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Abstract

Green technologies are at the core of endeavors to combine economic and environ-

mental targets. In this article, we aim to determine the impact of green technology

development on total factor productivity of European regions. We advance method-

ologically on the pertinent literature by accounting for cross-sectional dependence

in our empirical approach. Additionally, we provide a theoretical framework to link

our results to implications of environmental policies for capital accumulation. Our

results for 270 European regions imply that general technology development is as-

sociated with positive economic returns, but our data is not supportive of positive

economic returns to green technologies.
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1 Introduction

Green technologies are at the very core of endeavors to combine economic and environ-

mental targets to achieve sustainable growth, one of the aims of the European Green

Deal (European Commission, 2019). First, green technical progress might substantially

contribute to increase environmental productivity (e.g. Popp, 2010). At the same time,

green technologies might enhance economic productivity (e.g. Xepapadeas and de Zeeuw,

1999). If green technologies are indeed fostering economic productivity, they can serve to

stimulate regional growth and perhaps be a tool for regional inclusion. Indeed, techno-

logical progress provides the foundation of Europe’s regional development strategies (e.g.

McCann and Ortega-Argilés, 2015). In this article, we aim to determine the impact of

green technology development on total factor productivity of European regions.

Our paper contributes to the literature on technological change and regional growth1

in various ways. First, our paper is, to the best of our knowledge, the first to assess

the specific role of green technologies for regional growth on a broad empirical base.

Second, we advance methodologically on the pertinent literature by explicitly accounting

for cross-sectional dependence (CSD) in our empirical approach. Third, by providing a

simple theoretical framework, we directly link our results to implications of environmental

policies for capital accumulation and composition dynamics, contributing to the ongoing

debate revolving around the strong version of the Porter hypothesis (Porter and van der

Linde, 1995).

We focus on the economic returns that occur within the same region the technol-

ogy is developed, which we call the private returns. This contrasts the public returns

that include potential positive influences on neighboring regions that occur, for example,

through knowledge spillovers, a result of the public goods nature of knowledge (Keller,

2004). The analysis of the private returns to green technological knowledge has important

policy dimensions. It gives insights whether policies promoting regional green technol-

ogy development also promote economic development and competitiveness of regions, and

hence whether they contribute to both green and perhaps inclusive growth.
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To guide our empirical analysis, we develop a simple theoretical growth model with

local (regional) knowledge and environmental externalities. Using this simple framework,

we emphasize the relevance of the aggregate output elasticities of both green and non-

green (polluting)2 knowledge capital by exemplifying how they influence the effects of

an environmental tax in the short-, medium- and long-run. Additionally, the theoretical

foundation provides a possible interpretation of the identified productivity parameters.

In our empirical approach, we estimate the implied aggregate production function of the

model economy for European regions to get consistent estimates of the output elasticities.

Our empirical analysis builds upon a panel of 270 European NUTS-2 regions in 28

countries for the period 1991-2015. By relying on the flexible common correlated effects

(CCE) approach (Pesaran, 2006), we are able to effectively control for different forms of

CSD and other challenges in the estimation of production functions, such as heteroge-

neous impacts of green technologies on output between regions. Additionally, we employ

various alternative estimation techniques to get a comprehensive view. Our main results

comprise the following. First, we highlight the importance to account for CSD between

European regions in the variables of the production function. Second, while general tech-

nology development is mostly associated with positive economic returns, our data is not

supportive of positive economic returns to green technologies. This insight is generally

robust for all applied estimation procedures and a battery of econometric extensions.

Empirical studies have mostly been conducted on the firm or sector-country level.

Firm level evidence points to lower returns of environmentally friendly innovation com-

pared to other innovation (Marin and Lotti, 2017) or positive effects only for specific

types of green technologies (resource-saving) (Ghisetti and Rennings, 2014; Rexhäuser

and Rammer, 2014; Van Leeuwen and Mohnen, 2017). Sector-country level evidence

suggests positive, albeit rather small returns (Stucki and Woerter, 2019) and a possibly

U-shaped relationship between green knowledge and productivity (Soltmann et al., 2015;

Stucki and Woerter, 2019). To the best of our knowledge, a broad based empirical analysis

on the regional level is yet missing.
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Furthermore, our empirical approach directly builds upon the ever more growing

econometric literature on cross-sectional dependence (CSD) in panel estimation. Ap-

propriately accounting for CSD is especially important in the empirical setup at hand,

as above mentioned knowledge spillovers and unobserved common shocks make it a very

likely feature of the data. In this regard, Ertur and Musolesi (2017) highlight the impor-

tance to account for CSD, even if potential channels of knowledge spillovers are explic-

itly controlled for. Furthermore, Mitze et al. (2016) and Eberhardt et al. (2013) detect

only limited returns to general knowledge capital at the industry level, when unobserved

spillovers and common factors are accounted for.

The remainder of the paper is organized as follows. In Section 2 we sketch a simple

growth model with knowledge externalities and environmental externalities. In Section 3

the empirical framework is outlined in detail, with a focus on estimating CSD and cap-

turing potential CSD in the main model. Section 4 contains a detailed description and

discussion of the data. Section 5 provides the empirical results of the tests for CSD, the

main model, a battery of robustness checks and a discussion. Finally, Section 6 concludes.

2 Theoretical Framework

In this section, we outline a simple dynamic general equilibrium growth model, which

shall provide a foundation for our empirical investigation of the private returns to green

knowledge capital. In our model, the population of N identical agents grows exponentially

at the steady rate n. We assume that each agent has an infinite planning horizon, possesses

perfect foresight and maximizes lifetime utility from consumption. Moreover, each agent

produces a single output that can be costlessly transformed into green (g) or polluting

(p) knowledge capital investment and into a consumption good. At each point in time,

and given the stocks of green and polluting knowledge capital, each agent inelastically

supplies one unit of labor and optimally chooses the rate of consumption and investment.

A specific feature of this model is that the accumulation of polluting knowledge capital

negatively affects environmental quality that in turn affects agents’ productivity. On
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the other hand, the accumulation of both sorts of knowledge increases the economy-wide

knowledge stock, which in turn positively affects productivity.3

2.1 Production

Output of the individual firm, indexed by i, is determined by the Cobb-Douglas production

function:

Yi = Kα
i K

βEµ, α, β, µ > 0 (2.1)

where Ki ≡ Kκ
g,iK

1−κ
p,i with κ ∈ [0, 1].4 Both forms of knowledge capital are private goods.

Further note that, ex-ante, there are no restrictions imposed on returns to scale.

Production is further subject to two externalities: First, through the existence of an

economy-wide, aggregate stock of knowledge, K, that is related to the individual knowl-

edge stocks by Ki = K
N

. This externality can be interpreted as knowledge spillovers in

the spirit of Romer (1986). Second, the economy-wide, aggregate environmental quality,

E, which is taken as given by the single producer, affects output as well.

2.2 Consumer Optimization

The representative agent’s welfare is given by the intertemporal, isoelastic utility function:

Ω ≡
(

1

1− θ

)∫ ∞
0

[Ci]
(1−θ) e−(ρ−n)tdt, ρ− n > 0, (2.2)

with n ≥ 0 and θ > 1. Ci = C
N

denotes the consumption per worker.

In performing the optimization, the agent is constrained by the following flow budget

constraint:

K̇p,i = [rp(1− ξp)− δp − n]Kp,i + rg(1 + ξg)Kg,i + w − Ci − τIi − Ti, (2.3)

where rp and rg are the gross return to polluting respectively green knowledge capital, w

is the wage rate, ξp is the tax on polluting knowledge capital, ξg is the subsidy on green

knowledge, Ti ≡ T
N

is the agent’s share of lump-sum taxes (transfers if T is negative).

4



τ ∈ [0, 1] is the fraction of investment that goes into green knowledge, i.e. Ig = τI, while

(1 − τ)I = Ip represents polluting knowledge investments. The rate of accumulation of

green knowledge is given by:

K̇g,i = τIi − (δg + n)Kg,i. (2.4)

2.3 Government

The government imposes a Pigouvian tax subsidy scheme on the rental income aiming to

correct for the externalities. In other words, maintaining the assumption of a balanced

budget at each point in time, the tax revenue exactly covers green subsidies and lump-sum

transfers Tt to the private sector. As the tax and subsidy rates are given, Tt adjust so as

to balance the governmental budget. Thus, the government budget constraint is

ξprpKp + T = ξgrgKg. (2.5)

2.4 Environmental Quality

We assume that polluting knowledge capital negatively impacts environmental quality,

while green knowledge capital contributes in a positive way to aggregate environmental

quality, E. Thus, we assume the simple relationship (see Klarl, 2016)

E = Kφg
g K

−φp
p , φg, φp > 0. (2.6)

By combining the individual production functions with the equations for the externalities,

aggregate production reads as

Y = Kσg
g K

σp
p N

σn , (2.7)

with σg = κ(α + β) + φgµ, σp = (1− κ)(α + β)− φpµ and σn = 1− α.
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2.5 Decentralized Equilibrium

The agent chooses the rate of consumption to maximize (2.2) subject to (2.3), (2.4). The

first order conditions for an optimum are

Ci : (Ci)
−θ = λp,ie

−(ρ−n)t, (2.8)

τ : λp,i = λk,i, (2.9)

Kp,i : −λp,i [rp(1− ξp)− δ − n] = λ̇p,i, (2.10)

Kg,i : −λg,i [rg(1 + ξg)− δ − n] = λ̇g,i, (2.11)

where λp,i and λg,i denote the private shadow values to agent i associated with the pol-

luting and the green capital stock, respectively. Moreover, the transversality conditions

read as

lim
t→∞

λp,iKp,i = lim
t→∞

λg,iKg,i = 0. (2.12)

The interpretation of the optimality conditions is standard. (2.8) equates the marginal

utility of consumption to the marginal utility of present value polluting wealth, λp,i;

(2.10) equates the marginal return on consumption to the marginal product of polluting

capital; (2.9) says that the marginal product of polluting capital must be equal to the

marginal product of green capital. This is an indifference condition: the two types of

capital are equally productive in the steady-state. In other words: the marginal utility of

consumption must also be equal to the marginal utility of green wealth, λg,i.

Using (2.8)-(2.11) and aggregating over N identical representative agents leads to the

macroeconomic equilibrium of the decentralized economy. Specifically, assuming firms

maximize profits under perfect competition, and inputs get paid their marginal product,

using (2.5), the aggregate versions of (2.3) and (2.4) can be written as:
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K̇p = Y − C − τI − δpKp, (2.13)

and

K̇g = τI − δgKg. (2.14)

Under plausible conditions (that now involve tax rates), we define a balanced-growth

equilibrium as a growth path along which all variables grow at a constant rate. With

polluting and green capital being accumulated from final output, along such a path, the

polluting capital-output ratio remains constant. From the aggregate production function

Y = NYi, the long-run equilibrium balanced growth path of output and polluting capital

is

γKp = γY =
σn

1− σ̃
n, (2.15)

with

σ̃ ≡ σp + σg = (α + β) + µ(φg − φp). (2.16)

In the following, we shall make the plausible assumption that polluting externalities do

not dominate, i.e. σ̃ > 0. Moreover, as the ratio of polluting and green capital is constant

as well (for constant tax rates), i.e.

K̃p

K̃g

=
(1− κ)(1− ξp)
κ(1 + ξg)

, (2.17)

the long-run equilibrium balanced growth path of green capital is identical to the long-

run equilibrium balance growth path of output and polluting capital. The equilibrium

growth rate is only determined by technological factors, summarized by the term σn
1−σ̃ .

Due to the non-scale nature of the production technique, the growth rate is independent

of all demand characteristics (see Jones, 1995; Turnovsky and Monteiro, 2007). The scale

adjusted per capita growth rates are given as:

γC − n = γKg − n = γKp − n = γY − n =

(
σn + σ̃ − 1

1− σ̃

)
n. (2.18)
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As directly immediate from expression (2.18), for the case of constant returns to scale,

i.e. σn + σ̃ = 1, there is no long-run per capita growth.

Expressing the dynamics in terms of scale-adjusted stationary variables

kj ≡
Kj

N( σn
1−σ̃ )

, c ≡ C

N( σn
1−σ̃ )

, (2.19)

for j = {p, g} allows us to express the core equilibrium dynamics of the decentralized

economy in terms of the redefined stationary variables

ċ =
c

θ

[
(1− κ)(1− ξp)kσp−1p kσgg − δ − ρ− n

(
1− θ +

σnθ

1− σ̃

)]
, (2.20)

k̇p =

[
kσpp k

σg
g (1− τ)− c(1− τ)− δkp −

σn
1− σ̃

nkp

]
, (2.21)

k̇g =

[
kσpp k

σg
g τ − cτ − δkg −

σn
1− σ̃

nkg

]
. (2.22)

Imposing the steady state condition, ċ = k̇p = k̇g = 0, we can recursively solve for the

steady-states of kp, kg and c:

c̃ =
1

α(1− κ)(1− ξp)

[
ρ+ δ(1− σ̃) + n

(
1− θ +

σn(θ − σ̃)

1− σ̃

)]
k̃p, (2.23)

k̃p =

{
1

α(1− κ)(1− ξp)

[
δ + ρ+ n

(
1− θ +

σnθ

1− σ̃

)](
(1− κ)(1− ξp)
κ(1 + ξg)

)σg} 1
σ̃−1

(2.24)

k̃g =

(
κ(1 + ξg)

(1− κ)(1− ξp)

)
k̃p, (2.25)

where we have used the fact that τ = kg
kg+kp

.

Proposition 1. The steady-state equilibrium is a unique hyperbolic equilibrium point

which is a (degenerate) saddle with a two dimensional stable manifold if and only if σ̃ < 1.

Proof. See Appendix.

Corollary. For σ̃ < 1 we find that k̃p > 0 and k̃g > 0.
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2.6 Tighter Environmental Policy: Long-run Response

In this section, we discuss the long-run responses of a positive environmental tax shock.

The key insight from this analysis is that the effect of a positive environmental tax on

the absolute evolution as well as on the relative composition of the economy’s knowledge

capital stock is ambiguously determined by the relative size of non-internalized environ-

mental externalities in σp and σg, as shown with the next proposition. In turn, we take up

this ambiguous result to motivate our empirical application, namely to estimate σp and

σg in order to check whether or not a more restrictive environmental policy not only sig-

nificantly increases the share of green capital in total capital but also leads to an increase

of the absolute stock of green capital in the post-shock long-run.

Proposition 2. Assume that Proposition 1 holds. A tighter environmental tax policy

leads to a reduction of the stock of green and polluting capital that is more pronounced in

the short- than in the long-run, provided that environmental spillovers are sufficiently low

so that σg < 1 and σp > 0. In turn, if environmental spillovers are sufficiently pronounced

so that σg > 1 and σp < 0, a tighter environmental tax reduces the stock of green and

polluting capital in the short-run but leads to an increase of both types of capital in the

long-run.

Corollary. Proposition 2 holds even if knowledge spillover are absent, i.e. β = 0.

Proof. Assume that Proposition 1 holds. Differentiating (2.24) and (2.25) for ξp, we

find that

dk̃p
dξp


< 0, 0 < σg < 1, −σg < σp < 1− σg

= 0, σg = 1, −1 < σp < 0,

> 0, σg > 1, −σg < σp < 1− σg

(2.26)

and

dk̃g
dξp


< 0, 1 > σp > 0, 0 < σg < 1− σp

= 0, σp = 0, 0 < σg < 1.

> 0, σp < 0, −σp < σg < 1− σp

(2.27)
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The intuition behind Proposition 2 is as follows. Assume that environmental spillovers

are sufficiently moderate (σg < 1 and σp > 0) which might be a realistic benchmark

scenario. A stricter environmental policy reduces the polluting knowledge capital and

thereby the growth rate of output. The growth rate of green capital begins to fall as well,

so that green as well as polluting capital follow declining paths. In the short-run, the

private agents substitute away from capital investment into consumption, leading to an

instantaneous increase of consumption, as capital cannot be adjusted immediately. As

green capital increases more in relative scarcity than polluting capital, its productivity

rises, inducing investment in green capital and thereby restoring its growth rate in the

medium-run. The rising stock of green capital raises the productivity of polluting capital,

and thus, the private agent starts accumulating polluting capital as well. This is paral-

leled by a fall of consumption in the medium-run, while the growth rate of consumption

increases in the longer-run due to an increase of the growth rate of output initiated by

increased capital accumulation in the longer-run. Although both stocks of capital are

lower in the new-steady state, we observe a change in the composition of both kinds of

capital, where the economy’s capital stock is gradually changed from polluting to green

capital. However, for specific parameter constellations, our economy also ends up with

higher stocks of both types of capital or with a higher stock of green capital relative to

the pre-shock scenario. Figure A1 in the Appendix shows the transitional dynamics af-

ter perturbating the economy with an environmental tax shock for a calibrated example.

Right after the tax shock, we observe that polluting capital gains overall importance in

the overall capital stock, as green capital decreases more rapidly than its polluting coun-

terpart. In the medium- and long-run, however, as green capital is accumulated more

rapidly than polluting capital, the importance of green capital increases from 32 % (10

periods after the shock) to 45% close to the new steady-state. Hence, this example also

mirrors the fact that short-run implications of policy shocks might dramatically differ

from their medium or long-run counterpart. Note that our model implies, by contrast,

that a positive shock to green knowledge subsidies has always a positive effect on both

knowledge classes if σg > 0 and σp < 1.
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Reflecting our model, we see that the effect of a more restrictive environmental policy

on the evolution of both capital stocks and output crucially depends on the parameters

σp and σg (see Proposition 2). Hence, in our empirical approach, we attempt to obtain

consistent estimates of these parameters from the aggregate production function (2.7)

by employing a unique panel data set consisting of European regions. In the theoretical

model we have implicitly assumed, for the ease of exposition, that the environmental and

knowledge externalities are limited to a single country (or region in our case). As a conse-

quence, the externalities in our model are of rather local nature, as only the agents within

a given region are affected by them. Many (environmental) endogenous growth models

impose a specific structure on spillovers and their respective channels, normally based on

ad-hoc assumptions. Of course, in this regard, our theoretical model makes no exception

with regard to within-region spillovers: in particular, spillovers affect productivity in a

linear fashion5 and they are additively separable from the own (positive) productivity ef-

fect of green (and polluting) capital. Naturally, an important aspect are as well spillovers

between regions, which we have abstracted from for the sake of clarity. Consequently, an

important econometric challenge is to adequately control for these unobserved sources of

spillovers between regions. To do so, we choose a flexible approach that is able to account

for unobserved spillovers of unknown form between regions. The approach, which is out-

lined in the following section, has the advantage that we do not have to make any ex-ante

assumptions on the nature of these spillovers. Moreover, our employed empirical strategy

should also allow for heterogeneous production technologies across regions and should, fi-

nally, treat dynamics and properties of time-series appropriately. In the following section,

we outline our empirical approach in due detail.

11



3 Empirical Framework

3.1 Aggregate Production Function

To empirically model the productivity effects of green technologies, we estimate the aggre-

gate production function (2.7). In logarithmic form and adding an error term, economic

output (yrt) is produced according to

yrt = σgkg,rt + σpkp,rt + σnnrt + σkkk,rt + vrt, (3.1)

with

vrt = ψr + ert, (3.2)

where t and r now index years and European regions, respectively, ψr is an individual-

specific effect constant over time, nrt is labor input, and kg,rt and kp,rt are measures of

green and polluting knowledge capital, respectively. A detailed exposition of how the two

stocks are classified can be found in Section 4. Compared to our model, we additionally

control for physical investment (kk,rt). Note that this kind of Cobb-Douglas functions

with included knowledge capital is of Griliches (1979)-form, which is a standard approach

in the literature (e.g. Eberhardt et al., 2013; Mitze et al., 2016; Stucki and Woerter, 2019).

Building their empirical models on endogenous growth theory, Coe and Helpman

(1995) and Ertur and Musolesi (2017) arrive at similar specifications for general knowledge

capital and its impact on total factor productivity. Latter studies attribute an important

role to the effects of external knowledge capital, which can in principal stem from different

sources: first, they can be the result of targeted knowledge transfer. Secondly, they might

occur because of the public goods nature of knowledge, which means that knowledge

might spill from one actor to another in an unintended way (e.g. Keller, 2004; Eberhardt

et al., 2013). These knowledge spillovers might be modeled by including stocks of external

knowledge to equation (3.1), where the external knowledge capital of a region is a weighted

average of the internal knowledge capital of all other regions (e.g. Coe and Helpman, 1995;

Ertur and Musolesi, 2017). Weights might be, for example, based on trade relations (e.g.
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Coe and Helpman, 1995) or on geographic distance (e.g. Ertur and Musolesi, 2017). How-

ever, estimation ordinarily rests on a priori assumptions on the nature of the dependence,

i.e. the weighting matrix (Chudik and Pesaran, 2015a) and on the assumption that CSD is

effectively controlled for when the chosen channels are included (Eberhardt et al., 2013).

Additionally, in the case of green technologies, as highlighted in our model, spillovers

might as well occur through positive effects of green knowledge capital on environmental

quality of other regions. However, we are explicitly modeling within-region externalities

only and controlling for these between-region spillovers is consequently of primary impor-

tance to consistently identify the parameters of the production function. Hence, we adopt

an approach that accounts for unobserved spillovers of unknown form without explicitly

modeling them (e.g. Eberhardt et al., 2013).6 The drawback of this procedure is that we

can not quantify the contribution of different sources of spillovers directly (Mitze et al.,

2016) and we thus focus on the private returns of knowledge, as done, e.g., by Eberhardt

et al. (2013) and Stucki and Woerter (2019). Hence, we focus on consistently identify-

ing the parameters of the aggregate production function (2.7) with implicit within-region

spillovers. The next section briefly recaptures the notion of CSD and ways to estimate the

degree of CSD in the data, followed by a detailed exposition of our estimators of choice.

3.2 Cross-Sectional Dependence

For illustrative purpose, we adopt the depiction by Ertur and Musolesi (2017), which

highlights two potential sources of CSD in the error term of equation (3.2)

ert = %′rf t + ξ
∑
s 6=r

ωrsest + εrt, (3.3)

where f t = (f1t, f2t, ..., fmt)
′ is a m×1 vector of unobserved factors, %r = (%r1, %r2, ..., %rm)′

is a m × 1 vector of factor loadings, ωrs is a spatial weight matrix satisfying specific

conditions7, ξ is a spatial autoregressive parameter and εrt is an idiosyncratic error. The

first term on the RHS is related to factor models and typically to so-called strong CSD,

whereas the second term on the RHS is a spatial error process satisfying so-called weak

13



CSD (Ertur and Musolesi, 2017; Sarafidis and Wansbeek, 2012; Chudik et al., 2011).8

Simply put, weak CSD might be thought of as rather local, spatial dependence, whereas

common effects that are due to unobserved, global factors are a form of strong CSD (e.g.

Bailey et al., 2016a). This implies that while former dependence is restricted to units that

are somehow connected to each other, latter is not (Mitze et al., 2016). The implications

for estimation are related to the degree of CSD. For example, the spatial error process in

equation (3.3) does itself not affect consistency and unbiasedness of conventional panel

estimators, whereas strong CSD, represented by a factor model, does if factors and/or

loadings are correlated to the regressors (Sarafidis and Wansbeek, 2012). As Ertur and

Musolesi (2017) argue, there is neither a theoretical nor an empirical reason in the context

of international technology spillovers to assume the mere prevalence of weak or strong

CSD. We argue that this reasoning applies to regional technological and environmental

spillovers as well. European regions could likely be driven by European-wide factors with

region-specific responses to them or by rather local spillover effects. For example, one

might think of a global technology trend from which regions profit depending on their

individual characteristics, and/or very local clusters consisting of few proximate regions.

We follow Ertur and Musolesi (2017) and Ciccarelli and Elhorst (2018) and employ

diagnostics to gauge the magnitude and the nature of CSD in the data. These include

the CD test (Pesaran, 2004, 2015a) and the estimation of the exponent of CSD (Bailey

et al., 2016b). Both measures are applied as well to the residuals to validate and compare

the estimation approaches. As Pesaran (2015a) shows, the CD test has the implicit

null hypothesis of weak CSD. Specifically, if the panel dimension T is almost fixed as

N →∞, as it is roughly the case in our sample, the implicit null is given by 0 ≤ α < 1/2

(Ertur and Musolesi, 2017), where α refers to the exponent of CSD (Bailey et al., 2016b).

The exponent is a measure of the convergence rate of the variance of the cross-sectional

average of a specific variable (Bailey et al., 2016b). α can be in the range [0, 1] and

can only be identified if α > 1/2. Any process with α < 1 fulfills the definition of

weak CSD, whereas α = 1 corresponds to strong CSD. However, values of α < 1 indeed

indicate different magnitudes of CSD (Chudik and Pesaran, 2015a). A special threshold
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is furthermore marked by α = 0.75, because for values of α ∈ [0.75, 1) convergence of

the average correlation coefficient is still slower than N−1/2, which indicates common

factors as well (Ciccarelli and Elhorst, 2018). To get a better understanding of the nature

and the magnitude of the CSD, we estimate α as described in Bailey et al. (2016b). In

our application, we estimate two different versions of the bias-adjusted estimator given

by equation (13) of Bailey et al. (2016b): The first one (denoted by α̂) is the standard

version assuming no temporal structure in the factors and no weak CSD in the error term.

The second one is the version robust against both issues (denoted by α̃). An estimation

approach that is able to consistently estimate a model with multifactor error structure

and spatial error correlations as in equation (3.3) is the Pesaran (2006) common correlated

effects (CCE) approach (Pesaran and Tosetti, 2011), which we introduce in due brevity

in the following section.

3.3 Estimation Strategy

Our estimation strategy follows broadly Eberhardt et al. (2013) and Eberhardt and Teal

(2013) in that we contrast several estimators that make different assumptions regarding

the data generating process. We do this to get a comprehensive view and to ensure that

the results are not driven by specific a priori assumptions. As our main approach, we

choose a flexible framework that accounts for several important aspects connected to the

estimation of production functions (see Eberhardt and Teal, 2011, for an overview). The

CCE approach explicitly models an unobserved common factor structure in the residuals

(Pesaran, 2006), and is a very convenient way to capture unobserved spillovers that are

potentially complex and non-symmetric (Eberhardt et al., 2013). Drawing on Pesaran

(2006) and Pesaran (2015b) we specify the logarithmic aggregate production function

(3.1) as follows:

yrt = a′rdt + β′rxrt + ert (3.4)

ert = %′rf t + εrt (3.5)
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xrt = A′rdt + Γ′rf t + vrt. (3.6)

Where xrt = [kg,rt, kp,rt, nrt, kk,rt]
′, dt = 1, a′r = ψr, and βr = [σg,r, σp,r, σn,r, σk,r]

′ col-

lects the coefficients. The errors have a multifactor structure, where f t is a vector of

unobserved common effects, %r is a vector of factor loadings and εrt are idiosyncratic

errors. The explanatory variables are driven by a deterministic component, the factors

and an idiosyncratic component, where Ar and Γr are factor loading matrices, and vrt is

the idiosyncratic component. Note that the error structure nests time-specific, individual-

invariant effects, by defining %r = 1 and ft = λt (Sarafidis and Wansbeek, 2012). Pesaran

(2006) shows that such a model can be estimated consistently by including cross-sectional

averages of the dependent and independent variables to the regression. Two estimators

are possible: first, the mean group version (CCEMG) in which the coefficients are as-

sumed to be heterogeneous and are hence estimated separately for each region and then

averaged. Second, the pooled version (CCEP), in which the average coefficient is identi-

fied directly under the assumption of slope homogeneity. Both estimators are consistent

for the average coefficient irrespective of whether the parameters are heterogeneous or ho-

mogeneous, although the relative efficiency might be different (Pesaran, 2006). Notably,

the idiosyncratic terms vrt and εrt are allowed to contain additional weak CSD (Pesaran

and Tosetti, 2011; Chudik and Pesaran, 2015a), an important feature in our empirical

setting, as discussed in the previous section. The CCE approach is appealing since it

is robust against several additional potential properties of our data. The first issue is

possible nonstationarity of the variables of the production function. Kapetanios et al.

(2011) show that the CCE approach remains valid if the factors contain unit roots and

are possibly cointegrated. More recently, the examinations by Westerlund (2018) suggest

that the requirements on the factors are very flexible, including factors with unknown but

finite order of integration and structural break dummies. Furthermore, the approach al-

lows by definition for endogeneity of the input variables, since both xrt and yrt are driven

by the unobserved factors. Hence, the approach offers a way to control for endogeneity

brought in by unobservables (Ertur and Musolesi, 2017), as long as the endogeneity can

be captured by the unobserved factors.
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Additionally, we employ several alternative estimators for the static benchmark model.

First, we employ two pooled estimation techniques, which restrict the coefficients to be

identical for each region. These comprise the standard two-way fixed effects (2FE) es-

timator and the first-difference estimator (FD) with time dummies. As noted above,

time-specific individual-invariant fixed effects are a special case of the general factor struc-

ture, in which the effect on regions is homogeneous. In fact, evidence from Monte Carlo

simulations by Eberhardt and Bond (2009) suggests that including time dummies can

remarkably decrease the bias induced by unobserved common factors. As an alternative

technique that assumes heterogeneous parameters, we implement the mean group (MG)

estimator (Pesaran and Smith, 1995). For the latter we subtract the cross-sectional mean

from each variable each year. This procedure removes the impact of common factors en-

tirely, if their effect is region-invariant. If the effect of the factors is heterogeneous across

regions, their impact might still be reduced (e.g. Pesaran et al., 1999; Bond et al., 2010).

It is worth emphasizing that the assumptions of our main approach are strict exogene-

ity of the regressors and that no relevant dynamics are missed in the static approach. This

includes the CCE approach, which does not allow for lagged feedback from yrt on xrt and

for lagged dependent variables among the regressors (Chudik and Pesaran, 2015b). In

case of heterogeneous slopes and weakly exogenous regressors, CCEMG might be biased

for small T , and CCEP even becomes inconsistent (Pesaran, 2015b). Omitting relevant

dynamics might furthermore lead to a situation where the results do not correspond to

long-run responses (Eberhardt et al., 2013). Unfortunately, we can not apply the dy-

namic version of the CCE estimator (CS-ARDL), which allows for lagged endogeneous

variables and weakly exogenous regressors (Chudik and Pesaran, 2015b). This is because

especially estimation of the lagged dependent variable suffers considerable bias for small

T (Pesaran, 2015b), and with the moderate time dimension in our setup, mean group

estimation quickly becomes infeasible as degrees of freedom per group approach zero.

Additionally, Everaert and De Groote (2016) show for the homogeneous dynamic panel

case that CCEP displays considerable small sample bias for values of T up to 50. As

De Vos and Everaert (2021) summarize, in dynamic panels the time series dimension
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mainly matters for reliability of the CCE estimators. However, to mitigate concerns over

misspecification with regard to weak exogeneity of the regressors and potentially missed

dynamics, we provide different robustness checks to our main model. First, we employ the

CS-DL approach to estimate long-run coefficients, which is especially well suited in mod-

erate T samples and seems to outperform the CS-ARDL approach in these circumstances

(Chudik et al., 2016). In a nutshell, the CS-DL approach is a reformulation of a dynamic

panel approach with common factors, in which the long-run coefficients can be estimated

directly by CCE, without estimating the coefficient of the lagged dependent variable ex-

plicitly. Purging the cross-sectional dependence requires the addition of cross-sectional

averages of regressors and the dependent variable, as well as lags of the cross-sectional

averages of the regressors (Chudik et al., 2016). It is a quite flexible approach as it al-

lows for heterogeneous slopes and offers a mean group and a pooled variant, just as the

CCE approach. However, the CS-DL estimation procedure maintains the strict exogene-

ity assumption. Additionally, to relax latter condition, we estimate a dynamic version

of the main model with the well-known dynamic panel approach by Blundell and Bond

(1998), henceforth BB. The BB approach can be seen as an extension of the estimator

by Arellano and Bond (1991) with the attempt to better handle very persistent data

series by adding additional moment conditions based on a mean-stationarity assumption

on the initial observations (e.g. Roodman, 2009a; Sarafidis and Robertson, 2009). Both

approaches can handle weakly exogenous and even endogenous regressors, given appro-

priate moment conditions formed by lagged observations (e.g. Kiviet, 2020). However,

the standard approach allows to control for CSD only via time dummies, and assumes

homogeneous parameters. The bias from unaccounted error CSD in these approaches can

be reduced by including time-fixed effects (Sarafidis and Robertson, 2009), but violation

of the homogeneous slope condition can lead to inconsistent results (Pesaran et al., 1999).

4 Data and Descriptive Statistics

The data set covers a time period of T = 25 years between 1991-2015 for R = 270 Euro-

pean NUTS-2 regions in 28 countries, resulting in a balanced panel of 6750 observations.9
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The main sources of data are, first, the Cambridge Econometrics database, from which

we obtain industrial gross value added (GVA), industrial gross fixed capital formation

(GFCF) and total hours worked in the industry sector. Investment and value added se-

ries are deflated to constant 2005 prices and given in Millions of Euro, total hours worked

are given in Millions of hours worked. We include the flow measure gross fixed capital

formation as physical capital input directly in our model instead of computing physical

capital stocks, for example with the perpetual inventory method (e.g. Caselli, 2005). By

including the flow series, we circumvent controversial decisions on starting values.10

Secondly, we use the EPO (European Patent Office) Worldwide Patent Statistical

database (PATSTAT) to gather information on patent applications and to construct re-

gional knowledge stocks by accumulating patent counts into patent stocks. Patents are

one of the most commonly used measures of innovation (Barbieri et al., 2016) as they

represent an advantageous indicator (Griliches, 1990), not the least due to their wide and

detailed data provision (Haščič and Migotto, 2015). Only few economically significant

inventions have not been patented (Dernis and Khan, 2004). Nevertheless, patent data

faces some relevant drawbacks that can hardly be circumvented, such as the accounting

of strategic patents or the restriction to technological innovation (Barbieri et al., 2016)

as well as very limited information on diffusion (Kemp, 2010). Further concerns, such as

differing patent quality (Johnstone et al., 2010) or mistakes when searching environmental

patents (Lanjouw and Mody, 1996) can be substantially mitigated by the choices made

in the search of patents.

We rely on multinational patent applications filed at the EPO to create robust mea-

sures with respect to patent value and comparability, as only innovations of sufficient

expected commercial profitability justify the relatively high application costs (Johnstone

et al., 2010). In order to avoid counting technologies multiple times we restrict our search

to the first EPO patent application of a patent family. We follow Costantini et al. (2017)

by using patent applications with their earliest filing year in order to timely capture the

innovative effort. Further, we decide to assign patents based on the residence of the in-

ventor, thus capturing inventive activity (Kruse and Wetzel, 2016; Wurlod and Noailly,
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2018). In case of multiple inventors from different regions or countries, the patent is allo-

cated using fractional counts (Kruse and Wetzel, 2016; Wurlod and Noailly, 2018). The

accumulation into knowledge stocks follows the method proposed by Popp et al. (2011),

such that

Kj,rt =
∞∑
s=0

e−β1(s)(1− e−β2(s+1))PATj,r,t−s, (4.1)

where PATj,r,t−s is the patent count in period t − s for region r for the patent group

j = {g, p}. The rate of knowledge depreciation is set to 0.1 (β1) and the rate of diffusion

to 0.25 (β2), as proposed by Popp et al. (2011). Thus, the relevance of a patent application

peaks after 4 years (Popp et al., 2011), which seems to be a reasonable dynamic for

diffusion patterns of knowledge capital to affect productivity. To mitigate the influence

of the initial observation on the knowledge stocks, we calculate all stocks with pre-sample

patent data from 1985 onwards.11

Since our analysis is performed for the industry sector, we utilize the concordance

table provided by Schmoch et al. (2003) that links technology classes to economic sectors

to match the patents to it. This concordance table is frequently used in the empirical

literature (Costantini et al., 2017). It should be noted that the industry data as classified

by Cambridge Econometrics is more comprehensive than the scope of the classification

by Schmoch et al. (2003), which encompasses the manufacturing sector only. The indus-

try sector as defined in the Cambridge Econometrics data further encompasses mining,

recycling, energy provision, and water provision. However, the technology classes defined

by Schmoch et al. (2003) lead to similar patent counts as those obtained without any

restriction on the technology classes.

To define the patent groups green (g) and non-green (p), we differentiate green tech-

nologies based on the technology classes a patent belongs to. Two established options are

the Green Inventory (GI) and the OECD EnvTech (EnvTech), which both define tech-

nology classes that are considered to correspond to environmentally sound technologies.

As noted by Lanjouw and Mody (1996), there are two potential errors when searching

environmental patents. First, to include too many patents that are not actually qualify-

ing as environmental patents. Second, to include too few patents, as some environmental
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patents are not encompassed. However, with respect to the soundness of results, we per-

ceive the latter to be less problematic (Lanjouw and Mody, 1996; Wurlod and Noailly,

2018). Hence, we choose the GI, which is considered as being more narrow (Ghisetti

and Quatraro, 2017). Consequently, as soon as a patent belongs to a technology class

encompassed by the GI, it is considered as a green patent. Non-green patent counts are

constructed by subtracting environmental patents from the overall patent count. Finally,

since we are using logarithmic variables in estimation, we use kj,rt = log(1 + Kj,rt) for

j = {g, p} (e.g. Stucki and Woerter, 2019), since knowledge stocks might be zero for some

regions and years.

Table 1 displays some summary statistics for the main variables we employ in the em-

pirical analysis. In the Appendix (Table B1 and Table B2), we present the unconditional

correlation matrix of our main variables, including the cross-sectional means that ap-

proximate the common factors. As expected, the green and non-green knowledge stocks

are highly correlated. This holds true for both the two specific stocks as well as the

cross-sectional averages. Furthermore, in the Appendix (Table B5) we report the results

of panel unit root tests of the second generation (Pesaran, 2007) that allow for one un-

observed factor. The results are somehow mixed but suggest that the presence of unit

roots can not be rejected for all variables when a higher lag order is added. As noted

in Section 3, the CCE estimators are robust against nonstationarity in the factors and

different scenarios of cointegration. Since our approach does not rely on cointegration

but is robust to various scenarios, we do not test for cointegration, as similarly argued

by Eberhardt and Teal (2011). However, to validate the estimation approaches in the

empirical part, we test whether the residuals are integrated of order one. Finally, to get

an overview of the majority of the regions comprising the sample and the spatial patterns

of the dependent variable and the explanatory variable of main interest, Figure B1 and

Figure B2 in the Appendix present maps with regions colored according to their relative

position of labor productivity and labor deflated green knowledge stocks for the first and

the second half of the time series.
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5 Results

5.1 Estimation of Cross-Sectional Dependence

In this section, we discuss the results of the CD test (Pesaran, 2004, 2015a) and the

exponent of cross-sectional dependence (α) (Bailey et al., 2016b) applied to the variables

of our model. Table 2 contains the CD test statistics, the point estimates of the bias-

adjusted version of α and 90% confidence intervals.12

As Ertur and Musolesi (2017) note, the exponent of cross-sectional dependence is

originally developed for stationary variables. Hence, we adopt their proposed robustness

test and estimate both the CD statistic and α for first-differenced variables as well. First,

it is evident that the implicit null of the CD test, α ∈ [0, 0.5), is strongly rejected for all

variables, based on conventional standard normal critical values. This holds true for the

variables in log-levels as well as in first log-differences. Secondly, the point estimate of α

(denoted α̂) is above 0.9 and close to 1 for all considered variables in log-levels. In first

differences, the point estimates are lower, but still considerably above the turning point of

0.75. Furthermore, the lower bound of the confidence interval is well above the threshold

value of 0.75 in all cases.13 These observations imply that it is very likely that a factor

structure is driving the data, and that we have to take this into account when estimating

the aggregate production function. Hence, the results indicate that the approach outlined

in Section 3.3 should be well suited in the empirical context at hand.

5.2 Main Estimation Results

In this section we present the main estimation results for the aggregate production func-

tions. Table 3 contains the estimation results for the static baseline model estimated with

two-way fixed effects (2FE), first-difference OLS (FD), CCEP, CCEMG and the mean-

group estimator (MG). The first three approaches pool the data under the assumption of

common slope coefficients, whereas the mean group estimators run separate regression for

each unit under the assumption of fully heterogeneous coefficients. It is worth emphasiz-

ing that both assumptions are likely to be violated, as they present the two diametrical
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notions of either all regions having the exact same coefficient or all regions having different

coefficients. In reality, a mixed case seems to be more plausible (Maddala et al., 1997).

We also report various diagnostics for the residuals. First, we apply the CIPS test

(Pesaran, 2007) to the residuals to gauge whether the residuals are stationary. Secondly,

we report the CD statistic and both estimates of α, introduced in Section 3.2, in order to

get an impression of the degree of CSD that is left in the errors. As noted by Sarafidis

and Wansbeek (2012), however, the CD statistic might lose power if time-dummies are

included in estimation or, equivalently, the data is expressed as deviations from a time-

specific mean, since the positive and negative correlations in the residuals cancel. As

Millo (2019) notes, the same effect applies in the CCEP case because of the augmentation

with cross-sectional averages. This might lead to a situation where the average (pairwise)

correlation coefficient is near zero, and so will be the CD statistic. To detect such a situa-

tion, we also report, as suggested by Millo (2019), the average (pairwise) cross-correlation

coefficient (¯̂ρ) as well as the average absolute (pairwise) cross-correlation coefficient (| ¯̂ρ|).

As evident from Table 3, the estimated elasticity of value added with respect to phys-

ical capital input is significantly positive in all employed approaches. The magnitude

ranges from 0.099−0.138, being very similar to comparable studies based on the country-

industry level (Mitze et al., 2016; Stucki and Woerter, 2019). The same observation can be

made for labor input, the parameter estimates range from 0.239−0.605 for all approaches.

With respect to the estimated returns to the two differentiated knowledge classes, the fol-

lowing pattern emerges. The coefficient for non-green knowledge capital is estimated to

be significantly positive in all cases. The range of magnitudes spans 0.078−0.221. On the

other hand, the parameter estimates for the green knowledge stock are negative or not

significantly different from zero in all approaches. In all pooled models, the negative co-

efficient is significant. Overall, non-green knowledge has a positive association with value

added in European regions, whereas the parameter estimates for the green knowledge

stock are insignificant or even significantly negative.

Turning to the residual diagnostics, the CIPS test rejects the null hypothesis of a unit

root for all residuals except the ones obtained from the 2FE model. Interestingly, the
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CD statistic is below the common critical values of the standard normal distribution only

in the 2FE case, indicating that α should be above 0.5 in all other cases. However, the

low value of the CD statistic seems to be a result of the situation previously elaborated

on. The average pairwise correlation coefficient is close to zero, whereas the average

pairwise absolute correlation coefficient is relatively high, indeed higher then in all other

models. This fact is as well represented in the estimation of the exponent of cross-sectional

dependence. Both versions of the bias-adjusted point estimate of α are indeed larger

then 0.5 for all models. The 2FE and the FD model perform quite well in this regard,

displaying low estimated degrees of CSD in the residuals. Surprisingly, the estimation of

the exponent of CSD suggests that the CCEP estimator is not able to account for the

factor structure effectively, since the point estimate is quite high and above the threshold

value of 0.75. Taken together, the residual diagnostics suggest that for most approaches

strong CSD in the form of common factors is controlled for, and the errors remain weak

to semi-strong cross-sectionally correlated. Based on the diagnostics, FD in the pooled

case and CCEMG in the mean group case appear to be the preferable estimators.

To summarize, while our results point to a robust positive effect of non-green knowl-

edge of considerable magnitude, they imply significantly negative returns to green tech-

nologies in the pooled models. In both mean group models, the coefficients for green

knowledge are insignificantly different from zero. While these results line up well with

firm level evidence (Marin and Lotti, 2017), industry-level evidence by Stucki and Wo-

erter (2019) points to rather similar effects between green and traditional knowledge. Our

results are more pessimistic with regard to the economic returns to green technologies on

the regional level. With regard to our simple growth model, these results give rise to

the following interpretation. First, as the estimated coefficient of green knowledge capi-

tal comprises both spillover effects, there is either no significant impact of environmental

quality on output as sketched in our model (µ ≈ 0), or there is no significant positive

effect of green capital on local environmental quality (φg ≈ 0). Second, the direct effect

on output is not significantly different from zero (κ ≈ 0). Furthermore, with regard to a

more stringent environmental policy, it is more likely that the first scenario applies. This
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implies that a tax would likely change the relative composition of green and non-green

capital, but it might result in a scenario in which, in the long-run, both capital stocks

decline. We discuss this implication in detail in Section 5.4.

5.3 Robustness and Extensions

In the following section we discuss a battery of robustness checks and extensions to the

benchmark approach. First, we consider dynamic production functions and methods

that allow for weakly exogenous and endogenous production inputs. Second, we analyze

whether the main approach is robust against different categorizations of green knowledge

and utilize different, more narrow subgroups of green technologies. Third, we further

investigate possible heterogeneity across regions by splitting the sample to EU15 and

non-EU15 regions. Additionally, we perform numerous further robustness exercises the

results of which can be found in the Appendix. Specifically, to validate the results against

the choice of the method to compute the knowledge stocks, we also consider knowledge

stocks that are computed with the perpetual inventory method14 and knowledge stocks in

which we assign the patents to the address of the applicant instead of the inventor. The

results of the main approach are generally qualitatively robust against this alternative

technique to compute the stocks and to assign patents. Furthermore, the results are qual-

itatively robust against the use of lagged production inputs, the inclusion of a physical

capital stock, computed with the perpetual inventory method, instead of investment flows,

and the exclusion of physical investment. Finally, we do not find convincing empirical

support for a nonlinear relationship between green knowledge and regional growth.

Dynamic Estimation and Weak Exogeneity

To mitigate concerns that the results of the main approach are biased because of the

presence of weakly exogenous / endogenous regressors or because the coefficients do not

correspond to long-run responses, we apply the dynamic panel approaches discussed in

Section 3. Specifically, we specify our empirical models as follows. For the BB approaches,

25



we perform one step estimation in all three displayed specifications. With regard to the

lag structure, we start with the most parsimonious specification in which we only include

one lag of the dependent variable (BB(1)). Furthermore, we treat each variable as poten-

tially endogenous and use all available lags from period t− 2 onward as instruments. To

reduce problems of potential instrument proliferation, we follow Eberhardt et al. (2013)

and collapse the instrument matrix as suggested by Roodman (2009b). Next, we consider

a specification with a richer lag structure by including all first and second lags of the de-

pendent and all independent variables, while retaining the same instruments set (BB(2)).

Finally, in the third specification (BB(3)), we retain the lag structure of the second one

but use a smaller instruments set, including lags t−4 to t−8. Cross-sectional dependence

is captured with a full set of time dummies in all three specifications. With regard to

the CS-DL approach, we use contemporaneous first-differences of the input variables, the

contemporaneous cross-sectional average of the dependent variable and contemporaneous

and one-period lagged cross-sectional averages of the production inputs in levels.15

Table 4 reports the implied long-run coefficients for the three different BB specifica-

tions, the CS-DL mean group (CS-DLMG) and CS-DL pooled (CS-DLP) approaches. The

results remain qualitatively similar for the knowledge stocks when applying the dynamic

specifications compared to our benchmark approach, and are even of more pronounced

magnitude. Notably, while second order autocorrelation of the residuals can not be re-

jected at the 10% level for the most parsimonious specification, it can be for both higher

order models. Furthermore, reducing the instruments count clearly improves instrument

validity, such that BB(3) is our preferred specification. Finally, the results of the CS-DL

approach are both very similar to the static CCE results in the main approach. Again,

although remaining cross-sectional dependence seems to be reduced compared to the main

approach, the pooled version appears to leave higher degrees of CSD behind.
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Different Subgroups of Green Technologies

Despite our findings for green technologies in general, it appears to be possible that

certain subclasses of green technologies have a positive effect on productivity, while others

have not. For example, while end-of-pipe innovation (Frondel et al., 2007) only provides

economic returns if emissions are priced, reductions of resource use provide economic

returns, since (properly) priced natural resources qualify as a cost factor (O’Mahony and

Timmer, 2009). If the new technology saves an input that is not (or not sufficiently)

priced, the willingness to pay for these technologies will likely be low. This intuition

corresponds to findings in the literature on the firm level, which suggest that only specific

technologies (e.g. resource saving) provide distinct returns (Ghisetti and Rennings, 2014;

Rexhäuser and Rammer, 2014). Hence, we define four subgroups of green technologies,

namely: alternative energy production, energy efficiency, transportation, and recycling

and reuse. We utilize the operationalization by Wendler (2019) and include those IPC

classes which are both defined for the green technology field and relate to the industry

sector according to Schmoch et al. (2003). These subgroups capture relevant distinct

fields and could provide further insights on the above mentioned considerations. While

alternative energy production and transportation could relate to long-term large scale

processes (Wendler, 2019) and potentially suffer from the existence of externalities, both

energy efficiency and resource saving innovations should directly relate to cost reductions.

Hence, we estimate the baseline model for each subclass separately. For the sake of brevity,

we report the results only for the preferred pooled and mean group model from the main

approach, FD and CCEMG, and refrain from reporting residual diagnostics.16

As shown in Table 5, the parameter estimates for the green technology subgroups

are generally insignificantly different from zero for all estimation methods and technology

subgroups, while the estimated coefficients for the non-green knowledge stock are in most

cases similar to the ones in the benchmark model. Hence, the results obtained from the

subgroups generally mirror the ones obtained for the overall green class.
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Subsample Results

In the main approach, although considering heterogeneous parameter models, we are

interested in the average coefficient over the full sample. Given the potential heterogeneity

of specific groups of European regions, it appears to be interesting to consider averages

over specific regional groups in order to gauge whether green knowledge has a different

average output elasticity for different, more homogeneous country groups. Hence, we

estimate the main model for a EU15 and non-EU15 subsample in the following. In these

subsamples, we include the cross-sectional averages over the subsample only. Tables 6 and

7 report the results based on these split sample estimations. Although the results remain

qualitatively broadly similar in both split samples, some remarks are in order. First, when

concentrating on the CCEMG estimator as preferred approach, the potential negative

elasticity of green knowledge with respect to output is somewhat more pronounced for

the non-EU15 subsample. Second, the degree of remaining CSD in the errors is lower

for the non-EU15 subsample. This might point to greater homogeneity in the non-EU15

group, perhaps because it is considerably smaller, such that the cross-sectional averages

/ time dummies capture a larger share of regional co-movement.

5.4 Discussion

Based on our theoretical framework we can derive important implications of our empirical

findings for the effects of environmental policy. In particular, we propose that environ-

mental policy effects depend on the output elasticities of polluting and green knowledge

capital due to their implications for knowledge accumulation. In our empirical investiga-

tion, we find that the scenario for which transitional dynamics are displayed in Figure A1

is supported by our empirical findings.

In particular, our empirical findings support that environmental policy induces changes

in capital accumulation and composition, similar to the mechanisms isolated by (Xepa-

padeas and de Zeeuw, 1999). They find that an environmental tax will on the one hand

shift the capital composition towards a larger share of modern machines (modernization

effect), which corresponds to our finding that the share of green capital increases. On
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the other hand, they find that the total capital stock will decrease (downsizing effect),

again corresponding to our findings that both polluting and green capital will be lower in

the new steady-state. These effects on the capital composition have implications for the

productivity of the economy. While Xepapadeas and de Zeeuw (1999) assume higher pro-

ductivity of younger machines, in our application the productivity effects of green capital

are estimated to be below those of polluting capital. Hence, in our case it follows that not

only output drops, but productivity also decreases due to the shift in capital composition.

Therefore, our findings can be related to the discussion revolving around the strong

version of the Porter hypothesis (Porter and van der Linde, 1995). The strong version

of the Porter hypothesis (PH) postulates that stricter environmental regulation will pos-

itively affect productivity, due to the inducement of innovation by the regulation. Our

results are contrary to this in so far as, even if additional innovation is stimulated, pro-

ductivity will decrease since green capital is less productive than polluting capital and

cannot compensate declines in polluting capital. These implications are in line with the

bulk of previous literature assessing the validity of the strong PH. Most studies exam-

ining the interrelation of environmental regulation and productivity find negative effects

of regulation on productivity (Gollop and Roberts, 1983; Smith and Sims, 1985; Gray,

1987; Dufour et al., 1998; Gray and Shadbegian, 2003), though some studies find support

for the strong PH for specific samples (Berman and Bui, 2001; Alpay et al., 2002; Murty

and Kumar, 2003; Lanoie et al., 2008). With our focus on an encompassing sample of

European regions our findings support that, so far, the strong PH does not seem to be a

general mechanism.

Evidently, these implications of our results crucially depend on the output elasticity

of green capital, with its magnitude surpassing the defined thresholds changing the im-

plications for environmental policy effects. In this vein, it is worthwhile to recall that the

output elasticity depends additively on the direct production effect and its effect via the

local environmental externality. Hence, our results imply that there is neither a strong

direct effect on production nor a productive effect via a local environmental externality.

Both of these components are crucial to the future evolution of the productivity effects of
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green capital. Hence, we shortly discuss the implications and triggers for change in these

parameter components.

The direct productivity effect could turn significantly positive if environmental ben-

efits, such as lower emissions, turn into a properly priced input to production. It seems

reasonable that, during the timespan under investigation, such environmental input fac-

tors have not been relevant cost factors. This is rationalized by the findings on the effec-

tiveness of the EU Emissions Trading System (ETS), which has been considered rather

ineffective during our observation period (Ellerman et al., 2016). Nonetheless, with the

Paris Agreement in 2015, our sample ends in a year that could mark a shift in these

dynamics, such that the direct productivity effect might well increase in the future.

The second component of the output elasticity concerns the reduction of local environ-

mental externalities that reduce production. Hence, the absence of this effect implies that

either there is no impact of green capital on local environmental quality or local environ-

mental quality does not pose any restriction on economic activity (yet). It is worth noting

that within our theoretical framework, we abstract from global environmental issues and

potential externalities from green capital on those. However, under the assumption that

these global problems are not yet a restriction on local economic activity, externalities

on global environmental problems are negligible for the research question under scrutiny.

This assumption seems to be rather reasonable for the chosen set of countries within

the timespan of our sample. Beyond these global issues, the relevance of local environ-

mental externalities to production and the contribution of green technologies to resolve

environmental limitations might increase in coming decades.

6 Summary and Concluding Remarks

In this paper, we estimate the impact of green technology development on economic

productivity for 270 European NUTS-2 regions. To inform our empirical approach, we

build a simple growth model with knowledge and environmental externalities within the

economy. Abstracting from spillovers between regions, our model highlights that the

output elasticities of green and non-green knowledge in the aggregate production function
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are composed of the within-region environmental and knowledge externalities and the

direct productivity parameters. Importantly, in our model, the long-run effects of a tax

on non-green knowledge depend crucially on the relative size of both output elasticities.

To estimate the aggregate production function, we employ a flexible empirical framework

and control for several important econometric challenges that arise in the estimation of

macro panels in general and the estimation of production functions in particular.

First, we estimate the degree of cross-sectional dependence between European regions

in the variables of the production function and our results give strong indication of the

presence of an unobserved common factor structure. Hence, we put special emphasis on

appropriately controlling for this feature of the data. Furthermore, we control for hetero-

geneity in the coefficients and possible cointegration in our main approach and contrast

several estimators to get a comprehensive view. The results of our main estimation suggest

that the productivity effects of green technologies are insignificantly different from zero in

the mean group approaches and even significantly negative for the pooled models. In con-

trast, our data is robustly indicating significant positive returns to non-green technologies.

The results of the main approach are generally robust to a battery of robustness checks.

First, we consider dynamic specifications and estimation approaches robust against weak

exogeneity and endogeneity of the production inputs. Second, we consider the possibility

that only specific subcategories of green technologies have productivity enhancing effects,

while others have not. Third, we perform a subsample exercise in which we run separate

regressions for regions in the EU15 and in the non-EU15 countries.

A possible methodological advancement might be to control for both common factors

and weakly exogenous regressors and/or dynamics, which is beyond the scope of this

paper. Furthermore, in this paper, we are interested in a rather general empirical scenario.

Nevertheless, it might be an interesting avenue for future research to consider more specific

scenarios, for example to analyze if regions that specialize on specific green technologies,

according to the smart specialization strategy, can increase economic productivity.

Although our results do not rule out that green technology development could have had

positive effects for specific regions with specific capabilities, they question whether green
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technology development can generally promote economic development of European regions

and serve as a “silver bullet” to combine economic and environmental targets. Our simple

growth model highlights another mechanism of policy relevance. If productivity effects of

between-region spillovers are negligible, the estimated output elasticities imply that a tax

on polluting knowledge capital, although shifting the relative compositions towards green

knowledge, decreases both knowledge capital stocks in the long-run in absolute terms. To

conclude, our empirical results imply that the combination of economic and environmental

targets might not be achievable by green technologies alone.

32



Notes

1. In the following, we use (private) economic returns, growth effects, and productivity

effects or variations of these terms interchangeably to refer to the ceteris paribus impacts

of green knowledge capital on value added, keeping the other production inputs constant,

in line with our empirical approach.

2. We use the terms polluting and non-green interchangeably. Furthermore, we use knowl-

edge capital, knowledge stocks, and technologies interchangeably. For the sake of brevity,

we often refer to knowledge capital simply as capital if the meaning is unambiguous.

3. This double externality is neglected by the individual agent. Thus, there is a role for the

government in this economy aiming to increase efficiency. The derivation of the optimal

policy to implement the first best solution is available upon request.

4. It would equally be possible to regard both capital stocks as an amalgam of physical and

knowledge capital, in the spirit of Rebelo (1991). For the sake of clarity with regard to

our empirical approach, we consider pure knowledge stocks here.

5. This can be easily seen by linearizing (2.1) and using (2.6).

6. Note that intended transfer is captured either by the modeled spillovers within regions or

by the estimation approach in the same manner as unmodeled spillovers are.

7. For details on these ”granularity” conditions see, e.g., Chudik et al. (2011).

8. Note that factor models can also generate different forms of weak CSD if there is no

strong factor (Chudik et al., 2011). For detailed overviews on weak and strong CSD, the

connection to spatial or factor models and to weak and strong factors see, e.g., Chudik

et al. (2011); Sarafidis and Wansbeek (2012); Chudik and Pesaran (2015a); Ertur and

Musolesi (2017).

9. In total, 13 regions are excluded, starting from a sample of 283 regions. First, both

NUTS-2 regions constituting Croatia are excluded, since data before 1995 is naturally
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missing for them. For the same reason five regions in the United Kingdom are excluded,

which have a substantial amount of missing data, to end up with a balanced sample.

Secondly, we exclude six regions because they have a green patent stock of zero for every

single observed year. Hence, we concentrate on regions which had at least any green tech-

nology development. The regions distribute among the following 28 countries: Austria,

Belgium, Bulgaria, Cyprus, Czech Republic, Germany, Denmark, Estonia, Greece, Spain,

Finland, France, Hungary, Republic of Ireland, Italy, Lithuania, Luxembourg, Latvia,

Malta, Netherlands, Norway, Poland, Portugal, Romania, Sweden, Slovenia, Slovakia,

United Kingdom.

10. We discuss checks whether the main approach is robust against the inclusion of a capital

stock computed with the perpetual inventory method in Section 5. To compute the capital

stocks, we assume a depreciation rate of 6 % (Caselli, 2005) and initial values are based

on the capital/output ratio, which we set to 2.6 (Inklaar and Timmer, 2013).

11. Alternatively, knowledge stocks could be constructed with the perpetual inventory method

(Kruse and Wetzel, 2016; Wurlod and Noailly, 2018). Results based on this method are

discussed as a robustness check in Section 5. The depreciation rate is set to 10% (Verdolini

and Galeotti, 2011). We follow Kruse and Wetzel (2016) by dividing the patent count in

the first year observed by 0.25; assuming a previous 15% growth rate of the knowledge

stock and the 10% depreciation rate. Table B3 and B4 in the Appendix show that the

correlation between the knowledge stocks computed with both approaches is quite high.

12. We implement all estimation steps either in STATA or MATLAB. The estimation proce-

dure for the exponent of CSD (α) is implemented in MATLAB. Codes are based on the

GAUSS files obtained from the supplementary material of Bailey et al. (2016b). Some

formulations from the panel packages of Álvarez et al. (2017) are adopted as well. CD

statistics are also implemented in MATLAB. Any errors in the codes are of course our

own. The STATA routines we use include multipurt (Eberhardt, 2011), xtdcce2 (Ditzen,

2019) and xtabond2 (Roodman, 2009a).
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13. Estimates of the version of α that is robust against weak CSD in the error term and

autocorrelation in the factors provide very similar point estimates to the ones shown

here. Results are available upon request.

14. For details on the construction with the perpetual inventory method, see Section 4.

15. Alternative specifications are available upon request. Note that the CS-DL specifications

become quickly very demanding. For example, the addition of a second lag of cross-

sectional averages of the regressors turns mean group estimation infeasible as the degrees

of freedom per group approach zero. While the pooled point estimates remain very similar,

standard errors, the computation of which involve the mean group estimates (see Chudik

et al., 2016), become very large.

16. Full results are available upon request.
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Tables and Figures

Table 1. Summary statistics

Variable (unit) RT Mean S.D. Min. Max.

Value added 6750 7,450.80 8,256.99 32.707 73,113.81
(Millions of Euro in 2005 prices)

Physical capital input 6750 1,834.21 2,060.77 1.37 21,363.70
(Millions of Euro in 2005 prices)

Labor input 6750 266.57 250.45 1.55 3446.39
(Millions of hours worked)

Green knowledge stock 6750 62.63 133.90 0 1,639.10
(accumulated patent count)

Non-green knowledge stock 6750 496.90 1,097.00 0 13,018.81
(accumulated patent count)

Note: RT: total number of observations; S.D.: standard deviation. The yearly data spans the period
1991 – 2015 (T = 25) and comprises 270 European NUTS-2 regions. All variables are, as explained in
the text, based on the industry sector.

Table 2. The degree of cross-sectional dependence

CD statistic α̂∗0.05 α̂ α̂∗0.95

Log-levels

Value added 418.88 0.925 0.966 1.007
Physical capital input 157.88 0.870 0.916 0.961
Labor input 355.42 0.928 0.967 1.007
Green knowledge stock 854.18 0.964 1.003 1.042
Non-green knowledge stock 901.26 0.963 1.003 1.043

First log-differences

Value added 250.23 0.863 0.940 1.017
Physical capital input 127.45 0.800 0.877 0.954
Labor input 186.46 0.836 0.920 1.004
Green knowledge stock 241.33 0.862 0.918 0.973
Non-green knowledge stock 444.31 0.912 0.958 1.004

Note: Estimation of the bias-corrected version of α (Bailey et al., 2016b) and the CD statistic (Pesaran,
2004, 2015a). α̂ refers to the point estimate of the exponent of cross-sectional dependence according to
equation (13) of Bailey et al. (2016b). ∗ 90% level confidence bands. We follow Bailey et al. (2016b) and
Ertur and Musolesi (2017) in preferring Holm’s procedure over Bonferroni’s. The CD-statistic tends to
N (0, 1) under the null of weak CSD as N and T →∞ (Pesaran, 2015a).
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Table 3. Main estimation: static production functions

2FE FD CCEP MG CCEMG

Physical capital input 0.133*** 0.0990*** 0.107*** 0.138*** 0.107***
(0.0215) (0.0129) (0.0181) (0.0135) (0.0122)

Labor input 0.605*** 0.239*** 0.423*** 0.470*** 0.449***
(0.0592) (0.0299) (0.0575) (0.0377) (0.0378)

Green knowledge stock -0.104*** -0.0472** -0.0623* 0.0112 -0.0308
(0.0293) (0.0198) (0.0333) (0.0369) (0.0450)

Non-green knowledge stock 0.214*** 0.0784*** 0.0724** 0.173*** 0.221***
(0.0238) (0.0207) (0.0345) (0.0437) (0.0581)

Year dummies Yes Yes No Demeaned No
Order of integration I(1) I(0) I(0) I(0) I(0)
CD Test 0.79 2.81 6.00 8.13 3.55
¯̂ρ 0.001 0.003 0.006 0.009 0.004
| ¯̂ρ| 0.449 0.202 0.298 0.208 0.210
α̂ 0.559 0.630 0.858 0.646 0.615
α̃ 0.610 0.650 0.871 0.648 0.624
Observations 6750 6480 6750 6750 6750
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. Order of integration refers to the Pesaran (2007) test for unit roots. I(0) refers to the case
where the null of a unit root is rejected at 10% level for all lag augmentations until two lags. I(0)/I(1)
indicates mixed results, i.e. if null is rejected in some, but not all cases. I(1) refers to the case where
the null is never rejected at 10% level. α̂ is the bias-corrected version of α given by equation (13) of
Bailey et al. (2016b). α̃ refers to the version robust against weak CSD in the errors and autocorrelation
of the factors. We use four principal components to construct the estimate robust against weak CSD in
the error term. ¯̂ρ is the average pairwise correlation coefficient, and | ¯̂ρ| the average pairwise absolute
correlation coefficient.
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Table 4. Dynamic production functions

BB(1) BB(2) BB(3) CS-DLP CS-DLMG

Long-run coefficients
Physical capital input 0.171 -0.193* -0.222 0.125*** 0.171***

(0.114) (0.105) (0.181) (0.242) (0.026)
Labor input 0.319*** 0.670*** 0.326** 0.421*** 0.280***

(0.121) (0.108) (0.149) (0.065) (0.080)
Green knowledge stock -0.761*** -0.381** -0.195 -0.028 -0.086

(0.151) (0.159) (0.215) (0.051) (0.104)
Non-green knowledge stock 0.864*** 0.766*** 0.708*** 0.083* 0.265**

(0.129) (0.137) (0.176) (0.045) (0.132)

Year dummies Yes Yes Yes No No
Order of integration I(0) I(0) I(0) I(0) I(0)
CD Test 2.95 3.88 -4.44 3.47 -0.78
α̂ 0.641 0.585 0.592 0.747 0.524
α̃ 0.659 0.608 0.606 0.773 0.582
Observations 6480 6210 6210 6210 6210
Regions 270 270 270 270 270
No. of instruments 144 143 53 - -
AR2 test 0.063 0.102 0.825 - -
Sargan test 0.000 0.000 0.094 - -
Hansen test 0.000 0.000 0.001 - -

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are
calculated with the delta method from the standard errors of the short-run coefficients robust against
heteroskedasticity and autocorrelation for BB. CS-DL standard errors are based on the nonparametric
variance estimators given in Chudik et al. (2016). Order of integration refers to the Pesaran (2007) test
for unit roots. I(0) refers to the case where the null of a unit root is rejected at 10% level for all lag
augmentations until two lags. I(0)/I(1) indicates mixed results, i.e. if null is rejected in some, but not
all cases. I(1) refers to the case where the null is never rejected at 10% level. α̂ is the bias-corrected
version of α given by equation (13) of Bailey et al. (2016b). α̃ refers to the version robust against weak
CSD in the errors and autocorrelation of the factors. We use four principal components to construct the
estimate robust against weak CSD in the error term. Hansen / Sargan test and AR2 test refer to p-values.
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Table 5. Static production functions: different subgroups of green technologies

Alternative energy production Recycling Transportation Energy efficiency
FD CCEMG FD CCEMG FD CCEMG FD CCEMG

Physical capital input 0.100*** 0.113*** 0.112*** 0.113*** 0.112*** 0.109*** 0.0967*** 0.114***
(0.0133) (0.0121) (0.0153) (0.0132) (0.0148) (0.0134) (0.0125) (0.0126)

Labor input 0.230*** 0.421*** 0.229*** 0.436*** 0.208*** 0.422*** 0.222*** 0.411***
(0.0294) (0.0364) (0.0325) (0.0386) (0.0308) (0.0435) (0.0302) (0.0387)

Green knowledge stock -0.0180 0.0490 -0.0129 -0.0268 -0.0136 -0.0128 -0.0199 -0.0664
(0.0161) (0.0371) (0.0150) (0.0697) (0.0138) (0.0296) (0.0131) (0.0407)

Non-green knowledge stock 0.0555*** 0.131** 0.0549*** 0.0340 0.0592*** 0.151** 0.0581*** 0.221***
(0.0204) (0.0542) (0.0200) (0.0536) (0.0208) (0.0686) (0.0193) (0.0677)

Year dummies Yes No Yes No Yes No Yes No
Observations 6,360 6,625 5,880 6,125 5,760 6,000 6,240 6,500
Regions 265 265 245 245 240 240 260 260

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of heteroskedasticity-robust sandwich type for FD. Standard
errors for CCEMG are based on the nonparametric variance estimators given in Pesaran (2006). For each subgroup there are different regions which have no
single patent at all for each year. We exclude those regions for each subgroup, resulting in slightly different sample sizes for each subgroup. Non-green knowledge
stocks are always constructed from total patents minus the green subgroup patents.
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Table 6. Static production functions: EU15 subsample

2FE FD CCEP MG CCEMG

Physical capital input 0.0758*** 0.0654*** 0.0871*** 0.137*** 0.121***
(0.0267) (0.00970) (0.0244) (0.0152) (0.0149)

Labor input 0.687*** 0.208*** 0.320*** 0.456*** 0.407***
(0.0585) (0.0326) (0.0679) (0.0430) (0.0430)

Green knowledge stock -0.0288 -0.0513** -0.104** -0.0314 -0.0242
(0.0320) (0.0200) (0.0411) (0.0496) (0.0567)

Non-green knowledge stock 0.0240 0.00767 -0.0124 0.105 0.287***
(0.0346) (0.0277) (0.0709) (0.0766) (0.0988)

Year dummies Yes Yes No Demeaned No
Order of integration I(1) I(0) I(0) I(0) I(0)
CD Test 4.19 6.59 9.68 5.34 2.82
¯̂ρ 0.006 0.009 0.013 0.007 0.004
| ¯̂ρ| 0.445 0.209 0.285 0.206 0.208
α̂ 0.697 0.702 0.830 0.725 0.563
α̃ 0.730 0.721 0.839 0.744 0.560
Observations 5200 4992 5200 5200 5200
Regions 208 208 208 208 208

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. Order of integration refers to the Pesaran (2007) test for unit roots. I(0) refers to the case
where the null of a unit root is rejected at 10% level for all lag augmentations until two lags. I(0)/I(1)
indicates mixed results, i.e. if null is rejected in some, but not all cases. I(1) refers to the case where
the null is never rejected at 10% level. α̂ is the bias-corrected version of α given by equation (13) of
Bailey et al. (2016b). α̃ refers to the version robust against weak CSD in the errors and autocorrelation
of the factors. We use four principal components to construct the estimate robust against weak CSD in
the error term. ¯̂ρ is the average pairwise correlation coefficient, and | ¯̂ρ| the average pairwise absolute
correlation coefficient.
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Table 7. Static production functions: non-EU15 subsample

2FE FD CCEP MG CCEMG

Physical capital input 0.160*** 0.157*** 0.130*** 0.0972*** 0.100***
(0.0437) (0.0309) (0.0322) (0.0268) (0.0253)

Labor input 0.490*** 0.310*** 0.352*** 0.453*** 0.281***
(0.103) (0.0476) (0.0985) (0.0990) (0.0789)

Green knowledge stock -0.0906* -0.00654 -0.0379 -0.0984** -0.149**
(0.0460) (0.0375) (0.0681) (0.0454) (0.0665)

Non-green knowledge stock 0.248*** 0.0467 0.00362 0.225*** 0.116**
(0.0437) (0.0354) (0.0452) (0.0495) (0.0570)

Year dummies Yes Yes No Demeaned No
Order of integration I(1) I(0) I(0) I(0) I(0)
CD Test -2.91 4.63 0.39 1.05 0.54
¯̂ρ -0.013 0.022 0.002 0.005 0.003
| ¯̂ρ| 0.426 0.244 0.262 0.242 0.221
α̂ 0.202 0.626 0.681 0.514 0.442
α̃ 0.665 0.641 0.767 0.553 0.500
Observations 1550 1488 1550 1550 1550
Regions 62 62 62 62 62

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. Order of integration refers to the Pesaran (2007) test for unit roots. I(0) refers to the case
where the null of a unit root is rejected at 10% level for all lag augmentations until two lags. I(0)/I(1)
indicates mixed results, i.e. if null is rejected in some, but not all cases. I(1) refers to the case where
the null is never rejected at 10% level. α̂ is the bias-corrected version of α given by equation (13) of
Bailey et al. (2016b). α̃ refers to the version robust against weak CSD in the errors and autocorrelation
of the factors. We use four principal components to construct the estimate robust against weak CSD in
the error term. ¯̂ρ is the average pairwise correlation coefficient, and | ¯̂ρ| the average pairwise absolute
correlation coefficient.
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Appendix

Part A: Proofs and Theory

Proof of Proposition 1

Linearizing (2.20)-(2.22) around their steady states, we may express the linearized core
dynamics of our model in the form ċ

k̇p
k̇g

 = Π

 c− c̃
kp − k̃p
kg − k̃g

 ,
with

Π ≡

 0 (σp − 1)
[
δ + ρ+ n

(
1− θ + σnθ

1−σ̃

)]
k̃−1p σg

[
δ + ρ+ n

(
1− θ + σnθ

1−σ̃

)]
k̃−1g

−(1− τ) π22 (1− τ) σg
κα(1+ξg)

[
δ + ρ+ n

(
1− θ + σnθ

1−σ̃

)]
−τ τ σp

(1−κ)α(1−ξp)

[
δ + ρ+ n

(
1− θ + σnθ

1−σ̃

)]
π33

 ,
and

π22 ≡
(1− τ)σp

[
n
(
θσn
1−σ̃ − θ + 1

)
+ δ + ρ

]
α(1− κ) (1− ξp)

− nσn
1− σ̃

− δ,

π33 ≡
τσg

[
n
(
θσn
1−σ̃ − θ + 1

)
+ δ + ρ

]
ακ (ξg + 1)

− nσn
1− σ̃

− δ.

The first Eigenvalue of matrix Π is given by δ(σ̃−1)−nσn
1−σ̃ which is negative provided

that σ̃ < 1. As the Determinant of Π, det(Π) is positive for σ̃ < 1, the second and third
Eigenvalue must be of opposite sign as the Determinant of a symmetric matrix is also
equal to the product of its Eigenvalues (Simon and Blume, 1994, Theorem 23.9). As a
consequence, we have two negative and one positive Eigenvalue for σ̃ < 1. Thus, the
stable manifold, which is the hyperplane generated by the associated Eigenvectors, has
dimension two (see Simon and Blume, 1994). In a nutshell, since our system features two
state variables, kg and kp, and one jump variable, c, the equilibrium yields a unique stable
saddle path.
For our calibrated example, we obtain the following real Eigenvalues: λ1 = 0.253534, λ2 =
−0.152932, λ3 = −0.0410526, and det(Π) = 0.00159175.
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Impulse Responses for the Environmental Policy Shock
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Figure A1. Transitional dynamics for moderate environmental externalities (0 < σp < 1 and
σg < 1). Note: For the majority of the parameter space, we rely on standard values from the
literature: θ → 2.5, n → 0.02, ρ → 0.04, σn → 0.8, δ → 0.02, α → 0.2, β → 0.1, κ → 0.2, ξg →
0.1, ξp → 0.1, µ → 0.3, φp → 0.3, φg → 0.1. Thus, this calibration indicates slight increasing
returns to scale: σn+ σ̃ = 1.04. Moreover, we have σp = 0.15 and σg = 0.09 showing a moderate
influence of non-internalized, environmental externalties.
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Part B: Time-Series Properties and Descriptive Statistics

Correlations

Table B1. Pairwise correlation matrix: total variation

yit kk,it lit kg,it kp,it ȳt k̄k,t l̄t k̄g,t k̄p,t

yit 1

kk,it .9335 1

lit .6921 .6628 1

kg,it .7955 .7236 .3121 1

kp,it .8198 .7518 .3142 .9723 1

ȳt .1342 .1166 -.0650 .2760 .2586 1

k̄k,t .1291 .1211 -.0558 .2605 .2457 .9626 1

l̄t -.1110 -.0860 .0785 -.2686 -.2461 -.8276 -.7100 1

k̄g,t .1290 .1099 -.0735 .2871 .2667 .9616 .9074 -.9358 1

k̄p,t .1299 .1114 -.0724 .2867 .2670 .9685 .9200 -.9218 .9989 1

Note: Pairwise unconditional correlation coefficients. Cross-sectional averages are included.

Table B2. Pairwise correlation matrix: within dimension

yit kk,it lit kg,it kp,it ȳt k̄k,t l̄t k̄g,t k̄p,t

yit 1

kk,it .4937 1

lit -.0267 -.0837 1

kg,it .6017 .3420 -.4472 1

kp,it .6892 .4019 -.4416 .9161 1

ȳt .6633 .3889 -.4651 .8560 .8641 1

k̄k,t .6385 .4040 -.3990 .8078 .8209 .9626 1

l̄t -.5490 -.2869 .5620 -.8331 -.8224 -.8276 -.7100 1

k̄g,t .6378 .3666 -.5259 .8902 .8912 .9616 .9074 -.9358 1

k̄p,t .6424 .3717 -.5180 .8892 .8922 .9685 .9200 -.9218 .9989 1

Note: Pairwise unconditional correlation coefficients for the within-dimension. Cross-sectional aver-
ages are included.
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Table B3. Correlation between dif-
ferent knowledge stocks: total varia-
tion

kag,it kap,it kbg,it kbp,it

kag,it 1

kap,it .9723 1

kbg,it .9948 .9746 1

kbp,it .9629 .9969 .9709 1

Note: Pairwise unconditional correla-
tion coefficients. Compared are knowl-
edge stocks based on our main approach
(kag,it) with those computed with the per-
petual inventory method with a depreci-
ation rate of 10 % (kbg,it).

Table B4. Correlation between dif-
ferent knowledge stocks: within di-
mension

kag,it kap,it kbg,it kbp,it

kag,it 1

kap,it .9161 1

kbg,it .9613 .9030 1

kbp,it .8433 .9726 .8701 1

Note: Pairwise unconditional correla-
tion coefficients for the within dimension.
Compared are knowledge stocks based
on our main approach (kag,it) with those
computed with the perpetual inventory
method with a depreciation rate of 10 %
(kbg,it).
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PURTs

Table B5. Panel unit root tests: constant

lags yit lit kk,it kg,it kp,it

0 -1.82(0.03) -3.16(0.00) -8.95(0.00) -0.84(0.20) -4.90(0.00)

1 -0.63(0.27) -6.37(0.00) -0.97(0.17) -4.31(0.00) -1.55(0.06)

2 0.44(0.67) -2.35(0.01) 2.00(0.98) -3.07(0.00) 0.20(0.58)

3 0.85(0.80) 1.14(0.87) 6.50(1.00) 0.21(0.59) -0.35(0.36)

Note: Panel unit root test of the second generation of Pesaran (2007). Constant
added, no trend. Reported are Z statistics and p-values in brackets. All individual
groups are integrated of order 1 under the null hypothesis. Implemented in STATA
with the multipurt routine written by Eberhardt (2011), making use of the pescadf
command by Lewandowski (2007) and the xtfisher routine by Merryman (2005).
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Sample Overview

The following maps are created in R (R Core Team, 2020) with the tmap package (Ten-
nekes, 2018), additionally complemented mainly with the package sf (Pebesma, 2018).
The categories on which the coloring is based on are adopted from Iammarino et al.
(2019) and correspond to: “Very high”: 150% of the average (over all regions) or greater;
“High”: 120-149 % of the average; “Medium”: 75-119 % of the average; “Low”: less than
75% of the average.

Low
Medium
High
Very high

(a) 1991-2003

Low
Medium
High
Very high

(b) 2004-2015

Figure B1. Labor deflated green knowledge stocks. Note: Green knowledge stocks divided by
labor input averaged for the first and the second period of the sample. For greater clarity, we excluded
some regions (FRA2, FRA3, FRA4, ES70, PT20, PT30), which are geographically far away. Shapefiles
are obtained from Eurostat, c©EuroGeographics for the administrative boundaries.
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(a) 1991-2003
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Figure B2. Labor productivity. Note: Value added divided by labor input averaged for the first
and the second period of the sample. For greater clarity, we excluded some regions (FRA2, FRA3,
FRA4, ES70, PT20, PT30), which are geographically far away. Shapefiles are obtained from Eurostat,
c©EuroGeographics for the administrative boundaries.
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Part C: Further Robustness Results

Table C1. Static production functions: lagged inputs

2FE FD CCEP MG CCEMG

Physical capital input 0.114*** -0.000344 0.0216 0.0847*** 0.00363
(0.0218) (0.00740) (0.0147) (0.0122) (0.0107)

Labor input 0.530*** 0.110*** 0.271*** 0.304*** 0.120***
(0.0595) (0.0194) (0.0520) (0.0355) (0.0351)

Green knowledge stock -0.105*** -0.0437** -0.0411 -0.0364 -0.0579
(0.0307) (0.0178) (0.0415) (0.0387) (0.0457)

Non-green knowledge stock 0.228*** 0.0891*** 0.0661* 0.200*** 0.0806
(0.0244) (0.0195) (0.0357) (0.0450) (0.0517)

Year dummies Yes Yes No Demeaned No
Observations 6480 6210 6480 6480 6480
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. All production inputs are lagged by one period.

Table C2. Static production functions: physical capital stock

2FE FD CCEP MG CCEMG

Physical capital input 0.538*** 0.255*** -0.0166 0.400*** 0.223**
(0.0440) (0.0721) (0.115) (0.0592) (0.110)

Labor input 0.447*** 0.256*** 0.465*** 0.518*** 0.504***
(0.0456) (0.0314) (0.0643) (0.0368) (0.0396)

Green knowledge stock -0.0763*** -0.0500** -0.0748** -0.0589 -0.0289
(0.0236) (0.0209) (0.0319) (0.0412) (0.0552)

Non-green knowledge stock 0.142*** 0.0511** 0.0741** 0.160*** 0.129
(0.0198) (0.0231) (0.0300) (0.0572) (0.0827)

Year dummies Yes Yes No Demeaned No
Observations 6750 6480 6750 6750 6750
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. Physical capital input refers now to a capital stock computed with the perpetual inventory
method from gross fixed capital formation.
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Table C3. Static production functions: no physical capital

2FE FD CCEP MG CCEMG

Labor input 0.638*** 0.265*** 0.462*** 0.596*** 0.516***
(0.0574) (0.0314) (0.0576) (0.0433) (0.0376)

Green knowledge stock -0.121*** -0.0508** -0.0599* -0.00420 0.00327
(0.0304) (0.0210) (0.0334) (0.0415) (0.0461)

Non-green knowledge stock 0.246*** 0.0846*** 0.0819*** 0.168*** 0.144**
(0.0257) (0.0220) (0.0298) (0.0474) (0.0569)

Year dummies Yes Yes No Demeaned No
Observations 6750 6480 6750 6750 6750
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively.

Table C4. Static production functions: diffusion stocks and applicant

2FE FD CCEP MG CCEMG

Physical capital input 0.157*** 0.0997*** 0.113*** 0.126*** 0.104***
(0.0223) (0.0129) (0.0192) (0.0137) (0.0134)

Labor input 0.576*** 0.236*** 0.365*** 0.463*** 0.427***
(0.0608) (0.0299) (0.0476) (0.0407) (0.0420)

Green knowledge stock -0.0544** -0.0152 -0.0159 0.0320 -0.0265
(0.0239) (0.0165) (0.0261) (0.0321) (0.0446)

Non-green knowledge stock 0.150*** 0.0287 0.0130 0.149*** 0.127**
(0.0244) (0.0202) (0.0291) (0.0366) (0.0577)

Year dummies Yes Yes No Demeaned No
Observations 6750 6480 6750 6750 6750
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. Knowledge stocks are computed as in the main model, but patents are assigned to regions
based on the address of the applicant of the patent.
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Table C5. Static production functions: perpetual inventory stocks and inventor

2FE FD CCEP MG CCEMG

Physical capital input 0.126*** 0.0990*** 0.115*** 0.133*** 0.126***
(0.0206) (0.0129) (0.0194) (0.0145) (0.0133)

Labor input 0.592*** 0.237*** 0.474*** 0.488*** 0.480***
(0.0577) (0.0301) (0.0566) (0.0384) (0.0347)

Green knowledge stock -0.0388* -0.00266 -0.0255 0.0162 0.0256
(0.0216) (0.00933) (0.0173) (0.0189) (0.0230)

Non-green knowledge stock 0.175*** 0.0321*** 0.0201 0.110*** 0.119***
(0.0180) (0.0113) (0.0214) (0.0266) (0.0344)

Year dummies Yes Yes No Demeaned No
Observations 6750 6480 6750 6750 6750
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. Knowledge stocks are computed with the perpetual inventory method. Patent assignment
is based on the address of the inventor, as in the main approach.

Table C6. Static production functions: U-shaped relationship of green knowledge

2FE FD CCEP MG CCEMG

Physical capital input 0.131*** 0.0990*** 0.116*** 0.115*** 0.134***
(0.0217) (0.0129) (0.0211) (0.0125) (0.0147)

Labor input 0.597*** 0.238*** 0.416*** 0.451*** 0.401***
(0.0581) (0.0300) (0.0570) (0.0376) (0.0390)

Green knowledge stock -0.0648 -0.0392 -0.164*** -0.0115 0.0235
(0.0403) (0.0285) (0.0599) (0.0911) (0.194)

Non-green knowledge stock 0.196*** 0.0771*** 0.104*** 0.220*** 0.138**
(0.0262) (0.0212) (0.0306) (0.0512) (0.0641)

(Green knowledge stock × -0.00623 -0.00194 0.0303** -0.00888 -0.0374
Green knowledge stock) (0.00465) (0.00373) (0.0120) (0.0140) (0.0833)

Year dummies Yes Yes No Demeaned No
Observations 6,750 6,480 6,750 6,750 6,750
Regions 270 270 270 270 270

Note: Asterisks indicate significance at ∗ 10%, ∗∗ 5%, ∗∗∗ 1%. Standard errors in parentheses are of
heteroskedasticity-robust sandwich type for 2FE and FD. Standard errors for CCEP, CCEMG and MG
are based on the nonparametric variance estimators given in Pesaran (2006) and Pesaran et al. (1999),
respectively. To allow for nonlinearities, the procedure described by De Vos and Westerlund (2019) is
used. Specifically, we augment the regression by cross-sectional averages of the linear regressors only,
excluding cross-sectional averages of the dependent variable and the squared term.
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