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1 Introduction

Contracts are critical business instruments, yet those in charge of drafting them are rarely the
people responsible for delivering the anticipated outcome. Contract designers are typically
not the residual claimants, and their motivation to draft optimal contracts depends on the
design of their incentive packages. Moreover, relationships between contract designers and
those who employ them typically involve several contractual frictions such as moral hazard,
adverse selection, and limited liability.

Consider a buyer who hires an agent to design a contract for the seller who will implement
the project. A buyer-seller contract is incomplete because the ex-ante specified project design
might not be appropriate ex-post. The contract designer has better information about
whether there will be a need for a new design and covertly exerts effort to learn it. For
example, in the construction industry, the "Design-Bid-Build" is a project delivery method
in which the buyer contracts with separate entities for the design and implementation of a
project.1 The initial project design might be changed due to newly discovered site conditions
that were not initially specified. Although the unusual site conditions are foreseeable, the
initial contract and price are not necessarily indexed appropriately.2 The engineers working
on the project design may choose to save the cost of the seismic surveys and announce that
the site conditions are standard. Moreover, due to their experience from similar projects,
the engineers may interpret the publicly available information differently and, as a result,
may start the contract-drafting process with superior information.

What is the most efficient way to incentivize the contract designers to exert effort and
specify the appropriate design at the outset? Should their compensation be contingent on
whether the initially specified design is appropriate ex-post or not? How is the buyer-seller
contract affected by the contract designer’s incentives, and what are the trade-offs involved?

The novelty of our paper is to endogenize the costs of writing a contract by presenting
the drafting of contracts as a contracting problem itself. This allows us to study how the
asymmetric information generated during the contract drafting stage impacts the buyer-seller
contractual relationship and how the value of the buyer-seller relationship affects the contract
designer’s incentives. Our key contribution is to study how the asymmetric information at
the contract-drafting stage impacts the price and the degree of contract incompleteness.

Our model introduces a contract drafting stage in an incomplete contract environment
1The delegation of contract drafting to an agent inside a firm is common as well. For example, contract

managers handle pre-contractual matters including the review and drafting of contracts.
2An illustrative example is the building of the Getty Center Art Museum in Los Angeles in the 1990s.

The project design had to be changed due to site conditions that were not initially described. In addition,
the project design also was modified due to the change in the regulatory environment.
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of Tirole (2009). There are three players: a buyer, a contract designer (agent), and a seller.
A buyer-seller contract specifies the desired project design to be delivered by the seller
and the corresponding price. At the outset, the parties are aware of a default design that is
appropriate with some probability only. A default design could be a previously used contract
or an "industry standard." Something might go wrong, and a new, initially indescribable
design might turn out to be more appropriate, in which case the parties engage in costly
renegotiation. A contract is, therefore, incomplete because the ex-ante specified design might
not be appropriate ex-post. We will say that the contract is more incomplete the higher the
probability that the initially specified design is renegotiated ex-post. Furthermore, in our
model, the price and the degree of contract incompleteness are inversely related: anticipating
that renegotiation is likely the seller accepts a smaller initial price.

The buyer must address two incentive problems. First, a higher effort is required to be
more likely to discover the appropriate design, and the agent’s effort is not observable (moral
hazard). Second, the agent is better informed regarding the probability of discovering the
new design at the outset (adverse selection), and we assume that the probability might be
high (high-type projects) or low (low-type projects).

We summarize our main results next. First, we show that despite the simultaneous
presence of moral hazard and adverse selection, the buyer offers the agent a simple incentive
scheme. The agent is rewarded for getting the design right at the outset, and the value of the
reward is the same regardless of the project’s type. Intuitively, paying the agent unless he
discovers the design right only exacerbates the moral hazard problem. The reason the value
of the reward does not depend on the project’s type is that in our setting, the probability
of discovering the appropriate design directly enters the buyer’s objective function. As a
result, we have what is called a common values problem in contract theory.3 It is known
that in this case, there is a strong conflict between the buyer’s preference for efficiency and
the screening role of contracts. This results in pooling contracts, i.e., the buyer offers the
same contract to agents working on both project types.

Second, we examine how the interaction of moral hazard and adverse selection at the
contract drafting stage distorts the degree of buyer-seller contract incompleteness and the
corresponding price. The agent devotes less effort to learning the appropriate design relative
to the first-best scenario due to moral hazard. Furthermore, adverse selection polarizes the
effort choices across the two project types. The agent’s reward in the pooling contract is
lower than the reward of the agent working on a low-type project in the environment without
adverse selection. Then, the agent working on the low-type project exerts less effort. The

3See, e.g., Laffont and Martimort (2002).
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opposite is true for the agent working on the high-type project as he exerts more effort than in
the environment without adverse selection. Therefore, the adverse selection problem results
in a contract being either closer to the first-best benchmark (for the high-type project) or
more incomplete (for the low-type project). For example, if the high type project is relatively
likely, this polarization results in a less incomplete contract and a higher price than in the
environment without adverse selection.

Third, we study how the degree of contract incompleteness is affected by the buyer’s
bargaining power, i.e., the portion of surplus she collects in the case of renegotiation. If the
buyer is learning the appropriate design herself, there is interdependence between the effort
devoted to learning and the degree of contract incompleteness. Intuitively, a buyer who
obtains a smaller portion of the surplus in case of renegotiation has more incentives to learn
the appropriate design and, as a result, offers the seller a less incomplete contract and pays a
higher price. We find that this intuitive monotonicity of the first-best environment might no
longer hold due to the adverse selection problem. If the buyer’s bargaining power decreases,
she benefits from a higher agent’s effort, since it mitigates the chances of renegotiation.
However, a higher effort also increases the agent’s rent. Therefore, the buyer trades off
the efficiency in learning the appropriate design and the agent’s rent. When the adverse
selection problem is severe enough and the value of the buyer-seller relationship is relatively
small, the latter effect becomes pivotal, and the agent’s effort decreases. Then, a buyer-
seller contract becomes more incomplete. Interestingly, when this is the case, a buyer with
a smaller bargaining power might end up paying the seller a smaller price.

Empirical implications. Presenting the drafting of contracts as a contracting problem
itself leads to three main empirical implications: (1) the buyer does not screen the contract
designer by offering a menu of contracts, and the latter is rewarded for getting the design
right at the outset; (2) the contract might be less incomplete and the price higher due to
adverse selection; (3) if the adverse selection problem is severe enough, a buyer with a smaller
bargaining power might end up paying a smaller price to the seller.

The first implication is consistent with the contract management literature for both public
and private project management, which emphasizes the critical role contract managers play
in preparing contracts and the importance of providing the appropriate incentives.4 In
particular, it is acknowledged that, in smaller companies, procurement employees (buyers)
are "generalists" who might lack relevant expertise so that the contract designer who provides
specifications has more knowledge regarding the subject matter.5

4See Turner (2003), Cohen and Eimicke (2008), and Webb (2015).
5For example, when buying software, a procurer might have little knowledge of relevant IT specifications.
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The literature emphasizes that the top driver for improvements in the management of
contracts is the pressure to mitigate the delivery risk, i.e., the chances of renegotiation of the
initial design. Contract managers responsible for the pre-project planning are rewarded for
mitigating the likelihood of renegotiation.6 This is consistent with our economic intuition
that the contract designers are rewarded for getting the design right at the outset.

The second implication is consistent with the empirical industrial organization litera-
ture on procurement. Alternation of the project design and renegotiation are ubiquitous
in both public and private procurement contracts.7 It is documented that the anticipation
of renegotiation by the seller might increase the costs for the procuring agency, with the
adaptation costs being one of the main channels. For example, Bajari et al. (2014) provide
a quantitative analysis of the price markups due to the expectation of renegotiation using
highway paving contracts. Miller (2014) estimates the effect of ex-post contract revisions on
the costs for work items on bridge projects procured in California. Jung et al. (2019) study
the effect of anticipated contract renegotiations on strategic bidding in construction projects
in Vermont.8 Our analysis suggests that higher prices emerge in an environment where there
is an adverse selection problem in the buyer-contract designer relationship. Consistent with
Bajari et al. (2014), our analysis suggests that the higher prices due to adverse selection are
associated with a lower probability of ex-post renegotiation (see Corollary 3).

The third implication suggests that a buyer with a smaller bargaining power might end
up paying a smaller price. The existing literature has explained this phenomenon using the
countervailing buyer power hypothesis (see Galbraith (1952)). The intuition provided in the
literature is that large retailers are beneficial to consumers since they offer smaller prices to
the buyers because their market power allows them to pay smaller prices in the wholesale
market. For example, von Ungern-Sternberg (1996) develops a model where a decrease in the
number of retailers leads to a decrease in equilibrium consumer prices (see also de Fontenay
and Gans (2004), Raskovich (2007), Iozzi and Valletti (2014), and Gaudin (2017)).9 We
highlight a novel channel that might prevent prices from increasing after the consolidation
in the retailing sector. In particular, if the adverse selection problem in the buyer-contract
designer relationship is severe enough, the price the buyer pays might become lower despite

6See Turner (2003) and Dalcher (2008) for a review of contracting specifically for contract management,
and Shtub and Rosenwein (2016) for a description of the modern project management practices.

7See Bajari and Tadelis (2001), Bajari et al. (2008), and Bajari et al. (2014).
8See also Decarolis and Palumbo (2015) and Baltrunaite et al. (2020).
9Chipty and Snyder (1999) showed that large buyers do not necessarily benefit from positive bargaining

effects in the cable television industry. Dobson and Waterson (2003) argue that final prices fall following a
reduction in the number of retailers only if the retailer services are very close substitutes. Erutku (2005)
illustrates that buying power at the retail level can lead to a rise in wholesale price.
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the increase in the seller’s bargaining power (see Corollary 4).
Related Literature. Our paper is related to three strands of the literature. First, it is

linked to the literature on incomplete contracts. Three main causes of contract incomplete-
ness are typically considered: unforeseen contingencies, costs of writing contracts, and costs
of enforcing them (see Tirole (1999) for an early paper, while Hart (2017) contains recent ci-
tations). We contribute to a set of papers studying the costs of writing contracts.10 Battigalli
and Maggi (2002) explicitly model the language used to describe contracts, i.e., primitive
sentences and logical connectives, and Battigalli and Maggi (2008) study costly contracting
in a dynamic setting.11 We endogenize the cost of writing contracts by presenting contract
drafting as an agency problem between the buyer and the contract designer.12 Importantly,
in our model, a contract might be too incomplete (complete) if the buyer’s bargaining power
is smaller (higher).

Second, our paper is related to the literature on procurement which studies the effect
of the transaction costs due to renegotiation when either the buyer or the seller can affect
the chances of renegotiation. Bajari and Tadelis (2001) develop a model where the buyer
incurs a cost of providing a comprehensive design and is faced with a trade-off between
providing incentives for the seller and reducing ex-post transaction costs due to costly rene-
gotiation. De Chiara (2018) studies how various courts’ approaches motivate sellers to make
relationship-specific investments to reduce the probability that the design of the goods they
procure is defective.13 Herweg and Schmidt (2020) develop a model where a potential seller
might privately discover flaws in the design proposed by the buyer before agreeing to pro-
duce. We contribute to the literature by connecting the probability of renegotiation (the
default design not being appropriate ex-post) to the asymmetric information generated at
the contract-drafting stage.

Third, our paper is related to the literature on principal-agent contracts with endoge-
nous information gathering. Early papers on this topic are Cremer and Khalil (1992) and
Cremer et al. (1998).14 Gromb and Martimort (2007) study the optimal design of incentive

10Early papers are Dye (1985), Spier (1992), and Anderlini and Felli (1994).
11Heller and Spiegler (2008) argue that contradictory instructions might be viewed as a form of contract

incompleteness. Bolton and Faure-Grimaud (2010) study contracting between two "boundedly rational"
agents who face time costs of deliberating transactions.

12To the best of our knowledge, ours is the first paper that explicitly models the agency conflict between
the buyer and the contract designers in settings with moral hazard and adverse selection. Relatedly, in a
model with a three-level hierarchy, Khalil et al. (2013) study contracts offered by a bureaucrat to her agent.

13Relatedly, Ganglmair (2017) studies an environment in which sellers can reduce the probability of de-
fective delivery through cooperative investment. De Chiara (2020) considers a game in which a buyer must
decide whether to procure goods whose design may prove defective through auctions or negotiations. Herweg
and Schwarz (2018) study procurement auctions with renegotiations.

14See also Terstiege (2012) and Terstiege (2016).
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contracts for experts in different collusion environments. Gerardi and Maestri (2012) study
how an agent can be incentivized to acquire and truthfully report an unverifiable signal in
an environment with moral hazard and adverse selection.15 In a very general framework,
Gottlieb and Moreira (2017) derive conditions for pooling contracts to be optimal in environ-
ments with adverse selection and moral hazard when agents have limited liability.16 Khalil
et al. (2020) study how to incentivize an agent to learn the project profitability when he
has private information about the efficiency of learning. Chade and Swinkels (2021) study
a principal-agent problem with both moral hazard and adverse selection when the agent is
risk-averse. None of these papers study how endogenous information gathering affects the
degree of contract incompleteness and, therefore, the economic focus is different.

The rest of the paper is organized as follows. In Section 2, we present the base model and
the first-best benchmark. In Section 3, we describe the optimal buyer-agent and buyer-seller
contracts and our main results. Section 4 concludes. All the proofs are relegated to the
Appendix.

2 Model

The buyer hires the seller to implement a project. Initially, all parties are aware of a default
design D that delivers value V > 0 to the buyer with probability 0 < 1 − β0 < 1. The
default design could be a previously used contract or a so-called "industry standard." With
probability β0, however, some different, initially indescribable, design N delivers value V

to the buyer, whereas design D delivers only δV , where 0 ⩽ δ < 1. The probability β0,
therefore, reflects how likely a standard form contract might be modified. Before the buyer
approaches the seller, an agent is hired to learn the appropriate design. We call this the
contract drafting stage, which is described next.

Contract Drafting Stage. The agent might learn the appropriate design by exerting
effort e ∈ (0, 1), and we denote by c(e) his cost-of-effort. If N is the appropriate design (with
probability β0), the agent discovers it with probability e. If D is the appropriate design
(with probability 1− β0), the agent never discovers design N no matter the effort he exerts.
We assume that learning design N generates "hard" information that can be presented to

15Unlike in Gerardi and Maestri (2012), the effort choice is continuous and the agent’s report is verifiable,
i.e., information is "hard" in our model.

16The optimality of pooling contracts caused by a mix of moral hazard and adverse selection is also
observed in Ollier and Thomas (2013), Escobar and Pulgar (2017), and Castro-Pires and Moreira (2021).
Foarta and Sugaya (2020) show that this pooling result might no longer hold if the principal has additional
screening instruments. Relatedly, Terstiege (2014), Bhaskar and Mailath (2019), and Rodivilov (2021b)
develop models where the agent gets a rent because his and the principal’s beliefs diverge.
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the buyer, but it cannot be fabricated.
The cost function c(e) is three-times continuously differentiable with respect to e ∈ (0, 1):

c′(e) > 0, c′′(e) > 0, c′′′(e) ⩾ 0, (1)

with c′(0) = 0 and c(e) → ∞ as e → 1.17

The buyer does not directly observe the agent’s chosen effort level e, and, therefore, a
moral hazard problem emerges. The buyer must also address an adverse selection problem.
We assume that the agent is privately informed about the probability that design N is the
appropriate one, represented by the parameter β0. The probability parameter β0 determines
the project’s type, and we will refer to a project with high or low probability as a high or
low-type project. With probability ν ∈ (0, 1), the project is a high type, θ = H. With
probability (1− ν), it is a low type, θ = L. Thus, we define the probability parameter with
the type superscript:

βθ
0 = Pr(design N is appropriate|type θ project).

Renegotiation Stage. If the buyer specifies the delivery of design N when contracting
with the seller, the good is delivered without any renegotiation. However, if the contract
with the seller specifies design D to be delivered but design N turns out to be the appropriate
one, the buyer and the seller will renegotiate the delivery. Converting design D to design N

requires the seller to incur additional adjustment cost γ. For example, in the construction
industry, the adjustment costs include the time and resources devoted to changing the project
design and the additional new materials. We assume that there are ex-post renegotiation
gains:

Assumption (A1). (1− δ)V − γ > 0.
That is, the increase in the buyer’s value, V − δV , minus the adjustment cost is positive.

A hold-up problem emerges as a result. We apply the generalized Nash bargaining
solution and assume that the buyer and the seller have bargaining powers α and 1 − α,
respectively. That is, if renegotiation occurs, the buyer collects α[(1 − δ)V − γ], and the
seller collects (1 − α)[(1 − δ)V − γ]. We assume that the bargaining powers are the same
ex-ante and ex-post.

2.1 Contracts and Payoffs

The Buyer-Agent (B-A) Contract. We first describe the contract the buyer offers to
the agent. Without loss of generality, we use a direct truthful mechanism, where the agent

17These conditions guarantee the effort level is strictly positive and strictly less than one in equilibrium.
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is asked to announce the project’s type, denoted by θ̂. A contract specifies, for each type,
the transfer as a function of whether or not the agent discovers design N , and whether D

turns out to be the appropriate design. A contract is defined formally by

ωθ̂ =
{
wθ̂

N , w
θ̂
DD, w

θ̂
DN

}
, (2)

where wθ̂
N is the agent’s wage in case he specifies N as the appropriate design; wθ̂

DD is the
agent’s wage if he specifies design D and it is appropriate ex-post; and wθ̂

DN is the agent’s
wage if he specifies design D but design N is appropriate ex-post.

An agent who observes type θ project, announcing type θ̂, receives the expected utility
U θ(ωθ̂, e) from a contract ωθ̂ given the effort level e:

U θ(ωθ̂, e) := (1− βθ
0)︸ ︷︷ ︸

D appropriate

wθ̂
DD︸︷︷︸

D specified

+ βθ
0︸︷︷︸

N appropriate

[
ewθ̂

N︸︷︷︸
N specified

+(1− e)wθ̂
DN︸ ︷︷ ︸

D specified

]
− c(e). (3)

If the appropriate design is indeed D (with probability 1−βθ
0), then the agent specifies it at

the outset and collects wθ̂
DD. If, however, the appropriate design is N (with probability βθ

0),
the agent either specifies it (with probability e) and collects wθ̂

N , or fails to specify it (with
probability 1− e) and collects wθ̂

DN .

The Buyer-Seller (B-S) Contract. Production costs k > 0 for the seller (regardless
of the initially specified design), and we assume that the production cost k is high enough
so that the seller does not trade without a contract, which is described next.18

Degree of Contract Incompleteness. If the agent exerts effort eθ̂ given type θ project and
does not discover the new design N , the posterior probability of renegotiation is given by

βθ(eθ̂) =
βθ
0(1− eθ̂)

1− βθ
0e

θ̂
, (4)

which is monotonically decreasing in the agent’s effort level:

dβθ(eθ̂)

deθ̂
< 0. (5)

Since, in equilibrium, all parties correctly anticipate the effort level chosen for each
project’s type, the expected probability of renegotiation becomes

β := β(eL, eH) = Eθβ
θ(eθ) = νβH(eH) + (1− ν)βL(eL). (6)

The probability of renegotiation reflects the degree of contract incompleteness, and a buyer-
seller contract is more incomplete the higher the probability of renegotiation.

Prices. Suppose the agent does not discover design N and, therefore, the seller is asked
to deliver design D. The default price pD accounts for the hold-up problem, i.e., guarantees

18That is, the seller would not invest k without a contract to avoid a hold-up problem on the seller’s side.
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the seller collects a fraction (1− α) of the ex-ante total surplus:

(1− α)

[
V − k − β(eL, eH)γ︸ ︷︷ ︸

expected adjustment cost

]
= pD −

[
k − β(eL, eH)(1− α)[(1− δ)V − γ]︸ ︷︷ ︸

seller’s opportunity cost

]
, (7)

where the left hand side is the seller’s expected share of the total surplus and the right hand
side is the seller’s expected profit. Given that with probability β the seller holds the buyer up
for an amount (1−α)[(1−δ)V −γ], the seller’s opportunity cost is k−β(1−α)[(1−δ)V −γ].

The price pD is formally defined as:

pD := pD(β) = k + (1− α)

[
V − k − β(1− δ)V

]
, (8)

and it is decreasing in the degree of contract incompleteness:
dpD
dβ

< 0. (9)

Therefore, the price pD and the degree of contract incompleteness β are inversely related:
anticipating that renegotiation is less likely the seller demands a higher price.

Suppose next the agent discovers design N at the outset. The price pN then reflects the
production cost as well as the seller’s share of the total surplus:

pN := k + (1− α)
(
V − k

)
. (10)

Two aspects of pricing are worth noting. First, the price pN does not depend on the
degree of contract incompleteness since by asking the seller to deliver design N the buyer
fully reveals that it is the appropriate design at the outset. Second, since the price pD

accounts for the possibility of the hold-up, it is smaller than the price pN :

pN − pD = β(1− α)(1− δ)V > 0, (11)

and the price differences is monotonically increasing in the degree of contract incompleteness.
To sum up, the buyer either offers the seller a contract

{
D, pD

}
that specifies design D to

be delivered, which is renegotiated with probability β; or a contract
{
N, pN

}
that specifies

design N to be delivered. A representative time-line is plotted in Figure 1.

t = 0

θ is realized;
only Agent

learns θ
B offers a

t = 1

contract to A

A exerts effort eθ;
learns design N

t = 2

with Prob. βθ
0e

θ

B offers a
a contract

t = 3

to the Seller

renegotiation if
D was specified

t = 4

but N is appropriate

Buyer-Agent (B-A) relationship Buyer-Seller (B-S) relationship

Figure 1. The time-line of the game.
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2.2 The First-Best Benchmark

Suppose the project’s type θ and the agent’s effort choice are directly observed by the buyer.
The seller, however, only knows the distribution of the project’s type. Given that the
seller correctly anticipates the equilibrium effort level e = eθFB for each project’s type θ

and denoting the first-best probability of renegotiation as βFB = β(eLFB, e
H
FB), the buyer is

choosing e to maximize the following expected profit for each θ:

(1− βθ
0)
(
V − pD

)
+ βθ

0

(
e(V − pN) + (1− e)

(
V − pD − γ − (1− α)[(1− δ)V − γ]

))
− c(e)

subject to pD = k + (1− α)
[
V − k − βFB(1− δ)V

]
and pN = k + (1− α)

(
V − k

)
.

If the appropriate design is D (with probability 1−βθ
0), then the agent specifies it at the

outset, and the buyer collects V − pD. If the appropriate design is N (with probability βθ
0),

and the agent specifies it at the outset (with probability e), the buyer collects V − pN . If
the appropriate design is N but the agent specifies design D then the buyer collects V − pD

and bears the adjustment cost γ and the seller’s share of the surplus (1− α)[(1− δ)V − γ].
The optimal eLFB and eHFB are determined by the following conditions for θ = L,H:19

βθ
0

(
γ︸︷︷︸

social benefit

+(1− α)[(1− δ)V − γ]︸ ︷︷ ︸
the seller’s share

− βFB(1− α)(1− δ)V︸ ︷︷ ︸
pN − pD

)
= c′(eθFB). (12)

The first-best effort level equalizes the marginal cost of discovering design N , the right-
hand side of (12), and its marginal benefit, the left-hand side of (12), that includes three
components: (i) the social benefit, (ii) the seller’s share of the renegotiation gains, and (iii)

the price difference. The first component reflects that if the buyer has all the bargaining
power (α = 1), i.e., without the hold-up problem, the benefit of discovering design N is
only in avoiding the adjustment cost γ. The second component reflects that in the case of
renegotiation, the seller holds the buyer up for an amount of (1−α)[(1−δ)V −γ]. The third
component reflects that if design N is discovered, the buyer pays pN instead of pD, where the
price difference pN − pD is given by (11). Note that the price difference component appears
with a negative sign on the left-hand side of (12) and, therefore, this component discourages
the buyer from learning design N . Intuitively, discovering design N also brings "bad news"
since the buyer pays a higher price that does not account for the possibility of renegotiation.

The following assumption guarantees the uniqueness of the first-best effort:20

19Given that c′(0) = 0, c′(1) = +∞, and the marginal cost is increasing (c′′(e) > 0), the first-best effort
level is well defined and is such that 0 < eθFB < 1 for θ = L,H.

20The assumption (A2) guarantees that the expected profit is concave, and is equivalent to
d
(
βθ
0 (γ+(1−α)[(1−δ)V−γ]−β(1−α)(1−δ)V )−c′(eθ)

)
deθ

< 0 for ∀eθ ∈ (0, 1) and θ ∈ {L,H}.
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Assumption (A2). (βθ
0)

2(1−βθ
0)(1−α)(1−δ)Pr(θ)V

(1−βθ
0e)

2 < c′′(e) for ∀ e ∈ (0, 1) and θ ∈ {L,H}.

Condition (12) illustrates the intuitive monotonicity of the first-best effort level, which
is decreasing in the buyer’s bargaining power α:21

deθFB

dα
< 0. (13)

That is, if the buyer obtains a higher portion of the surplus in case of renegotiation, her
incentives to exert effort to avoid renegotiation go down. Since the probability of renegotia-
tion is decreasing in the agent’s effort level (see (5)), this immediately implies that a buyer
with a lower bargaining power offers a less incomplete contract:

dβFB

dα
> 0. (14)

Finally, since price pD is decreasing in the degree of contract incompleteness (see (9)), a
buyer with a lower bargaining power also offers a higher price:

dpD(βFB)

dα
< 0. (15)

We summarize the results in Lemma 1 below.

Lemma 1 (The First-Best Scenario). If the buyer’s bargaining power is higher, the
B-S contract is more incomplete, and the default price is smaller.

3 The Second-Best Inefficiency

We now turn to the main model with both moral hazard and adverse selection and illustrate
the nature of second-best inefficiency arising in this environment.

Denote
eθθ̂ := argmaxeU

θ(ωθ̂, e) (16)

as the optimal effort level for the agent working on type-θ project under contract ωθ̂.
For a given contract ωθ, the moral hazard constraint determining the optimal effort choice

can be presented as:

(MHθ) eθ ∈ eθθ.

The optimal contract will have to satisfy the following incentive compatibility constraints
for all θ and θ̂:

(ICθ,θ̂) U θ(ωθ, eθ) ⩾ U θ(ωθ̂, eθθ̂).
21Similar monotonicity holds with respect to the adjustment cost γ and the buyer’s retained value δ.
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We also assume the agent’s ex ante participation constraint that guarantees the agent
accepts the contract in equilibrium must be satisfied:

(IRθ) U θ(ωθ, eθ) ⩾ 0;

and the agent’s payments are non-negative:22

(LLθ) wθ
N , w

θ
DD, w

θ
DN ⩾ 0.

The buyer maximizes the following objective function

Eθ

[
(1−βθ

0)
(
V −pD(β)

)
+βθ

0e
θ(V −pN)+βθ

0(1−eθ)
(
V −pD(β)−γ−(1−α)[(1−δ)V −γ]

)
−
[
(1− βθ

0)w
θ
DD + βθ

0

(
eθwθ

N + (1− eθ)wθ
DN

)︸ ︷︷ ︸
the agent’s expected wage

]]

subject to, for all θ, θ̂ ∈ {H,L}, the (MHθ), (ICθ,θ̂), (IRθ), and (LLθ) constraints.

The following two benchmarks lay the ground to our characterization of the main model.

3.1 Moral Hazard (No Adverse Selection)

To highlight the role of moral hazard, we first briefly outline a benchmark case without
adverse selection. If the buyer directly observes the project’s type, she motivates the agent
to exert effort by paying a higher reward for discovering design N at the outset and a lower
one for failure to do so. In particular, the (MHθ) constraint can be replaced with the
following First Order Condition for θ = L,H:23

wθ
N − wθ

DN =
c′(eθMH)

βθ
0

. (17)

where eθMH denotes the agent’s effort in a benchmark with moral hazard only.
It is optimal to pay the agent as little as possible if he fails to discover design N :

wθ
DN = wθ

DD = 0. (18)

Intuitively, the cheapest way to motivate the agent to work is to reward him only when the
buyer is certain the agent has worked. Indeed, the positive value of wθ

DN makes it more
difficult to satisfy (MHθ), while wθ

DD does not affect the agent’s incentives to work.24

22Without the limited liability constraints, the buyer can receive first-best profit since learning design N
is a random event correlated with the agent’s type (see Cremer and McLean (1985)).

23The First Order Condition is also sufficient given that the cost function c(e) is strictly convex.
24In Gerardi and Maestri (2012), the agent is rewarded if he fails to obtains a signal that provides definitive

evidence in favor of one state but if his report matches the true state ex-post, which is analogous to wθ
DD

being strictly positive in our model. The reason is that information is "soft" in Gerardi and Maestri (2012)
(the agent’s report is not verifiable), whereas information is "hard" in our model.
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Denoting βMH = β(eLMH , e
H
MH), the agent’s effort level is determined by

βθ
0

(
γ + (1− α)[(1− δ)V − γ]− βMH(1− α)(1− δ)V

)
= c′(eθMH)︸ ︷︷ ︸

FB effort level

+ eθMHc
′′(eθMH)︸ ︷︷ ︸

MH distortion

. (19)

The role of the moral hazard problem can be illustrated by comparing the first-best effort
level in (12) with the one defined in (19) above, where the additional term eθMHc

′′(eθMH) on
the right-hand side determines the downward distortion in eθMH .

Given that the agent working on the high type project is more likely to discover new
design (βH

0 > βL
0 ), a smaller payment is required to incentivize him to exert effort:

wH
N < wL

N . (20)

We summarize the main results in Proposition 1 below.

Proposition 1. The optimal contract with moral hazard (no adverse selection).
The agent is rewarded for getting the design right at the outset and gets nothing otherwise:

wθ
N(e

θ
MH) =

c′(eθMH)

βθ
0

> wθ
DD = wθ

DN = 0 for θ = L,H.

The B-S contract is more incomplete and the default price is lower due to moral hazard:

βMH > βFB and pD(βMH) < pD(βFB).

Proof : See Appendix A.

Condition (19) also implies that the intuitive monotonicity of the first-best scenario
remains intact without adverse selection:

Corollary 1. Moral Hazard (no Adverse Selection). If the buyer’s bargaining
power is higher, the B-S contract is more incomplete, and the default price is smaller.

3.2 Adverse Selection (No Moral Hazard)

Consider next the case with adverse selection but no moral hazard: the agent’s cost-of-effort
is still determined by the cost function c(e) but is observable and contractible.25 The first-
best effort efficiency is restored in this case, since the buyer could use the fact that the agent
working on the high type project is relatively more likely to discover design N (conditional
on it being the appropriate one) to screen the agent without distorting the effort level. In
other words, since success in discovering design N is a random event that is correlated with

25For example, the internal monitoring practices are in place, and the buyer hires a monitor who collects
a signal on the agent’s effort. See Rodivilov (2021a) for a recent monitoring literature review.
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the project’s type, we can apply well-known ideas from mechanisms a la Cremer and McLean
(1985) that says the buyer can still receive the first-best profit.

To implement the first-best effort level, the buyer has to counter the incentive of the
agent working on the high type project to claim he is working on a low type. Relative to
the first-best payments, the buyer can change the payments in the following way. She can
increase the payment for discovering design N to the agent working on the high type project
wH

N and, simultaneously, increase the payment to the agent working on the low type project
for failing to discover design N when D is indeed the appropriate one, wL

DD.
To summarize, moral hazard is essential to generate distortions in the degree of contract

incompleteness:
Corollary 2. Without moral hazard, the buyer implements the first-best.

3.3 General Case: Adverse Selection and Moral Hazard

We now return to the main model with both moral hazard and adverse selection. Note that
adverse selection is reflected in the (ICθ,θ̂) constraints, just as in a standard model with
asymmetric information only. Moral hazard, however, is explicitly reflected in the (MHθ)
constraints, and implicitly in the (ICθ,θ̂) constraints. We illustrate this in more detail next.

Consider the (ICθ,θ̂) constraint:

(ICθ,θ̂) (1− βθ
0)w

θ
DD + βθ

0

(
eθwθ

N + (1− eθ)wθ
DN

)
− c(eθ) ⩾

(1− βθ
0)w

θ̂
DD + βθ

0

(
eθθ̂wθ̂

N + (1− eθθ̂)wθ̂
DN

)
− c(eθθ̂),

where eθθ̂ is the effort the agent working on the type θ project chooses off-equilibrium:

eθθ̂ = argmaxe

{
(1− βθ

0)w
θ̂
DD + βθ

0

(
ewθ̂

N + (1− e)wθ̂
DN

)
− c(e)

}
. (21)

Moral hazard is, therefore, also reflected on the right-hand side of (ICθ,θ̂) via the optimal
off-equilibrium effort choice eθ,θ̂.

We start solving the main model by explaining why both the (IC) constraints are binding.
In doing so, we illustrate that the agent is paid only if he discovers design N at the outset
and gets nothing otherwise. Next, we characterize the degree of contract incompleteness and
prove that the buyer-seller contract might be less incomplete in an environment with both
moral hazard and adverse selection than in the presence of moral hazard only. Finally, we
prove that a buyer with a lower bargaining power might offer a more incomplete contract if
the adverse selection problem is severe enough. The key results are presented in Propositions
2 and 3 following the discussion.
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3.3.1 Both (IC) Constraints are Binding: Implications for the Agent’s Rewards

We now explain why both (IC) constraints are binding and discuss implications for the
buyer-agent contract. The (ICH,L) constraint is binding for the standard reason in adverse
selection models. The agent working on the high type project has an incentive to lie in
order to collect the higher transfer given to the agent working on the low type project. To
illustrate, suppose the buyer offers the menu of contracts described in Proposition 1 optimal
when the project’s type is public. The (ICH,L) constraint then can be rewritten as

βH
0 eHwH

N − c(eH) ⩾ βH
0 eHLwL

N − c(eHL), (22)

which is equivalent to26

eH ⩾ eHL. (23)

Thus, if offered the menu of contracts optimal when the project’s type is public, the agent
working on the high type project obtains a higher payoff if he lies and exerts a higher effort
off-equilibrium, eHL > eH . To counter these incentives, the buyer must then set wL

N less
than wH

N to make the agent working on the high type project telling the truth:27

wL
N ⩽ wH

N . (24)

Conditions (20) and (24) together illustrate a strong conflict between the buyer’s desire
for the agent working on the high type project to exert a higher effort level for the efficiency
reasons and the monotonicity condition imposed by the presence of asymmetric informa-
tion.28 In particular, condition (20) states that the agent working on the low type project
must be paid more if the project’s type is observable, wH

N < wL
N , since he is less likely to

discover design N , βL
0 < βH

0 . However, condition (24) states the opposite must hold, and
a higher payment is required for the agent working on the high type project to guarantee
truth-telling. Given the conflicting conditions (20) and (24), the agent’s rewards for learning

26First, given that wH
N = c′(eH)

βH
0

and wL
N = c′(eHL)

βH
0

), the (ICH,L) constraint simplifies to

eHc′(eH)− c(eH) ⩾ eHLc′(eHL)− c(eHL).

Second, the (ICH,L) constraint can be rewritten as f(eH) ⩾ f(eHL), where f(e) = ec′(e) − c(e). Third,
since the function f(e) is strictly increasing in e, f ′(e) = ec′′(e) > 0, the (ICH,L) is equivalent to eH ⩾ eHL.

27Given that wH
N = c′(eH)

βH
0

and wL
N = c′(eHL)

βH
0

, condition eH ⩾ eHL is equivalent to wH
N ⩾ wL

N since the
function c′(e) is increasing in e.

28The reason for the conflict is that a common value problem emerges since the agent’s type βθ
0 directly

enters the buyer’s objective function. In this common-value setting, there can be a conflict if, for instance,
rent minimization necessitates the low type to be paid less than the high type, but the efficiency requires
the opposite, leading to both (IC ) constraints binding (see, e.g., Laffont and Martimort (2002), page 53).
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design N become identical for both types,

wH
N = wL

N , (25)

and the high type’s (ICH,L) constraint becomes binding.
To illustrate why the (ICL,H) constraint is binding, we first argue that, if the project’s

type is privately observed by the agent, it remains optimal to reward him for discovering
design N at the outset and pay nothing otherwise:29

wH
DD = wL

DD = wH
DN = wL

DN = 0. (26)

Intuitively, paying the agent unless he discovers design N only increases the adverse selection
rent and, in addition, exacerbates the moral hazard problem. Recall that if the agent’s effort
is observable, the buyer optimally implements the first-best. Thus, the payments are chosen
primarily to mitigate the moral hazard rent, and the agent is paid only if the buyer is certain
the agent worked.

Given that the agent is rewarded only for discovering design N , the (ICL,H) becomes

βL
0 e

LwL
N − c(eL) ⩾ βL

0 e
LHwH

N − c(eLH), (27)

which, following similar steps as for the (ICH,L) constraint, can be rewritten as

wL
N ⩾ wH

N . (28)

Therefore, the (ICL,H) constraint is binding as well since wL
N = wH

N in equilibrium.
We summarize the main results in Proposition 2 below.

Proposition 2. The B-A contract with moral hazard and adverse selection.
The agent is paid for getting the design right at the outset regardless of the project’s type:

wH
N (e

H) = c′(eH)

βH
0

= c′(eL)

βL
0

= wL
N(e

L) > 0 = wH
DD = wH

DN = wL
DD = wL

DN .

Proof : See Appendix B.

Note that, because of the pooling contract, the reward for discovering design N is higher
(lower) than the reward promised to the agent working on a high (low) type project in the
benchmark with moral hazard only:

wH
N (e

H
MH) < wH

N (e
H) = wL

N(e
L) < wL

N(e
L
MH). (29)

This property plays an important role as it affects the degree of the buyer-seller contract
incompleteness, as we illustrate next.

29See Section 6.1.4 in Appendix B for a formal proof.
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3.3.2 The Degree of Contract Incompleteness

We now describe how the incentive conflict between the buyer and the agent affects the degree
of the buyer-seller contract incompleteness. In particular, we illustrate how the adverse
selection polarizes the degree of contract incompleteness across the two project types.

The effort of the agent working on the low-type project is distorted downward due to
moral hazard and is distorted downward further due to adverse selection (see the upper part
of Figure 2). Therefore, adverse selection exacerbates the moral hazard problem for the
low-type project. However, the interaction of adverse selection and moral hazard results in a
different distortion in the case of the high type project. While the effort of the agent working
on the high type project is distorted downward due to moral hazard, it is distorted upward
due to adverse selection (see the lower part of Figure 2).

βL(eLFB) βL(eLMH) βL(eL)

MH distortion AS distortion

βH(eHFB) βH(eH) βH(eHMH)

MH distortion

AS distortion

Figure 2. Distortions in βH(eH) and βH(eL) due to moral hazard (MH) and adverse selection (AS).

The reason this polarization emerges is the pooling contract offered to the agent. Recall
that the agent’s reward is higher (lower) than the reward promised to the agent working on
a high (low) type project in the benchmark with moral hazard only (see (29)). Since the
agent working on the low type project is promised a smaller reward, wL

N(e
L) < wL

N(e
L
MH), he

exerts less effort than in the benchmark with moral hazard only. The agent working on the
high type project, however, is promised a higher reward than in the benchmark with moral
hazard only, wH

N (e
H) > wH

N (e
H
MH), and, as a result, he chooses a higher effort level.

Therefore, adverse selection mitigates the downward distortion in the effort emerging due
to moral hazard in the case of the high type project. Consequently, in an environment with
both moral hazard and adverse selection, the degree of contract incompleteness is polarized:
contracts are either closer to the first-best scenario (high-type project) or more incomplete
(low-type project) than in the benchmark with moral hazard only.
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We summarize the results in Proposition 3 below.

Proposition 3. The Equilibrium Degree of Contract Incompleteness.
The contract drafted by the agent working on the high (low) type project is less (more)
incomplete than in the benchmark with moral hazard only:

βH(eH) < βH(eHMH) and βL(eL) > βL(eLMH).

Proof : See Appendix B.

Interestingly, this polarization of effort might result in contracts being less incomplete in
an environment with both moral hazard and adverse selection than in the presence of moral
hazard only. In particular, this is the case when the high type project is relatively likely (ν
is high enough). Then, the adverse selection results in a less incomplete contract coupled
with a higher default price. We summarize the results in Corollary 3 below.

Corollary 3. If the portion of the high type project is high enough, the contract
is less incomplete and the default price is higher due to adverse selection:

∃ 0 < ν < 1 such that β < βMH and pD(β) > pD(βMH) if ν > ν.

Proof : See Appendix B.

3.3.3 The Role of Adverse Selection:
More Incomplete Contract if the Buyer’s Bargaining Power is Lower.

Recall that, in the first-best scenario, the contract is less incomplete if the buyer’s bargaining
power is lower (see Lemma 1). If the agent is drafting the contract, that may not hold, and
a contract might become more incomplete if the buyer’s bargaining power becomes lower.
We explain this next in detail.

To distinguish the effects of moral hazard and adverse selection on the degree of contract
incompleteness, we rewrite the equilibrium effort level eθ for θ = L,H as:

eθ = eθMH︸︷︷︸
MH

+(eθ − eθMH︸ ︷︷ ︸
AS

). (30)

Then, if α becomes smaller, two effects emerge.
First, recall that in the benchmark without adverse selection, the contract is less incom-

plete if the buyer’s bargaining power is smaller (see Corollary 1):
deθMH

dα
< 0. (31)

Thus, if moral hazard is the only incentive problem, the contract is less incomplete if the
buyer’s bargaining power is smaller.
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Second, the distortion in the agent’s effort due to adverse selection, eθ − eθMH , also
changes. If eθ−eθMH is increasing in α, it becomes costlier to incentivize a higher effort when
the buyer’s bargaining power is smaller due to a higher agent’s rent.

Thus, whether the contract is more or less incomplete if the buyer’s bargaining power is
smaller depends on the interaction of the two effects caused by moral hazard and adverse
selection, respectively. We find that the latter effect becomes pivotal if the adverse selection
problem is severe enough (βL

0 is significantly smaller than βH
0 ). Intuitively, with a higher

agent’s effort, the buyer mitigates the chances of renegotiation but pays a higher rent to
the agent. This rent is high if the probabilities of discovering design N differ significantly
across high- and low-type projects. If the value of the project V is relatively high, it remains
optimal to incentivize the agent to work more if the buyer’s bargaining power becomes
smaller. However, it is optimal to discover the appropriate design with a smaller probability
in order to lower the agent’s rent if the value of the project V is not too high.30

The following Proposition 4 provides formal sufficient conditions.

Proposition 4.
If the adverse selection problem is severe enough and value V is not too high,
the contract is more incomplete if the buyer’s bargaining power is smaller:
For any βH

0 ∈ (0, 1) there exist 0 < β
L

0 (β
H
0 ) < βH

0 , V > 0, 0 < γ(βH
0 ) < (1− δ)V such that

if βL
0 < β

L

0 , V < V , and γ < γ < (1− δ)V then dβ
dα

< 0.

Proof : See Appendix C.

Thus, a severe adverse selection problem might result in a more incomplete contract if
the buyer’s bargaining power is lower. This result illustrates how the extent of contract
incompleteness depends on the firms’ internal organizational structure when, for example,
the contract designer is an employee rather than an external contractor hired by the buyer.
For instance, if the internal monitoring practices are in place and the agent cannot shirk,
then a contract is less incomplete if the buyer’s bargaining power is lower. However, if the
agent chooses the effort covertly and the adverse selection problem is severe enough, the
opposite might be true. Proposition 4, therefore, highlights the pivotal role of asymmetric
information in contract drafting.

Having established that the contract might be more incomplete if the buyer’s bargaining
power is lower, we now discuss implications for the optimal price. In particular, we prove
that the price might become smaller if the buyer’s bargaining power is lower:

30There is also a condition on the parameter γ which ensures the adverse selection rent is monotonic in α.
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Corollary 4. If conditions of Proposition 4 hold
and either k is not too low or α is not too high,
the price pD is smaller the lower the buyer’s bargaining power is: dpD

dα
> 0.

Proof : See Appendix C.

To see why a buyer with a lower bargaining power might pay a lower price, recall definition
(8):

pD = k + (1− α)︸ ︷︷ ︸
decreasing in α

[
V − k − β(eL, eH)(1− δ)V︸ ︷︷ ︸
increasing in α (see Proposition 4)

]
. (32)

Notice that if the buyer’s bargaining power becomes smaller, two effects emerge. First,
given that the term (1−α) increases, the price should increase since the seller now captures
a larger portion of the surplus. Second, given that the term V − k − β(1 − δ)V decreases,
the price should decrease since the contact becomes more incomplete. Therefore, the price
decreases when the buyer’s bargaining power becomes smaller if the second effect dominates.
Intuitively, this is the case if the price is more sensitive to the degree of contract incomplete-
ness. Then, a buyer with a lower bargaining power offers a more incomplete contract and
pays a smaller price. Any of the two conditions on the primitives is sufficient for this to be
the case: (1) k not too low, or (2) α not too high.

4 Conclusion

In this paper, we have studied the interaction between the provision of incentives for contract
designers and the optimal buyer-seller contract. While there has been much attention on
studying optimal contracts, details of contract drafting are typically suppressed. Contract
drafting and the buyer-seller relationship are intertwined, and our paper is a step towards
studying this interaction.

When contract drafting is delegated to the third party, the buyer must address two
incentive problems: moral hazard and adverse selection. We find that the contract designer
is rewarded for getting the design right at the outset, and the value of the reward is the
same regardless of the project’s type. This pooling contract might result in a less incomplete
buyer-seller contract and a higher price than in the environment without adverse selection.

If the buyer is drafting the contract herself, the buyer-seller contract is less incomplete
if the buyer’s bargaining power is lower. This might no longer hold if contract drafting is
delegated to the third party. If the adverse selection problem is severe enough and the value
of the buyer-seller relationship is not too high, the opposite is true.

21



5 Appendix A. Proof of Proposition 1.

Given that the seller correctly anticipates the equilibrium effort level e = eθMH , the buyer
maximizes the following objective function subject to, for θ ∈ {H,L}, the (MHθ), (IRθ),
and (LLθ) constraints given below:

(1−βθ
0)
(
V −pD(βMH)

)
+βθ

0e(V −pN)+βθ
0(1− e)

(
V −pD(βMH)−γ− (1−α)[(1− δ)V −γ]

)
−(1− βθ

0)w
θ
DD − βθ

0

(
ewθ

N + (1− e)wθ
DN

)
(MHθ) e ∈ argmaxẽ

{
(1− βθ

0)w
θ
DD + βθ

0

(
(1− ẽ)wθ

DN + ẽwθ
N

)
− c(ẽ)

}
;

(IRθ) (1− βθ
0)w

θ
DD + βθ

0

(
(1− e)wθ

DN + ewθ
N

)
− c(e) ⩾ 0;

(LLθ) wθ
N , w

θ
DD, w

θ
DN ⩾ 0.

We first simplify the buyer’s optimization problem by replacing the (MHθ) constraint
with the following First Order Condition:

βθ
0

(
wθ

N − wθ
DN

)
= c′(eθMH), (33)

which is also sufficient given that the cost function c(eθ) is convex.31

In addition, assumptions on the the cost function c(eθ) guarantee that eθ > 0 in equilibrium.
Labeling by λIR, λMH , λN , λDD, λDN Lagrange multipliers of the constraints associ-

ated with the (IRθ), (MHθ), and the corresponding (LLθ) constraints, respectively, the
Lagrangian for the buyer’s optimization problem becomes

L = (1−βθ
0)
(
V −pD(βMH)

)
+βθ

0e(V −pN)+βθ
0(1−e)

(
V −pD(βMH)−γ−(1−α)[(1−δ)V −γ]

)
−(1− βθ

0)w
θ
DD − βθ

0

(
ewθ

N + (1− e)wθ
DN

)
+λIR

[
(1− βθ

0)w
θ
DD + βθ

0

(
(1− e)wθ

DN + ewθ
N

)
− c(e)

]
+λMH

[
βθ
0

(
wθ

N − wθ
DN

)
− c′(e)

]
+ λNw

θ
N + λDDw

θ
DD + λDNw

θ
DN .

Differentiating the Lagrangian (together with the equilibrium condition e = eθMH), we
obtain the following Kuhn-Tucker conditions for the optimization problem:

[wθ
N ] : (λIR − 1)βθ

0e
θ
MH + λMHβ

θ
0 + λN = 0;

[wθ
DD] : (λIR − 1)(1− βθ

0) + λDD = 0;

[wθ
DN ] : (λIR − 1)βθ

0(1− eθMH)− λMHβ
θ
0 + λDN = 0;

31The sufficiency of the First Order Condition follows from the second order derivative being negative

d
[
βθ
0

(
wθ

N−wθ
DN

)
−c′(eθMH)

]
deθMH

= −c′′(eθMH) < 0.
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[eθMH ] : β
θ
0

(
γ+(1−α)[(1−δ)V −γ]−βMH(1−α)(1−δ)V

)
−βθ

0w
θ
N+βθ

0w
θ
DN = λMHc

′′(eθMH);
complemented by the constraints of the problem and the corresponding complementary slack-
ness conditions.

We solve the buyer’s optimization problem in two steps. First, in Section (5.1), we derive
the optimal payments wθ

N , wθ
DD, and wθ

DN for an arbitrary effort level eθMH . Second, in
Section (5.2), we characterize the optimal effort level eθMH .

5.1 Payments, wθ
N , wθ

DD, and wθ
DN .

Note that from equation (33) above it follows that wθ
N = wθ

DN +
c′(eθMH)

βθ
0

and, therefore

wθ
N > 0. (34)

As a result, the (LL) constraint associated with wθ
N must be slack in equilibrium:

λN = 0. (35)

Thus, condition [wN ] can be rewritten as (λIR − 1)βθ
0e

θ
MH = −λMHβ0, which implies that

(λIR − 1)βθ
0e

θ
MH < 0, (36)

since λMH > 0.
Condition [wθ

DD] then immediately implies that

λDD = −(λIR − 1)(1− βθ
0) > 0, (37)

and, as a result, the (LL) constraint associated with wθ
DD must be binding:

wθ
DD = 0. (38)

Given (36) above, condition [wθ
DN ] implies that

λDN = λMHβ0 − (λIR − 1)β0(1− eθMH) > 0, (39)

and, as a result, the (LL) constraint associated with wθ
DN must be binding:

wθ
DN = 0, (40)

which together with (33) implies that

wθ
N =

c′(eθMH)

βθ
0

. (41)

5.2 The Optimal Effort Level eθMH.

To characterize the optimal effort level eθMH , we first prove by contradiction that the (IR)
constraint is slack in equilibrium. Suppose the (IR) constraint is binding. Then, λIR > 0,
and the equilibrium effort level eθMH and wθ

N are jointly determined by
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βθ
0w

θ
N = c′(eθMH) and βθ

0e
θwθ

N = c(eθMH).

Therefore, the equilibrium effort level eθ is a solution to the following equation

eθMHc
′(eθMH) = c(eθMH). (42)

We next prove by contradiction that there is no strictly convex function c(e) such that
(42) has an interior solution. Differentiating (42) with respect to eθMH we obtain:

c′(eθMH) + eθMHc
′′(eθMH) = c′(eθMH) =⇒ eθMHc

′′(eθMH) = 0, (43)

which leads to a contradiction since c′′(eθMH) > 0.
Thus, λIR = 0, and the equilibrium effort level eθMH and wθ

N are jointly determined by

βθ
0w

θ
N = c′(eθMH), λMH = eθMH , and

βθ
0

(
γ + (1− α)[(1− δ)V − γ]− βMH(1− α)(1− δ)V

)
− βθ

0w
θ
N = eθMHc

′′(eθMH).

Therefore, the equilibrium effort level eθ is a solution to the following equation

βθ
0

(
γ + (1− α)[(1− δ)V − γ]− βMH(1− α)(1− δ)V

)
= βθ

0w
θ
N + eθMHc

′′(eθMH), (44)

which can be rewritten as

βθ
0

(
γ + (1− α)[(1− δ)V − γ]− βMH(1− α)(1− δ)V

)
= c′(eθMH) + eθMHc

′′(eθMH). (45)

This completes the proof of Proposition 1.

6 Appendix B.

Proof of Propositions 2, 3, and Corollary 3.

6.1 Proof of Proposition 2.

Given that the seller correctly anticipates the equilibrium effort levels e = eθ, the buyer
maximizes the following objective function

Eθ

[
(1−βθ

0)
(
V − pD(β)

)
+βθ

0e
θ(V − pN)+βθ

0(1− eθ)
(
V − pD(β)− γ− (1−α)[(1− δ)V − γ]

)
−
[
(1− βθ

0)w
θ
DD + βθ

0

(
eθwθ

N + (1− eθ)wθ
DN

)]]
subject to, for all θ, θ̂ ∈ {H,L}, the (MHθ), (ICθ,θ̂), (IRθ), and (LLθ) constraints.

Outline of the proof . First, we simplify the buyer’s optimization problem by replacing
the moral hazard constraints for each project’s type with the necessary and sufficient First
Order Conditions. Second, we prove in Claim 1 that the (ICH,L) is violated and the (ICL,H)
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is automatically satisfied with the contract described in Proposition 1 (when the project’s
type is public). This implies that either (ICH,L) or both the (IC) constraints are binding in
equilibrium. Third, in Claim 2, we derive the optimal contract assuming only the (ICH,L) is
binding. Fourth, in Section 6.3, we prove that the (ICL,H) is satisfied with equality in the
contract defined in Claim 2. This implies that Claim 2 characterizes the optimal payment
scheme, and that both the (IC) constraints are binding in equilibrium.

We begin to solve the the buyer’s optimization problem by replacing the (MHθ) con-
straints for θ = L,H with the following First Order Conditions:

βθ
0

(
wθ

N − wθ
DN

)
= c′(eθ), (46)

that is also sufficient given that is convex.
Assumptions on the the cost function guarantee that eθ > 0 in equilibrium. In addition,

the participation constraints (IRθ) are automatically satisfied since the agent gets a positive
rent even in absence of private information (see Appendix A for the details).

We denote by eHL the off-equilibrium effort chosen by the agent working on the high
type project:

eHL = argmaxe

{
(1− βH

0 )wL
DD + βH

0

(
(1− e)wL

DN + ewL
N

)
− c(e)

}
, (47)

which is characterized by the following First Order Condition:

βH
0

(
wL

N − wL
DN

)
= c′(eHL); (48)

and by eLH the off-equilibrium effort level chosen by the agent working on the low type
project:

eLH = argmaxe

{
(1− βL

0 )w
H
DD + βL

0

(
(1− e)wH

DN + ewH
N

)
− c(e)

}
, (49)

which is characterized by the following First Order Condition:

βL
0

(
wH

N − wH
DN

)
= c′(eLH). (50)

We next prove in Claim 1 below that the (ICH,L) is violated and the (ICL,H) is auto-
matically satisfied with the contract described in Proposition 1 (when the project’s type is
public). This implies that the (ICH,L) constraint must be binding in equilibrium.

6.1.1 The (ICH,L) Constraint is Binding.

Claim 1. Given the contract described in Proposition 1,
the (ICH,L) is violated and the (ICL,H) is automatically satisfied.
Proof : We first prove by contradiction that the (ICH,L) constraint is violated. Suppose to
the contrary that the (ICH,L) constraint is automatically satisfied in the contract defined in
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Proposition 1 (see Appendix A). Given that wH
DD = wL

DD = wH
DN = wL

DN = 0, the (ICH,L)
constraint simplifies to

βH
0 eHwH

N − c(eH) ⩾ βH
0 eHLwL

N − c(eHL). (51)

Using wH
N = c′(eH)

βH
0

and wL
N = c′(eHL)

βH
0

, the (51) above can be rewritten as

eHc′(eH)− c(eH) ⩾ eHLc′(eHL)− c(eHL). (52)

Since the function f(e) = ec′(e)− c(e) is increasing in e:

f ′(e) = (ec′(e)− c(e))′ = ec′′(e) + c′(e)− c′(e) = ec′′(e) > 0,

the (ICH,L) constraint finally simplifies to

eH ⩾ eHL. (53)

We next prove that the equilibrium values of eH and eHL violate (53). In particular,
we prove that eHL > eH with the optimal contract defined in Proposition 1. Given that
wH

N = c′(eH)

βH
0

, wL
N = c′(eHL)

βH
0

, and c′′(e) > 0,

eH ⩾ eHL if and only if wH
N ⩾ wL

N .

We prove next that wH
N < wL

N , which will lead to a contradiction. Consider the ratio wL
N

wH
N

.

Using (45) for θ = L,H, wL
N

wH
N

can be rewritten as

wL
N

wH
N
=

c′(eL)βH
0

c′(eH)βL
0
= c′(eL)

c′(eH)

c′(eH )+eHc′′(eH )(
γ+(1−α)[(1−δ)V −γ]−β(1−α)(1−δ)V

)
c′(eL)+eLc′′(eL)(

γ+(1−α)[(1−δ)V −γ]−β(1−α)(1−δ)V

) = c′(eL)
c′(eH)

(
c′(eH)+eHc′′(eH)
c′(eL)+eLc′′(eL)

)
.

Therefore, wL
N > wH

N if and only if

c′(eL)
c′(eH)

(
c′(eH)+eHc′′(eH)
c′(eL)+eLc′′(eL)

)
> 1,

eHc′′(eH)
c′(eH)

> eLc′′(eL)
c′(eL)

.

Given that the function ϕ(e) = ec′′(e)
c′(e)

is strictly increasing in e:

ϕ′(e) = (ec′′′(e)+c′′(e))c′(e)−ec′′(e)c′′(e)
[c′(e)]2

= ec′(e)c′′′(e)+c′′(e)(c′(e)−ec′′(e))
[c′(e)]2

> 0 since c′′′(e) ⩾ 0,

it must be that eHc′′(eH)
c′(eH)

> eLc′′(eL)
c′(eL)

if and only if eH > eL. Therefore, wL
N > wH

N if and only
if eH > eL, which is the case in the optimal contract defined in Proposition 1.

Thus, we proved that
wL

N > wH
N (54)
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in the optimal contract defined in Proposition 1, which in turn implies that eH < eHL, and
we have a contradiction with (53).

We now prove that the (ICL,H) is automatically satisfied in the contract defined in
Proposition 1. Given that wH

DD = wL
DD = wH

DN = wL
DN = 0, the (ICL,H) constraint simplifies

to
βL
0 e

LwH
L − c(eL) ⩾ βL

0 e
LHwHN−c(eLH).(55)

Using wL
N = c′(eL)

βL
0

and wH
N = c′(eLH)

βL
0

, the (55) above can be rewritten as

eLc′(eL)− c(eL) ⩾ eLHc′(eLH)− c(eLH), (56)

which simplifies to
eL ⩾ eLH . (57)

Given that (54) implies eL > eLH , the (ICL,H) is automatically satisfied in the contract
defined in Proposition 1.

Q.E.D.

6.1.2 The Optimal Contract with Binding (ICHL) Constraint.

Claim 2. The optimal contract with binding (ICHL):

wθ
N = c′(eθ)

βθ
0

> wL
DD = wH

DD = wL
DN = wH

DN = 0.

Proof : Given that the (ICH,L) constraint is binding, from (53) it follows that

eHL = eH , (58)

and, therefore, the (ICH,L) constraint can be rewritten as
(ICH,L):

(1− βH
0 )(wH

DD −wL
DD) + βH

0

(
(1− eH)wH

DN + eHwH
N

)
− βH

0

(
(1− eH)wL

DN + eHwL
N

)
= 0. (59)

Using the binding (MHθ) constraints for θ = L,H:

wθ
DN = wθ

N − c′(eθ)

βθ
0

, (60)

we express wH
DD from the (ICH,L) constraint as

wH
DD = wL

DD +
βH
0

(1−βH
0 )

(
(1− eH)[wL

N − c′(eL)

βL
0

] + eHwL
N

)
− βH

0

(1− βH
0 )

(
(1− eH)[wH

N − c′(eH)

βH
0

] + eHwH
N

)
. (61)

Labeling λθ
DD, λθ

DN , λθ
N as the Lagrange multipliers of the constraints associated with

(LL) constraints, the Lagrangian is:

27



L = ν

{
(1− βH

0 )
(
V − pD

)
+ βH

0 eH(V − pN − wH
N )

+βH
0 (1− eH)

(
V − pD − γ − (1− α)[(1− δ)V − γ]− [wL

N − c′(eH)

βH
0

]
)}

+ν

{
βH
0

(1−βH
0 )

(
(1− eH)[wH

N − c′(eH)

βH
0

] + eHwH
N

)
−wL

DD − βH
0

(1−βH
0 )

(
(1− eH)[wL

N − c′(eL)

βL
0

] + eHwL
N

)}

+(1− ν)

{
(1− βL

0 )
(
V − pD − wL

DD

)
+ βL

0 e
L(V − pN − wL

N)

+βL
0 (1− eL)

(
V − pD − γ − (1− α)[(1− δ)V − γ]− [wL

N − c′(eL)

βL
0

]
)}

+λH
DD

[
wL

DD+
βH
0

(1−βH
0 )

(
(1− eH)[wL

N − c′(eL)

βL
0

]+ eHwL
N

)
− βH

0

(1−βH
0 )

(
(1− eH)[wH

N − c′(eH)

βH
0

]+ eHwH
N

)]
+λH

DN [w
H
N − c′(eH)

βH
0

] + wH
Nλ

H
N + λL

DDw
L
DD + λL

DN [w
L
N − c′(eL)

βL
0

] + wL
Nλ

L
N .

The Kuhn-Tucker conditions for the optimization problem are:

[wL
DD] : −ν − (1− ν)(1− βL

0 ) + λH
DD + λL

DD = 0;

[wL
N ] : −ν

βH
0

(1−βH
0 )

− (1− ν)βL
0 + λH

DD
βH
0

(1−βH
0 )

+ λL
N + λL

DN = 0;

[wH
N ] : −νβH

0 + ν
βH
0

(1−βH
0 )

− λH
DD

βH
0

(1−βH
0 )

+ λH
DN + λH

N = 0,
complemented by the constraints of the problem and the corresponding complementary slack-
ness conditions.

We now characterise the optimal payment structure for both types. Note that from (46)
it follows that wθ

N = wθ
DN + c′(eθ)

βθ
0

for type each type θ ∈ {H,L} and, therefore,

wθ
N > 0. (62)

As a result, the (LLθ) constraints associated with wθ
N must be slack in equilibrium:

λθ
N = 0. (63)

We next prove that Lagrange multipliers determined by [wL
DD], [wL

N ], and [wH
N ] are positive.

We express λL
DD, λL

DN , and λH
DN as a function of λH

DD only from [wL
DD], [wL

N ], and [wH
N ] as

follows:
[wL

DD] : λ
L
DD = (1− βL

0 (1− ν))− λH
DD, (64)

[wL
N ] : λ

L
DN = (1− ν)βL

0 + ν
βH
0

(1− βH
0 )

+ λH
DD

βH
0

(1− βH
0 )

, (65)

[wH
N ] : λ

H
DN = − ν(βH

0 )2

(1− βH
0 )

+ λH
DD

βH
0

(1− βH
0 )

. (66)
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Note that from [wH
N ] it follows directly that

λH
DD > 0, (67)

since otherwise λH
DN < 0.

Next, for any νβH
0 < λH

DD < 1− βL
0 (1− ν), all Lagrange multipliers are strictly positive

and, therefore, all payments wθ
DD and wθ

DN are zero for θ = H,L:

wL
DD = wH

DD = wL
DN = wH

DN = 0. (68)

Finally, from (68) and (46) for θ ∈ {H,L} it follows that

wθ
N =

c′(eθ)

βθ
0

. (69)

Q.E.D.

6.1.3 The (ICLH) is satisfied with equality in the contract defined in Claim 2.

Given that wH
DD = wL

DD = wH
DN = wL

DN = 0, the (ICL,H) constraint simplifies to (see proof
of Claim 1)

eL ⩾ eLH . (70)

We next prove that eL = eLH in the contract defined in Claim 2, which will imply that the
(ICL,H) constraint is satisfied with equality.

First, given that wH
DD = wL

DD = wH
DN = wL

DN = 0, the (ICH,L) constraint simplifies to:

wH
N = wL

N , (71)

which implies

wL
N =

c′(eL)

βL
0

=
c′(eH)

βH
0

= wH
N . (72)

Second, from the the First Order Condition characterising eLH we have (50):

βL
0 w

H
N = c′(eLH). (73)

Combining (72) and (73), we obtain

eLH = eL.

Thus, the (ICL,H) constraint is satisfied with equality in the contract defined in Claim 2.
To summarize, we established that Claim 2 characterizes the optimal payment scheme,

and that both the (IC) constraints are binding in equilibrium.
This completes the proof of Proposition 2.
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6.2 Proof of Proposition 3.

We start by combining the moral hazard constraints βH
0 wH

N = c′(eH) and βL
0 w

L
N = c′(eL)

with the equilibrium wage pooling result wL
N = wH

N to derive the following condition:

βH
0 c′(eL)− βL

0 c
′(eH) = 0. (74)

Labeling by µ as the Lagrange multiplier associated with condition (74), the Lagrangian
for the buyer’s optimization problem is:

L = ν

{
(1− βH

0 )
(
V − pD

)
+ βH

0 eH(V − pN − c′(eH)

βH
0

)

+βH
0 (1− eH)

(
V − pD − γ − (1− α)[(1− δ)V − γ]

)}
(1− ν)

{
(1− βL

0 )
(
V − pD

)
+ βL

0 e
L(V − pN − c′(eL)

βL
0

)

+βL
0 (1− eL)

(
V − pD − γ − (1− α)[(1− δ)V − γ]

)}
+µ

[
βH
0 c′(eL)− βL

0 c
′(eH)

]
.

Differentiating the Lagrangian (together with the equilibrium condition the the seller
correctly anticipates the effort levels), we obtain the following Kuhn-Tucker conditions for
the optimization problem:

[eL] : βL
0

(
γ+(1−α)[(1− δ)V − γ]− β(1−α)(1− δ)V

)
= c′(eL)+ eLc′′(eL)+

µβH
0

(1−ν)
c′′(eL);

[eH ] : βH
0

(
γ+(1−α)[(1− δ)V −γ]−β(1−α)(1− δ)V

)
= c′(eH)+ eHc′′(eH)− µβL

0

ν
c′′(eH),

complemented by the constraints of the problem and the corresponding complementary slack-
ness conditions.

We now characterise the optimal effort level for both types.
L-type. Comparing [eL] below

βL
0

(
γ + (1−α)[(1− δ)V − γ]− β(1−α)(1− δ)V

)
= c′(eL) + eLc′′(eL) +

µβH
0

(1− ν)
c′′(eL) (75)

with the optimal effort eLMH when the project’s type is known (see Proposition 1)

βL
0

(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
= c′(eLMH) + eLc′′(eLMH), (76)

and given that µ > 0, it follows that

eL < eLMH .

H-type. Comparing [eH ] below

βH
0

(
γ + (1−α)[(1− δ)V − γ]− β(1−α)(1− δ)V

)
= c′(eH) + eHc′′(eH)− µβL

0

ν
c′′(eH), (77)
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with the optimal effort eHMH when the project’s type is known (see Proposition 1)

βH
0

(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
= c′(eHMH) + eHc′′(eHMH), (78)

and given that µ > 0, it follows that

eH > eHMH .

This completes the proof of Proposition 3.

6.3 Proof of Corollary 3.

We now derive sufficient condition for the contract to be less incomplete due to adverse
selection. First, given that eL < eLMH , it must be that

βL(eLMH) < βL(eL).

Second, given that eH > eHMH , it must be that

βH(eHMH) > βH(eH).

The contract is less incomplete due to adverse selection if:

νβH(eHMH) + (1− ν)βL(eLMH) > νβH(eH) + (1− ν)βL(eL)

We define a value of ν, called ν, such that

ν: νβH(eHMH) + (1− ν)βL(eLMH) = νβH(eH) + (1− ν)βL(eL).

Note that ν < 1 because βH(eHMH) > βH(eH), and ν > 0 because βL(eLMH) < βL(eL).
Therefore, if ν > ν, the contract is less incomplete due to adverse selection:

β < βMH if ν > ν.

Finally, since the price pD(β) is decreasing in β, we have

pD(β) > pD(βMH) if ν > ν.
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7 Appendix C. Proof of Proposition 4 and Corollary 4.

7.1 Proof of Proposition 4

We prove Proposition 4 in three steps. In Step 1, we prove that eH and eL move in the same
direction if α changes. In Step 2, we prove that that for the high type deH

dα
> 0 if βL

0 is small,
γ is not too high, and V is not too high. In Step 3, we conclude.

Step 1: sgn(de
H

dα
) = sgn(de

L

dα
). Directly applying the Implicit Function Theorem to (74),

we obtain
deL

deH
=

βL
0 c

′′(eH)

βH
0 c′′(eL)

> 0. (79)

Therefore, eH and eL move in the same direction if α changes.

Step 2. We next prove that for any βH
0 ∈ (0, 1) there exist 0 < β

L

0 (β
H
0 ) < βH

0 , V > 0,
and γ > 0 such that if βL

0 < β
L

0 , V < V , and γ < γ < (1− δ)V then deH

dα
> 0.

To determine the sign of deH

dα
and deH

dδ
, we rewrite the buyer’s optimization problem with

respect to the high type’s effort level eH . First, given the condition (74), we can express eL

as a function of eH as follows:

êL := êL(eH) = c′−1

(
βL
0

βH
0

c′(eH)

)
. (80)

Then, the buyer is choosing eH to maximize

ν

{
(1− βH

0 )
(
V − pD

)
+ βH

0 eH(V − pN − c′(eH)

βH
0

)

+βH
0 (1− eH)

(
V − pD − γ − (1− α)[(1− δ)V − γ]

)}
(1− ν)

{
(1− βL

0 )
(
V − pD

)
+ βL

0 ê
L(V − pN − c′(êL)

βL
0

)

+βL
0 (1− êL)

(
V − pD − γ − (1− α)[(1− δ)V − γ]

)}
.

Therefore, the First Order Condition that determines the optimal value of eH becomes:

νβH
0

[(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(eH)

βH
0

− eH c′′(eH)

βH
0

]

+(1−ν)βL
0

dêL

deH

[(
γ+(1−α)[(1−δ)V −γ]−β(1−α)(1−δ)V

)
− c′(êL)

βL
0

− êL
c′′(êL)

βL
0

]
= 0. (81)

Next, using the Implicit Function Theorem, we obtain
deH

dα
= −

∂Φ
∂α
∂Φ
∂eH

, (82)

where Φ =
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νβH
0

[
νβH

0

[(
γ+(1−α)[(1−δ)V −γ]−β(1−α)(1−δ)V

)
− c′(eH)

βH
0

−eH c′′(eH)

βH
0

]
− c′(eH)

βH
0

−eH c′′(eH)

βH
0

]
+(1− ν)βL

0
dêL

deH
×

×
[
νβH

0

[(
γ+(1−α)[(1−δ)V −γ]−β(1−α)(1−δ)V

)
−c′(eH)

βH
0

−eH
c′′(eH)

βH
0

]
−c′(êL)

βL
0

−êL
c′′(êL)

βL
0

]
.

(83)
We next determine the signs of ∂Φ

∂α
, and ∂Φ

∂eH
.

∂Φ
∂α

> 0 if γ < γ < (1− δ)V . We first prove that ∂Φ
∂α

> 0 if γ is not too low:

∂Φ
∂α

= νβH
0 [γ − (1− β)(1− δ)V ] + (1− ν)βL

0
dêL

deH
[γ − (1− β)(1− δ)V ].

Since dêL

deH
=

βL
0 c′′(eH)

βH
0 c′′(êL)

> 0, for ∂Φ
∂α

> 0 it is sufficient that γ − (1 − β)(1 − δ)V > 0. We
define a value of γ, called γ, such that

γ: γ = (1− β)(1− δ)V > 0.

In addition, assumption (A1) requires γ < (1− δ)V .
Therefore, ∂Φ

∂α
> 0 if γ is not too low:

∂Φ
∂α

> 0 if γ < γ < (1− δ)V .

∂Φ
∂eH

: We now determine the sign of ∂Φ
∂eH

.

∂Φ
∂eH

= νβH
0

[
− dβ

deH
(1− α)(1− δ)V − c′′(eH)

βH
0

− c′′(eH)

βH
0

− eH c′′′(eH)

βH
0

]
+(1− ν)βL

0

d
(

dêL

deH

)
deH

[(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

]
+(1− ν)βL

0
dêL

deH

[
− dβ

dêL
(1− α)(1− δ)V dêL

deH
− c′′(êL)

βL
0

dêL

deH
−

( c′′(êL)

βL
0

+ êL c′′′(êL)

βL
0

)
dêL

deH

]
= −ν

[
dβ
deH

βH
0 (1− α)(1− δ)V + 2c′′(eH) + eHc′′′(eH)

]
+(1− ν)βL

0

d
(

dêL

deH

)
deH

[(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

]
−(1− ν)( dê

L

deH
)2
[

dβ
dêL

(1− α)(1− δ)βL
0 V + 2c′′(êL) + êLc′′′(êL)

]
.

Given that

d
(

dêL

deH

)
deH

=
d
(

βL0 c′′(eH )

βH0 c′′(êL)

)
deH

=
βL
0

βH
0

c′′′(eH)c′′(êL)− c′′(eH)c′′′(êL) dê
L

deH(
c′′(êL)

)2
=

βL
0

βH
0

c′′′(eH)c′′(êL)−c′′(eH)c′′′(êL)
βL0 c′′(eH )

βH0 c′′(êL)(
c′′(êL)

)2 ,
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the expression for ∂Φ
∂eH

simplifies to

∂Φ
∂eH

= −ν
[dβH(eH)

deH
βH
0 (1− α)(1− δ)V + 2c′′(eH) + eHc′′′(eH)

]
−(1− ν)( dê

L

deH
)2
[
dβL(êL)

dêL
(1− α)(1− δ)βL

0 V + 2c′′(êL) + êLc′′′(êL)
]

+(1− ν)βL
0

[(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

]
×

× βL
0

βH
0

(
c′′′(eH)c′′(êL)−c′′(eH)c′′′(êL)

βL0 c′′(eH )

βH0 c′′(êL)(
c′′(êL)

)2

)
= −ν

[
dβ
deH

βH
0 (1− α)(1− δ)V + 2c′′(eH) + eHc′′′(eH)

]
−(1− ν)

(
βL
0 c′′(eH)

βH
0 c′′(êL)

)2[
dβ
dêL

(1− α)(1− δ)βL
0 V + 2c′′(êL) + êLc′′′(êL)

]
+(1− ν)βL

0

[(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

]
×

× βL
0

βH
0

(
c′′′(eH)c′′(êL)−c′′(eH)c′′′(êL)

βL0 c′′(eH )

βH0 c′′(êL)(
c′′(êL)

)2

)
.

= −ν
[

dβ
deH

βH
0 (1− α)(1− δ)V + 2c′′(eH) + eHc′′′(eH)

]
+(1− ν)

(βL
0 )2

(βH
0 )2(c′′(êL))2

×

×
((

βH
0 c′′′(eH)c′′(êL)− βL

0 c
′′(eH)c′′′(êL) c

′′(eH)
c′′(êL)

)
×

×
[(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

]
−(c′′(eH))2

[
dβ
dêL

(1− α)(1− δ)βL
0 V + 2c′′(êL) + êLc′′′(êL)

])
.

We prove next that if βL
0 and V are not too high, then ∂Φ

∂eH
< 0.

First, βH
0 c′′′(eH)c′′(êL) − βL

0 c
′′(eH)c′′′(êL) c

′′(eH)
c′′(êL)

> 0 if βL
0 is small enough. We define a

value of βL
0 , called β

L

0 (β
H
0 ), such that

β
L

0 (β
H
0 ): βH

0 c′′′(eH)c′′(êL)− β
L

0 (β
H
0 )c′′(eH)c′′′(êL) c

′′(eH)
c′′(êL)

= 0 or, equivalently

β
L

0 (β
H
0 ) ≡ βH

0
c′′′(eH)(c′′(êL))2

c′′′(êL)(c′′(eH))2
> 0.

Since eH > êL, we have c′′′(eH)(c′′(êL))2

c′′′(êL)(c′′(eH))2
< 1 and, as a result, for any βH

0 ∈ (0, 1):

β
L

0 (β
H
0 ) < βH

0 .
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Thus, βH
0 c′′′(eH)c′′(êL)− βL

0 c
′′(eH)c′′′(êL) c

′′(eH)
c′′(êL)

> 0 if βL
0 < β

L

0 .
Second, since dβ

deH
< 0, there exists a small enough value of V such that:

dβ
deH

βH
0 (1− α)(1− δ)V + 2c′′(eH) + eHc′′′(eH) > 0.

We define a value of V , called V1, such that

V1: dβ
deH

βH
0 (1− α)(1− δ)V1 + 2c′′(eH) + eHc′′′(eH) = 0.

Thus, dβ
deH

βH
0 (1− α)(1− δ)V + 2c′′(eH) + eHc′′′(eH) > 0 if V < V1.

Third, since γ+(1−α)[(1− δ)V − γ]− β(1−α)(1− δ)V = αγ+(1− β)(1−α)(1− δ)V ,
there exists a small enough value of V such that:(

γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V
)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

< 0.

We define a value of V , called V2, such that

V2:
(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

= 0.

Thus,
(
γ + (1− α)[(1− δ)V − γ]− β(1− α)(1− δ)V

)
− c′(êL)

βL
0

− êL c′′(êL)

βL
0

< 0 if V < V2.
Fourth, since dβ

dêL
< 0, there exists a small enough value of V such that:

dβ
dêL

(1− α)(1− δ)βL
0 V + 2c′′(êL) + êLc′′′(êL) > 0.

We define a value of V , called V3, such that

V3: dβ
dêL

(1− α)(1− δ)βL
0 V3 + 2c′′(êL) + êLc′′′(êL) = 0.

Thus, dβ
dêL

(1− α)(1− δ)βL
0 V + 2c′′(êL) + êLc′′′(êL) > 0 if V < V3.

Therefore, ∂Φ
∂eH

< 0 if βL
0 < β

L

0 , V < V1, V < V2, and V < V3.
We define the smallest value of V as

V = min{V1, V2, V3}.

Consequently, ∂Φ
∂eH

< 0 if βL
0 < β

L

0 and V < V .
To summarize, we proved that for any βH

0 ∈ (0, 1) there exist 0 < β
L

0 (β
H
0 ) < βH

0 , V > 0,
and γ > 0 such that if βL

0 < β
L

0 , V < V , and γ < γ < (1− δ)V then deH

dα
> 0.

Step 3. In Step 1, we proved that eH and eL move in the same direction if either α

changes. In Step 2, we proved that for any βH
0 ∈ (0, 1) there exist 0 < β

L

0 (β
H
0 ) < βH

0 , V > 0,
and γ > 0 such that if βL

0 < β
L

0 , V < V , and γ < γ < (1− δ)V then deH

dα
> 0.

Therefore, if βL
0 < β

L

0 , V < V , and γ < γ < (1− δ)V then
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deθ

dα
> 0 for θ = L,H.

Finally, since the probability of renegotiation is decreasing in the effort level, dβ
deH

< 0 and
dβ
deL

< 0, it must be that if βL
0 < β

L

0 , V < V , and γ < γ < (1− δ)V then

dβ
dα

< 0 for θ = L,H.

This completes the proof of Proposition 4.

7.2 Proof of Corollary 4.

We now derive sufficient condition for the price pD to be increasing in α. Differentiating
both sides of (8) with respect to α, we obtain

dpD
dα

=

d

(
(1−α)

[
V−k−β(eL,eH)(1−δ)V

])
dα

= (1− α)
[
V − k − dβ

dα
(1− δ)V

]
−
[
V − k − β(1− δ)V

]
= (1− δ)V

[
β − (1− α)

dβ

dα

]
− α(V − k). (84)

Therefore, dpD
dα

> 0 if and only if

(1− δ)V
[
β − (1− α) dβ

dα

]
− α(V − k) > 0,

β − (1− α)
dβ

dα
>

α

(1− δ)

(V − k)

V
. (85)

Any of the following conditions on the primitives is sufficient for (85) to hold: (1) k high
enough, or (2) α small enough,
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