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Abstract

We provide one-sided confidence regions for the value of optimization problems with
estimated objectives and constraints. The motivating application is (one- or two-sided)
inference on components of partially identified parameter vectors. The novelty of the
method is that it is (i) very simple to execute while (ii) valid under reasonably general
conditions.

Regarding (i), a main innovation is to compute confidence intervals locally at a solu-
tion to the optimization problem’s sample analog. No global optimization is performed
after this first optimization step, and all remaining optimizations are linear. Regarding
(ii), we assume (and provide low-level sufficient conditions) that any solution to the sam-
ple problem is at most Opn�1{2q away from some solution to the population problem.
However, we allow for singleton feasible sets (i.e., point identification), low dimensional
feasible sets, and maxima that are at least partially characterized by first-order conditions;
all of these are excluded by at least some other approaches in the literature. We provide
STATA and Python implementation packages. We illustrate the method’s simplicity and
power by re-evaluating the empirical findings in several published papers.
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1 Introduction

This paper provides simple one-sided confidence intervals for the value γ� of the optimization

problem

max gpθq s.t. θ P ΘI , (1.1)

where gp�q is a known, scalar-valued, smooth function and the feasible set ΘI is characterized

through moment inequalities that must be estimated.1

The motivating application is inference on components of partially identified paramater

vectors, i.e. when ΘI is an identified set. In this context, our method immediately yields

two-sided confidence intervals that can be interpreted exactly like the confidence intervals

for OLS which are reported by any regression package’s output. To underscore the new

method’s simplicity, we provide implementation packages in STATA and Python. Potential

applications of the method in the existing literature include Ho (2009), Ho, Ho, and Mortimer

(2012), Ho and Pakes (2014), Holmes (2011), Kawai and Watanabe (2013), Kline and Tartari

(2016), Lee (2013), and Wollmann (2018); we replicate several of these using the STATA

command.

We are not the first to approach this question and have written on it before (Kaido,

Molinari, and Stoye, 2019). We argue that our new proposal strikes an attractive balance

between computational simplicity and general validity. Regarding simplicity, the new confi-

dence interval is constructed locally around one (not necessarily unique) estimator θ̂� of the

(not necessarily unique) optimal argument θ� in (1.1). To do so, we bootstrap a local (to

θ̂�) linear approximation to (1.1). Conditionally on having computed θ̂� (as would typically

be required to even get an estimator of γ�), the computational cost of the entire procedure

is negligible. Regarding generality, we impose more structure than in our previous work

but allow for point identification and “near point identification,” for feasible sets that have

no interior, and for the solution to the (sample or population) optimization problem to be

nonunique and/or be at least partially characterized by first-order conditions. These features

are shared by some recent proposals (Andrews, Roth, and Pakes, 2021; Cox and Shi, 2020)

but these put more structure on gp�q. To the best of our knowledge, no other approach allows

for all of these features; the pioneering approach in Pakes, Porter, Ho, and Ishii (2011), which

is employed in the aforecited applications, allows for none of them.2

Two auxiliary contributions of independent interest are as follows. First, we must ensure

that any solution of the empirical optimization problem is “
?
n-close” to some (not necessarily

unique) solution of the population problem. To do so, we generalize the “Argmax Theorem”

(van der Vaart and Wellner, 2000) to show that m-estimators of partially identified parameters

1It actually suffices for gp�q to be smooth and its gradient uniformly estimable at parametric rate. We will
formalize this in future iterations.

2We reference the unpublished version of Pakes, Porter, Ho, and Ishii (2015) because only that version
contains the estimation and inference strategy discussed here and used in much subsequent work.
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achieve this particular notion of consistency under weak conditions. Second, we provide exact

conditions under which the approach in Pakes, Porter, Ho, and Ishii (2011) can be justified.

These are “morally” weaker than in the original work and also correct an oversight therein.

The remainder of this paper is structured as follows. Section 2 gives an algorithmic

explanation of the inference procedure, introducing only the minimal amount of notation

needed. Section 3 provides theoretical justification. Section 4 discusses the relation to the

literature in more depth and provides theoretical justification for Pakes, Porter, Ho, and Ishii

(2011). Section 5 contains several empirical applications, and Section 6 concludes.

2 Explanation of Method

This section gives further motivation and a precise description of the inference procedure.

Consider a parameter θ P Θ � Rk that is partially identified by moment inequalities:

θ P ΘI �
 
θ P Θ : Epmjpθ,Xiqq ¤ 0, j � 1, . . . , J

(
. (2.1)

Here, mjpθ,Xiq are known smooth functions, and we assume that corresponding sample

averages mjpθq are available. The setting allows for equalities as well, which will be identified

with paired inequalities.

Inference on γ� can be of interest for at least two reasons. First, gp�q might be an objective

function of immediate substantive interest, for example the social welfare induced by some

treatment or policy. Note, however, that in this context we only procide one-sided inference

from above (or from below for the objective function’s minimum).

Our motivating application is inference on scalar functions of partially identified param-

eter vectors. To this end, note that for any known function gp�q, the partial identification

scenario (2.1) induces partial identification of γ � gpθq through

γ P ΓI � tgpθq : θ P ΘIu.

In many cases, researchers will be willing to restrict attention to the smallest interval con-

taining ΓI , that is, to

rγL, γU s � rmin ΓI ,max ΓIs.

This might be because ΘI is known to be connected, in which case ΓI � rγL, γU s; it might

be because the researcher is mainly interested in the extreme values that γ can take, in

which case it can be statistically advantageous to consider rγL, γU s;3 or it might be just for

computational reasons, since finding gaps in ΓI can be hard.

3If ΓI is a finite union of singletons, e.g. because one has moment equalities with non-unique locally
identifiable solutions, then a confidence region for ΓI will locally resemble two-sided inference on γU , even
though one-sided inference would do if γL is sufficiently below γU . Our approach adaptively implements this.
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We define estimators of rγL, γU s as

γ̂L � min
θPΘ̂I

gpθq

γ̂U � max
θPΘ̂I

gpθq

Θ̂I � arg min
θPΘ

max

"
max

j�1,...,J
mjpθq, 0

*
,

where M jp�q is a sample average. Note that the definition of Θ̂I ensures its nonemptiness,

whereas tθ : maxj�1,...,J mjpθq ¤ 0u may be empty. An instance of particular interest, which

the reader may want to keep in mind, is that γ is simply a component of θ.

Consider now the one-sided left-unbounded confidence interval for γ. Following Imbens

and Manski (2004) and most of the subsequent literature, we want this interval to accurately

cover γ uniformly over its possible values. That is,

min
θPΘI

Prpγ P CIq ¥ 1� α

at least in an asymptotic sense.4 For left-unbounded CI’s, it is clear that this probability

decreases in γ, so that the one-sided CI is in practice a CI for γU . Similarly, the one-

sided right-unbounded CI is in practice a CI for γL. Two-sided p1 � αq-CI’s for γ will be

constructed by intersecting one-sided p1 � α{2q-CI’s.5 Thus, inference on gpθq reduces to

inference on maximization problem (1.1).

The algorithm for computing a one-sided p1� αq-CI is as follows:6

1. Compute γ̂U and pick an arbitrary θ̂� P arg maxθPΘ̂I
gpθq.

(This step, i.e. estimating γU , will typically be the hardest.)

2. Define the index set

J � �  
j P t1, . . . , Ju : mjpθ̂�q{σ̂jpθ̂�q ¤

a
logpnq{n(,

where σ̂jpθq is an estimator of σjpθq, the standard deviation of moment condition j at

θ.

(Intuitively, we henceforth restrict attention to constraints that are plausibly binding

at θ̂�. Note that equality constraints automatically pass this test.)

4Our theoretical justification also establishes uniformity of size control over a large set of true data gener-
ating processes. We omit this uniformity here for simplicity of notation.

5As is typical in this literature, the resultant interval can be empty, namely if the data suggest misspeci-
fication of the model. See Ponomareva and Tamer (2011), Andrews and Kwon (2019), and Stoye (2020) for
recent contributions to this conversation. We leave connecting it to the present method to future research.

6For simplicity, we impute simple values for some tuning parameters. These values are commonly used in
the related literature and are the ones that we later implement.
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3. For each j P J �, compute D̂jpθ̂�q, an estimator of the moment condition’s gradient at

θ̂�

Djpθ̂�q � OθEpmjpXi, θ̂
�q{σjpθ̂�qq.

(There are many such estimators; our implementation provides one.)

4. Implement the following linear program parameterized by scalar c and vector µ �
pµbjqjPJ � , where each µj is scalar.

ψpc,µq � max
ϑPRk

Oθgpθ̂�q1ϑ

s.t. D̂jpθ̂�q1ϑ�
?
nµj ¤ c, j P J �

�ρ ¤ e1jϑ ¤ ρ, j � 1, . . . , k,

where pe1, . . . , ekq is an orthonormal basis of Rk s.t. e1 � Oθgpθ̂�q{}Oθgpθ̂�q}.
(Intutitively, we replace the optimization problem with a linear approximation that

is uniformly valid in a neighborhood of θ̂�. The parameters of the program are a

relaxation c that we will calibrate to insure coverage and a slackness vector µ that will

simulate sampling uncertainty. The second set of constraints restricts ϑ to a hypercube

over which the linear approximation is uniformly valid. They are governed by a tuning

parameter ρ ¡ 0 for which we give a suggestion. Note that, if γ is a component of θ,

then one can take pe1, . . . , ekq to be the canonical basis.)

5. Let ĉ be the smallest value of c s.t.

Prpψpc,µbq ¥ 0q ¥ 1� α,

where

µbj �
mb
jpθ̂�q �mjpθ̂�q

σ̂jpθ̂�q
and

�
mb
jpθ̂�q

�
jPJ �

is is an i.i.d. nonparametric bootstrap resample of pmjpθ̂�qqjPJ � .

(Intuitively, in our bootstrap approximation, this is by how much we would have to

relax sample constraints so that the relaxed maximization problem covers the bootstrap

population problem’s true value –which equals 0 due to recentering– with the desired

probability.)

6. The confidence interval equals

CIα � ��8, γ̂U � ψpĉ,0q{?n�,
where 0 is a vector of zeros.
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(Intuitively, we report the value of the sample optimization problem but relaxed by ĉ.

An additional flourish is that, to avoid a second global optimization, we apply our local

linear approximation to this last step. As the notation clarifies, from a computational

point of view this renders it equivalent to one additional bootstrap iteration.)

Remark 2.1: We kept things as simple as possible by not studentizing constraints in

the definition of Θ̂I . We can do this because we will only require a limited notion (to be

formalized later) of
?
n-consistency of θ̂�. Not studentizing constraints can be attractive

because, for example, studentization can turn linear constraints into nonlinear ones. That

said, one might conjecture that studentization yields more efficient estimators. We provide

the option to studentize at this stage and recommend it if computationally feasible.

Note, however, that local linearization allows us to studentize moment inequalities for

inference purposes. This is reflected in the definition of µbj and adds negligible computational

burden even if solving the global problem with studentized constraints would be hard. See,

in particular, Andrews and Soares (2010) for a discussion of why studentization is advisable

for inference.

Remark 2.2: While we defer formal discussion to Section 3, we will now briefly clarify

relation to our previous work (Kaido, Molinari, and Stoye, 2019). In that work, ĉ is (at least

in principle) computed at every possible value of θ. The global optimization problem is then

revisited and solved subject to constraints that are relaxed by ĉpθq; that is, the relaxation

itself changes with θ. While we provide novel algorithms that improve computation and also

supply a MATLAB implementation (Kaido, Molinari, Stoye, and Thirkettle, 2017), this is

computationally involved. We here avoid it, albeit at the price of additional assumptions.

For an intuition of what changes and what kind of assumptions can motivate it, think

of Kaido, Molinari, and Stoye (2019) as providing a test of the null hypothesis that, for a

given θ, gpθq P rγL, γU s. This test is then inverted, which is involved because its critical value

depends on θ. In this analogy, we here compute the critical value exactly once, namely at

θ̂�. Intuitively, this is justified if (i) θ̂� is close to a true solution to the problem, (ii) on a

vanishing neighborhood of θ̂� that (with high probability) includes said true solution, the test

statistic whose quantiles we implicitly compute is asymptotically pivotal. The assumptions

that we will impose beyond our previous work effectively impose (i); (ii) then turns out to

be implied.

3 Detailed Justification of Method

This section first discusses “background assumptions” that we lift from our own previous

work and that are also common in the literature, then discusses novel assumptions that we

introduce, then provides a theorem justifying the new approach. For readability and com-

parability, we use notation that has become standard in the partial identification literature;
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however, the substantive interpretation of ΘI as identified set plays no role in the technical

development.

3.1 Background Assumptions

The following assumptions are exactly as in Kaido, Molinari, and Stoye (2019) and are also

closely related to others in the literature. We give a brief discussion after stating them. All

assumptions refer to the set P of data generating processes over which uniformity is claimed.

Because this paper is rooted in the literature on partial identification and, in particular,

moment inequalities, we will verbally refer to ΘI as identified set characterized through

moment inequalities. However, this is just a convenient interpretation; all that matters for

the results is that the feasible set for some optimization problem can be described in the way

that ΘI is described here.

Assumption 3.1: (a) Θ � Rd is a compact hyperrectangle with nonempty interior.

(b) All distributions P P P satisfy the following:

(i) ΘI � tθ P Θ : EP rmjpXi, θqs ¤ 0, j � 1, . . . , Ju � H.

(ii) tXi, i ¥ 1u are i.i.d.;

(iii) σ2
P,jpθq P p0,8q for j � 1, . . . , J for all θ P Θ;

(iv) For some δ ¡ 0 and M P p0,8q and for all j, EP rsupθPΘ |mjpXi, θq{σP,jpθq|2�δs ¤M .

Assumption 3.2: All distributions P P P satisfy one of the following two conditions for

some constants ω ¡ 0, σ ¡ 0, ε ¡ 0, ε ¡ 0,M   8:

1. Let J pP, θ; εq � tj P t1, � � � , J1u : EP rmjpXi, θqs{σP,jpθq ¥ �εu. Denote

m̃pXi, θq �
�tmjpXi, θqujPJ pP,θ;εq,mJ1�1pXi, θq, . . . ,mJ1�J2pXi, θq

�1
,

Ω̃P pθq � CorrP pm̃pXi, θqq.

Then infθPΘIpP q eigpΩ̃P pθqq ¥ ω.

2. The functions mjpXi, θq are defined on Θε � tθ P Rd : dpθ,Θq ¤ εu. There exists

R1 P N, 1 ¤ R1 ¤ J1{2, and measurable functions tj : X � Θε Ñ r0,M s, j P R1 �
t1, . . . , R1u, such that for each j P R1,

mj�R1pXi, θq � �mjpXi, θq � tjpXi, θq. (3.1)

For each j P R1 X J pP, θ; εq and any choice :mjpXi, θq P tmjpXi, θq,mj�R1pXi, θqu,

[6]



denoting Ω̃P pθq � CorrP pm̃pXi, θqq, where

m̃pXi, θq �
�
t :mjpXi, θqujPR1XJ pP,θ;εq,

tmjpXi, θqujPJ pP,θ;εqzt1,...,2R1u,mJ1�1pXi, θq, . . . ,mJ1�J2pXi, θq
	1
,

one has

inf
θPΘIpP q

eigpΩ̃P pθqq ¥ ω. (3.2)

Finally,

inf
θPΘIpP q

σP,jpθq ¡ σ for j � 1, . . . , R1. (3.3)

Assumption 3.1 goes back to Andrews and Soares (2010). It clarifies that the parameter

of interest θ is partially identified through finitely many moment conditions which can be

individually regularly estimated. Importantly, the shape of ΘI is not otherwise constrained

at this point and will only be minimally constrained later.

Assumption 3.2 restricts the correlation between moment conditions. In particular, it

excludes the possibility that some moment conditions are (almost) perfectly correlated with-

out the econometrician knowing this. If this happens, the optimization problem’s value mey

be estimated superconsistently, i.e. at a rate faster than Opn�1{2q; this may sound like a

good thing, but it invalidates the nonparametric bootstrap at the heart of our approach.7

Note that the assumption allows for moment conditions that are perfectly correlated with

the researcher’s knowledge, e.g., an equality constraint that is entered as two “opposing” in-

equalities or (in certain applications to partial identification) interval data with fixed interval

width.

Finally, a fully general statement of the procedure involves tuning parameters pϕj , κnq
governing Generalized Moment Selection (GMS; see Andrews and Soares (2010) and also

Bugni (2010), Canay (2010), and Stoye (2009)). Our treatment of these enitrely follows the

previous literature.

Assumption 3.3: The function ϕj (whose use will be explained later) is continuous at

all x ¥ 0 and ϕjp0q � 0; κn Ñ 8 and κn � opn1{2q. If Assumption 3.2-2 is imposed,

κn � opn1{4q.

3.2 Additional Assumption and High-Level Theorem

Our only additional assumption is that θ̂� must be
?
n-close to some solution to the true

maximization problem. It is not necessary that either the sample or the population solu-

7The aforementioned oversight in PPHI is to not impose this or a similar assumption.
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tion are unique, and it is also not required that the sample solutions converge to a specific

true solution (or, indeed, anywhere, though of course all accumulation points must be true

solutions). To state this formally, for closed Θ� � Θ we define

Spg,Θ�q � arg max
θPΘ�

gpθq.

The notation is a reminder that, if g is a projection, then Sp�q is the support set.) Then we

have:

Assumption 3.4:

max
θ̂�PSpg,Θ̂Iq

min
θ�PSpg,ΘIq

}θ̂� � θ�} � OPpn�1{2q. (3.4)

Theorem 3.1: Suppose that Assumptions 3.1-3.2 and also 3.4 hold. Then Simple Cali-

brated projection is valid.

Assumption 3.4 restricts directed Hausdorff distance between the estimated solution set

Spg, Θ̂Iq and the true solution set Spg,ΘIq: The former must be asymptotically contained

in the latter but not necessarily conversely. This directed notion suffices because it implies

that any selection θ̂� P Spg, Θ̂Iq is asymptotically close to some true solution to the problem.

Sufficiency of this directed notion of convergence is important for two reasons: First, it is

much easier to verify this directed notion of convergence; indeed, if Assumption 3.4 were

stated using Hausdorff distance, it would fail in many cases of interest. Second, while we

technically define θ̂� as arbitrary selection from Spp, Θ̂Iq, computing it does not require one

to compute Spp, Θ̂Iq but only to find some element of it, which can be the considerably easier

task.

3.3 Low-Level Conditions Justifying Simple Calibrated Projection

We next derive Assumption 3.4 from lower level conditions on P. The first step is a novel

result that clarifies “inner” (in the sense of directed Hausdorff distance)
?
n-consistency of

m-estimators under partial identification.

[8]



3.3.1 A Rate Result for Set-Identified M-Estimators

Consider the standard “m-estimation” setup with8

Θ� � arg min
θPΘ

Qpθq,
Θ̂� � arg min

θPΘ
Qnpθq,

with the only nonstandard aspect that Θ� will not be assumed to be a singleton. (Notation

anticipates that Θ� need not be ΘI .) We are interested in conditions under which

max
θPΘ̂�

dpθ,Θ�q � OP pn�1{2q, (3.5)

i.e. the estimator asymptotically hits the set but need not explore it (nor converge to any

particular element). We will henceforth denote this notion of consistency by inner consis-

tency.

Such inner consistency (but without a rate) is implied by the usual consistency conditions

less uniqueness. That is, if Θ� is a well-separated minimum of Qp�q, then Θ̂� is asymptotically

contained in it. This is briefly mentioned in Newey and McFadden (1994), and the basic

insight goes back at least to Redner (1981). However, we need a rate at which this “inner

consistency” is assured. To this purpose, we provide the following, novel result.

Theorem 3.2: Suppose that dpθ̂�,Θ�q pÑ 0 (i.e., inner consistency but without a rate)

and that

1. Qpθq Á d2pθ,Θ�q,

2. Dε ¡ 0@δ ¤ ε : E
�
supθPΘ,θ�PΘ�:}θ�θ�}¤δ |νnpθq � νnpθ�q|

� À δ.

Then (3.5) holds.

Proof. Define Sj,n � tθ P Θ : 2j�1 ¤ ?
ndpθ,Θ�q ¤ 2ju and write

Prp?ndpθ̂�,Θ�q ¡ 2M q ¤
¸

j¥M,2j¤η?n
Pr

�
inf
θPSj,n

Qnpθq ¤ inf
θ�PΘ�

Qnpθ�q


� Pr

�
2dpθ̂�,Θ�q ¥ η

�

�
¸

j¥M,2j¤η?n
Pr

�
inf
θPSj,n

Qnpθq ¤ inf
θ�PΘ�

Qnpθ�q


� oP p1q, (3.6)

8This is also sometimes called extremum estimation, with m-estimation referring to the special case where
Qnp�q is a sample average.
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using that dpθ̂�,Θ�q pÑ 0. Next, observe that uniformly for θ on any fixed Sj,n, we have

Qpθq Á d2pθ,Θ�q ¥ 22j�2

n
,

where the first step is by assumption and the second one uses the definition of Sj,n. For any

θ P Θ, define projθ � arg minθ�PΘ� }θ � θ�}, the closest parameter value to θ that lies in Θ�

(with arbitrary selection if the arg min is not unique). We can then write

Pr

�
inf
θPSj,n

Qnpθq � inf
θ�PΘ�

Qnpθ�q ¤ 0



p1q
¤ Pr

�
inf
θPSj,n

pQnpθq �Qnpprojθqq ¤ 0



p2q
¤ Pr

�
inf
θPSj,n

tpQn �Qqpθq � pQn �Qqpprojθqu ¤ �22j�2

n



p3q� Pr

�
inf
θPSj,n

tνnpθq � νnpprojθqu ¤ �22j�2

?
n



p4q
¤ Pr

�
sup
θPSj,n

|νnpθq � νnpprojθq| ¥
22j�2

?
n

�

p5q
¤

?
n

22j�2
� 2j?

n
� 22�j ,

where (1) holds because the term inside the inf became smaller for each θ; (2) uses that

Qpprojθq � 0, whereas Qpθq ¥ 22j�2{n; (3) plugs in the definition of νn; (4) is elementary;

(5) uses Markov’s inequality, the definition of Sj,n, and the second condition, keeping in mind

that }θ� projθ } � dpθ,Θ�q. Conclude that the sum in (3.6) vanishes as M Ñ8, hence that?
ndpθ̂�,Θ�q � OP p1q.

Both the statament and the proof of this result are inspired, and heavily owe to, van der

Vaart and Wellner (2000, Theorem 3.2.5.). The main difference is that we consider point-set

distance dpθ,Θ�q. This necessitates some modifications as the modulus of continuity must

be invoked comparing a generic θ to the nearest element projθ of Θ�, taking care of the fact

that projθ is a function of θ. This requires reformulating condition 2 (in particular, note

the supremum also being over θ� P Θ�) and adding a few additional steps (e.g., compare (1)

above).

3.3.2 Connection to Inference on Maxima

We next apply this result to inner consistent estimation of the support set. For this purpose,

we identify Spg,ΘIq as the “identified set” Θ� in the extension of our original model where

the condition

gpθq � γU

[10]



with sample analog

gpθq � γ̂U

is added. Note that the new condition is not a moment restriction, and we will not, for

example, be able to verify pointwise asymptotic normality of the corresponding error process.

However, all we need is to verify Assumption 3.4. We do this by imposing:

Assumption 3.5: We have that:

1.
?
npγ̂U � γU q � OP p1q.

2. For any θ� P Spg,ΘIq, let Hpθ�q � tθ�uÀtθ P Θ : Oθgpθ�q1θ � 0u be the corresponding

supporting hyperplane of θI in direction Oθgpθ�q. Note that, if gp�q is linear, then Hpθ�q
is the same for all θ� P Spg,ΘIq.
There exist C, ε ¡ 0 s.t. θ P Hpp,ΘIq, }θ � θ�} ¤ ε ùñ dpθ,ΘIq ¥ Cd2pθ, Spg,ΘIqq.

We then have:

Theorem 3.3: The above assumption imply Assumption 3.4.

Proof. As hinted at in text above.

Part 1 of the condition will hold if it does so in the original moment inequalities model.

We will derive it from lower level conditions later. The second condition forces the solution

set to be a well-identified (if not necessarily unique) maximum of gp�q on ΘI in the sense that

ΘI has nonvanishing curvature relative to the supporting hyperplane. For the salinet case

where gp�q is linear and Hp�q the usual supporting hyperplane, one can visualize violations of

this assumption as follows: (i) ΘI has a flat face that is almost orthogonal to the gradient of

gp�q; (ii) a smooth maximum with vanishing curvature, (iii) a distinct (possibly “far away”)

local maximum that attains close to the globally optimal value. In all of these cases,
?
n-

consistency of θ̂� will generally fail, and in this sense the lower-level Assumption 3.5 appears

rather tight. Along the same lines, note that issue (ii) is closely analogous to vanishing

curvature of a likelihood function at its maximum, which would preclude
?
n-consistency of

the Maximum Likelihood estimator.

3.3.3 Sufficient Conditions for
?
n-Consistency of γ̂U

We next provide an additional layer by giving low-level conditions that ensure
?
n-consistency

of γ̂U . To this purpose, define

Qpγq � max

"
max

j�1,...,J
EP pmjpXi, θq{σjpθqq : gpθq � γ

*
.

[11]



In words, Qp�q is the criterion function but (i) with gp�q concentrated out and (ii) allowing

for strictly negative values. The latter is needed to formalize conditions under which Θ̂I will

explore the interior of ΘI . Specifically, consider:

1. There exist C, ε ¡ 0 s.t. |γ � γU | ¤ ε ùñ Qpγq ¥ C � pγ � γU q.

2. ΓI is either one interval or is the finite union of intervals of positive length.

We then have:

Theorem 3.4: Above Condition ensures that
?
npspp, Θ̂Iq � spp,ΘIqq � OP p1q.

Proof. Omitted. This relates to rate conditions for level set estimation as in Molchanov

(1998); however, we here state a uniform version of his assumption.

Intuitively, the assumption states that the boundary of the projection PpΘIq is well-

identified: The criterion both increases sufficiently fast away from the projection but also

dips below zero sufficiently quickly on its interior so that it can be approximateted sufficiently

quickly from either direction. While somewhat high-level, the assumption is stated in a

way that accommodates point identification, partial identification, and also cases for “near”

point identification. Thus, it does not rely on a case distinction between point and partial

identification, whereas lower level assumption frequently presuppose one or the other.

The following remark relates our assumption to the literature.9

Remark 3.1: Suppose background assumptions hold. If ΘI is a singleton, above condition

is implied by the minorant condition for moment inequality models in Chernozhukov, Hong,

and Tamer (2007, display (4.5)). Otherwise, the assumption is implied by the same paper’s

degeneracy condition for moment inequalities (display 4.6). It is also implied by Pakes,

Porter, Ho, and Ishii (2011, Assumption 4(a)).

We can similarly relate Assumption 3.5(2) to the literature.

Remark 3.2: Suppose background assumptions hold. Then Assumption 3.5(2) is implied

by Bugni, Canay, and Shi (2017, Assumption 3(a)) as well as Pakes, Porter, Ho, and Ishii

(2011, Assumption 3).

An important addendum to this remark is that both of these conditions from the literature

are considerably stronger than what we need. In particular, in both cases, dpθ, Spg,ΘIqq is not

squared. This is meaningfully more restrictive because it excludes the possibility of “smooth

maxima,” i.e. the surface of ΘI being (locally) a differentiable manifold of which θ� is an

extreme point.

9See the appendix for formal statements of assumptions alluded to as well as proofs of remarks. The
remarks draw on insights developed in Kaido, Molinari, and Stoye (2022).
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3.3.4 Justifying Further Simplification

We next provide further restrictions that allow one to set ρ equal to 8 or, equivalently, to

drop the “ρ-box” constraints altogether. In principle, this is attractive because it removes

a remaining source of conservatism, as well as a tuning parameter. However, we caution

that the assumptions justifying it are restrictive. An auxiliary contribution of this section’s

analysis is to connect Simple Calibrated Projection to the pioneering bootstrap approach of

Pakes, Porter, Ho, and Ishii (2011) and to improve our understanding of the latter.

Our strongest restriction on the shape of ΘI is as follows.

Assumption 3.6: The solution set Spg,ΘIq is a finite union of singletons. Furthermore,

there exists ε ¡ 0 s.t. for each θ� P Spg,ΘIq, there exist k constraints J̃ pθ�q � tj1, . . . , jku �
J �pθ�q s.t.

min eig

�
���

Dj1pθ�q
...

Djkpθ�q

�
��¡ ε

max
tPT pθ�qzt0u

p1t{}t} ¤ �ε.

The assumption has two parts. First, any support point must be characterized as intersec-

tion of linearly independent constraints. This comes with two clarifications: The restriction

on eigenvalues ensures linear independence in a way that is uniform over P; also, recall that

an equality constraint consists of two inequality constraints (but can enter the above index

set only once as the corresponding gradients are collinear). Second, the polyhedral cone that

is locally defined by these constraints is well-separated from the supporting halfspace; that

is, no direction in the supporting halfspace is (near) tangential to it. Geometrically, if the op-

timization problem were defined by these constraints only, the tangent cone would be pointy

(while having an interior) and would point uniformly away from the supporting halfspace.

The assumption is obviously restrictive. That said, it has important precedent in the

literature.

Remark 3.3: Above assumption is implied by Pakes, Porter, Ho, and Ishii (2011, As-

sumption 3 and 4a).

Once again, the implication actually holds with slack. The aforementioned assumption

forces the support set to be a global singleton and also for ΘI to be contained in T pθ�q.
Our final major result is:

Theorem 3.5: No ρ-box. If all of the above assumptions hold, then one can set ρ � �8;

equivalently, the “ρ-box constraints” can be discarded.

[13]



4 Relation to Literature

This section relates Simple Calibrated Projection to other approaches in the literature in-

cluding Andrews, Roth, and Pakes (2021), Bugni, Canay, and Shi (2017), Cho and Russell

(2021), Cox and Shi (2020), Kaido, Molinari, and Stoye (2019), and Pakes, Porter, Ho, and

Ishii (2011). A comparison of particular interest is to the latter because (i) Simple Calibrated

Projection is operationally similar to that prioneering proposal10 and (ii) even our strongest

assumptions are implied by theirs. Indeed, from our last result we can also derive a precise

justification of their approach under assumptions that are still weaker –notably, they allow

for point identification or near point identification–, with the exception of the addition of

Assumption 3.2, which is however needed for the result to obtain.

5 Empirical Applications

We are in the process of validating our Stata/Python implementation and of replicating

several papers from the literature.

6 Conclusion

We provide a novel method for inference on constrained maxima, and in particular for in-

ference of scalar fucntions of partially identified parameter vectors, that is rather generally

valid and exceptionally easy to implement. We demonstrate this by re-evaluating empirical

claims in several published papers.
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