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Abstract

We consider a Decision Maker (henceforth DM) that posits a set

of structural models describing the possible probability distributions

over payoff relevant states. The DM has a probabilistic belief over

this set, but they still fear that the true model is not in the support,

and use a generalization of the multiplier preferences introduced by

Hansen and Sargent (2001) to account for this concern. The agent

uses Bayesian updating to adjust their belief about the models in

light of the observed evidence. At the same time, the concern for

misspecification is let to depend on the observed data. If there is a

model that explains well the previous observations, the DM attenuates

their concern for misspecification. We show how several (single-agent)

versions of equilibrium concepts arise as the limit behavior, depending

on the preferences of the DM and on whether the correct model is in

the support.

∗I am particularly indebted to Roberto Corrao, Drew Fudenberg, and Stephen Mor-
ris. I am also grateful to Abhijit Banerjee, Simone Cerreia-Vioglio, Joel Flynn, Massimo
Marinacci, Philipp Strack, and Tomasz Strzalecki for helpful comments and suggestions.
The financial support of Guido Cazzavillan Scholarship is gratefully acknowledged.

1

https://www.dropbox.com/s/54lknv3s0pllelt/J-Conferences.pdf?dl=0


1 Introduction

The consideration of different probabilistic descriptions of reality and the use

of the probability laws to adjust the relative weight assigned to each of these

descriptions is the cornerstone of Bayesian rationality. However, even agents

who correctly perform Bayesian between these probabilistic descriptions may

fear that none of them is correct; they may be concerned to be misspecified.

Misspecification refers to when the Decision Maker (henceforth DM) does

not assign a positive probability to the correct data generating process. It

has been analyzed from two distinct perspectives, relying on an analytical

separation between the concern for misspecification and the learning rule of

the agent. On the one hand, several papers have studied the long-run impli-

cations of learning with misspecified beliefs, see, Esponda and Pouzo (2016),

Esponda and Pouzo (2019), Frick, Iijima, and Ishii (2020) and Fudenberg,

Lanzani, and Strack (2020). On the one other hand, the robust control litera-

ture in macroeconomics has proposed decision criteria for an agent who fears

to be misspecified (see Hansen and Sargent (2001) and Hansen and Sargent

(2020), respectively axiomatized by Strzalecki (2011) and Cerreia-Vioglio,

Hansen, Maccheroni, and Marinacci (2020)). The main issue with these two

criteria is that they are ill-suited for dynamic learning: In Hansen and Sar-

gent (2020) there is no probabilistic belief over the set of conceived models,

and because the DM uses a worst-case rule and therefore, except for the case

of hard evidence against one of the models there is no way to update the

decision criterion in the face of new evidence. Instead, the reference model

is taken as given in the robust control model.

In this work, we reconcile these approaches and show how popular de-

cision criteria such as the maxmin model, the robust control model, and

subjective expected utility arise as the limit behavior of an agent concerned

about misspecification and learning about the actual data generating process.

We consider a decision-maker that evaluates an act whose payoff depends

on exogenous contingencies at each period. This evaluation is performed
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using a weighted average of robust control assessments, where each of these

assessments takes as a reference measure a different structural model. We

can now model learning with Bayesian updating of the probability measure

on the structural models.

Importantly, we let the concern for misspecification be endogenous: the

better the conceived models have explained the past evidence, the less the

agent is concerned with misspecification. This is captured by considering

agents who repeatedly perform likelihood ratio tests of their model and that

adjust their concern for misspecification monotonically with respect to the

resulting likelihood ratio statistics.

There will be two critical determinants for the long-run dynamics: whether

the agent is correctly specified and the speed at which the agent adjusts her

beliefs concern for misspecification. In particular, an agent who understands

the central limit theorem applies a time-dependent normalization to the like-

lihood ratio statics that keeps it informative about the model’s fitness over

time. However, to capture the widespread evidence that many agents believe

in the Law of Small Numbers (henceforth LSN) Tversky and Kahneman

(1971) we also for agents that apply time normalization that treats the early

period as a statistician would treat later periods. For completeness, we also

consider the opposite case in which the agents are too lenient in evaluating

their model.

The first result involves the particular case of a correctly specified agent.

Both the lenient and the statistician types converge to a selfconfirming equi-

librium: they play the best reply to a belief supported over the data gen-

erating process that it is observationally equivalent to the correct one given

the chosen action. Instead, a believer in the LSN will become excessively

concerned by the small imperfection of their model and will converge to a

genuine robust control model with a positive concern for misspecification,

even if there is no misspecification.

A more interesting taxonomy is obtained in the critical case of a mis-
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specified agent. In that case, the actions of the lenient type converge to a

Berk-Nash equilibrium, i.e., to an SEU best reply to beliefs supported on the

models that are closer in terms of KL-divergence to the actual data generat-

ing process.

Instead, a statistician type will maintain a non-trivial amount of con-

cern for misspecification. If their behavior converges, it converges to an

average robust control best reply to the models that are closer in terms of

KL-divergence to the actual data generating process. Notably, the behavior

of such type is not guaranteed to converge. Indeed, it is possible that the be-

havior cycles between phases of different misspecification concerns. Loosely

speaking, the agent can spend time playing an action whose consequences

are explained highly by one of their structural models. The time spent play-

ing this action lowers their concern for misspecification and eventually leads

them to change behavior in favor of a more misspecification vulnerable ac-

tion. Failure to explain the distribution of outcomes observed under this

action leads to a return to the safe action. We apply this result to explain

cyclical behavior for monetary policy and career concerns in organizations.

Finally, a misspecified believer in the LSN ends up overemphasizing the

model’s failures in explaining the data and converges to a maxmin equilib-

rium: it plays a maxmin best reply to the structural models that are abso-

lutely continuous with respect to the true one. Summing up, the analysis

provide a novel prediction that ambiguity aversion and the belief in the LSN

should be positively correlated.

We also provide two novel axiomatic results: An axiomatization of the

static average robust control criterion and a testable axiom for when the

agent is of the lenient, statistician, or LSN believer type.
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2 Static Decision Criterion

2.1 Static Average Robust Control

We start by describing the decision criterion used by the agent in our re-

peated decision problem, and we defer to Section 4 its axiomatization. We

consider an agent who has a standard utility index u : X → R over the set

of certain outcomes X that captures their preference when the subjective

uncertainty is resolved. However, the realized outcome is stochastic, and de-

pends on underlying state s ∈ S. The agent deals with this uncertainty in

a quasi-Bayesian way. They postulate a set Q ⊆ ∆ (S) of possible structural

models, i.e., Borel probability measures over states q ∈ ∆ (S), and they have

a belief µ ∈ ∆ (Q) that describes the relative likelihood assigned to these

models.1 For example, if the agent is a central bank they may conceive both

a Keynesian Samuelson-Solow model where the monetary policy affects the

unemployment rate, or a new classical Lucas-Sargent model with no effect

of systematic inflation on unemployment. However, the agent is concerned

with the possibility that none of these probability distributions is the correct

description of the data generating process, but only a valuable approxima-

tion. Therefore, in the spirit of the robustness criterion advocated by Hansen

and Sargent (2001), they penalize acts who perform badly under alternative

distributions.

In particular, as in Hansen and Sargent (2001), the trade-off between

robustness of the decision and the performance under the structural model

q ∈ ∆ (S) is governed by a parameter λ, and the concern about the perfor-

mance under an alternative model p ∈ ∆ (S) decreases in its Kullback-Leibler

divergence from the structural model, given by

R (p||q) =

{ ∫
log
(

dq
dp

)
dp q � p

∞ otherwise

1We endow ∆ (S) with the Prokhorov metric and the corresponding Borel sigma algebra.
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where q � p means that p is absolutely continuous with respect to q. With

this, an agent with Bernoulli utility index u : X → R, belief µ ∈ ∆ (Q) over

the set of structural models, and concern for misspecification λ ∈ R++ eval-

uates the act f : S → X accordingly to the average robust control criterion:

Eµ
[

min
p∈∆(S)

Ep [u (f)] +
1

λ
R (p||q)

]
.

Several well-known decision criteria are obtained as special (or limit) cases

of the average robust control representation. The limit for λ→ 0 corresponds

to a (classical) subjective expected utility maximizer (Cerreia-Vioglio, Mac-

cheroni, Marinacci, and Montrucchio, 2013). The limit for λ → ∞ is the

widely used multiple prior model axiomatized by Gilboa, Schmeidler, et al.

(1989) where the set of priors is C = {p ∈ ∆ (S) : ∃q ∈ Q, q � p}. The stan-

dard multiplier preference introduced by Hansen and Sargent (2001) and

axiomatized by Strzalecki (2011) is the particular case in which µ is a Dirac

measure.

The representation clearly shows the existence of two sources of uncer-

tainty. At a first level, given a probabilistic model q, the uncertainty about

the exact specification of the model is captured by minimizing the value of

the act f with respect to probabilities that are not too far away from q.

At a higher level, the agent is also uncertain about the identity of the best

structural model, and posits a probability µ over them.

3 Dynamic Environment

We are going to consider a set Ω of one period consequences observed by

the agent. For every set Ω, we let Ωt =
∏t

τ=1 Ω and Ω∞ =
∏∞

τ=1 Ω.2 We

endow the space Ω∞ with the Borel σ-algebra, B (Ω∞), corresponding to the

2Unless otherwise stated, it is understood that t is an element of N, the set of natural
numbers. We use the terms “time” and “period” interchangeably to refer to t.
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product topology on Ω∞; this is the same as the σ-algebra generated by the

elementary cylinders {ω1} × · · · × {ωt} × Ω∞ (see, e.g., Proposition 1.3 in

(Folland, 1999)). We denote by ωt = (ω1, ..., ωt) ∈ Ωt both the histories and

the elementary cylinders that they identify through the following map:

(ω1, ..., ωt) 7→ {ω1} × · · · × {ωt} × Ω∞ .

We denote by ω∞ = (ω1, ..., ωt, ...) a generic element of Ω∞. Each one period

consequence ωi corresponds to a subset Eωi ⊆ S.

There is a set of action A corresponding to the alternatives available to the

decision maker at each period t ∈ {1, 2, 3, . . .}. Each action a ∈ A induces an

objective probability distribution p∗a ∈ ∆(Ω) over the set of possible outcomes

Ω. Moreover, the action, paired with the realized outcome, determines the

flow payoff of the agent via the utility function u : A× Ω→ R.

An history is a finite vector of past choice and consequences. In particular,

Ht = At × Ωt and H =
⋃∞
t=0Ht.

Subjective Beliefs of the Agent The agent correctly believes that the

map from actions to probability distributions over outcomes is fixed and

depends only on their current action, but they are uncertain about the dis-

tribution each action induces. Let P =a∈A ∆(Ω) be the space of all action-

dependent outcome distributions, and let pa ∈ ∆(Ω) denote the a-th com-

ponent of p ∈ P. We endow P with the sup-norm topology, and denote by

Bε(p) the ball of radius ε around p ∈ P .3

The agent’s uncertainty is captured by a compact set of parameters

Θ ⊆ Rm, m ∈ N and a prior belief µ0 ∈ ∆
(
Θ
)
, where ∆

(
Θ
)

denotes the

metric space of Borel probability measures on Θ endowed with the topology

of weak convergence of measures. Each parameter θ ∈ Θ is associated with

a distribution pθ ∈ P
3For every finite dimensional vector v, we let ||v|| = maxi vi denote the supremum norm.
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Definition 1. The agent is correctly specified if there exists θ ∈ Θ, with

pθ = p∗, i.e. the objective distribution is conceivable.

Updating Subjective Beliefs We assume throughout that the agent up-

dates their beliefs using Bayes rule. Denote by µt(· | (at, ωt)) the subjective

belief the agent obtains using Bayes rule after action sequence at = (as)
t
s=1

and outcome sequence ωt = (ωs)
t
s=1,

µt(C | (at, ωt)) =

∫
p∈C

∏t
τ=1 paτ (ωτ )dµ0(p)∫

p∈P
∏t

τ=1 paτ (ωτ )dµ0(p)
. (Bayes Rule)

Since the agent’s prior has support Θ, their posterior belief does as well.

Behavior of the Agent A (pure) policy π :
⋃∞
t=0 A

t × Ωt → A specifies

an action for every history. Throughout, we let at+1 = π(at, ωt) denote

the action taken in period t. The objective action-contingent probability

distribution p∗ and a policy π induce a probability measure Pπ on (aτ , ωτ )
∞
τ=1.

For every λ ∈ R++ let BRλ (ν) denotes the set of average robust control

best replies to ν, i.e.,

BRλ (ν) = argmax
a∈A

Eν
[

min
p∈∆(Ω)

Epa [u (a, ω)] dp+
1

λ
R (p||q)

]
.

Let also

BR0 (ν) = argmax
a∈A

Eν [Epa [u (a, ω)]]

3.1 Equilibrium Concepts

Definition 2. An action is a selfconfirming equilibrium if there exists ν ∈
∆ (Θ) with suppν ⊆ {p ∈ Θ : pa = p∗} and a ∈ BR0 (ν).
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3.2 Adjusting the concern for misspecification

The decision-maker is assumed to choose accordingly to

V (f |ht) = Eµ(·|ht)

[
min
p∈∆(S)

∫
S

[
u (f) +

R (p||q)
λt (ht, µ)

]
dp

]
where µ (·|ht) is computed using Bayesian updating, λt (ht, µ) = Ḡt (ht,Θ).We

consider

Ḡαt
t (ht,Θ) =

(
log

(
Pp(ht) (ht)

maxθ∈Θ Pθ (ht)

))
/αt =

Likelihood Ratio Test Statistics(LRT)

2αt
.

Lemma 1. If q ∈ arg maxθ∈Θ P (p (ht) |θ)), we have

Ḡt
t (ht,Θ) = dKL (p (ht) , q) .

A policy π is αt-optimal if for all ht, π (ht) ∈ BRḠ
αt
t (ht,Θ) (ν).

3.2.1 Full Support Agent

Proposition 1. Let Y be finite and Θ = ∆ (Y )A. For every αt ∈ RN
++ if

Pπ [lim at = a] > 0

then a is a self-confirming equilibrium.

3.2.2 General Case

Theorem 1. Suppose that suppµ is finite, {q} = arg minp∈Q dKL (p∗, p)

1. If t = o (αt), then limt→∞ P
(
ft ∈ BRSEU (δp∗)

)
= 1.

2. If αt = o (t), and for all q, p ∈ suppµ, q ∼ p then limt→∞ P
(
ft ∈ BRGS (δp∗)

)
=

1.
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3. If αt = ct for some c ∈ R and {f} = BRλ (δp∗) for some λ ∈ R+, then

almost surely f ∈ lim supt→∞f t

lim
t→∞

P
(
ft ∈ BRdKL(p∗,q) (δp∗)

)
= 1.

4 Representation

We aim to derive the average robust control representation from axioms over

the binary relation %.

4.1 Notation and Preliminaries

Consider a nonempty set of states S endowed with a separable σ-algebra of

events Σ such that (S,Σ) is a standard Borel measurable space. The DM

envisions the set of simple acts on (S,Σ), i.e., the Σ-measurable maps from

states into a set of outcomes X with a finite range. The set of those acts is

denoted as F . We assume that X is a convex subset of a finite-dimensional

vector space. Given any x ∈ X, x ∈ F is the act that delivers x in every state,

and in this way, we identify X as the subset of constant acts in F . If f, g ∈ F ,

and E ∈ Σ, we denote as gEf the simple act that yields g (s) if s ∈ E and

f (s) if s /∈ E. Since X is convex, for every f, g ∈ F , and α ∈ (0, 1), we denote

as αf + (1− α) g ∈ F the simple act that pays αf (s) + (1− α) g (s) for all

s ∈ S. We denote as ∆ (S) the space of all probability measures over (S,Σ),

and we endow it with the topology of weak convergence of measures and the

Prokhorov metric, and we let Σ∆ be the corresponding Borel σ-algebra. We

also denote as ∆ (∆ (S)) the set of probability measures over (∆ (S) ,Σ∆).

For a set C ⊆ ∆ (S) we let ΣC
∆ be the restriction of Σ∆ on C.

We model the decision maker’s preference with a binary relation % on F .

As usual � and ∼ denote the asymmetric and symmetric parts of %. An

event E is null if fEh ∼ gEh for every f, g, h ∈ F . If f ∈ F , an element

xf ∈ X is a certain equivalent of f if f ∼ xf .
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4.2 Decision Criterion

When formalized in terms of a binary relation, the decision average robust

control decision criterion reads as follows.

Definition 3. A tuple (u,Q, µ, λ) is an average robust control representation

of the preference relation % if and only if u : X → R is a nonconstant affine

function, µ ∈ ∆ (Q), Q⊆∆ (S) is a nonempty set and

f % g ⇐⇒ Eµ
[

min
p∈∆(S)

∫
S

u (f) dp+
1

λ
R (p||q)

]
≥ Eµ

[
min
p∈∆(S)

∫
S

u (g) dp+
1

λ
R (p||q)

]
.

(1)

4.3 Static Axioms

The first minimal requirement for the preference relation is to be complete

and transitive.

Axiom 1 (Weak Order). If f, g, h ∈ F , (i) either f % g or g % f , and (i)

f % g and g % h imply f % h.

Next, we require the Weak Certainty Independence Axiom introduced

by (Maccheroni, Marinacci, and Rustichini, 2006). It requires that although

the agent may perceive some advantage in hedging, this cannot come from

mixing with different constants using the same weights.

Axiom 2 (Weak Certainty Independence). If f, g ∈ F , x, y ∈ X, and α ∈
(0, 1),

αf + (1− α)x % αg + (1− α)x⇒ αf + (1− α) y % αg + (1− α) y.

We also impose a standard technical continuity assumption.

Axiom 3 (Continuity). If f, g, h ∈ F the sets {α ∈ [0, 1] : αf + (1− α) g % h}
and {α ∈ [0, 1] : h % αf + (1− α) g}.
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The next Monotonicity assumption requires that the preference over act

is minimally consistent with the preferences over the outcomes they induce,

and that the utility of an outcome is not state dependent.

Axiom 4 (Monotonicity). If f, g ∈ F and f (s) % g (s) for all s ∈ S, then

f (s) % g (s).

The next axiom takes a stance on the attitudes about misspecification of

the agent, leading to an aversion for the act that performs well with respect

to a postulated model but poorly with respect to its perturbation.

Axiom 5 (Uncertainty Aversion). If f, g ∈ F and α ∈ (0, 1)

f ∼ g =⇒ αf + (1− α) g % f .

We also need to assume that the problem is not trivial.

Axiom 6 (Nondegeneracy). f � g for some f, g ∈ F .

The previous axioms where used to characterize the class of variational

preferences by (Maccheroni, Marinacci, and Rustichini, 2006). We say that

an event E ⊆ S satisfies the sure-thing principle if, for all f, g, h, h′ ∈ F , the

following conditions are satisfied

1. If fEh % gEh, then fEh′ % gEh′.

2. If hEf % hEg then h′Ef % h′Eg.

We denote as Σst the set of events that satisfies the sure-thing principle.

For every nonnull E ∈ Σst, the conditional preference relation %E is defined

by f %E g if fEh % gEh for some h ∈ F .

Axiom 7 (Intramodel Sure-Thing Principle). For all non-null E ∈ Σst,

B ∈ Σ and f, g, h, h′ ∈ F

fBh %E gBh =⇒ fBh′ %E gBh
′.
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We also denote as FΣst the set of acts that are measurable with respect

to the partition Σst.

Axiom 8 (Weak Montone Continuity). If f, g ∈ F , x ∈ X, (Ei)i∈N ∈ Σ with

E1 ⊇ E2 ⊇ ... and ∩n≥1En = ∅, then f � g implies that there exists n0 ∈ N
such that xEn0f � g.

An important condition for the collection of models Q is identifiability.

Loosely speaking, it requires that there is a way to partition the state space

that identifies the probabilistic model; Each of the probabilistic models as-

signs probability one to its corresponding element of the partition.

Definition 4. A nonempty set Q ⊆ ∆ is identifiable if there exists a mea-

surable function k : S → Q such that

q ({s : k (s) = q}) = 1 ∀q ∈ Q.

An average robust control representation (u,Q, µ, λ) is identifiable if the set

Q is identifiable and µ is nonatomic. In that case we say that k identifies Q.

To see this more concretely, observes that in a structured average robust

control representation k (ω, π) = π identifies Q.

Theorem 2. Suppose that every nonnull E ∈ Σs contains at least three dis-

joint non-null events, then % admits an identifiable average robust control

representation if and only if it satisfies Weak Order, Weak Certainty Inde-

pendence, Continuity, Monotonicity, Uncertainty Aversion, Nondegeneracy,

and the Intramodel Sure-Thing Principle.

Proof of Theorem 2. (Only if) That % satisfies Weak Order, Weak Cer-

tainty Independence, Continuity, Monotonicity, Uncertainty Aversion, and

Nondegeneracy follows by Lemma 2. It satisfies Intramodel Sure-Thing Prin-

ciple by Lemma 16 in (Denti and Pomatto, 2020) and Proposition 7.

(If) It follows by Proposition 4 together with (Savage, 1972). �

13



4.4 Relative Concern for Misspecification

A key notion to understand how the concern for misspecification evolves over

time is a notion of being more misspecification concerned.

Definition 5. Given two preferences %1 and %2 on F , we say that %1 is

more concerned with misspecification than %2 if, for each f ∈ F and each

x ∈ X, f %1 x implies f %2 x.

An important benchmark is the case in which the decision maker may

assign a different probability to each model being the best explanation of the

data generating process but within each of the model has the same concern

for not being the exact description of the world.

Axiom 9 (Model Independent Concern for Misspecification). For every

E,E ′ ∈ Σst, x, y ∈ X with x � y and E ⊂ B,E ′ ⊂ B′ such that

xEy ∼ (x+ y)

2
By and xE ′y ∼ (x+ y)

2
B′y

implies{
z : y � z, zEy � (z + y)

2
By

}
=

{
z : y � z, zE ′y � (z + y)

2
B′y

}
.

Proposition 2. Let % admit an average robust control representation. Then

% satisfies Model Independent Concern for Misspecification if and only if

there exists λ∗ with λQ = λ∗.

4.5 Dynamic Axioms

To describe how preference evolve in face of information, we will need to

consider a family of preferences
(
%H
)
H∈H indexed by the realized history.

Axiom 10 (Constant Preference Invariance). For any x, y ∈ X, and H ∈ H,

x %H y ⇔ x %∅ y.
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Axiom 11 (Dynamic Consistency over Structural Models). Suppose that for

every nonnull E ∈ H1 and for every f, g ∈ F that are measurable with respect

to Σst

f %∅E g ⇐⇒ fBg %E g.

Axiom 12 (Q-Likelihood Ratio Agents). For every t ∈ N, H,H ′ ∈ Ht, and

E ∈ Σs, x ∈ X, and f ∈ F , if then

LRTQ (H) ≥ LRTQ (H ′) and f %H x =⇒ f %H′ x.

Proposition 3. Let
(
%H
)
H∈H and Q ⊆ ∆ (S) be such that:

1. each %H satisfies Weak Order, Weak Certainty Independence, Con-

tinuity, Monotonicity, Uncertainty Aversion, Nondegeneracy, and the

Intramodel Sure-Thing Principle,

2. for each %H , Q is the smallest closed set E such S × (∆ (S) \ E),

3.
(
%H
)
H∈H satisfies Constant Preference Invariance and Q-Likelihood.

Then each %H admits an average robust control representation (u,Q, µH , λH)

with λH increasing in LRTQ.

5 Appendix

Let B0 (Σ) denote the set of all real-valued Σ-measurable simple functions,

and B (Σ) the supnorm closure of B0 (Σ). The subset of functions in B0 (Σ)

(resp. B (Σ)) that take values in K is denoted as B0 (Σ, K) (resp. B (Σ, K)).

A functional I : Φ→ R defined on a nonempty subset of B (Σ) is a niveloid

if for every ϕ, ψ ∈ Φ

I (ϕ)− I (ψ) ≤ sup (ϕ− ψ) .
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A niveloid is normalized if I (k1S) = k for all k ∈ R such that k1S ∈ Φ.

Our first result shows that the average robust control representation falls

in the variational class.

Lemma 2. If % admits an average robust control representation (u,Q, µ, λ)

then it satisfies Weak Order, Weak Certainty Independence, Continuity, Mono-

tonicity, Uncertainty Aversion, and Nondegeneracy, and therefore it admits

a representation of the form

f % g ⇐⇒ min
p∈∆(S)

∫
S

û (f) dp+ ĉ (p) ≥ min
p∈∆(S)

∫
S

û (f) dp+ ĉ (p)

for some nonconstant affine û : X → R and a grounded, convex, lower

semicontinuous function ĉ : ∆ (S)→ [0,∞]. Moreover, we can choose û and

ĉ such that ĉ−1 (0) = Eµ [p] and û = u.

Proof By Theorem 3 and Lemma 28 in (Maccheroni, Marinacci, and Rus-

tichini, 2006), for every q ∈ ∆ (S), there exists a normalized niveloid Iq :

B0 (Σ, u (X)) and a nonconstant affine function vq such that

min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dp = Iq (vq (f))

and vq can be assumed to be such that 0 ∈ int (vq (X)). Let q, q′ ∈ ∆ (S),

and x ∈ X. We have that

vq (x) = Iq (vq (x)) = min
p∈∆(S)

∫
S

[
u (x) +

1

λ
R (p||q)

]
dp = u (x)

= min
p∈∆(S)

∫
S

[
u (x) +

1

λ
R (p||q′)

]
dp = Iq′ (vq′ (x)) = vq′ (x)

showing that vq = vq′ : = v. By Lemma 25 in (Maccheroni, Marinacci,

and Rustichini, 2006), I is monotone and translation invariant. Let µ ∈
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∆ (∆ (S)). For every ϕ ∈ B (Σ, v (X)), define

Î (ϕ) =

∫
∆(∆(S))

Iq (ϕ) dµ (q) .

By the monotonicity of the integral, Î is monotone. Let ϕ ∈ B0 (Σ, K),

k ∈ v (X), and α ∈ (0, 1). We have

Î (αϕ+ (1− α) k) =

∫
∆(∆(S))

Iq (αϕ+ (1− α) k) dµ (q)

=

∫
∆(∆(S))

Iq (αϕ) + (1− α) kdµ (q)

=

∫
∆(∆(S))

Iq (αϕ) dµ (q) + (1− α) k

= Î (αϕ) + (1− α) k.

where the second equality follows from the translation invariance of each Iq.

But then, notice that∫
∆(∆(S))

(
min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dp

)
dµ (q) =

∫
∆(∆(S))

Iq (v (f)) dµ (q) = Î (v (f))

where Î is monotone and translation invariant. Therefore, the statement

follows from Lemmas 25 and 28 and Theorem 3 of (Maccheroni, Marinacci,

and Rustichini, 2006). By the first part of the lemma we have

u (x) ≥ u (y) ⇐⇒ x % y ⇐⇒ û (x) ≥ û (y)

and therefore by the uniqueness up to a positive affine transformation of û

guaranteed by Theorem 3 of (Maccheroni, Marinacci, and Rustichini, 2006)

and the fact that each two affine function that represent % on X are pos-

itive affine transformations of each other (Herstein and Milnor, 1953), we

can choose u = û. Finally, that the unique ĉ identified by the choice of û
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has ĉ−1 (0) = Eµ [p] follows by Lemma 32 of (Maccheroni, Marinacci, and

Rustichini, 2006). �

We then show that if in every state the outcome paid by act f is strictly

preferred to the one paid by act g then f is strictly preferred to g.

Lemma 3. If % satisfies Weak Order, Weak Certainty Independence, Conti-

nuity, Monotonicity, Uncertainty Aversion and Nondegeneracy, then if f (s) �
g (s) for all s ∈ S, then f � g.

Proof If % satisfies Weak Order, Weak Certainty Independence, Continuity,

Monotonicity, Uncertainty Aversion and Nondegeneracy, then by Theorem

3 of (Maccheroni, Marinacci, and Rustichini, 2006), it admits a variational

representation:

f % g ⇐⇒ min
q∈∆

(∫
u (f) dq + c (q)

)
≥ min

q∈∆

(∫
u (g) dq + c (q)

)
for some nonconstant affine u : X → R and a grounded, convex, lower semi-

continuous function c : ∆ (S)→ [0,∞]. Then the result follows immediately

from the representation. �

Lemma 4. If % admits an average robust control representation then if

f (s) � g (s) for all s ∈ S, then f � g.

Proof It follows immediately from Lemmas 2 and 3. �

Lemma 5. Let E ∈ Σst be nonnull, and let % satisfy Weak Order, Weak Cer-

tainty Independence, Continuity, Monotonicity, Uncertainty Aversion, and

Weak Monotone Continuity, then %A satisfies Weak Order, Weak Certainty

Independence, Continuity, Monotonicity, Uncertainty Aversion, Nondegen-

eracy, and Weak Monotone Continuity.

Proof Let f, g, h ∈ F . By Completeness of % at least one between fEh %

gEh and gEh % fEh holds. Therefore, by definition of %E at least one
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between f %E g and g %E f holds. Let f, f ′, f ′′, h ∈ F , with f %E f ′ and

f ′ %E f ′′. Since f %E f ′, fEh′ % f ′Eh′ and f ′Eh′′ % f ′′Eh′′ for some

h′, h′′ ∈ F . Since E ∈ Σst, fEh
′′ % f ′Eh′′. By Transitivity of %, fEh′′ %

f ′′Eh′′, and so by definition of %E, f %E f ′′.

Let f, g ∈ F , x, y ∈ X, and α ∈ (0, 1), be such that αf + (1− α)x %E
αg+(1− α)x. SinceE ∈ Σst we have (αf + (1− α)x)Ex % (αg + (1− α)x)Ex.

By Weak Certainty Independence of% we get (αf + (1− α) y)E (αx+ (1− α) y) %

(αg + (1− α) y)E (αx+ (1− α) y). But then by definition of %E, we have

αf + (1− α) y %E αg + (1− α) y, proving that %E satisfies Weak Certainty

Independence.

Let f, g, h, h′ ∈ F . Since E ∈ Σst, we have that

{α ∈ [0, 1] : αf + (1− α) g %E h} = {α ∈ [0, 1] : (αf + (1− α) g)Eh′ % hEh′}

and

{α ∈ [0, 1] : h %E αf + (1− α) g} = {α ∈ [0, 1] : hEh′ % (αf + (1− α) g)Eh′}

where the sets on the RHS’ are closed by Continuity of %.

Let f, g, h ∈ F and f (s) %E g (s) for all s ∈ S. Then, fEh % gEh

by Monotonicity of %. Therefore, by definition of %E, f %E g and so %E
satisfies Monotonicity.

Let f, g, h ∈ F , x ∈ X, α ∈ (0, 1) and f ∼E g. Since E ∈ Σst, fEh ∼ gEh

and by Uncertainty Aversion, (αf + (1− α) g)Eh = αfEh+ (1− α) gEh %

fEh. By definition of %E, this implies that αf + (1− α) g %E f and so %E
satisfies Uncertainty Aversion.

Since E is nonnull, there exist f, g, h ∈ F such that fEh � gEh. But

then, by definition of %E, f �E g and %E satisfies Nondegeneracy.

Let f, g ∈ F , x ∈ X, (Ei)i∈N ∈ Σ with E1 ⊇ E2 ⊇ ... and ∩n≥1En = ∅,
and f �E g. Then (E ′i)i∈N where E ′i = Ei ∩ E is such that E ′1 ⊇ E ′2 ⊇ ...

and ∩n≥1E
′
n = ∅. Then (fE ′ix)Eh = (fEh)E ′ix and by Weak Monotone
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Continuity and the fact that fEh � gEh there exists n0 ∈ N such that(
fE ′n0

x
)
Eh % gEh. But notice that (fEn0x)Eh =

(
fE ′n0

x
)
Eh % gEh and

therefore fEn0x %E g. �

Proposition 4. Let E ∈ Σst contain at least three disjoint non-null events,

and let % satisfy Weak Order, Weak Certainty Independence, Continuity,

Monotonicity, Uncertainty Aversion, and Weak Monotone Continuity, and

the Intramodel Sure-Thing Principle then

f %E g ⇐⇒ min
q∈∆(S)

∫
uE (f (s)) dq (s)+

1

λE
R (q||pE) ≥ min

q∈∆(S)

∫
uE (f) dq+

1

λE
R (q||pE)

where u is a nonconstant affine function, λE ∈ [0,∞), and pE ∈ ∆σ (S).

Moreover uE can be chosen to be the same for all such E and supp pE ⊆ E.

Proof The first part follows by Lemma 5 and Theorem 1 of (Strzalecki,

2011). For the second part, notice that by Theorem 3 of (Maccheroni, Mari-

nacci, and Rustichini, 2006), % admits a variational representation:

f % g ⇐⇒ min
q∈∆

(∫
u (f) dq + c (q)

)
≥ min

q∈∆

(∫
u (g) dq + c (q)

)
for some nonconstant affine u : X → R and a lower semicontinuous and

grounded function c : ∆ (S)→ [0,∞]. Notice that % and %E coincide on X.

Indeed, by definition of %E

x %E y ⇒ x % yEx

and yEx % y by Weak Certainty Independence. Therefore, by Weak Order

of %, x % y. Let x % y, then by Theorem 3 of (Maccheroni, Marinacci, and

Rustichini, 2006) u (x) ≥ u (y). Since c is grounded, there exists q∗ with
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c (q∗) = 0. But then

u (x) ≥ u (y) q∗ (E)+(1− q∗ (E))u (x) ≥ min
q∈∆

(u (y) q (E) + (1− q (E))u (x) + c (q))

that is, xEx % yEx, and x %E y. Therefore, by the Mixture Space Theorem

(Herstein and Milnor, 1953), u and uE are positive affine transformations of

each other, concluding the proof. �

We say that an act f is unambiguously preferred to g, denoted as f %∗ g

if

αf + (1− α)h % αg + (1− α)h for all α ∈ [0, 1] , h ∈ F .

Definition 6. A tuple (u,Q, µ, φ) is an average second order utility repre-

sentation of the preference relation % if u is a nonconstant affine function,

µ ∈ ∆ (∆ (S)), Q⊆∆ (S) is a nonempty set φ : u (X) → R is a strictly

increasing continuous function and

f % g ⇐⇒
∫
Q

φ−1

(∫
S

φ (u (f)) dq

)
dµ (q) ≥

∫
Q

φ−1

(∫
S

φ (u (g)) dq

)
dµ (q) .

Lemma 6. (i) If % admits an average robust control representation then it

admits an average second order utility representation. (ii) If % admits an

average second order utility representation with φ (z) = − exp (−z), then it

admits an average robust control representation.

Proof (i) Let (u,Q, µ, λ) be an average robust control representation of the

preference relation %. By Proposition 1.4.2. in (Dupuis and Ellis, 2011), for

all f ∈ F and q ∈ ∆ (S)

min
p∈∆(S)

(∫
S

u (f) dp+
1

λ
R (p||q)

)
= −1

λ
log

(∫
S

exp (−λu (f)) dq

)
.
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Therefore,∫
Q

min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dpdµ (q) =

∫
Q

−1

λ
log

(∫
S

exp (−λu (f)) dq

)
dµ (q)

and the result follows by letting φ (·) = − exp (−λ (·)).
(ii) Let (u,Q, µ,− exp (−λ (·))) be an average second order utility repre-

sentation of the preference relation %. By Proposition 1.4.2. in (Dupuis and

Ellis, 2011), for all f ∈ F and q ∈ ∆ (S)

−1

λ
log

(∫
S

exp (−λu (f)) dq

)
= min

p∈∆(S)

(∫
S

u (f) dp+
1

λ
R (p||q)

)
.

Therefore,∫
Q

min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dpdµ (q) =

∫
Q

−1

λ
log

(∫
S

exp (−λu (f)) dq

)
dµ (q) .

�

Definition 7. A tuple (u, φ,G, π) is a robust predictive representation of the

preference relation % if u is a nonconstant affine function, φ : u (X) → R
is a strictly increasing continuous function, G is a sub-sigma algebra of Σ,

π ∈ ∆ (S) is a probability measure nonatomic on G and

f % g ⇐⇒
∫
S

φ−1

(∫
S

φ (u (f)) dπ (s|G)

)
dπ ≥

∫
S

φ−1

(∫
S

φ (u (g)) dπ (s|G)

)
dπ.

A robust predictive representation requires that conditional to the infor-

mation on a sigma algebra G, the agents evaluate act f as subjective expected

utility maximizer with function φ ◦ u.

For everyQ ⊆ ∆ (∆ (S)), and µ ∈ ∆ (Q), let GQ = {E ∈ Σ : q (E) ∈ {0, 1} for all q ∈ Q},
and let πµ ∈ ∆ (S) be defined by

πµ (E) =

∫
Q

q (E) dµ (q) .
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Let φ (u) = − exp (−λu).

Lemma 7. If % admits an identifiable average robust control representation

(u,Q, µ, λ), then % admits the robust predictive representation (u,− exp (−λ(·)) ,GQ, πµ).

Proof Suppose that (u,Q, µ, λ) is an identifiable average robust control

representation and that k identifies Q. By Lemma 25 in (Denti and Pomatto,

2020) πµ is nonatomic on GQ. It is enough to show that for all f ∈ F∫
Q

min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dpdµ (q) = φ−1

(∫
S

φ (u (f)) dπµ (s|GQ)

)
dπµ (q) .

Let f be GQ-measurable and fix q ∈ Q. Then,

{s : f (s) = Eq (f)} , {s : f (s) > Eq (f)} , {s : f (s) < Eq (f)} ∈ GQ,

and if q ({s : f (s) = Eq (f)}) = 0, then either q ({s : f (s) > Eq (f)}) = 1 or

q ({s : f (s) > Eq (f)}) = 1, a contradiction with the definition of Eq. Hence,

Eq
[∫
S
φ−1 (f)

]
= φ−1 (Eq [f ]) which implies∫

Q

φ−1

(∫
S

fdq

)
dµ (q) =

∫
Q

∫
S

φ−1 (f) dqdµ (q) (2)

=

∫
S

φ−1 (f) dπµ

=

∫
S

φ−1

(∫
S

fdπ (s|GQ)

)
dπµ.

Then, let f ∈ F . By Lemma 23 in (Denti and Pomatto, 2020)∫
S

φ (u (f)) dq =

∫
S

∫
S

φ (u (f)) dk (s) dq (s) (3)
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so that∫
Q

min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dµ (q) =

∫
Q

φ−1

(∫
S

φ (u (f)) dq (s)

)
dµ (q)

=

∫
Q

φ−1

(∫
S

∫
S

φ (u (f)) dk (s) dq (s)

)
dµ (q)

=

∫
S

φ−1

(∫
S

φ (u (f)) dk (s)

)
dπµ

=

∫
S

φ−1

(∫
S

φ (u (f)) dπ (s|GQ)

)
dπµ

where the the second inequality follows by equation (3), the third by the

GQ-measurability of s 7→
∫
S
φ (u (f))dk (s) and by equation (2), and the last

equality follows by Lemma 24 in (Denti and Pomatto, 2020). �

Lemma 8. If % admits a robust predictive representation (u,− exp (−λ(·)) ,G, π),

then % admits an identifiable average robust control representation (u,Q, µ, λ)

where π = πµ and G = σ (k) up to null events.

Proof Suppose that (u, φ,G, π) is a robust predictive representation of the

preference relation %. Let k be the regular conditional probability of π with

respect to G whose existence is guaranteed by the fact that (S,Σ) is standard

Borel. Define the prior µ ∈ ∆ (∆ (Ω)) as the pushforward of π under k. Since

k is a conditional probability with respect to G, for each fixed E ∈ Σ the

functions s 7→ k (s, E) and s 7→ k (s, E)2 are G-measurable and by definition

of conditional probability∫
S

k (s′, E) k (s, ds′) = k (s, E) and

∫
S

k (s′, E)
2
k (s, ds′) = k (s, E)2 .

So∫
S

k (s, E)2 dp (s) + p (E)2 =

∫
S

∫
S

k (s′, E)
2
k (s, ds′) dp (s) + p (E)2

= 2p (E)

∫
S

k (s, E) dp (s)
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and therefore p ({s : k (s, E) = p (E)}) = 1 for µ almost all p. Let

Q= {p : p ({s : k (s) = p}) = 1} .

Since the space (S,Σ) is standard Borel, there exists a countable Σ′ that

generates Σ. We have just proved that for each E ∈ Σ′, for µ almost all p

p ({{s : k (s, E)} s = p (E)}) = 1

and so

p ({s : k (s) = p}) = 1.

Therefore, µ (Q) = 1 and k is a G − ΣQ
∆ measurable function that identifies

P . With a change of variable, we get∫
S

φ−1

(∫
S

φ (u (f)) dπ (·|G)

)
dπ =

∫
Q

φ−1

(∫
S

φ (u (f (s′))) dp (s, ds′)

)
dµ (p) .

But then by Lemma 6∫
Q

φ−1

(∫
S

φ (u (f (s′))) dp (s, ds′)

)
dµ (p) =

∫
Q

min
p∈∆(S)

∫
S

[
u (f) +

1

λ
R (p||q)

]
dµ (q) .

Since the average multiplier representation that we have obtained is identifi-

able, it is enough to show that µ is nonatomic. Take any partition E1, ..., En

of events that are equally likely under Σ, that exists since (S,Σ, π) is not

atomic. For each i ∈ {1, .., n} the set

E∗i = {p ∈ Q : q (Ei) = 1}

has

µ (E∗i ) = µ ({p ∈ Q : q (Ei) = 1}) = π ({s : k (s, E) = 1}) = π (Ei) =
1

n
.
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Proof of Lemma 1. We have

Ḡt
t (ht, Q) =

(
log

(
Pp(ht) (ht)

maxθ∈Q Pθ (ht)

))
/t

=

(
log

(∏t
i=1 p (ht) (yt)∏t
i=1 q (yt)

))
/t

=

(
log

(
t∏
i=1

p (ht) (yt)

)
− log

(
t∏
i=1

q (yt)

))
/t

=

(
log

(∏
y∈Y

p (ht) (y)tp(ht)(y)

)
− log

(∏
y∈Y

q (y)tp(ht)(y)

))
/t

=

(∑
y∈Y

tp (ht) (y) log (p (ht) (y))−
∑
y∈Y

tp (ht) (y) log

(∏
y∈Y

q (y)

))
/t

= R (p (ht) ||q) .

Lemma 9. Suppose that for any prior belief ν0 supported on Θ and any

optimal policy π̃ Pπb [b = π̃(ντ ) for all τ ≥ 0] = 0, then b is not a limit

action.

Proof Suppose by way of contradiction that there is an optimal policy π̃

and a history (at, yt) with Pπ̃[(at, yt)] > 0 such that with positive probability

π̃ prescribes b after (at, yt) in every future period. Define ν0 = µ(·|(at, yt)),
and notice that supp ν0 = suppµ0 = Θ. Define νt to be the belief if the

agent uses the policy πb, i.e. plays b in every period. As the evolution of

beliefs under πb is the same as under π̃ for every history where the agent

continues to play b, we have that Pπ̃[b = π̃(µτ ) for all τ ≥ t] > 0 if and only

if Pπb [b = π̃(ντ ) for all τ ≥ 0] > 0 . However, the later equals zero by the

assumption of the lemma, which establishes that b cannot be a limit action.

�

Proof of Proposition 3. That each %H admits an average robust control

representation (uH , QH , µH , λH) follows by Theorem 2. That QH = Q follows

from the representation and the fact that Q is the smallest closed set E
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such S × (∆ (S) \ E). That uh = u for some constant affine u follows from

Constant Preference Invariance, and λH is increasing in LRTQ by Proposition

8 in (Maccheroni, Marinacci, and Rustichini, 2006). �
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