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Abstract

I propose a novel framework to quantify frequency-dependent risks in the factor zoo.
My approach generalizes canonical principal component analysis (PCA) by exploiting
frequency-dependent information in asset returns. Empirically, the linear stochastic
discount factor (SDF) composed of the first few low-frequency principal components
(PCs) capture all the risk premium in asset returns. It also explains well the cross-
section of characteristic-sorted portfolios. In contrast, high-frequency and canonical
PCA have inferior performance since they fail to identify slow-moving information
in asset returns. Moreover, I decompose the low-frequency SDF into two orthogonal
priced components. The first component is constructed by high-frequency or traditional
PCA. It is almost serially uncorrelated and relates to discount-rate news, intermediary
factors, jump risk, and investor sentiment. The second component is slow-moving and
captures business-cycle risks related to consumption and GDP growth. Hence, only
low-frequency PCA identifies the second persistent component emphasized by many
macro-finance models.
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I Introduction

Explaining the cross-section of expected returns has been an important challenge in asset

pricing literature. Researchers have acknowledged that the consumption-based capital asset

pricing model (CCAPM)1 provides little explanatory power, which has inspired a wide variety

of new models. Some models introduce slow-moving components into the stochastic discount

factor (SDF), such as the surplus consumption ratio in Campbell and Cochrane (1999)

and the stochastic mean and variance of consumption growth in Bansal and Yaron (2004).

In other models, the SDF consists only of fast-moving components, e.g., output jumps in

Barro (2006), the intermediary’s consumption growth in He and Krishnamurthy (2013),

and sentiment-driven demand shocks in Kozak, Nagel, and Santosh (2018). Identifying the

key determinants of the SDF, particularly the slow-moving components that are notoriously

difficult to measure (see Alvarez and Jermann (2005)), remains an open question. This paper

addresses this question through the lens of frequency-dependent risks. In addition, I seek to

understand the frequency-specific drivers of expected returns and explore the role of distinct

asset pricing models at different frequencies.

This paper generalizes canonical principal component analysis (PCA) to construct latent

factors that explain the cross-section of monthly expected returns. The key novelty of my

approach is that I exploit frequency-dependent information of asset returns to estimate latent

factors. Using standard Fourier transform, I decompose the covariance matrix of monthly

returns into high- and low-frequency components and estimate systematic factors in each

frequency interval. I denote them as high- and low-frequency principal components (PCs)

and use them as monthly tradable proxies for short- and long-term systematic risks.

When do frequency-dependent risks matter? I show that when asset returns are inde-

pendent, high- and low-frequency latent factors are precisely identical to the canonical PCs.

In other words, only when asset returns deviate from the independence assumption we need

to study frequency-dependent risks. Empirically, low-frequency PCs contain a persistent

element missed by high-frequency and conventional PCs. Moreover, this persistent missing

part is essential in explaining expected returns and reflects business-cycle risks.

Asset pricing models often make parametric assumptions enforcing whether fast- or slow-

moving economic shocks drive the SDF. Rather than assuming the existence of fast- or slow-

moving elements, this paper lets the data speak and suggests that both two components

are priced but reflect different economic fundamentals. The key for detecting the slow-

moving component is the rich persistent information in the factor zoo. For example, Gupta

and Kelly (2019) find that 48 of 65 investment anomalies have significantly positive AR(1)

1I refer to earlier versions of CCAPM developed by Rubinstein (1976), Lucas (1978), and Breeden (1979).
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coefficients.2 The low-frequency PCA boosts the signal of persistent information in the

factor zoo and combines the factors’ persistence into a few low-frequency PCs. Instead, the

high-frequency or conventional PCA fails to detect them.

My empirical results are based on a large cross-section of 78 portfolios.3 I divide the whole

sample equally into two subsamples. I estimate the factor compositions and risk prices

of frequency-specific PCs in the first subsample and examine their out-of-sample (OOS)

performance in the second subsample. In the main analysis, the LF interval is between three

and ten years, and I interpret it as the business-cycle frequency interval. In contrast, the

HF interval is between zero and three years. The empirical findings are fourfold.

First, the SDF is sparse only in the space of low-frequency PCs. The low-frequency SDF

comprising the seven largest low-frequency PCs is the “proper” benchmark: It yields an

OOS Sharpe ratio of around 0.37 per month. Additional low-frequency PCs are redundant.

In contrast, I need more than 20 high-frequency or canonical PCs to gain a comparable

Sharpe ratio. Since high-frequency components account for 94% of time-series variations in

asset returns, the large canonical PCs are virtually equivalent to the high-frequency latent

factors. I also split the whole high-frequency interval into a few subintervals, but the SDF

is dense even in the space of highly fast-moving factors (with a cycle length shorter than

three months). Past research (e.g., Kozak, Nagel, and Santosh (2018, 2020)) often uses

the first few PCs of single-period returns (identical to high-frequency PCs in the data) to

construct the SDF. My paper shows that this standard practise can be improved by exploiting

frequency-dependent information in asset returns.

Second, the low-frequency SDF cannot be explained by the high-frequency SDF or cele-

brated factor models in Fama and French (1993, 2015), Carhart (1997), and Hou, Xue, and

Zhang (2015). Monthly alphas of the low-frequency SDF are significantly greater than 0.6%.

In contrast, the low-frequency SDF can entirely span the high-frequency one. This evidence

provides further justification for using the low-frequency SDF as the benchmark.

Third, I decompose the low-frequency SDF into fast- and slow-moving components. The

first component is the optimal portfolio composed of high-frequency PCs. This SDF compo-

nent is nearly identical to the SDF constructed by Kozak, Nagel, and Santosh (2018, 2020).

I observe that the high-frequency SDF is almost serially uncorrelated and yields a monthly

Sharpe ratio of 0.29, so I denote it as the fast-moving component. However, it still misses an

essential slow-moving element. I project the low-frequency SDF into the space of the high-

frequency SDF and extract an orthogonal part, denoted as the missing-SDF. This missing

part, displaying a persistent dynamic according to the variance ratio test, explains 30% of

2The other 11 have positive yet insignificant coefficients. No factor has significantly negative coefficients.
3Test assets are long and short legs sorted by 39 firm features in Kozak, Nagel, and Santosh (2020).
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the time-series variation of the low-frequency SDF and earns a monthly Sharpe ratio of 0.24.

Fourth, fast- and slow-moving components of the low-frequency SDF embody entirely

different sources of economic risks. Precisely, the high-frequency SDF is correlated with

market discount-rate news in Campbell and Vuolteenaho (2004), intermediary factors in He,

Kelly, and Manela (2017), market jump risk proxied by the VXO index, and the sentiment-

driven demand shocks from Baker and Wurgler (2006) investor sentiment. Instead, the

slow-moving part of the SDF is related to consumption and GDP growth, which is great

news for macro-finance. In fact, it also predicts the next quarter economic growth. Hence,

the missing-SDF reflects slow-moving business-cycle risks.

My empirical findings have implications for asset pricing models, which link the SDFs to

different economic fundamentals. Macro-finance models often use persistent shocks to macro

variables, such as the stochastic mean of consumption growth, to magnify their prominence

in the SDF. My paper confirms that asset returns carry useful persistent information re-

lated to macro fundamentals, but I can identify them only at low frequencies. My paper

also reconciles the disconnection between asset returns and some macro fundamentals. For

example, asset returns and consumption growth are almost uncorrelated at the quarterly

frequency, so asset pricing seems to disconnect with the macroeconomy in short horizons.

My paper confirms that the large PCs of short-horizon returns are unrelated to consumption

growth. After removing high-frequency variations from asset returns, the remaining slow-

moving component strongly correlates with macro fundamentals. Therefore, identifying the

slow-moving component is salient for understanding and testing macro-finance models.

Furthermore, macro risks are not sufficient to explain the cross-section. The fast-moving

component of the benchmark SDF commands a significant price of risk but is orthogonal

to macro risks. Instead, the demand shocks from sentiment investors, the shocks to the

intermediary sector, and market discount-rate news are essential in understanding the fast-

moving component of the SDF (high-frequency SDF). Hence, different asset pricing models

explain either fast- or slow-moving components of the SDF but not both.

There are two appealing benefits to studying asset returns at different frequencies. First,

it helps to explore the dynamics of state variables in the SDF. I decompose the variance of an

SDF (equivalently, the maximal achievable Sharpe ratio) into frequency-specific components.

Also, I prove that if the SDF has a larger variance at high (low) frequencies, state variables

entering the SDF are, on average, more fast-moving (slow-moving). Since a sparse low-

frequency SDF embodies a significantly higher Sharpe ratio than a high-frequency one, slow-

moving state variables are empirically more prominent than fast-moving ones.4

4The importance of a state variable Xt comes from the variance of Xt and its risk price squared (b2X). In
latent factor models, I can identify only Var(Xt)b

2
X rather than Var(Xt) and b2X individually.
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Second, frequency-dependent PCA strengthens the signal of some systematic factors.

Generally, a slow-moving (fast-moving) latent factor has a stronger signal at low (high)

frequencies. Suppose a weak latent factor explains a tiny proportion of single-period returns.5

In that case, the canonical PCA fails to identify it. However, frequency-specific PCA can

recover this weak factor if its variance is large enough in a specific frequency interval. This

paper shows that the low-frequency PCA recovers some essential priced weak factors with

strong enough signals only at low frequencies. Instead, the high-frequency and canonical

PCA identify them as idiosyncratic noises, so many small high-frequency and canonical PCs

are needed to attain the same Sharpe ratio as a sparse low-frequency SDF.

Economic theory predicts the sparsity of latent factor models. The absence of near-

arbitrage opportunities in Kozak, Nagel, and Santosh (2018) argues that only the largest

PCs enter the SDF. However, this paper observes some small high-frequency (also canoni-

cal) PCs bringing nontrivial risk premia, so the absence of near-arbitrage opportunities fails.

One explanation is that some economic shocks, such as the stochastic mean of consumption

growth, are slow-moving and explain only a tiny fraction of single period returns. Hence, tra-

ditional PCA fails to detect these small but persistent shocks. Suppose market participants

have Epstein-Zin preferences as in the long-run risk model. In that case, persistent shocks

to economic fundamentals command sizable risk premia and constitute a considerable part

of the SDF. Since the low-frequency PCA successfully captures these slow-moving elements,

we observe the sparsity of the low-frequency SDF.

I.1 Closely Related Literature

This paper mainly contributes to two strands of literature. The first closely related branch

of literature is the study of asset pricing models at different frequencies. We have known for

a long time that both CAPM and CCAPM have better performance in the long horizon. For

example, Handa, Kothari, and Wasley (1989) show that the size effect becomes statistically

insignificant when the market beta is estimated using annual returns. Parker and Julliard

(2005) measure ultimate consumption risk at a horizon of three years and document that

it explains a large proportion of expected returns. Brennan and Zhang (2020) derive the

CAPM with a stochastic investor horizon, and their estimates show that the probability

distribution of investor horizons puts a massive weight on the interval between 8 and 20

months. Chernov, Lochstoer, and Lundeby (forthcoming) test asset pricing models using

multi-horizon returns and report that single-period estimates of those models typically do a

poor job of explaining long-term returns.

5Onatski (2012) and Lettau and Pelger (2020a) assume that the variance of a weak factor does not grow
as the number of test assets converges to infinity.
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However, all the above papers study factor models at a specific frequency instead of

in a frequency interval. A few recent papers adopt spectral analysis to study frequency-

dependent risks. First, Dew-Becker and Giglio (2016) study frequency-dependent risk prices

in consumption-based models and show that only the long-run risk model can explain asset

returns. Instead, my paper does not make a parametric assumption of the SDF. I construct

the SDF using latent factors of asset returns and find that the SDF contains a huge fast-

moving component that the consumption risk cannot explain.

Second, Bandi, Chaudhuri, Lo, and Tamoni (2021) use a Wold representation of the

CAPM beta. Only the business cycle components within the frequency interval between 32

and 64 months can price the cross-sections. One key feature of their approach is assuming

a vector autoregressive (VAR) process for state variables. In contrast, my paper takes a

nonparametric point of view and is more robust to model misspecification of the state vector

dynamics. In addition, we have different economic interpretations. Their paper claims that

the business-cycle component of the market beta captures delayed price adjustments to new

information in the market portfolio. Instead, my paper finds low-frequency systematic factors

capture business-cycle risks, but short-term factors miss them.

Last but not least, Neuhierl and Varneskov (2021) decompose the covariance between

asset returns and pricing factors via the Fourier transform and study the frequency-dependent

risks. My paper improves their framework in a few aspects. Their paper studies factors

individually, and their framework cannot handle the factor zoo. Instead, the framework in

my paper is more suitable for the high-dimensional case. Also, they do not explore whether

high- or low-frequency factors can explain the cross-section of average returns. Unlike their

paper, I show that low-frequency latent factors are salient for cross-sectional asset pricing.

The decomposition of the SDF into fast- and slow-moving components also improve our

understanding of economic risks in the factor zoo.

The second branch of related literature is the abundant study of latent factor models

after Ross (1976). Early empirical applications include Chamberlain and Rothschild (1983),

Connor and Korajczyk (1986), Connor and Korajczyk (1988). Kozak, Nagel, and Santosh

(2020) use PCA to estimate latent factors of a large cross-section of characteristic-managed

portfolios and then estimate their risk prices via an elastic-net algorithm. Kelly, Pruitt, and

Su (2019) propose the instrumented PCA to model both pricing errors and factor loadings

as functions of firm characteristics, and they find that four IPCA factors explain the cross-

section of individual stock returns. Lettau and Pelger (2020a) and Lettau and Pelger (2020b)

generalize PCA by including a penalty term on the pricing errors in expected returns. Their

method can identify weak factors with high Sharpe ratios, even when the canonical PCA

omits them. This paper differs from previous literature in that I estimate latent factors
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using frequency-dependent information in asset returns. As I show in Sections II and III,

the importance of latent factors can change across frequencies, and the frequency-dependent

PCA can also strengthen a factor’s signal if it is not independent. Giglio and Xiu (2021)

and Giglio, Xiu, and Zhang (2021) show that we can project a nontradable factor into the

space of the largest several PCs of a huge cross-section of test assets. The risk premium of a

nontradable factor is the expected return of its mimicking portfolio composed of the largest

several PCs of single-period returns.

Nevertheless, I do not intend to develop a method that can outperform all previous

forms of PCA. Instead, I aim to provide a novel framework that is suitable for analyzing

frequency-dependent risks in the factor zoo. Moreover, my frequency-dependent PCA can

also be integrated with other PCA methods. For example, we can construct the factor-

mimicking portfolio composed of frequency-specific PCs and use the three-pass procedure in

Giglio and Xiu (2021) to estimate the risk premium of nontradable factors.

II Methodology

Notation. E[·], Var[·], and Cov[·] are the expectation, variance, and covariance operators.

Suppose thatXt is an arbitrary N×1 vector of covariance-stationary random variables. µX ,

Et−1[Xt], and X̄t denote the unconditional, conditional, and sample mean of Xt. ΣX(h) is

the autocovariance matrix with lag h: ΣX(h) = E
[
Xt+hXt

]
−E[Xt+h]E[Xt]

>. Particularly,

ΣX(0) is the unconditional covariance matrix, simply denoted by ΣX . Σ̂X(h) is the sample

estimate of ΣX(h). Tr
[
A
]

is the trace of a matrix A.

II.1 Asset Pricing Models

Suppose that there are N test assets, denoted by Rt = (R1t, . . . , RNt)
>, and the sample size

is T . This paper considers empirical applications in which both N and T are reasonably

large, in particular, N
T
→ c < 1. Motivated by the arbitrage pricing theory (APT) developed

by Ross (1976), this paper studies an approximate factor pricing model, where the excess

return on asset n, Rnt, is driven by a systematic component captured by K (K < N) latent

factors and an idiosyncratic shock,

Rt+1︸ ︷︷ ︸
N×1

= α︸︷︷︸
N×1

+ β︸︷︷︸
N×K

Ft+1︸ ︷︷ ︸
K×1

+ et+1︸︷︷︸
N×1

, (1)

where α denotes a vector of potential mispricings, βFt+1 is a vector of common components

that are the product of factor loadings β and latent factors Ft+1, and et+1 is a vector of
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idiosyncratic shocks. I further require βFt+1 and et+1 to be orthogonal. Empirically, I need

to estimate the common component and cannot identify β and Ft+1 separately.

Moreover, I require only systematic risks, proxied by Ft+1, to enter the SDF. In other

words, this paper assumes a strong form of APT, whereas unsystematic risks et+1 earn zero

risk premia. Specifically, Mt+1 is linear in factors Ft+1,6

Mt+1 = 1− b>(Ft+1 − µF ), (2)

where µF is the unconditional expectation of latent factors, and b is the vector of risk prices

for systematic factors, capturing the compensation for bearing systematic risks. According

to the Hansen and Jagannathan (1991) (HJ) bound, if Ft+1 are tradable factors, b>Ft+1 is

the mean-variance efficient (MVE) portfolio. Therefore, constructing the linear SDF is the

equivalent of finding the MVE portfolio in the cross-section of test assets.

According to the fundamental asset pricing equation,

E[Mt+1Rt+1] = E
{
Rt+1[1− b>(Ft+1 − µF )]

}
= 0N (3)

=⇒ E[Rt+1] = Cov(Rt+1,Ft+1)b, (4)

so systematic risks, quantified by the covariance matrix, fully explain the cross-section of

expected returns.

Past research documents the deviation of the independently and identically distributed

(IID) assumption for asset returns. For instance, Chernov, Lochstoer, and Lundeby (forth-

coming) calculate the variance ratio of the mean-variance efficient portfolios in notable factor

models. According to their results, factor returns are far from IID. In addition, Haddad,

Kozak, and Santosh (2020) show that the first few principal components of asset returns

are predictable by their own portfolio-level log book-to-market ratio. Motivated by their

findings, this paper deviates from the IID assumption of Rt+1 by assuming that latent fac-

tors subsume all the time-series dependency. Specifically, I assume that a p × 1 vector of

mean-zero “latent” state variables Xt can predict factors Ft+1 as follows:

Ft+1︸ ︷︷ ︸
K×1

= µF︸︷︷︸
K×1

+ ΦX︸︷︷︸
K×p

Xt︸︷︷︸
p×1

+ ft+1︸︷︷︸
K×1

, (5)

where µF is the unconditional mean of latent factors, ΦXXt captures the time-varying

conditional mean of latent factors, ft+1 is conditionally uncorrelated: E[ft+1] = Et[ft+1] =

6I consider only excess returns in this paper, so the unconditional mean ofMt+1 is unidentified. Without
loss of generality, I normalize its mean to be one.
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0K . Similarly, idiosyncratic shocks et+1 are conditionally uncorrelated. Chamberlain and

Rothschild (1983) also model idiosyncratic components as being cross-sectionally but not

serially correlated. Since pricing errors are poorly predictable, such an assumption can be

viewed as a good first-order approximation. I further plug equation (5) into the SDF,

Mt+1 = 1− b>ft+1 − b>XXt, (6)

where b>X = b>ΦX , and b>XXt drives the conditional mean of the SDF, capturing its full

conditional dynamics. The formula forMt+1 in equation (6) relates to previous studies that

decompose the SDF into permanent and transitory components (see Alvarez and Jermann

(2005) and Hansen and Scheinkman (2009)).

In addition, Hansen, Heaton, and Li (2008) study parametric models of state variables,

modelling them using a stationary vector autoregressive (VAR) model. Instead, this paper is

agnostic about the state vectorXt. Xt can be firm characteristics and macro indicators, such

as book-to-market ratio and cay (see Lettau and Ludvigson (2001a)). By decomposing asset

returns into frequency-dependent components, this paper can infer whether state variables

critical in pricing the cross-section, on average, are more important at high or low frequencies.

The next subsection introduces the Fourier transform as the non-parametric solution.

II.2 Frequency Domain Analysis

This paper uses the techniques in frequency domain analysis to model the time-series de-

pendence of asset returns and decompose an empirical series into its repetitive or regular

components. I start by motivating why the Fourier transform is a natural approach to study

long-horizon asset returns. Suppose that an excess return process xt follows an AR(1) pro-

cess, xt+1 = ρxxt+
√

1− ρ2
xσxηx,t+1, where ρx is the AR(1) coefficient, σ2

x is the unconditional

variance, and ηx,t+1
iid∼ N (0, 1). When ρx is zero (negative, positive), the asset return follows

an IID (fast-moving, slow-moving) process. When ρx is more positive, the asset return tends

to be more persistent.

Figure A1 plots the cumulative returns in a 24-month rolling window for three AR(1)

processes: ρx ∈ {−0.5, 0, 0.5}. No matter how persistent the time series is, its long-horizon

return always exhibits a cyclical pattern. Hence, it is natural to project the long-horizon

return on the sine and cosine functions: xt,t+24 = a0 + a1 sin(2πt
48

) + a2 cos(2πt
48

) + et,t+24.

Note that the deterministic processes sin(2πt
48

) and cos(2πt
48

) complete a cycle in 48 months, or

equivalently, it has a cycle length of 48 months. Motivated by this observation, I can study

the cyclical pattern of long-horizon asset returns by projecting them on the space of sine and

cosine functions, and an M -month cumulative return corresponds to a cycle length of 2M .
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The frequency-domain analysis is the natural solution. Technically speaking, the Fourier

transform decomposes a time series into orthogonal components at different frequencies. In

the language of regression, it regresses the original time series into a sequence of sines and

cosines functions.7

This paper uses ω to denote the frequency of a time-series process, which quantifies the

number of cycles that this process completes per unit of time. Of equal interest is the period

(or cycle length) of a time series, defined as the number of time points in a cycle: τ = 1
ω

.

For instance, if ω is 0.1 in monthly data, the time series will finish 0.1 cycles in a month.

Equivalently, it will take this process 10 months to complete one cycle.8

The spectral density matrix ofRt is defined as the Fourier transform of its auto-covariance

matrices,

fR(ω) =
∞∑

h=−∞

ΣR(h) exp{−2πihω}.

Through inverse Fourier transform, I can reverse engineer the auto-covariance matrix,

ΣR(h) =

∫ 1
2

− 1
2

exp{2πihω}fR(ω)dω.

In the study of asset pricing models, such as finding the tangency portfolio, investors focus

on the covariance matrix of asset returns, that is, h = 0,

Cov(Rt) := ΣR =

∫ 1
2

− 1
2

R(fR(ω))dω. (7)

The Fourier transform of Rt decomposes asset returns as an equally weighted average of

orthogonal components at different frequencies, so the covariance matrix of Rt equals the

integral of the covariance matrix of its frequency-ω component, fR(ω), as in equation (7).

In Appendix A1, I further show that only the real part of the spectral density matrix plays

a role in estimating PCs. Hence, I focus on R(fR(ω)), the real part of the spectral density.

Equation (7) also implies that R(fR(ω)) is the contribution to the covariance matrix from

the frequency-ω component. If test asset returns are IID, the spectral density matrix of asset

returns is constant across frequencies; that is fR(ω) = ΣR for every ω.

Why should we study the frequency-specific covariance matrices of asset returns? One

reason is that the single-period covariance matrix often fails to capture systematic risks

7According to the spectral representation theorem in Hannan (2009), a covariance-stationary time series
can be approximated by a sum of sine and cosines random variables with different variances across frequencies.
(see appendix A.1).

8In addition, the absolute value of ω is no larger than 0.5 since any time series spends at least two months
completing a cycle.
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critical in explaining risk premia. For example, Brennan and Zhang (2020) show that yearly

CAPM beta, which equals the covariance between annualized asset returns and the market

portfolio, can explain the cross-section of 25 Fama-French size-B/M monthly portfolios. In

contrast, the monthly CAPM beta entirely fails. Therefore, the single-period covariance, like

the single-period CAPM beta, possibly misspecifies actual systematic risks, rendering the

estimation of risk prices difficult or even impossible. This observation calls for the study of

frequency-dependent systematic risks.

I estimate the spectral density matrix via discrete Fourier transform (DFT).9 A simple

example is in Figure A3, where a deterministic time series xt in panel (c) consists of two

components. The first component in panel (a) is slow-moving, with a frequency equal to

0.05, which completes a cycle every 20 periods. Another component of xt in panel (b) is fast-

moving, spending only two periods repeating a cycle. As in panel (d), DFT decomposes the

variance of xt into two parts contributed by low-frequency and high-frequency fluctuations.

Like other non-parametric estimation methods, the DFT estimate of the spectral density

matrix at a particular frequency is susceptible to significant uncertainties. To reduce the

variance, I divide the frequency intervals into three groups and estimate the spectral density

matrix in each frequency interval.

What are the ideal cutoff points of the entire frequency interval? Past research can give

some hints on this question. Dew-Becker and Giglio (2016) derive a closed-form solution to

frequency-specific risk prices of parametric CCAPMs. They observe that only the long-run

risk with cycles more prolonged than the business cycle is priced in the cross-section. In

addition, Bandi, Chaudhuri, Lo, and Tamoni (2021) use the orthogonal Wold decomposition

of CAPM’s beta, and they find that only the business-cycle component of CAPM beta in

the frequency interval between 32 and 64 months is priced. These observations motivate the

following division of frequency intervals.

More specifically, I consider the following divisions of frequency intervals: (1) τ = 1
ω
< 36

months (high-frequency, denoted as HF), (2) τ = 1
ω
∈ [36, 120] months (low-frequency, or

business cycle frequency, denoted as LF), and (3) τ = 1
ω
> 120 months (Above-LF, or A-

LF). This paper considers the second frequency interval as being closely related to business

cycles. Generally, the covariance matrix in the third group, with a cycle length greater than

120 months, is difficult to estimate non-parametrically. In later analysis, I also divide the

HF interval into several sub-intervals. In addition, I consider alternative LF intervals in the

9Details about DFT can be found in Appendix A.2.
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robustness check. With the above division, I decompose the covariance matrix of Rt,

ΣR =

∫
ω∈ΩHF

R(fR(ω))dω +

∫
ω∈ΩLF

R(fR(ω))dω +

∫
ω∈ΩA−LF

R(fR(ω))dω (8)

= |ΩHF |ΣHF
R + |ΩLF |ΣLF

R + |ΩA−LF |ΣA−LF
R , (9)

where ΩHF , ΩLF , and ΩA−LF denote the set of HF, LF, and Above-LF, with lengths |ΩHF |,
|ΩLF | and |ΩA−LF | (|ΩHF |+ |ΩLF |+ |ΩA−LF | = 1).

Proposition 1 (Decomposition of asset returns’ spectral density matrix) I assume

that et+1 and ft+1 are conditional uncorrelated, and they are orthogonal. Then the spectral

density matrices of et+1 and ft+1 are constant across frequencies and equal to their uncondi-

tional covariance matrices Σe and Σf , respectively. Moreover, I can decompose the spectral

density matrix of Rt as,

fR(ω) = βfF (ω)β> + Σe = βΣfβ
> + Σe + βXfX(ω)β>X , (10)

where fF (ω) and fX(ω) are the spectral density matrices of latent systematic factors and

state variables, and βX = βΦX .

A simple derivation of proposition 1 is in Appendix B.1. A key observation in equation

(10) is that only the last component related to state variables is frequency-dependent, as et+1

and ft+1 are conditionally uncorrelated. Furthermore, if I estimate latent factors of asset

returns at different frequencies, I can study the difference between HF and LF systematic

risks. More precisely, equation (10) indicates that the dynamics of state variables entirely

drive the difference between HF and LF systematic risks. Similarly, I also decompose the

SDF into frequency-dependent components and illustrate how the maximal Sharpe ratio

implied by the SDF varies across frequencies.

Proposition 2 (Spectral density function of the SDF) I normalize latent state vari-

ables Xt such that they are uncorrelated. Define risk prices of Xt as bX = Φ>Xb: bX =

(bX,1, . . . , bX,p)
>. Then the unconditional variance of the SDF is

Var(Mt+1) = b>Σfb+

∫ 1
2

− 1
2

p∑
j=1

b2
X,ifXi

(ω)dω, (11)

and the spectral density function of Mt+1 is

fM(ω) = b>Σfb+

p∑
j=1

b2
X,ifXi

(ω), (12)
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where fXi
(ω) is the spectral density function of the i-th state variable Xi.

I derive proposition 2 in Appendix B.2. Since state variables are latent, I can always

normalize them such that they are uncorrelated. An alternative interpretation of the nor-

malization of Xt is that latent state variables are PCs of conditional expectations of factors.

The above derivation shows that the maximal Sharpe ratio of the economy is frequency de-

pendent. Moreover, the spectral density function of Mt+1, denoted by fM(ω), varies across

frequencies only due to the second term
∑p

j=1 b
2
X,ifXi

(ω). I interpret this quantity as the

weighted-average spectral density function of latent state variables, with weights propor-

tional to the squared risk prices of state variables. If, on average,
∑p

j=1 b
2
X,ifXi

(ω) is larger

at high (low) frequencies, it implies that high (low) frequency information is more prominent

in this cross-section of asset returns.10 In addition, the spectral decomposition of Mt+1 can

only identify the state variable with a non-zero price of risk bX,i.

Similar to this paper, Neuhierl and Varneskov (2021) use the Fourier transform to study

the dynamics of state variables driving asset returns. They also show how to map their SDF

into some canonical consumption-based asset pricing models. While the spectral density

function of the SDF in IID CCAPM is constant across frequencies, other candidate models

such as the long-run risk model in Bansal and Yaron (2004) have persistent SDFs. From the

theoretical point of view, the LF component is more critical than the HF one in the SDF.

A limitation of Neuhierl and Varneskov (2021) is that they consider only a single factor and

explore how its risk premium varies across frequency. Differently, this paper aims to handle a

factor zoo and extract frequency-dependent systematic risks in the large cross-section using

the techniques introduced in the following subsections.

Remark 3 (Interpretation of the Frequency) The frequency is different from the turnover

of a factor strategy. Let us consider two value strategies: the first is the monthly rebalanced

HML, or HML devil, from the AQR library. The second strategy is the yearly rebalanced HML

from Ken French library. Even though these two strategies have different turnovers, their

correlation is as high as 0.9. Furthermore, I compute their autocorrelations and variance

ratios — these two HML strategies have pretty similar patterns.

10The prominence of a state variable Xt comes from two sources: the variance of Xt and its risk price
squared (b2X). Since I use PCs as factors and state variables are latent, I can identify only Var(Xt)b

2
X rather

than Var(Xt) and b2X individually.
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II.3 Estimation of Risk Factors

Under the assumption that Ft+1 and et+1 are orthogonal, I can represent the covariance

matrix of asset returns as following:

ΣR = β ΣF β
> + Σe. (13)

Systematic factors Ft+1 are not directly observable, so I aim to estimate tradable proxies for

them. A common way to estimate model (1) is the Principal Component Analysis (PCA),

which relies on the eigendecomposition of ΣR,

ΣR = QΛQ>, with Λ = diag{λ1, . . . , λN}, (14)

where Q is the matrix of eigenvectors (Q>Q = IN ), and Λ is the diagonal matrix of

eigenvalues in a descending order. A common practice of PCA is to estimate β as the first

K columns of Q, denoted by QK . Moreover, the estimates of K principal components (PC)

are F̂t = Q>KRt, uncorrelated by construction.

This paper uses the normalization β>β = IK and ΣF = diag{σ2
F,1, . . . , σ

2
F,K} in all

following analyses, with exceptions unless stated. Furthermore, I allow for a mixture of

strong and weak factors. In fact, most of asset pricing studies, as in this paper, use diversified

portfolios as test assets, and the number of test assets is not truly infinite. In this paper, I

differentiate strong and weak factors based on their variances.

Bai (2003) proves the asymptotic consistency of PCA when all factors are strong factors,

which affect an increasing number of test asset returns as N goes to infinity. Mathematically,∑T
t=1 FtF>t
T

→ ΣF and β>β
N
→ ΣN , where both ΣF and ΣN are positive definite matrices.

Bai and Ng (2002) make the same assumption and propose an asymptotically consistent

algorithm to determine the number of latent factors in model (1). Under the normalization

chosen by this paper, the above assumption is the equivalent of explosive eigenvalues of ΣF .

That is to say, the largest K eigenvalues of ΣR and ΣF will go to infinity as N →∞.

In addition, Bai (2003), like other papers, allows the idiosyncratic terms et to be only

weakly correlated both cross-sectionally and over time. Furthermore, idiosyncratic shocks

explain a finite amount of time-series variations in asset returns; that is

lim sup
N,T→∞

max eval
(
Σe

)
<∞,

where max eval(A) denotes the maximal eigenvalue of matrix A.

In empirical applications, however, it is uncommon to come across the ideal case in which

we can clearly separate large eigenvalues related to latent factors from small eigenvalues rep-
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resenting idiosyncratic shocks. A few papers have documented that PCA cannot consistently

estimate model (1) when some latent factors are weak (see Onatski (2012), Lettau and Pel-

ger (2020a)). Contrary to a strong factor, a weak one explains a relatively smaller fraction

of time-series variations in asset returns. Alternatively, we can interpret a weak factor as

having a finite variance or a relatively small variance in a finite sample.

Some weak factors are necessary to explain the cross-section of asset returns. For example,

Lettau and Pelger (2020b) show that the omission of weak factors with a high Sharpe ratio

can deteriorate the performance of latent factor models. However, the question is, when will

PCA ignore the weak factors?

Benaych-Georges and Nadakuditi (2011) shed light on this question. Suppose that the

covariance matrix of asset returns can be decomposed into the sum of two matrices as in

equation (13), and one of them, such as Σe, has bounded eigenvalues. Under this setup, the

k-th (k ≤ K) eigenvalue of ΣR, representing the k-th systematic factor Fkt, is identified if

the k-th eigenvalue of β ΣF β
>, equal to σ2

F,k under the normalization, is greater than a

certain threshold; that is

λk
(
β ΣF β

>) = σ2
F,k > λcrit,

where λk(A) denotes the k-th largest eigenvalue of matrix A, and λcrit is related to the limit

of N
T

and the upper bound of eigenvalues for Σe. Otherwise, a phenomenon called eigenvalue

phase transition occurs, and the factor k is no longer identified. Now let us look at a simple

example.

Example 4 (Single-factor model) Suppose that there is only one systematic factor in

model (1), and the idiosyncratic vector et has a covariance matrix σ2IN (σ2 <∞). I further

normalize the factor loadings such that β>β = 1, and the variance of Ft is σ2
F (σ2

F <∞). As
N
T
→ c < 1, the distribution of eigenvalues for Var(et) converges to the Marchenko–Pastur

distribution, with lower and upper bounds σ2(1−
√
c)2 and σ2(1 +

√
c)2.

According to corollary 2 in Lettau and Pelger (2020a), when σ2
F ≤
√
cσ2, the top eigen-

value converges to σ2(1 +
√
c)2. Consequently, PCA can no longer identify Ft, and the

correlation between true factor Ft and the PCA estimate F̂t converges to zero.

A strong factor has a variance that is much more considerable than the critical point

at all frequencies, so it is always identifiable. However, there are some “marginal factors”

whose signals are strong enough only at high or low frequencies. It depends on the dynamics

of state variables driving this factor. Suppose that a weak factor in example 4 has a variance

slightly less than the critical value
√
cσ2, but it follows an AR(1) process: Ft = ρFFt−1 +√

1− ρ2
F eF,t, eF,t

iid∼ N (0, σ2
F ). If ρF is more positive (negative), Ft is more slow-moving (fast-

moving). The spectral density of Ft is in Figure A2. For instance, when ρF is 0.5, the variance
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of Ft at low frequencies is roughly four times the unconditional variance. It is possible that

a weak factor is unidentified by canonical PCA but stands out at low frequencies if its signal

is persistent and strong enough in the long horizon. This observation also motivates the

frequency-dependent PCA.

Definition 1 (Frequency-dependent PCA) Suppose that ΣHF
R , ΣLF

R , and ΣA−LF
R are

high-, low-, and above-low-frequency covariance matrices of the N-dimensional random vector

Rt. The eigendecomposition of ΣZ
R, Z ∈ {HF,LF,A-LF}, is

ΣZ
R = QZΛZ(QZ)>, with ΛZ = diag{λZ1 , . . . , λZN},

where QZ are eigenvectors of ΣZ
R, that is, (QZ)>QZ = IN , and ΛZ is the diagonal ma-

trix of eigenvalues in descending order. Define the latent factors in the frequency Z ∈
{HF,LF,A-LF} as F Z

t = (QZ)>Rt.

Intuitively, I rotate the space of canonical PCs to target the short-term and long-term

common variations in asset returns. In other words, frequency-dependent PCA aims to select

monthly proxies for short-term and long-term systematic risks. A special case is when asset

returns are IID. Since ΣZ
R are identical in this case, PCA, HF-PCA, and LF-PCA will deliver

the exact estimates across frequencies.

II.4 Estimation of Risk Prices

This paper always uses principal components of asset returns as systematic factors, Ft =

(QZ)>Rt, Z ∈ {HF,LF,A-LF}. Since Ft are always tradable, estimating the linear SDF in

equation (2) is the same as finding the optimal portfolio weights, b, such that b>Ft is the

MVE portfolio. If the SDF prices the cross-section of asset returns, it also prices all tradable

factors, so I can rewrite equation (4) as follows:

µF = ΣFb. (15)

I can solve the risk prices from equation (15), b = Σ−1
F µF . Therefore, risk prices b are

proportional to the MVE portfolio weights. In a finite sample, I need to estimate both ΣF

and µF . Past research have shown that a naive estimator such as b̂ = Σ̂−1
F F̄t does not

perform well in real datasets. For example, Tu and Zhou (2011) show that the estimated

Markowitz (1952) portfolio not only underperforms the naive 1/N rule, in which investors

invest equally across N assets, but also earns negative risk-adjusted returns. Kozak, Nagel,

and Santosh (2020) argue that the majority of uncertainty comes from the estimation of

factor means µF and propose a simple Bayesian procedure to estimate b.
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To compare with Kozak, Nagel, and Santosh (2020), this paper adopts a similar strat-

egy, which assumes that the covariance matrix of factor returns, ΣF , is known and focuses

on the modelling of mean factor returns. Furthermore, equation (15) does not hold ex-

actly in finite sample, so I include pricing errors α on the right-hand side of equation (15):

µF = ΣFb + α, α ∼ N (0N ,
1
T
ΣF ). Finally, I assign a normal prior for risk prices:

b ∼ N (0K ,
κ2

τ
IK), τ = Tr

[
ΣF

]
. Under such a prior distribution, the prior expectation on

the squared Sharpe ratio of factor returns is equal to

Eprior[SR2
F ] = Eprior[b>ΣFb] =

κ2

τ
Tr
[
ΣF

]
= κ2.

Also, the posterior distribution of b, conditional on (µF ,ΣF ), is

p(b | µF ,ΣF ) ∝ exp

{
−T

2

[
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) +

τ

κ2T
b>b

]}
.

Therefore, the posterior mode of b is the solution to the below objective function I,

min
b

{
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) + v2b

>b

}
, (16)

where v2 =
Tr
[
ΣF

]
Eprior[SR2

F ]×T . A detailed derivation of equation (16) is in Appendix B.3. For

simplicity, I will denote
√
Eprior[SR2

F ] as SRprior, or simply call it the prior Sharpe ratio.

However, due to Jensen’s inequality, Eprior[SRF ] ≤
√
Eprior[SR2

F ], so SRprior is an upper

bound on the expected Sharpe ratio under prior distribution. Objective function I is to

minimize squared Sharpe ratio of pricing errors (or equivalently maximize R2
GLS), subject to

L2-penalty. In addition, I include factors into the model based on their ability of explaining

time-series variations. That is to say, I include the first K largest PCs into analysis when I

consider a K−factor model.

Kozak, Nagel, and Santosh (2020) extends equation (16) by including the L1-penalty,

min
b

{
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) + 2v1|b|1 + v2b

>b

}
. (17)

Since the principal components are uncorrelated by constructions, its covariance matrix ΣF

is diagonal with elements equal to eigenvalues of the covariance matrix of test assets. The

closed-form solution to optimization problem (17) is

λ̂i,KNS =


µF,i−v1
σ2
F,i+v2

, if µF,i ≥ v1,

0, if µF,i < v1,
(18)
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so the above algorithm selects a certain factor j whenever it has a mean greater than v1. In

other words, v1 controls the sparsity of factor models. Moreover, factors with small variances

are shrunk more heavily by the L2-penalty. This makes sense as those factors are more likely

to be idiosyncratic risks that should not command sizeable risk premia.

This paper shows the empirical results using both objective functions (16) and (17).

Suppose systematic factors that explain a large amount of time-series variations can capture

most of the risk premium. In that case, estimates by (16) or (17) should be largely similar.

It also implies that we can find a sparse factor model consisting of large PCs of asset returns.

Finally, I emphasize that I also assume there is only one true SDF. One of this paper’s main

objectives is to determine whether the SDF comprised of canonical, HF, or LF PCs is a

better approximation to the tangency portfolio.

III Empirics

I now proceed to the empirical studies. The first step is to estimate frequency-specific

risk factors using the techniques introduced in Section II and to investigate whether the

SDF composed of HF or LF factors is a better approximation to the tangency portfolio.

Next, I explore whether some celebrated factor models proposed in the literature, such as

Fama-French three factors, can explain these SDFs. Finally, I attempt to understand the

economic fundamentals behinds SDFs. I begin this section with the analysis of 25 Fama-

French portfolios to show how the factor structure of asset returns varies across frequencies.

I then carry out the main analysis in a large cross-section of portfolios, studying which

frequency is salient for the cross-sectional asset pricing.

III.1 Sample and Data

My primary data source comes from the characteristic-managed portfolios in Kozak, Nagel,

and Santosh (2020). The definition of firm characteristics and the data are on Serhiy Kozak’s

website. There are 51 firm characteristics in Kozak, Nagel, and Santosh (2020),11 but I select

39 of them to ensure the sample size large enough to estimate the low-frequency covariance

matrix of asset returns. In the benchmark analysis, I split the sample from August 1963 to

December 2019 into two halves and focus on the out-of-sample performance, which imposes

additional challenges on the estimation due to the smaller subsamples. Firm characteristics

can be further categorized into eight groups, as in Table A2. Kozak, Nagel, and Santosh

(2020) also exclude stocks with market equity below 0.01% of the aggregate US market

11I thank the authors for sharing the data on their website. A more specific description of how to construct
this dataset can be found on Serhiy Kozak’s website: https://sites.google.com/site/serhiykozak/data.
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cap, alleviating the impact of microcaps. Each month, individual stocks are sorted into

10 portfolios based on each of the 39 firm characteristics. They construct portfolios with

weights equal to cross-sectional ranks of a given stock’s characteristic, which is centered and

normalized by the sum of absolute values of all ranks in the cross-section.

I also use the Fama-French 25 size and book-to-market (total variance) portfolios in

Section III.2. I download the data from Ken French’s library. In succeeding analysis, I sup-

plement the main dataset with additional economic variables. Detailed variable definitions

and data sources are provided in Table A1.

III.2 Starting Examples: 25 Fama-French Portfolios

To illustrate how the factor structures vary across frequencies, I start with the 25 Fama-

French size and book-to-market portfolios. The numbers in Figure 1 are 25 portfolios’

factor loadings, equivalently their portfolio weights. The sample spans from August 1963

to December 2019. In each graph, the x-axis shows five buckets of book-to-market ratio,

whereas the y-axis plots five levels of firm size. For instance, ME1 represents small firms,

and BM5 means high book-to-market portfolios. Since PC1 is always the level (identically

market) factor, I will display only the second and third PCs. In addition, I note that PCs

and HF-PCs are almost identical; therefore, I will focus on explaining the difference between

HF-PCs and LF-PCs.

First of all, let us look at Panel (c): In each column, the second HF-PC positively loads

on all large portfolios in ME5 but negatively on small portfolios in ME1. Therefore, HF-PC2

is a size factor. Next, in Panel (d), the portfolio weights of all five portfolios in BM5 (BM1)

are always positive (negative), so HF-PC3 is a value factor. Overall, the size factor is more

important than the value factor at high frequencies.

On the contrary, I observe the opposite at low frequencies. The heat-map in Panel (e)

reveals that the second most crucial LF-PC is the value factor, while the size factor becomes

the third-largest LF-PC, as is evident in Panel (f). This observation is largely compatible

with the economic theory because the value factor often captures the business-cycle risk at

low frequency. For example, Lettau and Ludvigson (2001b) point out that value stocks are

more highly correlated with consumption growth in bad economic states than growth stocks,

so they earn higher average returns. In short, the example in Figure 1 shows that the relative

importance of latent factors can vary across frequencies.
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Figure 1: 25 Fama-French Size-Value Portfolios: 2nd and 3rd PCs

This figure shows the factor loadings of the second and third principal components in the cross-section of
25 Fama-French size-value portfolios. I estimate the factor loadings using the canonical PCA, HF-PCA, and
LF-PCA. See Definition 1 for the algorithm. The sample is from August 1963 to December 2019.
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III.3 Simple Simulation

In this section, I design a simple simulation to illustrate how the frequency-dependent PCA

can recover the conditional information in asset returns. I assume that each asset return

is driven by an IID systematic component (strong factor), a persistent state variable (weak

factor), and an idiosyncratic element,

Rt+1 = µR + βFFt+1 + βxxt + et+1, β
>
FβF = 1, β>xβx = 1, β>Fβx = 0. (19)

Ft+1
iid∼ N (0, σ2

F ), et+1
iid∼ N (0N , σ

2IN ), Ft+1⊥xt⊥et+1,

xt+1 = ρx · xt +
√

1− ρ2
x σx ηx,t+1, ηx,t+1

iid∼ N (0, 1). (20)

In the above model, only the state variable xt can predict asset returns, and it follows an

AR(1) process. Examples of xt include (1) the time-varying mean and variance of consump-

tion growth in the long-run risk model (Bansal and Yaron (2004)), (2) the systemic- and

stock-specific resilience in the recovery following a disaster in the disaster model (Gabaix

(2012)), (3) the surplus consumption ratio in Campbell and Cochrane (1999), and (4)

portfolio-level book-to-market ratio (Haddad, Kozak, and Santosh (2020)). Idiosyncratic

shocks are homogeneous and have an identical variance σ2.

According to example 4, the conditional information βxxt is asymptotically unidentified

if σ2
x <

√
lim N

T
σ2. Factor returns are weakly predicted, so the assumption for a relatively

small σ2
x is reasonable. Furthermore, Ft+1 and xt are priced in the cross-section, so they

enter the linear SDF,

Mt+1 = 1− bF · Ft+1 − bx · xt, (21)

where bF and bx are risk prices of Ft+1 and xt. The expected returns are determined by the

fundamental asset pricing equation E[Mt+1Rt+1] = 0N , which implies

µR = −Cov(Mt+1,Rt+1) = bFβFσ
2
F + bxβxσ

2
x. (22)

Ft+1 and xt are latent, so I extract their tradable proxies. Specifically, I project them into

the space of asset returns and find factor-mimicking portfolios with the highest Sharpe ratio:

Ft+1 : F̃t+1 = β>FRt+1, E[F̃t+1] = bFσ
2
F , Var(F̃t+1) = σ2

F + σ2, SR2
F =

b2
Fσ

2
F

1 + σ2

σ2
F

,

xt : X̃t+1 = β>xRt+1, E[X̃t+1] = bxσ
2
x, Var(X̃t+1) = σ2

x + σ2, SR2
x =

b2
xσ

2
x

1 + σ2

σ2
x

,

where F̃t+1 and X̃t+1 are tradable proxies for Ft+1 and xt and are orthogonal by construction.
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Regarding the simulation setup, I estimate the first PC in the cross-section of 78 test

assets and assume that βF is equal to its factor loadings and the volatility of Ft+1 (σF ) is 8.12

Also, the idiosyncratic shocks have a unit variance (σ2 = 1). In addition, the weak factor

xt has an identical factor loading (βx) as the second PC. However, its variance is small,

σ2
x = 0.5; in other words, the weak factor explains a tiny fraction of time-series variations in

single-period returns. In the cross-section of 78 test assets and 338 monthly observations, the

canonical PCA has difficulty in identifying this factor: The critical value,
√

lim N
T
σ2 ≈ 0.48,

is close to the variance of weak factor. According to past literature, state variables that

can predict asset returns tend to be extremely persistent, such as those in the long-run risk

model, so I set ρ to be 0.9. Finally, I choose the Sharpe ratio of F̃t+1 and X̃t+1 to be 0.25 and

0.30 per month, and their risk prices can be reverse-engineered: bF = 0.032 and bx = 0.735.

Suppose I simulate factors and asset returns using the above model setup. I estimate the

latent factors using canonical PCA, HF-PCA and LF-PCA. Figure 2 is one such example.

The blue solid lines are “true” tradable factors β>FRt+1 and β>xRt+1, and the red dotted

lines show the estimates of factors. As is evident in Panels (a), (c), and (e), I can always

identify the first latent factor. Equivalently, the first latent factor explains the largest fraction

of time-series variations in both short-horizon and long-horizon asset returns.

On the contrary, the weak factor is difficult to identify. Panels (b) and (d) show that

neither canonical PCA and HF-PCA can recover the weak factor related to xt, and the

second PC or HF-PC has an almost zero correlation with the true factor-mimicking portfolio

of xt. The maximal Sharpe ratio implied by the first two PCs or HF-PCs is 0.276. However,

the persistence of the state variables xt magnifies its signal at low frequencies and allows me

to detect it empirically. Panel (f) plots the second LF-PC, which closely tracks the “true”

factor and has a correlation of 0.88. Moreover, the maximal Sharpe ratio implied by the first

two LF-PCs is 0.321. Intuitively, as Figure A2 displays, the low-frequency variance of the

persistent factor is much more considerable than its unconditional variance, so the signal of

this factor passes the critical value
√

lim N
T
σ2 at low frequencies and becomes identified.

Table 1 reports the simulation results of estimation using canonical PCA, HF-PCA, and

LF-PCA in 1,000 simulations. The time-series sample size is 338. For each statistic, I show

its 5th, 25th, 50th, 75th, 95th, mean, and mode. Panel (A) displays the correlation between

the second true factor and estimated PC2 from canonical PCA, HF-PCA, and LF-PCA.

Ideally, the correlation is 1. I focus on the second PC since the first PC is always identified,

so there is no difference among different types of PCAs. The most important observation

12I assume a relatively large σF to make sure that it is a strong factor that is always identified by (HF-
or LF- or canonical) PCA. The simulation results are robust to other σF ∈ {3, 5, 10}. In the data, the first
three - five latent factors often have sizable eigenvalues (volatility) compared to the idiosyncratic volatility,
so this assumption for the strong factor is reasonable.
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Figure 2: Starting example: first two latent factors from canonical, HF-, and LF-PCA

I simulate one sample path of systematic factors and asset returns using the model setup described in the
main text. This graph plots the time series of the first two “true” tradable factors (blue solid lines) and their
estimates (red dotted lines) from canonical PCA (Panels (a) and (b)), HF-PCA (Panels (c) and (d)), and
LF-PCA (Panels (e) and (f)). In addition, corr. refers to the correlation between the true tradable factor
and its estimate. I standardize all time series to have unit variance.
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is that the LF-PC2 has a much more significant correlation with the true second factor.

Specifically, the average correlation between LF-PC2 and the true factor 2 is 0.754, whereas

they are only 0.176 and 0.434 for HF-PC2 and canonical PC2, respectively. Hence, studying

the LF components asset returns recovers a huge part of the persistent state variable.

In panel (B), I construct the MVE portfolios consisting of the first two latent factors:

MVEt = µ̂>F Σ̂−1
F Ft, where Ft is either the first two PCs, HF-PCs, or LF-PCs. Since the

LF-PCA recovers the persistent priced state variable, the LF-MVE portfolio has a greater

Sharpe ratio than the other two portfolios. Panel (C) further reports the correlation among

the HF-MVE, canonical-MVE, and LF-MVE portfolios. The MVE portfolios composed

of the HF- and canonical PCs are highly correlated, with an average correlation of 0.937.

However, the PCA can identify the state variable xt in some simulations when the HF-PCA

fails, so their MVE portfolios have correlations less than 0.746 in 5% of these simulations.

Finally, I decompose MVEHF
t and MVELF

t in Panel (D),

MVELF
t = γHFMVEHF

t + MVEmissing
t , MVEHF

t = γHFMVELF
t + MVEunpriced

t .

I report the Sharpe ratio of MVEmissing
t and MVEunpriced

t and also their correlation coeffi-

cients with the second factor. On average, the missing-MVE portfolio (MVEmissing
t ) has a

correlation of 0.666 with the second true factor and yields a Sharpe ratio of 0.193. It implies

that the HF-PCA misses important conditional information xt. On the contrary, the un-

priced MVE portfolio (MVEunpriced
t ) has a negative correlation with the second true factor,

but its Sharpe ratio is almost zero. Hence, the LF-MVE portfolio can be decomposed into

two components: The first component, which is linear in the HF-MVE portfolio, identifies

the IID shock driving a large proportion of common variations in asset returns, and the

second component is the missing-part, mainly reflecting the slow-moving state variable.

In short, the simulation results confirm that both canonical PCA and HF-PCA often fail

to identify the weak factor. However, if the weak factor is slow-moving, its signal can soar

at low frequencies so that the LF-PCA can identify it.

III.4 Out-of-Sample Performance: 78 Test Assets

In this section, I examine a large cross-section of 39 firm characteristics from Kozak, Nagel,

and Santosh (2020). Following the past literature such as Lettau and Pelger (2020b), I include

both the short and long legs into my analysis, so there are 78 test assets. I focus only on

two extreme portfolios for two reasons. First, if I consider all 10 sorted portfolios for each

characteristic, there are 390 portfolios. This large cross-section is particularly challenging

for the LF-PCA, which uses only long-run components of asset returns in estimation. It
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Table 1: Simulation Results

5th 25th 50th 75th 95th Mean Mode
Panel (A). Correlation between 2nd true factor and its estimate

corr(β>xRt+1, (β̂
PC
x )>Rt+1) 0.041 0.228 0.449 0.640 0.798 0.434 0.556

corr(β>xRt+1, (β̂
HF
x )>Rt+1) 0.012 0.069 0.154 0.257 0.431 0.176 0.053

corr(β>xRt+1, (β̂
LF
x )>Rt+1) 0.451 0.706 0.791 0.847 0.900 0.754 0.831

Panel (B). Sharpe ratio of MVE portfolios
Sharpe ratio of MVEPC

t 0.179 0.232 0.272 0.313 0.374 0.274 0.264
Sharpe ratio of MVEHF

t 0.163 0.218 0.254 0.292 0.347 0.255 0.249
Sharpe ratio of MVELF

t 0.210 0.279 0.325 0.378 0.473 0.330 0.332

Panel (C). Correlation between MVE portfolios
corr(MVEPC

t ,MVEHF
t ) 0.746 0.919 0.971 0.993 0.999 0.937 0.992

corr(MVEHF
t ,MVELF

t ) 0.497 0.665 0.789 0.899 0.979 0.770 0.917
corr(MVEPC

t ,MVELF
t ) 0.599 0.771 0.868 0.937 0.985 0.840 0.943

Panel (D). Difference between MVEHF
t and MVELF

t

Sharpe ratio of MVEmissing
t 0.035 0.114 0.189 0.260 0.363 0.193 0.199

Sharpe ratio of MVEunpriced
t 0.001 0.003 0.008 0.019 0.055 0.015 0.004

corr(β>xRt+1,MVEmissing
t ) 0.197 0.623 0.740 0.812 0.881 0.666 0.788

corr(β>xRt+1,MVEunpriced
t ) -0.741 -0.627 -0.514 -0.392 -0.087 -0.475 -0.520

This table reports the simulation results in 1,000 simulations. I estimate the systematic factors using
canonical PCA, HF-PCA, and LF-PCA. For each statistic, I show its 5th, 25th, 50th, 75th, 95th, mean,
and mode. In Panel (A), I consider the correlation between the second true factor and estimated PC2
from canonical PCA, HF-PCA, and LF-PCA. Ideally, the correlation should be 1. In Panel (B), I construct

the mean-variance efficient (MVE) portfolios consisting of the first two latent factors: MVEt = µ̂>F Σ̂−1F Ft,
where Ft is either the first two canonical PCs, HF-PCs, or LF-PCs. Panel (c) reports the correlation between

MVEPC
t , MVEHF

t , and MVELF
t . Next, I decompose MVEHF

t and MVELF
t in Panel (D) as follows:

MVELF
t = γHFMVEHF

t + MVEmissing
t ,

MVEHF
t = γHFMVELF

t + MVEunpriced
t .

Finally, I report the Sharpe ratio of MVEmissing
t and MVEunpriced

t and their correlation coefficients with
the second factor.

implies a trade-off between signaling extraction and estimation noise, so I include only two

extreme portfolios to control estimation errors. Also, when I include all 10 sorted portfolios,

the portfolio weights are often the most enormous for portfolios in deciles 1 and 10. In other

words, most of the relevant information comes from two extreme portfolios.

The entire sample is from August 1963 to December 2019. I further split the whole sample

into two equal subsamples. Subsample 1 has 339 monthly observations, spanning from Au-

gust 1963 to October 1991, and I treat it as the in-sample. Subsample 2 is the out-of-sample

(OOS), which is from November 1991 to the end of the sample. As I show in Section II,

estimating a linear SDF composed of asset returns is identical to finding the MVE portfolio
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with the highest achievable Sharpe ratio. It requires me to focus on the OOS performance

of asset pricing models, as the in-sample estimate often exaggerates the attainable Sharpe

ratio in the real world. For instance, the annualized Sharpe ratio of 78 test assets is higher

than 3 in the full sample, which is unreasonably large, according to the good deal bounds in

Cochrane and Saa-Requejo (2000). In addition, McLean and Pontiff (2016) document the

declining performance of many anomalies post-publication, and Kozak, Nagel, and Santosh

(2018) also show that the average returns of 15 factors decrease considerably in the second

subsample. Motivated by the previous papers, this paper estimates the PCs and their risk

prices using data in the first subsample and evaluates the OOS performance in subsample 2.

HF vs. LF Time-Series Variations

First, I look at the time-series variations (TSVs) explained by different frequency-specific

components in the in-sample. The results in the second subsample are largely similar (see

Figure A4). I estimate the spectral density matrix f̂R(ω) via the DFT described in Appendix

A.2, where the algorithm estimates only at frequencies h
360

, h ∈ {1, . . . , 180}. Specially, the

HF component corresponds to the cycle length shorter than 36 months, that is, 360
h
< 36,

whereas the LF part has a cycle period between 36 and 120 months, that is, 36 ≤ 360
h
≤ 120.

Therefore, the sample estimates of ΣHF
R and ΣLF

R are as follows:

Σ̂HF
R =

1

170

180∑
h=11

R
(
f̂R(

h

360
)
)
, Σ̂LF

R =
1

8

10∑
h=3

R
(
f̂R(

h

360
)
)
.

I further define the fraction of time-series variations explained by HF and LF components

as follows:

TSV HF =
tr
[∑180

h=11 f̂R( h
360

)
]

tr
[∑180

h=1 f̂R( h
360

)
] and TSV LF =

tr
[∑10

h=3 f̂R( h
360

)
]

tr
[∑180

h=1 f̂R( h
360

)
] .

If returns are uncorrelated, the spectral density matrix is approximately constant across

frequencies, so the HF (LF, or above-LF) component accounts for 170
180

= 94.5% ( 8
180

= 4.4%,

or 2
180

= 1.1% ) of time-series variations. Empirically, however, this LF part explains 5.1% of

time-series variations, so this slow-moving component is slightly more important than that

predicted by the uncorrelated assumption (see Figure 3(a)).

I further compare Tr
[
Σ̂LF
R

]
to Tr

[
Σ̂HF
R

]
and find that the former is around 1.2 times as

the latter, which means the LF risk is slightly higher than the HF risk. Next, Figure 3(b)

computes the ratio of LF-eigenvalues over HF-eigenvalues. An interesting observation is that

the top 10 eigenvalues of the LF covariance matrix are 1.5 to 2.5 times as those of the HF

one, except for the PC1. Therefore, the LF component has a clearer factor structure.
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Figure 3: Time-series variations in 78 assets, subsample 1

Panel (a) plots the fraction of time-series variations in 78 asset returns explained by the HF, LF, and above-
LF components. Panel (b) plots the ratio of the first 15 low-frequency eigenvalues over high-frequency
eigenvalues. The sample is from August 1963 to October 1991.

Out-of-Sample Sharpe Ratio

With the eigendecomposition of the frequency-dependent covariance matrix of asset re-

turns, I construct OOS latent factors following definition 1: FOOSt = (QIN)>ROOS
t , where

QIN is the eigenvector of the frequency-dependent covariance matrix estimated in the first

subsample, and ROOS
t denotes asset returns in the out-of-sample. In addition, I estimate

risk prices b for different prior Sharpe ratios in the in-sample, with the estimate denoted as

b̂IN . In the benchmark case, I use the objective function in equation (16) and include latent

factors into the regression based on their eigenvalues. In other words, latent factors that

drive more common movements among asset returns enter the SDF first. Next, I construct

the OOS MVE portfolio, MVEOOS
t = (b̂IN)>FOOSt .

Figure 4 is the heat-map of the OOS Sharpe ratio. I present only the HF- and LF-PCA

results to save space, while the graphs of above-LF-PCA and PCA are in the appendix.

In each panel, the x-axis denotes the prior Sharpe ratio of factor models, corresponding to

different levels of L2-shrinkage v2 in equation (16). If I choose a larger prior Sharpe ratio, I

impose a gentler shrinkage to risk prices b. The y-axis is the number of PCs included in the

SDF. In addition, different colors represent different OOS Sharpe ratios. For example, the

red color represents the “nearly” maximal monthly Sharpe ratio that these factor models
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can achieve in the out-of-sample, around 0.35 - 0.38 in the data.

Panel (a) in Figure 4 and Panel (b) in Figure A5 show the results of HF-PCA and

canonical PCA respectively — they have almost identical heat-maps. Generally, the first six

or seven canonical or high-frequency PCs deliver an OOS Sharpe ratio of 0.28-0.29 across

a wide range of prior Sharpe ratios. However, this low-dimensional (HF-)PC model still

ignores an important priced component in the SDF. For example, when the prior Sharpe

ratio is 0.4 or 0.5, in Figure 5, the OOS Sharpe ratio increases gradually from 0.28 to 0.37 as

more (HF-)PCs enter the SDF. Besides, a substantial L2-shrinkage helps reduce the required

number of latent factors. Especially when SRprior = 0.2, I need 20-25 (HF-)PCs to reach

the nearly optimal OOS Sharpe ratio. The factor model composed of the extremely low-

frequency PCs has a similar observation, as is indicated in Panel (a) in Figure A5. Since

the above-LF-component is moving considerably slowly, estimating the covariance matrix is

challenging, so I compare the HF and LF systematic factors and the SDFs composed of them

in the following analysis.

Panel (b) plots the OOS Sharpe ratio of LF-PCs. A distinguishing feature is the sparsity

in the space of LF-PCs. In Figure 5, the first seven LF-PCs are almost sufficient to achieve

the optimal OOS Sharpe ratio, at around 0.37 per month. In other words, seven systematic

factors that explain the most LF common variations in asset returns can span the whole asset

space in the out-of-sample. Moreover, this observation is not sensitive to the choice of prior

Sharpe ratio. With a wide range of reasonable prior, such as SRprior ∈ [0.3, 0.8], the SDF

constructed by the first seven LF-PCs is always nearly optimal in the out-of-sample. Last but

not least, since PCs are no more than linear transformations of original test asset returns

Rt, they contain almost identical information. Therefore, the MVE portfolios consisting

of HF-PCs, LF-PCs, and original PCs earn just about the same OOS Sharpe ratio as the

number of factors entering the SDF approximates N .

Out-of-Sample R2
gls

In addition to the OOS Sharpe ratio, I also investigate the GLS R-squared of factor

models, denoted by R2
gls. With the in-sample estimate of risk prices, I compute the OOS

pricing errors predicted by a factor model, αOOSR = R̄OOS
t −Cov(ROOS

t ,FOOSt )b̂IN , where

Cov(ROOS
t ,FOOSt ) is the sample covariance matrix between OOS asset returns ROOS

t and

OOS factors fOOSt , R̄OOS
t is the sample average of OOS asset returns. R2

gls is defined as

R2
gls = 1− (αOOSR )>(Σ̂OOS

R )−1αOOSR

(R̄OOS)>(Σ̂OOS
R )−1R̄OOS

. (23)

R2
gls has a few satisfying properties. First, R2

gls has a straightforward economic interpre-
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Figure 4: OOS Sharpe ratio of HF- vs. LF-PCA, 78 test assets

This graph plots the heat-maps of the OOS Sharpe ratio of HF- vs. LF-PCA in the cross-section of 78 test
assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the
number of PCs included in the SDF. In addition, different colors represent different levels of OOS Sharpe
ratios. I include the PCs into the SDF based on their ability to explain time-series variations.
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Figure 5: Zoom in OOS Sharpe ratio, SRprior ∈ {0.4, 0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. Different from figure 4, this
figure shows the estimates using two prior Sharpe ratios, SRprior ∈ {0.4, 0.5}.
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tation: It quantifies the proportion of the squared Sharpe ratio of test assets explained by

a factor model. Also, the objective function in equation (16) is to maximize R2
gls. There-

fore, it is natural to compare R2
gls in the out-of-sample, consistent with my objective func-

tion. Last but not least, R2
gls is invariant to any non-singular linear transformation of the

original asset space. Specifically, for an arbitrary transformation of asset returns, such as

Y OOS
t = P>ROOS

t , where P is nonsingular, R2
gls of pricing Y OOS

t is exactly identical to

that of ROOS
t . By focusing on R2

gls, there is no need to choose whether the SDF should price

original asset returns or their transformation, such as PCs.

Figure 6 plots the heat-maps of OOS R2
gls of HF- and LF-PCA. Related plots of above-

LF-PCA and original PCA can be found in Figure A6. Similar to the OOS Sharpe ratio,

the PCA and HF-PCA share similar patterns — I need many latent factors to obtain the

optimal OOS R2
gls. On the contrary, I can choose a relatively parsimonious SDF consisting of

LF-PCs. For instance, when SRprior is between 0.5 and 0.8, the OOS R2
gls of a 7 LF-factor-

model is around 18% – 20%. Overall, the exploration of R2
gls provides further evidence on

the sparsity of LF-SDF. At the same time, the HF-SDF always needs more than 30 latent

factors to achieve a nearly optimal OOS R2
gls.
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Figure 6: OOS R2
gls of HF- vs. LF-PCA, 78 test assets

This graph plots the heat-maps of the OOS R2
gls of HF- vs. LF-PCA in the cross-section of 78 test assets.

In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the number
of PCs included in the SDF. In addition, different colors represent different levels of OOS R2

gls. I include the
PCs into the SDF based on their ability to explain time-series variations.

Zoom in High-Frequency Intervals

In the previous analysis, I define the HF interval as τHF ∈ [2, 36) and find the sparsity

of latent factor models only at low frequencies. However, the definition of the HF interval

is probably too wide to capture certain pricing information at a specific high frequency. For

instance, the short-term reversal in Jegadeesh (1990) manipulates extremely fast-moving
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information in predicting future stock returns. To explore whether the performance of latent

factor models varies significantly under alternative definitions of HF intervals, I consider a

further division of τHF ∈ [2, 36): (1) [2, 3), (2) [3, 6), (3) [6, 12), and (4) [12, 36). Next, I will

examine the OOS Sharpe ratio of latent factor models in these four HF intervals.

Figure 7 plots the heat-maps of the OOS Sharpe ratio of latent factor models composed

of PCs in these four HF intervals. Clearly, I always need more than 20 latent factors to

achieve the optimal OOS Sharpe ratio. In addition, the performance of factor models is

sensitive to the choice of the L2-penalty — a significant penalty or a small prior Sharpe

ratio is necessary to ensure a decent OOS performance. Hence, the sparsity of latent factor

models only exists in the LF frequency interval [36, 120).
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Figure 7: Robustness Check: OOS Sharpe ratio of 78 test assets, different HF intervals

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, where I divide the HF intervals into four
sub-intervals: [2, 3), [3, 6), [6, 12) and [12, 36). In each panel, the x-axis denotes the prior Sharpe ratio of the
factor model, while the y-axis is the number of PCs included in the SDF.

The previous empirical results shed light on the dynamics of priced state variables in

the cross-section of 78 test assets. According to Proposition 2, the maximal Sharpe ratio

implied by the SDF is frequency-dependent only due to state variables Xt. More impor-
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tantly, it implies that
∑p

j=1 b
2
X,ifXi

(ω), the second term in the spectral density function of

the SDF, is on average larger at low frequencies. While either the canonical or HF-PCA fails

to identify this persistent state variable, the LF-PCA recovers it as one of the largest factors

explaining time-series variations in long-horizon asset returns. This conditional information

is also priced in the cross-section. In the language of ICAPM (Merton (1973)), stock market

participants have the incentive to hedge some slow-moving state variables, as those state

variables can predict the future stock returns and economic environments and therefore af-

fect investors’ future investment opportunity set. Because of the hedging demand, the state

variables command non-zero risk prices, so a valid SDF should not omit them. Finally, the

fast-moving state variables are not essential in the monthly data. As Figure 7 indicates, the

SDF is similarly dense in the space of extremely HF systematic factors.

Kozak, Nagel, and Santosh (2020) Estimation: Imposing Model Sparsity

As previous empirical results indicate, an SDF composed of (HF-)PCs cannot be par-

simonious in terms of either the OOS Sharpe ratio or R2
gls. What if I impose the sparsity

of factor models? In this part, I follow the Kozak, Nagel, and Santosh (2020) procedure,

described in equation (17), that includes L1 shrinkage. According to the closed-form solu-

tion in equation (18), this procedure selects PCs with higher in-sample average returns first.

Also, a larger v1 renders more factors to have zero risk prices, so this algorithm enforces the

sparsity of factor models.

I show the OOS Sharpe ratio of the MVE portfolios from the Kozak, Nagel, and Santosh

(2020) estimation in Figure 8. First, 15 PCs or 20 HF-PCs and canonical PCs can deliver the

nearly optimal Sharpe ratio, so the SDF does become sparser. However, it must be the case

that the objective function chooses some small PCs that have essential pricing information.

At the same time, the Kozak, Nagel, and Santosh (2020) procedure can still discover a sparse

LF-SDF, with the first seven LF-PCs commanding a 0.4 monthly Sharpe ratio. According

to the heat-maps of OOS Sharpe ratio in Figure A7, the LF-SDF is always sparse when the

prior Sharpe ratio that I use to estimate the risk prices of LF latent factors is greater than

0.3.

Factor models that have been proposed in past literature are mostly sparse, such as the

Fama-French three-factor model. However, there is no particular reason why a factor model

must be sparse, even though people often pursue parsimonious models. Giannone, Lenza, and

Primiceri (2021) call this “the illusion of sparsity.” Moreover, it is almost unlikely to select

a few firm characteristics, such as size and book-to-market ratio, and use them to span the

whole asset space. For instance, Kozak, Nagel, and Santosh (2020) show that characteristics-

sparse SDFs formed from a few factors cannot appropriately explain the cross-section of

31



●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
MVELF−7

0.2

0.3

0.4

0 20 40 60 80
Number of PCs

S
R

oo
s

Models:
HF LF PCA

(a) SRprior = 0.4

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
MVELF−7

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 20 40 60 80
Number of PCs

S
R

oo
s

Models:
HF LF PCA

(b) SRprior = 0.5

Figure 8: OOS Sharpe ratio, Kozak, Nagel, and Santosh (2020) estimation

This graph zooms in the OOS Sharpe ratio of the canonical PCA, HF-PCA, and LF-PCA. The prior monthly
Sharpe ratio is set to be 0.4 in Panel (a) and 0.5 in Panel (b). I estimates risk prices using the Kozak, Nagel,
and Santosh (2020) algorithm described in equation (17). Latent factors are PCs of 78 test asset returns.

expected stock returns in the out-of-sample. In addition, Bryzgalova, Huang, and Julliard

(2021) use a continuous spike-and-slab Bayesian prior to study 51 observable tradable and

nontradable factors, and they find that within a wide range of reasonable prior Sharpe ratios

of the SDF, 95% posterior credible intervals of the number of factors in the true model are

between 16 and 32.

Why do we desire the sparsity of latent factor models? According to Kozak, Nagel, and

Santosh (2018), the absence of near arbitrage opportunities implies that factors capturing

the most systematic common variations in asset returns are non-diversifiable, so market

participants earn non-zero risk premia for taking these risks. However, I observe some small

(HF-)PCs bringing nontrivial risk premia. These factors explain less than 0.1% of the time-

series variation, which implies that they are idiosyncratic shocks. Accordingly, they should

not command sizable risk premia; otherwise, arbitrageurs can include those small PCs into

their portfolio without increasing their investment risk significantly — instead, the sparsity

of LF-SDF solves this puzzle to some extent.

How should we interpret the sparsity of the LF-SDF? On the one hand, it makes economic

sense to observe a sparse LF-SDF. Suppose investors are buy-and-hold investors who pay

more attention to the long-term trade-off between risk and returns, or investors have Epstein-

Zin preference and are particularly risk-averse to the long-run uncertainty. Under these

scenarios, the LF-SDF should imply a higher Sharpe ratio than the HF-SDF, because those

LF systematic factors are the most risky in the long horizon. On the other hand, some

persistent state variables explain a small fraction of common variations in single-period
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returns, but they are much more prominent in the long horizon. Hence, the LF-PCA boosts

the signal of this persistent conditional information and recovers them partially or wholly.

III.5 Do celebrated models explain HF and LF risks?

This section further compares the OOS MVE portfolios of latent factors with the following

benchmark models: (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama

and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou,

Xue, and Zhang (2015) four factors (Q4). First of all, I examine whether these five sparse

factor models can explain HF- and LF-MVE portfolios by running time-series regressions as

follows:13

MVEZ
t = α + β>Bt + ηt, Z ∈ {HF,LF},

where Bt is one of the five benchmark models mentioned before. I report three test-statistics

in Table 2: (1) α, (2) t-statistics of α, and (3) the adjusted R-squared, denoted as R2
adj. To

control for the serial dependence of pricing errors, I use Newey and West (1987) standard

errors with both 36 lags (t-stat I) and 12 lags (t-stat II). In Table 2, I estimate risk prices of

PCs under the prior Sharpe ratio equal to 0.4. To enhance interpretability, I normalize all

MVE portfolios to have the same volatility as the market factor.

The first panel in Table 2 examines CAPM. Not surprisingly, the market factor alone

entirely fails to explain neither HF- nor LF-MVE portfolios. The pricing errors are enormous,

always greater than 1% per month. Moreover, LF-MVE portfolios always have higher alphas

and t-statistics than HF ones; hence, they are more difficult ro explain. Interestingly, I

observe relatively low R2
adj, less than 10% in all columns. Since the first PC in the cross-

section is always a level factor that is highly correlated with the market factor, the low R2
adj

in CAPM implies that the SDF loads heavily on other lower-order latent factors.

FF3 extends CAPM by including the size and value factors. Compared to CAPM, FF3

slightly reduces the pricing errors and significantly increases R2
adj, particularly in the regres-

sion of HF-MVE portfolios. However, FF3 still fails to explain the OOS MVE portfolios of

latent factors.

Carhart4 includes the momentum factor into FF3. Intriguingly, the alphas of MVE

portfolios reduce by more than 40% compared to the previous two regressions, although all

remain significantly positive. Moreover, the inclusion of the momentum factor improves the

time-series fit dramatically. For example, Carhart4 explains 52% of time-series variation in

the MVE portfolio of seven LF-PCs, while R2
gls in FF3 is just 16%.

13Empirically, the MVE portfolios composed of the first several HF or canonical PCs are almost identical.
Specifically, their correlation coefficients are around 98 – 99%. Therefore, I focus on comparing HF- and
LF-MVE portfolios.

33



In the last two panels, I consider two models with both investment and profitability

factors in them. Simply speaking, FF5 differs from Q4 in the additional value factor in

FF5, and they adopt a slightly distinct approach to construct factors. In addition, Q4 is

better at explaining the MVE portfolios than FF5. Notably, pricing errors of HF-MVE

portfolios are remarkably smaller, declining to around 0.3% per month, and are no longer

significant, except for t-statistic I in the column of seven HF-PCs . On the other hand,

LF-MVE portfolios still have sizable and statistically significant pricing errors, at around

0.7% per month. I have similar empirical findings under another prior Sharpe ratio equal to

0.5 (see Table A3 in the appendix).

In short, none of the five benchmark models can explain LF-MVE portfolios, while the

Q4 model in Hou, Xue, and Zhang (2015) is capable of rationalizing the abnormal returns

of the HF-MVE portfolios.

Table 2: Do celebrated models explain HF and LF risks?

Panel (A). MVEHF
t Panel (B). MVELF

t

7 PCs 8 PCs 9 PCs 10 PCs 7 PCs 8 PCs 9 PCs 10 PCs
CAPM α 1.03% 1.00% 1.16% 1.18% 1.39% 1.38% 1.38% 1.41%

t-stat I (2.89) (2.47) (2.88) (2.99) (3.57) (3.72) (3.72) (3.76)
t-stat II (3.05) (2.72) (3.16) (3.28) (4.48) (4.60) (4.60) (4.60)
R2
adj 8.02% 5.55% 0.30% 0.44% 7.41% 6.38% 5.76% 4.36%

FF3 α 0.80% 0.77% 0.94% 0.98% 1.27% 1.27% 1.27% 1.29%
t-stat I (4.87) (3.91) (4.29) (4.44) (4.45) (4.65) (4.65) (4.75)
t-stat II (4.76) (4.13) (4.60) (4.73) (5.82) (5.95) (5.97) (6.05)
R2
adj 40.97% 38.39% 31.92% 26.44% 15.84% 14.24% 13.06% 12.05%

Carhart4 α 0.44% 0.39% 0.57% 0.59% 0.83% 0.82% 0.81% 0.84%
t-stat I (3.18) (2.61) (3.09) (3.18) (3.75) (3.88) (3.87) (3.91)
t-stat II (2.81) (2.39) (3.08) (3.14) (4.40) (4.46) (4.45) (4.44)
R2
adj 65.13% 65.62% 57.00% 53.91% 52.36% 51.2% 51.81% 50.21%

FF5 α 0.43% 0.43% 0.48% 0.53% 0.87% 0.84% 0.83% 0.84%
t-stat I (2.55) (2.36) (2.87) (3.11) (3.15) (3.17) (3.12) (3.13)
t-stat II (2.43) (2.42) (3.24) (3.43) (3.94) (3.88) (3.81) (3.87)
R2
adj 49.98% 48.09% 48.77% 41.91% 27.95% 28.02% 27.52% 27.26%

Q4 α 0.32% 0.23% 0.26% 0.33% 0.76% 0.73% 0.71% 0.72%
t-stat I (2.07) (1.30) (1.47) (1.81) (2.77) (2.82) (2.75) (2.81)
t-stat II (1.60) (1.10) (1.30) (1.61) (3.25) (3.22) (3.14) (3.24)
R2
adj 42.81% 39.87% 44.7% 40.47% 31.31% 31.35% 31.71% 31.16%

This table tests whether five sparse factor models proposed in past literature can explain the MVE portfolios
composed of latent factors. I construct the MVE portfolios using the first seven to 10 latent factors following
the same steps as in the section III.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.4.
The five benchmark models include (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou, Xue, and
Zhang (2015) four factors (Q4). I report three test-statistic in table 2: (1) α, (2) t-statistics of α, and (3)
adjusted R-squared, denoted as R2

adj . To control for the serial dependence of pricing errors, I use Newey and

West (1987) standard errors with both 36 lags (t-stat I) and 12 lags (t-stat II).

Next, I test whether LF-MVE portfolios can explain HF-MVE ones or whether the oppo-
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site is valid. Similarly, I run time-series regressions, but the benchmark model Bt becomes

either MVEHF
t or MVELF

t . Table 3 reports the results under the prior Sharpe ratio 0.4.

In Panel (a), I regress MVEHF
t on MVELF

t , both of which are constructed by the first

seven, eight, nine, and 10 PCs. First, pricing errors are almost zeros in the statistical sense

and less than 0.1% per month. In other words, the LF-MVE portfolios can span the HF-

MVE portfolios. On the other hand, I regress MVELF
t on MVEHF

t in Panel (b). Unlike

Panel (a), pricing errors are always significantly positive, implying that the HF-MVE ignores

an essential priced component of LF-MVE.

To sum up, the evidence in Tables 2 and 3 indicates that MVE portfolios, or SDFs,

consisting of LF-PCs, should be the right benchmark. The first few LF-PCs can construct

an LF-SDF that yields nearly optimal OOS Sharpe ratio, and none of the five notable factor

models proposed in the past literature or HF-MVE portfolios can explain them. At the same

time, they can fully explain HF-MVE portfolios in the out-of-sample.

Table 3: Which benchmark? HF vs. LF Tangency Portfolios

Panel (A): Panel (B):
MVEHF

t = α + βMVELF
t + et MVELF

t = α + βMVEHF
t + et

7 PCs 8 PCs 9 PCs 10 PCs 7 PCs 8 PCs 9 PCs 10 PCs
α -0.10% -0.10% 0.10% 0.00% 0.60% 0.60% 0.70% 0.60%
t-stat I (-0.74) (-0.62) (0.51) (-0.08) (3.29) (4.19) (2.79) (2.70)
t-stat II (-0.63) (-0.52) (0.44) (-0.07) (4.01) (4.50) (3.04) (3.06)
R2
adj 68.89% 62.68% 53.86% 63.23% 68.89% 62.68% 53.86% 63.23%

This table tests whether the LF-MVE portfolio can explain the HF-MVE or whether the opposite is valid.
I construct the MVE portfolios using the first 7 – 10 latent factors following the same steps as in Section
III.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.4. I report three test-statistic in
Table 2: (1) α, (2) t-statistics of α, and (3) adjusted R-squared, denoted as R2

adj . To control for the serial

dependence of pricing errors, I use Newey and West (1987) standard errors with both 36 lags (t-stat I) and
12 lags (t-stat II).

III.6 Origins of Economic Risks in SDFs

Why do I observe the sparsity of latent factor models only in the space of LF-PCs? Why

do sparse LF-MVE portfolios earn higher Sharpe ratios than those composed of the first

few HF or canonical PCs? Do they represent different sources of economic fundamentals?

This section attempts to answer these questions by studying the economic drivers behind

the linear SDFs consisting of HF and LF systematic factors.

I consider the SDFs composed of the first seven HF-PCs or LF-PCs. I denote them as the

HF-SDF and LF-SDF, respectively. From the heat-maps in Figure 4, the first seven LF-PCs

can generate nearly optimal OOS Sharpe ratios under a wide range of prior distributions.

In addition, the inclusion of extra PCs into the SDF adds enormous unpriced noises but
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minimal additional pricing information. Last but not least, the space of the first seven HF-

PCs is almost identical to that of the first seven canonical PCs, so I focus on comparing the

HF-SDF to LF-SDF.

Past literature often uses the first several largest PCs of single-period returns, which are

empirically identical to HF-PCs, to construct the linear SDF. However, my previous empirical

findings indicate that such SDFs can neglect a vast priced component. Hence, I decompose

the LF-SDF14 (MLF
t ) into two components, the first of which is perfectly correlated with

the HF-SDF (MHF
t ) and another of which is the orthogonal part as follows:

MLF
t = βHFMHF

t +Mmissing
t , MHF

t ⊥M
missing
t . (24)

Similarly, I project the HF-SDF into the linear space of the LF-SDF and extract an uncor-

related component, denoted by Munpriced
t ,

MHF
t = βLFMLF

t +Munpriced
t , MLF

t ⊥M
unpriced
t . (25)

Table 4 reports the correlation matrix and Sharpe ratios implied byMLF
t ,MHF

t ,Mmissing
t ,

and Munpriced
t . As mentioned before, MLF

t implies a higher Sharpe ratio than MHF
t , and

both SDFs imply statistically significant Sharpe ratios with t-statistics greater than 4. More-

over, MHF
t accounts for only 69% of the time-series variation of MLF

t but misses a consid-

erable component Mmissing
t that earns a monthly Sharpe ratio of around 0.2 and has a

t-statistic equal to 4.6. In the following tables, I call Mmissing
t the missing-SDF, which

means that the traditional PCA or HF-PCA misses a huge priced component of the LF-

SDF. Not surprisingly, the part of HF-SDF orthogonal to LF-SDF has almost zero Sharpe

ratio, so this is an unpriced component. Hence, I will call Munpriced
t the unpriced-SDF.

Table 4: Correlation among MLF
t , MHF

t , Mmissing
t , and Munpriced

t

Corr. MLF
t Munpriced

t MHF
t Mmissing

t SR t-stat (36 lags)
MLF

t 1.00 0.376 6.22

Munpriced
t 0.00 1.00 0.037 0.67

MHF
t 0.83 0.56 1.00 0.292 4.71

Mmissing
t 0.56 -0.83 0.00 1.00 0.240 4.56

This table plots the correlation matrix and Sharpe ratio (SR) of the following four variables: MLF
t , MHF

t ,

Mmissing
t , and Munpriced

t . MLF
t and MHF

t are OOS MVE portfolios composed of the first seven HF- or
LF-PCs, and they are constructed by the procedures in Section III.4 under the prior Sharpe ratio 0.4. The
last column reports the t-statistics of Sharpe ratio using the Newey and West (1987) standard errors with
36 lags. The out-of-sample period spans from November 1991 to December 2019.

14In this paper, the SDF is equal to one minus the MVE portfolio: Mt = 1 −MVEt. Hence, it is
equivalent to studying the MVE portfolios.
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The findings in Table 4 also relate to literature that attempts to denoise the tradable

factor. For instance, Golubov and Konstantinidi (2019) decompose the market-to-book ra-

tio into market-to-value and value-to-book components — the market-to-value component

drives nearly all the risk premium of the value strategy. In addition, Daniel, Mota, Rottke,

and Santos (2020) document that unpriced components explain a reasonably large amount of

Fama-French five factors, and they propose a novel way to hedge the unpriced components.

By focusing on the long-term comovement of asset returns, the LF-SDF significantly reduces

the unpriced component.

Dynamics of SDFs: Variance Ratio Test

Theoretically, the LF-PCA has a better finite sample performance than the HF-PCA

and canonical PCA because studying the long-horizon returns boosts the signal of some

persistent conditional information driving the asset returns and detects them empirically.

If the previous argument is valid, the LF-SDF must capture some conditional information

ignored by the HF-SDF, so LF-SDF should have a different dynamic across multiple horizons.

To explore the dynamics of SDFs, I resort to the variance ratio test, which is calculated as

V R(h) =
Var(Mt,t+1 + · · ·+Mt+h−1,t+h)

h× Var(Mt,t+1)
, (26)

where Mt,t+1 is the single-period SDF. I can also rewrite the variance ratio as a weighted

average of the autocorrelations of Mt,t+1. A useful benchmark is the IID case, where the

variance ratio test equals 1 at any horizon.

Figure 9 displays the variance ratios forMLF
t ,MHF

t ,Mmissing
t , andMunpriced

t . The blue

dotted lines are 95% confidence intervals of the variance ratios. If the solid red line crosses

the dotted blue lines, I can reject the null hypothesis of the IID assumption. Panels (a)

and (b) show the variance ratios for the HF-SDF and LF-SDF, respectively. While the HF-

SDF exhibits limited autocorrelation over time, the LF-SDF displays a remarkable deviation

from the IID assumption. For example, a five-year investor holding the LF-MVE portfolio is

subject to double the variance of an investor with a monthly holding period. In addition, the

variance ratio of the LF-SDF peaks between the six- and seven-year horizon, but it starts to

decrease slowly after the seven-year horizon. Intuitively, the LF-SDF is riskier than HF-SDF

from the perspective of long-term investors, so it should command a higher Sharpe ratio to

compensate for bearing additional low-frequency risks.

Clearly, there are essential persistent components in the dynamic of the LF-SDF. Panel

(c) further plots the variance ratio for the missing-SDF, which manifests a similar dynamic

as the LF-SDF. Combining the evidence in Panels (a), (b), and (c), I conjecture that the
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(a) HF-SDF
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(b) LF-SDF
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(c) Missing-SDF
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(d) Unpriced-SDF

Figure 9: Variance Ratio of the SDF Components

This graph plots the variance ratios of MLF
t , MHF

t , Mmissing
t , and Munpriced

t , calculated as

V R(h) =
Var(Mt,t+1 + · · ·+Mt+h−1,t+h)

h×Var(Mt,t+1)
,

where Mt,t+1 is the single-period SDF. The HF-SDF and LF-SDF consist of the largest seven HF- and
LF-PCs. The prior (monthly) Sharpe ratio used to estimated the risk prices is set to be 0.4. The blue dotted
lines are 95% confidence intervals of the variance ratios. If the red solid line crosses the blue dotted lines, I
can reject the null hypothesis of the IID assumption for the linear SDFs.
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LF-SDF, which is the suitable benchmark and captures the highest attainable Sharpe ratio,

contains two components: (1) the first component is spanned by the HF-SDF, which mainly

captures the short-term information in asset returns and is roughly conditionally uncorre-

lated over time, and (2) the second component is ignored by canonical PCA, which identifies

some persistent information that commands sizable risk premium. Panel (d) also presents

the variance ratio for the unpriced-SDF. I confirm that this component mainly reflects short-

horizon information, with a decreasing variance ratio after two years.

Cumulative Returns of MVE Portfolios

Next, I examine the cumulative performance from the perspective of an investor of the

LF-MVE, HF-MVE, missing-MVE, and the market portfolio. To increase interpretability,

I normalize all portfolio returns to have the same volatility as the market portfolio, about

4.2% per month. The portfolio weights of the MVE portfolios are determined by the data in

the first subsample, so there is no looking-forward bias. Figure 10 plots the log of cumulative

excess returns from November 1991 to December 2019 (OOS). The solid red line indicates

that the LF-MVE portfolio has the best long-horizon performance, with a log cumulative

excess return of around 5. As a comparison, the investor earns cumulative log-returns of

3.83 and 2.03 in the HF-MVE portfolio (solid blue line) and the market portfolio (solid green

line), respectively. Another surprising fact is that investors of the MVE portfolios do not

lose money during the dot-com bubble, while the market portfolio experiences a -40% return.

However, the market values of all portfolios plummet during the 2008 global financial crisis.

The missing-MVE portfolio (solid orange line) is the component of the LF-MVE that is

uncorrelated with the HF-MVE portfolio, and its behaviors are different from the HF-MVE

portfolio. For instance, the missing-MVE portfolio has an extraordinary performance in the

late 1990s, while the HF-MVE portfolio has an almost zero excess return during the same

period.

With the decompositions of SDFs in equations (24) and (25), I examine how each com-

ponent in Table 4 relates to economic risks. Specifically, I regress each economic variable

on different SDF components and conduct statistical tests on the correlation coefficients

between each economic variable and SDFs.

There are two primary objectives for these regressions. First, I attempt to understand the

economics behind SDFs. For example, the LF-SDF implies a higher Sharpe ratio than the

HF-SDF. However, the extra Sharpe ratio earned by the missing-SDF (Mmissing
t ) is probably

the compensation for bearing economic risks that the HF-SDF does not load on. Moreover,

given the LF-SDF as the proper benchmark, I desire to learn whether different economic

risks drive the HF component (βHFMHF
t ) and the persistent component (Mmissing

t ).
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Figure 10: Log Cumulative Excess Returns of the MVE Portfolios

This graph plots the log of cumulative excess returns of the LF-MVE, HF-MVE, Missing-MVE (from table
4), and market portfolios. I normalize the LF-MVE, HF-MVE, Missing-MVE portfolios to have the same
monthly volatility as the market portfolio. The sample spans from November 1991 to December 2019. Shaded
areas denote the NBER recession periods: (1) 2001/03 – 2001/11 and (2) 2007/12 – 2009/06.

Second, it helps study the risk premium of a nontradable economic factor. As Cochrane

(2009) indicates, we can define its risk premium as −Cov(Yt,Mt), where Yt is the nontrad-

able factor. Similarly, Giglio and Xiu (2021) show that we should project a nontradable

factor into the space of the largest principal components of a huge cross-section of test as-

sets. However, Section III.4 points out that the SDF constructed by either PCs or HF-PCs

potentially ignore an important priced component of the true SDF. According to equation

(24), Cov(Yt,MLF
t ) = βHFCov(Yt,MHF

t ) + Cov(Yt,Mmissing
t ). An economic variable can be

uncorrelated withMHF
t but significantly correlated with the missing part,Mmissing

t . Hence,

the study of LF latent factors provides additional insights into nontradable economic risks.

Table 5 reports the results. I consider eight economic variables, whose definitions are

in Table A1. I standardize both dependent and independent variables so that readers can

interpret all coefficient estimates as correlations. Similar to previous tables, I report two

t-statistics using Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2)

12 lags (t-stat II). Since macro variables are sometimes extremely persistent, I also report

dependent variables’ first-order autoregressive (AR(1)) coefficients (ρ). For example, if ρ is
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close to 1, the economic variable is virtually a random walk process, making all statistical

inference based on asymptotic normality invalid.

In Panel (A), I regress each nontradable economic variable Yt on MHF
t and Mmissing

t ,

while in Panel (B), I regress Yt onMLF
t andMunpriced

t . Since past literature often uses canon-

ical PCs, which are almost identical to HF-PCs, it is intriguing to compare the coefficient

estimates ofMHF
t andMLF

t . Also, if their coefficients are hugely different, the missing-SDF

Mmissing
t or the unpriced-SDFMunpriced

t should explain the difference. In Table 5, I estimate

the risk prices of factors under the prior Sharpe ratio 0.4. I consider a robustness check by

adopting another prior Sharpe ratio 0.5, and Table A6 presents the related results. Overall,

the results in Table 5 are not considerably different from those in A6.

Table 5: Economic Fundamentals related to HF- vs. LF-SDFs

Yt : Cnd
t Cnd

t+1 GDPt GDPt+1 NCF
t NDR

t HKMntr
t HKM tr

t V XOar1
t BW ar1

t

Panel (A): Yt = β0 + β1MHF
t + β2Mmissing

t + εt
MHF

t -0.037 0.148 -0.175 0.037 -0.123 -0.299 -0.238 -0.293 0.238 -0.147
t-stat I (-0.410) (1.396) (-0.761) (0.347) (-0.909) (-2.926) (-2.423) (-2.484) (2.525) (-2.540)
t-stat II (-0.412) (1.396) (-0.815) (0.387) (-0.805) (-2.557) (-2.315) (-2.410) (2.557) (-2.716)

Mmissing
t -0.218 -0.229 -0.180 -0.223 -0.112 -0.043 0.136 0.168 -0.040 -0.013

t-stat I (-1.846) (-3.953) (-1.583) (-2.203) (-1.425) (-0.610) (1.467) (1.581) (-0.826) (-0.171)
t-stat II (-1.940) (-3.953) (-1.759) (-2.484) (-1.431) (-0.591) (1.460) (1.572) (-0.800) (-0.171)

Panel (B): Yt = β0 + β1MLF
t + β2Munpriced

t + εt
MLF

t -0.147 0.004 -0.244 -0.088 -0.164 -0.272 -0.122 -0.149 0.175 -0.130
t-stat I (-1.156) (0.044) (-1.003) (-0.780) (-1.425) (-2.925) (-1.420) (-1.550) (2.125) (-1.922)
t-stat II (-1.139) (0.044) (-1.063) (-0.833) (-1.426) (-3.119) (-1.564) (-1.631) (2.249) (-1.921)

Munpriced
t 0.165 0.272 0.059 0.209 0.025 -0.131 -0.246 -0.303 0.166 -0.071

t-stat I (3.023) (3.513) (0.733) (2.300) (0.201) (-1.399) (-2.328) (-2.368) (2.556) (-1.074)
t-stat II (2.634) (3.410) (0.939) (2.683) (0.195) (-1.223) (-2.140) (-2.270) (2.325) (-1.081)

ρ 0.153 0.153 0.352 0.352 -0.189 -0.108 0.061 0.104 0.116 0.105
R2
adj 4.91% 7.43% 6.30% 5.11% 2.76% 9.13% 7.51% 11.38% 5.80% 2.19%

Sample size 112 111 112 111 338 338 338 338 338 326

This table reports the results of the regressions in which I regress eight economic variables on different
components of SDFs. The dependent variables include (1) and (2) current and one-period ahead quarterly
real nondurable consumption growth, (3) and (4) current and one-period ahead quarterly real GDP growth,
(5) cash-flow news, (6) discount-rate news, (7) nontradable intermediary factor, (8) tradable intermediary
factor, (9) the AR(1) shock in VXO index, and (10) the AR(1) shock in investor (Baker and Wurgler (2006))
sentiments. The SDFs are composed of the first seven principal components of asset returns, and their risk
prices are estimated under the prior Sharpe ratio equal to 0.4. I standardize both dependent and independent
variables so that readers can interpret all coefficient estimates as correlations. I report two t-statistics using
Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2) 12 lags (t-stat II). In addition,
I report dependent variables’ first-order autocorrelation coefficients (ρ). The monthly (quarterly) out-of-
sample runs from November 1991 to December 2019 (Q1 1992 – Q4 2019).

Quarterly Real Consumption Growth

First, I consider the textbook CCAPM, which predicts a negative correlation between
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consumption growth and SDFs. However, past research (e.g., Kan and Zhang (1999)) find

that the quarterly real nondurable consumption growth, commonly used in the past lit-

erature, is not strongly correlated with test assets. In other words, the risk premium of

consumption risk is zero, contradicting the standard textbook prediction.

Column (1) in Table 5 presents the coefficient estimate of quarterly real consumption

growth. Theoretically, when the consumption growth is low in bad economic states, marginal

utility of investors, proxied by the SDF, should be higher, so economic theory predicts

negative correlations. However, the correlation between consumption growth and the HF-

SDF is only marginally negative, with a t-statistic of −0.4. However, Panel (B) shows

that the consumption growth is closely associated with the LF-SDF, with a much higher

correlation coefficient −0.15. The t-statistic (optimal lags) equals −1.2, so I cannot reject

the null hypothesis of zero correlation.

What can explain this huge difference? The missing-SDF is the key, and its correlation

with consumption growth is −0.22 and statistically significant. Suppose that a state variable

predicts future consumption growth and portfolio returns, but it is relatively persistent. The

standard PCA, which is virtually equivalent to HF-PCA, fails to identify the components

related to this state variable; hence, the HF-SDF is not correlated with the consumption

growth. However, the focus on the long-horizon asset returns recovers the identification

of consumption risk. In short, the Mmissing
t is significantly and negatively correlated with

consumption growth, which implies a positive risk premium of consumption risk.

Campbell (1999) suggest an alternative timing convention to calculate the correlation be-

tween consumption growth and asset returns. Specifically, the consumption during a quarter

is a flow. If we think of the consumption observed at quarter t as the consumption level

at the beginning of this quarter, we should use the next-period consumption to compute

consumption growth at quarter t. In other words, I should estimate the correlation between

Cnd
t+1 and Mt. Column (2) in Table 5 displays the results. The missing-SDF is still signifi-

cantly correlated with the next-period consumption growth, and its t-statistic is around -4.

Quarterly Real GDP Growth

Liew and Vassalou (2000) show that HML and SMB positively predict future real GDP

growth. Motivated by this finding, I study whether the quarterly real GDP growth correlates

with SDFs. Intriguingly, only the coefficient estimate of Mmissing
t is significantly negative,

with a t-statistic around −1.8 (see t-statistic II) in Column (3) of Table 5. Although the

correlation coefficients of both MHF
t and MLF

t are not trivial, around −0.2, their standard

errors are so enormous that I cannot reject the null hypothesis of zero correlation. The high

autocorrelation coefficient, equal to 0.35, and small sample size, potentially contribute to
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the notable estimation uncertainty.

In Column (4), I explore whether the SDFs can predict GDP growth in the next quarter.

While both the HF-SDF and LF-SDF have almost zero prediction power, the missing-SDF

negatively predicts the GDP growth. The coefficient estimate is −0.22 and has a t-statistic

around −2. In other words, if the MVE portfolio implied by the missing-SDF experiences

a negative return (or the missing-SDF increases) at quarter t, it predicts that the future

GDP growth will decrease over the next quarter. This finding indicates that persistent state

variables contained in asset returns can predict GDP growth. The missing-SDF captures

this persistent predictor, so it is closely related to GDP growth.

Cash-Flow vs. Discount-Rate News

Campbell and Vuolteenaho (2004) decompose the shocks in the market portfolio into

cash-flow news and discount-rate news.15 In their language, cash-flow news is bad, for

investors’ wealth decreases and the future investment opportunity set is unchanged. On the

contrary, discount-rate news is good since future investment opportunities, quantified by

expected returns, improve.

Campbell and Vuolteenaho (2004) include four state variables: (1) the excess log return

on the market, (2) the term yield spread that is the yield difference between 10-year and

short-term constant-maturity taxable bonds, (3) the pricing-earnings ratio (PE) from Shiller

(2000), and (4) the small-stock value spread that is the difference between log( BE
ME

) of the

small high-book-to-market portfolio and log( BE
ME

) of the small low-book-to-market portfolio.

However, the term yield spread that they used originally is no longer updated, so I replace it

with the difference between the log yield on the 10-year U.S. Constant Maturity Bond and

the log yield on the three-month U.S. Treasury bill, as in Campbell, Giglio, and Polk (2013).

Campbell, Giglio, and Polk (2013) additionally include as a state variable the default spread

(DEF), defined as the difference between the log yield on Moody’s BAA and AAA bonds.

In the monthly data, I find that the default spread does not predict the market portfolio,

so I stick to the four-state-variable VAR regression in Campbell and Vuolteenaho (2004).

Moreover, I estimate the VAR model using monthly data from December 1928 to December

2019 and extract cash-flow and discount-rate news from November 1991 to December 2019.

In Columns (5) and (6) of Table 5, I report the correlation coefficients between SDFs and

two sources of shocks in the market portfolio.

15Campbell and Vuolteenaho (2004) estimate cash-flow and discount-rate news using a first-order VAR
model: Zt+1 = a + ΓZt + ut+1, where Zt+1 is a m-by-1 state vector with the log market excess return
as its first entry. After estimating the VAR(1) model via OLS, they define cash-flow and discount-rate
news as follows: NCF

t+1 =
[
e>1 + e>1 ρΓ(Im − ρΓ)−1

]
ut+1 and NDR

t+1 = e>1 ρΓ(Im − ρΓ)−1ut+1, where e>1 =
(1, 0, . . . , 0)>.
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Cash-flow news is negatively correlated with MHF
t , Mmissing

t , and MLF
t , but none of

their coefficients is statistically significant. The LF-SDF is slightly more relevant to cash-

flow news than the HF-SDF. Overall, the statistical power of these tests is not strong enough

to make decisive conclusions.

Differently, discount-rate news is strongly and negatively correlated with bothMHF
t and

MLF
t , with correlation coefficients around −0.3 and t-statistics around −3. In other words,

discount-rate news earns a significantly positive risk premium. The time-series R2, equal to

9% in column (6), is also considerably higher than in the regression of cash-flow news.

As a robustness check, I also estimate cash-flow and discount rate news by including the

default spread as the fifth state variable in the VAR(1) regression. Columns (1) and (2) of

Table A5 present similar results. The coefficient estimates in the regression are almost un-

changed. In short, not only does discount-rate news explain most of the time-series variation

in return news (see Campbell (1990)), but it is also more critical than cash-flow news as a

source of economic risk for which investors in stock markets require risk compensation.

Intermediary Factor

He, Kelly, and Manela (2017) show that their intermediary factor can price many asset

classes and conclude that financial intermediaries are important marginal investors and key

to understanding asset prices. Their paper defines the intermediary capital ratio as the

aggregate value of market equity divided by aggregate market equity plus aggregate book

debt of primary dealers active. The intermediary capital risk factor, HKMntr
t , is the AR(1)

innovation to the market-based capital ratio of primary dealers. He, Kelly, and Manela

(2017) also define a tradable intermediary factor, denoted as HKM tr
t . As predicted by

intermediary asset pricing theory, such as He and Krishnamurthy (2013), the SDF of financial

intermediaries is higher when a negative shock hits them, so the correlation between their

SDF and the intermediary factor is expected to be negative.

Column (7) in Table 5 studies the nontradable intermediary factor. Panel (A) shows that

the HF-SDF has a significant negative correlation with HKMntr
t , equal to around −0.24 with

a t-statistic of −2.4. However, the LF-SDF has a smaller correlation (−0.12) in absolute

terms, and its t-statistic is only −1.4. Hence, I am on the edge of rejecting the null hypothesis

of zero correlation between HKMntr
t and MLF

t . More surprisingly, Mmissing
t is positively

associated with the intermediary factor, which implies that it hedges the intermediary risk

in the HF-SDF. In other words, the intermediary factor cannot explain the high Sharpe ratio

of Mmissing
t , or makes it even more puzzling.

Column (8) in Table 5 runs similar regressions but uses the tradable intermediary factor.

The observations are largely compatible with those in Column (7). I also report the correla-
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tion between SDFs and quarterly intermediary factors in Columns (3) and (4) of Table A5,

and the empirical patterns are virtually identical.

Even though I do not discover a significant correlation coefficient between the LF-SDF

and the intermediary factor, it does not imply that financial intermediaries do not play an

important role in understanding asset prices. On the one hand, the intermediary factor is

significantly correlated with the HF-SDF, especially its unpriced component, so the inter-

mediary factor, at the very least, drives the common variations in asset returns. On the

other hand, the risk premium of the nontradable factor in He, Kelly, and Manela (2017)

is not statistically different from zero in the monthly regression of stock portfolios, which

is consistent with the insignificant correlation between the LF-SDF and the intermediary

factor. Also, financial intermediaries should be more important in other asset markets, such

as CDS and derivative markets, in which they get involved actively.

Jump Risk

Investors require compensation for bearing downside risk (e.g., Ang, Chen, and Xing

(2006)). While there is no consensus on which variable represents downside risk, I use the

VXO index as the proxy, since it is commonly accepted as the fear index in the industry.

Specifically, the VXO index is the risk-neutral entropy of the market excess return and is

particularly sensitive to the left tail of the return distribution.

It is problematic to regress the VXO index on SDFs. The VXO index is highly persistent,

with an AR(1) coefficient of around 0.9, so standard errors of coefficient estimates are enor-

mous. In other words, the high persistence makes the statistical inference almost impossible

in small samples. Hence, I extract the shock in the VXO index via an AR(1) regression,

Yt = a+ ρYt−1 + nt, and jump risk is defined as the AR(1) innovation Yt − a− ρYt−1.

Column (9) of Table 5 reports the correlation between SDFs and jump risk. Both the

HF-SDF and LF-SDF have significantly positive correlations (0.18 − 0.24) with jump risk.

Interestingly, coefficient estimates of the HF-SDF and LF-SDF in Table 5 are similar to those

in Table A5, in which I regress the original VXO index on SDFs. Hence, it can increase the

power of statistical tests to focus on the much less persistent AR(1) innovation.

Intuitively, when investors are particularly fearful, the SDFs, proxying for their marginal

utility functions, are likewise high. In other words, investors are willing to pay a positive risk

premium to hedge jump risk. Nevertheless, the missing-SDF is almost unrelated to jump

risk, so jump risk does not explain the risk premium of Mmissing
t .

Investor Sentiment

Rational economic models cannot always explain economic phenomena that we observe
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in the real world, such as the tech stock bubble in the late 1990s and the housing bubble

in 2008. Instead, investor sentiments are also essential in understanding asset prices. For

instance, De Long, Shleifer, Summers, and Waldmann (1990) build a theoretical model in

which the presence of noise traders with stochastic beliefs can create a source of risk that

requires a positive risk premium. Kozak, Nagel, and Santosh (2018) show that if the demand

from sentiment investors drives a large proportion of asset returns’ common variations, their

demand shocks, or investor sentiments, should enter the SDF as well.

Motivated by these papers, I go on to explore how SDFs extracted purely from asset

returns correlate with the proxy for investor sentiments. First of all, I use the BW sentiment

index in Baker and Wurgler (2006), which estimate the first principal component of six

variables: the closed-end fund discount, the NYSE share turnover, the number and average

first-day returns on IPOs, the equity share in new issues, and the dividend premium.

The AR(1) coefficient of the BW index is close to 1, so I extract its AR(1) shock following

the same steps as for the VXO index. The last column of Table 5 demonstrates that the

HF-SDF is negatively correlated with the investor sentiment, with a t-statistic of around

−2.6. The LF-SDF has a similar coefficient estimate (−0.13), and its t-statistic is about

−1.9. Column (6) of Table A5 reports the correlation between SDFs and the original BW

sentiment. Even though the magnitudes of coefficient estimates are extremely similar, their

t-statistics are much lower due to the persistence of the BW sentiment index. Last but not

least, the missing-SDF is virtually unrelated to the BW sentiment index. Overall, Table

5 indicates that only macro risk, such as consumption and GDP growth, can potentially

explain the risk premium of Mmissing
t .

Huang, Jiang, Tu, and Zhou (2015) modify the BW sentiment index using the partial

least squares method. Precisely, they extract the most important component that can simul-

taneously predict the future market return and explain time-series variations of the original

six proxies. I call their sentiment index HJTZ sentiment. Columns (7) and (8) of Table A5

show that only the HF-SDF is weakly correlated with the AR(1) shock of HJTZ sentiment.

On the contrary, its correlation with the LF-SDF is only −0.07, compared to −0.14 for BW

sentiment. Overall, the HJTZ sentiment is less correlated with SDFs than the BW sentiment.

Summary

The findings in Table 5 deepen our understanding of the economics behind the factor

zoo. One potential reason for the existence of the factor zoo is that factors are noisy proxies

for economic fundamentals and therefore do not span each other. For example, Liew and

Vassalou (2000) report that both the value and size factors can predict GDP growth, but

they are never comprehensive predictors and cannot replace each other. This paper further
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shows that the importance of economic risks varies at different frequencies. In Table 5, I

confirm that a sparse LF-SDF, earning a nearly optimal Sharpe ratio, captures two elements:

(1) the first one is perfectly linear in the HF-SDF and almost uncorrelated over time, which is

statistically associated with discount-rate news of the market excess return, the intermediary

factor, jump risk, and investor sentiment, whereas (2) the second one is neglected by the

HF-SDF and captures some persistent state variables, reflecting business-cycle risks related

to consumption and GDP growth.

IV Additional Robustness Check

In this part, I present a few of the robustness checks of Section III. Specifically, I investigate

whether the sparsity of the LF-SDF is robust (1) when I consider only long-short portfolios,

(2) if I impose the CAPM, or (3) if I slightly modify the definition of the LF interval.

IV.1 39 Long-Short Portfolios

Until now, I have included long and short portfolios separately for each firm characteristic

in Section III. However, many papers in cross-sectional asset pricing literature handle long-

short portfolios, such as the size factor in FF3. To confirm the robustness of the main results,

I further analyze long-short portfolios of 39 firm characteristics.

Figure 11 plots the OOS Sharpe ratio of PCA, HF-PCA and LF-PCA under prior Sharpe

ratios ∈ {0.4, 0.5}. A more comprehensive heat-map is in Figure A8. First, the maximal

Sharpe ratio is around 0.35, slightly less than that in the cross-section of 78 portfolios.

Second, I can still discern a parsimonious factor model composed of low-frequency PCs.

Particularly, a six-factor LF-PC model delivers an optimal OOS Sharpe ratio, and this

finding is robust across a wide range of L2-penalty, as I observe in Figure A8. On the

contrary, latent-factor models constructed by canonical and high-frequency PCs are dense,

consistent with my observations in Section III.4. Overall, the sparsity of LF-PC models is

robust in the cross-section of 39 long-short portfolios. In the following robustness analyses,

I stick to the original cross-section of 78 test assets.

IV.2 Imposing the CAPM

Since the introduction of the CAPM by Sharpe (1964) and Lintner (1965), the market factor

has become the most influential factor in cross-sectional asset pricing. For example, Barillas

and Shanken (2018) use the market factor as the anchor to compare a few famous factor

models via Bayes factors. Also, Kozak, Nagel, and Santosh (2020) extract the CAPM α of
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Figure 11: Zoom in OOS Sharpe ratio of 39 long-short portfolios, SRprior ∈ {0.4, 0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. The cross-section of test assets
is 39 long-short portfolios. Different from figure A8, this figure shows the estimates using two prior Sharpe
ratios, SRprior ∈ {0.4, 0.5}.

50 long-short anomalies and estimate other systematic factors via the eigendecomposition of

the CAPM α. Following the past literature, I turn to study the CAPM α.

Here is my empirical strategy. First, I regress Rt on the market factor using the in-

sample observations: RIN
t = βIN0 +βINm RIN

mt +eINt , and the CAPM α is defined as: αINt =

RIN
t −βINm RIN

mt . Next, I decompose the covariance matrix of αINt into frequency-dependent

components and estimate frequency-dependent PCs as in definition 1. When I mention a

K-factor model, the SDF consists of the market factor and the first K PCs of αINt : Mt =

1−bm(RIN
mt −µm)−b>F (Ft−µF ). Finally, I estimate risk prices (bm, b

>
F )> using the objective

function in equation (16). To evaluate the OOS performance, I use the in-sample estimate

of market loadings βIN to construct the OOS CAPM α: αOOSt = ROOS
t −βINROOS

mt . Then

I construct the OOS latent factors and MVE portfolio as before.

Figure 12 plots the Sharpe ratio of the OOS MVE portfolio following the procedures

described in the previous paragraph. The prior monthly Sharpe ratio is set to be 0.4 in

Panel (a) and 0.5 in Panel (b). Like the benchmark case, the MVE portfolio consisting of

the market factor and another 6 LF-PCs can earn a virtually optimal OOS Sharpe ratio,

around 0.37 monthly. HF-PCA, however, needs much more PCs, literally more than 60, to

reach the highest point, and PCA has almost an identical pattern. In short, a seven LF

factor model can nearly span the whole asset space in the out-of-sample.
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Figure 12: Imposing CAPM: OOS Sharpe ratio of 78 portfolios, SRprior ∈ {0.4, 0.5}

This graph zooms in the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA after imposing the CAPM. This
figure shows the estimates using two prior Sharpe ratios, SRprior ∈ {0.4, 0.5}.

IV.3 Alternative Cutoffs of the LF Interval

Earlier, I define the low-frequency component of an asset return as the part with a cycle

length between 36 and 120 months. This section investigates whether the sparsity of LF

factor models is particularly sensitive to alternative cutoffs of the LF intervals.

Panel (a) in Figure 13 defines the period of the LF component between 24 and 120

months. The OOS MVE portfolios of HF-PCA and PCA are identical to previous ones.

The LF-MVE portfolios, however, are still more parsimonious. For example, The LF-MVE

portfolio composed of the first seven LF-PCs earns a monthly Sharpe ratio of 0.35 in the

out-of-sample. In addition, Figure A9 plots the heat-map for LF-PCA, whose pattern is

virtually identical to that of Figure 4.

Bandi, Chaudhuri, Lo, and Tamoni (2021) decompose the CAPM β into frequency-

dependent components, and they discover that only the component in the LF frequency

with a period between 32 and 64 months can price conventional Fama-French portfolios.

Motivated by their results, I define the period of the LF (HF) component as τLF ∈ [32, 64]

months (τHF ∈ [2, 32)). Panel (b) in Figure 13 shows that the monthly Sharpe ratio of a

seven LF factor model is slightly higher than 0.37, whereas I still demand many HF-PCs

to span the asset space of 78 test assets in the out-of-sample. In short, the sparsity of the

LF-SDF is not sensitive to alternative definitions of the LF interval.
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Figure 13: Robustness Check: OOS Sharpe ratio of 78 portfolios, SRprior = 0.4

This graph shows additional robustness checks of the OOS Sharpe ratio of PCA, HF-PCA, and LF-PCA. I
estimate risk prices under the prior Sharpe ratio 0.4. The low-frequency (LF) interval is equal to (1) panel
(a): τHF ∈ [2, 24) and τLF ∈ [24, 120], and (2) panel (b): τHF ∈ [2, 32) and τLF ∈ [32, 64].

V Conclusions

I use frequency-dependent risks to dissect the factor zoo and answer fundamental questions

about what is salient for cross-sectional asset pricing. As a first step, I propose a new

approach to quantify frequency-dependent risks and deliver monthly proxies for short-term

and long-term systematic factors. Empirically, the SDF is sparse only in the space of low-

frequency systematic factors. An economic interpretation of this finding is that investors are

more risk-averse to low-frequency persistent systematic factors that drive a vast majority of

long-run movements of asset returns, probably because they have long investment horizons or

Epstein-Zin preference that imposes a considerable risk aversion to the long-run uncertainty.

Hence, the first few largest LF latent factors capture almost the entire Sharpe ratio of the

true SDF.

In addition, I confirm that none of the celebrated sparse factor models, such as the

Fama-French three-factor model, or HF-SDF can explain the LF-SDF. At the same time,

the LF-SDF can span the HF-SDF. Therefore, I conjecture that the SDF composed of the

first several low-frequency factors is the proper benchmark SDF.

Furthermore, my paper deepens our understanding of the economics behind the factor

zoo. It is common to use the largest several canonical PCs to construct the SDF. This SDF,

virtually identical to the HF-SDF, is almost uncorrelated over time and captures economic

risks related to discount-rate news of the market excess return, intermediary factors, jump

risk, and investor sentiment. However, the HF-SDF still ignores an economically important
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component of the LF-SDF. This missing component commands a sizable monthly Sharpe

ratio of about 0.2 and displays a persistent conditional dynamic, as the variance ratio test

shows. More importantly, it reflects only business-cycle risks related strongly to consumption

and GDP growth, and it can also predict consumption and GDP growth over the next

quarter.

Traditional macro-finance models emphasize persistent conditional information and use

them to rationalize the asset pricing puzzles. What I observe in this paper confirms that asset

returns indeed contain useful conditional information related to macro variables, but they

can be identified only at low frequencies. At the same time, the tail risk, behavioral finance,

and intermediary asset pricing models are also essential in understanding asset returns, but

they are more relevant in short horizons.
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Appendices

A Additional Details on Frequency Domain Analysis

A.1 Spectral Representation Theorem

Theorem A1 (Spectral Representation Theorem, Hannan (2009)) Suppose xt is a

mean-zero covariance stationary process, with the spectral distribution function F (ω) such

that its auto-covariance function Σx(h) can be expressed as

Σx(h) =

∫ 1
2

− 1
2

exp{2πiωh}dF (ω),

where F (ω) is non-decreasing, F (−1
2
) = 0 and F (1

2
) = Σx(0).Then there exists a complex-

value stochastic process z(ω), ω ∈ [−1
2
, 1

2
], having stationary uncorrelated increments, such

that xt can be written as the stochastic integral

xt =

∫ 1
2

− 1
2

exp{−2πiωt}dz(ω),

where Var[z(ω2)− z(ω1)] = F (ω2)− F (ω1). Furthermore, the Spectral Representation Theo-

rem can be extended to multivariate case.

Suppose that xt(ω) satisfies the differential equation: xt(ω)dω = exp{−2πiωt}dz(ω). The

Spectral Representation Theorem implies that xt(ω) is uncorrelated at different frequencies,

and xt is decomposed as an equally weighted average of xt(ω), i.e., xt =
∫ 1

2

− 1
2

xt(ω)dω. There-

fore, I can represent the variance of xt as Var(xt) =
∫ 1

2

− 1
2

Var[xt(ω)]dω, where Var[xt(ω)] is

the contribution from the frequency-ω component.

Suppose that Xt is a two-dimensional time series, for example, Xt = (x1t, x2t)
>, with

the auto-covariance matrix ΣX(h). According to the Spectral Representation Theorem,

the cross-spectrum fx1,x2(ω) that satisfies dF12(ω) = fx1,x2(ω)dω can be interpreted as the

covariance between the frequency-ω components of x1,t and x2,t. Next, I will consider a linear

transformation ofXt. Let a and b be arbitrary real numbers, and define yt as yt = ax1,t+bx2,t.

55



The spectral density function of yt is

fy(ω) =
∞∑

h=−∞

Cov(yt+h, yt) exp{−2πihω}

=
∞∑

h=−∞

Cov(ax1,t+h + bx2,t+h, ax1,t + bx2,t) exp{−2πihω}

=
∞∑

h=−∞

[
a2Var(x1,t) + b2Var(x2,t) + abCov(x1,t+h, x2,t) + abCov(x1,t, x2,t+h)

]
exp{−2πihω}

= a2fx1(ω) + b2fx2(ω) + abfx1,x2(ω) + abfx2,x1(ω)

= a2fx1(ω) + b2fx2(ω) + 2abR[fx1,x2(ω)],

where the last equality makes use of the fact that fx1,x2(ω) = fx2,x1(−ω) and fx2,x1(ω) +

fx2,x1(−ω) = 2R[fx1,x2(ω)]. There are two implications. First, I can interpret the real part

of the cross-spectrum as the covariance between the frequency-ω components of x1,t and x2,t.

Second, I need to focus only on the real part of the cross-spectrum. This paper aims to

extract PCs at different frequencies. For example, the largest PC chooses a unitary linear

transformation of Xt such that its variance is maximized.

A.2 Discrete Fourier Transform (DFT)

Given data R1, . . . ,RT , DFT and its inverse (IDFT) are defined as

d(ωj) =
1√
T

T∑
t=1

Rt exp{−2πiωjt}, ωj =
j

T
, j = 0, 1, . . . , T − 1, (27)

Rt =
1√
T

T−1∑
j=0

d(ωj) exp{2πiωjt}, t = 1, . . . , T. (28)

Let’s define the frequency-ωj component of asset returns: Rt(ωj) = 1√
T
d(ωj) exp{2πiωjt}.

A distinguishing feature of the aforementioned decomposition is that two components from

distinct frequencies are uncorrelated by construction; that is, CovT

(
Rt(ωj)Rt(ωk)

>
)

=

0N×N if j 6= k, or f̂R(ωj) if j = k. The intuition is that DFT decomposesRt into orthogonal

frequency-dependent parts.

Moreover, d(ωj)d(ωj)
? =

∑n−1
h=−(n−1) Σ̂R(h) exp{−2πiωjh} = f̂R(ωj), where d(ωj)

? is the

conjugate transpose operation of d(ωj). Therefore, we can estimate the frequency density

matrix of asset returns via DFT. In practice, researchers often use a fast Fourier transform

(FFT) algorithm to compute the transformations in replace of DFT rapidly. Figure A3 is a
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simple example of DFT.

B Proofs

B.1 Proof of proposition 1

Since et+1 is conditionally independent, its conditional expectation is always zero: For

h > 0, E[et+h | It] = 0, where It denotes the conditional information at time t. If h > 0, the

auto-covariance matrix of et+1 is

Σe(h) = E(et+he
>
t ) = E[E(et+he

>
t | It)] = E[E(et+h | It)e>t ] = 0N×N ,

which implies that the spectral density matrix of et+1 is

fe(ω) =
∞∑

h=−∞

Σe(h) exp{−2πihω} = Σe(0) = Σe.

Therefore, even though et+1 and ft+1 can follow stochastic volatility processes, their spectral

density matrices are constant across frequencies.

In addition, Ft and et are orthogonal, so I can represent the covariance matrix of Rt

as ΣR = βΣFβ
> + Σe. Suppose that fF (ω) is the spectral density matrix of Ft: ΣF =∫ 1

2

− 1
2

fF (ω)dω. This implies the following spectral decomposition of ΣR:

ΣR =

∫ 1
2

− 1
2

βfF (ω)β>dω + Σe =

∫ 1
2

− 1
2

[
βfF (ω)β> + Σe

]
dω.

Due to the uniqueness of the spectral density matrix, the spectral density matrix of Rt is

fR(ω) = βfF (ω)β>+ Σe. Similarly, I show that fF (ω) = Σf + ΦXfX(ω)Φ>X . Therefore, I

rewrite the spectral density matrix of Rt as follows:

fR(ω) = βΣfβ
> + Σe + βXfX(ω)β>X , βX = βΦX .
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B.2 Proof of proposition 2

I can derive the unconditional variance of the linear SDF as follows:

Var(Mt+1) = b>Var(ft+1)b+ b>ΦXVar(Xt)Φ
>
Xb

= b>Var(ft+1)b+ b>XVar(Xt)bX

= b>Var(ft+1)b+

p∑
j=1

b2
X,iVar(Xjt)

= b>Var(ft+1)b+

∫ 1
2

− 1
2

p∑
j=1

b2
X,ifXi

(ω)dω,

where the third equality uses the fact that state variables are assumed to be uncorrelated,

and the last step uses the spectral decomposition of each state variable Xi. Since the spectral

density function is unique, fM(ω) = b>Var(ft+1)b+
∑p

j=1 b
2
X,ifXi

(ω).

B.3 Derivation of objective function in equation (16)

This section derives the objective function in equation (16) under a more general distri-

butional assumption for pricing errors and risk prices. I consider only the cross-sectional

regression, conditional on the observed expectation and covariance of Ft as follows:

µF = ΣFb+α, α ∼ N (0N , σ
2ΣF ).

Therefore, the only unknowns are b and σ2. Pástor and Stambaugh (2000) and Barillas and

Shanken (2018) also make a similar distributional assumption for α. Intuitively, σ2 reflects

investors’ uncertainty about mispricing: When σ2 is close to zero, the asset pricing model is

almost correct. In contrast, if σ2 is infinity, the factor model is useless, as it entirely fails to

explain risk premia.

Furthermore, I assign a normal prior for risk prices: b ∼ N (0K ,
ψσ2

τ
IK), τ = Tr

[
ΣF

]
,

and b is uncorrelated with α. Under such a prior distribution, the prior expectation on the

squared Sharpe ratio of factor returns implied by the asset pricing model is equal to

Eprior[SR2
F ] = Eprior[b>ΣFb] =

K∑
k=1

σ2
F,kEprior[b2

k] =
ψσ2

τ
Tr
[
ΣF

]
= ψσ2.
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Next, I decompose the expected squared Sharpe ratio of factor returns as follows:

Eprior[µ>FΣ−1
F µF ] = Eprior[(ΣFb+α)>Σ−1

F (ΣFb+α)]

= Eprior[b>ΣFb] + Eprior[α>Σ−1
F α]

= ψσ2 +Nσ2 = (ψ +N)σ2;

therefore, Eprior[µ>FΣ−1
F µF ] is the sum of Eprior[b>ΣFb] and Eprior[α>Σ−1

F α], where the

former is the contribution from the SDF. Also, I derive the expected squared Sharpe ratio

of the SDF as follows:

Eprior[SR2
F ] =

ψ

ψ +N
Eprior[µ>FΣ−1

F µF ],

so a larger ψ implies higher prior Sharpe ratio of the SDF. Under the above assumptions,

the posterior distribution of b, conditional on (µF ,ΣF ), is

p(b | µF ,ΣF ) ∝ exp

{
− 1

2σ2
(µF −ΣFb)

>Σ−1
F (µF −ΣFb)

}
exp

{
− τ

2ψσ2
b>b

}
∝ exp

{
− 1

2σ2

[
(µF −ΣFb)

>Σ−1
F (µF −ΣFb) +

τ

ψ
b>b

]}
.

Now let v2 = τ
ψ

= τσ2

Eprior[SR2
F ]

. Therefore, the posterior mode of b is the solution to the

objective function in equation (16).

To compare with Kozak, Nagel, and Santosh (2020), this paper adopts a similar strategy,

which assumes σ2 = 1
T

, so v2 = τ
ψ

= τ
T×Eprior[SR2

F ]
. Last but not least, the assumption of

σ2 = 1
T

changes only the prior Sharpe ratio implied by the SDF. In this paper, I show the

empirical results across a wide range of prior Sharpe ratios. More importantly, empirical

results are robust when I estimate the model with reasonable prior monthly Sharpe ratios,

for example, between 0.3 and 0.6.
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C Additional Tables

Table A1: Definition of Variables

Variable Definition Data Source
Rmt Monthly market excess return CRSP database
TYt Monthly term yield spread, the difference between the log yield on FRED

the 10-year U.S. Constant Maturity Bond and the log yield
on the three-month U.S. treasury bills

PEt Monthly pricing-earnings ratio (PE) from Shiller (2000) Robert Shiller’s website
V St Small-stock value spread that is the difference in log( BE

ME
) between the small Ken French’s website

high-book-to-market portfolio and the small low-book-to-market portfolio
DEFt Monthly default spread, the difference between the log yield FRED

on Moody’s BAA and AAA bonds
Cnd
t Quarterly real nondurable consumption growth per capita Table 7.1 in BEA

GDPt Quarterly real GDP growth per capita Table 7.1 in BEA
NCF
t Monthly cash-flow news in Campbell and Vuolteenaho (2004) Estimated by this paper

Four state variables in VAR(1): (log(Rmt), TYt, PEt, V St)
NDR
t Monthly discount-rate news in Campbell and Vuolteenaho (2004) Estimated by this paper

Four state variables in VAR(1): (log(Rmt), TYt, PEt, V St)

NCF,2
t Monthly cash-flow news in Campbell, Giglio, and Polk (2013) Estimated by this paper

Five state variables in VAR(1): (log(Rmt), TYt, PEt, V St, DEFt)

NDR,2
t Monthly discount-rate news in Campbell, Giglio, and Polk (2013) Estimated by this paper

Five state variables in VAR(1): (log(Rmt), TYt, PEt, V St, DEFt)
HKM I

t Monthly nontradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
HKM II

t Monthly tradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
HKM I

qt Quarterly nontradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
HKM II

qt Quarterly tradable intermediary factor in He, Kelly, and Manela (2017) Author’s website
V XOt the VXO index WRDS database
BWt Sentiment index in Baker and Wurgler (2006) Dashan Huang’s website
HJTZt Sentiment index in Huang, Jiang, Tu, and Zhou (2015) Dashan Huang’s website
V XOar1

t AR(1) shock in V XOt: V XOt − ρ× V XOt−1 Estimated by this paper
BW ar1

t AR(1) shock in BWt: BWt − ρ×BWt−1 Estimated by this paper
HJTZar1t AR(1) shock in HJTZt: HJTZt − ρ× HJTZt−1 Estimated by this paper

Table A2: 39 Firm Characteristics in Kozak, Nagel, and Santosh (2020)

Category Characteristics
Reversal lrrev, strev, indmomrev, indrrev, indrrevlv
Momentum mom, mom12, indmom, momrev
Value value, valuem, divp, ep, cfp, sp
Investment inv, invcap, igrowth, growth, noa
Profitability prof, roaa, roea, gmargins
Value interaction valmom, valmomprof, valprof
Trading frictions ivol, shvol, aturnover
Others size, price, accruals, ciss, lev, season, sgrowth, nissa, dur

60



Table A3: Do celebrated models explain HF and LF risks? (SRprior = 0.5)

Panel (A). MVEHF
t Panel (B). MVELF

t

7 PCs 8 PCs 9 PCs 10 PCs 7 PCs 8 PCs 9 PCs 10 PCs
CAPM α 1.08% 1.03% 1.15% 1.18% 1.47% 1.46% 1.45% 1.47%

t-stat I (2.98) (2.49) (2.91) (3.03) (3.66) (3.84) (3.83) (3.88)
t-stat II (3.15) (2.75) (3.20) (3.33) (4.69) (4.84) (4.84) (4.83)
R2
adj 3.89% 2.29% 0.13% 0.07% 2.79% 2.05% 1.63% 0.83%

FF3 α 0.85% 0.80% 0.95% 0.99% 1.37% 1.37% 1.36% 1.38%
t-stat I (4.87) (3.79) (4.12) (4.27) (4.31) (4.52) (4.51) (4.62)
t-stat II (4.79) (4.05) (4.44) (4.58) (5.75) (5.90) (5.92) (6.00)
R2
adj 36.19% 33.64% 29.11% 23.11% 8.85% 7.56% 6.53% 6.19%

Carhart4 α 0.47% 0.41% 0.59% 0.61% 0.92% 0.91% 0.90% 0.92%
t-stat I (3.28) (2.57) (3.01) (3.10) (3.66) (3.80) (3.78) (3.83)
t-stat II (2.89) (2.37) (3.02) (3.09) (4.43) (4.50) (4.49) (4.48)
R2
adj 62.35% 62.3% 53.52% 50.1% 46.84% 45.86% 46.91% 45.52%

FF5 α 0.47% 0.45% 0.49% 0.55% 0.95% 0.92% 0.90% 0.90%
t-stat I (2.62) (2.37) (2.80) (3.04) (3.12) (3.15) (3.09) (3.10)
t-stat II (2.53) (2.48) (3.23) (3.42) (4.02) (3.98) (3.90) (3.95)
R2
adj 45.98% 44.58% 46.93% 39.31% 21.81% 22.4% 22.17% 22.69%

Q4 α 0.35% 0.24% 0.27% 0.34% 0.84% 0.81% 0.78% 0.79%
t-stat I (2.17) (1.29) (1.42) (1.75) (2.73) (2.79) (2.71) (2.77)
t-stat II (1.69) (1.11) (1.29) (1.61) (3.34) (3.33) (3.24) (3.33)
R2
adj 39.04% 36.74% 44.05% 39.22% 25.73% 26.12% 26.91% 27.12%

This table tests whether five sparse factor models proposed in past literature can explain the MVE portfolios
composed of latent factors. I construct the MVE portfolios using the first seven to 10 latent factors following
the same steps as in the section III.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.5.
The five benchmark models include (1) CAPM, (2) Fama and French (1993) three factors (FF3), (3) Fama
and French (2015) five factors (FF5), (4) Carhart (1997) four factors (Carhart4), and (5) Hou, Xue, and
Zhang (2015) four factors (Q4). I report three test-statistic in table 2: (1) α, (2) t-statistics of α, and (3)
adjusted R-squared, denoted as R2

adj . To control for the serial dependence of pricing errors, I use Newey and

West (1987) standard errors with both 36 lags (t-stat I) and 12 lags (t-stat II).

Table A4: Correlation among MLF
t , MHF

t , Mmissing
t , and Munpriced

t , SRprior = 0.5

Corr. MLF
t Munpriced

t MHF
t Mmissing

t SR t-stat (optimal lags)
MLF

t 1.00 0.378 6.24

Munpriced
t 0.00 1.00 0.014 0.25

MHF
t 0.79 0.61 1.00 0.290 4.65

Mmissing
t 0.61 -0.79 0.00 1.00 0.244 4.62

This table tests whether the LF-MVE portfolio can explain the HF-MVE or whether the opposite is valid.
I construct the MVE portfolios using the first 7 – 10 latent factors following the same steps as in Section
III.4. I estimate the factors’ risk prices under the prior Sharpe ratio of 0.5. I report three test-statistic in
Table 2: (1) α, (2) t-statistics of α, and (3) adjusted R-squared, denoted as R2

adj . To control for the serial

dependence of pricing errors, I use Newey and West (1987) standard errors with both 36 lags (t-stat I) and
12 lags (t-stat II).
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Table A5: Economic Properties of HF- vs. LF-SDFs II

Yt : NCF,2
t NDR,2

t HKMntr
qt HKM tr

qt V XOt BWt HJTZt HJTZar1t

Panel (A): Yt = β0 + β1MHF
t + β2Mmissing

t + εt
MHF

t -0.134 -0.278 -0.301 -0.344 0.215 -0.193 -0.162 -0.125
t-stat I (-1.125) (-2.931) (-2.642) (-2.843) (1.309) (-1.641) (-1.030) (-1.658)
t-stat II (-0.952) (-2.426) (-2.466) (-2.695) (1.383) (-1.523) (-0.912) (-1.695)

Mmissing
t -0.099 -0.048 0.206 0.193 -0.053 -0.085 -0.076 0.054

t-stat I (-1.427) (-0.695) (1.480) (1.398) (-0.724) (-1.743) (-1.272) (0.665)
t-stat II (-1.325) (-0.696) (1.562) (1.572) (-0.669) (-1.791) (-1.164) (0.787)

Panel (B): Yt = β0 + β1MLF
t + β2Munpriced

t + εt
MLF

t -0.167 -0.257 -0.146 -0.189 0.148 -0.209 -0.177 -0.074
t-stat I (-1.560) (-2.861) (-1.522) (-1.726) (0.939) (-1.861) (-1.116) (-0.965)
t-stat II (-1.570) (-2.929) (-2.177) (-2.547) (0.947) (-1.740) (-0.991) (-1.000)

Munpriced
t 0.007 -0.115 -0.334 -0.346 0.164 -0.037 -0.027 -0.114

t-stat I (0.062) (-1.244) (-2.258) (-2.271) (1.956) (-0.557) (-0.426) (-1.393)
t-stat II (0.059) (-1.144) (-2.006) (-2.153) (2.125) (-0.578) (-0.427) (-1.671)

ρ -0.173 -0.114 -0.023 0.024 0.888 0.951 0.985 0.408
R2
adj 2.78% 7.96% 13.30% 15.54% 4.90% 4.50% 3.21% 1.85%

Sample size 338 338 112 112 338 326 326 326

This table reports the results of regressing economic variables on different components of SDFs. It differs
from Table 5 in following aspects: (1) I estimate cash-flow and discount-rate news including five state
variables into VAR(1) regression, as in Campbell, Giglio, and Polk (2013); (2) I use quarterly intermediary
factors rather than monthly ones; (3) I use the original time-series of VXO index and Baker and Wurgler
(2006) sentiment index, rather than AR(1) shocks in these variables. In addition, I consider the sentiment
index in Huang, Jiang, Tu, and Zhou (2015) in the last two columns.

Specifically, the dependent variables include (1) cash-flow news, (2) discount-rate news, (3) the
quarterly nontradable intermediary factor, (4) the quarterly tradable intermediary factor, (5) the VXO
index, (6) the Baker and Wurgler (2006) sentiment index, (7) the Huang, Jiang, Tu, and Zhou (2015)
sentiment index, and (8) the AR(1) shock in the Huang, Jiang, Tu, and Zhou (2015) sentiment.

The SDFs are composed of the first seven principal components of asset returns and their risk prices
are estimated under the prior Sharpe ratio equal to 0.4. I standardize both dependent and independent
variables so that readers can interpret all coefficient estimates as correlations. I report two t-statistics using
Newey and West (1987) standard errors with (1) 36 lags (t-stat I) and (2) 12 lags (t-stat II). In addition,
I also report dependent variables’ first-order autocorrelation coefficients (ρ). The monthly (quarterly)
out-of-sample is from November 1991 to December 2019 (Q1 1992 – Q4 2019).
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Table A6: Economic Fundamentals related to HF- vs. LF-SDFs, SRprior = 0.5

Yt : Cnd
t Cnd

t+1 GDPt GDPt+1 NCF
t NDR

t HKMntr
t HKM tr

t V XOar1
t BW ar1

t

Panel (A): Yt = β0 + β1MHF
t + β2Mmissing

t + εt
MHF

t -0.011 0.169 -0.147 0.062 -0.062 -0.227 -0.173 -0.221 0.182 -0.152
t-stat I (-0.113) (1.707) (-0.650) (0.635) (-0.454) (-2.299) (-1.879) (-1.931) (2.154) (-2.618)
t-stat II (-0.128) (1.707) (-0.693) (0.694) (-0.412) (-2.004) (-1.709) (-1.863) (2.128) (-2.772)

Mmissing
t -0.192 -0.209 -0.158 -0.192 -0.081 -0.004 0.162 0.200 -0.080 -0.014

t-stat I (-1.614) (-3.304) (-1.511) (-1.985) (-1.057) (-0.054) (1.769) (1.893) (-1.629) (-0.188)
t-stat II (-1.864) (-3.304) (-1.594) (-2.209) (-1.056) (-0.051) (1.721) (1.857) (-1.635) (-0.188)

Panel (B): Yt = β0 + β1MLF
t + β2Munpriced

t + εt
MLF

t -0.123 0.013 -0.212 -0.064 -0.099 -0.181 -0.037 -0.052 0.094 -0.129
t-stat I (-1.009) (0.147) (-0.925) (-0.613) (-0.895) (-2.077) (-0.429) (-0.538) (1.351) (-1.876)
t-stat II (-0.995) (0.149) (-0.965) (-0.664) (-0.896) (-2.207) (-0.475) (-0.567) (1.409) (-1.871)

Munpriced
t 0.149 0.269 0.040 0.192 0.025 -0.137 -0.234 -0.294 0.175 -0.082

t-stat I (3.217) (3.264) (0.415) (2.138) (0.201) (-1.443) (-2.252) (-2.332) (2.592) (-1.296)
t-stat II (2.856) (3.281) (0.497) (2.418) (0.195) (-1.259) (-2.050) (-2.228) (2.421) (-1.304)

ρ 0.153 0.153 0.352 0.352 -0.189 -0.108 0.061 0.104 0.116 0.105
R2
adj 4.91% 7.43% 6.30% 5.11% 2.76% 9.13% 7.51% 11.38% 5.80% 2.19%

Sample size 112 111 112 111 338 338 338 338 338 326

This table differs from Table 5 only in the prior Sharpe ratio that I use to estimate risk prices of latent
factors. Specifically, this table sets SRprior to be 0.5. See the footnote in Table 5 for details.
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D Additional Figures
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(c) Slow-Moving: AR(1) coefficient = 0.5

Figure A1: Cumulative returns in a 24-month rolling window

This graph plots the cumulative returns in a 24-month rolling window. I consider three AR(1) processes for

monthly (demeaned) asset returns: xt+1 = ρxxt +
√

1− ρ2xσxηx,t+1, where σ2
x = 4.5%, ρx ∈ {−0.5, 0, 0.5}.
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(a) ρx ∈ {−0.5, 0, 0.5}.
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(b) ρx ∈ {−0.9, 0, 0.9}.

Figure A2: Spectral density function of AR(1) processes

This graph plots the spectral density functions of three AR(1) processes: xt+1 = ρxxt +
√

1− ρ2xηx,t+1,

where ηx,t+1
iid∼ WN(0, 1). When ρx is positive (negative), this time series is slow-moving (fast-moving).
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(d) Spectral density function fx(ω), DFT

Figure A3: Example: decompose a deterministic time series via DFT
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(b) LF-eigenvalues / HF-eigenvalues

Figure A4: Time-series variations in 78 assets, subsample 2

Panel (a) plots the fraction of time-series variations in 78 asset returns explained by the HF, LF, and above-
LF components. Panel (b) plots the ratio of the first 15 LF-eigenvalues over HF-eigenvalues. The sample
starts from November 1991 to December 2019.
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Figure A5: OOS Sharpe ratio of Above-LF-PCA and PCA, 78 test assets

This graph plots the heat-maps of the OOS Sharpe ratio of Above-LF-PCA and PCA in the cross-section of
78 test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations.
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Figure A6: OOS R2
gls of Above-LF-PCA and PCA, 78 test assets

This graph plots the heat-maps of the OOS R2
gls of Above-LF-PCA and PCA in the cross-section of 78 test

assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is the
number of PCs included in the SDF. In addition, different colors represent different OOS R2

gls. I include the
PCs into the SDF based on their ability to explain time-series variations.
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Figure A7: OOS Sharpe ratio using Kozak, Nagel, and Santosh (2020), 78 test assets

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, LF-PCA, Above-LF-PCA and PCA in
the cross-section of 78 test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor
model, while the y-axis is the number of PCs included in the SDF. In addition, different colors represent
different OOS Sharpe ratios. The risk prices and the number of PCs entering the SDFs are determined by
the Kozak, Nagel, and Santosh (2020) objective function in equation (17).
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Figure A8: OOS Sharpe ratio of 39 test assets

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA, LF-PCA, Above-LF-PCA and PCA in the
cross-section of 39 long-short portfolios. In each panel, the x-axis denotes the prior Sharpe ratio of the factor
model, while the y-axis is the number of PCs included in the SDF. In addition, different colors represent
different OOS Sharpe ratios. I include the PCs into the SDF based on their ability to explain time-series
variations of 39 long-short portfolios.
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Figure A9: Robustness Check: OOS Sharpe ratio of 78 test assets, τLF ∈ [24, 120]

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA and LF-PCA in the cross-section of 78
test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations. The LF frequency
interval is defined as τLF ∈ [24, 120].
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Figure A10: Robustness Check: OOS Sharpe ratio of 78 test assets, τLF ∈ [32, 64]

This graph plots the heat-maps of OOS Sharpe ratios of HF-PCA and LF-PCA in the cross-section of 78
test assets. In each panel, the x-axis denotes the prior Sharpe ratio of the factor model, while the y-axis is
the number of PCs included in the SDF. In addition, different colors represent different OOS Sharpe ratios.
I include the PCs into the SDF based on their ability to explain time-series variations. The LF frequency
interval is defined as τLF ∈ [32, 64].
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