observe that the multiplier is higher the more persistent the shock. Indeed, the
output is higher when the persistence of the shock is higher because of various effect. First, the
overall tax on labor decreases, which increases labor supply. Second the consumption is lower
when the persistence is higher what generates an increase in labor supply to compensate for the
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Figure 5: Cumulative multiplier as a function of the time t after the shock.

fall in consumption.

5 Conclusion

We investigate the optimal dynamics of fiscal system after a public spending shock in an
heterogeneous agent model. We first contribute to the clarification of the conditions for relevant
equilibria to exist. The key friction for equilibrium existence is occasionally-binding credit
constraint, which provide a rationale for both positive capital tax and public debt. The second
contribution of this paper is to show that the dynamics of public debt depends on the persistence
of the public spending shock. For low persistence, public debt is pro-cyclical. For high persistence;
the public debt is countercyclical. In addition, we find that capital tax increases, and more so
when persistence is high. We show that these properties are qualitatively robust in a model
where the actual US tax system is implemented at the steady state thanks to an inverse optimal
taxation approach. The simulation of the quantitative model relies on the Lagrangian-Truncation
approach developed in LeGrand and Ragot (2022).
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Appendix

A First-order conditions of the individual Ramsey program

The Ramsey problem can be written as follows:

max
(rt,w̃t,r̃t,τKt ,τt,κt,Bt,Kt,Lt,Πt,(ait,cit,lit,νit)i)t≥0

E0

[ ∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di)

]
, (79)

(80)

Gt +RtBt−1 + (Rt − 1)Kt−1 + wt

ˆ
i
(yitlit)1−τt`(di) = Kα

t−1L
1−α
t − δKt−1 +Bt (81)

for all i ∈ I: ait + cit = Rta
i
t−1 + wt(yitlit)1−τt , (82)

ait ≥ −ā, νit(ait + ā) = 0, νit ≥ 0, (83)

Uc(cit, lit) = βEt
[
Rt+1Uc(cit+1, l

i
t+1)

]
+ νit , (84)

− Ul(cit, lit) = (1− τt)wt(yit)1−τt(lit)−τtUc(cit, lit), (85)

Kt +Bt =
ˆ
i
ait`(di), Lt =

ˆ
i
yitl

i
t` (di) . (86)

The Lagrangian can be written as:

L = E0

∞∑
t=0

βt
ˆ
i
ωitU(cit, lit)`(di) (87)

− E0

∞∑
t=0

βt
ˆ
i

(
λic,t −Rtλic,t−1

)
Uc(cit, lit)`(di)

+ E0

∞∑
t=0

βt
ˆ
i
λil,t

(
Ul(cit, lit) + (1− τt)wt(yit)1−τt(lit)−τtUc(cit, lit)

)
`(di)

− E0

∞∑
t=0

βtµt

(
Gt + (1− δ)Bt−1 + (Rt − 1 + δ)

ˆ
i
ait−1`(di) + wt

ˆ
i
(yitlit)1−τt`(di)

− (
ˆ
i
ait−1`(di)−Bt−1)α(

ˆ
i
yitl

i
t`(di))1−α −Bt

)
. (88)

where:

cit = −ait +Rta
i
t−1 + wt(yitlit)1−τt (89)
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FOC with respect to savings choices. Deriving (87) with respect to ait yields:

0 = βt
ˆ
j
ωjtUc(c

j
t , l

j
t )
∂cjt
∂ait

`(dj)

− βt
ˆ
j

(
λjc,t −Rtλ

j
c,t−1

)
Ucc(cjt , l

j
t )
∂cjt
∂ait

+ βt
ˆ
j
λjl,tUcl(c

j
t , l

j
t )
∂cjt
∂ait

`(dj)

+ βt(1− τt)wt
ˆ
j
λjl,t(y

j
t )1−τt(ljt )−τtUcc(c

j
t , l

j
t )
∂cjt
∂ait

`(dj)

+ βt+1Et

[ˆ
j
ωjt+1Uc(c

j
t+1, l

j
t+1)

∂cjt+1
∂ait

]

− βt+1Et

[ˆ
j

(
λjc,t+1 −Rt+1λ

j
c,t

)
Ucc(cjt+1, l

j
t+1)

∂cjt+1
∂ait

`(dj)
]

+ βtEt

[ˆ
j
λjl,t+1Ucl(c

i
t+1, l

i
t+1)

∂cjt+1
∂ait

`(dj)
]

+ βt+1(1− τt+1)wt+1Et

[ˆ
j
λjl,t+1(yjt+1)1−τt+1(ljt+1)−τt+1Ucc(cjt+1, l

j
t+1)

∂cjt+1
∂ait

`(dj)
]

+ βt+1Et
[
µt+1

(
αKα−1

t L1−α
t+1 − (rt+1 + δ)

)]
We also denote:

ψit = ωitUc(cit, lit) + λil,tUcl(cit, lit) (90)

−
(
λic,t −Rtλic,t−1 − λil,t(1− τt)wt(yit)1−τt(lit)−τt

)
Ucc(cit, lit).

and get using r̃t+1 = αKα−1
t L1−α

t+1 − δ:

0 =
ˆ
j
ψjt
∂cjt
∂ait

`(dj) + βEt

[ˆ
j
ψjt+1

∂cjt+1
∂ait

]
+ βEt [µt+1(r̃t+1 −Rt+1 + 1)] .

Using (89), we obtain ∂cjt
∂ait

= −1i=j and
∂cjt+1
∂ait

= Rt+11i=j , from which we deduce:

ψit = βEt
[
Rt+1ψ

i
t+1

]
+ βEt [µt+1(1 + r̃t+1 −Rt+1)] .
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FOC with respect to labor supply. Deriving (87) with respect to lit yields:

0 =
ˆ
j
ψjt
∂cjt
∂lit

`(dj)− ψjl,t

− λil,t(1− τt)τtwt(yit)1−τt(lit)−τt−1Uc(cit, lit)− µt(wt(1− τt)(yit)1−τt(lit)−τt − FL,tyit),

where we have defined:

ψil,t = −ωitUl(cit, lit)− λil,tUll(cit, lit) + (λic,t −Rtλic,t−1 − λil,t(1− τt)wt(yit)1−τt(lit)−τt)Ucl(cit, lit).

Using (89), we obtain ∂cjt
∂lit

= (1− τt)wt(yjt )1−τt(lit)−τt1i=j ,which implies:

ψil,t = (1− τt)wtyit(yitlit)−τtψ̂it
+ µtFL,ty

i
t − λil,t(1− τt)τtwtyit(yitlit)−τtUc(cit, lit)/lit.

FOC with respect to the interest rate. Deriving (87) with respect to Rt yields:

0 =
ˆ
j

(
ψjt

∂cjt
∂Rt

+ λjc,t−1Uc(c
j
t , l

j
t )
)
`(dj)− µt

ˆ
j
ajt−1`(dj).

From (89), we obtain ∂cjt
∂Rt

= ajt−1, which yields:

0 =
ˆ
j

(
ψ̂jta

j
t−1 + λjc,t−1Uc(c

j
t , l

j
t )
)
`(dj).

FOC with respect to the wage rate. Deriving (87) with respect to wt yields:

0 =
ˆ
j

(
ψjt
∂cjt
∂wt

+ λjl,t(1− τt)(y
j
t )1−τt(ljt )−τtUc(c

j
t , l

j
t )
)
`(dj)

− µt
ˆ
j
(yjt l

j
t )1−τt`(dj)

From (89), we get ∂cjt
∂wt

= (yjt l
j
t )1−τt and:

0 =
ˆ
j
(yjt l

j
t )1−τt

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

)
`(dj).

FOC with respect to public debt. Deriving (87) with respect to Bt yields:

0 = µt − β
[
(1− δ − αKα

t−1L
1−α
t µt+1

]
,
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or using the definition of r̃t+1:

µt = β(1 + r̃t+1)µt+1.

FOC with respect to progressivity. Deriving (87) with respect to τt yields:

0 =
ˆ
j
ψjt
∂cjt
∂τt

`(dj)

+ wt

ˆ
j
λjl,t

∂

∂τt

(
(1− τt)(yjt l

j
t )1−τt

)
(Uc(cjt , l

j
t )/l

j
t )`(dj)

− µtwt
ˆ
j

∂

∂τt

(
(yjt l

j
t )1−τt

)
`(dj).

From (89), we have ∂cjt
∂τt

= (yjt l
j
t )1−τt and:

0 =
ˆ
j
ψ̂jt

∂

∂τt

(
(yjt l

j
t )1−τt

)
(dj)

+
ˆ
j
λjl,t

(
−(yjt l

j
t )1−τt + (1− τt)

∂

∂τt
(yjt l

j
t )1−τt

)
(Uc(cjt , l

j
t )/l

j
t )`(dj).

and

0 =
ˆ
j

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

) ∂

∂τt

(
(yjt l

j
t )1−τt

)
(dj)

−
ˆ
j
λjl,t(y

j
t l
j
t )1−τt(Uc(cjt , l

j
t )/l

j
t )`(dj).

Using ∂
∂τt

(
(yjt l

j
t )1−τt

)
= − ln(yjt l

j
t )(y

j
t l
j
t )1−τt , we finally deduce:

0 =
ˆ
j
(yjt l

j
t )1−τt

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

)
ln(yjt l

j
t )(dj)

+
ˆ
j
λjl,t(y

j
t l
j
t )1−τt(Uc(cjt , l

j
t )/l

j
t )`(dj).
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Summary of FOCs.

ψ̂it = βEt
[
(1 + rt+1)ψ̂it+1

]
,

ψil,t = (1− τt)wtyit(yitlit)−τtψ̂it
+ µtFL,ty

i
t − λil,t(1− τt)τtwtyit(yitlit)−τtUc(cit, lit)/lit,

µt = β(1 + r̃t+1)µt+1

0 =
ˆ
j

(
ψ̂jta

j
t−1 + λjc,t−1Uc(c

j
t , l

j
t )
)
`(dj),

0 =
ˆ
j
(yjt l

j
t )1−τt

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

)
`(dj),

0 =
ˆ
j
(yjt l

j
t )1−τt

(
ψ̂jt + λjl,t(1− τt)Uc(c

j
t , l

j
t )/l

j
t

)
ln(yjt l

j
t )(dj)

+
ˆ
j
λjl,t(y

j
t l
j
t )1−τt(Uc(cjt , l

j
t )/l

j
t )`(dj).

B Proof of Proposition 1

The first-best equilibrium is characterized by optimal consumption smoothing and no inefficient
distortions. As consequence agents are unconstrained and taxes are τK = τL = 0. We focus
on the steady state allocation. Since both agents are unconstrained, the combination of Euler

equations (38) and (39) yields u′
(
ce − 1

χ
l
1+ 1

ϕ
e

1+ 1
ϕ

)
= (βR)2u′

(
ce − 1

χ
l
1+ 1

ϕ
e

1+ 1
ϕ

)
, and hence:

βRFB = 1, (91)

while the government budget constraint (37) implies that the public debt verifies:

BFB = − β

1− βG < 0.

The previous condition is necessary but not sufficient to ensure that the first-best allocation
can be implementer. Indeed, the additional constraint is that no agents are constrained. We now
derive this additional condition.

Factor prices definitions (1) with (91) and LFB = le = (χwFB)ϕ yield:

KFB

LFB
=
(

α
1
β + δ − 1

) 1
1−α

, (92)
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from which we easily deduce:

wFB = (1− α)
(

α
1
β + δ − 1

) α
1−α

, (93)

YFB = Kα
FBL

1−α
FB = (χ(1− α))ϕ

(
α

1
β + δ − 1

)α(1+ϕ)
1−α

, (94)

KFB =
(

α
1
β + δ − 1

) 1
1−α

(χwFB)ϕ. (95)

Furthermore, since agents are unconstrained, Euler equations imply cu,FB = ce,FB − 1
χ

l
1+ 1

ϕ
e,FB

1+ 1
ϕ

, or

after substituting by budget constraints: RFBau,FB−ae,FB + w(χw)ϕ
ϕ+1 = RFBae,FB−au,FB. With

(91), this yields:

ae,FB − au,FB = β

1 + β

wFB(χwFB)ϕ

ϕ+ 1 , (96)

au,FB + ae,FB = KFB −
β

1− βG, (97)

where the second equality is the financial market clearing condition. The combination of both
previous equations implies:

21− β
β

au,FB
YFB

= g1 − gFB, (98)

with: g1 = 1− β
β

α

1/β + (δ − 1) −
1− β
1 + β

1− α
ϕ+ 1 , (99)

gFB = G

YFB
. (100)

Due to the the credit constraint au,FB ≥ 0, if the first-best equilibrium exists, equation (98)
implies that gFB ≤ g1. We can then deduce ae,FB from (96):

ae,FB = au,FB + β

1 + β

wFB(χwFB)ϕ

ϕ+ 1 ,

which verifies ae,FB ≥ au,FB ≥ 0.
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C Characterizing the steady-state equilibrium with positive cap-
ital taxes

C.1 FOCs derivation

We focus on the case where unemployed agents are credit-constrained. Note that the situation
where both unemployed agents are credit-constrained is not optimal whenever u′(0) =∞. Indeed,
when both agents are credit-constrained, deviating and having employed agents to save a small
amount yields an finite increase in unemployed agents utility.

Using individual budget constraints, Euler equations (38) and (39) become:

u′
(
wt(χwt)ϕ

ϕ+ 1 − ae,t
)

= βEt
[
Rt+1u

′(Rt+1ae,t)
]
, (101)

u′(Rtae,t−1) > βEt
[
Rt+1u

′
(
wt+1(χwt+1)ϕ

ϕ+ 1 − ae,t+1

)]
.

Using log preferences, we deduce from Euler equation (101):

ae,t = β

1 + β

wt(χwt)ϕ

1 + ϕ
≥ 0. (102)

After some simplification, the Ramsey program can then be written as:

max
{Bt,wt,Rt}

E0

∞∑
t=0

βt
(

log
( 1

1 + β

wt(χwt)ϕ

ϕ+ 1

)
+ log(Rt

β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
)
)
, (103)

wt+1(χwt+1)ϕ > β2Rt+1Rtwt(χwt)ϕ, (104)

G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
+ wt(χwt)ϕ = Bt (105)

+ F ( β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
−Bt−1, (χwt)ϕ).

Note that the Euler inequality for unemployed agents (104) is equivalent at the steady state to
βR < 1, which will always hold in equilibrium.

The Lagrangian associated to program (103)–(105) can be written (up to some constants
independent of policies):

L = (1 + β)(ϕ+ 1)E0

∞∑
t=0

βt log(wt) + E0

∞∑
t=0

βt log(Rt) + log(ae,−1) (106)

+ E0

∞∑
t=1

βtµt

(
F ( β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
−Bt−1, (χwt)ϕ) +Bt −Gt −Bt−1

− (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
− wt(χwt)ϕ

)
(107)

+ µ0 (F (K−1, (χw0)ϕ) +B0 −G0 −B−1 − (R0 − 1)a−1 − w0(χw0)ϕ) .
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Defining by convention w−1 as β
1+β

w−1(χw−1)ϕ
1+ϕ = a−1, FOCs associated to the Lagrangian (106)

can be summarized as (for t ≥ 0):

0 = (1 + β)(ϕ+ 1) 1
wt

+ β(χwt)ϕ
β

1 + β
Et [µt+1(FK,t+1 −Rt+1 + 1)] (108)

+ χµt(χwt)ϕ−1 (ϕFL,t − (ϕ+ 1)wt) ,

µt = βEt [(1 + FK,t+1)µt+1] , (109)

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
. (110)

We can take advantage of FOCs (109) and (110) to simplify FOC (108) as follows:

µtwt(χwt)ϕ
(

1− (1 + β)ϕ τLt
1− τLt

)
= (1 + ϕ)(1 + β), (111)

which is a time-t equation only and does not raise convergence issues. The only dynamic FOC is
the forward-looking equation (109). We will check that the system is well-defined and does not
raise convergence issues.

C.2 Checking that FOCs are identical

We check here that the first-order conditions of the Ramsey program derived in the general
case of Section 2.6 exactly simplify to the first-order conditions derived in the specific case of
Section 3.4.3. We start with expressing ψit and ψil,t (equations (23) and (27)) in the context of
the GHH utility function. We denote by C = c− χ−1 l1+1/ϕ

1+1/ϕ . Since U(c, l) = ln
(
c− χ−1 l1+1/ϕ

1+1/ϕ

)
,

we compute:

Uc(c, l) = 1
C
, Ucc(c, l) = − 1

C2 , Ul(c, l) = −χ−1l1/ϕ
1
C
,

Ull(c, l) = −χ
−1l1/ϕ−1

C

(
1
ϕ

+ χ−1l1/ϕ

C

)
, Ucl(c, l) = χ−1l1/ϕ

C2 .

Plugging this into equations (23) and (27) and using the labor Euler equation (11) stating that
χ−1l

i,1/ϕ
t = yitwt, we deduce that the expressions of ψit and ψil,t become:

ψitC
i
t = 1 +

(
λic,t −Rtλic,t−1

) 1
Cit
, (112)

ψil,tC
i
t = yitwt

(
1 +

λil,t
ϕlit

+ (λic,t −Rtλic,t−1) 1
Cit

)
. (113)

We now turn to the FOCs. Note that FOC (28) is exactly the same as FOC (54), while FOC
(31) has no equivalent in the simplified version since the progressivity parameter τt is set to zero.
FOC (26) can also be written with τt = 0: ψil,t = wty

i
tψ

i
t + µt(FL,t − wt)yit. Plugging (112) and
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(113) yields:

λil,t
ϕlit

yitwt
Cit

= µt(FL,t − wt)yit,

which is equivalent to 0 = 0 for unemployed agents since their productivity is null. For employed
agent with a productivity normalized to one, it becomes:

λe,l,t = ϕµtle,tCe,t
τLt

1− τLt
. (114)

The three remaining FOCs are equations (25), (29), and (30). Taking advantage of the
deterministic transitions between employment and unemployment, as well as the fact that
unemployed agents are credit-constrained (implying au,t−1 = λu,c,t−1 = 0) with null productivity,
these three FOCs can also be written as follows (ae,t−1, le,t > 0):

ψe,t − µt = βRt+1(ψu,t+1 − µt+1), (115)

µtCu,t = ψu,tCu,t + λe,c,t−1
ae,t−1

, (116)

µtCe,t = ψe,tCe,t + λe,l,t
le,t

, (117)

while similarly expressions of ψit in (112) can further be specified as:

ψe,tCe,t = 1 + λe,c,t
Ce,t

, (118)

ψu,tCu,t = 1−Rtλe,c,t−1
1
Cu,t

. (119)

Combining (116) and (119) with ae,t−1 = Cu,t
Rt

(which is unemployed agents’ budget constraint
(34)) implies:

µtCu,t = 1, (120)

with the expression of Cu,t = Rt
β

1+β
wt−1(χwt−1)ϕ

1+ϕ is identical to FOC (55).
Using the consumption Euler equation (38) stating that 1

Ce,t
= βRt+1

1
Cu,t+1

, the budget con-
straints (33) and (34) implying that Cu,t = βRtCe,t−1, and (120) meaning that 1 = βµt+1Rt+1Ce,t,
we deduce from (115) and (118):

λe,c,t
Ce,t

= β

1 + β
(µtCe,t − 1). (121)

Finally, we turn to FOC (117). Combined with the expressions of λe,l,t in (114), ψe,t in (118),
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and of λe,c,t in (121), it becomes:

Ce,tµt

(
1− (1 + β)ϕ τLt

1− τLt

)
= 1. (122)

Using the budget constraint (33) stating that Ce,t = wt(χwt)ϕ
(1+β)(1+ϕ) , equation (122) becomes FOC

(53). This completes the proof that the generic FOCs of Section 2.6 exactly imply the specific
FOCs of Section 3.4.3.

C.3 Steady state

Note that because of the FOC (110), µ = 0 or R = 0 is not possible at the steady state. FOCs
(108)–(110) and governmental budget constraint (105) become at the steady state, where we
denote variable without subscripts:

1
1 + β

µw(χw)ϕ = ϕ+ 1 + µ(χw)ϕϕ(FL − w), (123)

1 = β(1 + FK) (124)

1 = Rµ
β

1 + β

w(χw)ϕ

1 + ϕ
(125)

F ( β

1 + β

w(χw)ϕ

1 + ϕ
−B, (χw)ϕ) = G+ (R− 1) β

1 + β

w(χw)ϕ

1 + ϕ
+ w(χw)ϕ (126)

Using (125) and w = (1− τL)FL, equation (123) becomes:

1
β
−R = ϕ

1 + β

β

(
FL
w
− 1

)
. (127)

Using w = (1− τL)FL, and R− 1 = (1− τK)FK = (1− τK)(β−1 − 1), (127) yields:

τK = ϕ
1 + β

1− β
τL

1− τL . (128)

After several manipulations and using (124) and (128), as well as the properties of F , the
governmental budget constraint (126) implies that τL is a solution of the following equation:

τL = 1
1− α

gFB(1− τL)−ϕ − g1

1 + 1−β
1+β

1
1+ϕ + ϕ

1+ϕ
, (129)

where g1 and gFB are defined in (99) and (100) respectively. Equation (129) can admit zero,
one, or two solutions (as the right hand-side is convex). When two solutions are available, the
planner unambiguously chooses the lowest tax (since it is associated to higher post-tax wages
and hence higher consumption).
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Regarding allocation, we have:

ce = 1
1 + β

w(χw)ϕ

1 + ϕ
, (130)

cu = 1− (1− β)τK

1 + β

w(χw)ϕ

1 + ϕ
. (131)

Finally, a condition for the τK > 0-equilibrium to exist is cu > 0, or equivalently, using (128)
that the solution of (129) must verify:

(1 + (1 + β)ϕ)τL < 1. (132)

C.4 Characterization of positive public debt

The financial market clearing condition (36) implies using (102) and the definition of w:

B = (χw)ϕ
(

β

1 + β

1− τL

1 + ϕ
FL −

K

L

)
,

which is positive iff: β
1+β

1−τL
1+ϕ > 1

FL
K
L . Using FOC (190) and the definitions of F and g1, we can

simplify 1
FL

K
L and obtain that B > 0 iff:

τL < −1 + ϕ

1− α
1 + β

1− β g1. (133)

Using the expression (129) of τL, we get an equivalent condition to (133):

gFB(1− τL)−ϕ < gpos,

where: gpos = 1 + β

1− β (1 + 2ϕ)(−g1). (134)

C.5 Non-existence of the τK = 0-equilibrium

We prove here that, at the steady state, the equilibrium featuring full risk-sharing and τK = 0
does not exist. More precisely, we show that it is always dominated by the equilibrium featuring
binding credit constraint and τK > 0 (Sections C.1 and C.3). We recall that the 0-subscript
relates to the equilibrium with τK = 0, and no subscript to the equilibrium with τK > 0. The
proof is split into two parts: (i) when the τk > 0-equilibrium exists, i.e., when condition (132)
holds (Section C.5.2); and (ii) when the τk > 0-equilibrium does not exist, i.e., when condition
(132) does not holds (Section C.5.3).
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C.5.1 Characterization of the τK = 0-equilibrium

We focus on the full insurance equilibrium with zero capital tax. We use a 0 subscript to denote
quantities in this case: τK0 = 0. With the same steps as in Section B, we have:

w0 = (1− τL)wFB, (135)

K0 = (1− τL)ϕKFB, (136)

Y0 = (1− τL)ϕYFB, (137)

Governmental budget constraint (37) becomes:

B0 = − β

1− βG+ β

1− β τ
L
0 (1− τL0 )ϕwFB(χwFB)ϕ.

Perfect risk sharing (i.e., cu,0 = ce,0 − 1
χ

l
1+ 1

ϕ
e,0
1+ 1

ϕ

) and financial market clearing (i.e., A0 = K0 +B0)
imply (as in (96) and (96)), after proper substitution:

ae,0 − au,0 = β

1 + β

wFB(χwFB)ϕ

ϕ+ 1 (1− τL0 )ϕ+1, (138)

au,0 + ae,0 = (1− τL)ϕKFB −
β

1− βG+ β

1− β τ
L
0 (1− τL0 )ϕwFB(χwFB)ϕ. (139)

We deduce by combination of the two previous equations:

2au,0 = (1− τL0 )ϕKFB −
β

1− βG−
β

1 + β

wFB(χwFB)ϕ

ϕ+ 1 (1− τL0 )ϕ+1

+ β

1− β τ
L
0 (1− τL0 )ϕwFB(χwFB)ϕ.

Dividing by Y0 of (137) and using notation (93)–(95) and (45), we obtain:

2au,0
Y0

= β

1− β (g1 − gFB(1− τL0 )−ϕ) +
( 1

1− β + 1
1 + β

1
ϕ+ 1

)
βτL0 (1− α). (140)

We turn to the computation of ae,0. Using (138) and (139), we get:

2ae,0
Y

= 2au,0
Y

+ 2 β

1 + β

1− α
ϕ+ 1(1− τL0 ),

implying that ae,0 ≥ au,0 for all values of τL0 ≤ 1. We compute the consumption level cu,0 from
individual budget constraint (34):

2 cu,0
YFB

= (1− τL0 )ϕg1 −
G

YFB
+ 2

1 + β

1− α
ϕ+ 1(1− τL0 )ϕ + ϕ

ϕ+ 1(1− α)τL0 (1− τL0 )ϕ. (141)
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Computing the derivative of 2 cu,0
YFB

with respect to the labor tax τL0 yields:

1
ϕ(1− τL0 )ϕ−1

∂

∂τL0
2 cu,0
YFB

= − (1− β)α
1 + β(δ − 1) − (1− α)τL0 < 0, (142)

whenever τL0 ≥ 0. We deduce from the last inequality that cu,0 (and hence aggregate welfare

since cu,0 = ce,0 − 1
χ
l
1+ 1

ϕ
0
1+ 1

ϕ

) is decreasing with τL0 . Since ae,0 ≥ au,0 for all values of τL0 , the value

of τL0 is chosen as small as possible for credit constraints to hold and hence such that au,0 = 0.
From (140), τL0 is the solution of:

τL0 = 1
1 + 1−β

1+β
1

ϕ+1

gFB(1− τL0 )−ϕ − g1
1− α . (143)

In words, the planner chooses the lowest possible labor tax to reduce distortions. Finally,
regarding allocation, we compute:

cu,0 = ce,0 − χ−1 l
1+1/ϕ
0

1 + 1/ϕ = 1
1 + β

w0(χw0)ϕ

1 + ϕ
. (144)

Laffer curve. Equation (143) admits 0, 1 or 2 solutions, and reflects some form of Laffer
curve. The case with zero solution appears when no equilibrium exists: the public spending G is
too high to be financed and no level of labor tax allows the governmental budget to hold. The
case with 2 solutions is the standard case when the equilibrium exists: it features either a low
tax/high labor supply or a high tax/low labor supply combination. The planner (since inequality
(142) holds) unambiguously opts for the lowest tax. Finally the 1-solution case is a limit case
that only occurs for a unique value of public spending.

C.5.2 Case where the τk > 0-equilibrium exists

We will show that the allocations of the τK = 0 and τK > 0 equilibria are the outcomes of two
optimization programs, where the first one is identical to the other one, up to an additional
constraint.

The proof rely on the expression of the problem, for which bot cases τK > 0 and τK = 0 can
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be solution. More formally, we consider the following program:

max
{Bt,wt,Rt}

∞∑
t=0

βt
(

(1 + β) log
( 1

1 + β

wt(χwt)ϕ

ϕ+ 1

)
+ log(βRt)

)
(145)

G+Bt−1 + (Rt − 1) β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
+ wt(χwt)ϕ = Bt (146)

+ F ( β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
−Bt−1, (χwt)ϕ),

Rt ≥ 1 + r̃t (147)

where the interest rate r̃t in the constraint (147) is taken as exogenous with r̃t = FK,t. We now
show that the previous program has the desired properties.

We start with the case τK = 0. Denoting by βtµt the Lagrange multiplier associated to
the constraint (146), the maximization with respect to Bt yields: µt = β(1 + FK,t+1)µt+1,or at
the steady state: β(1 + FK) = 1.The constraint (146) implies then at the steady state, using
(92)–(95) that the labor tax, denoted τ̂ l0 verifies:

(1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

)
τ̂ l0 = gFB

(1− τ̂ l0)ϕ
− g1, (148)

which is the equation as (143) for τL0 . Since the planner will also choose the lowest solution to
(148), we deduce that τ̂ l0 = τL0 . Consumption levels then mechanically verify equation (144),
which proves that the steady-state equilibrium with τK = 0 is a steady-state solution of the
program (145)–(146) where we impose τKt = 0 at all dates.

We now turn to the unconstrained case (τK 6= 0). In that case, the FOCs of the program
(145)–(146), with respect to Bt, Rt, and wt, respectively are:

µt = µt+1β(1 + FK,t),

1 = Rtµt
β

1 + β

wt−1(χwt−1)ϕ

1 + ϕ
,

(1 + β)(1 + ϕ)
wt

= µt
wt

((ϕ+ 1)wt(χwt)ϕ − ϕFL,t(χwt)ϕ)

+ βµt+1
wt

(Rt+1 − 1− FK,t+1) β

1 + β
wt(χwt)ϕ.

At the steady-state, we obtain:

1 = β(1 + FK), (149)

1 = Rµ
β

1 + β

w(χw)ϕ

1 + ϕ
, (150)

(1 + β)(1 + ϕ)
µ(χw)ϕ = (ϕ+ 1)w − ϕFL + β(R− 1− FK) β

1 + β
w. (151)
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With (149) and (150), equation (151) yields, after some manipulation that taxes τ̂k and τ̂ l verify:

τ̂k = ϕ
1 + β

1− β
τ̂ l

1− τ̂ l ,

which is the same relationship as (128) for τK . As we did in the constrained case, the constraint
(146) of the program at the steady state yields for τ̂ l the same definition as equation (129) for τL.
We deduce that τ̂ l = τL and τ̂k = τK , when τL satisfies condition (132). Consumption levels
(130) and (131) then easily follow. It is also easy to check that τK , τL > 0.

We therefore deduce that the allocation with τK = 0 is the solution of a constrained program
and is hence dominated by the allocation τk 6= 0 – when ever the later exist.12

C.5.3 Case where the τk > 0-equilibrium does not exist

For the sake of completeness, we now show that an equilibrium with τK = 0 does not exist even
when the equilibrium where τK > 0 does not exist. Assume now that the solution of (129) does
not verify condition (132). We will show that in that case the τk = 0-equilibrium does not exist
either.

To do so, we focus on the limit case when condition (132) does not hold, implying that the
solution, denoted τLm, to (129) is:

τLm = 1
1 + (1 + β)ϕ. (152)

The argument easily extends to any value τL ≥ τLm (see explanation after equation (154)).
Equation (129) implies that it corresponds to a public spending gFB,0 verifying:

gFB,0(1− τLm)−ϕ = (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
τLm + g1. (153)

To show that the τk = 0-equilibrium does not exist, we show that there is no solution to (143),
and more precisely that, for all τL0 :

τL0 <
gFB,0(1− τL0 )−ϕ − g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) . (154)

Note that the argument we develop would easily extend to any solution τL to (129), such
that τL ≥ τLm. Indeed, these cases would imply public spending levels higher than gFB,0. The
equilibrium non-existence would then be implied by inequality (154).

To show that inequality (154), notice that τ0 ∈ (−∞, 1) 7→ gFB,0(1 − τL0 )−ϕ − g1 − (1 −
12Note that the argument could not be applied right away from the initial program formulation of Section

3 because with τk 6= 0, the constraint au,t = 0 was binding – which is not present anymore with the modified
program (145)–(146).
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α)
(
1 + 1−β

1+β
1

1+ϕ

)
τL0 is convex admits a global minimum denoted τL0,min, defined as:

1− τL0,min =

 ϕgFB,0

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 1

ϕ+1

(155)

To prove inequality (154), we only need to show that:

∆ > 0, (156)

where: ∆ =
gFB,0(1− τL0,min)−ϕ − g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) − τL0,min. (157)

Using (155), the expression (157) of ∆ becomes:

∆ = (ϕ−1 + 1)

 ϕgFB,0

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 1

ϕ+1

− g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) − 1. (158)

The definition (153) of gFB,0 implies:

ϕgFB,0

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
= (1− τLm)ϕ+1

 ϕτL

1− τL +
ϕ(1− α) ϕ

1+ϕ
τLm

1−τLm

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) +
ϕg1

1
1−τLm

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 ,

= (1− τL)ϕ+1

 1
1 + β

+ ϕ

(1 + β)(1 + ϕ) + 1− β +
ϕg1

1
1−τL

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 ,

where the second inequality comes from the definition (152) of τLm. Plugging this value into (158)
yields:

∆ = (1 + β)(ϕ+ 1)
1 + (1 + β)ϕ

 2(1 + (1 + β)ϕ)
(1 + β)((1 + β)(1 + ϕ) + 1− β) +

1+(1+β)ϕ
1+β g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

)
 1

ϕ+1

(159)

− g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) − 1.

In (159), ∆ can be seen as a function of g̃1 = g1
(1−α)

(
1+ 1−β

1+β
1

1+ϕ

) , defined on (− 2
(1+β)(1+ϕ)+1−β ,∞).

It is straightforward to check that this function is concave, admits a unique maximum equal
to (1+β)ϕ

(1+β)(1+ϕ)+1−β > 0 that is reached in g̃∗1 = −2ϕ(1+β)
(1+(1+β)ϕ)((1+β)(1+ϕ)+1−β) . Thus, there exist two

(mathematical) bounds denoted g̃inf
1 < g̃∗1 < g̃sup

1 , such that ∆(g̃1) > 0 iff g̃1 ∈ (g̃inf
1 , g̃sup

1 ). The
rest of the proof consists in finding two economical bounds on g̃1, denoted by g̃min

1 and g̃max
1 and

to prove that ∆(g̃min
1 ) > 0 and ∆(g̃max

1 ) > 0. We can then deduce from the properties of the
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function ∆ that ∆(g̃1) > 0 for all economically acceptable g̃1.

Lower bound on g̃1. The definition (99) of g1 = 1−β
β

α
1/β+δ−1 −

1−β
1+β

1−α
ϕ+1 readily implies:

g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) ≥ − 1− β
(1 + β)(1 + ϕ) + 1− β = g̃min

1 .

From (159), we deduce:

∆(g̃min
1 ) ≥ (1 + β)(1 + ϕ)

(1 + β)(1 + ϕ) + 1− β

((
1 + 1

1 + (1 + β)ϕ

) ϕ
ϕ+1
− 1

)
,

> 0,

where the second inequality is a direct implication of β ∈ (0, 1) and ϕ > 0.

Upper bound on g̃1. The upper bound on g̃1 is less straightforward. Equation (153) – seen
as an equation in τLm for a given gFB,0 – admits one or two roots (since by construction the
no-root case is excluded). To guarantee that the smallest solution is chosen, the derivative of the
τ 7→ (1− α)

(
1 + 1−β

1+β
1

1+ϕ + ϕ
1+ϕ

)
τ + g1 − gFB,0(1− τ)−ϕ must be positive in τLm (the function

being concave, it has to intercept 0 before it reaches its maximum). Or equivalently:

ϕgFB,0(1− τLm)−ϕ−1 ≤ (1− α)
(

1 + 1− β
1 + β

1
1 + ϕ

+ ϕ

1 + ϕ

)
.

Using the definition (153) of gFB,0, we obtain that this condition is equivalent to:

g1

(1− α)
(
1 + 1−β

1+β
1

1+ϕ

) ≤ 2β
(1 + β)(1 + ϕ) + 1− β = g̃max

1 .

From (159), we obtain, after some manipulations:

∆(g̃max
1 )
τLm

≥ (1 + β)(1 + ϕ)

(1 + ϕ(1 + β)
1 + (1 + ϕ(1 + β))

) 1
ϕ+1
− 1

− β ϕ(1 + β)
(1 + (1 + ϕ(1 + β))) ,

whose left-handside can be seen as a function of ϕ(1+β)
1+(1+ϕ(1+β)) (that lies in (0, 1)). We denote:

∆̃ : x ∈ (0, 1) 7→ (1 + β)(ϕ+ 1)
(
(1 + x)

1
ϕ+1 − 1

)
− βx.

Using a second-order Taylor development, we have for x ∈ (0, 1):

∆̃(x)
x
≥ 1− ϕ

ϕ+ 1
1 + β

2 x > 0,
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where the second inequality comes from x < 1, β < 1, and ϕ > 0. This implies ∆(g̃max
1 ) > 0 and

concludes the proof.

C.6 A non-interior steady-state equilibrium

Here we investigate the case when (129) admits a solution, but when this solution does not verify
condition (132). We have:(

1− (1 + ϕ(1 + β))τLt
)

(1− τLt )ϕµtw̃t(χw̃t)ϕ = (1 + β)(1 + ϕ), (160)
µt+1
µt

= 1
β(1 + FK,t+1) , (161)

(1 + (1− τKt )FK,t)µt(1− τLt−1)ϕ+1w̃t−1(χw̃t−1)ϕ = (1 + β)(1 + ϕ)
β

(162)

Equation (160) implies that for all t:

τLt ≤
1

1 + ϕ(1 + β) .

In particular, τL = limt→∞ τ
L
t ≤ 1

1+ϕ(1+β) . From (160), we also understand that there are
possibly non-interior steady states, featuring limt µt =∞ or limt w̃t =∞.

First case: limwt = w∗ <∞.

– The case w∗ = 0 is not possible. Otherwise there are no resources to pay G.

– Assume that limµt =∞, then equation (160) implies limt τ
L
t = (1 +ϕ(1 +β))−1. Equation

(162) then yields limt(1 + (1− τKt )FK,t) = limtRt = 0.

Second case: limtwt = ∞. We thus have limt w̃t = ∞. We also have from factor price
definitions:

χw̃t =
(
χ(1− α)

(1− τLt )αϕ

) 1
1+ϕα

K
α

1+ϕα
t−1 ,

which yields limKt = ∞ and limt
Kt−1

(χwt)ϕ = ∞. We deduce limt FK,t = −δ. We then deduce
limt µt =∞, limt τ

L
t = (1 + ϕ(1 + β))−1, and limtRt = 0.

These two non-stationary equilibria feature limt µt =∞ and limtRt = 0.
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D Model dynamics in the presence of aggregate shocks

D.1 Model linearization

Defining:
θ = 1

1 + ϕ

β

1 + β
, (163)

FOCs (108) and (109) and governmental budget constraint (105) become:

µt = β(1 + αZt+1K
α−1
t χ(1−α)ϕw

(1−α)ϕ
t+1 − δ)µt+1, (164)

0 = 1− µtwt(χwt)ϕ (1− θ) + ϕ

1 + ϕ
µt(1− α)Kα

t−1(χwt)ϕ(1−α), (165)

Kα
t−1(χwt)ϕ(1−α) = Gt +Kt − (1− δ)Kt−1 + 1

µt
+ (1− θ)wt(χwt)ϕ. (166)

We deduce Rt from 1 = Rtµtθwt−1(χwt−1)ϕ (i.e., FOC (110)) and Bt from Bt = θwt(χwt)ϕ−Kt

(i.e., financial market clearing).
We denote by a hat the proportional deviation to the steady state value. Formally, for

a generic variable x: x̂ = xt−x
x . The linearization of equations (164)–(166) yield after some

manipulation:

µ̂t − Etµ̂t+1 = (1− β(1− δ))(Ẑt+1 + (α− 1)K̂t + (1− α)ϕEtŵt+1), (167)

0 = −αK̂t−1 + (A− 1)µ̂t + ((ϕ+ 1)(A− 1) + 1 + ϕα)ŵt, (168)

0 = G

Y
Ĝt + α

1
β − (1− δ)

(
K̂t − β−1K̂t−1

)
− (A− 1)ϕ1− α

1 + ϕ
µ̂t (169)

+ (A− 1)ϕ(1− α)ŵt,

where τL is defined in (129) and where:

A = (1 + 1
ϕ(1 + β))(1− τL) > 1, (170)

where the inequality comes from condition (132) for the existence of the equilibrium.

D.2 Public debt spending shock

In the remainder, we will focus on full capital depreciation: δ = 1.

Dynamic system. In that case, we can show that, when setting:
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rµ = (1 + ϕ)(A− 1) + 1 + αϕ

(1 + αϕ)A , (171)

tµ = (1− α)(1 + ϕ)(A− 1) + 1
(1 + αϕ)A , (172)

rK = 1− α
αβ

(A− 1) ϕ

1 + ϕ

(
1 + (1 + ϕ)(A− 1)

(1 + ϕ)(A− 1) + 1 + ϕα

)
, (173)

tK = 1
β

(1 + ϕα)A
(1 + ϕ)(A− 1) + 1 + ϕα

, (174)

sK = − G

αβY
, (175)

we obtain from (167)–(169):

Et [µ̂t+1] = rµµ̂t + tµK̂t, (176)

K̂t = rK µ̂t + tKK̂t−1 + sKĜt, (177)

where the dynamics of Ĝt is given by:

Ĝt = ρGĜt−1 + σGεG,t, (178)

where: εG,t ∼IID N (0, 1),

and σG > 0 and ρG ∈ (−1, 1).
Since A > 1, it can be checked that the coefficients tK , rK , tµ are positive, while rµ > 1.

Deriving a simplified dynamic system. We look for coefficients coefficients ρK , σK , ρµ,
σµ, such that:

K̂t = ρKK̂t−1 + σKĜt (179)

µ̂t = ρµK̂t−1 + σµĜt (180)

Combining (176)–(177) yields:

EtK̂t+1 = rµ(K̂t − tKK̂t−1 − sKĜt) + rKtµK̂t + tKK̂t + sKρGĜt

= −rµtKK̂t−1 − sKrµĜt + (rKtµ + rµ + tK)K̂t + sKρGĜt

EtK̂t+1 − (tK + rµ + rKtµ)K̂t + rµtKK̂t−1 = (sKρG − rµsK)Ĝt.

Using (179), we obtain that ρK must verify solve the following equation:

ρ2
K − (tK + rµ + rKtµ)ρK + rµtK = 0, (181)
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whose discriminant is:

D = (tK + rµ + rKtµ)2 − 4rµtK . (182)

Since tK , rµ, rK , tµ ≥ 0, we have D ≥ (tK + rµ)2 − 4rµtK = (tK − rµ)2 > 0, where the strict
inequality comes from tK = 1

βrµ
> 0. Equation (181) thus admits two distinct roots, which are:

ρK,1 = tK + rµ + rKtµ +
√
D

2 and ρK,2 = tK + rµ + rKtµ −
√
D

2 . (183)

Since (tK + rµ + rKtµ)2 > D > 0, we deduce that 0 < ρK,2 < ρK,1. Furthermore, we can check
that a necessary and sufficient condition for the equilibrium to be stable is:

α ≤ 1
1 + (1− β)(1 + ϕ) < 1, (184)

where the second inequality comes from β ∈ (0, 1). Note that a sufficient condition for the
stability is g1 < 0 – which is equivalent to α ≤ 1

1+(1+β)(1+ϕ) and hence implies (184).
Let us prove it. The condition ρK,2 < 1 is equivalent to J := tK + rµ + rKtµ − rµtK − 1 > 0.

Using equations (171)–(174), we can show that:

J

J0
= (β(1 + ϕ)(A− 1) + (1 + αϕ)(β −A))

+ 1− α
α(1 + ϕ)((1 + ϕ)(A− 1) + 1) (2(1 + ϕ)(A− 1) + 1 + ϕα) ,

where: J0 = ϕ(1− α)(A− 1)
β(1 + αϕ)A((1 + ϕ)(A− 1) + 1 + ϕα) .

Since A > 1, J0 > 0 and the sign of J is the one of:

β(1 + ϕ)(A− 1) + (1 + αϕ)(β − 1− (A− 1))+
1− α

α(1 + ϕ)((1 + ϕ)(A− 1) + 1) (2(1 + ϕ)(A− 1) + 1 + ϕα) ,

which can be seen as a quadratic polynomial in A − 1, that we denote P (·). After some
rearrangement, we obtain:

P (A− 1) = 1 + αϕ

1 + ϕ
(−(1− β)(1 + ϕ) + 1− α

α
)+

+ (A− 1)
(
−(1− β)(1 + ϕ) + 1− α

α
+ 2(1 + αϕ)1− α

α

)
+ (A− 1)2 1− α

α
2(1 + ϕ).

A necessary condition for P (A−1) > 0 for all A > 1 is P (0) ≥ 0. However, P (0) ≥ 0⇒ P ′(0) > 0
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(since β ∈ (0, 1)). So, since P ′′(0) ≥ 0, P (0) ≥ 0 is a necessary and sufficient condition for
P (A−1) > 0 for A > 1. The condition P (0) ≥ 0 is equivalent to condition (184), which concludes
the proof regarding equilibrium stability.

Stability and characterization of the system (179)–(180). The Blanchard-Kahn condi-
tions involve checking that ρK < 1.

Since 0 < ρK,2 < ρK,1 and ρK,2ρK,1 = β−1 > 1, we must have ρK,1 > 1, which imposes that
ρK = ρK,2. The stability Blanchard-Kahn condition requires ρK,2 < 1. Note that in the limit
case when the equilibrium does not exist (i.e., condition (132) holds with equality), and which
corresponds to A = 1, it is straightforward to check that ρK,2 = 1 and that the dynamic system
is not stable.

To characterize further the dynamic system (179)–(180), we deduce from (176)–(177) that ρµ
is connected through ρK with:

(rµ − ρK)ρµ = −tµρK . (185)

Since rµ > 1, tµ > 0, and ρK ∈ (0, 1), we deduce that ρµ < 0.
Regarding parameters σK and σµ, we have from (176)–(177):

σK = rKσµ + sK , (186)

rµσµ = (ρµ − tµ)σK + σµρG. (187)

Equation (187) implies:
(rµ − ρG)σµ = (ρµ − tµ)σK . (188)

Using rµ > 1 > ρG and (185) implying that ρµ − tµ = rµρµ/ρK < 0, we deduce that σµ and σK
have opposite signs. Using rK > 0 and sK < 0 in equation (186), we deduce that σµ > 0 > σK .

The role of the shock persistence ρG. Combining (186) and (187) yields:

(rµ + (tµ − ρµ)rK)σµ = (ρµ − tµ)sK + σµρG,

which yields, by the implicit function theorem:

(rµ − ρG + (tµ − ρµ)rK)∂σµ
∂ρG

= σµ,

since only σµ (and σK) depend on ρG. Since rµ > 1 > ρG, and σµ, tµ, rK > 0 > ρµ, we deduce
using the previous equation and (186) that:

∂σµ
∂ρG

> 0 and ∂σK
∂ρG

> 0.
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Dynamic of the capital stock. By induction we can then prove that the dynamics (178)
and (179) of Ĝt and K̂t can be written as:

Ĝt = ρtGσGεG,0,

K̂t = σKσG
ρt+1
G − ρt+1

K

ρG − ρK
εG,0,

where by assumption we have K̂−1 = Ĝ−1 = 0 (no deviation from the steady state).
Let define:

φ(t) =


ρt+1
K −ρt+1

G
ρK−ρG if ρK 6= ρG,

(t+ 1)ρtG if ρK = ρG,

with φ(0) = 1, φ(∞) = 0, and:

(ρK − ρG)φ′(t) = ln(ρK)ρt+1
K − ln(ρG)ρt+1

G .

We have φ′(tm) = 0 iff:

tm + 1 =


ln(− ln(ρK))−ln(− ln(ρG))

ln(ρG)−ln(ρK) > 0 if ρK 6= ρG,

− 1
ln(ρG) > 0 if ρK = ρG,

It is direct to check that φ′(t) > 0 iff t < tm. The capital response is procyclical (it has the sign
of Ĝ0). When Ĝ0 > 0, capital increases until date tm before decreasing and converging back to
its steady-state value.

We now investigate the impact of ρG on tm. Defining rG := − ln(ρG) and rK := − ln(ρK),
we obtain:

∂tm
∂rG

=
rG−rK
rG

− (ln(rG)− ln(rK))
(rG − rK)2 if ρK 6= ρG.

By Taylor-Lagrange theorem, there exists r ∈ (rK , rG), such that:

ln(rK)− ln(rG) = rK − rG
rG

− (rK − rG)2

2r2 ,

from which we deduce:

∂tm
∂rG

=


− (rK−rG)2

2r2
(rG−rK)2 < 0 if ρK 6= ρG,

− 1
r2
G
< 0 if ρK = ρG,

So tm decreases with rG and increases with ρG: the more persistent ρG, the longer the impact of
capital dynamics.

We now study the impact of ρG on the φ(tm), the maximal value of φ (which corresponds to
the maximal variation of capital stock following the public spending shock.
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φ(tm) =


e

−
ln(rG)−ln(rK )

rG−rK
rK−e

−
ln(rG)−ln(rK )

rG−rK
rG

e−rK−e−rG if ρK 6= ρG,

r−1
G e−rG(r−1

G −1) > 0 if ρK = ρG,

We focus on the case where ρK 6= ρG and ρK < 1. Note that we have:

φ(tm)→ρG→1
1

1− ρK
.

and

φ(tm) =
( rKrG )

rK
rG−rK − ( rKrG )

rG
rG−rK

e−rK − e−rG

=
( rGrK )−

1
rG/rK−1 − ( rGrK )−

1
rG/rK−1−1

e−rK (1− e−rK(rG/rK−1))

We define x := rG/rK − 1, such that rG
rK

= 1 + x, rK
rG−rK = 1

rG/rK−1 = 1
x , and

rG
rG−rK = 1 + 1

x ,

and we define f(x) := φ(tm) = (1+x)− 1
x−(1+x)− 1

x−1

1−e−rKx , such that:

(1 + x)
1
x

+1f ′(x) =
ln(1+x)

x (1− e−rKx)− xrKe−rKx

(1− e−rKx)2 .

Note that:
(1 + x)

1
x

+1f ′(x) ∼x→−1
ln(1 + x)
erK − 1 ,

which is negative whenever x is sufficiently close to −1. In other words, f decreases with
x = rG/rK − 1, and hence increases with ρG.

Dynamic of public debt. Regarding public debt, the financial market clearing implies that
Bt = β

1+β
χϕ

1+ϕw
1+ϕ
t −Kt and thus that the dynamics is given by:

BB̂t = β

1 + β
χϕw1+ϕŵt −KK̂t.

At impact (t = 0), we have:

BB̂0 = −
(

β

1 + β
χϕw1+ϕ A− 1

(ϕ+ 1)(A− 1) + 1 + ϕα
σµ + σKK

)
σGεG,0 (189)

As a consequence, if the public debt is positive at the steady state (B > 0 equivalent to ḡ1 < 0 –
see Section C.4, then for a positive initial shock, εG,0 > 0, ∂σK∂ρG

> 0 implies ∂B̂0
∂ρG

< 0. The higher
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the shock persistence, the variation of public debt at impact decreases.

∂B̂0
∂ρG

< 0.

Using (188) with (189) and FOC (190) to simplify K
LFL

into βα
1−α , we obtain:

BB̂0 = −σµσG(χw)ϕFL

(
β

1 + β

(1− τL)(A− 1)
(ϕ+ 1)(A− 1) + 1 + ϕα

+ rµ − ρG
ρµ − tµ

βα

1− α

)
εG,0,

and finally using the relationship (170) between A and 1− τL:

BB̂0 =−σµσG(χw)ϕFLβ
ρµ − tµ

(
ϕ

1 + ϕ(1 + β)
A(A− 1)(ρµ − tµ)

(ϕ+ 1)(A− 1) + 1 + ϕα
+ (rµ − ρG) α

1− α

)
εG,0, (190)

Even if public debt is positive at the steady state (B > 0), the sign of B̂0 is ambiguous, since
ρµ − tµ < 0. It is the same for the quantity between brackets in (190) that can be positive or
negative, depending in particular on the magnitude of the persistence ρG of the public spending
shock. We illustrate it below in a particular tractable case.

E The Ramsey program on the truncated model

E.1 Formulation

We define the set of (ξu,0
yN

)yN such that:

∑
yt∈Yt|(ytt−N+1,...,y

t
t)=yN

u(ct(yt)) = ξu,0
yN
u

( ∑
yt∈Yt|(ytt−N+1,...,y

t
t)=yN

ct(yt)
)
,

or compactly:
ξu,0
yN
u(ct,yN ) :=

∑
yN

u(cit).

Similarly, we define (ξv,0
yN

), (ξu,1
yN

), (ξτ
yN

), and (ξv,1
yN

) such that:

ξv,0
yN
v(lt,yN ) :=

∑
yN

v(lit),

ξu,1
yN
u′(ct,yN ) :=

∑
yN

u′(cit),

ξτyN
∑
yN

(lt,yN )1−τt :=
∑
yN

(lit)1−τt ,

ξv,1
t,sN

v′(lt,yN ) := τtwtξ
τ
yN (lt,yN yyN )τtξu,1

yN
(u′(ct,yN )/lt,yN ).
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The Ramsey problem can then be written as:

max
(rt,w̃t,r̃t,τKt ,τt,κt,Bt,Kt,Lt,Πt,(ait,cit,lit,νit)i)t≥0

E0

 ∞∑
t=0

βt
∑
yN

St,yNω
i
t(ξ

u,0
yN
u(ct,yN )− ξv,0

yN
v(lt,yN ))

 ,
Gt + Tt + (1 + rt)Bt−1 + rtKt−1 + wtξ

y
yN

∑
yN

(lt,yN yyN )τt`(di) = F (Kt−1, Lt, zt) +Bt,

for all yN ∈ Y: , ct,yN + at,yN = wtξ
y
yN

(lt,yN yyN )τt + (1 + rt)ãt,yN + Tt,

at,yN ≥ −ā, νt,yN (at,yN + ā) = 0, νt,yN ≥ 0,

ξu,E
yN

u′(ct,yN ) = βEt
[ ∑
ỹN∈YN

Πt,yN ỹN ξ
u,E
ỹN

u′(ct+1,ỹN )(1 + rt+1)
]

+ νt,yN ,

ξv,1
t,sN

v′(lt,yN ) ≡ τtwtξyyN (lt,yN yyN )τtξu,1
yN

(u′(ct,yN )/lt,yN ),

Kt +Bt =
∑
yN

St,yNat,yN , Lt =
∑
yN

St,yN y
i
t,yN lt,yN .

E.2 Factorization

We now factorize the Ramsey problem of Section E.1. We define:

J =E0

∞∑
t=0

βt
∑
yN∈Y

[
St,yN

((
ωyN ξ

u,0
yN
u(ct,yN )− ξv,0

yN
v(lt,yN )

)

−
(
λc,t,yN − λ̃c,t,yN (1 + rt)

)
ξu,1
yN
Uc(ct,yN , lt,yN )

)
,

− λl,t,yN
(
v′(lt,yN )− τtwt(yt,yN )τtξy

yN
(lt,yN )τt−1ξu,1

yN
u′(ct,yN )

)]
.

The Ramsey program becomes maximizing J subject to the following constraints:

Gt + Tt + (1 + rt)Bt−1 + rtKt−1 + wtξ
τ
yN

∑
yN

(lt,yN yyN )τt`(di) = F (Kt−1, Lt, zt) +Bt

for all yN ∈ Y: , ct,yN + at,yN = wtξ
y
yN

(lt,yN yyN )τt + (1 + rt)ãt,yN + Tt,

at,yN ≥ −ā, νt,yN (at,yN + ā) = 0, νt,yN ≥ 0,

Kt +Bt =
∑
yN

St,yNat,yN , Lt =
∑
yN

St,yN y
i
t,yN lt,yN .

E.3 FOCs of the planner

Before expressing the FOCs of the Ramsey program, we define:

ψ̂t,yN := ωyN ξ
u,0
yN
u′(ct,yN )− µt

−
(
λc,t,yN ξ

u,E
yN
− (1 + rt)λ̃c,t,yN ξ

u,E
yN
− λl,t,yN ξ

y
yN
τtwt(yN0 )τt lτt−1

t,yN
ξu,1
yN

)
u′′(ct,yN ).
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The two Euler equations can be written as follows:

ξu,E
yN

u′(ct,yN ) = βEt
[ ∑
ỹN∈YN

Πt,yN ỹN ξ
u,E
ỹN

u′(ct+1,ỹN )(1 + rt+1)
]

+ νt,yN ,

ξv,1
t,sN

v′(lt,yN ) = τtwtξ
τ
yN (lt,yN yyN )τtξu,1

yN
(u′(ct,yN )/lt,yN )

while the constraints of the Ramsey program become:

Bt +Kα
t−1L

1−α
t = Gt + Tt + (1− δ)Bt−1 + (rt + δ)At−1

+ wt
∑

yN∈YN
St,yN ξ

τ
yN (yyN lt,yN )τt ,

λ̃t,yN = 1
St,yN

∑
ỹN∈YN

St−1,ỹNλt−1,ỹNΠt,ỹN ,yN ,

ct,yN + at,yN = wt(lt,yN yyN )τt + (1 + rt)ãt,yN + Tt,

at,yN ≥ 0 and ãt,yN =
∑

ỹN∈YN
ΠỹNyN ,t

St−1,ỹN

St,yN
at−1,ỹN .

The FOCs of the Ramsey program can finally be written as follows:

ψ̂t,yN = βEt
[
(1 + rt+1)

∑
ỹN∈YN

Πt,yN ỹN ψ̂t+1,ỹN

]
if νyN = 0 and λt,yN = 0 otherwise,

ψ̂t,yN = 1
τtwtξτyN (yN0 )τt lτt−1

t,yN

(ωyN ξ
v,0
yN
v′(lt,yN ) + λl,t,yN ξ

v,1
yN
v′′(lt,yN ))

− λl,t,yN (τt − 1)ξu,1
yN

(u′(ct,yN )/lt,yN )

− µt(1− α) Yt

τtwtξτyN (yN0 )τt−1lτt−1
t,yN

Lt
,

0 =
∑
yN∈Y

SyN
(
ψ̂t,yN ãt,yN + λ̃c,t,yN ξ

u,E
yN

u′(ct,yN )
)
,

0 =
∑
yN∈Y

SyN ξ
τ
yN (lt,yN yyN )τt

(
ψ̂t,yN + λl,t,yN τtξ

u,1
yN

(u′(ct,yN )/lt,yN )
)
,

0 =
∑
yN∈Y

SyN ψ̂t,yN ,

µt = βE
[
µt+1

(
1 + α

Yt+1
Kt
− δ

)]
,

0 =
∑
yN∈Y

SyNλl,t,yN ξ
τ
yN (lt,yN yyN )τtξu,1

yN
(u′(ct,yN )/lt,yN )

+
∑
yN∈Y

SyN
(
ψ̂t,yN + λl,t,yN τtξ

u,1
yN

(u′(ct,yN )/lt,yN )
)

ln
(
lt,yN yyN

)
ξτyN (lt,yN yyN )τt .
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