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Abstract
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1 Introduction

In most auctions, bidders are uncertain about the number of competitors they face:

• At auction houses such as Christie’s and Sotheby’s, personal attendance is in

decline as bidders prefer to phone in or place their bids online. Therefore,

bidders “know even less about who they’re bidding against, which in some

cases can leave them wondering how high they should go.”1

• The auction site eBay reveals the number of bidders who have placed a bid

but does not disclose how many prospective bidders are following the auction.

In particular, the platform does not display how many bidders are online to

“snipe”, that is, to place their bids in the last seconds of the auction (Roth &

Ockenfels, 2002).

• In the realm of auction-like trading mechanisms, the continuous order book at

the New York Stock Exchange informs market participants about the stream of

(un-)filled buy and sell orders, but reveals neither the number nor the identity

of (potential) buyers and sellers.

Although uncertainty about the number of competitors, or “numbers uncertainty”,

is ubiquitous, the subject has received little attention in the literature on auction

theory. One reason may be its irrelevance in standard auction formats with indepen-

dent private values: by a revenue-equivalence argument, equilibrium bids are just a

weighted average of the bids that are optimal when the number of rival bidders is

known; see Krishna (2010, Chapter 3.2.2) and Harstad et al. (1990).

By contrast, in a common-value setting, numbers uncertainty significantly alters

bidding behavior. Recall that when the number of rival bidders is known, classic re-

sults going back to Milgrom & Weber (1982) establish that there exists a unique sym-

metric equilibrium in first-price and second-price auctions, in which bids are strictly

increasing in the bidders’ own value estimates. Uniqueness and strict monotonicity

facilitate revenue comparison between auction formats, simplify welfare considera-

tions (in general interdependent-value settings), and allow for empirical identification

of the bidders’ signals. We show that these classic results no longer hold when the

number of competitors is uncertain. Equilibria generally are not strictly increasing

1The Wall Street Journal, “Why Auction Rooms Seem Empty These Days”, June 15, 2014;
cf. Akbarpour & Li (2020).
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but contain atoms. The locations of the atoms are often indeterminate, implying equi-

librium multiplicity. Moreover, equilibrium payoffs are discontinuous at the atoms,

invalidating standard methods for analyzing bidding behavior in these auctions: with

a continuous bid space, equilibrium generally fails to exist.

To model an auction with numbers uncertainty, we start with a canonical common-

value first-price auction. The value of the good is binary (high or low), and bidders

receive conditionally independent and identically distributed signals, with higher sig-

nals indicating a higher value. All bidders submit their bids simultaneously; the

highest bidder wins and pays her bid. Ties are broken uniformly. We only deviate

from the textbook setting in assuming that the number of (rival) bidders is not known

but Poisson distributed.

Numbers uncertainty affects bidding behavior with common values because it

changes the value inference from winning. In a conventional common-value auction

with a known number of bidders, the expected value conditional on winning is increas-

ing in the relative position of the bid because a higher bid eases the “winner’s curse”.

In fact, there is no winner’s curse at the very top bid. This reduction reinforces price

competition and implies the absence of pooling, i.e., of atoms in the bid distribution.

With numbers uncertainty, winning is also informative about the number of rival

bidders. In particular, winning with a low bid is more likely when there are fewer

competitors, which eases the winner’s curse. Therefore, winning with a low bid is

not necessarily bad news about the value of the good. In our model, the inference is

U-shaped: intermediate bids are subject to the strongest winner’s curse, while there

is no winner’s curse at the bottom or the top (Lemmas 2 and 3).

We show that every equilibrium is nondecreasing in the bidder’s signal (Lemma 1),

but the non-monotone inference implies that equilibria cannot be strictly increasing

unless the expected number of competitors is small (Proposition 1). Hence, the equi-

librium bid distribution contains one or more atoms, as bidders with different signals

pool on common bids. Numbers uncertainty incentivizes bidders to pool because

pooling shields them against the winner’s curse: under a uniform tie-breaking rule,

a bid that ties with positive probability is more likely to win when there are fewer

competitors, which reduces the winner’s curse.

The presence of atoms in the bid distribution substantially alters the analysis of

the auction. First, the locations of atoms are often indeterminate, so that there may

be multiple equilibria. Second, atoms create discontinuities in the bidders’ payoffs,
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implying that no equilibrium exists when the expected number of bidders is sufficiently

large (Proposition 2).

To overcome the nonexistence and study the bidding incentives, we consider equi-

libria on a finite but fine grid. We characterize the equilibrium bidding behavior in

Proposition 3. Qualitatively, any equilibrium on a fine grid with increments ∆ > 0

consists of three regions: bidders with high signals essentially follow a strictly in-

creasing strategy (as the grid permits), while bidders with intermediate signals pool

on some bid bp, and bidders with low signals bid one increment below it, bp − ∆.

The equilibria are shaped by a severe winner’s curse at bp, and a “winner’s blessing”

that arises at bids below bp, so that, at these bids, the expected value conditional

on winning is significantly higher than at bp. This induces bidders with low signals

to compete for the largest bid strictly below bp. On the grid, this competition leads

them to pool on bp − ∆; on the continuous bid space, the nonexistence of a largest

bid below bp implies the nonexistence of an equilibrium.

We show that bidding on a fine grid can be approximated by the equilibria of

a “communication extension” of the auction, based on Lebrun (1996) and Jackson

et al. (2002). In the communication extension, bidders submit not only a monetary

bid from the continuous bid space but also a message that indicates their “eagerness”

to win, which is used to break ties. The communication extension is useful because,

in contrast to the case of the standard auction, the limit of any converging sequence

of equilibria on ever finer grids corresponds to an equilibrium of the communication

extension. Proposition 5 shows that all equilibria of the communication extension

share the qualitative features of the equilibria on a fine grid.

In Section 7, we use the communication extension to discuss the implications of

numbers uncertainty for the revenue of the seller and the optimal design of auc-

tions, including reserve prices. Moreover, we show that the seller may benefit from

running a generalized clock auction with a non-monotone price path that mirrors the

non-monotone expected value conditional on winning. Finally, we discuss the assump-

tions, especially the Poisson distribution, as well as the related literature, including

recent contributions by Murto & Välimäki (2019) and Lauermann &Wolinsky (2022).
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2 Model

A single, indivisible good is sold in a first-price, sealed-bid auction. The good’s value

is either high, vh, or low, vℓ, with vh > vℓ ≥ 0, depending on the unknown state of the

world ω ∈ {h, ℓ}. The state is ω = h with probability ρ and ω = ℓ with probability

1 − ρ, where ρ ∈ (0, 1). The number of bidders is a Poisson-distributed random

variable with mean η, so that there are k bidders in the auction with probability

e−η ηk

k!
. The bidders do not observe the realized number of bidders.

Every bidder receives a signal s from the compact set [s, s̄]. Conditional on the

state, the signals are independent and identically distributed according to the cumu-

lative distribution functions Fh and Fℓ, respectively.
2 Both distributions have contin-

uous densities fω, and the likelihood ratio fh(s)
fℓ(s)

is strictly increasing in s; that is, the

signal distribution satisfies the strict monotone likelihood ratio property (MLRP).

Furthermore, 0 < fh(s)
fℓ(s)

< fh(s̄)
fℓ(s̄)

< ∞, so that no signal reveals the state. Let s̆ denote

the unique “neutral” signal, the one for which fh(s̆)
fℓ(s̆)

= 1.

Having received her signal, each bidder submits a bid b. There is a reserve price

at vℓ,
3 and it is without loss to exclude bids above vh, so that b ∈ [vℓ, vh]. The bidder

with the highest bid wins the auction, receives the object, and pays her bid. Ties are

broken uniformly. If there is no bidder, the good is not allocated.

The Poisson distribution has a number of useful properties; a detailed derivation

and discussion of Poisson games can be found in Myerson (1998). In particular, when

participating in the auction, a bidder does not change her belief regarding the number

of other bidders in the auction: this belief is again a Poisson distribution with mean

η.4 Moreover, Myerson (1998, p. 377) argues that in a Poisson game, attention can

be restricted to symmetric equilibria.

Accordingly, we consider symmetric strategies, which are measurable functions

β : [s, s̄] → ∆[vℓ, vh] mapping the signals into the set of probability distributions

over bids. Let πω(b; β) denote the probability of winning the auction with a bid b in

state ω, if the rival bidders follow strategy β. Using Bayes’ rule, the interim expected

2This is the “mineral rights” setup (Krishna, 2010). The signal structure excludes general affili-
ated signals and signals with shifting support.

3We require the reserve price to guarantee monotonicity of the equilibrium strategy (see below).
4This property is analogous to that of a stationary Poisson process, in which an event does not

allow for inferences about the number of other events.
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utility for a bidder with signal s choosing bid b is

U(b|s; β) = ρfh(s)

ρfh(s) + (1− ρ)fℓ(s)
πh(b; β)(vh−b)u+

(1− ρ)fℓ(s)

ρfh(s) + (1− ρ)fℓ(s)
πℓ(b; β)(vℓ−b).

A strategy β∗ is a best response to a strategy β if, for almost all s, a bid b ∈
supp β∗(s) implies that b ∈ argmaxb̂∈[vℓ,vh] U(b̂|s; β).

3 Monotonicity of bidding behavior

3.1 Best responses are weakly increasing

In the appendix, bidders’ payoffs are shown to satisfy the strict single-crossing con-

dition: for any β, bids b < b′, and signals s < s′,

U(b|s; β) ≤ U(b′|s; β) ⇒ U(b|s′; β) < U(b′|s′; β). (1)

An immediate consequence of this strict single-crossing condition is that best re-

sponses are monotone and pure; see, e.g., Athey (2001).

Lemma 1 (Best responses are monotone). If β is a strategy and β̂ a best response

to it, then β̂ is pure and weakly increasing.

The proof of the lemma in Appendix A.1 verifies (1). The key observation is that,

for any bid b ∈ (vℓ, vh), the bidder’s payoff is positive in state h and negative in ℓ.

Hence, bidders value a higher winning probability at a higher bid b′ > b only if they

believe that the state is more likely to be h.5

Given Lemma 1, we restrict our attention to pure and nondecreasing strategies,

which we also denote by β : [s, s̄] → [vℓ, vh]. For any such β and any bid b, the set of

signals bidding b is an interval (possibly empty). We denote its boundaries by

σ− (b) = inf{s : β(s) ≥ b}, σ+ (b) = sup{s : β(s) ≤ b},

where we use the convention that inf {∅} = s̄ and sup {∅} = s. Thus, σ (b) =

5If vℓ > 0 and there is no reserve price, then the single-crossing condition may fail for bids below
vℓ, and equilibria may not be monotone; see Murto & Välimäki (2019) and Lauermann & Wolinsky
(2022) for examples. As η becomes large, the assumption becomes innocuous because competition
drives almost all bids above vℓ, where bidding is monotone.
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[σ− (b) , σ+ (b)] is the generalized inverse of β.6 If σ− (b) < σ+ (b), then β (s) = b for

all s ∈ σ (b). In this case, there is an atom in the implied bid distribution at b, and

we say that b is a pooling bid and σ (b) is a pool.

3.2 Inference from winning is non-monotone

Fix some strategy β and some bid b that is not a pooling bid. The bid b wins when

s(1) ≤ s = σ+(b), where s(1) = sup{s−i} denotes the highest of the competitors’

signals. If there are no competitors, we set s(1) = −∞. Thus, the cumulative distri-

bution function of s(1) is Fs(1)(s|ω) = e−η(1−Fω(s)).7 Since bid b wins if s(1) ≤ s, its

winning probability in state ω is πω(b; β) = e−η(1−Fω(s)).

A characteristic feature of common-value auctions is that winning is informative

about the value of the good. In choosing a non-pooling bid b, all that matters for

this inference is the relative position of the bid, which is given by s = σ+(b). The

position of s affects the likelihood ratio of winning,

πh(b; β)

πℓ(b; β)
=

e−η(1−Fh(s))

e−η(1−Fℓ(s))
, (2)

which, in turn, determines the conditional expected value of the good. In particular,

E[v|win with b; β] = E[v|s(1) ≤ s] is strictly increasing in the ratio (2) and is equal to

E[v|s(1) ≤ s] =
ρe−η(1−Fh(s))vh + (1− ρ)e−η(1−Fℓ(s))vℓ
ρe−η(1−Fh(s)) + (1− ρ)e−η(1−Fℓ(s))

. (3)

Lemma 2. The conditional expected value E[v|s(1) ≤ s] is strictly decreasing in s

when s < s̆, has its unique global minimum at s = s̆, and is strictly increasing when

s > s̆.

Proof: Because the expected value is strictly increasing in the likelihood ratio (2),

6In the following, we pretend that all pooling intervals are closed to simplify notation. The
specification of bids on the boundaries are irrelevant because (a) the set of boundary signals of
nontrivial intervals has zero measure, and (b) by the continuity of the likelihood ratio, the pooling
bid is optimal for the boundary signals if it is optimal for the interior signals.

7Conditional on state ω, any competitor (independently) receives a signal larger than s with
probability 1−Fω(s). By the decomposition and environmental equivalence properties of the Poisson
distribution—see Myerson (1998)—bidders believe that the number of rival bidders with signals
larger than s is Poisson distributed with mean η(1− Fω(s)).
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it is sufficient to show that the likelihood ratio is U-shaped around s̆. Note that

∂

∂s

e−η(1−Fh(s))

e−η(1−Fℓ(s))
= eη(Fh(s)−Fℓ(s))η[fh(s)− fℓ(s)];

therefore, (2) is indeed strictly decreasing below s̆ and strictly increasing above. ■

The intuition behind the shape is best explained with the help of Figure 1.

s̄s
vℓ

vh

s̆

•(ii) •(i)E[v]

s

Figure 1: The conditional expected value E[v|s(1) ≤ s] is U-shaped.

First, consider point (i) at the top right, which marks E[v|s(1) ≤ s̄]. By definition,

the highest signal, s(1), is always smaller than s̄, independent of the state. Hence,

the event that s(1) ≤ s̄ is uninformative about the state, and so E[v|s(1) ≤ s̄] = E[v].
Therefore, there is no negative inference at the top, just as in an auction with a known

number of competitors.

Second, consider point (ii) at the top left, denoting E[v|s(1) ≤ s]. The highest

signal s(1) equals s with zero probability because the signal distribution has no atoms,

while there are no competitors and s(1) = −∞ with positive probability; consequently,

E[v|s(1) ≤ s] = E[v|s(1) = −∞]. Since the distribution of bidders is independent of

the state,8 the event that s(1) ≤ s is uninformative about the state, and so E[v|s(1) ≤
s] = E[v]. Thus, there is no winner’s curse at the bottom (ii) or at the top (i).

In the middle, where s ∈ (s, s̄), the winner’s curse comes into play. With positive

probability, there are competitors, all of whom received signals below s. Hence, for

s ∈ (s, s̄), the conditional expected value is smaller than the unconditional one; that

is, E[v|s(1) ≤ s] < E[v], with a global minimum at s̆, where fh(s̆) = fℓ(s̆).

8We discuss a state-dependent bidder distribution in Section 8.
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We note that the non-monotone inference is not an artifact of the Poisson dis-

tribution but a characteristic feature of numbers uncertainty, which adds a second

dimension of uncertainty. Hence, bidders make an inference from winning not only

about the others’ signals but also about the number of competitors. In particular, the

inference is again non-monotone if the Poisson distribution is truncated at the bot-

tom, guaranteeing a minimal degree of competition.9 We discuss the distributional

assumption further in Section 8.

3.3 A large auction has no strictly increasing equilibrium

The non-monotone inference from winning can substantially affect the equilibrium

behavior of bidders. As a benchmark, consider the common-value auction with a

known number of bidders, n ≥ 2. In this setup, the inference is monotone, which

implies that there exists a strictly increasing equilibrium and it is unique; see Krishna

(2010). With numbers uncertainty, an equilibrium of this form does not exist in

general, owing to the non-monotone inference.

Proposition 1. When η is sufficiently large, no strictly increasing equilibrium exists.

The proof in Appendix A.2 relies essentially on two observations. First, for large

η and any strictly increasing β, the expected value conditional on winning at β (s)

and on the bidder’s own signal s, given by

E[v|win with β(s), s; β] = E[v|s(1) ≤ s, s],

inherits the U-shape of E[v|s(1) ≤ s]. This means that while the inference from

the bidder’s own signal is monotone increasing, the U-shaped inference from winning

turns out to be more relevant for the expected value when η is large. Second, for large

η, it must be that β (s) ≈ E[v|s(1) ≤ s, s] if β is an equilibrium; that is, bids must be

close to the expected value conditional on winning, because of bidder competition.

However, it cannot be that β is simultaneously close to E[v|s(1) ≤ s, s] and strictly

increasing, given that E[v|s(1) ≤ s, s] is decreasing below s̆.

9 Consider a truncated Poisson distribution with at least n ≥ 2 bidders. At the top, the inference
from winning is unaffected by the truncation; at the bottom, the winning bidder updates her belief
toward n− 1 rival bidders, all of whom received signal s. Thus, there is a limited winner’s curse at
s, which, however, does not depend on η. In the middle, s ∈ (s, s̄), the winner’s curse grows in η, so
that E[v|s(1) ≤ s] is still U-shaped when η is large.
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The proof formalizes this idea by considering signals s < s′ < s′′ < s̆. We show

that when β is strictly increasing and η is not too small, either a bidder with signal s

has an incentive to deviate to β (s′), or β (s′′) is too high to be individually rational

for a bidder with signal s′′. The critical observation of Lemma 6 used for the proof is

that for any R > 1, when η is sufficiently large,

πh(β (s′) ; β)

πℓ(β (s′) ; β)
> R

πh(β (s′′) ; β)

πℓ(β (s′′) ; β)
, (4)

so that the expected value conditional on winning with β (s′) is much higher than

with β (s′′). Hence, if β (s′′) is low enough to be individually rational, then β (s′) is

strictly below the expected value conditional on winning at β(s′). This gives s an

incentive to deviate to β(s′).

3.4 Strictly increasing equilibria in the first-price auction

In our working paper (Lauermann & Speit, 2019), we show that if η is small enough,

a strictly increasing equilibrium exists. Moreover, in such an equilibrium, the bidding

strategy is the unique solution of the following ordinary differential equation (ODE):

∂

∂s
β(s) =

(
E[v|s(1) = s, s]− β(s)

) fs(1)(s|s)
Fs(1)(s|s)

with β(s) = vℓ, (5)

where Fs(1)(s
′|s) denotes the expected cumulative distribution function of s(1) condi-

tional on observing s.10 This is, of course, a version of the standard ODE character-

izing bidding in common-value first-price auctions; see Krishna (2010).

3.5 Strictly increasing equilibria in the second-price auction

How does the choice of the auction format affect the existence of a strictly increasing

equilibrium? In a second-price auction with a known number of bidders, the unique

symmetric equilibrium in strictly increasing strategies is to bid the expected value

conditional on being tied, βII (s) = E[v|s(1) = s, s]; see Milgrom & Weber (1982).

With an uncertain number of bidders, the same characterization arguments apply.

Therefore, an equilibrium in strictly increasing strategies exists for the second-price

10So Fs(1)(s
′|s) = ρfh(s)

ρfh(s)+(1−ρ)fℓ(s)
e−η(1−Fh(s

′)) + (1−ρ)fℓ(s)
ρfh(s)+(1−ρ)fℓ(s)

e−η(1−Fℓ(s
′)).
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auction if and only if E[v|s(1) = s, s] is strictly increasing in s. The equality βII (s) =

E[v|s(1) = s, s] can be written in a more convenient ratio form as

βII (s)− vℓ
vh − βII (s)

=
ρ

1− ρ

fh(s)

fℓ(s)

fh(s)

fℓ(s)

πh(βII (s) ; βII)

πℓ(βII (s) ; βII)
. (6)

By (4), the right side of (6) is decreasing below s̆ for large η, so βII is non-monotone.

3.6 The first-price auction is more robust

η = 3

η = 5

η = 9

0 0.5 1
0

0.8

(a) First-price auction: solutions to ODE (5).

0 0.5 1
s0

0.8

(b) Second-price auction: E[v|s(1) = s, s].

Figure 2: Example with vh = 1, vℓ = 0, ρ = 1
2
, s ∈ [0, 1], fh(s) = 1, and fℓ(s) = 1.5−s.

For intuition about what it means for η to be large in each auction format, in Fig-

ure 2 we plot an example with a simple signal structure and η ∈ {3, 5, 9}. Comparing

the equilibrium candidates for the first-price auction (left panel) and the second-price

auction (right panel), one can see that for η = 5 the second-price auction has no

strictly increasing equilibrium, while the first-price auction has one. For η = 3, both

have a strictly increasing equilibrium; for η = 9 neither does. As we show in Lauer-

mann & Speit (2019), this ordering is actually robust: whenever the second-price

auction has a strictly increasing equilibrium, so does the first-price auction. Roughly

speaking, this is due to the bid-shading in the first-price auction. When bids stay

below the conditional expected value, this leaves room for a strictly increasing equilib-

rium, even when the inference is non-monotone. Only when the competition becomes

fierce, so that bids are close to the expected value, does the strictly increasing equi-

librium fail to exist.

10



4 Pooling and equilibrium nonexistence

In Section 3 we showed that uncertainty over the number of competitors prevents the

existence of a strictly increasing equilibrium when η is large. Hence, if an equilibrium

does exist for large η, the bidding strategy must contain flat parts. We now examine

these flat parts to understand why bidders with different signals may have an incentive

to pool on the same bid.

4.1 Pooling can ease the winner’s curse

Fix some nondecreasing strategy β, and suppose that there is a pooling bid bp; that

is, β(s) = bp for all s from a pool σ (bp) = [σ−, σ+], where we have dropped the

argument bp from σ+/− for readability.

The following lemma compares the inference from winning with the pooling bid

bp to the inference from winning with a marginally lower or higher bid.

Lemma 3. Assume that β is a weakly increasing strategy with a pooling bid bp; that

is, σ (bp) is a nondegenerate interval. Then the following hold:

1. If σ+ (bp) ≤ s̆, then E[v|s(1) ≤ σ−] > E[v|win with bp; β] > E[v|s(1) ≤ σ+].

2. If σ− (bp) ≥ s̆, then E[v|s(1) ≤ σ−] < E[v|win with bp; β] < E[v|s(1) ≤ σ+].

The proof is in Appendix A.3.2. Combined with Lemma 2, Lemma 3 implies that

the inference from winning is always U-shaped—even if β contains atoms.

To gain intuition for the inference, note that with positive probability, multiple

bidders tie on the pooling bid bp, so that the winner is decided by a uniform tie-break.

Consequently, the bid bp is more likely to win when there are fewer competitors who

also choose bp—that is, who have signals in [σ−, σ+]. If those signals are low, meaning

that they are more likely to be realized in the low state, this implies that bp wins less

often in the low state than in the high state—a blessing, compared to marginally

overbidding bp. Hence, if the signals are high, so that they are more likely to be

realized in the high state, then the bid bp wins more often in the low state—an

additional winner’s curse.11

11Formally, if σ+ ≤ s̆ , the MLRP implies that η[Fh(σ+)−Fh(σ−)] < η[Fℓ(σ+)−Fℓ(σ−)], so that
winning the tie-break is indeed a blessing; if σ− ≥ s̆, then all inequalities and the inference from
winning the random tie-break are reversed.
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4.2 Atoms complicate the equilibrium analysis

In auctions, atoms usually do not occur, because the discretely higher winning prob-

ability when overbidding provides a deviation incentive. In common-value auctions

with a known number of bidders, this incentive is reinforced by the curse from tying,

which fosters competition among bidders. When there is a blessing from tying, that

is, if Fh(σ+) − Fh(σ−) < Fℓ(σ+) − Fℓ(σ−), bidders may prefer to pool, trading the

lower probability of winning for a higher expected value of the good. Therefore, any

equilibrium β may contain atoms at or below s̆ but must be strictly increasing above.

One critical feature entailed by atoms in the bid distribution is the existence of

discontinuities, both in the winning probabilities and in the expected value conditional

on winning. These discontinuities create room for equilibrium multiplicity but can

also—together with the U-shape of the expected values around s̆—upset equilibrium

existence altogether.

4.3 Unless the auction is small, there is no equilibrium

Proposition 2. For η large enough, no equilibrium exists.

s̄s
vℓ

vh

• 1 •2

s̆

bp

s

(a) Case one: a single, large pool.

s̄s
vℓ

vh

s̆s2 + ϵs1

bp

•

2 • 1

s

(b) Case two: multiple bids below s̆.

Figure 3: Two cases of candidate equilibria.

To prove the proposition, in Appendix A.4, we exclude two collectively exhaustive

types of equilibrium candidates that are illustrated in Figure 3.

In the first case, depicted in Figure 3a, as η becomes large, bidders with signals

below s̆ start pooling on a single common bid bp. We exclude this case by showing

12



that when η is large and bp is low enough to be individually rational for s, bidders

with signals close to s̆ will have an incentive to overbid bp, as illustrated by (1) and

(2) in Figure 3a.

In the case that not all bidders with signals below s̆ pool, there is a pair of signals

s1, s2 with s < s1 < s2 < s̆ and β (s1) < β (s2). To exclude this second case, depicted

in Figure 3b, we replicate the proof of Proposition 1, with minor adjustments to ac-

commodate the fact that β is not strictly increasing. We show that if β(s2+ ε) is low

enough to be individually rational for s2 + ε, then s has an incentive to deviate to

any bid b ∈ (β (s1) , β (s2)), as illustrated by (1) and (2) in Figure 3b.

5 Equilibrium behavior in discrete auctions

5.1 Equilibria are characterized by two adjacent pools

What does bidding with an uncertain number of competitors look like? To overcome

the nonexistence on the continuum and answer this question, we consider an auction

with a grid, for which equilibrium exists; see, e.g., Athey (2001).

Specifically, suppose bids are from a grid with d elements and step size ∆ = vh−vℓ
d−1

;

that is, the grid of admissible bids is D = {vℓ, vℓ +∆, . . . , vℓ + (d− 1)∆, vh}. A

bidding strategy is now some function β : [s, s̄] → D. The same arguments as before

imply that every best response is weakly increasing and pure for almost every signal.

Lemma 4. The auction with a grid has an equilibrium for every d and η, and every

equilibrium bidding strategy is weakly increasing.

Let β∗ be an equilibrium for fixed d and η. Our main result characterizes equilib-

rium bidding for a fine grid and a sufficiently large but fixed η. Roughly speaking,

β∗ is strictly increasing above s̆ (as the grid permits), while there is pooling on two

adjacent bids below s̆.

Proposition 3. Fix any ε ∈ (0, s̆−s
2
). When η is sufficiently large (given ε) and d is

sufficiently large (given ε and η), any equilibrium β∗ takes the following form: there

are two disjoint, adjacent intervals of signals A,B such that

(i) [s+ ε, s̆− ε] ⊂ A ∪B;

(ii) β∗(s) = bp −∆ for all s ∈ A, and β∗(s) = bp for all s ∈ B;

13



(iii)
∫
A
ηfω(z)dz > 1

ε
, and

∫
B
ηfω(z)dz > 1

ε
for ω ∈ {h, ℓ};

(iv) on s ∈ (s̆+ ε, s̄], the expected number of bids on any step of the grid is smaller

than ε.12

The result is best summarized with the help of a figure; see Figure 4a.

s̄s
vℓ

vh

∆{

A B s̆

ϵ

s

(a) The discrete auction.

s̄s
vℓ

vh

bp

A B s̆

ϵ

s

(b) The communication extension.

Figure 4: Equilibria of the discrete auction and the communication extension.

There are two adjacent intervals A and B (pink/dashed and teal/dotted) which

span (s + ε, s̆ − ε); this is assertion (i). By assertion (ii), bidders with signals from

the interval A pool on bid bp −∆, while bidders on the interval B pool on the next

higher bid, bp. The intervals can vary in length as η increases, but the expected

number of bidders in both intervals grows without bound—assertion (iii). Finally, by

assertion (iv), there are no significant atoms above s̆+ε. In fact, the proof shows that

the bidding function above s̆+ ε becomes strictly increasing as the grid becomes fine,

∆ → 0. Observe that the proposition does not assert the uniqueness of equilibrium;

in general, there will be multiple equilibria, as discussed later. However, all equilibria

must take the aforementioned form.

The proof, which is in Appendix B.1, reuses many results and ideas from the

continuous auction. As a first step, we exclude the first case of Section 4.3, establishing

that there cannot be a single large atom on which (almost all) signals below s̆ pool.

Therefore, we can find some s1 < s2 ≤ s̆ such that β (s1) < β (s2) . We then reuse

the arguments from the second case of Section 4.3 to argue that there can be no

12Take any ŝ > s̆+ ε and let b̂ = β∗(ŝ). If there exists an interval [s−, s+] such that β∗(s) = b̂ for
all s ∈ [s−, s+], then η

∫ s+
s−

fω(z)dz < ε for ω ∈ {h, ℓ}.

14



“in-between” bid b ∈ (β(s1), β(s2)). Consequently, β(s1) = β(s2) −∆. Because this

argument holds for any s1 and s2, the characterization in the proposition follows with

A = σ (s1) and B = σ (s2).

5.2 Incentives are shaped by the inference from winning

The equilibria are shaped by the U-shaped inference from winning with two atoms

where the conditional expected value is decreasing and a strictly increasing bid func-

tion where it is increasing.

Starting from the top, above s̆, the expected value conditional on winning is

strictly increasing. In this area, incentives and bidding behavior are the same as

in an auction without numbers uncertainty. Since there is a curse from tying (see

Lemma 3), bidders bid away from any atom as the grid becomes dense, so that the

strategy becomes strictly increasing (Athey, 2001).

The incentives of bidders with “intermediate” signals right below s̆, that is, signals

from the interval B, are dominated by an insurance motive. Here, the bidding strat-

egy cannot be strictly increasing, because the inference from winning is decreasing

(Lemma 3). Instead, bidders mutually insure themselves against winning in the low

state by pooling on a common bid bp, using the blessing from tying and winning the

random tie-break, which is more likely in the high state.

Bidders with “low” signals, i.e., from the interval A, are in competition for the

highest bid below bp, that is, bp−∆. Because of the U-shaped inference, the expected

value conditional on winning with bp is dwarfed by that of winning with any smaller

bid. Therefore, bidders who win with a bid below bp earn strictly positive rents.13

This sparks a Bertrand competition for the highest bid below bp among bidders with

signals from A. In other words, bids are pinned below bp, at which the conditional

expected value plummets. On the continuous bid space, a largest bid below bp does

not exist, so that no equilibrium exists.

13Individual rationality implies that bp ≤ E[win with bp, inf B]. For large η, the U-shaped inference
implies that E[win with b, s] > E[win with bp, inf B] for all s and b < bp, leaving strictly positive
rents conditional on winning.
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6 Communication extension

The characterization in Section 5 clarifies why the auction with a continuous bid space

is not the limit of the auctions on arbitrarily fine grids: as ∆ → 0, the difference

between the two pooling bids bp −∆ and bp vanishes. In the limit, A and B can no

longer be separated, so the two bids win with the same probability, and the utility

changes discontinuously.14 In a sense, the continuum is not rich enough to capture

the limit outcome of the finite auction.

To represent this limit and develop a handy tool for further analysis, we introduce

an augmented auction with a continuum of bids. In this “communication extension”,

bidders report an additional message to break ties.15

Specifically, the auctioneer chooses a message space, while the bidders choose a

bid and a report. The message space is an interval partition M of the signal set

[s, s̄], a bidding strategy is some β : [s, s̄] → [vℓ, vh], and a reporting strategy is

some µ : [s, s̄] → [s, s̄]. Given a partition M and some realized bid–report pairs, the

outcome is determined as follows. If there is a single highest bidder, then that bidder

wins the object. If there are multiple highest bidders, the object is allocated to the

one who reports a signal from the highest interval of the partition, and if multiple

highest bidders report a signal from the highest interval, ties are broken fairly.

An extended profile (M,β, µ) is a solution if (β, µ) is a mutual best response for

the bidders given M . A solution is truthful if µ (s) = s for all s.

We now argue that every (pointwise) limit of a sequence of equilibria on ever finer

grids corresponds to a truthful solution.16 For the result, note that if β is monotone,

σ− (β (·)) is monotone and hence induces an interval partition M of [s, s̄],

A ∈ M ⇐⇒ σ− (β (s)) = σ− (β (s′)) for all s, s′ ∈ A.

Proposition 4. Pick some η and suppose βk is an equilibrium of a discrete auction

with d = k steps. Suppose that βk converges pointwise to some β∗ and σ−
(
βk(·)

)
converges pointwise to some σ̂∗

− as k → ∞. Let M∗ be the partition induced by σ̂∗
−

and µ∗ (s) = s. Then (M∗, β∗, µ∗) is a truthful solution.

14In the limit, the strategy becomes roughly the one we ruled out in the first case of Section 4.3.
15This idea goes back to Lebrun (1996) and Jackson et al. (2002), as discussed below.
16Every sequence of monotone functions has a subsequence that converges pointwise by Helly’s

selection theorem.
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This proof as well as the next is in the online appendix.17 Proposition 4 shows that

the set of solutions of the communication extension contains the set of equilibria of the

discretized auction with a vanishing grid. The next result gives a partial converse for

our setup: for large η, the outcomes of the communication extension are qualitatively

identical to the equilibrium outcomes of a discrete auction with a fine grid.

Proposition 5. Fix any ε ∈ (0, s̆−s
2
). When η is sufficiently large (given ε), any

truthful solution (M∗, β∗, µ∗) takes the following form: there are two disjoint, adjacent

intervals of signals A,B ∈ M∗ such that

(i) [s+ ε, s̆− ε] ⊂ A ∪B;

(ii)
∫
A
ηfω(z)dz > 1

ε
, and

∫
B
ηfω(z)dz > 1

ε
for ω ∈ {h, ℓ};

(iii) β∗ (s) = β∗ (s′) for all s, s′ ∈ A ∪B;

(iv) β∗ is strictly increasing on (s̆+ ε, s̄].

The solutions, depicted in Figure 4b, are shaped by the same economic incentives

that shape the equilibria of the discrete auction. Indeed, the proof in the online

appendix follows the same arguments as the proof of Proposition 3.

For an idea of the proof, consider signals below s̆ and pick some s1, s2 with s <

s1 < s2 < s̆. Following the arguments from Proposition 1, for large η, it cannot be

that β∗ (s1) < β∗ (s2). This is because, if β∗ (s2) were individually rational, then s

would have an incentive to submit some in-between bid b′, β∗ (s1) < b′ < β∗ (s2).

Moreover, the same argument now also implies that there can be no “extended bid”

in between. Suppose bp = β∗ (s1) = β∗ (s2) but s1 ∈ A and s2 ∈ B for two non-

adjacent intervals {A,B} ∈ M , meaning that s′ /∈ A ∪ B for some in-between signal

with s1 < s′ < s2. Then a bidder who bids bp and reports s′ wins against bidders in

A but loses against bidders in B. For large η, the previous arguments imply that the

extended bid (bp, s
′) would be a profitable deviation for a bidder with a signal from A

or below—in particular, with signal s. Thus, the intervals A and B must be adjacent

for large η.18

17The result is essentially a special case of the result in Jackson et al. (2002).
18In general, equilibria can have more than two pools. We only show that there are at least two

and that these pools cover most signals below s̆.
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Remarks: In the online appendix, we give an example with a continuum of so-

lutions, illustrating the equilibrium multiplicity. The equilibrium construction also

gives further insights into the equilibrium bidding incentives.

If βc is an equilibrium of the standard auction with a continuum of bids, then

the partition induced by σ− (βc (·)) corresponds to a truthful solution. Thus, truthful

solutions nest the standard equilibria. However, Proposition 5 implies that, for large

η, there is no solution (M∗, β∗, µ∗) that corresponds to an equilibrium βc of the

standard auction: on the interval A∪B, the bidding strategy β∗ is constant, but A and

B are different elements of the partition. Thus, Proposition 5 implies Proposition 2.

Our communication extension is different from the existing ones in Lebrun (1996)

and Jackson et al. (2002). In the private-value setting of Lebrun (1996), the message

space is essentially unrestricted. In our setting, however, the message space must

be restricted; we cannot, for example, allow bidders to simply report some number

from [s, s̄] and break ties among those who report the highest number. Otherwise,

there would always be a report in between what bidders with signals from A and

bidders with signals from B report, and bidders with signals from A would have a

strict incentive to deviate to this report.

Jackson et al. (2002) consider a more flexible tie-breaking rule, allowing the tie-

break to depend in an arbitrary way on the whole vector of reports. This allows

them to prove existence in a more general class of games. However, in our setting,

this added flexibility can be shown to permit solutions that are qualitatively distinct

from any limit of equilibria of the discretized auction. Thus, the tie-breaking rule of

Jackson et al. (2002) cannot help us construct a continuum approximation of finite

auctions to facilitate the analysis here.

7 Revenue and optimal auction

We want to shed some light on how numbers uncertainty affects classic questions

in auction design: in particular, the effects of reserve prices, the auction format,

and information disclosure. To this end, we revisit the example from Section 3.6

with η = 5. When working with strategies that contain pooling bids, we utilize the

communication extension (Section 6) to approximate the equilibria on the fine grid.

Example: Let vh = 1, vℓ = 0, with ρ = 1
2
and η = 5. Assume s ∈ [0, 1] and

fh(s) = 1, fℓ(s) = 1.5− s.
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7.1 The effect of a reserve price on bidding behavior

In an auction without numbers uncertainty and with n ≥ 2 bidders, there is a unique

symmetric equilibrium, and it is strictly increasing. Furthermore, any reserve price

r either is non-binding or excludes bidders, starting at those with the lowest signals,

with higher reserve prices continuously excluding higher signals.

In our setting with numbers uncertainty, the reserve price can raise revenue with-

out exclusion, and exclusion expands discontinuously. Furthermore, reserve prices can

induce qualitatively different bidding behavior, determining whether bidders pool or

follow a strictly increasing bidding strategy. To illustrate these points, we numerically

derive equilibria (solutions) for four reserve prices, r ∈ {0, 0.2, 0.29, 0.35}, as shown

in Figures 5a and 5b. As the reserve price rises, the revenue increases from 0.426 to

0.433 and 0.436, before dropping to 0.412.

r = 0

r = 0.2

r = 0.29

0 0.5 0.7
s

0.2

0.29

0.4

(a) At reserve price r = 0.29, the solution
to the ODE (5) is no longer increasing.

r = 0.29

r = 0.35

0 0.5 0.7
s

0.29

0.35

0.4

A B

(b) The pooling solution ceases to exist
when r = 0.35.

Figure 5: Reserve prices discontinuously affect the equilibrium form and participation.

When the reserve price is raised from r = 0 to r = 0.2, a strictly increasing

equilibrium continues to exist, and no bidder is excluded; instead, the reserve price

raises the whole bidding strategy. For low r, this is possible because even the lowest

signal expects positive rents due to the possibility that there is no competitor.

When the reserve price is raised further to r = 0.29, a strictly increasing equilib-

rium ceases to exist.19 Roughly speaking, the reserve price acts like a competing bid,

pushing all bids closer to the non-monotone expected value, similarly to a large η.

19For r = 0.29, the ODE (5) has no strictly increasing solution that starts at β(s) = r. There is
also no such equilibrium in which β(s′) = r for some s′ > s (exclusion). This is because E[v|s(1) ≤
s, s] > 0.29 for all s, so that it is always profitable to participate and bid r = 0.29.
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Instead of a strictly increasing equilibrium, there is a solution as described by Propo-

sition 5, in which bidders from the intervals A = [0, 0.247) and B = [0.247, 0.294)

all pool to bid bp = r = 0.29 but win with different probabilities. This is shown in

Figure 5b.

When r increases further to 0.35, all equilibria (solutions) exclude bidders. In the

equilibrium shown in Figure 5b, bidders below s∗ = 0.506 do not participate, and

above s∗ the bidding strategy is given by the solution to the ODE (5), starting at

r = β(s∗) = E[v|s(1) ≤ s∗, s∗]. An important implication of the U-shaped inference

from winning is that exclusion does not occur continuously from the bottom of the

signal space. Instead, it starts binding at intermediate bids and hence at intermediate

signals. By monotonicity, this also excludes all bidders with lower signals, so that

participation is discontinuous in the reserve price.

7.2 A generalized clock auction can raise revenue

Next, we want to consider how the auction format as a whole might be optimized

for numbers uncertainty. Bidding behavior in an auction with numbers uncertainty

is driven by the non-monotone inference from winning. In standard auction formats,

such as the first-price auction, this non-monotonicity implies that low bids stay away

from the expected value conditional on winning, leaving information rents to bidders

with low signals.

To account for the non-monotone inference, we propose a generalized clock auction

in which the price first falls, then rises. Any bidder can stop the auction at any time,

pay the current price, and receive the good. We call this auction a “bounce auction”.

When the expected value conditional on being tied, E[v|s(1) ≤ s, s], is U-shaped,

an atomless equilibrium for the bounce auction can be found by solving the ODE

(5) with initial value β(s) = E[v|s], and denoting the bounce by b = inf β(s). If we

replace s by t and let time run from t̄ to t, the price continuously runs down from

β(t̄) to b, then back up to β(t). Stopping the auction at t = s represents an atomless

equilibrium. This is depicted in Figure 6a.

For our running example, Figure 6b compares the strictly increasing equilibrium

of the first-price auction with reserve price r = 0.2 to the equilibrium of the bounce

auction and the expected value conditional on winning. The figure shows how the

bounce auction moves the bids closer to the conditional expected value, reducing the
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bidders’ information rents. Thus, the bounce auction extracts more revenue: 0.439

instead of 0.433 (r = 0.2).

By mirroring the U-shape of the inference, the bounce auction reflects a basic

economic idea: winning later is good news because it implies that the reason no sale

has occurred is that there are no other bidders—rather than that the other bidders

are all pessimistic. Thus, bidders are willing to pay more later.

t̄t

vℓ

vh

t

E[v|s]

b

•

•

•Start

Price path

(a) The price path of the bounce auction
is U-shaped, like the inference from winning.

E[v|s1 s,s]

Eq. bounce auction

Eq. FPA with r = 0.2

0 0.5 0.7
s

0.2

0.4

(b) The bounce auction leaves lower
information rents to low signals.

Figure 6: The bounce auction.

7.3 Information revelation and contingent bidding

Would it be beneficial for the seller to commit to revealing the number of bidders

before the auction? In our running example (η = 5), doing so raises the seller’s

expected revenue slightly, from 0.4260 to 0.4262. However, in a related setting, Murto

& Välimäki (2019) give an example with the opposite conclusion; thus, it may be

interesting to understand what drives the revenue implications more systematically.

A related idea in auction design by Harstad et al. (1990) is to allow bidders to

submit bids that are contingent on the actual number of bidders. Fully contingent

bidding would replicate revealing the number of bidders. In practice, these contingen-

cies may be coarse, e.g., allowing three bids to be specified for actual bidder numbers

of {1, 2, 3}, {4, . . . , 8}, and {> 8}, respectively.
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8 Discussion of assumptions

State-independent competition. One natural modification of our model is state-

dependent participation, expressed by a state-dependent mean ηω. This combines

numbers uncertainty with the deterministic but state-dependent participation in

Lauermann & Wolinsky (2017). When the number of bidders depends on the state,

being solicited to participate in the auction contains information about the state.

We analyze this general case in our working paper (Lauermann & Speit, 2019). We

show that our results extend if there is a signal with fh(s)
fℓ(s)

ηh
ηℓ

= 1, in which case state-

dependent participation moves the neutral signal but does not affect the general equi-

librium properties. If fh(s)
fℓ(s)

ηh
ηℓ

> 1, then there exists an equilibrium that is everywhere

strictly increasing. We do not know the outcome when fh(s)
fℓ(s)

ηh
ηℓ

< 1, but conjecture

that, in a large auction, every equilibrium must have a large atom at the top.20

Exogenous participation. Uncertainty about the bidder number—as captured

by our setup—arises endogenously with a prior entry stage. For example, suppose

uninformed potential bidders decide whether to enter at a cost. With entry cost, the

expected number of actual participants needs to be bounded, and when the pool of

potential bidders is large, symmetric equilibria need to be in mixed strategies. As the

pool of potential bidders grows, the distribution of actual participants will converge to

a Poisson distribution. If the potential bidders observe their signal first and condition

their entry decision on it, then the implied distribution of actual participants will

generally be state-dependent, discussed above.21

By characterizing the equilibrium outcomes for general bidder distributions, our

predictions do not depend on the details of the entry stage. Thereby, our analysis

remains valid for other settings with numbers uncertainty (such as the recruitment

of bidders by a seller).

Auction format. As pointed out in Section 3.5, when η is large, a second-price

auction has no strictly increasing equilibrium either. We further conjecture that the

nonexistence on the continuous bid space, as well as the equilibrium characterization

20This is analogous to the condition in Lauermann & Wolinsky (2022), which shows that there is
an atom at the top in a large auction if and only if the deterministic state-dependent number nω

satisfies fh(s)
fℓ(s)

nh

nℓ
< 1.

21One can show that the implied bidder distribution in a model with signal-dependent entry rates
is indeed equivalent to the one from some model with exogenous, state-dependent bidder numbers;
see (Lauermann & Wolinsky, 2022, Section 5.3).
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on the discrete bid space, extend to the second-price auction. In Section 7.2, we

discuss the possibility of using a generalized clock auction with a non-monotone price

path to increase revenue.

Distribution of the number of bidders and large auctions. The use of the

Poisson distribution simplifies the analysis but has several special properties that may

raise concerns. In particular, it allows for fewer than two bidders, has unbounded

support, and is concentrated around its mean for large η (its standard deviation is

just
√
η). As discussed in Footnote 9, truncating the distribution at two bidders does

not qualitatively change the main insights; the same is true when the distribution is

truncated at the top, for a sufficiently large upper bound. However, the concentration

of the Poisson distribution around its mean does imply some features for large η. In

particular, as η becomes large, the winning bid comes almost surely from a bidder

having signal s > s̆, and for these signals, the bidding strategy is strictly increasing.

For distributions that do not become concentrated, the critical non-monotonicity of

the expected value will emerge at the top. As a result, the atoms remain part of the

winning bid distribution even in large auctions.

n = 10

n = 15

0.85 0.96 0.98
s

0.4

0.6

Figure 7: The expected value conditional
on winning with either n or n2 bidders.

For instance, suppose the number of

bidders is either n or n2, each with equal

probability, and the signal distribution is

as in the example from Section 3.6. For n

sufficiently large, the expected value con-

ditional on winning, E[v|s(1) ≤ s, s], will

be non-monotone; see Figure 7. When

the number of bidders is either 10 or 100,

a bidder having signal 0.96 (the local

minimizer) wins with probability 0.44,

and when the number of bidders is ei-

ther 15 or 225, the signal s = 0.98 wins

with probability 0.47.

In general, one may be interested in the effect of a change in the variance of the

number of bidders, holding its mean fixed; this is something the Poisson distribution

does not allow for. One may expect that, for a fixed mean, the effects of uncertainty

smoothly vanish as the variance decreases, approaching the standard outcome in the

limit. Conversely, as the distribution becomes very dispersed, one may suspect that

23



the outcome increasingly diverges from the standard one.

Binary state. When there are more than two states, the inference from winning

retains its qualitative shape: at the bottom and at the top, there is no winner’s curse,

whereas in the middle, winning is bad news about the quality of the good. Thus,

no strictly increasing equilibrium can exist when η is large; instead, bidders with low

signals must pool. However, when there are more than two states, we cannot exclude

decreasing bidding strategies. This is because we use the binary-state assumption

in the proof of Lemma 1. Of course, it would be interesting to know whether non-

monotone strategies will indeed occur. Without monotonicity, however, the analysis

becomes technically much more challenging.

9 Related literature

There is a small literature on numbers uncertainty with independent types—notably

Matthews (1987), McAfee & McMillan (1987), and Harstad et al. (1990)—studying,

e.g., the interaction of numbers uncertainty and risk aversion.

Moreover, there is a recent strand of literature on numbers uncertainty in common-

value auctions with correlated types. Murto & Välimäki (2019) consider a common-

value auction with costly entry.22 After observing a binary signal, potential bidders

decide whether to pay a fee to bid in the auction. When the pool of potential bidders is

large, the number of participating bidders is approximately Poisson distributed with a

state-dependent mean. Their interest is in the information revelation incentives of the

seller; see Section 7.3. They concentrate on parameters for which the entry pattern

implies atomless bidding strategies, excluding the effects we are interested in here.23

In Lauermann & Wolinsky (2017, 2022) the participation is deterministic but

state-dependent due to a solicitation decision by an informed auctioneer. The focus

is on how the limit outcome of a large first-price auction is affected by the ratio of

the number of bidders in the high state to the number in the low state. If this ratio

is sufficiently high, the limit outcome resembles the usual outcome in large auctions,

whereas when the ratio is small, there are necessarily atoms at the top; see also the

discussion of state-dependent participation in Section 8. Atoms are the result of a

22For auctions with endogenous entry see also Levin & Smith (1994) and Harstad (1990).
23Basically, in terms of our model, only bidders with the highest signal enter and bid above vℓ.
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“participation curse” that arises when there are far fewer bidders in the high than in

the low state. The atom at the top prevents information aggregation.

In a double-auction setting with many goods, Harstad et al. (2008) and Atakan &

Ekmekci (2021) consider the effect of numbers uncertainty on the information aggre-

gation properties of a kth-price auction (Pesendorfer & Swinkels, 1997). In Harstad

et al. (2008), the distribution of bidders is exogenously given. Harstad et al. (2008)

find that even if the equilibrium strategy is strictly increasing (which aids aggrega-

tion), information aggregation fails unless the numbers uncertainty is negligible. They

also provide an example in which equilibrium is not strictly increasing, but they do

not study this question further. In Atakan & Ekmekci (2021), bidders have a state-

and type-dependent outside option so that numbers uncertainty arises endogenously

and is correlated with the state; they show that and how the winning bid in the

auction is affected by the opportunity cost of forgoing the outside option.

10 Conclusion

We have studied a canonical common-value auction in which the bidders are uncertain

about the number of their competitors. Such “noise” in participation is ubiquitous

in auctions, and in price competition more generally, so that the forces studied are

present across a wide range of settings.

We find that the numbers uncertainty invalidates classic findings for common-value

auctions (Milgrom & Weber, 1982). In particular, it breaks the affiliation between the

first order statistic of the signals and the value of the good. As a consequence, bidding

strategies generally are not strictly increasing but contain atoms. The locations of the

atoms are indeterminate, implying equilibrium multiplicity. Moreover, no equilibrium

exists in the standard auction on the continuous bid space when the expected number

of bidders is sufficiently large.

Many of the known failures of equilibrium existence in auctions require careful

crafting of the setup, and rely on a discrete type space to generate atoms in the

bid distribution (Jackson, 2009). By contrast, we have identified a failure of equilib-

rium existence in an otherwise standard auction setting in which the type space is

continuous, and atoms in the bid distribution arise endogenously.

The pooling and the equilibrium multiplicity that arise from numbers uncertainty

have interesting implications. For example, even though the model is purely compet-
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itive, bidders with low signals behave “cooperatively” to reduce the winner’s curse;

unlike in the case of a common-value auction with affiliation, they have an incentive

to coordinate on certain bids. Consequently, equilibria resemble collusive behavior,

even though they are the outcome of independent, utility-maximizing behavior on

the bidders’ part. Moreover, the presence of atoms in the bid distribution invali-

dates empirical identification strategies that rely on the bidder’s first-order condition

(cf. Athey & Haile (2007)) and, hence, on a strictly increasing bidding strategy.

Further analysis may examine more systematically the consequences of pooling

and equilibrium multiplicity for classic auction design questions that we touched

on in Section 7. Since atoms arise at the bottom of the bid distribution, they are

particularly relevant for determining the optimal reserve price, which we discussed in

Section 7.1. In Section 7.2 we discussed how a clock auction with a non-monotone

price path can be used to increase revenue given the non-monotone value conditional

on winning. The underlying idea is that, when the good has not been sold even after

a long delay, a bidder believes that she is the sole participant, rather than that the

other bidders are all pessimistic about the value of the good. These considerations

for dynamic trade with adverse selection may be worth further study.

Some generalizations may also be worthwhile. We noted that the Poisson distribu-

tion becomes highly concentrated on its mean for large numbers. It may be interesting

to study the bidding behavior in large auctions for other distributions that are less

concentrated. Similarly, one could consider general interdependent values for which

the random allocation within a pool has efficiency implications. Lastly, an unknown

ratio of goods to buyers might also stem from a random supply of goods (cf. Harstad

et al. (2008)). Future research could dig deeper into the implications of such random

market tightness more generally.

Appendix A Continuous auction

A.1 Proof of Lemma 1

We prove the strict single-crossing condition, (1). Since b′ > b ≥ vℓ it follows that

(vℓ − b′) < (vℓ − b) ≤ 0. Because the winning probability πω is weakly increasing

and never zero (the bidder is alone with positive probability), πω(b
′; β) ≥ πω(b; β) ≥

πω(vℓ; β) > 0. Together, these observations yield πℓ(b
′; β)(vℓ− b′) < πℓ(b; β)(vℓ− b) ≤
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0. Hence, U(b′|s; β) ≥ U(b|s; β) requires that πh(b
′; β)(vh − b′) > πh(b; β)(vh − b).

Rearranging U(b′|s; β) ≥ U(b|s; β) gives

ρ

(1− ρ)

fh(s)

fℓ(s)
[πh(b

′; β)(vh− b′)−πh(b; β)(vh− b)] ≥ πℓ(b; β)(vℓ− b)−πℓ(b
′; β)(vℓ− b′).

From s′ > s, we have fh(s
′)

fℓ(s′)
> fh(s)

fℓ(s)
. Since the left side is strictly positive, it follows

that the left side is strictly larger for s′ than for s, which is equivalent to the claimed

inequality, U(b′|s′, β) > U(b|s′, β).

A.2 Proof of Proposition 1

Consider two signals s′, s′′ with s < s′ < s′′ < s̆. The proof shows that if η is large

enough, and β (s′′) is low enough to be individually rational for s′′, a bidder with

signal s has an incentive to deviate to β (s′).

Step 1: Individual rationality. Suppose β (s) is optimal for some signal s. Then it

must be individually rational:

β (s) ≤ E[v|win with β(s), s; β]. (7)

Otherwise, s would be strictly better off bidding vℓ, which ensures nonnegative pay-

offs.24 The inequality (7) can be written in a convenient “ratio form” as

β(s)− vℓ
vh − β(s)

≤ ρ

1− ρ

fh(s)

fℓ(s)

πh(β(s); β)

πℓ(β(s); β)
. (8)

Step 2: Competitive bidding. The following lemma shows that as competition be-

comes fierce, bids must be close to the expected value conditional on winning.

Lemma 5 (Competitive bidding). Take any two signals s1 and s2, with s1 < s2. For

every η, there exists some C (η) such that, if β is strictly increasing and s1 prefers

β (s1) to β (s2), that is, if

U (β (s1) |s1; β) ≥ U (β (s2) |s1; β) ,

then β (s2)− vℓ
vh − β (s2)

≥ ρ

1− ρ

fh(s1)

fℓ(s1)

πh(β (s2) ; β)

πℓ(β (s2) ; β)
C (η) , (9)

and limη→∞C (η) = 1.

24In fact, payoffs are strictly positive at vℓ since there is a chance of being the only bidder.
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Because the winning probability is much lower at β (s1) than at β (s2), a bidder

with signal s1 will deviate to β (s2) if the payoff conditional on winning there is strictly

positive. This requires the bid to be very close to or higher than the expected value

conditional on winning. The lemma states this requirement in ratio form, analogously

to (8): when C (η) = 1, the inequality (9) is equivalent to β (s2) ≥ E[v|s(1) ≤ s2, s1].

Proof of Lemma 5 Expanding U (β (s1) |s1; β) ≥ U (β (s2) |s1; β) gives

ρfh(s1)πh(β(s1); β)(vh − β(s1)) + (1− ρ)fℓ(s1)πℓ(β(s1); β)(vℓ − β(s1))

ρfh(s1) + (1− ρ)fℓ(s1)

≥ ρfh(s1)πh(β(s2); β)(vh − β(s2)) + (1− ρ)fℓ(s1)πℓ(β(s2); β)(vℓ − β(s2))

ρfh(s1) + (1− ρ)fℓ(s1)
.

Since β(s1) ≥ vℓ, a necessary condition for the inequality is that

ρfh(s1)πℓ(β(s2); β)(vh − vℓ)

≥ ρfh(s1)πh(β(s2); β)(vh − β(s2)) + (1− ρ)fℓ(s1)πℓ(β(s2); β)(vℓ − β(s2)).

Rearranging the inequality gives a lower bound on β(s2):

β(s2)− vℓ
vh − β(s2)

≥ ρ

1− ρ

fh(s1)

fℓ(s1)

πh(β(s2); β)

πℓ(β(s2); β)

(
1− πh(β(s1); β)

πh(β(s2); β)

vh − vℓ
vh − β(s2)

)
. (10)

Let

C(η) = 1− πh(β(s1); β)

πh(β(s2); β)

vh − vℓ
vh − E [v|s1]

.

Note that C (η) is independent of β, since πh(β(s); β) depends only on s for strictly

increasing β. Moreover, C (η)<1 for all η because 0< πh(β(s1);β)
πh(β(s2);β)

≤1 and vh−vℓ
vh−E[v|s1] >0.

Now, the inequality in the lemma holds: First, if β(s2) < E [v|s1], then the brack-

eted term in (10) is larger than C(η). Second, if β(s2) ≥ E [v|s1], then this is equiva-

lent to
β(s2)− vℓ
vh − β(s2)

≥ ρ

1− ρ

fh(s1)

fℓ(s1)
,

and so, in particular, β(s2)−vℓ
vh−β(s2)

≥ ρ
1−ρ

fh(s1)
fℓ(s1)

πh(β(s2);β)
πℓ(β(s2);β)

, since πh(β(s2);β)
πℓ(β(s2);β)

≤ 1. The claim

follows because C(η) ≤ 1.

Finally, limη→∞C (η) = 1 since πh(β(s1);β)
πh(β(s2);β)

= e−η(Fh(s2)−Fh(s1)) → 0. ■

Step 3: Non-monotone expected values. The next lemma shows that when η becomes

large, the inference from winning grows arbitrarily strong.
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Lemma 6 (U-shaped values). For any two signals s1, s2 with s1 < s2 < s̆ and any

R > 1, there is some η large enough so that, if β is strictly increasing,

πh(β (s1) ; β)

πℓ(β (s1) ; β)
> R

πh(β (s2) ; β)

πℓ(β (s2) ; β)
. (11)

Proof: Using (2), the ratio of the outer terms of (11) is

πh(β (s1) ; β)

πℓ(β (s1) ; β)
/
πh(β (s2) ; β)

πℓ(β (s2) ; β)
= eη[(Fℓ(s2)−Fh(s2))+(Fℓ(s1)−Fh(s1))]. (12)

From s1 < s2 < s̆, we have fℓ (s) > fh (s) for all s ∈ (s1, s2); therefore,

(Fℓ(s2)− Fh(s2)) + (Fℓ(s1)− Fh(s1)) > 0.

Hence, the result follows from (12) and η → ∞. ■

Combined, the three steps imply the proposition.

Proof of Proposition 1 Pick some strictly increasing bidding strategy β for every

η, and a pair of signals s′ and s′′ with s<s′<s′′<s̆.

From (8), individual rationality at s′′ implies an upper bound for β(s′′):

β(s′′)− vℓ
vh − β(s′′)

≤ ρ

1− ρ

fh(s
′′)

fℓ(s′′)

πh(β(s
′′); β)

πℓ(β(s′′); β)
. (13)

Conversely, (9) from Lemma 5 implies a lower bound on β (s′) to disincentivize

deviations of s from β(s) to β (s′):

β (s′)− vℓ
vh − β (s′)

≥ ρ

1− ρ

fh(s)

fℓ(s)

πh(β (s′) ; β)

πℓ(β (s′) ; β)
C (η) . (14)

We now show that these bounds cannot hold simultaneously when η is large. For

both bounds to hold, given β (s′) < β(s′′), we must have

ρ

1− ρ

fh(s)

fℓ(s)

πh(β (s′) ; β)

πℓ(β (s′) ; β)
C (η) ≤ ρ

1− ρ

fh(s
′′)

fℓ(s′′)

πh(β(s
′′); β)

πℓ(β(s′′); β)
. (15)

Since C (η) → 1 for η → ∞ from Lemma 5, this requires that for any R >
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fh(s
′′)

fℓ(s′′)
/fh(s)
fℓ(s)

,

πh(β (s′) ; β)

πℓ(β (s′) ; β)
≤ R

πh(β(s
′′); β)

πℓ(β(s′′); β)

for all η large enough. However, the inequality (11) from Lemma 6 implies that this

inequality fails for η large enough. Thus, we have reached a contradiction.

So, if β(s′′) is individually rational for s′′, then (9) from Lemma 5 fails for η large

enough; that is, a bidder with signal s strictly prefers to bid β(s′′). It follows that,

when η is large, no strictly increasing bidding strategy is an equilibrium. ■

A.3 Auxiliary results for Section 4

A.3.1 Characterization of the winning probability

We show that the winning probability with a pooling bid bp is

πω(bp; β) =
P[s(1) ∈ σ |ω]
E[#s ∈ σ |ω]

=
e−η(1−Fω(σ+)) − e−η(1−Fω(σ−))

η(Fω(σ+)− Fω(σ−))
. (16)

Let s+ = σ+ (bp) and s− = σ− (bp). Then

πω(bp; β) = P(no bid > bp|ω)
∞∑
n=0

1

n+ 1
P(n competitors bid bp|ω)

= e−η(1−Fω(s+))
( ∞∑

n=0

1

n+ 1
e−η(Fω(s+)−Fω(s−)) [η(Fω(s+)− Fω(s−))]

n

n!

)
= e−η(1−Fω(s+))

( ∞∑
n=0

e−η(Fω(s+)−Fω(s−)) [η(Fω(s+)− Fω(s−))]
n

(n+ 1)!

)
=

e−η(1−Fω(s+))

η(Fω(s+)− Fω(s−))

( ∞∑
n=1

e−η(Fω(s+)−Fω(s−)) [η(Fω(s+)− Fω(s−))]
n

n!

)
=

e−η(1−Fω(s+))

η(Fω(s+)− Fω(s−))

(
1− e−η(Fω(s+)−Fω(s−)))

)
=

e−η(1−Fω(s+)) − e−η(1−Fω(s−))

η(Fω(s+)− Fω(s−))
.

The numerator is P[s(1) ∈ [s−, s+]|ω], and the denominator is the expected number

of signals from [s−, s+] in state ω, i.e. E[#s ∈ [s−, s+] |ω].
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A.3.2 Proof of Lemma 3

We prove Lemma 3 for the case of σ+ (bp) = s+ ≤ s̆; the case of σ− (bp) = s− ≥ s̆ is

symmetric and is omitted. In particular, we show that

e−η(1−Fh(s−))

e−η(1−Fℓ(s−))
>

πh(bp; β)

πl(bp; β)
>

e−η(1−Fh(s+))

e−η(1−Fℓ(s+))
. (17)

Let xω = E[#s ∈ [s−, s+] |ω]; that is,

xh = η[Fh(s+)− Fh(s−)] and xℓ = η[Fℓ(s+)− Fℓ(s−)], (18)

and note that s+ ≤ s̆ implies xh < xℓ. Note that

πω(bp; β)

e−η(1−Fω(s−))
=

1

e−η(1−Fω(s−))

e−η(1−Fω(s+)) − e−η(1−Fω(s−))

η(Fω(s+)− Fω(s−))
=

exω − 1

xω

,

and so the ratio of the two expressions on the left in (17) is

πh(bp;β)

πl(bp;β)

e−η(1−Fh(s−))

e−η(1−Fℓ(s−))

=
exh−1
xh

exℓ−1
xℓ

.

Similarly, the ratio of the two expressions on the right is

πh(bp;β)

πl(bp;β)

e−η(1−Fh(s+))

e−η(1−Fℓ(s+))

=
1−e−xh

xh

1−e−xℓ

xℓ

. (19)

So we need to show that exh−1
xh

exℓ−1
xℓ

< 1 <
1−e−xh

xh

1−e−xℓ

xℓ

.

This holds because ez−1
z

is strictly increasing in z, 1−e−z

z
is strictly decreasing in z,

and xh < xℓ. Thus, (17) holds for the case of s+ ≤ s̆, as claimed.

A.3.3 Zero-profit condition and U-shaped limit values

We first generalize Lemma 5 to Lemma 7, to allow for weakly increasing βk and bids

that are not in the image of βk. We then similarly generalize Lemma 6 to Lemma 8.

Lemma 7 (Competitive bidding). Let (βk) be a sequence of bidding strategies and

ηk → ∞. Fix some s1 and some sequence (bk), with bk > βk (s1) for all k. If
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lim
k→∞

πh(β
k (s1) ; β

k)

πh(bk; β
k)

= 0

and s1 prefers βk (s1) to bk, that is,

U
(
βk (s1) |s1; βk

)
≥ U

(
bk|s1; βk

)
for all k, (20)

then there is some sequence (Ck) such that Ck → 1 and

bk − vℓ
vh − bk

≥ ρ

1− ρ

fh(s1)

fℓ(s1)

πh(b
k; βk)

πℓ(bk; β
k)
Ck for all k. (21)

Proof: By the same argument as in the proof of Lemma 5, (20) implies that

bk − vℓ
vh − bk

≥ ρ

1− ρ

fh(s1)

fℓ(s1)

πh(b
k; βk)

πℓ(bk; β
k)
Ck,

for
Ck = 1− πh(β

k (s1) ; β
k)

πh(bk; β
k)

vh − vℓ
vh − E [v|s1]

.

Finally, Ck → 1 follows from the hypothesis that πh(β
k(s1);β

k)

πh(bk;β
k)

→ 0. ■

Lemma 8 (U-shaped limit values). Let (βk) be a sequence of bidding strategies,

ηk → ∞, and
(
bk1, b

k
2

)
a pair of bids with

limσk
+

(
bk1
)
< limσk

+

(
bk2
)
≤ s̆.

Then, for every R > 1, for all k large enough,

πh(b
k
1; β

k)

πℓ(bk1; β
k)

> R
πh(b

k
2; β

k)

πℓ(bk2; β
k)
. (22)

The condition limσk
+

(
bk1
)
< limσk

+

(
bk2
)
ensures that the winning probability is

significantly higher at bk2 than at bk1. The condition limσk
+

(
bk2
)
≤ s̆ ensures that we

are on the decreasing branch of the expected value conditional on winning.

Proof of Lemma 8. If there is an atom at some bk, then

πh(b
k; β)

πℓ(bk; β)
=

e−η(1−Fh(s+))−e−η(1−Fh(s−))

η(Fh(s+)−Fh(s−))

e−η(1−Fℓ(s+))−e−η(1−Fℓ(s−))

η(Fℓ(s+)−Fℓ(s−))
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=
η(Fℓ(s+)− Fℓ(s−))

η(Fh(s+)− Fh(s−))

1− e−η(Fh(s+)−Fh(s−))

1− e−η(Fℓ(s+)−Fℓ(s−))

e−η(1−Fh(s+))

e−η(1−Fℓ(s+))
,

and it follows from 1−e−x

x
being decreasing in x that

min
{
1, Fℓ(s+)−Fℓ(s−)

Fh(s+)−Fh(s−)

}
≤ η(Fℓ(s+)−Fℓ(s−))

η(Fh(s+)−Fh(s−))
1−e−η(Fh(s+)−Fh(s−))

1−e−η(Fℓ(s+)−Fℓ(s−)) ≤ max
{
1, Fℓ(s+)−Fℓ(s−)

Fh(s+)−Fh(s−)

}
,

which is uniformly bounded (we used a similar argument in the proof of Lemma 3).

Finally, from limσk
+

(
bk1
)
< limσk

+

(
bk2
)
≤ s̆, we have

lim
e−η(1−Fh(σ

k
+(bk2)))

e−η(1−Fℓ(σ
k
+(bk2)))

/
e−η(1−Fh(σ

k
+(bk1)))

e−η(1−Fℓ(σ
k
+(bk1)))

= 0,

which was observed in Lemma 6. The claim follows. ■

A.4 Proof of Proposition 2

We consider two cases: first, that for every pair of signals s1, s2 with s < s1 < s2 < s̆,

and η large enough, β (s1) = β(s2) (Case 1); second, that there exists some pair s1, s2

for which β (s1) < β(s2) for all η (Case 2).

The following two subsections show that a sequence of bidding strategies satisfying

the assumptions of either case cannot be an equilibrium for large η.

A.4.1 Case 1: Pooling of all signals below s̆

The following lemma shows that there can be no equilibrium in which there is a

pooling bid bp for which the pool σ (bp) = [σ−, σ+] starts at some σ− < s̆ and extends

to some σ+ close to or beyond s̆ when η is large: either bp is too high to be individually

rational for σ−, or σ+ will have a strict incentive to marginally overbid.

Lemma 9. Take any s1 < s̆. Then there exist s2 ∈ (s1, s̆) and η∗ such that, for all

η ≥ η∗ and for all β with β(s1) = β(s2) = bp, the following cannot hold simultaneously:

U (bp|σ− (bp) ; β) ≥ 0 (23)

and
U (bp|σ+ (bp) ; β) ≥ lim

ε→0+
U (bp + ε|σ+ (bp) ; β) . (24)

The main observation of the proof is that, for large enough η,
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E[v|win with bp, σ−; β] < E[v|s(1) ≤ σ+, σ+; β], (25)

with σ+/− = σ+/− (bp). For bp to be individually rational for σ−, it must be smaller

than the left side of (25). However, when σ+ marginally overbids bp, the expected

value conditional on winning is equal to the right side of (25). Thus, if bp is low

enough to be individually rational for σ−, then σ+ obtains strictly positive profits

conditional on marginally overbidding bp. Since the winning probability at bp + ε

is significantly larger than at bp, this will imply that (24) fails, i.e. that σ+ strictly

prefers the deviation.

To gain intuition for (25), recall from Lemma 3 that, for σ+ ≤ s̆,

E[v|win with bp; β] > E[v|s(1) ≤ σ+; β];

that is, there is a winner’s blessing at bp. Hence, (25) shows that this winner’s blessing

is weaker than the change in the signal inference going from σ−to σ+.

Since it is a central piece of the argument, we now derive (25). First,25

πh(bp)

πℓ(bp)
≈ Fℓ(σ+)− Fℓ(σ−)

Fh(σ+)− Fh(σ−)
lim
ε→0

πh(bp + ε)

πℓ(bp + ε)
. (27)

Second, from the MLRP,

fh(σ−)

fℓ(σ−)
<

Fh(σ+)− Fh(σ−)

Fℓ(σ+)− Fℓ(σ−)
. (28)

Hence, combining (27) and (28), we get that fh(σ−)
fℓ(σ−)

πh(bp)

πℓ(bp)
< limε→0

πh(bp+ε)

πh(bp+ε)
. Finally,

for σ+ sufficiently close to or larger than s̆, fh(σ+)
fℓ(σ+)

is close to or larger than 1; thus,

fh(σ−)

fℓ(σ−)

πh(bp)

πℓ(bp)
<

fh(σ+)

fℓ(σ+)
lim
ε→0

πh(bp + ε)

πh(bp + ε)
.

This likelihood ratio ordering implies the ordering of the expected values in (25).

Roughly speaking, (27) shows that the strength of the winner’s blessing at bp

25 We say that f (η) ≈ g (η) if limη→∞
f(η)
g(η) = 1. The claim follows from

πω(bp)

limε→0 πω(bp + ε)
η (Fω(σ+)− Fω(σ−)) =

e−η(1−Fω(σ+)) − e−η(1−Fω(σ−))

e−η(1−Fω(σ+))
, (26)

which converges to 1 as η → ∞.
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(relative to overbidding) is proportional to the ratio of the expected numbers of

bidders that are tied at bp, given by Fℓ(σ+)−Fℓ(σ−)
Fh(σ+)−Fh(σ−)

. This ratio “averages” the inverse

likelihood ratios fℓ(s)
fh(s)

over s ∈ [σ−, σ+]. However, the winner’s blessing is weaker than

the negative inference from the marginal signal, fh(σ−)
fℓ(σ−)

, by (28).

Proof of Lemma 9. Pick some s1 ∈ (s, s̆). For all s−, s+ with s− ≤ s1 < s+, the

MLRP implies that fh(s−)
fℓ(s−)

Fℓ(s+)−Fℓ(s−)
Fh(s+)−Fh(s−)

< 1. Hence, we can pick s2 ∈ (s1, s̆) close

enough to s̆ so that, for all s− ≤ s1 < s2 ≤ s+,

fh(s−)

fℓ(s−)

Fℓ(s+)− Fℓ(s−)

Fh(s+)− Fh(s−)
<

fh(s+)

fℓ(s+)
. (29)

Consider any sequence (βk) with βk (s1) = βk (s2) = bkp for some bkp with

sk− ≤ s1 < s2 ≤ sk+, (30)

for sk− = σk
−
(
bkp
)
and sk+ = σk

+

(
bkp
)
, and ηk → ∞. We show that, for large k, it cannot

hold both that bkp is individually rational for sk−, i.e. that

bkp − vℓ

vh − bkp
≤ ρ

1− ρ

fh(s
k
−)

fℓ(sk−)

πh(b
k
p; β

k)

πℓ(bkp; β
k)
, (31)

and that sk+ does not prefer to overbid the atom, i.e. that

U
(
bkp|sk+; βk

)
≥ lim

ε→0+
U
(
bkp + ε|sk+; βk

)
. (32)

For (32) to hold, Lemma 7 requires that

bkp − vℓ

vh − bkp
≥ ρ

1− ρ

fh(s
k
+)

fℓ(sk+)
lim
ε→0+

πh(b
k
p + ε; βk)

πℓ(bkp + ε; βk)
Ck, (33)

for some Ck → 1, given that limε→0+
πh(b

k
p ;β

k)

πh(bkp+ε;βk)
= e

−η(1−Fh(sk+))−e
−η(1−Fh(sk−))

η(Fh(s
k
+)−Fh(s

k
−))

/e−η(1−Fh(s
k
+)) →

0. As shown in (27) and Footnote 25, there is a sequence (Rk) such that, for all k,

πh(b
k
p; β

k)

πℓ(bkp; β
k)

= Rk Fℓ(s
k
+)− Fℓ(s

k
−)

Fh(sk+)− Fh(sk−)
lim
ε→0+

πh(b
k
p + ε; βk)

πℓ(bkp + ε; βk)
, (34)
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with Rk → 1 (see also (19)). Combining (31), (33), and (34), we have

fh(s
k
−)

fℓ(sk−)

Fℓ(s
k
+)− Fℓ(s

k
−)

Fh(sk+)− Fh(sk−)
Rk ≥

fh(s
k
+)

fℓ(sk+)
Ck.

However, since limRk = limCk = 1, and sk−. ≤ s1 and s2 ≤ sk+, this contradicts (29)

for large k. Thus, for large k, βk cannot simultaneously satisfy (31) and (32). ■

A.4.2 Case 2: Some signals below s̆ separate

Suppose that there is a pair of signals s1, s2 with s<s1<s2<s̆ for which β (s1)<β(s2),

even for large η. In this case, an argument analogous to the one for Proposition 1

implies that β is not an equilibrium for η large. Specifically, for any bid b′ in between,

that is, β (s1)<b′<β (s2) , a bidder with signal s strictly prefers bidding b′ to bidding

β (s) if the bid β (s2 + ε) is individually rational for some s2 + ε < s̆.

Formally, we argue the following. For any s < s1 < s2 < s̆ and any sequence(
βk, ηk

)
, if βk (s1) < βk (s2) for all k and ηk → ∞, then, for k large enough, βk is not

an equilibrium. For this, take any bk between βk (s1) and βk (s2),

βk (s1) < bk < βk (s2) .

Now, take any ŝ2 with s2 < ŝ2 < s̆. If limσk
+

(
βk (ŝ2)

)
> s̆, then βk cannot be an

equilibrium by Lemma 9. So, suppose

limσk
+

(
βk (ŝ2)

)
≤ s̆. (35)

We show that if βk (ŝ2) is individually rational for ŝ2, then s strictly prefers bidding

bk to bidding βk (s) for large enough k. Individual rationality for ŝ2 requires

βk(ŝ2)− vℓ

vh − βk(ŝ2)
≤ ρ

1− ρ

fh(ŝ2)

fℓ(ŝ2)

πh(β
k(ŝ2); β

k)

πℓ(β
k(ŝ2); β

k)
.

Let

Ck =

fh(ŝ2)
fℓ(ŝ2)

fh(s)
fℓ(s)

πh(β
k(ŝ2);β

k)

πℓ(β
k(ŝ2);β

k)

πh(bk;β
k)

πℓ(bk;β
k)

,

so that, using bk < βk (ŝ2),

bk − vℓ
vh − bk

<
ρ

1− ρ

fh(s)

fℓ(s)

πh(b
k; βk)

πℓ(bk; β
k)
Ck for all k. (36)
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Note that
limσk

+

(
bk
)
≤ s2 < limσk

+

(
βk (ŝ2)

)
≤ s̆,

where the first inequality is from bk < βk (s2), the second from s2 < ŝ2 ≤ σk
+

(
βk (ŝ2)

)
,

and the third from (35). Thus, Lemma 8 implies that limCk = 0.

Therefore, (21) from Lemma 7 is violated for k large enough, since it requires (36)

to hold with the inequality reversed for some Ck → 1. Thus, s strictly prefers bk to

βk (s); hence, βk is not an equilibrium for large k.

A.4.3 Proof of Proposition 2

Pick any s1 < s̆ and some s2 ∈ (s1, s̆) for which Lemma 9 applies. Then, by the

lemma, there is some η1 such that β(s1) = β(s2) implies that β is not an equilibrium

for η ≥ η1. Likewise, as just argued in Section A.4.2, there is some η2 such that

β(s1) < β(s2) implies that β is not an equilibrium for η ≥ η2. Hence, there exists no

β that is an equilibrium for η ≥ max{η1, η2}.

Appendix B Discrete auction, Section 5

B.1 Proof of Proposition 3

Take some sequences (ηk) and (dk,i) with limk→∞ ηk = ∞ and limi→∞ dk,i = ∞ for

all k. All other terms are indexed by k, i correspondingly. Given a bidding strat-

egy βk,i : [s, s̄] →
{
vℓ, vℓ +∆k,i, . . . , vh

}
, we abuse notation and write σk,i

+/− (s) =

σk,i
+/−

(
βk,i (s)

)
, so s is pooled with signals

[
σk,i
− (s) , σk,i

+ (s)
]
. We say

(
βk,i

)
is a con-

vergent sequence if, for every k, βk,i and σk,i
+/− converge pointwise everywhere for

i → ∞; that is, for all s and k,

lim
i→∞

σk,i
+/− (s) = σ̄k

+/− (s) and lim
i→∞

βk,i (s) = β̄
k
(s) ,

for some σ̄k
+/− and β̄

k
. Moreover, for k → ∞, for some σ̄+/− and β̄,

lim
k→∞

σ̄k
+/− (s) = σ̄+/− (s) and lim

k→∞
β̄
k
(s) = β̄ (s) .

Since winning probabilities are continuous, the following lemma is immediate.

Lemma 10. For every convergent sequence of bidding strategies, the following hold:

• If σ̄k
− (s) = σ̄k

+ (s), then limi→∞ πk,i
ω

(
βk,i (s)

)
= e−ηkFω(1−σ̄k

+(s)).
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• If σ̄k
− (s) < σ̄k

+ (s), then, with σ̄k
+/− = σ̄k

+/− (s),

lim
i→∞

πk,i
ω

(
βk,i (s)

)
=

e−ηk(1−Fω(σ̄k
+)) − e−ηk(1−Fω(σ̄k

−))

ηk(Fω(σ̄k
+)− Fω(σ̄k

−))
.

B.1.1 Characterization for high signals

We prove that bidders with signals s > s̆ do not pool.

Lemma 11. Suppose (βk,i) is a convergent sequence of equilibria. Then, for all s,

the following hold:

1. For all k, if σ̄k
− (s) ≥ s̆, then σ̄k

− (s) = σ̄k
+ (s) = s.

2. If limk→∞ σ̄k
− (s) = s̆, then limk→∞ σ̄k

+ (s) = s̆.

For the proof of the lemma, we build on three claims. First, for atoms from bidders

with signals s ≥ s̆, the expected value conditional on winning is strictly below the

value from winning when overbidding by one increment.

Claim 1. For every convergent sequence (βk,i), every k, and every s > s̆, the following

holds: if s̆ ≤ σ̄k
− (s) < σ̄k

+ (s) then

lim
i→∞

πk,i
h

(
βk,i (s)

)
πk,i
ℓ

(
βk,i (s)

) < lim
i→∞

πk,i
h

(
βk,i (s) + ∆k,i

)
πk,i
ℓ

(
βk,i (s) + ∆k,i

) . (37)

Proof of Claim 1. For every k and i large enough, s̆ <σk,i
+ (s) = σk,i

−
(
βk,i (s) + ∆k,i

)
;

hence, from Lemma 3,

e−ηk(1−Fh(σ
k,i
+ (s)))

e−ηk(1−Fℓ(σ
k,i
+ (s)))

≤ πh(β
k,i (s) + ∆k,i)

πℓ(β
k,i (s) + ∆k,i)

.

Moreover, using Lemmas 3 and 10, s̆ ≤ σ̄k
− (s) < σ̄k

+ (s) implies

lim
i→∞

πk,i
h (βk,i (s))

πk,i
ℓ (βk,i (s))

<
e−ηk(1−Fh(σ̄

k
+))

e−ηk(1−Fℓ(σ̄
k
+))

,

where we drop the argument s from σ̄k
+/−; these inequalities prove the claim. ■

The next claim shows in particular that the implication of Claim 1 also holds

when σ̄k
− (s) < s̆ for all k, provided limk→∞ σ̄k

− (s) = s̆.
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Claim 2. For every convergent sequence (βk,i) and every s, the following holds: if

s̆ ≤ lim
k→∞

σ̄k
− (s) < lim

k→∞
σ̄k
+ (s) ,

then, for large enough k,

lim
i→∞

πk,i
h

(
βk,i (s)

)
πk,i
ℓ

(
βk,i (s)

) < lim
i→∞

πk,i
h

(
βk,i (s) + ∆k,i

)
πk,i
ℓ

(
βk,i (s) + ∆k,i

) . (38)

Proof of Claim 2. For large enough k and i, s̆ <σk,i
+ (s) = σk,i

−
(
βk,i (s) + ∆k,i

)
.

Given Lemmas 3 and 10, it is therefore sufficient to show that, for large enough k,

lim
i→∞

πk,i
h

(
βk,i (s)

)
πk,i
ℓ

(
βk,i (s)

) <
e−ηk(1−Fh(σ̄

k
+))

e−ηk(1−Fℓ(σ̄
k
+))

,

where σ̄k
+ = σ̄k

+ (s). Rewriting as in the proof of Lemma 3,

πk,i
h

(
βk,i (s)

)
πk,i
ℓ

(
βk,i (s)

) /e−ηk(1−Fh(σ
k,i
+ ))

e−ηk(1−Fℓ(σ
k,i
+ ))

=
1− e−xk,i

h

xk,i
h

/
1− e−xk,i

ℓ

xk,i
ℓ

,

with xk,i
ω = ηk(Fω(σ

k,i
+ ) − Fω(σ

k,i
− )). Let x̄k

ω = limi→∞ xk,i
ω = ηk(Fω(σ̄

k
+) − Fω(σ̄

k
−)).

The claim now follows from

lim
i→∞

1− e−xk,i
h

xk,i
h

/
1− e−xk,i

ℓ

xk,i
ℓ

=
Fl(σ̄

k
+)− Fℓ(σ̄

k
−)

Fh(σ̄k
+)− Fh(σ̄k

−)

1− e−x̄k
h

1− e−x̄k
ℓ

and
lim
k→∞

Fl(σ̄
k
+)− Fℓ(σ̄

k
−)

Fh(σ̄k
+)− Fh(σ̄k

−)

1− e−x̄k
h

1− e−x̄k
ℓ

=
Fl(σ̄+)− Fℓ(σ̄−)

Fh(σ̄+)− Fh(σ̄−)
< 1,

with σ̄+/− = limk→∞ σ̄k
+/− (s), where the equality follows from x̄k

ω → ∞ (given σ̄− <

σ̄+) and the strict inequality follows from s̆ ≤σ̄− < σ̄+. ■

If (βk,i) is an equilibrium sequence, then for any atom at βk,i (s), the expected value

conditional on winning must be above the expected value conditional on overbidding

by one increment—otherwise, bidders would have an incentive to overbid, as this

would increase both the profit conditional on winning and the probability of winning.

Claim 3. For every sequence of converging equilibria (βk,i) and for every s and k for

which σ̄k
− (s) < σ̄k

+ (s),
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lim
i→∞

πk,i
h

(
βk,i (s)

)
πk,i
ℓ

(
βk,i (s)

) ≥ lim
i→∞

πk,i
h

(
βk,i (s) + ∆k,i

)
πk,i
ℓ

(
βk,i (s) + ∆k,i

) . (39)

Proof of Claim 3. If the inequality fails, then

lim
i→∞

Ek,i[v|win with βk,i (s) , s] < lim
i→∞

Ek,i[v|win with βk,i (s) + ∆k,i, s].

Since the winning probability is also strictly higher at βk,i (s) + ∆k,i, a bidder with

signal s strictly prefers the bid βk,i (s) + ∆k,i to βk,i (s), for ∆k,i small enough. ■

Proof of Lemma 11. For the first part, suppose that σ̄k
− (s) ≥ s̆ for some k. If the

claim of the lemma fails and σ̄k
+ (s) > σ̄k

− (s), then (37) implies that (39) fails; hence,

(βk,i) cannot be a sequence of equilibria, which is a contradiction.

For the second part, limk→∞ σ̄k
− (s) = s̆. If the claim fails and limk→∞ σ̄k

+ (s)> s̆

for some convergent sequence of bidding strategies, then (38) implies that (39) fails;

hence, (βk,i) cannot be an equilibrium sequence, a contradiction. ■

B.1.2 Characterization for low signals

The largest upper bound on any atom is s̆ (for k → ∞), and if a large atom indeed

goes up to s̆, then there must be another atom one increment above it:

Lemma 12. Suppose (βk,i) is a convergent sequence of equilibria. Then, for all s for

which limk→∞ σ̄k
− (s) < limk→∞ σ̄k

+ (s), the following hold:

1. limk→∞ σ̄k
+ (s) ≤ s̆.

2. If limk→∞ σ̄k
+ (s) = s̆, then for sk,i+/− = σk,i

+/−
(
βk,i (s) + ∆k,i

)
,

lim
k→∞

lim
i→∞

ηk(Fω(s
k,i
+ )− Fω(s

k,i
− )) = ∞ for ω ∈ {ℓ, h} .

Proof of Lemma 12: Lemma 9 showed that for any atom that goes up to s̆, bidders

with signal σ̄k
+ (s) would strictly prefer to overbid the atom if this would imply winning

against all bidders with signals above σ̄k
+ (s). The reason is that, in that case, the

expected value conditional on winning at the higher bid is strictly larger than at the

atom. Using the same argument here implies that the likelihood ratio of winning with

βk,i (s) +∆k,i must not be equal to the likelihood ratio of winning against all bidders

with signals above σ̄k
+ (s); thus, βk,i (s) + ∆k,i is an atom.
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Claim 4. Suppose (βk,i) is a convergent sequence of equilibria with limk→∞ σ̄k
− (s) <

limk→∞ σ̄k
+ (s) and s̆ ≤ limk→∞ σ̄k

+ (s) for some s. Then

lim
k→∞

lim
i→∞

πk,i
h (βk,i(s)+∆k,i)

πk,i
ℓ (βk,i(s)+∆k,i)

e
−ηk(1−Fh(σ

k,i
+ ))

e
−ηk(1−Fℓ(σ

k,i
+ ))

≤ fh(σ̄−)

fℓ(σ̄−)

Fℓ(σ̄+)− Fℓ(σ̄−)

Fh(σ̄+)− Fh(σ̄−)
< 1, (40)

with σ̄+/− = limk→∞ σ̄k
+/− (s).

Proof of Claim 4. The claim follows from exactly the same arguments as the proof

of Lemma 9. We make the abbreviations

bk,i = βk,i (s) , πk,i
0,ω = πk,i

ω

(
βk,i (s)

)
, πk,i

+,ω = πk,i
ω

(
βk,i (s) + ∆k,i

)
,

and we write b̄k = limi→∞ bk,i (recall pointwise convergence of (βk,i)) and, analogously,

π̄k
0,ω and π̄k

+,ω. As usual, we drop the s from all σk,i
+/− and σ̄k

+/−.

Using the individual rationality of bk,i for σk,i
− and the continuity of the ratios gives

b̄k − vℓ
vh − b̄k

≤ ρ

1− ρ

fh(σ̄
k
−)

fℓ(σ̄k
−)

π̄k
0,h

π̄k
0,ℓ

. (41)

Rewriting and evaluating the optimality condition U(bk,i|σk,i
+ ; βk,i) ≥ U(bk,i +

∆k,i|σk,i
+ ; βk,i) as in the proof of Lemma 9 gives

b̄k − vℓ
vh − b̄k

≥ ρ

1− ρ

fh(σ̄
k
+)

fℓ(σ̄k
+)

π̄k
+,h

π̄k
+,ℓ

Ck, (42)

for some Ck with limk→∞Ck = 1. Combining (41) and (42), we have

fh(σ̄
k
+)

fℓ(σ̄k
+)

π̄k
+,h

π̄k
+,ℓ

Ck ≤
fh(σ̄

k
−)

fℓ(σ̄k
−)

π̄k
0,h

π̄k
0,ℓ

. (43)

Divide both sides by e
−ηk(1−Fh(σ̄k

+))

e
−ηk(1−Fℓ(σ̄

k
+))

. Using Lemma 10 and rewriting as in Lemma 3,

π̄k
0,h

π̄k
0,ℓ

e
−ηk(1−Fh(σ̄k

+))

e
−ηk(1−Fℓ(σ̄

k
+))

=
Fℓ(σ̄

k
+)− Fℓ(σ̄

k
−)

Fh(σ̄k
+)− Fh(σ̄k

−)

1− e−ηk(Fh(σ̄
k
+)−Fh(σ̄

k
−))

1− e−ηk(Fℓ(σ̄
k
+)−Fℓ(σ̄

k
−))

≈
Fℓ(σ̄

k
+)− Fℓ(σ̄

k
−)

Fh(σ̄k
+)− Fh(σ̄k

−)
,

where the ≈ comes from limk→∞ ηk
(
Fω(σ̄

k
+)− Fω(σ̄

k
−)
)
= ∞. Hence, (43) implies
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lim
k→∞

fh(σ̄
k
+)

fℓ(σ̄k
+)

π̄k
+,h

π̄k
+,ℓ

e
−ηk(1−Fh(σ̄k

+))

e
−ηk(1−Fℓ(σ̄

k
+))

Ck ≤ lim
k→∞

fh(σ̄
k
−)

fℓ(σ̄k
−)

Fℓ(σ̄
k
+)− Fℓ(σ̄

k
−)

Fh(σ̄k
+)− Fh(σ̄k

−)
. (44)

Since
fh(σ̄

k
+)

fℓ(σ̄
k
+)

≥ 1 from the hypothesis limk→∞ σ̄k
+ ≥ s̆ and limk→∞ Ck = 1, the inequal-

ity (44) and the MLRP imply the two inequalities in (40). ■

Proof of Part 1 of Lemma 12.

lim
k→∞

σ̄k
− (s) < lim

k→∞
σ̄k
+ (s) ⇒ lim

k→∞
σ̄k
+ (s) ≤ s̆.

The proof is by contradiction. Take a convergent sequence of equilibria (βk,i) and any

s′ with limk→∞ σ̄k
+ (s′) > s̆. Without further loss of generality, suppose σk,i

+ (s′) > s̆

for all k, i. We show below that, for any such s′, for all k,

lim
i→∞

πk,i
h

(
βk,i (s′) + ∆k,i

)
πk,i
ℓ

(
βk,i (s′) + ∆k,i

) /e−ηk(1−Fh(σ
k,i
+ (s′)))

e−ηk(1−Fℓ(σ
k,i
+ (s′)))

= 1. (45)

Thus, (40) from Claim 4 fails for s′ if lim σ̄k
+ (s′)>s̆, so lim σ̄k

+ (s′)≤ s̆, as claimed.

To prove (45), pick any k and any sk > σ̄k
+ (s′). Then σ̄k

−
(
sk
)
≥ σ̄k

+ (s′) > s̆, and

Lemma 11 implies that σ̄k
+

(
sk
)
= σ̄k

−
(
sk
)
= sk. Since this is also true for the signal

sk+σ̄k
+(s′)

2
, it follows that βk,i

(
sk
)
> βk,i (s′) + ∆k,i for i large. Hence,

e−ηk(1−Fh(σ̄
k
+(s′)))

e−ηk(1−Fℓ(σ̄
k
+(s′)))

= lim
i→∞

e−ηk(1−Fh(σ
k,i
+ (s′)))

e−ηk(1−Fℓ(σ
k,i
+ (s′)))

≤ lim
i→∞

πk,i
h

(
βk,i (s′) + ∆k,i

)
πk,i
ℓ

(
βk,i (s′) + ∆k,i

)
≤ lim

i→∞

πk,i
h

(
βk,i

(
sk
))

πk,i
ℓ

(
βk,i (sk)

) =
e−ηk(1−Fh(s

k))

e−ηk(1−Fℓ(sk))
,

where the first equality is from σk,i
+ (s′) → σ̄k

+ (s′), the two inequalities are from

Lemma 3 and βk,i
(
sk
)
> βk,i (s′) + ∆k,i, and the final equality is from σ̄k

+

(
sk
)
=

σ̄k
−
(
sk
)
= sk. Since sk can be chosen arbitrarily close to σ̄k

+ (s′) and the two outer

expressions are continuous, (45) holds, as desired.

Proof of Part 2 of Lemma 12. If limk→∞ σ̄k
+ (s) = s̆, then for sk,i+/− = σk,i

+/−
(
βk,i (s) + ∆k,i

)
,

lim
k→∞

lim
i→∞

xk,i
ω = lim

k→∞
lim
i→∞

ηk
(
Fω

(
sk,i+

)
− Fω

(
sk,i−

))
= ∞. (46)

As in Lemma 3,
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πk,i
h

(
βk,i (s) + ∆k,i

)
πk,i
ℓ

(
βk,i (s) + ∆k,i

) /e−ηk(1−Fh(σ
k,i
+ ))

e−ηk(1−Fℓ(σ
k,i
+ ))

=
xk,i
ℓ

xk,i
h

ex
k,i
h − 1

ex
k,i
ℓ − 1

with xk,i
ω = ηk

(
Fω

(
sk,i+

)
− Fω

(
sk,i−

))
, where we note that σk,i

+ = sk,i− .

If limk→∞ limi→∞ xk,i
h = x̄h < ∞, then limk→∞ limi→∞ sk,i+ = limk→∞ limi→∞ sk,i− =

s̆. Since fh(s̆)
fℓ(s̆)

= 1 and the likelihood ratio is continuous, this implies limk→∞ limi→∞ xk,i
ℓ =

x̄ℓ = x̄h. Together,

lim
k→∞

lim
i→∞

xk,i
ℓ

xk,i
h

ex
k,i
h − 1

ex
k,i
ℓ − 1

= 1.

Thus, the necessary condition (40) from Claim 4 fails if x̄h < ∞. Hence x̄h = ∞
and so x̄ℓ = ∞; that is, (46) holds. This completes the proof of the lemma. ■

Lemma 13. Let (βk,i) be a convergent equilibrium sequence. If s<s1<s2<s̆ and

βk,i (s1) < βk,i (s2) for all k, i,

then, for all k large enough and i large enough given k,

βk,i (s2) = βk,i (s1) + ∆k,i. (47)

Proof of Lemma 13. Take any s2 < ŝ2 < s̆. Since (βk,i) is a sequence of equilibria,

Uk,i
(
βk,i (ŝ2) , ŝ2; β

k,i
)
≥ 0 and lim

k→∞
σ̄k
+ (ŝ2) ≤ s̆,

where the first inequality states individual rationality and the second follows from

Lemma 12. Now, suppose (47) does not hold. Then, choosing a further subsequence

if necessary, there is some sequence of bids (b̂k,i) with b̂k,i ∈ Dk,i such that, for all k, i,

βk,i (s1) < b̂k,i < βk,i (s2) .

However, for any fixed i′, for k large enough, s would deviate to b̂k,i
′
, that is,

Uk,i′(b̂k,i
′
, s; βk,i′) > Uk,i′(βk,i′ (s1) , s; β

k,i′). This follows from the same argument as

in Case 2 in the proof of Proposition 2. This is because the proof does not utilize the

continuum of feasible bids but only compares the payoffs at the bids in question. ■

B.1.3 Proof of Proposition 3

First, we show the characterization holds for convergent sequences of equilibria (βk,i).

Assertion (iv): Take any s > s̆. By Lemma 12, limk→∞ σ̄k
− (s) > s̆, and by Lemma 11,
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this implies that, for all k, limi→∞ σk,i
− (s) = limi→∞ σk,i

+ (s) = s. Hence, for any k and

i large enough, the expected number of bids that tie with s vanishes.

For assertions (i)–(iii) pick some s ∈ (s, s̆).

Case 1: σ̄− (s) = s and σ̄+(s) = s̆. The proposition holds with A = σk,i (s) and B =

σk,i
(
βk,i (s) + ∆k,i

)
: By hypothesis, assertions (i) and (ii) hold. Assertion (iii) (many

bidders are pooled) holds for A by σk,i (s) → [s, s̆], and for B by Part 2 of Lemma 12.

Case 2: There are s < s1 < s2 < s̆ such that σ̄+ (s1) ≤ σ̄− (s2). By Lemma 13, for k, i

large enough, βk,i (s2) = βk,i (s1) + ∆k,i. Moreover, for all s′1 ∈ (s, s1), s
′
2 ∈ (s2, s̆),

and high k, i, βk,i (s1) = βk,i (s′1) and βk,i (s2) = βk,i (s′2). Hence, assertions (i)–(iii)

hold for A = σk,i (s1) and B = σk,i (s2).

Since Case 1 and Case 2 are exhaustive, the characterization indeed holds for all

convergent sequences of equilibria. Now, take some arbitrary sequence of equilibria

(βk,i). We prove the characterization by contradiction: If the characterization is not

true, then, for every K, there is some k′ ≥ K such that, for every I, there is some

i′ ≥ I such that at least one of the four assertions, (i)–(iv), fails for βk′,i′ . Thus, we

can pick a new sequence (βk′,i′) of equilibria such that some assertion fails for all k′, i′.

Of course, this sequence has a convergent subsequence, and, as just shown, all of the

assertions hold for k′, i′ large enough—contradicting the starting hypothesis. ■
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