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Abstract

I model the interaction between dynamic decision making and social learning
about new technologies in driving industry takeoff and productivity growth.
Learning about the use of new technologies is an important factor in economic
growth, but I demonstrate that anticipated social learning can lead to a free-
riding dynamic in scenarios with high enough uncertainty. I consider the em-
pirical setting of hydraulic fracturing in North Dakota, where firms learn about
the optimal use of fracturing technology, in part due to detailed data published
by regulators. The cumulative value of this learning process is a ceteris paribus
40% increase in ex-ante expected profitability. I model the impact of learning
externalities on agents’ decisions to drill shale oil wells, an optimal stopping
problem. My estimates suggest that the social learning externality is too small
to affect investment in later stages of industry development, after uncertainty is
reduced. Conversely, I demonstrate that under conditions of higher uncertainty,
anticipated social learning can lead to significantly lower industry investment
and slower rates of industry learning. Under this scenario, I also demonstrate
the potential for public tests of the technology to enhance welfare by leading
to more investment and a higher learning rate.
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As a general rule, it seems likely that in the past 150 years the majority
of important inventions, from steel converters to chemotherapy, from
food canning to aspartame, have been used long before people under-
stood why they worked, and systematic research in these areas was thus
limited to ordered trial-and-error operations. – Mokyr (1992)

1 Introduction

Much technological change occurs not in the laboratory, but on the shop floor and

in the field, through a process of tinkering and exchange of experience with a new

technology. Mokyr’s characterization is particularly apt for one of the most signif-

icant recent technologies to be developed for oil extraction: hydraulic fracturing.

Improvements in the application of this technology have led to stunning increases

in productivity. In the North Dakota Bakken shale, the median well in 2008 began

producing at a rate of 419 barrels of oil per day; by 2015 the figure had increased

more than 200% to 1,265. Engineers’ continual experiments, rather than scientific

breakthroughs, are responsible for this growth, and experimentation and productiv-

ity improvement both continue (Gold, 2014). This process of adoption, perfection,

and dispersion of new technologies is understood to be a key component of economic

growth (see, e.g. Lucas (1993)), but questions remain: how does the possibility of

social learning affect investment decisions, and in turn, how does investment affect

learning?

I study the process of technological change in North Dakota’s hydraulic fracturing

industry by building and estimating a dynamic structural model. The model features

current knowledge as a dynamic state and generates endogenous investment decisions

and learning behavior. The model explicitly accounts for a firm’s incentive to wait

and potentially benefit from its rivals’ experimentation under social learning. I pro-

pose a rational expectations equilibrium, and use approximate dynamic programming

techniques to estimate the equilibrium in an empirical application. Model estimates

suggest that anticipated social learning does not act as a drag on investment as the in-

dustry’s knowledge matures; however, in states with higher uncertainty, a free-riding

dynamic can arise that leads to lower investment and slower learning.
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My empirical application focuses on the shale oil industry in North Dakota’s

Bakken formation. The industry has witnessed rapid productivity growth in recent

years as firms have improved their use of inputs. The process has had dramatic effects

on global energy markets: U.S. domestic oil production has returned to peak levels

not seen since the 1980s, prompting falls in crude oil prices and political unrest in

oil-rich nations. It is also an industry that features social learning: competing firms

sometimes cooperate on shared wells or use the same sub-contractors, and regula-

tors often collect and publish detailed production information. I estimate the model

using data on oil production and hydraulic fracturing inputs available through the

North Dakota Industrial Commission (hereafter, NDIC). The Bakken is well-suited

to this study: over 10,000 wells have been drilled over the last decade; large swings

in oil prices provide identifying variation; the NDIC’s data is available to industry

participants, allowing for social learning; and detailed cost estimates are available

for a subset of wells, allowing for the construction of a reasonable model of expected

profits.

My results first confirm that learning has occurred, as firms changed inputs to

improve profits. This process has lead to an increase in expected profits of 40% over

10 years. I then construct and estimate a dynamic model that includes industry

knowledge as a state. The estimates from this model suggest that anticipated social

learning has a negligible impact on investment decisions. That is, in the estimated

information states, the option value of anticipated learning from rivals on a single well

is small, despite the overaching impact of industry learning on profits. Counterfactual

simulations then study the free-riding effect that anticipated learning has in less-

certain information states – such as those that might corresond to firms possessing

limited attention or the beginning stages of learning about a new shale formation, or

about a new technology in another industry. In these states, lower investment can

lead to slower learning in a feedback loop. Finally, I consider the possible role for

public test wells in jump-starting the industry’s learning; these results demonstrate
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that public tests of a new technology can be welfare enhancing by increasing learning

and investment.

The remainder of this paper proceeds as follows. Below I summarize this paper’s

contribution to the literature, and then turn in Section 2 to an overview of the indus-

try and relevant institutional details. Section 3 describes and summarizes my data

sources, then provides empirical evidence of learning. I outline the structural model

in Section 4, and Section 5 details empirical choices and estimation results. I conduct

counterfactual analyses in Section 6, and conclude in Section 7.

Related Literature

This paper contributes to the literature that models learning in strategic and

social environments, as well as that which studies the economics of the oil and gas

industry.

The importance of learning to economic growth has long been recognized. As

an example, Mokyr (1992) describes the gains of new knowledge or technologies as

a true “free lunch”, and Lucas (1993) calls growth, attributable in large part to

learning, “a miracle”. One strand of the economics literature, exemplified in Benkard

(2000), has focused on “learning by doing” or the ability to reduce costs and inputs

over repeated instances of production: through trial and error, the marginal cost

of producing the thousandth widget is some fraction of that for the first widget.

Complementary studies such as Griliches (1957), Foster and Rosenzweig (1995) and

Conley and Udry (2010) have considered the adoption of new technology and social

learning in agricultural settings. This paper is closer to the latter strand, modeling

social learning about a new technology, though my empirical setting is oil drilling and

hydraulic fracturing.

Oil firms, which I also refer to as operators following industry convention, face a

complex dynamic problem: drilling a well in the current period will yield uncertain

resources in future periods, which can then be sold for uncertain prices.1 This com-

1Drilling and fracturing technically refer to different stages of the production process. As I
focus only on fractured Bakken wells (which were all drilled prior to fracturing), I use the terms
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bination of irretrievable up-front investment and uncertain future payoffs gives rise

to real option value. Kellogg (2014) demonstrated the behavior of Texas oil drillers

in the 1990s in response to changes in oil price volatility was consistent with a real

options framework. His setting featured a constant (distribution of) underlying pro-

ductivity, so firms’ option value was due to possible changes in the price of oil or cost

of drilling.

In the more modern setting of the hydraulic fracturing boom, operators have

enjoyed rapid productivity growth as they have learned about the optimal use of the

new technology. Covert (2015) documents this process in the North Dakota Bakken

shale formation, providing evidence of increasing productivity over time. He also finds

that operators place greater weight on information from their own wells compared to

that published by a regulator on others’ wells. In related work, Fetter, Steck, Timmins

and Wrenn (2017) study learning about hydraulic fracturing fluids, using a regulatory

change in chemical disclosure laws; their results suggest that firms exploit disclosure

to learn from competitors, and that the knowledge is economically valuable.2

Both Covert and Fetter et al. focus on social learning’s effect on the firm’s decision

of how to fracture a well, taking the decision to drill a well as given. That is, they

do not model the extensive margin of whether to drill and fracture a new well. A

rich literature in empirical industrial organization, e.g. Ryan (2012) and Collard-

Wexler (2013), has demonstrated the importance of accounting for these investment

and entry choices on industry and welfare outcomes. This paper bridges that gap by

jointly modeling social learning and drilling decisions.

A related work, Hodgson (2021) models investment decisions and information ex-

ternalities in the historical context of drilling for oil on the UK’s continental shelf.

Investigating a very similar economic issue to that in this paper, his model captures

the information externality from where operators choose to drill in a conventional

interchangably in this paper.
2Other forms of learning have been studied in this industry, such as geographic learning in

Hendricks and Porter (1996) and Levitt (2009), and inter-firm relationships in Kellogg (2011). This
paper follows Covert (2015) in focusing on learning about the production function.
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resource play when the drilling technology is not changing, whereas I focus on the

information externality from how operators choose to fracture and so model tech-

nological progress explicitly. In a similar vein, Agerton (2020) studies drilling in

Louisiana’s Haynesville shale and finds in his context that the choice of where firms

drill is more important for explaining productivity improvements than than how firms

fracture.

This study is also related to two other recent works on strategic models of learn-

ing. Doraszelski, Lewis and Pakes (2018) model agents learning about competitors’

play and equilibrium strategies in a repeated game. Jeon (2020) studies implications

on shipping investment of having agents learn about demand shock parameters. Her

model is similar in spirit to a strand of macroeconomic literature that models either

agents or policymakers as having Bayesian beliefs about exogenous macroeconomic

fundamentals, such as Cogley and Sargent (2005) or Orlik and Veldkamp (2014). In

contrast to all of these studies, the arrival of new information in my model is endoge-

nous to current knowledge, as investment decisions depend on the current information

state. This significantly increases the difficulty of estimation in the present study, but

represents a unique contribution.

2 Industry Overview

In order to inform modeling choices and data requirements, this section provides some

institutional background on oil production, hydraulic fracturing, and the Bakken shale

formation.

Producing oil or gas from drilling a well is different than producing widgets in a

factory. Firms pay large sunk costs to drill each well (on the order of $10m to drill

and fracture), and negligible marginal costs of maintenance and pumping. With low

marginal costs, economic production can last for many years, but decreases exponen-

tially over time from the rate of initial production (hereafter, IP). Further, even with

the best seismic imaging technologies, there is significant variation in the realized

productivity of wells - the largest and most experienced companies drill “dry holes”

along with “gushers”. As discussed in Anderson et al. (2014), firms also face physical
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constraints that limit the ability to control production from an active well. The im-

plication is that an operator’s key decision in determining future production is when

to drill new wells.

Hydraulic fracturing refers to to the process of injecting water and chemicals

(fracturing fluid) and proppant, at high pressures, into shale or other low-porosity rock

formations, in order to access trapped hydrocarbon molecules. The technology has

been around in some form since the 1940s, but enjoyed rapid growth and development

beginning in Texas the late 1990s. It has since spread widely, revitalizing the U.S.

oil and gas industry, and upending global energy markets. Its use has a few key

features that differentiate it from conventional oil and gas drilling. First, there is

significantly less geological uncertainty - for example in the Bakken virtually every

well finds and produces some oil. Second, as fracturing is used in rock formations

with very low porosity, there is essentially no common pool problem. Third, how

the well is fractured plays a large role in determining productivity.3 The fracture is

key to unlocking the valuable hydrocarbons, but done incorrectly can also damage

the resevoir. Therefore a second key decision in oil production from a hydraulicly

fractured well is how to fracture the well. As the technology in its modern form is

relatively new, firms are still experimenting and learning about its optimal use.

In fact, the development of hydraulic fracturing as it is known today is a result

of just such experimentation. Employees at Mitchell Energy in the 1990s were exper-

imenting with gas wells in Texas’ Barnett Shale. They were trying to reduce costs

by fracturing wells with a watered down fracture solution, when they discovered that

fracturing with mostly inexpensive water (slickwater) worked better than the expen-

sive gels (Zuckerman, 2013) that predominated at the time. Gold (2014) describes

how even before Mitchell’s experiments, similar learning in Texas sandstones occurred

3When drilling and fracturing a well, an operator chooses the configuration of key input variables
including: the lateral wellbore length, the number of fracture stages, the amount and type of prop-
pant, the amount and composition of the fracturing fluid, and the injection pressure and rate. All
of these choices combine to determine the quality of the fracture. The fracture then interacts with
local geology to determine oil production.
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by accident at another firm; engineers injected more water than intended due to a

broken gauge, and the wells turned out to produce surprisingly well. The engineers

published a paper and served as inspiration for Mitchell’s later efforts. Gold also

describes the attitude of some of those early innovators:4

“Why it works is still generally unknown,” Walker wrote. Not that this
mattered to Walker. Engineers are problem solvers. If the wells were
cheaper and gas production better, problem solved. A later generation
of geologists and engineers could worry about why. They were making
better wells and improving their company’s bottom line.

This experimentation has continued through the present, as operators have tried

wells with longer horizontal wellbores, denser fracture stages, varying amounts and

types of proppant, and varying amounts and compositions of fluid. As some changes

have proven profitable, the average well has used higher amounts of fluid and proppant

per foot of wellbore, and more fracture stages (EIA, 2016). The production function

is high-dimensional and complex enough that the learning process is ongoing at the

time of this writing.

This paper’s empirical application focuses on drilling in North Dakota’s Bakken

shale. The Bakken has seen more than 10,000 wells drilled over the last decade,

produces predominantly oil, and has been a big contributor to a rapid rise in U.S.

crude oil production. Hydrocarbon production in the Bakken is regulated by the

North Dakota Industrial Commission, hereafter NDIC. The NDIC collects and pub-

lishes well-level data on inputs and outputs, enabling firms to observe results from

competitors’ wells when deciding how to fracture their own.

3 Data and Summary

In this section I describe the data used in this study and discuss trends in key vari-

ables. To estimate my model, I require: oil prices and futures to determine revenue

expectations; well-level production, characteristics, and fracturing inputs to estimate

a decline curve and production function; and drilling and fracturing costs to estimate

a function relating inputs to costs.4The attitude described is reminiscent of many examples given in Mokyr (1992) where scientific
understanding follows technological innovation, rather than vice-versa as is commonly presumed.
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3.1 Oil Prices
Together with monthly production data, I use monthly oil prices to calculate operator

revenue. I gather prices from the U.S. industry’s benchmark futures curve, known

as West Texas Intermediate (WTI) via Bloomberg. I collect prices along the futures

curve up to 60 months out to capture the industry’s expectations of medium-term

price movements.5 Figure 1 plots the price of crude and some illustrative curves

from 2003 through 2016. The figure displays a few features of interest. First, the oil

market has experienced two drastic price collapses in recent years, the first of which

was coincident with the financial crisis. Second, market expectations of future prices

can run the gamut from falling to stable to rising, but tend to reflect the recent past.
Figure 1: Monthly Oil Prices and Futures

Notes: Prices shown are for West Texas Intermediate (WTI) crude oil, and are taken from
Bloomberg. The futures curves are drawn using copntemporaneous futures contracts, up to 60
months out.

3.2 Hydraulic Fracturing Inputs
To estimate learning over the production function, it is necessary to see operators’

input choices. The NDIC publicly provides data on fracturing inputs, but housed in

pdf documents of scanned images that are not machine-readable. I therefore supple-

ment these pdfs with a pull from the NDIC’s data server.6 Because these data are

5Conversations with industry members suggest this is reasonable: firms use futures to inform
expectations, and oftentimes to hedge price risk.

6An earlier version of this study instead used similar data provided by what was then known
as DrillingInfo’s Engineering Feed. Today the company is known as Enverus and I believe it has a
different name for this data product.
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sometimes missing or incorrectly transcribed, I supplement them with manual entries

from the NDIC’s pdf files, and from FracFocus, where available.7

Table 1 provides details on how those input variables have changed over time.

From the first three columns, we see that fractures have used significantly larger

quantities of fracturing fluid per foot over the last decade, and that the variation in

these inputs has likewise increased. The second three columns show similar patterns

in the use of proppant per foot.
Table 1: Fracturing Inputs by Year

Fluid (gallons / ft) Proppant (lbs / ft)
Median Mean Std. Dev. Median Mean Std. Dev.

2005 83 80 41 55 60 48
2006 87 109 102 51 94 202
2007 96 122 109 72 84 82
2008 132 185 143 93 110 60
2009 175 210 153 96 134 92
2010 276 292 131 197 207 95
2011 289 293 114 220 229 122
2012 293 300 121 236 262 188
2013 317 350 229 245 294 203
2014 382 446 264 328 415 278
2015 414 504 289 384 478 292
2016 626 737 472 574 669 393

Data is taken from the NDIC’s internal database on well stimulations. Missing and inaccurate data
was corrected by hand using the NDIC’s Completion Reports, housed in the NDIC’s Wellfile pdfs.

I also collect administrative data on completions, monthly production and other

well characteristics from the NDIC. Further information on this data and a table of

summary statistics are available in Appendix A.

3.3 Well Costs
Operators are motivated by profit rather than production per se, so it is essential

that my model include costs. I am able to obtain detailed ex ante cost estimates

known as Authorization for Expenditures (AFEs) for some wells. These estimates

7In some instances, wells are re-fractured after a period of production, or if there was an issue in
the original stimulation. I am able to observe re-fractures by matching well API numbers, and do
not include them in my analysis.
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are generated by operator engineers, and represent the operators’ expected expenses

for drilling and completing a given well. I am able to gather AFEs only in particular

circumstances, which occur for roughly 400 of the wells in my sample, and some of

these wells cannot be matched to the drilling, production and input datasets by lease

and wellname. Appendix E provides more details.

Figure 2 shows the evolution of average well costs from the AFE dataset from 2008

to 2016, with costs broken down into four components: tangible drilling, intangible

drilling, tangible completion, and intangible completion. The figure shows that costs

have generally been increasing, before decreasing in 2015. Looking more closely at the

subcomponents, the chart shows that most of the change has come from completion

costs. Completion costs have become a larger fraction of total well costs, rising from

roughly 40% to 60% between 2008 and 2014.
Figure 2: Estimated Well Costs

Notes: Average well costs per year are shown, for wells in the AFE subsample (see text for details).

3.4 Evidence of Learning
Section 2 argued that learning is an important feature of the oil shale industry. In this

section, I provide evidence for, and an overview of, recent learning in the industry.

I provide three pieces of empirical evidence that learning is indeed occurring: first,

I show the evolution of well configurations and input choices; I then discuss how this

learning is consistent with profit maximization; third, I use regressions to suggest

that operators learn from individual wells.

As the first evidence for operator learning, I discuss how the industry’s well con-

figurations and input choices have changed. Two key inputs in a hydraulic fracture

are the amounts of proppant and fluid. Figure 3 plots yearly proppant and fluid use

over the nine years ending in 2016. Both input variables are normalized into per-foot
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terms, by dividing by the length of the horizontal wellbore. Three facts are visible

from this figure: first, there is wide variation in the use of these inputs; second, the

number of wells increased over the measured timespan, with a falloff in 2015 (as oil

prices fell); third, there is a clear upward and rightward trend, indicating that oper-

ators were pursuing “bigger” fractures with more proppant and fluid. For example,

a modal fracture in 2014 would have been one of the biggest fractures in 2008.

As operators began implementing larger fracture jobs, these new wells became

important datapoints for operators trying to understand the fracturing production

function. This can be seen from Figure 3, where the observed frontier of fracture

intensity shifts up and to the right over time. Operators in later years had data on

and experience with larger fracture jobs that they had lacked in earlier years.
Figure 3: Proppant and Fluid Use, by Year

Notes: Each figure represents a heatmap, with a darker shade indicating more wells. Both input
variables are transformed by dividing by the length of the horizontal wellbore. Values are truncated
at 2000.

This industry-wide pattern is similar to that found at the individual operator level.

As an example, consider Figure 4, which charts the use of inputs by EOG Resources,

one of the most prolific operators in the Bakken. The figure illustrates that EOG

fractured its wells more or less predictably until 2012, when they began to incorporate
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some larger fractures. Over the next two years they tried different configurations, but

the trend was to use more proppant and more fluid. EOG’s smallest fracture in 2016

is larger than anything from 2012 or before. This pattern suggests that EOG was

learning about (and experimenting with) the optimal fracturing configuration.
Figure 4: EOG Resources Proppant and Fluid Use, by Year

Notes: Each figure represents a heatmap, with a darker shade indicating more wells. Both input
variables are transformed by dividing by the length of the horizontal wellbore. Values are truncated
at 2000.

Next, I show that the changes discussed above are consistent with learning and

profit-maximization. Rows 3-6 of Table 9 show that 6 Month IP per well increased

significantly from 2005 to 2016. Figure 5 examines this evolution more closely, using

a regression and counterfactual predicted values. The figure shows predicted median

initial production by year for three scenarios. The first uses actual inputs and esti-

mated location fixed effects, while the other two use median inputs for 2007 and 2016

along with estimated location fixed effects. Thus, the counterfactuals are created by

predicting 6 Month IP if each well had been drilled with 2007 and 2016 median con-

figurations, but in the same location and at the same time as it was drilled in reality.

Details on the process of computing the counterfactual can be found in Appendix D.

The chart shows a sizable gap between predicted production from the 2007 and 2016
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configurations, which implies that operators accumulated valuable knowledge over

those years. It also shows that most of the increase in production has been due to

changes in well configurations, rather than changes in geology, i.e. firms are drilling

wells in a more productive manner, not simply drilling in more productive locations.
Figure 5: 6 Month IP, Actual and Counterfactual

Notes: The solid line plots annual median 6 Month IP in barrels of oil per day; the dashed and dotted
lines show median counterfactual 6 Month IPs if the wells were instead drilled with the median 2007
and 2016 configurations. See text and Appendix D for details.

The discussion above shows that operators have improved their output, but does

not consider costs and profitability. As a simple measure of profitability I consider the

ratio of cost to 6 Month IP.8,9 Figure 6 shows the evolution of predicted cost/IP with

two counterfactuals. The solid line shows the median of actual predicted cost/IP

by year, while the two dotted lines plot median predicted cost/predicted IP if the

median 2007 and 2016 configurations had been used. Calculation details can be

found in Appendix D. The figure shows that the 2016 predicted cost/IP ratio is better

than that of 2007, and that the industry has generally been improving its estimated

cost/IP ratio over that timeframe.10 This demonstrates that operators have made

8Operators cannot control the commodity price of oil (and therefore revenues), but do have some
control over their costs and levels of initial production.

9An alternative measure of profitability is the break-even price of oil; this approach requires
many modeling assumptions and so I do not pursue it here. However, the decrease found in my
measure is similar to the decrease in break-even prices found in industry analyses such as that at:
http://digital.ogfj.com/ogfj/201706?pg=17pg17.

10Figures 5 and 6 are consistent with the results shown in Figure 9 of Covert (2015), where he
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improvements on the profit margins they can control, and suggests that the industry’s

configuration changes are aimed at increasing profits, not simply production.
Figure 6: Cost/6 Month IP, Actual and Counterfactual

Notes: The solid line plots annual median 6 Month IP / predicted costs in barrels of oil per day
per $ thousand; the dashed and dotted lines show median counterfactual 6 Month IPs / predicted
costs if the wells were instead drilled with the median 2007 and 2016 configurations. See text and
Appendix D for details.

As a final piece of evidence of operator learning, I estimate a simple regression

designed to test whether individual wells have a measurable effect on the industry’s

learning. The procedure is as follows. For each well i in my dataset, I calculate

the median inputs and outputs of all wells completed in the 12 months before well

i’s completion, and separately, of all wells in 6 to 18 month window after well i’s

completion.11 I next create an indicator denoting whether well i is an “outlier” well.

I define an outlier for cutoff k as a well with both input and output levels greater

than k standard deviations above the pre-distribution medians. I next calculate the

difference in post- and pre- median inputs, and then regress this difference on the

outlier indicator and an operator fixed-effect.

The results of this exercise, using gallons of fracturing fluid per foot, are shown the

second and third columns of Table 2, with standard errors clustered at the operator

performs a more flexible calculation in a similar spirit.
11I begin the ‘after’ window after a 180 day lag, as the majority of wells choose to have their

data kept confidential for a 180-day period. Repeating this exercise for the 12 months immediately
following each well’s completion yields similar results, with coefficients of a slightly lower magnitude.
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level. The table indicates that larger outliers predict greater increases in input usage.

The coefficients at higher cutoff levels are also estimated to be statistically significant

from zero. While these regressions should not be interpreted as causal, the pattern

is suggestive: wells that make use of bigger fractures and produce more output than

those in the recent past tend to be followed by more wells with bigger fractures.

One potential concern about this result is that the regression is just picking up

a general time-trend in the industry of a conducting bigger fractures over time. As

a robustness check of this result, I conduct a set of placebo regressions: I randomly

assign an indicator to each well and treat it as the independent variable (i.e. placebo

outlier )in a set of similar regressions to that above. I ensure that the number of

placebo outliers matches the number of true outliers. I repeat this exercise for 1,000

bootstrap iterations, where in each iteration the independent variable is separately

randomly assigned. The results of this exercise are shown in the last two columns

of Table 2. The coefficients for the placebo test do not show a pattern, and are not

statistically distinguishable from zero. This result argues against the possibility that

the coefficients estimated in the second column are only picking up a time trend.
Table 2: Fluid per Foot Outlier Regressions

Outlier Placebo
k Coefficient p Coefficient p

0.0 13.110 0.160 −0.032 0.984
0.5 21.808 0.034 −0.112 0.959
1.0 23.176 0.006 0.127 0.968
1.5 29.450 0.016 −0.086 0.986
2.0 37.321 0.000 −0.107 0.988
2.5 43.721 0.000 −0.273 0.975

Notes: each coefficient represents a separate regression, where the dependent variable is the change
in 12 month pre- and post- fluid per foot medians, and the independent variables are an indicator
for outlier wells and operator fixed effects. The “Placebo” specification represents a boostrapped
regression, where in each iteration the indicators are randomly assigned, with the same number of
positives as in the actual “Outlier” case.

In Appendix B, I argue against changes in q(x), c(x), or p explaining the observed

trend in x∗(p,Γ); I conclude that the most plausible explanation is a change in indus-
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try knowledge Γ, or learning. This finding motivates the model of operator learning

over optimal input use that follows.

4 Model

This section provides an overview of the industry model of social learning. First,

I discuss the profit function from drilling a well, and the role of information in de-

termining input choices and profits. I then outline a Bayesian learning process for

incorporating new information, and the firm’s dynamic problem. Finally, I turn to

the industry-wide dynamics that arise from the firm-level model and specify the equi-

librium concept that will be used.

I begin with a brief overview: each well i is a firm that faces a two-part decision.12

The first decision is an optimal stopping problem of when to drill the well: making

the investment of drilling a well enables oil to be produced and sold; however, there

is also option value in waiting, as oil prices might rise or new knowledge might arrive.

The second decision is how to drill and stimulate the well given the choice to drill

has been made – this is referred to as the “static” problem below.13 These two deci-

sions, along with shocks, determine IP; subsequent production follows a deterministic

decline curve. Both decisions are made with the goal of maximizing expected dis-

counted profits: profits are determined from production via the prevailing oil price

and drilling costs, both taken as given.

The key feature of the model is that firms are uncertain about the optimal method

of drilling wells. Information on drilled wells is published by the regulator, allowing

12Modeling each well as an independent firm follows Kellogg (2014), but is potentially less realistic
in my context, where firms are actively learning about how to increase productivity. It amounts to
an assumption that firms with multiple potential wells treat them independently. As I demonstrate
in Appendix C, learning in the industry appears to be operating primarily at the inter-firm rather
than intra-firm level, which suggests this assumption is reasonable.

13As discussed above, Anderson et al. (2014) reformulated the benchmark model of Hotelling
(1931), demonstrating that due to technological limitations on the production function, an oil firm’s
key production decision is when to drill a new well rather than how much oil to produce from an
existing well. That is, the operator’s problem is best construed as when to “tap another keg” instead
of how to adjust the flow from already-tapped kegs. This is confirmed empirically in Newell et al.
(2016) and Newell and Prest (2017), who find that new drilling is the primary margin of response
to increased prices in natural gas and oil production, respectively.
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firms to learn in a Bayesian manner from other wells. The industry thus has common

knowledge in every period, knowledge that affects both stages of the two-stage decision

described above. Having decided to drill, more knowledge might change how the firm

drills and its expected profits. In turn, the firm anticipates the possibility of learning,

and so may have additional option value from waiting. Modeling details on knowledge

and learning follow a discussion of the static problem below.

4.1 Static Overview
I begin with the static problem of a firm i that has decided to drill in month t. The

quantity of oil produced by well i is a linear function of a vector of inputs x and an

iid shock:

qi = β0 + x′iβx + εqi . (1)

Firms are price-takers in the global market, and receive price pt per barrel of oil

produced. The cost function is also linear in inputs:

ci = ω0 + x′iωx + εci , (2)

where εc is an iid cost shock.14

With these functions defined, I then write profits:

π(xi, pt, φi) = (ptqi(xi)− ci(xi))1{φi > g(xi)} . (3)

Profits take the usual form, multiplied by a binary term governing feasible well scale.

That is, if the realization φi is less than g(xi), then the well is a failure and no profits

are realized.15

Going forward, I limit xi to be a scalar: gallons of fracturing fluid per foot of

wellbore.16 I set g(x) as the identity function. I also define the vector Xi ≡ [1, xi] for

14My cost data is not dense enough to reliably estimate changes in drilling and completion costs
over time, so I treat c(x) as fixed. An alternate possibility would be to model drilling costs as a
function of oil prices (and consequently drilling demand).

15The well-scale shock could take alternate forms, but I use the simplest modeling choice that
produces the desired shape in the expected profit curve: the important thing is that there is an
input cutoff above which firms expect to realize lower profits. This shape could also be achieved
with a penalty function that added extra costs, or reduced output or revenues.

16The fracturing design has many dimensions, and in principal I could account for more than
one, such as pounds of proppant, number of stages, pressure, etc. In practice though, I quickly
run up against the “curse of dimensionality” in the dynamic game, as the dynamic state has two
dimensions for every input (including a constant). I select fluid intensity, but in my sample it has a
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notational convenience.

I model the scale shock φ as following a logit distribution with parameters γ∗:

Pr(φ > xi) =
1

1 + exp(−X ′iγ∗)
. (4)

An example of the shape of Pr(φ > x) is shown in Figure 7. Further, φ is a latent

variable in that it is not directly observable. Rather, it is only observed through

the binary outcome Ai ≡ 1{φi > xi}. So each well is observed as either a ‘success’

(Ai = 1) or ‘failure’ (Ai = 0).
Figure 7: Example of Expected Probability of Success

Notes: plot of an example curve from Equation 4, depicting the anticipated probability of realizing
φ > x.

This construction can be interpreted as a model of reservoir integrity: a more

intense stimulation can yield greater output, but could also cause reservoir damage

and reduce well productivity. For models of fluid damage to reservoirs, see e.g.,

Bahrami et al. (2012), Putthaworapoom et al. (2012), and Eveline et al. (2017) from

the petroleum engineering literature. This simplified model fits sensibly with the

dynamic of progress in hydraulic fracturing: the basic technology has been around

since the 1960s, but the recent revolution has observed much higher fracture intensities

as a result of firm experimentation. The model is also consistent with the finite

fracture intensities observed in my sample: even when the marginal costs of additional

fluid are low relative to expected revenue of additional oil produced, the additional

65.8% correlation with proppant intensity.
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fluid increases the risk of reservoir damage.

Firms are uncertain about (and will learn about) the parameters γ governing the

distribution of φ. I model their uncertainty as Bayesian, with multivariate normal

priors: γ ∼ N (µ,Σ). For convenience, I will refer to the firm’s prior or information

state as Γ ≡ (µ,Σ). The dynamic state governing drilling decisions will be the

combination of information and oil prices: S ≡ (p,Γ).

A firm that has decided to drill in state S, chooses inputs x so as to maximize

expected profits:

x∗(S) = arg max
x

E [(pq(x)− c(x))1{φ > x}] (5)

= arg max
x

(pq(x)− c(x))

(
1

1 + exp(−X ′µ)

)
. (6)

From these equations, linearity in q(·) and c(·), and concavity in Pr(φ > ·), we can

see that each state S maps to an optimal input choice x∗(S). For convenience I will

also define expected profits in a given state, assuming optimal input use, as:

π(S) = (pq(x∗(S))− c(x∗(S)))

(
1

1 + exp(−X∗(S)′µ)

)
(7)

4.2 Learning
Firms are statistically savvy, and change their estimates of γ to incorporate new in-

formation. Their Bayesian updating process is more challenging than most that have

been used in empirical economics because they only ever observe Ai and xi and never

φi directly. This complication leads to non-conjugate posterior probabilities, which

quickly limits empirical tractibility. To simplify the analysis I assume that firms up-

date from a normal prior to a normal posterior using ‘moment-matching’: essentially

approximating a non-normal posterior with a normal posterior. This method, under

various names, has been used and explored in a number of statistical fields (Powell

and Ryzhov, 2012); the specific form developed here follows derivations in Jaakkola

and Jordan (2000).

This method yields convenient formulas for updating prior beliefs after observing

n wells, Γn = (µn,Σn) to posterior beliefs Γn+1 upon observing information for well
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n+ 1, (Xn+1, An+1):

Σn+1 =
[
(Σn)−1 + 2λ(ηn+1)Xn+1X

′
n+1

]−1
, (8)

µn+1 = Σn+1

[
(Σn)−1µn +

(
An+1 −

1

2

)
Xn+1

]
, (9)

where the quantity ηn is

ηn ≡
√
X ′nΣnXn +X ′nµ

n , (10)

and the function λ is defined

λ(•) ≡
tanh

(•
2
)

4 •
. (11)

Several graphical illustrations of Equations 8 and 9 are shown in Figure 8. The

prior expected probability of success is depicted as a black solid line, and four calcu-

lated posteriors are considered: whether the observed well is a success (solid line) or

failure (dashed line); and whether the observed input is high (blue) or low (red). For

example, when a high level of input is used, the prior expected probability of success

is quite low. Thus if a failure is observed, the posterior is only shifted slightly to the

left. Conversely, an observed success is quite surprising, and causes a large move in

the posterior to the right. The opposite pattern is true for a low input well, when

the prior expected probability of success is high: a success does little to change the

posterior, but a failure moves the posterior significantly to the left.

This asymmetric learning is a useful feature of this model: it allows the value of

new information to depend on its relative novelty. This matches the industry dynamic

of paying attention (demonstrated in Section 3.4) to the success of the largest new

stimulations, while learning little from the thousandth well stimulated in a tried and

true fashion far below the frontier. Importantly, it also provides a nice model of how

the frontier moves over time, as firms push the limits of feasibility incrementally; this

will allow it to be useful in explaining the trends shown in Table 1 and Figure 3.

4.3 Dynamic Overview
Having outlined the firms’ static decision and learning process, I turn to the dynamic

problem of when to drill. This is modeled as an optimal stopping problem: in each

21



Figure 8: Examples of Learning

Notes: graphical example prior and posteriors; all curves depict the anticipated probability of real-
izing φ > x from Equation 4. Posteriors are calculated using Equations 8 - 9. The solid black curve
is the prior. Red and blue curves correspond to posteriors from low and high input observations, re-
spectively; solid curves indicate an observed success An+1 = 1, and dashed curves indicate observed
failure.

period, the firm can drill its well (entering the static problem described above, re-

alizing shocks and profits), or wait until the next period when it will face the same

decision, potentially in a more profitable state. Recall that the dynamic state gov-

erning expected profits is St ≡ (pt,Γt). State S in period t is made up of the current

price of oil p and the current information state Γ, so the firm may have option value

from changing oil prices and changing information. Once a well is drilled, it realizes

shocks determining costs, revenues, and profits, and exits the game. I assume that

potential wells are infinitely-lived, that drilled wells are replaced in the potential en-

trant pool each period (i.e. a constant number of potential wells each period), and

that each potential well observes an iid normal profit shock ξ before deciding whether

to drill.17,18

I recall the definition of expected profits in a state from Equation (7), drop time

subscripts, and rewrite the firm’s drilling problem in a Bellman setup:

V (S, ξ; θ) = max {π(S) + ξ, δE[V (S ′, ξ; θ)|S, θ]} . (12)

17This assumption removes the issue of leasing decisions and lease expirations, which are poten-
tially important. In practice, estimated drilling probabilities are high enough to suggest wells would
be drilled before the expiration of standard leases.

18The shock ξ functions primarily as an empirical device to help the model rationalize observed
drilling decisions. See discussion in Kellogg (2014), where stochasticity in q(·) plays a similar role.
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V (S) gives the value of an undrilled well in state S, and δ ∈ (0, 1) is the shared

discount factor. Normal parameters θ = (µξ, σξ) govern the distribution of ξ, and as

I show below, affect the expected value of waiting. Given this, a well is drilled if and

only if current expected profits, π(S) + ξ, are greater than or equal to the discounted

value of waiting, δE[V (S ′, ξ; θ)|S, θ]. Under some regularity conditions, this rule can

be re-expressed in terms of a cut-off value of ξ: for each state S, there exists a cutoff

ξ∗(S) that governs drilling decisions. Wells with ξ ≥ ξ∗(S) drill, otherwise they

wait.19

The final piece of the dynamic model is the expected value of waiting,

E[V (S ′, ξ; θ)|S, θ] ≡
∫
S′
V (S ′, ξ; θ) Pr(S ′|S, θ) , (13)

where Pr(S ′|S, θ) denotes the true probability of moving from state S to state S ′

in the next period. The state transition is composed of two parts: Pr(p′|p), and

Pr(Γ′|Γ, p). Prices change exogenously, and Γ changes as wells are drilled, create

new information, and that information is incorporated according to the Bayesian

updating rules (8) - (9). A firm that waits may have a new expected profit in the next

period – not only because of a change in price, but also because of new information.

Written in this way, the challenge of an endogenous equilibrium becomes clear. The

decision of whether to drill a well this period or not depends on the value of waiting

E[V (S ′, ξ; θ)|S, θ]. In turn, the value of waiting depends in part on the possibility

of learning new information (in S ′), which depends on others’ decisions to drill. I

discuss this expectation term in further detail in Section 5.4, where I also describe

how it is calculated empirically.

Given these components, I define a dynamic social learning equilibrium:
Definition. An equilibrium is a state space S, policy functions ξ∗(S), and transition

beliefs P̃r(S ′|S) such that ∀S, S ′ ∈ S:

1. Drilling decisions follow the policy function ξ∗(S), defined implicitly by

π(S) + ξ∗ = δE[V (S ′, ξ∗; θ)],

19From Dixit and Pindyck (1994), the conditions are that the value of waiting for one period is
monotonic in ξ for any S, and that the distribution of π(S′) + ξ has positive persistence.
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so that a well is drilled if and only if ξ > ξ∗(S); this cutoff represents the optimal

drilling policy given beliefs P̃r(S ′|S). π(S) is given by Equation (7) and E[V (·)]

is defined according to Equation (13).

2. Pr(S ′|S) are defined by exogenous price transitions, and information states that

evolve as new wells are drilled and observed. Information is incorporated ac-

cording to Bayesian updating rules (8) - (9).

3. Expectations are rational, i.e. optimal behavior ensures that state transition

beliefs are self-fulfilling, so P̃r(S ′|S) = Pr(S ′|S).

Solving for this equilibrium empirically is computationally costly. I describe my

approach in the following section.

5 Empirical Model and Estimates

This section describes how I take the above model to the data and presents estimates.

5.1 Static Profits
Wells produce oil over many periods. I follow industry practitioners in modeling

production with a deterministic decline curve (known as an Arps model), so that IP

is a sufficient statistic for production over the life of the well.

In addition to knowing future production, firms have expectations of future oil

prices informed by the futures curve. Using the common industry annual discount

factor δ = 0.9, I can then write the revenue function as:

rev(S) = ψ
τ̄∑
τ=0

δτpfτ qτ (x
∗(S)) , (14)

where ψ = 0.7 is the share of oil revenue accruing to the leaseholder, pfτ is the expected

per-barrel price of oil in period τ and qτ is production in period τ .20 I set τ̄ = 240

months, shorter than the industry’s expectation of 540 months. However, the decline

curve and discount rate are steep enough that total expected revenue is not very

sensitive to increasing τ̄ .

20The selected discount rate corresponds to an interest rate of 11.11%. The share of oil revenue
not accruing to the well operator represents a typical royalty rate to the mineral rights lessor of
16.5%, state taxes of 11.5%, and a small marginal cost of 2% (Covert, 2015).
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Because decline curves are deterministic, the expected revenue function can be

expressed even more simply in terms of initial production.

rev(S) = ψ ∗ 30 ∗ p ∗ h ∗ IP (x∗(S)) ∗
τ̄∑
τ=0

δτζτ , (15)

where IP (x∗(S)) is initial production per foot of horizontal lateral, expressed in

barrels / day, h is the length of the lateral, in feet, 30 is the number of days per

month, and ζτ is per-day production in month τ as a fraction of IP .21 Well lengths

are taken to be exogenous, for now the later-year standard of 10, 000 feet. Finally,

p is the “flattened” price incorporating information from futures contracts out to 60

months:

p =

∑τ̄
τ=0 δ

τpfτ ζτ∑τ̄
τ=0 δ

τζτ
, (16)

where pfτ is the futures price τ months in the future. For months after 60, I assume

constant oil prices, i.e. pfτ = pf60 for τ > 60.22

So the only non-deterministic component of rev(S) is IP (x∗(S)). Initial produc-

tion per foot is given by a relationship of the following form:

IP (xi) = β0 + β1xi + εqi , (17)

where xi is gallons of fracturing fluid used per foot.23 Drilling and stimulation costs

are given by:

c(xi) = ω0 + ω1xi + εci . (18)

The simple production and cost coefficients β̂ and ω̂ that will be used in Equa-

tion 7 are estimated by OLS and reported in Table 3.24 The production estimates

21The decline curve ζτ is estimated non-parametrically in a first stage, using the well-month level
production data: ζ̂τ is found as the empirical mean of month τ production per day as a fraction of
reported IP.

22The first two months in my sample (January and February 2006), only have futures prices out
to 28 months. For those months I assume constant prices after 28 months.

23In principal, x could be a vector containing other stimulation choices such proppant, pressure,
injection rate, stages, chemicals, etc.; in practice, however, the computational feasibility of the
learning model will be limited by the dimensionality of x. I select gallons of fracturing fluid as the
single input closest to a sufficient statistic for the fracture intensity.

24One might worry that xi is endogenous if firms have any knowledge of εqi . I argue that this is
not a major concern in this setting. Fractures involve major logistical challenges, and are designed
far in advance of drilling. Conversations with industry participants suggest that any last minute
changes to inputs tend to be marginal.
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demonstrate an increasing relationship between fracturing fluid intensity and initial

production. Cost estimates are calculated on the subset of wells that can be matched

to an AFE, and suggest an average well cost of $8.0 million.
Table 3: Production and Cost Regressions, for Dynamic Model

6 month IP per Thousand Feet Cost, $

Intercept 34.780∗∗∗ 7, 551.934∗∗∗

(0.406) (152.634)
Gallons Fluid per Foot 0.033∗∗∗ 2.162∗∗∗

(0.001) (0.338)

Observations 11,328 421
Adjusted R2 0.108 0.087

Notes: Production regression includes all wells in the sample with non-missing IP and input data.
The cost regression includes wells in the AFE sample that could be matched to the input dataset,
see Section 3.3 for details. ∗, ∗∗, and ∗∗∗ indicate statistical significance at the 10, 5, and 1 percent
levels.

5.2 Price Transitions
I estimate Pr(p′|p) under the assumption that flattened prices are a martingale process

with normal errors:

p′ = p+ εp , εp ∼ N (0, σp) , (19)

and recover a point estimate of σp = 5.428 with maximum likelihood.25 For my

dynamic application, I then form a matrix Pr(p′|p) by simulating 10,000 draws from

each point on an evenly spaced grid with 15 nodes from $30 to $120.

5.3 Well Inputs and Learning
As in the abstract model, a firm that drills in state S calculates its optimal expected

input x∗(S) using Equation (5). However, as can be seen in Table 1 and Figure

3, there is significant variation in observed inputs, even in the same time period.

To match this input dispersion, I assume that the actual input used is stochastic:

xi(S) = x∗(S)εxi , where εxi is distributed εxi ∼ LogNormal(0, σx).
26 I estimate σx as

25Alquist and Kilian (2010) show that a non-change forecast for the spot price of oil outperforms
many other forecast methods, including the use of the futures curve.

26Different wells drilled in similar areas at similar times, often even by the same firm, can have
a wide range of stimulation configurations. Conversations with industry participants confirm that
this variation is attributable to experimentation and iteration. This is outside the model in Section
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the mean across months of observed within-month standard deviations of the log of

observed inputs, and recover a value of σx = 0.577.

The industry updates priors Γ in the approximate Bayesian fashion described in

Equations (8) - (9) to incorporate information from new wells. A new well observation

is a pair (xi, Ai). Input xi is per-foot gallons of fracturing fluid, and outcome Ai is an

indicator for whether the treatment was successfully completed in a timely fashion.27

Next I describe the process of estimating the information states {Γ}t using ob-

served well data and the model. It is worth emphasizing that these information states

are estimated outside the dynamic model; they are identified by the observed sequence

of well inputs and outcomes, the optimal input rule (5), and updating equations (8)

- (9). Intuitively, the level of inputs used and Equation (5) identify prior means {µ},

and the rate of change in inputs and updating equations identify prior variances {Σ}.

I provide more detail and results below.

First, recall that an information state is made up of a prior mean and covariance,

Γ = (µ,Σ). Next, note that the Bayesian updating Equations (8) and (9) describe the

calculation of Γn+1 given Γn, xn+1, and An+1. In other words, they form a function

mapping a prior information state and information on a new well to a posterior

information state, Γ× (x,A) 7→ Γ′

Now consider the sequence of observed well data {xi, Ai}I .28 The mapping de-

scribed above can be applied iteratively, so that an initial prior Γ0 combines with a

sequence of well data {xi, Ai}I to yield a sequence of posteriors {Γi}I . I use dates of

well completions to translate this sequence of posteriors into the time periods of the

model, {Γt(Γ0)}, where my notation makes explicit the dependency on the original

prior, and dependency on well data is implicit.

4.
27Specifically, Ai = 1 ⇐⇒ the treatment was completed in less than 75 days per fracture

stage; this represents the 95th percentile of treatment days per stage, which has a heavily skewed
distribution. See Appendix I for details.

28I observe Ai directly for all wells that are present in the FracFocus database (roughly 2012 and
later). I calculate a fitted value of Âi using observed xi and the econometrician’s estimate of γ for
earlier wells.

27



The next step is to observe that Equation (5) is a model-derived mapping from

an information state Γ and price p to an optimal input x∗. I use this second mapping

to generate a sequence of optimal inputs given initial priors (explicit), and observed

well information and prices (implicit): {x∗t (Γ0)}.

Finally, I proceed to estimate priors by minimizing the sum squared distance from

predicted inputs to observed inputs:

Γ̂0 = arg min
Γ0

∑
t

(
x̄t − x∗t (Γ0)

)2
, (20)

where x̄t is the average input use in month t.29 I perform this minimization using a

grid search in Γ0, and report estimates in Table 4.30 The second and third columns

of Table 4 present the 5th and 95th percentiles of Γ̂0 estimates calculated from 5,000

bootstrapped samples. Each bootstrap sample is constructed with a block bootstrap

procedure, with wells drawn separately for each month, with replacement. The final

column shows the corresponding information state in the final period of the data.
Table 4: Information State Estimates

t = March 2006 t = March 2017

Bootstrapped
Point Estimate 5th Percentile 95th Percentile

µ̂t
[

81.7
−1.04

] [
38.4
−1.04

] [
84.7
−0.606

] [
13.9
−0.015

]
diag(Σ̂t)

[
0.249
4.2e−6

] [
0.028
3.3e−6

] [
4.61

2.67e−5

] [
3.5e−3

1.52e−8

]
Notes: estimates of information states Γt, estimated via grid search. See text for details.

5.3.1 Value of Information
Figure 9 plots monthly mean inputs observed in my data, as well as the model’s

prediction using {x̂∗t (Γ̂0)}. The figure illustrates that the four estimated parameters

in Γ̂0, combined with observed wells {xi, Ai}I , β̂, ω̂, and Equations (8) and (9) produce

29I estimate priors trying to fit monthly averages because the number of wells drilled in each month

varies significantly across the sample; an alternative objective function like arg min
∑
i

(
xi − x∗i (Γ0)

)2
would underweight the low-input wells observed in the early months and the high input wells observed
in the late months, and thus understate the learning process.

30I restrict Σ to have zeros in the off-diagonal in order to reduce the dimensionality of my dynamic
state space. In practice this appears to be innocuous: when I allow non-zero off-diagonal elements,
they are always estimated to be orders of magnitude smaller than Σ22.
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a coherent explanation of increasing fracture intensities.
Figure 9: Model Predicted and Observed Inputs

Notes: observed means are calculated at the monthly level. Estimates plot the sequence of optimal
inputs given estimated information states, {x̂∗t (Γ̂0)}. See text for details.

With an estimate of the industry’s priors, I can also quantify the contribution of

information to expected profits as per the model. Figure 10 illustrates the results

of this calculation, where the graph is plotting the ratio
π(pt, Γ̂

t)

π(pt, Γ̂0)
, i.e. the modeled

expected profit in a given month divided by the modeled expected profit if no learning

were to have taken place. The emphasizes that learning has value – the bigger wells

that operators are learning to drill are associated with higher expected profits.
Figure 10: Ratio of Expected Profits: Learning to No Learning

Notes: plot of π(pt, Γ̂
t)/π(pt, Γ̂

0) over time, illustrating the gains from Γ̂t relative to Γ̂0.

A graphic illustration of success probabilities with Γ̂t, for t ∈ { January 2007,
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January 2012, January 2017 }, and expected profits using a $60 price of oil are shown

in Figures 11 and 12. Figure 11 demonstrates how the industry has incorporated

new information and significantly updated the expected probability of well success

at midrange input levels. Figure 12 translates this change in prior to a change in

expected profit, assuming a $60 price of oil: firms opt for higher inputs and expect

higher profits in 2017 than they did in 2007.
Figure 11: Modeled Success Probabilities

Notes: anticipated probabilities of realizing φ > x under three different information states Γ̂t:
January 2007, January 2012, and January 2017.

Figure 12: Modeled Expected Profits

Notes: NPV of expected profits for various input levels using a $60 price of oil, under three different
information states Γ̂t: January 2007, January 2012, and January 2017.

For comparison, I also present the econometrician’s estimate of γ∗ in Table 5,

estimated via logit regression on the subsample of wells in the FracFocus dataset.
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Comparing Table 4 and Table 5, it can be seen that the industry’s estimates of µ̂t is

much closer to the econometrician’s estimate in March 2017 than in March 2006.
Table 5: Econometrician’s Estimate of φ Parameters

γ

Intercept 3.702∗∗∗

(0.082)
Gallons Fluid per Thousand Feet −1.423∗∗∗

(0.098)
Observations 7,645

Notes: Logit regression results for failure parameters γ, on the sample of wells included in FracFocus
dataset. Outcome variable Ai is an indicator of timely well completion (treatment less than 75 days
per stage), and xi is the gallons of fracturing fluid per foot. ∗, ∗∗, and ∗∗∗ indicate statistical
significance at the 10, 5, and 1 percent levels.

5.4 Calculating Value Functions
With all of the components for static profits and learning, I turn to solving for the

equilibrium value functions. To begin, recall the form of expected values:

E[V (S ′, ξ; θ)|S, θ] ≡
∫
S′
V (S ′, ξ; θ) Pr(S ′|S, θ) . (21)

If I knew the transition probabilities Pr(S ′|S, θ), I could calculate the value functions

V with a simple contraction mapping, as in Rust (1987). In my setting I cannot rea-

sonably infer Pr(S ′|S, θ) from the data in a first stage, as the transition probabilities

are endogenous with the value functions.

Instead, I use a monte carlo simulation and interpolation to derive E[V (S ′, ξ; θ)|S, θ].

Ultimately I require that the values V (S, ξ; θ) and expected future valuesE[V (S ′, ξ; θ)|S, θ]

are mutually consistent, and consistent with the model primitives as outlined in the

Equilibrium Definition of Section 4.3. I describe the solution method in more detail

below, and note now that it is similar in spirit to that used in Krusell and Smith

(1998), or could be termed “Monte Carlo Value and Policy Iteration” in the approx-

imate dynamic programming language of Powell (2007).

As global oil prices are exogenous to the state of drilling knowledge in North

31



Dakota, I can re-express the expected values as:

E[V (Γ′, p′, ξ; θ)|Γ, p, θ] =
∑
p′

∫
Γ′
V (Γ′, p′, ξ; θ) Pr(Γ′|Γ, p, θ) Pr(p′|p) , (22)

where Pr(p′|p) is discretized and estimated as described in Section 5.2.

Next I turn to the more challenging dimension of the expectation, Pr(Γ′|Γ, p, θ).

I begin by rewriting it as:

Pr(Γ′|S, θ) =
K∑
k=1

Pr(k wells drilled|S, θ) Pr(Γ′|k wells drilled, S, θ) . (23)

I set K, the maximum number of possible wells per month as 500, more than twice the

maximum observed in the sample. For the purposes of simulation, the first quantity

is known up to the distribution θ and cutoff ξ∗(S; θ): a well is drilled with probability

ρ(S; θ) ≡ Pr(ξ > ξ∗(S)|θ), so the probability that k wells are drilled follows a binomial

distribution. The remaining unknown quantity is Pr(Γ′|k wells drilled, S, θ). This

does not have a closed-form solution and must be simulated.

So I proceed with a monte carlo approach, outlined in Algorithm 1. I begin

with the first state-shock combination S, ξ on my grid.31 First, I calculate the cutoff

ξ∗(S; θ) and drilling probability ρ(S; θ). Next, I proceed to the monte carlo portion.

For each of R sub-iterations, I draw a scale coefficient γ̃r from Γ and kr from a

Binomial(K, ρ(S; θ)), which I use to simulate kr new wells. For each simulated

well, I simulate inputs x̃ by scaling optimal inputs x∗(S) with drawn input shocks

εx; I then simulate well success and failure Ã using γ̃r. After simulating k wells, I

use Equations (8) - (9) to calculate Γ̃′
r

using {x̃}k and {Ã}k. With Γ̃′
r

in hand, I

interpolate to get Ṽ (Γ̃′
r
, ξ; θ) =

∑
p′ Ṽ (Γ̃′

r
, p′, ξ; θ) Pr(p′|p). I repeat this procedure

for 2,500 monte carlo draws, and average over the results to get E[V (S ′, ξ; θ)|S, θ].

This entire procedure is then repeated for all states S and shocks ξ.

The above simulation of E[V (S ′, ξ; θ)|S, θ] is nested within a fixed point itera-

31As mentioned previously, p is gridded into 15 points. The Σ dimensions are each gridded into 6
points, the µ dimensions are each gridded into 12 points, and ξ is gridded into 25 points, for a total
of 1.9 million S, ξ combinations considered. The endpoints of the Σ and µ dimensions encompass
estimated information states {Γ̂}, and the endpoints of ξ are plus / minus 3 standard deviations
from the mean (given by θ).
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tion to find the equilibrium V (θ), as outlined in Algorithm 1. The process begins

with value functions calculated from a myopic model, and is repeated until conver-

gence.32,33 Convergence is checked in the sup-norm of E[V (S ′)|S], and I am using a

tolerance of $15, 000.34

Begin with model primitives, and θ ;
Solve myopic problem for starting values V 0(S, ξ; θ) ;
Initialize dist > tol, q = 1, R = 2, 500, K = 500 ;
while dist > tol do

foreach S, ξ do
calculate cutoff ξ∗(S) ;
calculate drilling probability ρ(S; θ) ;
for r = 1 : R do

draw ‘truth’ γ̃r ∼ Γ(S) ;
draw number of new wells kr from Binomial(K, ρ(S; θ)) ;
simulate kr wells using optimal input x∗(S), input shocks εxkr , and
‘truth’ γ̃r ;

compute posterior Γ̃′
r

using Equations (8) - (9) ;

interpolate Ṽ (Γ̃′
r
, p′, ξ; θ) using V q−1 and Pr(p′|p) ;

end

set E[V q ′(S ′, ξ; θ)|S, θ] ≡ 1
R

∑
Ṽ (Γ̃′

r
, p′, ξ; θ) ;

end
update value functions V q(S, ξ; θ) = max{π(S) + ξ, δE[V q(S ′, ξ; θ)|S, θ]} ;
dist = sup |V q − V q−1| ;
q = q + 1 ;

end
Algorithm 1: Monte-Carlo Value Function Iteration

5.5 Estimation of Dynamic Model
Now I turn to estimating the dynamic parameters in the model, θ ≡ {µξ, σξ}, along

with the values V (S). This estimation procedure requires solving the nested fixed

point detailed in Algorithm 1 for every candidate value of θ. As it is computationally

32I use temporal difference learning to smooth the convergence process. I use a burn-in period of
25 iterations, after which I use an updating weight of 1

iter #−25 . This approach meets the criteria

laid out for convergence outlined in Chapter 6 of Powell (2007).
33In the myopic model, firms assume that they will not learn (Pr(Γ′|Γ) = 1), so I can use a

standard fixed point contraction mapping.
34Robustness checks around the number of forward draws, convergence criterion with simulated

versions have so far shown that these selections are robust.
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costly to solve this fixed point, I estimate µξ, σξ with a grid search.35 Estimates below

are presented for the best θ̂ found from this search.

I evaluate the fit at each candidate θ as follows. First, I solve the nested fixed point

and retrieve V (S; θ), and E[V (S ′)|S; θ]. Then, to determine model fit, I calculate a

non-linear least squares objective:

Q(θ) =
∑
t

∑
i∈t

(1{drilledit} − ρ(St, θ))
2 , (24)

where t denote months in the data, i ∈ t denote potential wells in month t, 1{drilledit}

is an indicator that well i was drilled in month t, ρ(St, θ) is the probability of drilling

given the state St and the calculated value and policy functions.

The critical assumption for this fit process is on the number of potential wells in

each month. While my data contains the number of wells drilled every month, it is

impossible to say with certainty the number of potential wells in each month that were

not drilled. I proceed with the assumption that there are K = 500 potential wells

in each month of my data, and maintain this assumption in the next section when

I simulate counterfactual industry outcomes. This is significantly higher than the

maximum number of wells, 240, observed in a single month. I restrict the estimation

sample for the dynamic parameters to January 2009 onwards. This represents a point

before the boom accelerated, but after the Bakken began to see a significant number

of monthly completions.

This procedure yields estimates of µξ = −3e7, and σξ = 2.8e7. Figure 13 gives

an idea of how the estimated model fits in terms of predicted drilling patterns over

time. The model captures the acceleration of drilling as oil prices rise and operators

become more knowledgeable, as well as the deceleration with the collapse of prices in

late 2015.

I next consider the effect of the social learning externality on drilling decisions.

35For a sense of the computational cost, it takes 250 cores on the Duke Compute Cluster on the
order of 2 hours to solve the dynamic problem for a single θ to a tolerance of $15,000 when the state
space is gridded into roughly 2 million points. Code is written in Julia.

34



Figure 13: Actual vs. Model-Predicted Drilling

Notes: The black line plots ND Bakken completions by month. The red line plots mean model
simulated drilling by month, given observed prices, estimated information states {Γ̂t}, and estimated
policy functions and dynamic parameters; shaded area represents the middle 95% of outcomes from
1,000 simulations.

For each month in my data, I compare the equilibrium drilling cutoff ξ∗(St), and the

cutoff under a myopic model, where agents assume Pr(Γ′ = Γ) = 1, labeled ξ∗MY (St).
36

The first row of Table 6 presents some quantiles of these differences - it can be seen

that in most states, the cutoff rule is higher under rational expectations, indicating

that the possibility of learning is adding to the value of waiting. However, the second

row shows that when these differences are translated into drilling probabilities, the

magnitudes are negligible.
Table 6: Dynamic Impact of Rational Expectations

Quantile
5% 25% 50% 75% 95%

ξ∗ − ξ∗MY -675 238 1,148 6,228 24,646
ρ− ρMY -3.1e−4 -6.9e−5 -1.0e−5 -1.2e−6 2.3e−6

Notes: Quantiles of estimated differences between the rational expectations and myopic models. The
quantities are calculated for all empirical states observed, using θ̂.

I conclude that although learning has played an integral role in the industry’s

development, the value of anticipated social learning in the states on the estimated

information path is not large enough to appreciably change investment decisions.

36Calculation of the myopic model is a much simpler fixed point contraction, as transition proba-
bilities are now known and exogenous.
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Restated, firms have low enough uncertainty that they do not place much value on

the possibility of moving to new information states. In the next section, I consider

how this assessment changes when agents are estimated to have higher uncertainty

- this could be a model for the industry in an earlier stage, learning about a new

formation, or as a result of limited attention.

6 Counterfactuals

This section re-estimates industry priors under the assumption that only a limited

number of wells are observed each month. The new information states lead to a

similar learning path, but with much higher prior variances. The higher variances lead

to significant differences between equilibrium behavior under rational expectations,

and the alternative where drillers are myopic with respect to learning. I show that

the expectation of social learning leads to a free-riding dynamic with lower levels

of drilling and learning. Finally, I demonstrate how this dynamic can be overcome

through subsidies and/or public test wells.

6.1 Alternative Prior Estimates, Limited Attention
I begin by re-estimating industry priors, but using only a subsample of wells. The

subsample is constructed by randomly selecting ten wells in each month, without

replacement (if the month has ten or fewer wells, I select them all). Figure 14 demon-

strates that the estimates using this subsample are still able to fit the industry’s

learning curve. However, a comparison between Table 7 and Table 4 shows that the

estimated priors are much looser. This is sensible, as the means µ undergo a similar

change despite a far smaller set of information.
Table 7: Information State Estimates, Limited Attention Alternative

t = March 2006 t = March 2017

µ̂t
[

21.0
−0.43

] [
4.7

−3.6e−3

]
Σ̂t

[
12.4 0

0 2.1e−4

] [
1.4e−2 0

0 5.5e−8

]
Notes: estimates of information states Γt, found via grid search, using only a random subsample of
wells, with up to 10 wells for each month.
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Figure 14: Model Predicted and Observed Inputs, Limited Attention Alternative

Notes: observed means are calculated at the monthly level; information states are estimated using
a random subsample of wells, with 10 wells from each month.

6.2 Industry Progression under Looser Priors
I now present results showing that expected social learning can result in a free-riding

dynamic, slowing drilling, and thus the learning rate of the industry. I do this by

using simulating 1,000 counterfactual industries, using my estimates of θ from Section

6.1 above, and re-solving the value functions V (S, ξ; θ) on a grid of the new region

of S.37 I simulate three different scenarios: first, the baseline case with rational

expectations; second, a case where wells are myopic about the possibility of learning,

but incorporate new information when it arrives; third, a case where 25 public test

wells are drilled at the beginning of the game to provide additional information.

For all simulations, I begin with the same starting information state of

µ =

11.09

−0.04

 Σ =

7.5 0

0 5.0e−8

 ,

where the relatively loose priors mimic early uncertainty. I simulate with a constant

$75 price of oil to focus on the effects of social learning (though agents are still

expecting the possibility of oil price swings). Finally, I hold the potential entrant

assumption constant at 500 wells per period, and make sure that each of the three

scenarios shares identical shocks across simulations.

37The new state-space grid has the same grid points in the p and ξ dimensions, but new points
in the Γ dimensions, as informed by the alternative estimates of {Γ̂}. The number of points in each
dimension is unchanged from the baseline case.
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The results are shown in Figures 15 - 16. Figure 15 plots mean drilling levels

across the 1,000 simulation runs. It demonstrates that the rational expectation of

social learning is an important factor when priors have higher uncertainty: fewer wells

are drilled in the baseline case as the extra value of anticipated social learning causes

more wells to wait before drilling. The figure also shows that the extra information

provided by the test wells leads to more drilling under that simulation.
Figure 15: Simulated Drilling

Notes: plotted lines show means across 1,000 simulations.

Figure 16 plots expected profits π(S) in each period across simulations. The first

thing to note is that drilling is higher under the myopic than the baseline simulation,

even while expected profits are quite similar, highlighting that the social learning

effect is operating through the δE[V (S ′, ξ; θ) channel. Moreover, the higher levels of

early drilling lead to higher expected profits in later periods, demonstrating the possi-

bility of positive feedback loops between investment and learning in this model. The

figure also shows that the test wells provide valuable information in terms of expected

profits; however, drilling levels are still lower than under the myopic simulations, as

the expectation of social learning continues to matter.

Finally, I consider a back of the envelope cost-benefit analysis of the test well

program. The 25 test wells have a simulated cost of $189.9m. In terms of benefits

(and disregarding any revenue from the test wells), I calculate that the better infor-
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Figure 16: Simulated Expected Profits

Notes: plotted lines show means across 1,000 simulations.

mation leads to an incremental NPV of $173.0m to the state, and $248.1m to private

leaseholders, assuming a tax rate of 11.5% and a royalty rate of 16.5%. Finally, I

calculate an incremental NPV of $1.7b in profits to the operators drilling the wells.

Table 8 shows similar welfare caulculations (with benefits aggregated) across dif-

ferent assumptions for the prevailing oil price and number of public test wells drilled.

These figures demonstrate that public tests of a new technology can be welfare en-

hancing by accelerating the joint processes of investment and learning. It is worth

highlighting that the “test” wells I have simulated here are not necessarily even in-

tended to push the frontier, they simply represent the best design under the current

industry knowledge. Much more impressive results could be obtained under an al-

ternative assumption that these tests are designed to optimally increase available

information.
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Table 8: Public Test Welfare, Alternative Assumptions

Wells Cost NPV Aggregate Benefit
$55 $65 $75 $85 $95

5 -38.0 123 415 2,065 2,939 3,138
25 -189.9 95 330 2,130 3,548 4,747
50 -379.7 24 230 1,806 3,325 4,682

Notes: Figures are in millions of dollars. Assumptions include a constant price of oil and 50 month
simulation run. Calculated values are incremental to simulated baselines, and discounted to NPVs.
In all instances, the test wells are assumed to provide no monetary benefits. Tax rate: 11.5%; royalty
rate: 16.5%.

7 Discussion

In this paper, I have developed a dynamic model of industry investment with endoge-

nous social learning. I estimated the model using data from the shale oil industry in

North Dakota’s Bakken formation, where I find that learning has played a significant

role in the growth and increasing profitability of the industry. However, my dynamic

estimates reveal that anticipated social learning has had little to no effect on the

industry’s recent development: the estimated prior variances are too low to allow for

much value from new information.

In the final section, I considered a counterfactual scenario of industry development

under less less certain priors, as might correspond to the earliest stages of the industry,

learning about a new formation, or limited firm attention. Here I found that the

possibility of social learning can lead to a free-riding dynamic, where firms delay

investment in order to learn from others. I show that this dynamic can lead to

sizable differences in the industry’s progress up the learning curve: less drilling yields

less information, and lower future investment. Finally, I demonstrate that a policy

designed to increase early information can have a significant effect in overcoming this

free-riding: public test wells provide early information, leading subsequently to a

higher level of investment and a higher rate of learning.

Taken together, the results of this paper suggest that policymakers interested

in fostering industry development of new technologies face tradeoffs when designing

disclosure policies. In the earlier stages of learning about a new technology, when
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firms may expect to actively learn from their peers, disclosure can lead to a free-riding

dynamic. In contrast, as the industry’s understanding of the technology matures and

prior variances fall, disclosure may increase welfare by facilitating social learning

without risk of limiting investment.
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ONLINE APPENDIX

A Well Characteristics and Production

I collect administrative data on completions, production and other well characteristics

from the NDIC for wells completed in the years between 2005 and 2016. One dataset of

static well-level characteristics includes IP rates, drilling and completion dates, well

locations, target formations, and for horizontal wells, the length of the horizontal

wellbore. As different geological formations may have different learning processes,

I use the formation variable to restrict my sample for this paper to wells targeting

the Bakken play.38 A separate NDIC dataset contains monthly well-level production

details: quantities of oil, water and gas produced, days in production, quantities of oil

and gas sold, and quantity of gas flared. Bakken wells derive almost all of their value

from crude oil rather than natural gas (which is often flared instead of harvested,

see e.g. Lade and Rudik (2020)), so I focus attention below and in the model on oil

production and sales.

Table 9 shows the evolution of some of these variables over the timeframe of my

study. The first two rows show that the number of active operators and completed

wells rose steeply before falling off in 2015. The third through sixth rows show that

the distribution of IP has also dramatically increased: a 25th percentile well in 2015

has an IP almost twice as high as a median well in 2008. This is partly explained

by the increase in average length of a well, shown in the seventh row. The middle

section of Table 9 shows annual aggregate production from all Bakken wells, and

from Bakken wells completed that year. While aggregate production from Bakken

wells has continued to increase, the production from new wells has fallen along with

completions.

38Conversations with industry participants indicate that learning processes across formations are
separate, as geological differences between formations cause them to respond differently to treat-
ments.
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The NDIC also publishes results from geological surveys, guiding estimates of

the production potential of the Bakken shale in various locations. Higher measures

of total organic content (TOC) and thicker shale layers indicate the possibility of

more oil. The hydrogen index (HI) and S2-TMAX (S2) are both measures of thermal

maturity. A higher hydrogen index indicates the presence of more hydrocarbons, and

values as low as 200 can be considered mature. Ideal maturity is also indicated by

S2-TMAX values between 435 and 460 degress celsius (McCarthy et al., 2011). The

bottom section of Table 9 shows that wells are progressively drilled where the Bakken

formation is thicker, with a higher TOC, a slightly lower HI, and roughly the same

S2. The geological survey data is thus ambiguous as to whether operators are drilling

“sweeter spots” over time.
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B Alternative Explanations

In this appendix, I argue against alternative explanations for the patterns in the

data, and conclude that learning about the production function is the most plausible

explanation.

Consider the illustrative model, where a well’s expected profit can be written as a

function of oil prices p, quantity q, costs c, as well as their determinants: well inputs

x and operator knowledge Γ:

π(p, x; Γ) = pq(x∗(p,Γ))− c(x∗(p,Γ)) . (25)

I write x∗(p,Γ) to denote that the operator is choosing optimal inputs given p, Γ,

and the functions q(x) and c(x). Table 1 charts a monotonic increase in observed

x∗(p,Γ), even as Figure 1 shows that prices p behaved very non-monotonically. This

phenomenon has a few potential explanations.

The first alternative explanation is that unit costs c′t(x) have fallen, where t indexes

time. The direct costs for proppant and/or hydraulic fracturing fluid and/or the costs

of recovering and disposing well flow back might have fallen.39 Standard economic

theory predicts that this would lead to operators increasing their uses of these inputs

until marginal benefits are again equated to marginal costs. However, the evidence

does not support this alternative. The EIA released a study in 2016 on industry

costs.40 They first find that proppant, fluid, and flowback costs make up only 26%

of well costs on average.41 The study then found that proppant and fluid costs were

relatively stable from 2006 to 2015: fluids were slightly more expensive from 2010 to

2013, and proppant costs were actually increasing over the period. The EIA study

also traces flowback costs: while it does show a fall in flowback costs from 2012 to

2014, it shows an increase from 2006 to 2012 (EIA, 2016). These small and ambiguous

changes in marginal costs cannot explain the monotonic increase of proppant and fluid

39After the well is stimulated, some of the fracturing fluid flows back up the well; it must be
carefully collected and recycled or disposed of due to the hazardous chemicals it contains.

40See Figure 2-5 on page 12 of the IHS report (EIA, 2016).
41This is in line with what I can calculate from my AFE dataset.
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use in the Bakken.

The second possible explanation is that technology improved over the timeframe,

so that q(x) should be written qt(x). Such a shift in technology could expand oper-

ators’ choice set over input configurations and change x∗. Again, the evidence rules

out this possibility. The same EIA report shows in Figure 2-16 on page 19 that the

average Bakken well has lagged behind average wells in other formations in proppant

use per foot (EIA, 2016). The technology for more intense fractures clearly existed

for some time before operators decided to take advantage of it in the Bakken.42 So

changes in technology q are not a satisfactory explanation for the observed increase

in x.

A third possibility is that operators’ configurations have changed because they

are drilling in different places, or that the production technology is a highly location-

specific qloc(x). Figure 17, which shows locations of wells drilled in 2006, 2009, 2012,

and 2015 suggests that this is not the case. While the early years saw operators

explore new areas, by later years wells tended to be drilled in areas that had been

explored previously.
Figure 17: Drilling Locations Over Time

Notes: Each sub-figure represents a heatmap of new wells drilled in that year.

42This was confirmed by my conversations with an industry participant; he noted in early 2017
that his firm had been experimenting with their currently-used frac configurations as early as 2011.
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I further test this last alternative through a series of regressions, regressing well

inputs on fixed effects for operators, dates, and locations. Table 10 show the results of

this exercise when dates and locations are binned into 25 binary variables. Focusing

on the first row, the adjusted R2 values illustrate that of the three sets of fixed effects,

operators are the most important in determining how much fluid is used, followed by

date; columns 4-6 show that the location fixed effects have little explanatory power

when operators are taken into account. The second and third row show that similar

patterns exist for pounds of proppant per foot and the number of frac stages.43 I

conclude that who fractures a well and when the well is fractured do much more to

determine the well’s inputs than where the well is fractured.
Table 10: Inputs by Operator, Date and Location; 25 bins

Adjusted R2

Fluid per Foot 0.27 0.27 0.08 0.51 0.31 0.35 0.53
Proppant per Foot 0.40 0.29 0.14 0.61 0.42 0.39 0.62
Stages 0.17 0.22 0.02 0.33 0.18 0.24 0.34

Operator FE X X X X
Date FE X X X X
Location FE X X X X

Notes: Each entry represents a separate regression. Dependent variables are listed in the first column.
Included independent variables are denoted by checkmarks, see text for description; location and
date fixed effects are included as 25 bins.

Having argued against changes in q(x), c(x), or p explaining the observed trend

in x∗(p,Γ), I conclude that the most plausible explanation is a change in industry

knowledge Γ, or learning. This finding suggests the model of operator learning over

optimal input use that follows.

43Appendix F shows the results using 100 bins per variable; the results are similar.
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C Inter-firm Learning

In defense of the assumption to treat each potential well as its own firm, this appendix

argues that the learning in the data takes place predominantly at the inter-firm level,

rather than the intra-firm level. The lack of demonstrable intra-firm learning suggests

that firms are as likely to learn from each others’ wells as their own, and aids the

plausibility of the assumption of treating each well as its own firm.

Figure 18 graphs the distributions of gallons of fracturing fluid per foot usedi n

wells from 2010 - 2016, with the sample split into two groups: those operated by

early and late entrants. I define early entrants as those firms who were first active in

the the Bakken prior to 2010. As Figure 18 shows, the input configurations do not

seem to vary systematically between these two groups (with the exception of 2016),

suggesting that the pattern of changing operational choices is common across the

industry rather than intra-firm.
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Figure 18: Gallons Fracturing Fluid per Foot by Entrant Date

This conclusion is reinforced by Figure 19; this figure performs a similar exercise,

but divides the sample dynamically. For each year of wells, the sample of well-

operators is split into three: those who entered the Bakken recently, in the last 360

days; those who entered in the last 361 to 1080 days; and those who entered more than

1080 days previously. From this figure it can be seen that there are no discernible

patterns between entry date and input choices. In 2010 - 2012 for example, the

distributions are quite similar. In 2015, it looks like the length of time the firm has

been operating in the Bakken is positively correlated with gallons of fracturing fluid,

but this conclusion is flipped in 2016, when it appears that the newest firms are using

the most fluid, followed by the oldest firms, followed by the intermediate.

Analagous graphs with a different cutoff years, and different input choices (pounds

of proppant per foot, fracture stages, maximum injection pressure) similar patterns

and are available from the author upon request.
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Figure 19: Gallons Fracturing Fluid per Foot by Entrant Date
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D IP and Cost Predictions

This appendix describes the calculations performed to create Figures 5 and 6.

The first step is a regression of 6 month IP on well configuration and location:

qw = βp0 + βphhw + βpssw + βpffw + αpw + εpw, (26)

where qw is the log of 6 month initial production, hw is the log of the well’s horizontal

length in feet, sw is the log of pounds proppant, fw is the log of gallons fluid, αw

represents a township fixed effect, and εpw is the regression error. The results of this

regression are shown in Table 11.
Table 11: Counterfactual Production Regression Results

Log 6 Month IP (BBL/day)

Log Feet Length 0.292∗∗∗

(0.022)

Log Pounds Proppant 0.151∗∗∗

(0.009)

Log Gallons Fluid 0.134∗∗∗

(0.009)

Location FE X
Observations 11,460
R2 0.511

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

I then take the estimated coefficients (β̂p, α̂p), and use them to generate predicted

values for each well:

q̂2007
w ≡ β̂p0 + β̂phh

2007 + β̂pss
2007 + β̂pff

2007 + α̂pw (27)

q̂actualw ≡ β̂p0 + β̂phh
actual + β̂pss

actual + β̂pff
actual + α̂pw (28)

q̂2016
w ≡ β̂p0 + β̂phh

2016 + β̂pss
2016 + β̂pff

2016 + α̂pw, (29)
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where h2007, s2007, and f 2007 denote the median horizontal length, sand, and fluid

amounts used by wells in 2007. Similarly, hactual denotes the actual horizontal length

used seen in the data.44. Thus the fitted values q̂w represent estimates of initial

production given the actual geography and counterfactual configurations. Figure 5

plots the medians by year of actual completion of these fitted values, q̂2007
w and q̂2012016

w .

The routine for costs is similar. The regression in this case is:

cw = βc0 + βchhw + βcssw + βcffw + εcw, (30)

where cw is the log of well costs in thousands of dollars and the other variables

are defined as before. Note that I assume that location does not affect drilling and

completion costs conditional on configuration choices. The results of this regression

are shown in Table 12.
Table 12: Counterfactual Cost Regression Results

Log Cost ($ 1000s)

Log Feet Length 0.429∗∗∗

(0.045)

Log Pounds Proppant 0.022
(0.018)

Log Gallons Fluid 0.080∗∗∗

(0.018)

Observations 421
R2 0.320

Notes: ∗∗∗Significant at the 1 percent level.
∗∗Significant at the 5 percent level.
∗Significant at the 10 percent level.

I then use the estimated coefficients (β̂p, ω̂p) to generate predicted costs for each

44I project actual inputs on the estimated location effects so that the only differences between the
lines in Figure 5 are inputs used
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well for which I do not have a cost estimate:

ĉw ≡ β̂c0 + β̂chhw + β̂cssw + β̂cffw + ω̂cw, (31)

as well as predicted costs for all wells if they were drilled in the mean 2007 and 2016

configurations:

ĉ2007
w ≡ β̂c0 + β̂chh

2007
w + β̂css

2007
w + β̂cff

2007
w + ω̂2007, (32)

ĉ2016
w ≡ β̂c0 + β̂chh

2016
w + β̂css

2016
w + β̂cff

2016
w + ω̂2016. (33)

Finally, I transform the predicted values to levels:

Q̂2007
w = exp(q̂2007

w ) +
σ̂2
p

2
,

Q̂2016
w = exp(q̂2016

w ) +
σ̂2
p

2
,

Ĉw = exp(ĉw) +
σ̂2
c

2
,

Ĉ2007
w exp(ĉ2007

w ) +
σ̂2
c

2
,

Ĉ2016
w exp(ĉ2016

w ) +
σ̂2
c

2
.

I then calculate three quantities for each well:

• Ĉw/Qw - the estimated (or actual where available) cost over actual 6 month IP;

• Ĉ2007
w /Q2007

w - the 2007-configuration estimated cost over 6 month IP;

• Ĉ2016
w /Q2016

w - the 2016-configuration estimated cost over 6 month IP.

Figure 6 plots the median values of each of these three distributions by year of actual

completion.
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E AFE Sample Selection

Table 13 shows the 10th, 50th, and 90th percentiles of selected variables for two

samples: those wells which can be matched to an AFE, and those that cannot. The

final column displays p-values from a t-test for equality between means. The table

shows that on average, AFE wells are drilled slightly earlier. Consistent with this,

they tend to be slightly smaller in horizontal length, to use slightly less proppant and

fracturing fluid, and to produce slightly less oil.
Table 13: AFE Sample Selection

AFE Non-AFE t-test

N 421 11,309
Completion Date 2012-09-13 2013-04-27 0.00

6 month IP Oil
10% 183 250

0.0050% 712 879
90% 1,779 2,342

Horizontal Length
10% 5505 5750

0.0450% 9,473 9,509
90% 10,056 10,191

Proppant
10% 1.51 1.29

0.0050% 2.85 3.09
(million lbs) 90% 4.09 6.84

Fluid
10% 1.11 0.87

0.1650% 2.27 2.44
(million gallons) 90% 8.00 6.80

Values shown are distribution percentiles.
The final column displays p-values for t-tests of mean equality
across groups.
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F Inputs regressed on FEs, 100 bins

Table 14 shows an alternative version of Table 10, when the geographic and date

variables are divided into 100 rather than 25 bins. The conclusions from the table

are similar: it appears that when the well is drilled, and who drilled the well do

much more to determine input use than where the well was drilled. This suggests

that the pattern of increasing input use in the data cannot be well explained by a

specific-geography argument.
Table 14: Inputs by Operator, Date and Location; 100 bins

Adjusted R2

Fluid per Foot 0.27 0.27 0.18 0.51 0.34 0.42 0.55
Proppant per Foot 0.40 0.29 0.25 0.61 0.44 0.47 0.64
Stages 0.17 0.22 0.07 0.34 0.19 0.27 0.35

Operator FE X X X X
Date FE X X X X
Location FE X X X X

Note that each entry represents a separate regression.
Dependent variables are listed in the first column.
Included independent variables are denoted by checkmarks, see text
of Section B for description; location and date fixed effects are in-
cluded as 100 bins.
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G Industry Concentration

Table 15 shows some measures of industry activity and concentration over time. As

has been shown elsewhere, the number of active operators in a given year has in-

creased along with the number of wells completed. The fourth through eighth columns

demonstrate the heterogeneity in operator size within a given year. For example, in

2012, the 95th percentile operator completes 186 wells, compared to the median op-

erator’s 25 wells, and the 5th percentile operator’s 2 wells. The final column shows

the Herfindahl-Hirschman Index compute by year in the share of completed wells; the

values suggest that while there are a few big players, the industry is not concentrated

in an absolute sense.
Table 15: Measures of Industry Concentration

Wells per Operator

Year Wells Completed Active Operators p5 p25 p50 p75 p95 HHI

2006 45 12 1 1 2 4 10 0.178
2007 161 16 1 3 4 12 34 0.155
2008 1566 28 1 4 10 66 212 0.151
2009 1016 33 1 2 8 46 85 0.122
2010 1237 38 1 3 10 34 115 0.126
2011 1634 41 1 3 14 49 152 0.094
2012 2183 41 2 7 25 59 186 0.073
2013 2523 42 2 7 25 73 214 0.075
2014 2566 42 2 7 28 75 259 0.063
2015 1655 35 1 8 20 58 200 0.078
2016 693 29 1 6 16 39 67 0.067

As an example, Wells per Operator p50 denotes the median number of wells completed by
a single operator in a given year.
HHI denotes the Herfindahl-Hirschman Index calculated by the share of completed wells by
an operator in a given year.
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H Drilling and Lease Expiration

In this section, I examine the timing of well drilling. While the model assumes that

the firm’s problem has an infinite horizon, in fact the mineral rights leases that grant

operators the right to drill for oil have expiration dates. Herrnstadt et al. (2020)

does an excellent job studying how this affects the timing of an operator’s drilling

decision and considering the wider economics of similar contracts. If a well is drilled

after a lease has elapsed (and not been extended), the share of revenue accuring to

the mineral rights holder will revert to 100% from the average royalty rate of less

than 20% (though the mineral rights holder will become responsible for his share of

drilling and production costs in this case).

Using lease data available from Enverus (formerly DrillingInfo), I investigate the

relationship between lease expiration and drilling in my dataset. I use a simple

algorithm to match wells to leases, by restricting attention to “regular” leases that

are made up of whole sections, quarter-sections, or sixteenths of sections. This choice

allows me to quickly assign wells to leases using data from the NDIC’s “scout ticket”

dataset, and captures 7,805 wells, more than 60% of the wells in my sample. While it

is not exhaustive, it suffices for the investigation undertaken in this section. I do not

attempt to match the “irregular” leases: it would be a significant undertaking and

not add anything to the primary analysis of this paper.

Figure 20 is a histogram of the difference in days, for each spacing unit, between

when the drilling begins on the first well, and the earliest lease expiration date.

Vertical lines are drawn at the earliest lease expiration, and two years afterward

(which is the length of the typical extension clause). There are a few noteworthy

takeaways. First, lease expiration and two years following lease expiration appear

to be important dates that affect the timing of drilling decisions. Second, while

operators are more likely to drill immediately before than immediately after the first

lease expiration, they frequently drill at many other times than simply right before
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the first lease expires. Third, the first spud on many spacing units takes place well

after even the extension of the lease. It is worth highlighting here that his is in stark

contrast to the findings of Herrnstadt et al. (2020) in the Haynesville shale.

Figure 21 is a similar plot, but with the sample broken up into those spacing

units whose earliest expiring lease does and does not have an extension clause. While

relatively few leases feature such an extension clause, the patterns in drilling time

are strikingly similar across the two groups. Again, this is in contrast to the findings

presented in Herrnstadt et al. (2020).
Figure 20: Timing of Drilling and Lease Expiration

Notes: Positive numbers indicate the spud took place after the first lease expiration. The sample is
made up of those wells which are assigned to ‘regular’ spacing units, see text for details.
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Figure 21: Timing of Drilling and Lease Expiration, with and without Extensions

Notes: Positive numbers indicate the spud took place after the first lease expiration. The sample is
made up of those wells which are assigned to ‘regular’ spacing units, see text for details.

I Defining Well Success and Failure

This appendix describes the empirical choice made to define binary well success and

failure, the data used in that definition, and how the chosen definition relates to when

the well is drilled and operator size.

The learning model described in Section 4 requires a binary outcome for well i,

Ai. I use fracture days, reported on FracFocus, normalized by the number of fracture

stages, reported by the NDIC, as a measure of the success in the fracture job. The

right panel of Figure 22 plots the density of this measure (with a log transformation

of fracture days), and demonstrates that it is a very skewed measure empirically. I

select the 95th percentile of this measure as a cutoff to define well success or failure.

The main panel of Figure 22 is a scatterplot of this measure related to input choices;

in the figure one can clearly see the relationship between the two variables.

Figure 23 is a companion graph, plotting the distributions of well input choices
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Figure 22: Fracture Days and Inputs

Notes:

by well success and failure. The figure makes clear the fact that successful and

unsuccessful wells can both occur at any level of input choice, but also that unsuccesful

wells are much more likely to have had a high level of inputs than successful wells.

Finally, I examine how input choices and well success vary with time and firm size

in Table 16. The fifth column reports the percentage of observed well successes, as

defined above using the FracFocus data on fracture days. The fourth column extends

the sample to those wells that are excluded from FracFocus, by using fitted values from

the econometrician’s estimate of γ̂ (reported in Table 5) to predict success. The top

half of the table considers the evolution over time, and shows observed and perceived

well sucesses falling as wells are fractured with higher levels of inputs. The bottom

half of the table shows that the relationship of input choices and well outcomes to

firm size: the largest quartile of firms evidentally use a higher average level of input,

but the relationship among the the other three quartiles is less clear.
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Figure 23: Well Outcomes and Inputs

Notes:

Table 16: Inputs and Outcomes by Year and Firm Size

Percent Successful
Category Count Input Inferred Observed

2006-08 1772 181 96.9 –
2009-11 3887 228.5 96.5 –
2012-14 7272 398.9 94.6 94.3
2015-16 2348 568.7 93.2 93.2

1st Quartile Firm Size 4582 349.2 95.5 94.7
2nd Quartile Firm Size 2873 370.9 92.8 89.8
3rd Quartile Firm Size 5542 331.7 96.2 96
4th Quartile Firm Size 2323 419.9 94.9 92.2

Quartiles of firm size are determined by the number of wells observed in
the sample.
Input refers to the mean observed input for a given category.
Percent Successful refers to the percentage of wells that are successful by
my definition (see text for details); Observed values are taken directly
from the data, while inferred values are augmented by predictions from
the econometrician’s estimate of γ̂ for those wells without FracFocus
data.
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