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Abstract

Copulas are a convenient framework to synthesize joint distributions, particularly in
higher dimensions. Currently, copula-based high dimensional settings are used for as
many as a few hundred variables and require large data samples for estimation to be
precise. In this paper, we employ shrinkage techniques for large covariance matrices
in the problem of estimation of Gaussian and t copulas whose dimensionality goes
well beyond that typical in the literature. Specifically, we use the covariance matrix
shrinkage tools to estimate large matrix parameters of Gaussian and ¢ copulas for up to
thousands of variables, using up to 30 times lower sample sizes. The simulation study
shows that the shrinkage estimation significantly outperforms traditional estimators,
both in low and especially high dimensions. We also apply this approach to the problem

of allocation of large portfolios.
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1 Introduction

Modeling joint distributions has been a major task in a wide variety of applications. One way
to deal with dependence in multivariate settings is to directly model the joint distribution of
quantities of interest using a family of multivariate distributions. However, in most applica-
tions, there are only few such families that can capture the crucial properties of actual data.
Although the multivariate normal is popular due to its analytical and computational conve-
nience, it is also widely criticized for symmetry, non-heavy tails, and linearity of conditional
means. Asymmetric and heavy-tailed multivariate distributions are much more cumbersome
to work with, particularly in higher dimensions.

Copula-based settings are attractive due to a higher degree of flexibility and ability to
capture various properties of the real data, both in marginal distributions and dependence
structures (Patton, 2009). In particular, the financial literature has been giving copulas in-
creasing attention since the 2008 financial crisis. One of critical effects of the crisis was that
the quantities previously viewed as “almost independent” were unexpectedly co-moving, re-
sulting in a joint crush in several markets (Zimmer, 2012; Patton, 2012; De Leon and Chough,
2013). This effect of so-called tail-dependence appears crucial for modeling joint distribu-
tions in financial markets; yet it was absent in the traditional multivariate normal-based
settings (Patton, 2013; Oh and Patton, 2017). Various alternative dependence structures
have been proposed to account for the critical properties of real data. For example, the ¢
copula of Demarta and McNeil (2005) was exploited in many studies, although it captures
only symmetric tail dependence (Sukcharoen et al., 2014; Ning, 2010; Wen et al., 2012). It
was then further extended by Kollo and Pettere (2010) and Smith et al. (2012) to account for
asymmetric extreme co-movements, and the resulting versions of skewed-¢ copula have since
been a popular choice to model inter- and intra-market dependencies (Kollo and Pettere,
2010; Smith et al., 2012; Patton, 2012, 2013).

Another recent challenge in modeling joint distributions is the upward trend in data
dimensionality. For example, financial market participants are challenged to deal with thou-
sands of alternative assets to allocate their funds into (Ledoit and Wolf, 2017a; De Nard
et al., 2021; Miiller and Czado, 2019). High dimensional datasets are challenging in many
applications that involve statistical estimation, computation, and inference. Having hun-

dreds and thousands of variables in the data complicates each step of statistical modeling,



with estimation and inference the most problematic. In particular, when the dimensionality
of datasets becomes comparable to available sample sizes, a variety of traditional estimators
tends to fail to deliver desirable properties that researchers normally seek to obtain (Ledoit
and Wolf, 2004a,b).

Although there has been significant progress in multivariate methods addressing the
high dimensionality challenge, most of the work has been done to restore the properties
of estimators up to the second moment. In particular, a variety of estimators robust to
growing dimensionality have been recently developed to improve the estimation of large
covariance matrices (Ledoit and Wolf, 2017b; De Nard et al., 2021). At the same time,
significant progress has been observed in the copula theory and applications addressing high
dimensional data (Patton, 2009; Miiller and Czado, 2019). For example, Oh and Patton
(2016) suggest a copula version of a high dimensional factor model. Later, Oh and Patton
(2017) use mixed frequency data to construct high dimensional distributions. Miiller and
Czado (2017) develop another type of approach to use the advantages of copulas in high
dimensional case that relies on sparse data structures, which allow one to combine copulas
with lasso estimation. Another direction in the development of high dimensional copula-
based models relies on the pair copula constructions (PCCs), or vine copulas. Based on
hierarchical pair-wise copula construction, the vines presume very flexible settings and an
intuitive interpretation of dependence structures that make them an attractive modeling tool
(Brechmann and Czado, 2013).

A common limitation of the existing approaches to constructing high dimensional cop-
ulas is the actual number of dimensions relative to sample sizes used that are called ’high
dimenstonal’. What most studies usually explore as high dimensional settings tend to ap-
pear rather moderately dimensional. Until recently, the dimensionality of data in empirical
applications of PCCs rarely had exceeded a few dozen variables (Brechmann and Czado,
2013), with only several studies applying the PCCs to settings with more than a hundred
variables. Currently, the very recent study by Miiller and Czado (2019) is the only one with
PCCs applied in the framework with more than a thousand variables. Still, the study focuses
on sparse structures that are identified heuristically from the data, and uses a considerable
number of observations in the sample (viz., n = 999 observations and p = 2131 variables).
Given that the data dimensionality exceeds the number of observations, this setting is in-

deed high-dimensional. However, in many applications the ratio of the data dimensionality to



available sample sizes can be significantly higher, with sparse structures being an excessively
strong assumption.

In this paper, we focus on elliptical copulas in high dimensions. We focus on the two
most commonly used in modeling and practical applications: Gaussian and ¢ copulas. These
copulas are used in a vast variety of applications and as either main modeling frameworks,
important building blocks of more complicated and flexible settings, or benchmark models.
Often, Gaussian and ¢ copulas are used to model the joint distribution of characteristics of
objects or events located or taking place in different points of geographical space. This is
found particularly useful in environmental and civil engineering studies (Van de Vyver and
Van den Bergh, 2018; Li et al., 2018; Valle and Kaplan, 2019) and energy economics (Atalay
and Tercan, 2017; Schindler and Jung, 2018). Regression analysis and pattern recognition
is another field where these copulas are applied (Fu and Wang, 2016; Kwak, 2017; Li et al.,
2017, 2019), including the high-dimensional context, with the data dimensionality exceeding
the number of observations (He et al., 2018, 2019). In finance, the Gaussian and ¢ copulas
are criticized for inability to capture asymmetric dependence. However, they have proved
beneficial for modeling the joint distribution of assets returns as compared to the traditional
models that disregard dependencies beyond correlations. Most often, they are applied to
model joint distributions of financial assets or indices returns for the task of portfolio allo-
cation (Karmakar, 2017; Han et al., 2017; Lourme and Maurer, 2017), but also in studies of
tail dependence (Huang et al., 2009; Zorgati et al., 2019) and asset pricing (Hérmann and
Sak, 2010).

Nevertheless, most settings based on the Gaussian and t copulas are low-dimensional,
where the number of dimensions varies from two to a few dozen, and the ratio to correspond-
ing sample sizes is considerably less than unity. However, some settings are high-dimensional
with the ratio reaching five (He et al., 2018, 2019). More importantly, many applications that
are currently low-dimensional can potentially benefit from increased dimensionality. This is
particularly relevant for financial applications with more variables in datasets (e.g., more
assets in multivariate models used for portfolio management). For applications in which the
number of objects is rather low (e.g., in some spatial applications), the high-dimensional
case is still relevant due to the necessity of estimating the dependence using small samples.

In the case of Gaussian and ¢ copulas, the dimensionality of the parameter space is directly

connected to the data dimensionality, with the matrix parameter naturally interpretable in



the description of the degree of pairwise dependence among the variables. In low dimensions,
copulas are effectively estimated via computationally very practical method-of-moments-like
techniques based on rank correlations and sample correlation matrices. However, in high
dimensions the settings and their estimates inherit the same problems as the traditional
covariance matrix estimators.

Recently, a substantial amount of research has focused on developing covariance matrix
estimators that are robust to and well-conditioned under the data dimensionality grow-
ing along with the sample size. Two main directions towards solving the problem can be
distinguished (Fan et al., 2008; Ledoit and Wolf, 2004b). The first approach is based on
manipulating the data and relies on dimensionality reduction techniques to impose some
structure on the covariances (Wong et al., 2003; Huang et al., 2006; Fan et al., 2008). Alter-
natively, researchers adjust the traditional sample covariance matrix by directly restricting
its structure, eigenvalues or the inverse to achieve better properties under moderate or high
data dimensionality (Daniels and Kass, 2001; Ledoit and Wolf, 2004b). Ledoit and Wolf
(2012), Ledoit and Wolf (2017b) and Ledoit and Wolf (2020) developed newer versions of
the previously developed estimator by Ledoit and Wolf (2004b). The new estimator relies
on the random matrix theory and leads to fast and relatively easy estimation of large co-
variance matrices of dimensionality higher than had been feasible ever before. It has also
proved substantially more efficient than a number of previously developed estimators of the
same type (Ledoit and Wolf, 2017b).

These advances in large covariance matrix estimation rather conveniently match with the
structure of Gaussian and ¢ copulas. An important property of these copulas is that their
matrix parameter is very close the correlation matrix of pseudo-observations (Demarta and
McNeil, 2005; Kojadinovic and Yan, 2010). This allows one to use the shrinkage estimators
of Ledoit and Wolf (2004b, 2017b, 2020) to estimate the matrix parameters of Gaussian
and ¢ copulas in high dimensional datasets." In particular, we consider datasets with up
to thousands of variables that use up to 20 times lower sample sizes. Thus, we take the
data dimensionality well beyond what is studied in the copula literature; hence the prefix

Y

“ultra-” in “high dimensions” in the title.? In a simulation study, we compare the quality of

Tn the case of ¢ copula, one also needs to estimate the scalar degrees-of-freedom parameter that controls
the thickness of copula tails. We confirm that once the large matrix parameter is sufficiently precisely
estimated, the remaining scalar parameter can be effectively estimated via the method of maximum pseudo-
likelihood.

The maximum of 1000 for data dimensionality in the simulation study is determined by the computational



performance of different estimators for various ratios of data dimensionality to sample size.
We show that the shrinkage estimators significantly outperform the traditional copula matrix
parameter estimators based on sample analogs of Kendall’s rank correlation and approximate
Spearman’s rank correlation. The performance of estimators is measured in terms of both
the closeness of estimated parameter values to their actual values and the closeness of the
entire estimated copula function to its true counterpart. Not only do we show that the
shrinkage estimators outperform the traditional estimators of the copula matrix parameters,
but also we find that non-linear shrinkage generally tends to dominate the linear one.

As an empirical application, we apply shrinkage-based estimators of copula correlation
matrices in high dimensions to a large portfolio allocation problem and compare emerging
portfolios to those from a multivariate normal model and copula models based on traditional
estimators. Using daily data on prices of over 3600 U.S. stocks, we construct portfolios of up
to 3600 assets and simulate buy-and-hold portfolio strategies. The joint distributional mod-
els of asset returns are estimated over the period of six months (120 observations), hence the
problem is ultra-high dimensional, with the dimensionality ratio of 30. To our knowledge,
this is the highest dimensionality of the large portfolio allocation problem considered in the
literature. The comparison of the portfolios based on different models to equally weighted
portfolios shows that the shrinkage-based estimators applied to ¢ copula based models of
return distribution deliver better portfolios in terms of both cumulative return and maxi-
mum downfall over the portfolio lifetime than the corresponding portfolios derived from the
multivariate normal or copula-based models estimated via traditional estimators.

The rest of this paper is organized as follows. Section 2 covers the methodology including
a description of chosen copulas and their main properties, existing approaches to copula
estimation, drawbacks thereof and the solution we propose. In Section 3, we describe the
simulation study design and results. An empirical application of the shrinkage estimators to a
large portfolio allocation problem is presented in Section 4. Section 5 concludes. Appendices
A, B and C contain some additional technical material, including tables with detailed results

of the simulations in the online Supplementary Appendix.

capacities at our disposal. With a thousand variables and largest samples, simulations are computationally
very demanding, particularly due to multiple iterations in computing quality criteria. The results suggest,
however, that the shrinkage estimators can be effectively used in even higher dimensions; in our empirical
example, the ¢ copula is estimated for 3600 variables in the dataset.



2 Methodology

2.1 Sklar’s theorem and copula classes

A convenient way to introduce the copula approach is through the Sklar’s theorem (Sklar,
1959), the key result in the copula theory. Given X = (Xi,...,X,)" € R” a p-dimensional
random vector from a distribution with the joint cumulative distribution function (CDF)

Fx(z) and marginal CDFs {F;(x;)},—1..,, there exists a copula function C'(u),
C:[0,1)" — [0, 1], (2.1)
such that for all z = (zy,...,z,)" € R?,
Fx(z) = C(F(21), ..., Fy(z,)). (2.2)

This theorem is particularly useful as its converse also holds: given a set of univariate

distributions with CDFs {Fj(z;)};—1.., and a copula function C(u), the corresponding

p
function F'x(z) defined for these functions from (2.2) is a legit joint CDF with marginals

{E(xi)}izl,...,p'

Thus, marginal distributions of the quantities of interest can be modeled separately from
the interdependence embedded by the copula function C(u). This brings on a variety of
classes of copulas developed in the literature over the years. We only briefly recall some of
the main existing classes of copulas focusing on the Gaussian and ¢ copulas.

One of essential classes of copulas is the Archimedean copulas, whose members are often
used in modeling bivariate distributions. A major advantage of this class of copulas is that
most of them have a closed-form representation. Further, by construction, any Archimedean
copula is extendable to an arbitrary dimensionality p. However, the parameter space (uni-
dimensional in most cases) is disconnected from the data dimensionality resulting in insuffi-
cient flexibility of dependence structures as data dimensionality grows (Hofert et al., 2012).
The tightness of parameterization of Archimedean copulas is the main reason for this class
to be rarely chosen to model dependence beyond bivariate settings.

Another class of copulas is pair copula constructions (PCCs), also known as vine copulas,

based on sequential construction of the multivariate distribution (2.2) from the marginals



and a series of corresponding bivariate conditional copulas. In general, the bivariate copulas
for all pairs are chosen independently of the marginal models and of each other. Thus,
this class allows one to attain maximal flexibility in copula construction. However, the cost
of this flexibility is an ultimately growing number of alternative specifications with higher
data dimensionality. To make the PCCs operational in practice, simplifying assumptions
are made to restrict the structure, and heuristic algorithms are applied to identify and
distinguish between alternative restricted structures (Aas et al., 2009; Brechmann et al.,
2012; Brechmann and Czado, 2013; Czado et al., 2013; Dissmann et al., 2013). Further, the
PCCs are well extendable to high data dimensionality. Yet, they become computationally
demanding because of both the heuristic algorithms used to pre-identify the vine structure,
and actual estimation of parameters of a high-dimensional vine. For the heuristic algorithms
to work and deliver sustainable results, the sample sizes need to remain comparable with
the number of variables. So far, the highest dimensionality has been reached by Miiller and
Czado (2019), with a vine applied to 2131 variables (stock returns from industrial sectors)
with 999 observations (daily data). The dimensionality ratio is thus slightly above 2, and
the structure of the vine is sparse.

We stick to the class of elliptical copulas that are defined directly from elliptical distribu-
tions by inversion of (2.2). The copulas are parameterized in a way close to the corresponding
distributions from which they are defined. As all elliptical distributions are transformations
of the multivariate normal, a key parameter is the matrix corresponding to the covariance
matrix of the underlying normal random variable. This makes the dimensionality of the
parameter space naturally connected to the dimensionality of the data and correspondingly
interpretable.

The most popular elliptical copula is Gaussian, which is the copula of the multivariate
normal distribution. Another important elliptical copula is a natural extension to the normal
one, the t copula of the multivariate Student’s ¢ distribution. These two elliptical copulas
inherit their main limitations from the underlying elliptical distributions. Thus, both Gaus-
sian and t copulas are symmetric, and only the ¢ copula exhibits (also symmetric) non-zero
tail dependence (Demarta and McNeil, 2005). Nevertheless, these copulas are often used
as building blocks in more complicated settings seeking to capture desired properties of the
data (Zimmer, 2012; Patton, 2012; De Leon and Chough, 2013; Patton, 2013; Oh and Patton,
2017).



In the next subsection we formally introduce the Gaussian and ¢ copulas and some of

their properties that are important for our analysis.

2.2 (Gaussian and t copulas

The Gaussian copula in p dimensions associated with correlation matrix P € RP*? is defined
as

CN(u) = Fp(® 7 (uy), o, @7 (1)), (2.3)

where Fp(x) is the joint CDF of the p-dimensional random vector drawn from multivariate
normal distribution N'(Q,, P), and ® ' (u) is the quantile function of the univariate standard
normal distribution. Similarly, the ¢ copula with correlation matrix P and degrees of freedom

parameter v > 2 is defined as

Cf’,u(u) = ZfP,zz (t;1<u1)7 e t;l(up))7 (24)

where tp, () is the joint CDF of the p-dimensional multivariate Student’s t-distribution with
v degrees of freedom and the matrix parameter P, and t;l(ui) is the quantile function of the
standard univariate t-distribution with v degrees of freedom.

As any other copula function, the copulas (2.3) and (2.4) are legit CDFs living on the
domain [0, 1]”, and can be used accordingly. The first important property of these copulas is
the relation between Kendall’s rank correlation and the regular correlation coefficient®. For
a pair of random variables {U;, U;}, Kendall’s rank correlation, or Kendall’s 4-7, is defined

WEE@@Qm—amyJQH, (2.5)

where {U;, U;} is an independent from {U;, U, } pair of similarly distributed random variables.

Then, for U = (Uy, ..., U,) ~ C(u) for either C(u) = CN (u) or C(u) = Cp,(u) it holds that:

T

;= 2 arcsin (Py;) . (2.6)

™

Another important property is the relation between the matrix parameter P and the

3by reqular correlation we call the correlation coefficient of the underlying multivariate distribution, from
which the copula is constructed, i.e. either multivariate normal or multivariate Student’s ¢ distribution in
our case, that is exactly the coefficients of the matrix parameter P.



correlation of the random variables U distributed according to the copula function as their
CDF". Firstly, in the case of multivariate normal distribution and its copula, i.e. U ~ C’g(u),
the relation has the following analytical form:

Corr(U) = Lasin (g) | 2.7)

™

In practical estimation, however, especially beyond the bivariate case, the following approx-

imation of this relation is used (Karmakar, 2017):
Corr(U) =~ P. (2.8)

In the case of t copula, U ~ C’f:,,,(u), there is no closed form expression for Corr(U). Nev-
ertheless, the relations (2.7) and (2.8) can be used as reliable approximations, with the cor-
responding approximation errors diminishing fast as v grows (Demarta and McNeil, 2005;
Karmakar, 2017). In the case of Gaussian copula, the absolute error of this approximation
reaches at most 0.018. In the case of ¢ copula, the error is higher, but it approaches the level
of that for the Gaussian copula rather fast as the value of degrees of freedom grows. For
example, for the ¢ copula with 10 degrees of freedom, the error does not exceed 0.024. See
more details in Appendix A.

Thus, (2.8) and (2.6) can be used to estimate the copula matrix parameter. We address
the corresponding estimation techniques as traditional/benchmark estimators to compare
with the proposed approach. The estimators are presented later in Section 2.3.

Another construct related to the copula function is the copula density function, the

probability density function (PDF) associated with the copula function C'(u) as a CDEF:

I"C(u)

c(u) = R (2.9)

In the case of Gaussian and ¢ copulas defined by (2.3) and (2.4) it is easy to show using (2.9)

that the corresponding copula log-densities are

log ¢ () = — 5 log | P| — 56(u) - (P~ 1,) - (), (2.10)

4similarly to the regular correlation coefficient, in terms of the underlying distributions, from which the
copulas are constructed, the correlation of the transformed r.v. U is called the Spearman’s rank correlation

10



and

v+ v+1 1
logcﬁy(u):logF(Tp)+(p—1)logF< )—plogF( 5 )—Elog|P|

/ —1 p —1 ) 2
v —2|—p log (1 + ;b,,(u)PV Yulu > + ;bg (1 + CON (VUZ) ) : (2.11)

NN

~—

where ¢(u) = (@ai(ul), ...,@ai(up))' and ¥, (u) = (t;l(ul), ...,t;l(up))/. The log-densities
(2.10) and (2.11) are used in evaluation of estimation precision via the Kullback—Leibler
information criterion (KLIC) presented later in Section 3.1.2.

Finally, the Gaussian and ¢ copulas share the following important property. Consider
Cp(u), the Gaussian (or t) copula function (the degrees-of-freedom parameter is unimportant
if it is a ¢ copula) of a p-dimensional distribution of random vector X = (X, ..., X,)". Then,
e X)) (with p<p, {ishe, 5 € {1, ..., p}, and
Vs # sy € {1,...,p}, 15, # is,), the copula of the joint distribution of X is also Gaussian (or

for any p-dimensional sub-vector X = (X;

t) with the matrix parameter P = {P,

Zslis2 }517526{17---715} '

2.3 Copula estimation
2.3.1 Traditional estimators

Copulas allow one to separate estimation of the marginal distributions from estimation of
the dependence structure embedded in the copula function. Even though for any copula
(2.2) the full maximum likelihood estimation (full MLE, FMLE) problem can be specified,
the actual estimation is very demanding, especially in high dimensions. Hence, most of the
estimators of such models are performed in stages.

First, the marginal distributions {F}},_; , are estimated from the corresponding uni-

P

variate data on each of the variables X; = {X; },-1 ., = (X;1,..., X;»)', where n is sample

size. The curse of dimensionality does not apply at this stage, and we follow the convention
in the copula literature and do not focus on estimating the marginals, assuming one can
estimate them efficiently. Second, the estimates of the marginal distributions, {Fz‘}z‘:L...,pa
are used to transform the initial data {X;},_; , into a corresponding set of so-called pseudo-
observations

Uit = Fi(Xit)v (2-12)

11



and the copula function (2.1) is treated as the joint distribution function of the pseudo-
observations (2.12), from which the parameters of the copula alone are estimated.

One way to proceed with estimation of copula parameters would be, again, the method
of maximum likelihood. The estimation routine in this case is called maximum pseudo-
likelihood estimation (MPLE). The method is based on maximization of the traditional
conditional likelihood function, so it disregards the fact that the pseudo-observations (2.12)
are never i.i.d. (because they are constructed from the estimates of marginal distributions
Fi, each constructed from the whole univariate sample X;). Still, there is evidence that
together with efficient univariate estimation of the marginals, the two-stage procedure as
a whole delivers estimates that are very close to and barely worse than the full maximum
likelihood (Demarta and McNeil, 2005).

The MPLE is universal among the copula classes, and with its resulting estimates being
close to the FMLE, it is often a preferred method of copula estimation. On the other
hand, the optimization problem is quite demanding in high dimensions for elliptical and
other copulas with high-dimensional parameters. There is another approach to estimating
parameters of the dependence structure relevant for the elliptical copulas. It is based on
method-of-moments type of estimates for large matrix parameters, and allows one to separate
estimation of the large matrix parameters from the rest of the copula function.

In the case of Gaussian and t copulas, the properties (2.8) and (2.6) are used to esti-

mate the matrix parameter P. Given sample data {X;},_; , and corresponding pseudo-

p

observations {U;},—; . ,, the matrix parameter P of either Gaussian or ¢ copula can be

estimated as

PHSm Hsmpl —
Pt =P o = {0t (UL U)oy (213)
and
PHI-T Hi-T . A
me 2 ij=1,.p

where corr(U;, U;) and 7;; are the sample analogs of the correlation coefficients and Kendall’s
rank correlations for the pseudo-observations {U;};—1 .

The most important drawback of Kendall’s i-r estimator (2.14) is that the resulting
estimates of correlation matrices are not guaranteed to be positive definite, and this issue
naturally escalates under high data dimensionality (Demarta and McNeil, 2005). As for

estimators of the type (2.13) based on the sample correlation, they are also sensitive to data

12



dimensionality, as the sample correlation matrix is positive definite if and only if the sample
size strictly exceeds data dimensionality.

For the same reason, the estimator based on the exact relation (2.7) is preferred in
bivariate case, otherwise there is no guarantee the resulting estimate of the matrix parameter
of higher dimensionality will be well-conditioned. The numerical errors of the approximation
(2.8) are relatively small, both for Gaussian and ¢ copulas, and the estimator (2.13) turns
out precise enough and better-conditioned.

However, these traditional estimators are expected to lose quality under high data di-
mensionality, which brings forward the main point of this paper. The next subsection briefly
covers the basics of shrinkage estimators of large covariance matrices and explains how they

can be used to estimate copula matrix parameters.

2.3.2 Shrinkage estimation of copula matrix parameters

Over the years, researchers have come up with a variety of estimators of large covariance
matrices to restore the properties of the sample covariance under high dimensionality (Fan
et al., 2008; Ledoit and Wolf, 2004b, 2017b). In this paper, to estimate the large matrix
parameters of Gaussian and ¢ copulas, we use the shrinkage estimators of Ledoit and Wolf
(2004b, 2017b). These estimators have proved to perform well in general settings of large
covariance matrices estimation, and they allow one to take the analysis to the highest data
dimensionality achieved so far (Ledoit and Wolf, 2017b; ?).

The idea behind the shrinkage estimators is the following. Given a p-dimensional ran-
dom vector X from some distribution F' characterized by zero mean (without loss of gen-
erality) and some non-random positive-definite covariance matrix ¥ = E[XX'] = cov(X),
and an i.i.d. sample of size n from that distribution recorded into n x p matrix X, =
{X4i}i=1. ni=1..p> the population covariance matrix ¥ can be estimated by the sample co-

variance matrix

s, = (2.15)

The estimator S,, is consistent and well-conditioned under standard asymptotics when p is
fixed and n — oco. However, in high dimensions the sample covariance matrix is not well-
conditioned when p is non-negligible compared to n, and even non-invertible for p larger

than n. Ledoit and Wolf (2004b) follow the work of Haff (1980) and construct the linear

13



shrinkage estimator as a linear combination of a structural covariance matrix estimator (an

equivariate diagonal covariance matrix) and the sample covariance matrix (2.15):

However, unlike in the work of Haff (1980), Ledoit and Wolf (2004b) managed to derive
the optimal estimator ¥ that minimizes the Frobenius norm of the deviation from the
population covariance matrix ¥, ||[S* — S||> = p~'trace [(£** — £)(Z* — £)']. Next, since
the estimator X* is not feasible as it depends on the unknown Y, it itself needs to be
estimated. The feasible estimator that can be calculated directly from the data takes the
form

S* =l + (1 —9)S,, (2.17)

where the coefficients J and it depend on the data X,,, see the definitions in Lemmas 3.2
3.4 in Ledoit and Wolf (2004b). This estimator is positive definite and consistent for the
population covariance matrix X under dimension asymptotics, that is, under p — oo, n — o0,
and ¢ = p/n — ¢ € (0,00). The value 9 is called shrinkage intensity. The less accurate the
sample covariance matrix S, is, the more it will be shrunk, i.e., more weight in (2.17) is put
on the structural estimator (Ledoit and Wolf, 2017b).

An important characterization of the linear shrinkage estimator is in terms of eigenvalues
of the covariance matrix. Given that 3 is characterized by its eigenvalues A;,..., A, (let
without the loss of generality \; < \; Vi < j), and if [;,...,], are the eigenvalues of the

sample covariance matrix S,,, it is proved that the population and sample eigenvalues share

the same grand mean (Ledoit and Wolf, 2004b):

1« 1¢
p=E =L ==-> "\ (2.18)
P P4
Also, Ledoit and Wolf (2004b) show that
1< 1<
JE (> (- u)2] =23 On - +ElIS, - 3P 219)
i=1 i=1

Thus, the sample eigenvalues are relatively more dispersed than the population ones, and the

excess dispersion exactly equals the expected loss of the sample covariance matrix. Further,
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as there is particular over-dispersion around the same mean, the higher eigenvalues are biased
upward, while the lower ones are biased downward.

Essentially, the shrinkage estimator (2.17) reduces the bias of the sample covariance
matrix eigenvalues by shifting them towards their grand mean (2.18) shrinking the distribu-
tion of the sample eigenvalues. The shrunk eigenvalues corresponding to the optimal linear
shrinkage estimator (2.17) are

A=+ (1— 9L, (2.20)

where the coefficients ¥ and p are probability limits, under dimension asymptotics, of ¥ and
fin (2.17), and so the shrunk eigenvalues can then be estimated from the data similarly to

how the estimator (2.17) estimates (2.16):
=904+ (1—9),, (2.21)
and the shrinkage estimator then can be rewritten as a rotation equivariant estimator:
§° = Dydiag{l{}inr,.., (2.22)

where I';, = [V,,.1; -, Ynp) is the matrix of sample covariance matrix eigenvectors {7, ;}i—1. -

Later, Ledoit and Wolf (2012) studied the performance of their linear shrinkage estimator
and found that it often results in under-shrinkage, i.e. the resulting distribution of sample
eigenvalues of the estimator (2.22) is still considerably over-dispersed as compared to the
population distribution of eigenvalues of ¥. In their study, Ledoit and Wolf (2012) use
the same approach to upgrade to the nonlinear shrinkage by applying different shrinkage
intensities to eigenvalues of different magnitude. They build on the work Ledoit and Péché
(2011) and show how a feasible estimator can be constructed, in a way similarly to how
the optimal linear shrinkage estimator (2.17) estimates the non-feasible estimator (2.16).

The non-linear shrinkage estimator preserves the form of the rotation equivariant estimator

(2.22), with the linearly shrunk eigenvalues ["s (2.21) replaced by the non-linearly shrunk

versions:
l.
7 = ! — 5 (2.23)
’1 - % - %limF(li)’

Here, mp(l) is the shrinkage intensity term that depends on sample eigenvalue [. The

construction of this term is presented in detail in Section 5 of Ledoit and Wolf (2012).
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The intuition behind the estimator is the following. The linear shrinkage performs well
when the sample eigenvalues are not too dispersed so that the constant shrinkage intensity is
sufficient to shift the distribution of the sample eigenvalues closer to the population analog.
However, with a higher dimensionality p/n and sample eigenvalues far from the grand mean
appearing more frequently, treating the sample eigenvalues differently is likely to pay off.
The estimator of nonlinear shrinkage intensity mp(l;) aims to make the estimator of the
asymptotic distribution of eigenvalues as close to the actual limiting distribution of the
sample eigenvalues as possible (Ledoit and Wolf, 2012). The resulting estimator is proved
to be asymptotically equivalent to the optimal one in terms of Frobenius loss in the class of
rotation equivalent estimators of Ledoit and Péché (2011), and thus can outperform the linear
shrinkage estimator (Ledoit and Wolf, 2012). However, implementation of the estimator
requires numerical inversion of a particular multivariate nonrandom function, which was
later efficiently implemented by Ledoit and Wolf (2017b).

We employ these shrinkage estimators in estimation of the high dimensional correlation
matrices of Gaussian and ¢ copulas. The shrinkage estimators are to substitute the sample
correlation-based estimator (2.13). However, certain adaptations are in order.

First, since the shrinkage estimators estimate the population covariance matrix, they
need to be transformed to estimates of the correlation matrix. Alternatively, the shrinkage
estimators can be applied to standardized pseudo-observations. Given that the univariate
means and variances of the pseudo-observations are known constants (respectively, 1/2 and
112, coming from u; ~ U[0,1] Vi), preliminary standardization of pseudo-observations is
preferred to avoid extra noise and computational time of converting covariance matrices into
correlations.

Second, the shrinkage estimators and their properties rely on i.i.d. data samples, while in
copula estimation the pseudo-observations (2.12) are not independent. Still, the same issue
arises when implementing the MPLE, yet the resulting estimates are shown to be relevant
and insignificantly different from the FMLE. Hence, we expect that disregarding the actual
“non-iid-ness” of pseudo-observations and applying the shrinkage estimators will perform

sufficiently better than the traditional estimators (2.13) and (2.14).
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3 Simulation study

In this section we present the results of our simulation study. We consider a variety of
Gaussian and t copulas with different values of matrix parameters. We vary both the number
of variables in the data and its ratio to the sample size in order to track the performance of
the estimators under low and high dimensionality. The estimation quality is evaluated both
in terms of closeness of matrix parameter estimates to the true matrix parameter values and
closeness of estimates of copula functions to their true counterpart.

When working with the ¢ copula, the degrees of freedom parameter v needs to be es-
timated as well. We avoid describing technical details of this estimation; it is a basic uni-
dimensional estimation performed via MPLE treating the matrix parameter fixed at its
estimated (via one of the moments-like estimators) level. Neither do we report the estima-
tion results of these parameters; the estimates 7 are generally very close to the true values
and do not cause any problems. Similarly, we do not focus on details or results of estimating
the marginal distributions. We use univariate empirical distributions (EDF) to construct
the pseudo-observations (2.12) from the original data.

Next, we present the choice of copula parameters and estimation quality criteria. Then

we present simulation design and report the results.

3.1 Simulation design
3.1.1 True copula specifications

The following specifications of the copulas are used in the simulations:
e The true copulas are either Gaussian or t.

e The data dimensionality p takes one of three values

p € {10,100, 1000}. (3.1)

e The sample size is set via fixing particular values of the p-to-n ratios to compare the
cases of different dimensionality. Generally, we consider the range of the dimensionality
ratio from 1/20 to 20 except the cases with a small number of variables (p = 10) and

dimensionality higher than 2 (as they imply the sample size of n < 5), and the cases
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with a large number of variables (p = 1000) and dimensionality lower than /2 (as they
imply sample sizes higher than 2000 which is too computationally demanding). To

summarize, the dimensionality varies in the following way:

{1/207 1/107 1/27 1, 2}7 p = 10,

p

o €9 {Yw, 12, 1, 2,5, 10}, p =100, (3.2)
{1/2’ 17 27 57 ]-07 20}, P = 1000.

e For each copula and all pairs of dimensionality and sample size we consider two ver-
sions of the true matrix parameter P. First, we use the identity structure P = I,
as an important benchmark case. Second, for each p we construct an arbitrary and
randomly generated matrix parameter P, which is a legit correlation matrix as it is
positive definite, far from being degenerate, and has a full range of values for correlation

coefficients. The three non-identity matrices are visualized in Figure 1.

e For the t copulas, the degrees of freedom parameter value is always fixed at v = 8
so that the copulas are sufficiently far from being Gaussian, but also are sufficiently

distant from the value of 2 when variance does not exist.

e The marginal distributions are set to univariate standard skewed-t distribution with
randomly and independently assigned degrees-of-freedom and skewness parameters.
The degrees-of-freedom parameter is drawn from a discrete uniform on {6,7,8,9,10},

and the skewness parameter is drawn from U[—1, 1].

3.1.2 Measures of estimation accuracy

Given some true model Cp(u) with the p x p matrix parameter P and its estimate P we

evaluate estimation quality using the following three measures:

e Positive-definiteness. As all true matrix parameters P are legit correlation matrices,
it is a desirable property of the estimates P to be such, too. By construction, all
estimators we consider deliver P that are symmetric with unit diagonal elements and
correlation coefficients off the diagonal. Positive-definiteness, however, is not guaran-

teed for some of the estimators; hence, for every P we check whether they satisfy this
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property. The shrinkage-based estimators deliver positive-definite matrices by con-
struction; still, we assess their positive-definiteness as a sanity check for numerical

routines.

Closeness of matriz estimate to true values. Given that the matrix parameters are
symmetric, there is a wide choice of measures of closeness of estimates to true values.
However, since the matrices at hand are correlation matrices, it is sufficient to measure
the closeness of elements off the main diagonal. We use the Euclidean norm of the

difference between the half-vectorized true and estimated matrices:
Ly (P, P) = ||vech(P — P)|]. (3.3)

Note that the use of Frobenius matrix norm would deliver the same rankings because

the diagonal elements in both matrices are fixed.

Closeness of estimated copula function to true one. Finally, as the main object of
modeling is the copula function (2.1) itself, we measure the closeness of the estimated

one to the true one via the Kullback-Leibler information criterion (KLIC):

KLIC,; = E, [log (ZI;EZ;)] _ / . /@ 1 cp(u) log Z}Z—Egd”u. (3.4)

While the first two criteria are computationally practical even when p is large, calculating

KLICs for large p is computationally demanding. To make it operational, we do two simpli-

fications. First, we use the property that Gaussian and ¢ copulas of larger vectors remain

the same for their sub-vectors (see Section 2.2), so for any data dimensionality p we only

consider KLICs for 3-dimensional subsets of the data. For p = 10, we compute the KLIC for

only one triplet; for p = 100, we average KLICs over randomly chosen 30 triplets, and for

p = 1000 the number of triplets we average over is 100. Second, we estimate the expectation

in (3.4) via simulations. For each true copula function C's(u) (where P is a 3 x 3 matrix

parameter corresponding to a chosen triplet and the initial true matrix P), we generate a

collection of M = 10° 3-dimensional vectors {tn } =1, s from the true copula function C,

and estimate the expectation in (3.4) using the expressions for log-densities of Gaussian and
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t copulas (2.10) and (2.11):

M
KLIC, =M™y <1og cp(@ logcﬁ(ﬂm)> . (3.5)

m=1

3.1.3 Simulation design

For a particular combination of number of variables p, true matrix parameter P, marginal
distributions {F;}!_,, true copula function Cp(u), and sample size n, a single simulation is

run as follows.

1. We generate the data X € R™? from Cp(F(uy), ..., F,(u,)), estimate the marginals
via EDFs, and transform them to pseudo-observations, U = {F(x;)}_, € [0, 1]".

2. We estimate corr(U) via each of the four estimators and obtain estimates psmel s piT

PLSh and PNLSh'

3. For each estimate, we calculate the following accuracy measures:

e a binary indicator of positive-definiteness of ]5;

e the Euclidean loss, Ly(P, 15), via (3.3),

e KLIC, via (3.5) and averaged over randomized triplets of variables;

* for ¢ copulas, KLICs are estimated twice: once treating the degrees-of-freedom

parameter as known, and then with that estimated by MPLE.

We repeat each simulation 2'° times.”

3.2 Simulation results

The simulation results are presented in Tables SA1 — SA13 in the Supplementary Appendix.
For each evaluation criterion, we report the median, mean and standard deviation across the
simulations. When calculating KLICs for non-positive-definite 16, there is a great chance
that the estimate of the expectation does not converge, resulting in an “infinite” value of

KLIC. In most of these cases, the median can still be computed (unless KLIC is infinite

°The format of a power of two is chosen due to technical reasons of multi-core calculation organization. A
higher number of simulations appears very time consuming under large p and n, and the number 219 resulted
in sufficiently precise calculations to make the conclusions.
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in all the simulations), but the mean and standard deviation make no sense due to a high
share of infinite values. Next, in some cases either the median or the mean and standard
deviation are numerically indistinguishable from zero, i.e. they are < 10™**. In measuring
the performance in terms of any criterion, we say that one estimator outperforms another if
the median value of the former estimator’s performance criterion is smaller than that of the
latter estimator.

The results of the positive-definiteness check are perfectly predictable and appear as
expected. The shrinkage estimators always deliver positive-definite estimates of the matrix
parameter. The traditional estimators deliver positive-definite estimates only under low
dimensionality (p/n < 1), with P not necessarily positive-definite even then (though the
fraction of such cases is small).

Regarding the two distance criteria, overall the shrinkage estimators confidently outper-
form the traditional ones. First, under low dimensionality, there is no clear pattern in which
type of estimator is the best in terms of the closeness of the estimated matrix to its true
counterpart. However, there are very few cases when one of traditional estimators outper-
forms one of the shrinkage estimators in terms of Euclidean distance. Further, even when
the traditional estimators do outperform the shrinkage ones in terms of Euclidean distance,
the KLICs are likely to be smaller for the shrinkage estimators.

Second and most interesting, under high dimensionality, the better performance of shrink-
age estimators is more obvious. Not only are the estimates always positive definite, but they
are also precise enough in terms of both Euclidean distance and KLIC, and the difference in
the performance of the shrinkage estimators and traditional ones is substantial.

The case of p = 10 is included to show the basic properties of the four estimators and
to point out that the ratio of the number of dimensions in the data to the sample size
does matter (see Tables SA1-SA5). More importantly, the difference in performance is well
observed for higher dimensions and smaller samples (see Tables SA10-SA13).

Regarding the relative performance of the shrinkage estimators to each other, we addi-
tionally report several selected slices of the joint distributions of their performance to check
how often each of the estimators outperforms the others, and how that changes with higher
dimensionality. This is reflected in Figure 2.

Overall, under high dimensionality (p/n > 1), there is a tendency for nonlinear shrinkage

based estimators of copulas, both Gaussian and ¢, to outperform linear shrinkage based
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either in terms of Euclidean distance between the true and estimated matrix parameter,
or the average Kullback-Leibler distance between the true and estimated copula function.
Further, the higher the dimensionality, the more likely the nonlinear shrinkage will perform
better than the linear one (see, for example, Figures 2a and 2b). However, there are a few
exceptions. First, for either copula with rather dispersed true eigenvalues (e.g., the 100 x 100
arbitrary true matrix P in our simulations), the linear shrinkage outperforms the nonlinear
one under high dimensionality (see Figure 2c¢). We conjecture that the relatively better
performance of nonlinear shrinkage for the models with less-dispersed true eigenvalues (e.g.,
the identity P in our simulations) is explained by the ability of nonlinear shrinkage to shift
the right tail (outlier) sample eigenvalues towards the grand mean. Second, there may be a
situation (see, e.g., Figure 2d) in which the linear shrinkage based estimator dominates all
others, with the nonlinear shrinkage, in this case, only slightly underperforming (see Table

SA13c), and the differences between the two can be neglected.

4 Empirical illustration: large portfolio allocation

We apply shrinkage based estimators of copula correlation matrices in high dimensions to al-
locate large portfolios of stocks and compare their performance with portfolio choices derived
from the plain multivariate normal (MVN) model.

Asset allocation is one of the classical applications of multivariate models of assets returns.
A number of theoretical settings describing investor’s behavior offer analytical solutions for
a portfolio structure. However, the more complicated the investor’s problem is or the more
sophisticated the model for asset returns is, the more likely numerical methods need to be
employed for an optimal portfolio choice (DeMiguel et al., 2007; Michaud and Michaud,
2008; Guidolin and Timmermann, 2008; Kolm et al., 2014; Ledoit and Wolf, 2017a). Even in
the static case, when the portfolio structure is determined only once per portfolio lifetime,
it often appears necessary to simulate the dynamics of asset returns over a portfolio lifetime
period to evaluate the performance of different portfolios and pick the optimal structure
corresponding to investor’s utility function (van Binsbergen and Brandt, 2007; Guidolin and
Timmermann, 2008; Harvey et al., 2010).

We perform a static portfolio allocation exercise, i.e. the structure of the portfolio is going

to be set once per portfolio lifetime. However, the joint distribution model of asset prices
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during the portfolio lifetime is based on empirical marginal distributions of asset returns and
copula across assets’ dependence structure. Hence, simulations of asset price dynamics are
required to evaluate the value of portfolios during and at the end its lifetime.

We use historical data from the database FIZ©2019.° From the CRSP dataset we extract
daily close prices of the securities listed in the Wilshire 5000 index for the last 9 months of
2017. There are 4982 assets at our disposal. We randomly choose subsets of size 3600 assets
to model the predictive joint distribution of their prices. Based on this model, we simulate
future prices and select portfolios with the best Sharpe ratio. To evaluate these portfolios, we
compare their actual performance over the period of simulation with the performance of the
equally weighted portfolio, or the portfolios based on other models, in terms of cumulative
return in the end of portfolio lifetime.

Prior to estimating predictive multivariate distribution, we filter out univariate condi-
tional means and conditional variances of each log-return via ARMA-EGARCH modeling,
and extract serially uncorrelated standardized residuals. Then, one of the following multi-

variate distribution models is applied to these residual terms across the assets:
e MVN,
e { copula, with the marginals estimated as EDF's.

We use either linear or nonlinear shrinkage estimators to estimate the matrix parameter of
both the MVN and the ¢ copula models. The d.f. parameter of the ¢ copula is estimated via
MPLE. In this exercise we drop the sample correlation estimator of the matrix parameter
of either MVN or ¢ copula due to the high dimensional context (p/n = 30), and the i-7
estimator for the copula is dropped due to its poor performance shown in simulation results
earlier. We use only the ¢ copula as it includes the Gaussian copula as a special case.

Thus, for each set of 3600 assets we obtain 4 different model-based portfolios, each
of which is the optimal portfolio in terms of Sharpe ratio corresponding to one of the 4
estimates. To account for differences among randomly chosen subsets of assets, we measure
the performance of these portfolios relative to each other or to the return of the equally-
weighted portfolio.

The detailed description of the modeling technique and simulation design are relegated

to Appendix B. We use historical data over the period of the last 9 months of 2017, with the

SCenter for Research in Security Prices (CRSP), University of Chicago Booth School of Business.
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first 6 months used to fit the models, and the last 3 months used as an out-of-sample period,
over which the simulations are run and the performance of the portfolios is evaluated. The
distributions of relative performance of portfolios suggested by different models and estimates
across the randomly chosen sets of assets are shown in Figure 4. Figure 3 gives examples of
dynamics of different model-based portfolio cumulative return in comparison with the one
for equally-weighted portfolios.

The intuition behind this approach is the following. The performance of model-based
portfolio choices crucially depends on whether the model is capable of capturing the proper-
ties of returns properly. In the case of MVN, not only does the model disregard heavy tails
and asymmetry in return marginal distributions, but also it ignores possible tail dependence.
The resulting portfolios are likely to be vulnerable to the shocks that are rare, but occur
simultaneously in the returns of many assets included in the portfolio. Although the ¢ copula
based model is also rather limited in capturing the desired properties (only symmetric tail
dependence can be captured), it still is able to improve the quality of the portfolios exactly
because the assets that are likely to be tail dependent will not be included in the same port-
folio with high weights. Further, given the results presented earlier, we expect that under
high dimensionality (p/n = 3600/120 = 30 in this case), the shrinkage-based estimates of the
t copula based models are to deliver more relevant portfolio choices.

The results do confirm this. Overall, from our 135 randomly chosen sets of assets we
find that in over 74% of cases the best portfolio is suggested by either of the ¢ copula based
models, in about 13% the best portfolio is the model-free equally weighted one, and the
rest are the MVN-based choices. Further, when a portfolio is suggested by either MVN
or t copula model, it is more often the one based on the nonlinear shrinkage estimator of
the matrix parameter. However, in case of the ¢ copula estimates, in over 63% of cases the
performance of the two portfolios is indistinguishable in terms of the cumulative return in the
end of portfolio lifetime. In terms of relative performance of the models, for ¢ copula based
portfolios there is a considerable chance that the resulting return at the end of portfolio’s
lifetime is going to be higher than the corresponding return of any other portfolio (see Figure
4).

We have intentionally designed this example so that it over-simplifies the dynamic com-
ponent of the returns modeling, but instead reveals and stresses the potential benefits in the

high-dimensional context. First, we took the number of assets to what, to our knowledge, is
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the highest dimensionality of portfolios analyzed via copulas. Second, the model is estimated
on a (relatively) extremely small sample, which justifies using a very simple dynamic model
for asset returns. We believe that this approach can be further developed for the task of

dynamic re-balancing of large portfolios.

5 Discussion and concluding remarks

We employ large covariance matrix shrinkage estimators in the task of Gaussian and t copulas
estimation in high dimensions. This technique allows us to precisely estimate the copulas
in (ultra-)high dimensions with up to 1000 variables in a dataset and sample sizes up to 20
times smaller. While it is accepted that the copulas we study cannot capture all of data
properties in all empirical applications (e.g., asymmetric dependence, including that in the
tail), they remain favored in numerous applications either as a main dependence model or at
least as important benchmark models and building blocks for more flexible settings. Many
applications that employ the Gaussian and ¢ copulas can benefit from higher dimensionality
either by including more variables into the datasets, or by making use of smaller samples.

Our main results show that large covariance shrinkage estimators can effectively be used
for copula matrix parameter estimation in (ultra-)high dimensions. Not only are the resulting
estimates of the correlation matrices of the pseudo-observations well-conditioned and close
to their true values, but also the whole copula function estimates are close to their actual
counterparts, including ¢ copulas, for which the scalar degrees-of-freedom parameter con-
trolling for tail dependence is additionally estimated by MPLE. In addition, we show that
the non-linear shrinkage estimator generally outperforms the linear one, except when the
true matrix parameter is rather sparse, in which case the performance of the two shrinkage
estimators is indistinguishable.

Obviously, it is potentially very beneficial in future research to extend the approach we
have proposed to other copula-based settings, such as skewed versions of Gaussian and t
copulas that are known to be able to capture asymmetric dependence. In this paper, we
heavily exploit the symmetry to be able to connect the correlation matrix of the pseudo-
observations with the actual parameters of the copula function. This makes estimation of
the actual copula parameters practical. However, we conjecture that there is no obstacle

in extending the approach to the estimation of correlation matrices of pseudo-observations
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for other copulas, including skewed ones. However, it is not operational since for copulas
other than Gaussian or t the parameters of copula functions cannot be easily connected
with moments of pseudo-observations. One possible way to overcome this is to use the idea
of simulated method of moments for copula estimation of Oh and Patton (2013) combined
with shrinkage estimation of the covariance matrix of pseudo-observations. Again, currently
the approach is rather computationally impractical in high dimensions. Another way to
approach it would be to introduce a two-step-like estimation, when on the first step one
estimates the lower-dimensional parameters of the copula so that to transform the pseudo-
observations according to the quantile functions of the underlying distribution of the copula
and use its properties to estimate, on the second stage, the matrix parameter via shrinkage
estimators. We see this idea potentially very beneficial, yet it requires substantial further
investigation.

What may be a beneficial and computationally practical extension of the current approach
is to use the most recent advances in non-linear shrinkage estimation of large covariance
matrices. In particular, the recently suggested analytical non-linear shrinkage of Ledoit
and Wolf (2020) makes the non-linear shrinkage estimator easier and faster to implement.
Similarly, the quadratic shrinkage of Ledoit and Wolf (2021) is potentially beneficial for
practical application. According to the authors, it is unlikely that either of these estimators
will improve the quality of estimation as compared to earlier numerical implementation of
the non-linear shrinkage. We ran a separate short simulation study of this issue confirming
that the gain of the analytical non-linear shrinkage is only in terms of computational time.

Another result of our research is an empirical application of the proposed copula estima-
tors to a large portfolio allocation problem. We use the high-dimensional ¢ copula to model
the joint distribution of returns of (ultra-)many assets over a short period and construct
large portfolios. With the number of assets in the portfolio of 3600 and the sample length
for model estimation of 120 observations, the problem is ultra-high dimensional and, to our
knowledge, the highest dimensional portfolio allocation problem in the literature. Hence,
precise estimation of the model requires shrinkage estimation of matrix parameters. The
results show that although the ¢ copula is symmetric, the suggested portfolios significantly
outperform those coming from the multivariate normality or the copula model estimated
by traditional estimators. Not only do the portfolios deliver higher returns by the end of

the lifetime, but also they persistently avoid substantial downfalls during the lifetime due
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to accounting for and proper estimation of tail dependence. The results of the empirical
exercise also suggest that the proposed approach can be beneficial for constructing more
sophisticated multivariate dynamic models for financial asset returns, particularly if one
succeeds in practically applying it to the case of skewed copulas. Alternatively, these results
can be used to update some of the existing approaches to modeling the joint dynamics of
many assets’ returns that yet disregard the the dependence between the variables beyond
correlations. For example, Engle et al. (2019) use non-linear shrinkage to bring the dynamic
conditional correlation model of assets’ returns into high dimensions and use it to construct
large portfolios, and De Nard et al. (2020) bring the analysis to even higher dimensions and
intra-day data frequency. Yet the standardized innovations follow simple multivariate nor-
mal distribution. Our empirical example suggests that a copula-based setting in the part of
standardized innovations distribution modeling can be beneficial for the emerging portfolios,
and shrinkage estimation is a practical way to keep the whole setting high-dimensional.
Finally, yet another potentially beneficial application that we leave for future research is
construction of linear forecast combinations under many alternative predictors. Technically,
the forecast combination problem is similar to the portfolio allocation problem. When the
number of alternative predictors is large and especially if they belong to one family of pre-
dictive models, there is normally a great chance that the forecast errors will be strongly and
positively correlated and, importantly, with a certain degree of tail dependence. Account-
ing for the interdependence of forecast errors from many alternative predictors can crucially
improve the quality of combined forecasts. However, the validation samples to train the
combined forecasts need to be rather short so that there is no too much noise from outdated
information in predictions. This limits the number of alternative predictors to be used when
traditional estimators are applied. Thus, using high dimensionality robust estimators will

allow one to use more predictors and construct more accurate combined forecasts.
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Tables

Table 1: Mean (s.d.) time of evaluation of estimators of P, milliseconds

identity true P arbitrary true P
P |p/n smpl i-T LSh NLSh smpl i-T LSh NLSh
. 0.032 0.333 0.127 263.653 0.031 0.331 0.125 3565.683
2 (0.008) (0.039) (0.023) (14.560) (0.007) (0.039) (0.021) (109.259)
10 ) 0.031 0.306 0.101 1178.981 0.031 0.327 0.101 3506.683
(0.008) (0.034) (0.017) (29.304) (0.008) (0.156) (0.018) (118.759)
) 0.039 0.310 0.099 3229.914 0.031 0.423 0.096 558.311
(0.083) (0.113) (0.117) (120.781) (0.009) (0.348) (0.091) (16.000)
. 0.979 49.784 7.263 132.892 0.972 47.311 7.443 1488.073
2 (0.089) (3.579) (0.428) (8.497) (0.070) (2.642) (0.748) (76.432)
100 ) 0.515 31.403 3.988 224.496 0.511 30.161 3.928 8047.918
(0.048) (3.725) (0.591) (11.136) (0.043) (2.959) (0.602) (76.432)
) 0.277 22.668 2.220 7733.754 0.272 21.976 2.068 1550.691
(0.028) (2.480) (0.534) (108.521) (0.018) (2.916) (0.289) (71.998)
.| 1116.264 | 50367.650 | 15802.090 | 46094.440 | 1151.178 | 45576.730 | 16735.310 | 444714.600
2 (150.527) | (667.872) | (2515.403) | (6107.378) | (144.601) | (469.405) | (2206.170) | (16521.080)
000 | 1 570.525 | 24408.820 | 9265.924 | 98169.430 | 584.639 | 23739.780 | 8951.203 | 289481.000
(64.136) | (412.646) | (1153.461) | (6241.310) | (96.366) | (2549.029) | (1407.731) | (43049.690)
) 260.719 | 12471.040 | 4569.003 | 104647.500 | 252.870 | 11564.420 | 3843.262 | 84845.240
(23.468) | (287.130) | (510.589) | (2857.122) | (22.259) | (290.511) | (431.792) | (1691.892)
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APPENDICES

A Quality of approximation of correlation parameter

Attractiveness of the methodology relies heavily on the quality of the approximation (2.8).
It suggests using a correlation of pseudo-observations U from either Gaussian or ¢ copula
as an approximation for the copula correlation matrix parameter P. We demonstrate the

scope of this approximation for these two copulas in the bivariate case, i.e. for the copula

parameter
1
p=1 " (A1)
p 1
The approximation (2.8) suggests that
cor(uy, uy) = p, (A.2)

where (uy, )" ~ Cp. We run a simulation to evaluate cor(uy,us) from B = 2% simulated
values of (uy,uy) from the Gaussian and ¢ copulas; in the latter case, the degrees of freedom
parameter v varies in {2,4,8, 10,16}). We evaluate the error of this approximation for
different values of p. The results are summarized in Figure 5. In a nutshell, the approximation

error is negligible in all cases of practical interest.

-0.01

—0.02

cor(uy, uz)
cor(u, Uz) — p

-0.03

-0.04

-0.05

Figure 5: Approximation of copula parameter by correlation of pseudo-observations
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B Portfolio selection and evaluation technique

Assume we have historical data on stock prices (daily, close) for a set of p stocks over the
period of T days, {Sf}izlwp’t:l,ij. We call a portfolio a p-dimensional vector of shares,
a = (ay,...,qp), such that Vi = 1,...,p a; > 0, and Y7 | a; = 1. The value of portfolio « is

then the corresponding linear combination of the stock prices:

(o) = ZaiS,f. (B.1)

We use the portion of the historical data for the periodst = 1,...,n < T to fit a particular
model for the stock price dynamics, based on which a particular portfolio is selected according
to some criteria introduced below. The portfolio is then held for the rest T'—n time periods,
t =n+1,..,T. The ratio of the current value of the portfolio to its initial value is then

what we call cumulative return of the portfolio up to that time period:

X(a) = T o, (B.2)

We use the following modeling technique.

1. Since all price series are non-stationary, to model price dynamics we switch to daily

log-returns,

r; =log (S7) —log (S_1) .

2. For each of the log-return series, we use the historical data over the period t = 1,....n
to estimate a series of ARMA-EGARCH models of order up to (6,6)-(1,1,1). We
run a simple in-sample diagnostics of each specification dropping those that do not
pass the Ljung-Box test for standardized residual autocorrelation or the LM test for
autoregressive conditional heteroskedasticity, and from the remaining specifications we
pick the one with the minimal BIC value. For each asset we then record the estimates
of the conditional mean rquation and conditional variance specifications and extract

the corresponding standardized residual series, {€;};—1 =1 n-

3. Two different types of models are then used to model the joint distribution of residuals

1 /
across all stocks, e, = (e;, ..., e})":
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e The multivariate normal (MVN) model:
e, ~iid. N(0,,Q), (B.3)

where € is the correlation matrix, which is estimated by either linear or non-linear

shrinkage, (AZ, of the standardized residuals over the period ¢t =1, ..., n.

e The t copula model with EDF marginals:
e, ~iid. Ch, (ﬁl(el),...,ﬁp(ep)), (B.4)

where F ‘(e) is the EDF of the i"™ standardized residual series estimated over the
period t = 1,...,n. The matrix parameter P can be estimated by any of the
method-of-moments-like estimators described earlier in the paper (Sections 2.3.1
& 2.3.2), and the degrees-of-freedom parameter v is estimated via MPLE. We use

only the two shrinkage estimators of the matrix parameter.

4. From each model, we generate B = 2'° trajectories of future error terms for the period

.....

ifications to calculate the corresponding trajectories of future stock prices, {Si(b)} .

We use these simulated data to calculate the simulation analogs of the portfolio value

(B.1) and return (B.2) as

i, b) =Y a,Si(b), and (B.5)
Ri(ab) = %71;(‘2‘(’)3). (B.6)

5. For each portfolio a;, we use as the main performance criterion the simulated sample
Sharpe ratio based on the cumulative returns in the final period T estimated over the

simulations b = 1, ..., B (and assuming zero risk-free return):
B3 Xa(a,b)
- - 2
VB (Rt — B SR, Sia)

§(a) = (B.7)
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6. We choose the portfolio with the best Sharpe ratio:
o = arg max &(a). (B.8)

This results in 4 different model-based portfolio choices: ayrvN.LShs OMVN.NLShs Cte.LSh
Q..NLsh, depending on which model is used to simulate the stock price trajectories and

calculate the simulated portfolio returns (B.6).

7. As a benchmark for a given set of p stocks we use the equally weighted portfolio,
Qyp = (p_l, ...,p_l). To evaluate the actual performance of the portfolios over the
period t = n + 1,...,T, we calculate, for each set of assets and the corresponding
choices of o, the ratios of the actual return in time period 7' of the different model-
based portfolios to each other:

~ XT(OZTMI)

R(M;, My) = (B.9)

where M, € {tc-LSh, tc-NLSh}, M, € {1/p, MVN-LSh, MVN-NLSh, tc-NLSh}/M,.

The interpretation of the measures (B.9) is the following. The purpose of this empiri-
cal exercise is to show the potential gains of the combination of copula-based models and
shrinkage-based estimators over traditional techniques. The higher the relative cumulative
return of a model-based portfolio R(M;, M,) is, the better is the model’s choice M, over M,,
with the preferred range of the criterion being above 1.

Still, the resulting portfolio performance measures (B.9) are single numbers, and the
result is random for a particular set of assets, choice of sample sizes, and dates. We therefore
run another simulation to compare different model-based portfolio choices.

First, we set as a modeling period approximately the last 9 months of the year 2017.
We use n = 120 daily observations to fit and estimate the models. The remaining T'— n =
60 observations are used to run the simulations, select the portfolios, and evaluate their
performance. The sample sizes are intentionally very low. One reason to keep them such is
that, clearly, the quality of simulations of stock prices crucially depends on the quality of
univariate conditional mean models of the log-return series. In our example, these models
are very simplistic, and one should not expect that their performance can remain relevant

for a long period of time. However, normally, the shorter the samples are, the lower should

43



be the number of assets in potential portfolios, exactly due to the curse of dimensionality. In
our case, this is another reason to keep the samples short so that we can make the point that
the high-dimensionality adjustment in estimation techniques can be beneficial even when the
sample is very short.

Second, in the interest of not over-complicating asset selection for potential portfolios,
from all securities for which we managed to access the data, we drop the series whose
log-returns fail stationarity tests or for which we could not select an ARMA-EGARCH
specification (for example, if none of the specifications deliver residuals that pass the Ljung-
Box or LM tests). This leaves us with approximately 4980 securities from over 5000 initially.

From the remaining securities we randomly choose K > 27 subsets’ of size p = 3600,
and for each of them perform steps 1-7 above. Thus, we obtain a distribution of the overall
performance of different strategies of portfolio construction (B.9) over 135 randomly chosen
sets of p = 3600 assets.

Finally, under p = 3600 the optimization problem (B.7) is very high-dimensional. To
make its solution computationally practical (in each simulation it needs to be solved up 4
times), we substitute the actual optimization (B.7) with a choice over a number greater than
10° of portfolios o randomly and uniformly generated from p-dimensional simplex. The
set of alternative as is pre-generated and remains fixed across all simulations as long as
the dimensionality p remains the same. The resulting choices of the portfolios o are not
guaranteed to be optimal, however, given the dimensionality of the optimization problem,
and its simulation nature, the search on a randomly pre-generated set of alternatives is

believed to be the best computationally feasible choice.

C Technical remarks

C.1 Computational software

All the calculations for the simulation study were performed using R language (R Core
Team, 2013). The packages foreach (Weston, 2019b) and doParallel (Weston, 2019a) were
used to perform parallel computations. The package copula (Hofert et al., 2018; Jun Yan,
2007; Ivan Kojadinovic and Jun Yan, 2010; Marius Hofert and Martin Méchler, 2011) was

"we ran the simulations for over K = 150 subsets to obtain result for 135 of them, the remaining 15 were
dropped due to poor convergence of optimization or numerical errros during paralleled computations
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used to simulate the random variables from the copula-based multivariate distributions and
calculate copula density functions. To perform linear and nonlinear shrinkage covariance
matrix estimators, the package nishrink (Ramprasad, 2016) was used. Other packages used
in particular calculations include Matrixz, matrizcale, pcaPP, corrplot (Bates and Maechler,
2019; Novomestky, 2012; Filzmoser et al., 2018; Wei and Simko, 2017), and others.

The empirical example was evaluated in the Julia programming language (Bezanson et al.,
2017). Particularly, the package ARCHModels (Broda and Paolella, 2020) was applied to
estimate and select ARMA-EGARCH models.

C.2 Evaluation time of estimators

We assess the time required for evaluation of the four estimators of matrix parameters of
the ¢ copula for different true matrix parameter structures (identity or arbitrary) and under
different dimensionality p/n € {!/2, 1, 2}. The results are reported in Table 1. The assess-
ment of evaluation time was performed on an Intel(R) Core(TM) i7-7700K CPU @4.20GHz
machine with 16GB of RAM running on Windows 10 Home edition. For assessing evaluation
time, no parallel computing was used. The R package microbenchmark (Mersmann, 2019)

was used to record the running time of the four estimators evaluation.
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