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Abstract

This paper addresses the role of the right jump tail under the risk-neutral measure, as a

proxy for fear-of-fear, in the return predictability implicit in the VIX market. A simulation

establishes that the right jump tail dominates the left jump tail in explaining various risk

measures and their associated term structures. Using VIX futures and options from 2006

until 2020, the superior predictive power afforded by the variance-of-variance risk premium

(VVRP) and the VVRP term structure, is shown to arise predominantly from the right jump

tail risk.
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1 Introduction

An extensive literature indicates a key role for volatility in determining asset valuation and

economic activity. The properties and economic drivers of volatility are key issues, see Bansal

and Yaron (2004), Drechsler and Yaron (2010) and Bollerslev, Li, and Zhao (2017) among others.

Investor sentiment and asset market volatility are often captured by the VIX index which is

published by the Chicago Board Options Exchange (CBOE). Derived by the cross section of

SPX options, the VIX nonparametrically approximates the expected future index volatility over

the next 30 days. Since the VIX is not a directly tradeable instrument, futures and options,

subsequently introduced by the CBOE in 2004 and 2006, provide investors with tradeable exposure

to volatility. VIX futures and options are currently considered to be among the most successful

products launched by the CBOE. They are widely exploited in risk management strategy.

Although the VIX and VIX futures, VIX options and SPX options are all closely associated

with the S&P 500 index, Bardgett, Gourier, and Leippold (2019) argue that these data sets contain

different information on the dynamics and distributions of the SPX returns. Furthermore, adding

VIX options to the estimation not only improves the pricing of the VIX and SPX options, it

also improves the representation of the variance term structure. A similar observation, based

upon different information, is indicated in Huang et al. (2019). Using VIX options instead of

SPX options, Huang et al. (2019) apply an analogous method to the VIX and construct the

volatility-of-volatility index (VVIX), as used to measure the risk-neutral expectations of stock

market volatility of volatility. In short, they show that the VVIX exhibits different dynamics

to the VIX, where the former serves as a significant risk factor beyond market volatility risks in

affecting VIX option returns.

The extensive study of volatility-of-volatility risk in recent years is attributed to its crucial

role in asset pricing. In providing evidence for time-varying volatility in the VIX, Mencía and

Sentana (2013) argue that this volatility has greater significance for VIX options than VIX
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futures. Treating the VVIX as a tail risk indicator, Park (2015) shows that the VVIX carries great

predictive power for returns on tail risk hedging options such as the SPX puts and VIX calls. At

stock level, Baltussen, Van Bekkum, and Van Der Grient (2018) show that volatility calculated

from implied volatilities predicts future individual stock returns. Theoretical justification for

the predictions afforded by the volatility-of-volatility may be traced to Bollerslev, Tauchen, and

Zhou (2009). Exploiting a version of the Bansal and Yaron (2004) long-run risks (LRR) model

(that characterizes time-varying volatility and volatility-of-volatility in the process of aggregate

consumption), Bollerslev, Tauchen, and Zhou (2009) show that the volatility-of-volatility is the

source of a genuine variance risk premium (VRP) that drives the predictive power of the VRP for

market returns.

As indicated by Park (2015) and Huang et al. (2019), investors dislike volatility-of-volatility

risk and are willing to pay a premium for downside protection. This indicates that the VVIX

contains information not only on a physical expectation of future volatility-of-volatility risk but

also on its associated risk premium. The latter is defined as the difference between the physical and

risk-neutral variances of the VIX index, the so-called variance-of-variance risk premium (VVRP).

Kaeck (2018) demonstrates that strategies based on the VVRP contracts may generate attractive

returns for VIX option investors. In investigating the forecasting power of the VVIX for VIX option

returns, Park (2015) finds the contribution of the VVRP to be less significant than that of the

actual expectation of the volatility-of-volatility risk. Empirical work dedicated to the predictability

inherent in the VVRP is rather limited. This contrasts sharply with mounting evidence on the

usefulness of the VRP as a predictor for aggregate stock market returns, see, Bollerslev, Tauchen,

and Zhou (2009), Drechsler and Yaron (2010), Bollerslev et al. (2014), and Li, Izzeldin, and Yao

(2020), among others. Given that investors’aggregate risk aversion could vary differently with

the time horizon, the VRP term structure receives increasing attention. Li and Zinna (2018)

show a higher degree of short-run return predictability induced by the inclusion of the VRP term

structure. Consistent with Li and Zinna (2018), there is a suggestion from Bardgett, Gourier,
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and Leippold (2019) that the slope of the VRP term structure contains additional information on

future returns. They also indicate that, although the VRP has a downward-sloping term structure

during low volatility times, it displays a non-monotonic term structure during market turmoil.

Despite widespread interest in the variation of the volatility-of-volatility and its risk premia,

little progress is apparent in understanding the tail risk manifest in VIX options. Given that

the VIX is often referred to as the "investor fear gauge", the VVIX based on the VIX options

might therefore be considered the "fear-of-fear". However, we argue that only a small fraction of

the VVIX is attributable to the genuine fear-of-fear component; and that fear per se accounts for

much of the predictive power underlying the VVRP. Disentangling the part of the VVIX associated

with normal sized price variations, from that associated with extreme tail events, may provide a

better guide to investment decisions. That idea is consistent with recent studies showing that the

predictability implied by the VRP arises largely from the left jump tail which hinges on the SPX

deep out-of-the-money (OTM) put options (see Bollerslev, Todorov, and Xu (2015), Andersen,

Fusari, and Todorov (2015), Andersen, Fusari, and Todorov (2019) and Andersen, Todorov, and

Ubukata (2021)). Among the few studies of jump dynamics for the VIX derivatives, Park (2016)

proposes a pioneer dynamic model that accommodates both asymmetric volatility and jumps, to

account for the positive skewness observed in VIX options. This study delivers strong evidence for

the importance of upward jumps in VIX derivatives pricing. In the empirical results of Park (2015)

and Huang et al. (2019), jumps are considered control variables in predictive regressions for VIX

option returns. Neither formal treatment of the jump tail risk underlying the VIX market, nor a

thorough analysis of jump tails in the VIX return predictability, are to be found in the literature.

The current paper seeks to fill this void by examining the impact of jump tails upon the dynamic

properties of the VVIX, VVRP and their predictive power for future returns. The objectives are

threefold. First, in following Bollerslev, Todorov, and Xu (2015), we treat the difference between

left and right tail jump risk premia as a proxy for fear-of-fear since it is virtually exempt from

any compensation for temporal variation in jump tail risk. This fear component can be further
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approximated by the risk-neutral expectation of the right jump tail. The right jump tail depends

solely on deep short-lived OTM call options that are worthless in the absence of any substantial

increase in the VIX before the options expire. We view this as compensation for exposure to

sudden downside movements in the market.

Second, we identify the different impact of upward and downward jump risk premia on a

variety of relevant risk measures. For this, we undertake a Monte Carlo simulation based upon an

extended model of VIX dynamics, as considered in Park (2016). Using simulated VIX options, we

construct both left and right jump tail variations and evaluate their contributions to different risk

measures and their associated term structures. With a wide range of strikes and equal numbers

of the OTM calls and puts, our simulation study is less prone to the problem of measurement

errors, as encountered by the empirical work where missing VIX deep OTM puts often biases

the estimation of the left jump tail. Third, we assess return predictability for the VIX market,

as implied by the VVIX, VVRP and their term structures. Our main focus is on the returns of

VIX futures and VIX OTM calls, which help investors hedge against sharp increases in market

volatility. To identify the source of return predictability, we isolate the right jump tail risk from

the VIX options, then seek to ascertain its role in return predictions over different investment

horizons.

Simulation evidence indicates that the upward jump risk premium has greater impact than

its downward counterpart, on the properties of the VVIX, its upside and downside components,

and the VVRP. Moreover, that impact increases as the jump risk premium increases; and it

declines with longer investment horizons. As the upward jump risk premium increases, it delivers

a steeper slope of term structures for the VVIX, its components, VVRP and the implied skewness.

However, changes in the downward jump risk premium leave the shape of the term structure

virtually unaffected. The dominant role played by the upward jump risk premium is indicative

of the superiority of the right jump tail under the risk-neutral measure. The latter approximates

the difference between truncated downward and upward jump risk premia. Indeed, we find that,
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regardless of the magnitude of the jump risk premium, the right jump tail subsumes all information

contained in the left jump tail in explaining the VVRP and the VVRP term structure. Compared

to the left jump tail, a larger fraction of the VVIX, implied skewness and their associated term

structures may be attributed to the right jump tail or the fear-of-fear component.

In the empirical study, we first explore the predictive power of the VVIX, implied skewness

and the VVRP for tail risk hedging returns, i.e. VIX OTM calls and VIX futures. We establish

that the VVRP performs best in almost all the forecasting exercises, especially over medium

or long horizons. This finding is in consistency with the superiority of the VRP in predicting

aggregate stock market returns, as observed in many empirical studies. Our results contrast those

reported by Park (2015) who, in splitting the VVIX into the VVRP and a statistical expectation

of the volatility-of-volatility, argues that the latter component is a more significant contributor

to the forecasting power of the VVIX. We suggest below a number of reasons that may explain

those conflicting results. First, the data are different. Those used by Park (2015) are derived

from overlapping samples containing daily volatility metrics from 2007 to 2013. On each day, the

physical expectation of the volatility-of-volatility is based upon return variations over the past 22

trading days. The use of overlapping data may result in residual correlation and therefore erroneous

standard errors. By contrast, with all our regression specifications, monthly risk measures recorded

from 2006 to 2020 involve non-overlapping time intervals. In particular, data are purposefully

selected to avoid the problem of maturity mismatch, in that VIX options and futures used to

construct risk measures have similar length of remaining life. Second, the two studies differ in the

way that the physical expectation of the future realized variance is estimated. Where Park (2015)

adopts the random walk, we rely on the Heterogeneous Autoregressive (HAR) model of Corsi

(2009) to obtain the direct forecasts for realized variance. Third, although Park (2015) employs

the level of the VVIX in the predictive regressions for returns, such regressions are criticized by

Bollerslev et al. (2013) as being unbalanced and less informative; i.e., they simultaneously consider

a while noise variable (the return) on the LHS and a highly persistent variable (the VVIX) on
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the RHS. Instead, we apply first differences to the VVIX to alleviate the issue of unbalanced

regressions.

Adding the slope of the VVRP term structure (that is the difference between the long-term

VVRP and the short-term VVRP) delivers greater return predictability for both VIX options

and futures. At a general level, the R2 exhibits a hump-shaped pattern and peaks around 2-3

month horizon. To disentangle the true source of the return predictability and to characterize the

role of fear-of-fear, both the VVRP and its term structure are first deprived of the right jump

tail component. This substantially reduces the R2 relative to the regression based on the VVRP

and the slope. We then separately consider the diffusive and right jump tail risk components of

the VVRP and its term structure. This results in a significant increase, both in the degree of

return predictability and for the impact of the right jump tail. For robustness, we check that our

predictability results remain intact when using high-frequency VIX futures data and the raw VVIX

index published by the CBOE. We therefore conclude that the fear-of-fear component proxied by

the right jump tail variation is the primary source of the forecasting power inherent in the VVRP.

The rest of the paper proceeds as follows. We present our construction of the VVIX, implied

skewness, VVRP and the jump tails in section 2. A simulation study on the role of jump tail risk

is demonstrated in section 3. Section 4 details the data used in our study and section 5 discusses

the main empirical results. Section 6 concludes.

2 Construction of Risk Measures

In what follows, we start by deriving the risk-neutral expectation of the quadratic variation

for the VIX index and decomposing return variance into the components due to positive and

negative returns, respectively. We then construct the realized variance for the VIX and obtain the

variance-of-variance risk premium as the wedge between the conditional expectations of quadratic

variation under the risk-neutral and objective measures. Finally, we extract the investors fear-of-fear
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component as proxied by the special compensation for jump tail risk.

2.1 Implied Variance Measures

The VIX index offers a model-free and market-determined estimate of one-month stock market

volatility implied by index option prices. Britten-Jones and Neuberger (2000) and Jiang and Tian

(2005) indicate that the VIX can be derived from the prices of S&P 500 call and put options

covering a range of strikes as follows

V IX2
t =

2erf τ

τ

[∫ S∗t

0

1

K2
Pt(τ ,K)dK +

∫ ∞
S∗t

1

K2
Ct(τ ,K)dK

]
(1)

where K denotes the strike price, τ is time-to-maturity measured in annual units, Pt(τ ,K)

(Ct(τ ,K)) stands for the time-t market price of an OTM put (call) option with strike K and

maturity τ , S∗t is the forward price of the S&P 500 index and rf is the risk-free rate. In practice,

the published VIX adopts a few approximations due to the availability of options data. Jiang and

Tian (2005) show that such approximation errors can be largely alleviated by implementing their

correction mechanism.

In the present paper, we calculate the implied volatility of volatility by applying the same

method as the VIX in (1) to a cross-section of the VIX options. Since 2012, the CBOE published

the index as the VVIX, which captures the model-free implied volatility of VIX futures over the

next 30 days. The squared VVIX that represents the risk-neutral expectations of the volatility of

volatility in the financial markets reads

V V IX2
t =

2erf τ

τ

[∫ Ft

0

1

K2
P ∗t (τ ,K)dK +

∫ ∞
Ft

1

K2
C∗t (τ ,K)dK

]
(2)

where Ft is the VIX futures price and P ∗t (τ ,K) (C∗t (τ ,K)) denotes the price of OTM put (call)

options on the VIX. To approximate the integral on the right-hand side of equation (2), we

follow a procedure that has been accepted as common practice in the related literature: a)

interpolate between listed strikes employing a simple cubic spline; b) extrapolate the observed
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implied volatilities by assuming a flat implied volatility function beyond the available strike prices.

To reduce measurement errors induced by the limited availability of strike prices, we consider

strikes covering a range of three times the standard deviation around the futures price.

Following Huang and Li (2019), we decompose the squared VVIX into upside and downside

semivariances by

V V IX
2(+)
t =

2erf τ

τ

∫ ∞
Ft

1

K2
C∗t (τ ,K)dK (3)

V V IX
2(−)
t =

2erf τ

τ

∫ Ft

0

1

K2
P ∗t (τ ,K)dK (4)

Intuitively, V V IX2(+)
t (V V IX2(−)

t ) serves as a risk-neutral expectation of the upside (downside)

semivariance of the 30-day forward VIX index. The option-implied skewness is then defined as

the difference between the upside and downside risk-neutral semivariances as follows

SKEWt = V V IX
2(+)
t − V V IX2(−)

t (5)

2.2 Variance-of-Variance Risk Premium

Next, we characterize the variance-of-variance risk premium (VVRP) in the form of a gap between

the objective and risk-neturalized expectations of the total quadratic variation for the VIX index

over a fixed maturity. This premium represents compensation demanded by investor for the risk

associated with fluctuations in the return variation of the volatility index.

Following Barndorff-Nielsen and Shephard (2002) and Kaeck (2018), we obtain the realized

variance over the interval from t to t+ τ below

RV V IXt =
252

n

n∑
i=1

(
log (Fti,t+τ )− log

(
Fti−1,t+τ

))2
(6)

where Ft,t+τ denotes the futures contract on day t with fixed maturity t+τ . For each time horizon

τ , the daily return is calculated between two points in the partition [t, t + τ ], where t + τ is

the expiry date of VIX options in the following month and t is the trading day after the expiry
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date of the present month. Since VIX futures maturities are consistent with the expiry dates of

the options, this approach achieves exact matching of information in the measurement of the two

expectations of the future return variation of the VIX. To capture the premium that investors

require to hold variance-sensitive assets, we construct the VVRP as follows

V V RPt ≡ EP
t (QVt,t+τ )− EQ

t (QVt,t+τ ) (7)

≈ RV V IXt − V V IX2
t

whereQVt,t+τ is the quadratic variation measuring the return variation of the log-price process over

t and t+τ , EP
t (QVt,t+τ ) and E

Q
t (QVt,t+τ ) respectively correspond to the objective and risk-neutral

expectations of QVt,t+τ .

2.3 Jump Tail Risk

As indicated in Bollerslev, Todorov, and Xu (2015) and Andersen, Todorov, and Ubukata (2021),

the VVRP in equation (7) can be decomposed as

V V RPt =
[
EP
t (CVt,t+τ )− EQ

t (CVt,t+τ )
]

+
[
EP
t (JVt,t+τ )− EQ

t (JVt,t+τ )
]

(8)

=
[
EP
t (CVt,t+τ )− EQ

t (CVt,t+τ )
]

+
[
EP
t

(
JV P

t,t+τ

)
− EQ

t

(
JV P

t,t+τ

)]
+
[
EQ
t

(
JV P

t,t+τ

)
− EQ

t

(
JV Q

t,t+τ

)]
They conjecture that the very last term in equation (8) characterizes the compensation for

time-varying jump intensity risk. Define the left and right jump variation under the risk-neutral

measure as LJV Q
t and RJV Q

t , their counterparts under the physical measure are therefore LJV
P
t

and RJV P
t . In analogy to the definition and decomposition of the VVRP in equation (8), the left
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and right jump tail risk premia can by given by

LJPt = EP
t

(
LJV P

t

)
− EQ

t

(
LJV Q

t

)
(9)

=
[
EP
t

(
LJV P

t

)
− EQ

t

(
LJV P

t

)]
+
[
EQ
t

(
LJV P

t

)
− EQ

t

(
LJV Q

t

)]
and

RJPt = EP
t

(
RJV P

t

)
− EQ

t

(
RJV Q

t

)
(10)

=
[
EP
t

(
RJV P

t

)
− EQ

t

(
RJV P

t

)]
+
[
EQ
t

(
RJV P

t

)
− EQ

t

(
RJV Q

t

)]
In consistency with the work of Bollerslev, Todorov, and Xu (2015), we fail to reject the

null hypothesis LJV P
t = RJV P

t using truncated realized negative and positive return variation

measures computed from both the daily and high-frequency VIX futures prices1. As such, the

difference between the two jump tail premia becomes

LJPt −RJPt ≈ EQ
t

(
RJV Q

t

)
− EQ

t

(
LJV Q

t

)
(11)

which will be nearly exempt from the compensation for temporal variation in jump intensity risk.

The measure LJPt − RJPt mimics the component of investor fears proposed in Bollerslev and

Todorov (2011), which is implicit in the gap between the estimated objective and risk-neutral

jump tail variations implied by the S&P 500 index. Since the VIX is called the "investor fear

gauge", (LJPt −RJPt) based on the VIX can therefore be interpreted as the "fear of fear" in the

present study. In addition, OTM put options on the S&P 500, which constitute the left jump tail

variation of the aggregate market portfolio, are more heavily traded in the market and provide

investors with protection against large downward movements. Similar to OTM S&P 500 puts,

1The F -statistics for the Wald test with the null hypothesis LJV Pt = RJV Pt is 1.223 for the realized variance
based on daily returns and 2.005 for that based on high-frequency futures returns.
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OTM VIX calls are often considered another form of tail risk hedges. This can be explained by

the leverage effect that negative variations in returns are closely associated with rises in volatility,

in which case OTM VIX calls can hedge. As a result, for the VIX market the risk-neutral right

jump tail embedded in the OTM call options dominates the left jump tail based on the OTM put

options in magnitude. Given this, equation (11) can be approximated as

LJPt −RJPt ≈ EQ
t

(
RJV Q

t

)
(12)

To estimate RJV Q
t , we focus exclusively on the short-dated options and employ only deep

OTM VIX call options with log-moneyness greater than 1.5 times the normalized at-the-money

(ATM) Black-Scholes implied volatility (BSIV). The use of deep OTM options may more effectively

isolate jump tail risk since they are worthless unless jumps occur in the underlying asset, see, e.g.

Bollerslev and Todorov (2011). Based on the point estimates of the tail shape parameter (α+t )

and the level shift parameter (φ+t ) detailed in Bollerslev, Todorov, and Xu (2015), we obtain the

proxy for the expected right jump tail variation under the risk-neutral measure,

EQ
t

(
RJV Q

t

)
≈ τφ+t e

−α+t |kt|
(
α+t kt

(
α+t kt + 2

)
+ 2
)
/
(
α+t
)3

(13)

where the cutoff kt is set as 7 times the normalized ATM BSIV at time t. We allow α+t and φ
+
t

to vary on a daily basis and the monthly jump variation is constructed by averaging the daily

measures within the month.

3 Simulation Study

This section presents a simulation study to examine the role of jump risk premium in affecting the

time series properties of the risk measures implied by the VIX. We then respectively extract the

left and right jump tail variations to highlight the key contribution of the latter as conjectured in

section 2.
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3.1 Design

We first extend the jump-diffusion model for the pricing of VIX derivatives in Park (2016) by

allowing for risk premia in both upward and downward jumps. The dynamics under the risk-neutral

measure takes the following form

dvt = κv (ut − vt) dt+
√
wtdB

Q
1t + JQ1 dN

Q
1t + JQ2 dN

Q
2t (14)

−λ+δ+dt− λ−δ−dt

dut = κu (µ− ut) dt+ σudB
Q
2t

dwt = κw (w − wt) dt+ σw
√
wtdB

Q
3t

where vt = log (V IXt), ut denotes the long-run mean of the VIX and wt captures the variation in

the volatility of the VIX. The processes BQ
1t, B

Q
2t and B

Q
3t are standard Brownian motions, among

which BQ
1t and B

Q
3t are correlated with the coeffi cient ρ. In the VIX dynamics, we accommodate

both upward and downward jumps driven by independent compound Poisson processes. They

are characterized by NQ
1t (N

Q
2t) that represents a risk-neutral Poisson process generating upward

(downward) jumps with intensity λ+ (λ−). The size of upward (downward) jumps is denoted by

JQ1 (J
Q
2 ), following an independent exponential distribution with a positive (negative) mean, i.e.

δ+ > 0 (δ− < 0).

The corresponding system under the physical measure becomes

dvt = κv (ut − vt) dt+
√
wtdB

P
1t + JP1 dN

P
1t + JP2 dN

P
2t (15)

−λ∗+δ∗+dt− λ∗−δ∗−dt

dut = κu (µ− ut) dt+ ηuutdt+ σudB
P
2t

dwt = κw (w − wt) dt+ ηwwtdt+ σw
√
wtdB

P
3t

where BP
1t, B

P
2t and B

P
3t are standard Brownian motions, ηuut and ηwwt drive the risk premia for

the ut and wt processes. To introduce jump risk premia, we allow upward and downward jumps
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under the physical measure to have their own jump intensity and jump-size distributions specified

by the parameters λ∗+, δ
∗
+, λ

∗
− and δ

∗
−. Similar to the simulation study conducted in Duan and

Yeh (2010), we assume the means of jump sizes are the same under P and Q with δ∗+ = δ+ and

δ∗− = δ−, and allow for different jump intensities under the change of measure. As such, we define

the upward and downward jump risk premia by φ+ = λ+ − λ∗+ and φ− = λ− − λ∗−, respectively.

The specification in equation (15) preserves the affi ne structure of the framework under different

measures.

The simulation of VIX is generated using an Euler discretized version of (15) based on 78

intervals2 for each of the T = τ × 200 trading day in the sample. A daily series is extracted by

sampling once every 78 data points. The parameter values used are consistent with those reported

in the last column of Table 3 in Park (2016). The processes vt, ut and wt are respectively initialized

at 2, 2 and 0.2, which are given by the unconditional means of the corresponding series in our

empirical study. We assume one year has 252 trading days.

We then compute the option prices of VIX corresponding to different strikes and maturities

(τ) using the jump diffusion model under the risk-neutral probability measure in (14). To improve

simulation accuracy, we rely on the empirical martingale simulation procedure introduced by

Duan and Simonato (1998) and set the simulation path for option pricing to 10,000. Based on the

simulated options on each trading day, we construct the implied variance measures with various

maturities as in section 2 and compute the realized variance comprising the price information in

the next τ days. Finally, we select both the implied and realized variances on the trading day that

follows the previous maturity date so that we obtain non-overlapping samples with size equal to

200.
2We assume 1 day consists of 6.5 hours of open trading and consider a sparse sampling at a frequency of once

every 5 minutes. This results in 78 intraday intervals in a day, i.e. 6.5×3600300 = 78.
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3.2 Results

Table 1 reports the mean values of the risk measures considered in the present study with 5

different maturities. By setting φ+ and φ− to zero, we assume there exist no jump risk premia in

Table 1 and therefore the results can be used as benchmark. To pin down the impact of upward

(downward) jump risk premium on the properties of the risk measures, we vary the magnitude

of the upward (downward) jump risk premium φ+ from 2 to 6 while restricting the downward

(upward) jump risk premium φ− to zero. The risk premium is classified into low (φ+ or φ− = 2),

medium (φ+ or φ− = 4) and high (φ+ or φ− = 6).

Values of the risk measures with different sizes of jump risk premia are presented in Table 2

where the percentage changes relative to their corresponding values in the benchmark are reported

in the parenthesis. We show that the upward jump risk premium generates a more substantial

impact on the V V IX2
t , its components and V V RPt when compared to the downward jump risk

premium. Such evidence is particularly strong for short maturities when τ = 30, 60 and 90. As

maturity grows, our risk measures are generally less sensitive to the presence of jump risk premia.

Given this, for longer maturities such as τ = 180 and 360, the greater effects of the upward jumps

are only observed for medium or high jump risk premium. It is worth noting that, unlike other

risk measures, the implied skewness appears more sensitive to downward jump risk premium for

short maturities. It could be due to the fact that the effects of upward jumps on the upside and

downside components of the V V IX2
t are similar in magnitude; however, downward jumps impact

V V IX2
t mainly through the downside component. Defined as the difference between the upside

and downside semivariances of V V IX2
t , the implied skewness is therefore more evidently affected

by the downward jumps.

Figure 1 plots the time series of the risk measures for 30-, 60-, 90-, 180- and 360-day horizons.

The upper panel displays the impact of the upward jump risk premium on the shape of the term

structures whereas the lower panel concentrates on that of the downward jump risk premium.
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The recent literature provides considerable evidence suggesting that the term structure of the

implied volatility and variance risk premium have great reliance on the economic conditions. In

particular, Bardgett, Gourier, and Leippold (2019) find a downward-sloping term structure for

the variance risk premium during normal times whereas its slope switches sign in periods of high

volatility. Johnson (2017) indicates an upward-sloping term structure for the VIX in times of

market calm but this is no longer true in market turmoil. In addition, a hump-shaped VIX term

structure during early 2009 is documented in the work of Zhang, Shu, and Brenner (2010). Our

results in Figure 1 are generally in consistency with the empirical findings in the existing literature

and complement Christoffersen, Jacobs, and Ornthanalai (2012) for the important role of jump

risk premium on the implied volatility term structure. In a sharp contrast, the term structure of

the VVIX, its upside component, the VVRP and the implied skewness are highly responsive to

upward jump risk premium, exhibiting a greater slope in magnitude as the jump premium grows.

However, the downward jump risk premium seems to deliver only trivial effects on the shape of

the term structure with the slope virtually unaffected by the variation in the risk premium.

In the simulation considered above, we only allow for the presence of one type of jump risk

premium, i.e. upward or downward, to ascertain their different roles in affecting the dynamics of

the risk measures. This is clearly in contradiction with the real-life observations where the upward

and downward jump premia often coexist. However, such exercise clearly reveals the dominant role

played by the upward jump risk premium and supports our earlier hypothesis that the fear-of-fear

component, as approximated by the difference between the two jump tail risk premium, may

constitute the primary source of variation in the risk measures considered. To further confirm

our conjecture, we then simultaneously incorporate the two different jumps in the VIX dynamics

and construct the right and left jump tails using the method discussed in section 2. Unlike the

empirical study in which the VIX OTM puts are much less traded, our simulation study ensures

that there are equal numbers of the OTM puts and calls, which alleviates the issue of measurement

errors in the comparison of right and left jump tails.
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To assess the contribution of the two tails to different risk measures, we run the following

regression with a focus on the monthly horizon only

yt = C + α1LJTt + α2RJTt + εt (16)

where yt denotes the risk measures such as V V RPt, SKEWt and V V IX2
t . The results with

alternative sets of regressors are reported in Table 3. To account for the issue of serial correlation,

we derive the statistical significance using Newey and West (1987) robust t-statistics with an

optimal lag. Table 3 shows that the right jump tail clearly dominates the left jump tail in explaining

the dynamics underlying V V RPt, SKEWt and V V IX2
t , as evidenced by the higher adjusted R

2

observed for the univariate regressions based on the right jump tail. For multivariate regressions in

which the regressors consist of the left and right jump tails, we show that the right tail subsumes all

information contained in the left tail in capturing the variation in V V RPt whereas this observation

does not hold for the other two measures. This finding is supportive of our interpretation of the

right jump tail as the key constitute of the VVRP.

Finally, we investigate the role of different tails in determining the shape of the term structure

for V V RPt, SKEWt and V V IX2
t . Taking V V RPt as an example, we construct the slope defined

as the difference between the long-term and short-term V V RPt. Specifically, the VVRP slope is

computed as V V RPSt = V V RP
(360-day)
t − V V RP (30-day)t , and the slopes for SKEWt and V V IX2

t

are constructed in a similar fashion. We then estimate the regression (16) again by treating the

slope as our dependent variable and present the output in Table 4. Analogous to the results

in Table 3, a dominant role of the right jump tail is also found for forming the shape of the

term structure of the three risk measures. Recent studies have established growing evidence for

the importance of the use of term structure in return predictions. For example, Vasquez (2017)

indicates that the slope of the implied volatility term structure is positively related to future

option returns. Li and Zinna (2017) find that the slope of the variance risk premium enhances

the short-run predictability of equity returns. Since the right jump tail is a key contributor to
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the level and slope of our risk measures, it may also perform as the primary component providing

return predictive power for these measures, which we verify below in our empirical study.

4 Data

VIX futures data are collected from the CBOE website and span from March 26, 2004 through

December 31, 2020. On each trading day during the sample period, three to six different maturities

are traded. We rely on the daily settlement prices to obtain the realized variance of VIX. In

addition, the raw VIX options data origin from OptionMetrics covering the period of February

24, 2006 to December 31, 2020. As a result, our sample is restricted to the shorter period when

examining the joint information content from the data of futures and options. For robustness,

we also consider an alternative measure of statistical volatility-of-volatility based on the 5-minute

VIX futures returns. The data is sourced from Tick Data Inc. and starts in July 2012.

We apply standard filters to the raw options data to eliminate inaccurate or illiquid options.

First, we delete the VIX options for which the price, defined as the midpoint of the option bid

and ask quotes, is less than 0.2 or the trading volume is zero. Second, options with BSIV lower

than 10% or greater than 150% are excluded from the sample. Third, we focus on options with 8

to 180 days to expiration. In the end, this leaves us with more than a million VIX option quotes,

with a daily average of 102.7 VIX OTM calls and 41.3 puts over the full sample. The number of

VIX OTM options on a given date increases with time, with around 25.9 calls (11.2 puts) at the

beginning of the data set and around 136.5 calls (87.9 puts) at the end.

As of today, OTM VIX calls become a popular form of tail risk hedges as they provide investors

with assurance against a large downturn of the market. To investigate its return predictability

on different moneyness bins, we classify the VIX OTM calls into the slight OTM (1.0 < k < 1.2),

the medium OTM (1.2 < k < 1.4), and the deep OTM (1.4 < k < 1.6), where the moneyness is

defined as k = K/Ft(τ). To assess whether the return predictability previously ascribed to the
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popular risk measures is effectively arising from the right jump tail, we follow Bollerslev, Todorov,

and Xu (2015) in constructing the jump tails using OTM options with maturities between 8 and

49 calendar days. To isolate from the diffusive risk, we only consider calls with log-moneyness in

excess of the 1.5 times the maturity-normalized ATM BSIV. It is worth noting that all of our risk

measures are non-overlapping. Taking the monthly horizon as an example, the implied variance

measures are given by the values at the end of the month and the realized variance is derived over

the following month and annualized.

5 Empirical Results

5.1 Preliminary data analysis

As option returns are heavily influenced by shocks in the underlying asset price and volatility, we

follow Bakshi and Kapadia (2003) and Park (2015) to employ the delta-neutral option returns that

are unaffected by the underlying asset’s price risk. The delta-neutral returns below are computed

for a portfolio of a long position in a VIX option, hedged by a short position in the underlying

asset.

RC
t+1(k, τ) =

Ct+1(k, τ)− Ct(k, τ)−∆t(k, τ) (Ft+1(τ)− Ft(τ))

Ct(k, τ)−∆t(k, τ)Ft(τ)
− rft τ

365
(17)

where Ct(k, τ) denotes the VIX call option price with maturity τ and moneyness k; Ft(τ) represents

the futures price and ∆t(k, τ) stands for the option delta that is available from OptionMetrics.

We then take a simple average of all the option returns that fall within the ith moneyness bin as

follows

RC
i.t =

1

Ni,t

Ni,t∑
j=1

RC
t (kj, τ j) (18)

where Ni,t is the number of options that belong to the ith moneyness bin in month t. To obtain

the returns on VIX futures, we make use of the front contracts and roll over to the next maturity

contract in the case where the shortest contract has less than 5 days to maturity, see also in Taylor
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(2019).

Panel A of Table 5 reports the summary statistics of the delta-neutral option returns of

VIX calls and puts across different moneyness bins. Overall, negative returns on both call

and put options occur more frequently than positive returns. We show that on average, OTM

delta-hedged VIX calls have significantly negative returns and call options lose more money as they

go progressively out of the money. Notably, the average returns for OTM puts are significantly

positive. To investigate whether the positive gains are induced by the illiquidity of OTM put

options, we further consider the delta-hedged gains for in-the-money (ITM) calls, which are

equivalent to OTM puts. As reported in Panel A of Table 5, the ITM calls are more actively

traded compared to OTM puts. However, the average returns of ITM calls are also significantly

positive except for the mild moneyness bin.

Our results can be supported by Coval and Shumway (2001) who argue that call options on

market indices are expected to generate positive returns greater than those of their underlying

assets whereas put options that are used to hedge against systematic risks have returns lower than

the risk-free rate. The general assumption in Coval and Shumway (2001) is that the price of the

given security is negatively correlated with the stochastic discount factor (SDF) which is high in

bad states of the world and low in good states. In the present paper, the VIX futures serving as

the underlying asset of the VIX options is positively correlated with the SDF, which explains the

different signs of average gains on call and put options relative to those indicated in Coval and

Shumway (2001).

Not surprisingly, both call and put options exhibit a substantial degree of positive skewness.

Combining with the evidence for the negative average gains on VIX OTM calls, our results suggest

that volatility-of-volatility risks are negatively priced in the tail risk hedging options. In other

words, market participants dislike volatility-of-volatility risk and are willing to pay a premium

to hedge against innovations in the volatility of volatility. Barberis and Huang (2008) attribute

the association between the positively skewed security and its negative average excess return to
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the cumulative prospect theory. In particular, investors tend to overweight the right tail of VIX

options and find it highly attractive. As a result, they are willing to pay a high price for VIX OTM

calls and to accept a negative excess return on the security. Since OTM calls are overpriced, some

systematic risk factors can be important drivers of the delta-neutral returns on OTM calls. On the

other hand, the VIX OTM puts are often regarded as tail risk taking assets that generate positive

payoffs during booms. The positive average return on VIX OTM puts together with its positive

skewness indicate that these options may be fairly valued. In line with Park (2015), we find that

neither VVIX nor VVRP is priced in the OTM puts and their predictive power for returns on VIX

OTM puts is trivial3. In addition, option returns exhibit mild negative serial correlation, which

will be dealt with in the subsequent predictive regressions. Panel B of Table 5 presents the results

of VIX futures returns. Similar to returns of S&P 500, VIX returns are approximately serially

uncorrelated, with a mean indistinguishable from zero.

Moving to the construction of the various risk measures, we consider 30, 60, 90 and 120 days to

maturity when comparing their time series properties in Table 6. In line with the work of Kaeck

(2018), we provide evidence for the downward-sloping term structure for the VVIX and its upside

and downside components, which is attributable to the fact that the shorter-dated VIX futures

contracts are associated with higher volatility (Alexander and Korovilas (2013)). In addition, the

VVRP is negative for all the maturities considered and exhibits a upward-sloping term structure

with standard deviation monotonically decreasing for growing maturities. Unlike Park (2016) who

document a nearly flat term structure for the implied skewness, we find a clearly downward-sloping

term structure. This indicates that informed traders decrease demand for option contracts with

increasing maturity. Before downward jumps occur in the underlying asset (VIX futures), hedging

demand causes informed traders to buy VIX OTM calls, driving up the volatility of OTM calls.

The observed downward-sloping term structure is consistent with informed trader preference for

speculating by trading short-maturity options, see more details in Xing, Zhang, and Zhao (2010)

3For brevity, results for the returns on VIX OTM puts are not reported but are available upon request.
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and Stilger, Kostakis, and Poon (2017).

In addition to above, we also report the time series plots of the main predictor variables in

Figure 2. The first panel depicts the monthly series of V V IXt and the second panel reports

the estimated RJTt that averages the within-month values. Missing values in the series of RJTt

at the beginning of the sample comes from the fact that VIX options only started in 2006 and

the deep OTM options were not often traded in early stage. Generally, we document a coherence

between the series of V V IXt and RJTt although a few differences are noted. For example, V V IXt

attains its maximum during 2009-2010 whereas the fear-of-fear component proxied byRJTt reaches

the peak around 2012, coinciding with the European debt crisis. The last panel compares the

V V RPt and its component stripped of the right jump tail variation, V V RPt − RJTt. The latter

is interpreted as the part associated with the normal sized price movements.

5.2 Return predictability: evidence from options

To ascertain the role of right jump tail variation in pricing the tail risk hedging options, we follow

French, Schwert, and Stambaugh (1987) and Amihud (2002) in exploiting the h-period-ahead

predictive regressions of option returns onto each of the risk measures for every moneyness bin

considered
1

h

h∑
n=1

RC
i.t+n = βi,0 + βi,1∆V IXt + βi,2∆V IX

2
t + βi,3xt + εi,t+n (19)

where xt denotes various risk measures including RJTt. We rely on a monthly observation

frequency for all the return regressions considered. It is worth noting that the introduction of

∆V IXt and∆V IX2
t is to remove the effect on option returns induced by changes in the underlying

asset price and volatility. In constructing V V RPt, defined as the difference between EP
t (QVt,t+τ )

and EQ
t (QVt,t+τ ), for forecasting purpose, we rely on the HAR model of Corsi (2009) to obtain

direct forecast for RV V IXt that can be approximated as EP
t (QVt,t+τ ).

Figures 3-5 report the values of the adjusted R2 for VIX option returns on each moneyness

bin. The left panel depicts the return predictability over different horizons implied by regression
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(19) where xt is proxied by V V RPt, ∆V V IX2
t , SKEWt and RJTt, respectively4. We show that

V V RPt and V V IX2
t exhibit similar predictive power for future returns over short horizons whereas

the superiority of the former becomes more evident after 4 months. Similar to V V IX2
t , SKEWt

hardly predicts returns over medium and long horizons. In addition, the left panel in Figures 3-5

also demonstrate the non-trivial predictive power underlying RJTt for slight and deep OTM calls,

where RJTt even dominates V V RPt over several horizons.

In the subsequent analysis, we concentrate on V V RPt as a key risk factor given its top

performance in option return predictions. Inspired by Li and Zinna (2018) who point out the

significance of the VRP term structure for return predictability, we also consider V V RPt and

its slope V V RPSt, with the later defined as V V RPSt = V V RP
(90-day)
t − V V RP

(30-day)
t . To

assess the contribution of the right jump tail risk to the forecast power of V V RPt, we construct

the variance-of-variance risk premium and its slope stripped of the right jump tail variation, i.e.

V V RP n
t = V V RPt−RJTt and V V RPSnt = V V RP

(90-day)
t −

(
V V RP

(30-day)
t −RJTt

)
. As manifest

in our simulation results, the impact of upward and downward jump risk premia on the VVRP

diminishes as maturity grows. As a result, the difference between the two premia, approximated

as the right jump tail variation, may only play a negligible role in the dynamics of the long-term

VVRP. Given this, we do not account for the jump tail risk in V V RP (90-day)t for simplicity. The

measures V V RP n
t and V V RPS

n
t correspond to the components ascribed to normal-sized price

fluctuations in the VIX market. The right panel of Figures 3-5 report values of the adjusted R2

for regressions in which the regressors consist of V V RPt, (V V RPt and V V RPSt), (V V RP n
t and

V V RPSnt ) and (V V RP
n
t , V V RPS

n
t and RJTt). Regardless of moneyness levels, we find that the

VVRP term structure helps enhance the return predictions over various horizons and the removal

of the RJTt results in a lower degree of predictability. By separately accounting for RJTt and

the diffusive component of V V RPt and V V RPSt, we document even greater increases in the

4We make use of∆V V IXt to render the series stationary, and in turn, balance the regression where an essentially
white noise variable (the VIX return) is on the left-hand side.
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magnitude of return predictability.

Going one step further, we select one-, three- and six-month horizons as examples to report

the estimation results in Tables 7 and 8. To account for the potential issue of serial correlation, we

rely on the Newey and West (1987) heteroskedasticity consistent covariance matrix estimator with

an optimal lag. For ease of interpretation, we divide each explanatory variable by its standard

deviation and therefore the estimated coeffi cient represents the effect of a one standard deviation

change in that variable. In what follows, we always preprocess the data in such a manner when

conducting estimations unless otherwise stated. Table 7 presents the results for regressions where

V V RPt, or V V RPt together with V V RPSt, serve as regressor(s). The measure V V RPt and its

slope are found significant for returns of VIX OTM calls, with an expected sign. We then isolate

the right jump tail risk from the two risk factors and report the estimation output in Table 8. The

removal of RJTt results in merely no predictive power for V V RPt or V V RPSt as evidenced by

less significant t-statistics for coeffi cient estimates and lower values of R2. Finally, we re-introduce

RJTt to regressions based on V V RP n
t and V V RPS

n
t . For different degrees of moneyness, RJTt

plays a significant role in predicting future option returns. Over long horizons, the inclusion of

RJTt generates even higher predictability than that afforded by V V RPt and V V RPSt in Table 7.

5.3 Return predictability: evidence from futures

We next assess whether the right jump tail component can predict the VIX futures returns by

running the predictive regression given by

1

h

h∑
n=1

rt+n = β0 + β1xt + εt,t+n (20)

where rt is the monthly VIX futures return. The left panel in Figure 6 reports the values of

adjusted R2 for regression (20) where V V RPt, ∆V V IX2
t , SKEWt or RJTt serves as the single

explanatory variable. The risk factor V V RPt continues to outperform V V IX2
t and SKEWt in

predicting futures returns and its R2 displays a tent-shaped pattern: it achieves the maximum at
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the 9-month horizon and decreases thereafter. Relative to the case of option returns, the right jump

tail does a much better job for futures returns by dominating V V RPt in most of the forecasting

horizons. In the right panel of Figure 6, we show that the predictability jointly afforded by V V RPt

and its slope is much higher in magnitude and peaks at a shorter horizon as compared with that by

V V RPt alone. By subtracting RJTt from V V RPt and its slope, values of R2 reduce and plateau

at the 9-month horizon, which display a similar pattern to that from the simple regression based

on V V RPt only. In line with our findings for VIX option returns, the top performance is observed

for the case where the right jump tail risk and the diffusive component of V V RPt together with

its slope are separately accommodated in the predictive regression.

Table 9 reports the estimation results of regression (20) for one-, three- and six-month horizons.

In the upper panel of Table 9, we find that higher levels of V V RPt or V V RPSt are associated

with higher subsequent returns on the VIX futures, indicating that VIX prices fall on news of

negative volatility-of-volatility shocks. The results are statistically significant at a 95% confidence

level with a single exception of V V RPt over three-month horizon.

Relative to the regression based on V V RPt or V V RPSt, removingRJTt results in less significant

t-statistics for V V RP n
t or V V RPS

n
t and lowers values of R

2 to nearly zero. When reintroducing

RJTt to the multiple regression based on V V RP n
t or V V RPS

n
t , we show an overwhelming increase

in the degree of predictability, which is even substantially higher than that implied by V V RPt or

V V RPSt. In addition, RJTt is significantly positive over different horizons. This suggests that

higher compensations for jump tail risk predicts higher future VIX market returns. Altogether,

our results suggest that much of the return predictability previously attributable to V V RPt or

V V RPSt is effectively arising from the component of the right jump tail risk.

5.4 Robustness

In this subsection, we investigate the robustness of our predictability results using alternatives

measures of volatility-of-volatility. For the risk-neural expectation of the volatility-of-volatility,
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we make use of the VVIX index from the CBOE. The index is published since 2012 and back-filled

until 2006. For the physical expectation, we rely on the 5-minute front-month VIX futures returns

to compute RV V IXt. In line with the previous analysis, all the variation measures are at a

monthly frequency. Table 10 outlines the summary statistics for the alternative measures. The

CBOE VVIX is on average much higher than the volatility index, which suggests that VIX futures

returns are more volatile than aggregate stock market returns. Aside from this, the VVIX itself

is more volatile but less persistent than the volatility index. To facilitate the construction of

the long-term VVRP, we obtain the VVIX with maturity of 90 days from the CBOE directly.

In line with the previous finding, the VVIX is lower in magnitude with longer maturity. The

high-frequency realized variance of the VIX is much lower than the VVIX, indicating that the

risk-neutral expectation of the volatility of return variation systematically exceeds the statistical

expectation.

Figure 7 depicts the time series plots of the CBOE VVIX index and our measure of the VVIX

calculated using OTM options. Overall, the calculated VVIX qualitatively match the evolution

of the reported VVIX index with the correlation coeffi cient of 70%. The fact that our measure

of VVIX is on average lower and displays more rapid spikes than the CBOE VVIX may be

attributable to the following points. First, we obtain a broader strike range by including most

of the option quotes that meet the conditions specified in section 4. To approximate the integral

on the RHS of equation (2), we consider interpolation and extrapolation procedure as commonly

adopted in the recent literature. However, the CBOE adopts a particular cutoff rule which may

induce distortions, see Jiang and Tian (2005) and Andersen, Bondarenko, and Gonzalez-Perez

(2015) for details. Second, our measure of the VVIX is obtained using the options from the

Optionmetrics database. It includes the last daily bid-ask quotes only, which might not perfectly

match the data published by the CBOE for their final end-of-day computation.

Next, we estimate the predictive regressions using new measures of the volatility-of-volatility

risk and report the values of adjusted R2 in Figure 8. Consistent with the earlier empirical results,
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the inclusion of the VVRP term structure brings substantially better return predictions relative

to the regressions based on the VVRP alone. Further to this, removing RJTt from the VVRP and

its slope lowers the R2 and the greatest magnitude of return predictability is again observed for

the case where RJTt and the diffusive components are separately accommodated.

6 Conclusion

Within the properties of the variance-of-variance risk premium (VVRP) and volatility-of-volatility

(VVIX) together with their predictive power for returns in the VIX market, the paper examines

the role of fear-of-fear. With plausible assumptions, the fear component embedded in the VIX

market can be proxied by the right jump tail variation under the risk-neutral measure. In a Monte

Carlo simulation, the upward jump risk premium clearly outperforms its downward counterpart

in determining the time-series dynamics and the term structures of the risk factors. Since the

difference between the two jump risk premia may be interpreted as special compensation for

bearing jump tail risk or fear-of-fear, we conjecture that the right jump tail variation may account

for a nontrivial fraction of the risk measures considered. This conclusion is supported by the

observation that the right jump tail component dominates the left tail as a key driver of the VVIX

and implied skewness, and subsumes all the information contained in its counterpart in explaining

the VVRP.

Given the simulation evidence for the dominant role of right jump tail and the lack of VIX OTM

put options, we focus on the right jump tail only in the empirical study using the VIX options and

futures from 2006 to 2020. We present new evidence for the superior performance of VVRP in the

return predictions of VIX futures and options. The addition of the VVRP term structure further

enhances return predictability. We also show that the predictive power underlying the VVRP and

its term structure primarily arises from that part of the premium linked to right jump tail. In

separately considering the diffusive component of the risk factors and the right jump tail risk, we
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show a substantial increase in the degree of predictability over different horizons. Our results hold

for returns of VIX OTM calls across different levels of moneyness and returns on VIX futures,

where the impact of the right jump tail is stronger for the latter.
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Table 1
Benchmark Results for Simulation Study. This table reports the mean values of various measures
generated in the simulation, i.e. RVt, V V IX2

t , V V RPt, V Ct, V Pt and SKEWt. Values of parameters
in the simulation are set following the results in Table 4 of Park (2016). V V RPt is measured as the
difference between RVt and V V IX2

t , where V V IX
2
t is the implied variance and RVt the realized variance

over a certain period; V Ct is defined as the risk-neutral upside semi-variance derived by out-of-the-money
call options and V Pt the risk-neutral downside semi-variance derived by out-of-the-money put options;
SKEWt is the difference between V Ct and V Pt. All the measures are expressed in annualized terms.

Maturity RVt V V IX2
t V Ct V Pt V V RPt SKEWt

30 0.851 1.291 0.679 0.589 -0.440 0.089

60 0.799 1.416 0.677 0.722 -0.618 -0.045

90 0.843 1.560 0.704 0.841 -0.717 -0.137

180 0.868 1.672 0.627 1.036 -0.804 -0.405

360 0.958 1.468 0.458 1.004 -0.509 -0.541



Table 2
Simulation Results of Varying Jump Risk Premia. This table reports the mean values of various risk
measures with low, medium and high jump risk premia over different horizons. Numbers in parenthesis
are the percentage changes of the values with respect to those in the benchmark results, i.e. Table 1. For
the purpose of comparison, upward (downward) jump risk premium is set as zero when the downward
(upward) jump risk premium is varying.

Upward jump risk premium Downward jump risk premium

Panel A: maturity=30

V V IX2
t V Ct V Pt V V RPt SKEWt V V IX2

t V Ct V Pt V V RPt SKEWt

low 1.548 0.827 0.696 -0.697 0.130 1.360 0.678 0.658 -0.509 0.020

(0.199) (0.217) (0.182) (0.583) (0.467) (0.053) (-0.002) (0.118) (0.156) (-0.780)

medium 1.861 0.997 0.836 -1.010 0.156 1.493 0.710 0.759 -0.641 -0.046

(0.441) (0.468) (0.420) (1.295) (0.753) (0.156) (0.045) (0.289) (0.458) (-1.520)

high 2.154 1.153 0.970 -1.303 0.181 1.649 0.755 0.868 -0.797 -0.112

(0.668) (0.698) (0.648) (1.961) (1.045) (0.277) (0.111) (0.474) (0.812) (-2.263)

Panel B: maturity=60

low 1.671 0.806 0.846 -0.872 -0.041 1.564 0.732 0.815 -0.766 -0.082

(0.179) (0.190) (0.172) (0.411) (-0.090) (0.105) (0.081) (0.128) (0.240) (0.837)

medium 1.890 0.891 0.979 -1.091 -0.086 1.643 0.740 0.885 -0.845 -0.144

(0.334) (0.316) (0.355) (0.766) (0.929) (0.160) (0.093) (0.225) (0.367) (2.218)

high 2.066 0.953 1.093 -1.268 -0.135 1.732 0.759 0.955 -0.934 -0.195

(0.459) (0.407) (0.513) (1.052) (2.016) (0.223) (0.120) (0.322) (0.511) (3.373)

Panel C: maturity=90

low 1.742 0.767 0.959 -0.899 -0.189 1.645 0.722 0.907 -0.801 -0.184

(0.117) (0.090) (0.140) (0.254) (0.377) (0.054) (0.026) (0.079) (0.118) (0.341)

medium 1.904 0.818 1.069 -1.061 -0.247 1.717 0.731 0.970 -0.874 -0.238

(0.220) (0.163) (0.271) (0.479) (0.797) (0.101) (0.039) (0.154) (0.219) (0.731)

high 2.071 0.867 1.186 -1.228 -0.313 1.815 0.757 1.042 -0.972 -0.281

(0.328) (0.233) (0.410) (0.713) (1.274) (0.164) (0.076) (0.238) (0.356) (1.047)

Panel D: maturity=180

low 1.699 0.635 1.054 -0.831 -0.417 1.642 0.613 1.020 -0.774 -0.399

(0.016) (0.013) (0.018) (0.034) (0.030) (-0.018) (-0.022) (-0.015) -(0.037) (-0.015)

medium 1.806 0.656 1.140 -0.937 -0.481 1.722 0.635 1.078 -0.853 -0.438

(0.080) (0.047) (0.100) (0.166) (0.188) (0.030) (0.013) (0.040) (0.062) (0.081)

high 1.969 0.701 1.259 -1.101 -0.555 1.779 0.644 1.126 -0.911 -0.473

(0.178) (0.118) (0.215) (0.370) (0.370) (0.064) (0.027) (0.087) (0.134) (0.167)

Panel E: maturity=360

low 1.505 0.469 1.031 -0.547 -0.554 1.412 0.441 0.966 -0.453 -0.514

(0.026) (0.023) (0.027) (0.074) (0.024) (-0.038) (-0.038) (-0.038) (-0.110) (-0.048)

medium 1.453 0.452 0.996 -0.494 -0.531 1.514 0.468 1.041 -0.556 -0.567

(-0.010) (-0.014) (-0.008) (-0.029) (-0.019) (0.032) (0.022) (0.036) (0.091) (0.049)

high 1.596 0.482 1.108 -0.638 -0.619 1.514 0.465 1.043 -0.555 -0.576

(0.088) (0.053) (0.104) (0.253) (0.146) (0.031) (0.015) (0.039) (0.091) (0.064)
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Table 5
Summary Statistics for VIX Returns. The table reports the summary statistics for delta-neutral option
returns and VIX futures returns. The time span is Mar 2006 through Dec 2020 on a daily basis. The
moneyness is defined as k = K/Ft(τ), where K is the strike price and Ft(τ) denotes the futures price.The
t-statistics are testing the null hypothesis that returns are equal to zero. The % < 0 column shows the
proportion of data that is less than zero.

Mean (%) No. of Contracts t-Stat. %< 0 Min. Max. Std. Skew. Kurt. AR(1) Sharpe

Panel A: VIX Options

OTM Put

0.4 < k < 0.6 0.589 6,322 6.459 53% -0.359 0.693 0.073 1.765 15.549 -0.100 0.081

0.6 < k < 0.8 0.198 51,661 7.584 59% -0.369 2.047 0.059 3.832 61.615 -0.088 0.033

0.8 < k < 1.0 0.238 83,613 10.043 60% -0.320 1.251 0.069 2.443 20.447 -0.091 0.035

ITM Call

0.4 < k < 0.6 0.638 15,082 6.914 53% -0.439 1.054 0.113 1.084 8.771 -0.284 0.056

0.6 < k < 0.8 0.137 70,177 4.855 54% -0.430 0.880 0.075 1.020 10.299 -0.333 0.018

0.8 < k < 1.0 -0.017 85,646 -6.444 53% -0.380 1.119 0.054 0.910 12.787 -0.257 -0.003

OTM Call

1.0 < k < 1.2 -0.080 71,251 -4.452 53% -0.413 1.058 0.048 0.794 15.741 -0.261 -0.017

1.2 < k < 1.4 -0.123 60,797 -6.754 53% -0.395 0.819 0.045 0.569 13.264 -0.281 -0.027

1.4 < k < 1.6 -0.169 51,239 -8.844 53% -0.581 0.658 0.043 0.134 13.066 -0.277 -0.039

Panel B: VIX Futures

0.001 37,693 0.001 53% -0.329 0.753 0.054 1.417 16.581 -0.080 0.000



Table 6
Summary Statistics of Risk Measures. This table reports the summary statistics for monthly V V RPt,
V V IX2

t , V Ct, V Pt and SKEWt over the sample period from Mar 2006 until Dec 2020. V V RPt is
measured as the difference between monthly RVt and V V IX2

t , where V V IX
2
t is the implied variance and

RVt the realized variance over a monthly period; V Ct is defined as the risk-neutral upside semi-variance
derived by out-of-the-money call options and V Pt the risk-neutral downside semi-variance derived by
out-of-the-money put options; SKEWt is the difference between V Ct and V Pt.

Maturity (days) Mean Std Skew Kurtosis

Panel A: V V RPt
30 -0.219 0.682 1.970 42.809

60 -0.130 0.387 4.393 29.146

90 -0.097 0.313 3.583 18.689

120 -0.075 0.217 2.301 9.965

Panel B: V V IX2
t

30 0.677 0.415 9.496 114.223

60 0.495 0.136 0.189 3.088

90 0.397 0.107 0.119 2.984

120 0.326 0.080 0.454 4.413

Panel C: V Ct
30 0.332 0.093 -0.486 3.789

60 0.273 0.082 -0.104 2.542

90 0.216 0.063 -0.267 3.126

120 0.179 0.050 0.176 3.344

Panel D: V Pt
30 0.219 0.263 11.115 140.403

60 0.165 0.060 1.024 4.027

90 0.141 0.049 0.807 3.268

120 0.121 0.035 1.008 4.644

Panel E: SKEWt

30 0.113 0.286 -11.504 146.631

60 0.108 0.058 -0.082 2.513

90 0.075 0.049 -0.397 2.423

120 0.058 0.035 -0.127 2.706
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