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Abstract

Modern digital technologies enable behavioral interventions through per-
sonalized feedback and goal-setting in a variety of applications. While psy-
chologists have long argued that goals can motivate effort even when not
tied to material incentives, there is little guidance on how to incorporate non-
binding goals into economic decision-making and policy intervention frame-
works. We provide causal evidence on the effects of goal-setting and real-
time feedback from a randomized field experiment (N = 525 households) in
the context of water conservation in Singapore, using smart meters to col-
lect fine-grained behavioral measures continuously over a duration of 4 to 6
months. Our results provide strong evidence that exogenous goals can in-
duce significant conservation effect on top of real-time feedback if they are
both challenging and attainable. The impact of goals is mostly “local”: effects
are particularly strong when a goal is in sight, but quickly die off when get-
ting out of reach, suggesting a warm glow effect. Interestingly, goals seem
to become less meaningful over time, although average conservation effects
remain stable, which is consistent with nonbinding goals taking on the role of
norms or defaults.
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1. Introduction

Individuals frequently act in ways that are not in line with their own values and inten-
tions. For example, gym members want to stay in shape and healthy, yet exercise less
often than they initially plan to (DellaVigna and Malmendier, 2006); students want to be
well rested in the morning, yet stay up late anyway (Avery et al., 2019); entrepreneurs
want to manage their businesses effectively, yet fail to follow simple rules for good finan-
cial practice (Drexler et al., 2014). One particularly relevant domain is pro-environmental
behavior. Amidst growing public concern about societal challenges due to climate change
and resource scarcity, many people are willing to make personal sacrifices in order to
protect the environment, yet often fail to act pro-environmentally in their everyday lives
(Kollmuss and Agyeman, 2002; Frederiks et al., 2015). Such intrapersonal conflicts may
arise, e.g., due to lack of willpower or self-control, forgetfulness, or because the benefits
of some behavior appear less immediate and salient than its costs.

Goal-setting is a simple and popular motivational tool. A large body of literature in
psychology has demonstrated the motivating power of goals even when they are non-
binding, i.e. there are no explicit material rewards tied to achieving or failing the goal
(Locke and Latham, 1990, 2002). Similarly, the notion of “Management by Objectives”
(Drucker, 1954) has been highly influential in both the theory and practice of organi-
zational management. While economists have long studied the use (monetary) bonus
incentives in organizations, they have only recently begun exploring the role of payoff-
irrelevant goals, mostly in the context of self-set goals that agents can use as soft com-
mitment tools against self-control problems (e.g. Koch and Nafziger, 2011; Harding and
Hsiaw, 2014; Allen et al., 2017; Clark et al., 2020).1

Advances in modern digital technologies create a plethora of new opportunities for
delivering simple and scalable interventions through personalized feedback and goal-
setting, as they enable precise quantitative measurement of behavioral outcomes in many
domains of our everyday lives, such as health behavior (Chapman et al., 2015; Edwards
et al., 2016) or electricity consumption (Loock et al., 2013). Availability of large-scale fine-
grained data also opens up new opportunities for behavioral scientists to evaluate the
impact of different goals and to understand the underlying behavioral mechanisms.

In this paper, we provide causal evidence on the effects of goal-setting and real-time
feedback from a randomized field experiment with over 2,000 individuals from 525 house-
holds in the context of everyday water conservation, using smart meters to continuously
collect fine-grained behavioral measures over a duration of 4 to 6 months. We conducted
the experiment in Singapore, a severely water-stressed country, where government agen-
cies have made it a high priority to reduce daily domestic water consumption per capita

1Some recent studies have considered the role of non-monetary incentives to encourage effort provi-
sion in organizations, e.g. symbolic rewards (Kosfeld and Neckermann, 2011; Gallus, 2017) or tournaments
without prizes (Blanes i Vidal and Nossol, 2011).
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to 130 liters by 2030 (down from 141 liters in 2018), for example by promoting a wide
range of water savings campaigns, often stressing that “every drop counts”.2 In our
study, we target a particularly water-intensive activity, namely showering, which con-
stitutes almost 30% of total water usage in Singaporean households (PUB, 2018a). All
households were equipped with Amphiro smart shower meters that were directly in-
stalled in the shower and that automatically recorded detailed information on water us-
age patterns every time the shower is used. Overall, we collected data from about 320,000
shower observations over the entire course of the study.

The smart meter also allowed us to implement behavioral interventions by showing
various information to subjects in real time through an integrated liquid-crystal display
(Tiefenbeck et al., 2018). We randomly assigned households into one of seven experimen-
tal condition: one Control condition, one real-time feedback only condition (RTF), and
five different Goal conditions. Irrespective of the condition, we programmed each device
to include a baseline period of 20 showers at the beginning of the study in which it only
displayed the current water temperature, which gives us a measure water consumption
behavior in absence of any intervention. Thus, we have experimental treatment variation
both across and within subjects.

In the Control condition, the display continued to only show the temperature infor-
mation throughout the rest of the study. In constrast, from the 21st shower onwards,
devices in the RTF condition started displaying in real time how many liters of water the
individual is using for the current shower, thus allowing them to track their water con-
sumption in a simple and intuitive way. In addition to real-time feedback on the absolute
amount of water used, subjects in the five Goal conditions were further assigned a fixed
conservation target and encouraged to keep their water usage for each shower below the
respective target. The smart meters also indicated visually whether the current shower
is below the target (the goal can still be achieved) or above it (the goal has been missed).
However, the goal was nonbinding, i.e. there were no consequences tied to whether it
was achieved or not. In a pilot study, we found that water usage per shower is roughly
20 liters on average, so we chose 10L, 15L, 20L, 25L, and 35L as possible conservation tar-
gets for the main study and randomly assigned one of these goals to each household in
the Goal condition. While allowing subjects to set goals for themselves would have been
an interesting extension, we focus here solely on exogenous goals in order to be able to
causally estimate the effect of different goals on behavior.

Our experimental design allows us to cleanly identify the effects of real-time feedback
and goal-setting on water conservation behavior by comparing outcomes across groups.
In particular, it also separates the role of an exogenous goal from feedback per se. Assign-
ing a goal is typically accompanied with feedback on one’s behavior, which can already

2See e.g. Taylor and Accheri (2019), as well as public information provided by Singapore’s National Wa-
ter Agency (pub.gov.sg/savewater) and Government Agency (gov.sg/features/every-drop-counts).
Accessed December 16, 2021.
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have an effect of its own, as it provides information, focuses attention, and also enables
individuals to set and pursue targets by themselves (e.g. Allen et al., 2017; Tiefenbeck et
al., 2018). Comparing the Goal conditions with the RTF condition allows us to test in a
concise way the additional impact of externally-set goals on behavior. We further gener-
ate exogenous variation in the difficulty level of the goal, ranging from very challenging
(10L) to very easy (35L) for the average subject. Thus, we can evaluate the prediction
from goal-setting theory that the effectiveness of goals increases in difficulty, as long as
they remain realistic. Moreover, the continuous and high-frequency measurement of con-
sumption behavior over a duration of several months gives us a sufficiently large data
set to examine fine-grained behavioral responses depending on distance to the goal, as
well as whether the effects of goal-setting are short-lived or remain stable over time.

Overall, the empirical results show that our interventions have a strong motivating
effect on water conservation behavior. Consistent with earlier studies, we find that real-
time feedback alone already leads to significant reductions in average water usage by
1.87 liters per shower relative to the Control group, which corresponds to an effect size of
about 9 percent. Importantly, externally-set goals can increase conservation efforts dra-
matically, the reductions being twice as high (3.92 liters per shower) in the 15L condition –
which turned out to be the most effective of all Goal conditions based on point estimates.
However, we also find that the easist (35L) did not lead to any additional reductions in
water usage compared to real-time feedback alone, with the estimated conservation ef-
fect of 1.11 liters even being somewhat smaller. In addition, the relation of goal difficulty
and effort appears to be non-monotonic: while the 20L and 25L goal lead to a reduction
of around 3.0 liters per shower on average, the point estimate for the most ambitious
goal (10L) is 2.97 liters and thus smaller than the one for the moderately ambitious 15L
goal. This non-monotonic pattern of the point estimates bears close resemblence to the
conventional notion that the best goals are challenging yet attainable (Locke and Latham,
1990; Heath et al., 1999).

Furthermore, we find that goals can add motivation particularly for consumers who
were already very water efficient without any intervention. While real-time feedback
alone had no significant effect for consumers with below-median baseline, the 25L to 10L
goal conditions induced water savings per shower of between 1.6 liters (13%) to 2.2 liters
(17%) on average. In all treatment groups, the conservation effects are considerably larger
for high-baseline consumers, as they have larger scope for reducing consumption, but the
relative marginal benefit of externally-set conservation goals tends to be lower, as real-
time feedback alone already reduces water usage by 3.25 liters per shower. Interestingly,
the easy 35L condition was in fact counterproductive for this subsample of consumers,
suggesting that goals may play the role of defaults or norms and potentially crowd out
intrinsic motivation.

Generally, an additional implication of higher baseline usage is that a given conserva-
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tion goal tends to become more challenging and less attainable. Accordingly, the pattern
in heterogeneous effects for different Goal conditions matches the non-monotonic pat-
tern in average treatment effect. For example, the interaction effects for the very easy 35L
and very hard 10L goal conditions were relatively weak, which can be explained by the
goal being either not challenging or not attainable, and thus irrelevant, for a significant
share of individuals. Accordingly, the goal which was most effective on average (15L)
also exhibited the strongst interaction effect. Non-parametric estimates of the interac-
tion patterns suggest that objectively easier goals start perform relatively better the more
water consumers consumed per shower in baseline, thus highlighting that large baseline
heterogeneity may create the oppportunity to improve effectiveness by tailoring different
goals to different individuals.

In addition to investigating differences in (conditional) average outcomes across exper-
imental conditions, we make use our sample of the around 300,000 shower observations
to further examine more fine-grained behavioral responses as a function of distance to
the experimentally assigned goal. Based on the RTF and Control conditions, we can fur-
ther construct experimental placebos to compare outcomes with and without an exoge-
nous goal, which offers methodological advantages to studies that rely on smoothness
assumptions about the counterfactual distribution (e.g. Allen et al., 2017). We observe
strong bunching at goals, with the share of showers in the 0.5 liter bin below a conser-
vation target being about 16% higher than the corresponding share in the RTF group.
Using non-parametric survival analysis methods, we find that hazard rates of showers
are mostly affected locally around a goal. As the amount of water used in the shower
approaches the goal, the stopping rate gradually increases, peaking in the last moments
before they would fail the goal. Intriguingly, we observe a sharp upward spike in the
stopping probability by 44% at the very last deciliter below it. However, after the water
volume has surpassed the conservation target, the hazard rate quickly drops to the level
of the RTF group. This pattern of stopping probabilities strongly suggests that individ-
uals experience a discontinuous jump in utility depending on whether they achieve the
goal or not, which may be interpreted as psychological bonus reward or warm glow. In
contrast, it is inconsistent with frequently used models of goals as reference points that
induce loss aversion (e.g. Heath et al., 1999; Koch and Nafziger, 2011; Gómez-Miñambres,
2012), as this would predict persistently higher hazard rates once the goal is surpassed.3

Finally, we investigate whether the motivational power of goals is short-lived or re-
mains stable over time. For instance, it may be the case that individuals simply become
numb towards attainment or failure of nonbinding goals after some time, e.g. due to
disengagement after repeated failure (Höpfner and Keith, 2021). In contrast, we find that
the average conservation effects of all treatments are remarkably stable over time, with no

3One might argue that a model with diminishing sensitivity could also predict fading effort in the loss
domain. However, even with diminishing sensitivity, local loss aversion predicts that the quitting hazard
should peak after the goal is surpassed, not before.

4



evidence of waning (or strengthening) over a period of 4 to 6 months. Seemingly at odds
with this finding, we also observe a significant decrease in bunching and goal attainment
rates over the course of the study, which indicates that individuals develop a more non-
chalant attitude towards the specific goal assigned at the beginning of the study. Thus,
externally-set goals seem to serve as norms or default for an acceptable level of water
usage per shower, with repeated experience leading individuals to form habits or adjust
their expectations.

Our paper contributes to the growing literature on demand-side approaches to pro-
mote pro-environmental behavior. Behavioral interventions aimed at overcoming such
barriers have been used to facilitate behavioral change in a variety of contexts such as
retirement savings or public health (Thaler and Sunstein, 2008; Madrian, 2014), and are
also regularly advocated as promising policy tool for fostering more environmentally
sustainable household consumption behavior (e.g. Dietz et al., 2009; Allcott and Mul-
lainathan, 2010; Reddy et al., 2017; Creutzig et al., 2018).4 For example, influential early
studies have demonstrated the impact of social-norm based interventions on household
energy and water conservation (e.g. Allcott, 2011; Ayres et al., 2013; Ferraro and Price,
2013). While these interventions typically provide feedback on aggregate household con-
sumption, recent studies have argued that interventions that enable better behavioral
control and learning, e.g. through activity-specific disaggregation (Gerster et al., 2020)
and higher frequency (Allcott and Rogers, 2014; Tiefenbeck et al., 2018), may increase the
effectiveness. For example, in a closely related studies, Tiefenbeck et al. (2018) provide
activity-specific real-time feedback in the shower through the same type of smart meter
that we use in this study and document a 22% conservation effect, or, in absolute terms,
a reduction of 0.6 kWh energy and 9 liters of water per shower. These results also repli-
cate in a sample without monetary incentives and without self-selection into the study
(Tiefenbeck et al., 2019). A natural question that we address is whether technology-based
feedback interventions, enabled by advances in digitization and smart metering, can be
enhanced by including further motivational tools like goal-setting.

Decades of studies in psychology have demonstrated the potential of nonbinding goals
(or “mere” goals) for improving task performance in a large variety of contexts (Mento
et al., 1987; Locke and Latham, 1990, 2002, 2019b). While economists have recently be-
gun exploring the use of goal-setting for example to motivate healthy food choice (Samek,
2019), student performance (Dobronyi et al., 2019; Clark et al., 2020), worker effort (Corgnet
et al., 2015; Brookins et al., 2017; Fan and Gómez-Miñambres, 2020), or energy conserva-
tion (Abrahamse et al., 2007; Harding and Hsiaw, 2014), there is no clear guidance yet
how to incorporate nonbinding goals into economic decision-making frameworks. We

4Pro-environmental interventions have drawn from a broad set of instruments such as information pro-
vision, social norms, goal-setting, etc. While the general findings are that non-monetary interventions can
be an effective tool in reducing energy and water usage, the quantitative effect size may be relatively small
(around 2%) on average in methodologically more rigorous studies. For reviews, see e.g. Abrahamse et al.
(2005), Fischer (2008), Delmas et al. (2013), Karlin et al. (2015), Andor and Fels (2018), Carlsson et al. (2021).
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contribute to the literature on goal-setting by providing field evidence from a random-
ized experiment in a diverse sample with continuous measurement of behavior over an
extended period of 4 to 6 months. While our results are consistent with many previous
findings from the psychology literature — in particular that goals can motivate effort
provision if they are challenging and attainable —, we further contribute to the under-
standing of goal-directed behavior by collecting a large data set of about 300,000 mea-
sured observations and examining fine-grained behavioral patterns in response to differ-
ent goals. In line with Allen et al. (2017), who document discontinuities in the distribu-
tion of marathon finish times at round numbers (e.g. 3h, 3:30h, ...), we observe bunching
of water volumes at the goal. Compared to Allen et al., our study offers methodologi-
cal advances by experimentally assigning different goals to subjects and their comparing
outcomes to subjects who did not receive any explicit goal. We further contribute to the
literature by providing evidence on nuanced dynamic effects of repeated everyday expo-
sure to a goal for several months.

Our empirical results also inform theoretical approaches to incorporate goals into eco-
nomic models. Psychologists typically state that a goal serves as a reference standard
for satisfaction (Locke and Latham, 1990).5 This has lead Heath et al. (1999) to propose
that a parsimonious way to account for many empirical regularities is that goals inherit
the properties of reference points in a prospect theory value function (Kahneman and
Tversky, 1979), with loss aversion and diminishing sensitivity around it. Although this
view is contentious among psychologists (Locke and Latham, 2019a), it has been adopted
as main modeling approach in economic studies of goal-setting (e.g. Koch and Nafziger,
2011, 2016; Gómez-Miñambres, 2012; Harding and Hsiaw, 2014; Clark et al., 2020), likely
because the presence of reference dependence and loss aversion in preferences has be-
come well-established in the economic literature by now (Della Vigna, 2009). For exam-
ple, numerous studies examine whether personal earning targets influence labor supply
choices (Camerer et al., 1997; Farber, 2005; Fehr and Goette, 2007; Crawford and Meng,
2011; Farber, 2015; Thakral and Tô, 2021). However, some studies have suggested that
goal attainment could also be associated with a discrete jump (“notch”) in the utility
function Allen et al. (2017); Markle et al. (2018); Kuhn and Yu (2021) as opposed to a
jump only in the marginal utility (“kink”).6 Our empirical results speak more in favor of
a model with a discrete psychological bonus utility rather than a model of loss aversion,
indicating that it may be more appropriate to interpret externally-set goals as norms or
defaults rather than loss-aversion-inducing reference points.

5For example, (Locke and Latham, 2002) state the following: “To say that one is trying to attain a goal
of X means that one will not be satisfied unless one attains X.” Locke and Latham (2013) explain that “a
specific, high goal eliminates ambiguity as to what constitutes high effective performance. It defines for an
individual what constitutes an acceptable level of performance.”

6Evidence on the “joy of winning” (Dohmen et al., 2011) as well as models of aspiration levels (Diecidue
and van de Ven, 2006) also argue that there may be discrete rewards attached to a binary representation of
success.
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The remainder of the paper is structured as follows: section 2 describes the institu-
tional details and the experimental design of the study. Section 3 provides descriptive
statistics on the experimental population. Section 4 present our empirical results on aver-
age conservation effects, and Section 5 examines fine-grained responses to goals in order
to better understand the underlying behavioral mechanisms. Section 6 concludes.

2. The empirical setup

In this section, we describe the randomized field experiment in Singapore, which is an
island city state in South East Asia with a population of 5.54 million — and one of the
most water-stressed countries in the world.

2.1. Sample recruitment and study procedures

We recruited household from public housing blocks (HDBs) in 27 geographical nodes
with varying population density and composition that are dispersed over the entire is-
land and selected to create a broadly representative cross-section of Singaporean house-
holds. Appendix Figure A1 shows the geographical distribution of the participating HDB
sites across the island. Note that 80% of the Singaporean population lives in HDB apart-
ments that are built and sold by the Housing Development Board.7

The recruitment process was as follows: After HDBs were selected based on logistical
and representativeness concerns, experimenters knocked on different flat doors — fol-
lowing a randomization protocol — and tried to convince households to participate in
the experiment, which was framed as water conservation study. 525 households with
in total over 2, 000 individual household members participated in our study. All house-
holds went through informed consent procedures, and the study was approved by the
IRB at the National University of Singapore. Assignment to experimental conditions was
randomized within HDBs, so that we had balanced samples in each geographical node.

We distributed smart meters to all participating households to measure their water us-
age in the shower and to deliver the real-time feedback and goal-setting interventions.
Deployment of the devices was carried out in June and July 2015 and the regular study
duration was four months, with a subset of household (22%) being recruited for an ad-
ditional 2 study months. A team of research assistants visited the households to install
the devices and to explain how they work. They also interviewed one adult household
member to answer a set of questions for the baseline survey. After the respective study
period had ended, we revisited the households on appointment to conduct a short end-
line survey and to retrieve their smart meters.8

7Sources: Department of Statistics Singapore (http://www.singstat.gov.sg). Singapore Housing &
Development Board (http://www.hdb.gov.sg/cs/infoweb/about-us).

8While direct retrievals were preferred, because we could check if devices were still installed and get a
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(a) Device installation (b) Installed device

Figure 1: Position of the Amphiro a1 smart meter in the shower.

2.2. The feedback and measurement technology

All participating households were equipped with one Amphiro a1 smart shower meter
for each bathroom in their apartment. The smart meter could be easily installed between
the shower head and the shower (see Figure 1), after which it measured and recorded
water usage variables of every shower taken. It is small, lightweight, and powered by
an integrated hydro turbine that does not noticeably affect water flow. Furthermore,
it features a smartphone-sized liquid crystal display, which we programmed to show
various types of information tailored specifically for the purposes of this study.

The device works as follows. Once the water flow in the shower starts, it turns on and
begins to measure, among others, the water volume, water temperature, and the time
passed since the beginning of the water extraction. Furthermore, its display becomes
active and starts to show information. When water flow stops, the device remains pow-
ered on for three minutes to allow for short breaks e.g. for applying soap or shampoo. If
water flow resumes within this three time frame, the device will continue measurement
from the point where it had previously stopped. Once water flow stops for more than
three minutes, the device terminates measurement, its display turns blank, and recorded
information is stored as a new observation point.9 One drawback of the lack of battery
is that the device cannot keep track of global time, so that showers are only recorded in
temporal order, but without time stamps.

We define “showers” as water extractions of at least 4.5 liters volume with an average
flow rate of at least 2 liters per minute, whereas we classify observations as non-shower

feeling of participants’ attitudes, not all of them could be reached easily and we arranged for device retrieval
via postal service for 25 households.

9This stopping criterion introduces a small ambiguity in the measurements, as we cannot rule out that in
some cases one shower is split into two, if it included a lengthy break in water flow or if two separate showers
are morphed into one, e,g, when one household member uses the shower immediately after another.
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(a) Mode 1 (b) Mode 2 (c) Mode 3 (d) Mode 3

Figure 2: Amphiro a1 display in different configurations

Notes: Temperature was shown only in the baseline period and for the control group. The device was in-
stalled such that the display faced directly towards the user.

water extractions otherwise.10 The smart meters only stored detailed usage data for ob-
servations that qualify as showers according to these criteria. The reason for this restric-
tion is that the storage capacity of each smart meter allowed for a maximum of 672 data
points, which was in fact reached by 16% of the study devices. Therefore, we wanted
to avoid wasting storage space for minor water extractions, e.g. for cleaning purposes.
However, we did program the devices to count the total number of all water extractions
as well as the cumulative amount of water used, also including extractions that did not
qualify as showers. Similarly, the device stored the number of showers from the 673rd
showers onward, as well as the average water volume used for these showers.

2.3. Experimental conditions

The smart meter could display tailored pieces of information to participants in real-time,
i.e., while they were using their shower. For the purposes of our study, we programmed
the smart meters to be in one of three possible modes, depending on the study progress
and the assigned treatment. In mode 1, the device only displayed information on the cur-
rent water temperature (in degrees Celsius); in mode 2, it provided real-time feedback on
the absolute amount of water used for the current shower; in mode 3, it additionally pro-
vided relative feedback on water usage vis à vis a fixed conservation goal. The different
display modes are illustrated in Figure 2.

Households were randomly assigned to one of seven experimental conditions and re-
ceived smart meters in the respective configurations. In the control condition, subjects
only ever saw information on water temperature while showering. In the real-time feed-
back only (RTF) condition, subjects’ had devices that also displayed real-time feedback
on current water usage, but did not include a conservation goal. This treatment closely

10A liter (L) corresponds to 33.8 fluid US ounces.
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resembled the ones in Tiefenbeck et al. (2018). Furthermore, there were five different Goal
conditions, in which subjects received devices that incorporated an exogenously assigned
volume goal in addition to real-time feedback on absolute water usage. The goals were
set at 10L, 15L, 20L, 25L, and 35L, respectively, and subjects were encouraged to keep
their water consumption below this amount.11 No explanations for the choice of the goal
were provided, and the specfic goal level was only revealed with the 21st shower, when
the intervention period began. From then on, it was displayed during the first ten sec-
onds of the shower on the LCD. During showering, the display showed an injunctive
message that rated the current water consumption level as “very good" if it was below 7
liters, "okay" if it was above 7 liters but below the respective conservation goal, and "too
much" if it exceeded the goal.

Irrespective of the experimental condition, all devices went through a baseline period
of 20 showers in which the device was in mode 1, so that it only displayed the water tem-
perature. This allows us to collect data of baseline water consumption of households in
the absence of real-time feedback or goal-setting. The interventions started with the 21st
shower, from which time on participants would always see the information designated
for their respective treatment group.

3. Data and descriptive statistics

Our main source of behavioral data comes from water usage measurements of over
300, 000 shower observations recorded by the smart meters, representing over 2, 000 in-
dividuals from more than 500 households that participated in the study. In addition, we
collected supplementary survey data from households at the beginning and the end of
the study, as well as from short questionnaires during the intervention. In this section,
we describe our data in more detail and provide summary statistics on our experimental
sample.

3.1. Water usage data

The smart meters recorded information on, among others, the water volume, water tem-
perature, and time duration of all showers taken during the study. All but 2 of the 884
study devices we had deployed could be retrieved from the households, but for 41 de-
vices we were not able to read out any valid data despite multiple attempts, potentially
due to defective storage. Furthermore, 14 devices had no data stored at all, probably be-
cause they were never used by the households. We also have to exclude 3 households to
which we had accidentally sent wrongly configured devices. Overall, we obtained valid

11We chose these specific targets based on data from a pilot trial with 37 households that were not part
of the main study. Our aim was to be able to assign goal that ranged in difficulty level from very difficult to
very easy.
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Table 1: Number of observations by experimental condition

Condition Households Persons Devices Showers recorded

Control group 74 324 119 (113) 46,467 (46,405)

RTF group 70 292 110 (100) 41,967 (41,898)

10L goal group 73 312 120 (112) 44,302 (44,243)

15L goal group 72 315 117 (108) 45,601 (45,507)

20L goal group 73 313 121 (118) 49,787 (49,736)

25L goal group 74 291 118 (112) 44,787 (44,745)

35L goal group 75 303 117 (111) 47,146 (47,103)

Total 511 2,150 822 (774) 320,057 (319,637)

Notes: Underlining indicates that the number represents a lower bound, due to partially
missing information for households that have not completed the baseline survey. The
number of persons in a household may also include temporary or part-time residents.
Numbers in brackets indicate observations for devices with at least 20 recorded showers.

water usage data for about 320, 000 recorded shower observations from 822 devices and
511 households, representing over 2, 000 individuals.12 Table 1 provides an overview of
the number of observations by experimental condition.

For most of our analyses, we only include devices that have recorded more than 20
shower observations, as devices with 20 observations or fewer stayed in baseline mode
for the entire study and do not help us in empirically identify the effect of our inter-
ventions. Excluded devices have most likely been installed in bathrooms that are very
infrequently used. Table 1 shows that this restricted analysis sample contains data from
774 devices, with the number of shower observations remaining close to 320, 000. Out of
these observations, 28, 493 showers were recorded after the device had reached its stor-
age limit of 672 data points. For these showers, we do not observe individual measures
of water usage, but instead of this we observe the average water volume of all post-limit
showers registered by a device. If not stated explicitly otherwise, we will also make use
of these imputed observations for analyzing impacts on average water usage per shower.

3.2. Survey data

To supplement our behavioral data on resource use in the shower, we administered a
baseline questionnaire to an adult household member when we installed the smart me-
ters at the beginning of the study. It contained a series of items on household compo-
sition, demographic characteristics, shower habits, as well as on attitudes and beliefs
towards water usage and water conservation — the latter including questions on gen-
eral environmental attitude, shower comfort, and perceived water consumption (“How

12In 4 cases, households claimed that their device was faulty and received a replacement device. We
included these households in the analysis sample, but excluded the replacement devices, because they had
a second baseline period of 20 showers.
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many liters of water do you think you use per shower?”). The response rate for the base-
line survey was 99%.

In addition, households were asked to comple a short online follow-up survey two
months after device installation, and households with study duration of six months com-
pleted an identical online survey again two months later. Finally, we conducted an in-
person endline survey when retrieving the devices, whenever possible with the same
individual who completed the baseline survey.13 The follow-up and endline surveys
contained questions on experiences with the shower meter, such as whether participants
believed that the it was helpful, stressful, effective in changing showering behavior, and
whether the goal was too difficult. In addition, they included the same set of questions
about attitudes and beliefs towards water usage and water conservation as in the baseline
survey. More than 95% of the households completed the follow-up and endline surveys.

3.3. Household characteristics

Descriptive statistics on household and participant characteristics are presented in Ta-
ble 2 and compared to the general Singaporean population in HDB dwellings.14 As we
recruited our sample mostly from larger HDBs, the average household in our study con-
sists of 4.2 members, while the average household size in HDBs in Singapore was 3.34
in 2015. The apartment of a modal household contained four to five bedrooms and two
bathrooms. 79% of the participating households are ethnic Chinese and 12% are ethnic
Indians, whereas ethnic Malay households form 5% of our sample. The composition is
roughly representative of the population in Singapore, albeit with an underrepresenta-
tion of Malays relative to Chinese, Indians, and Others. The average age of individuals
from participating households in our sample was 36.5 (median 35) — compared to the
HDB population average of 37.9 in Singapore. About 17% of the participants were below
age 15, and 10% were 65 years old or higher. Thus, our sample spans all age groups,
sometimes comprising three generations within the same household, which is not un-
common in Singapore. The female share among our subjects was 53%.

3.4. Number of showers and water extractions

On average, we observe about 414 showers per bathroom over the entire 4 (to 6) months
period of the trial, which corresponds to a frequency of approximately 1.3 recorded show-
ers per person every day.15 One concern about our intervention may be that individuals
compensate shorter showers with more showers or, vice versa, that they avoid shower-

1325 households sent their devices back via postal service, as we could not find a suitable retrieval ap-
pointment. In these cases, the final survey was either conducted over the phone or they filled out a paper-
based survey instead.

14Source: Department of Statistics Singapore (singstat.gov.sg).
15Calculation ... The net frequency adjusted for absences may be even higher.
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Table 2: Sample characteristics

Variable Category Frequency Sample share Pop. share

Apartment type 1- or 2-room 0 0% 7.0%
3-room 75 14.5% 22.8%
4-room 195 37.9% 40.0%
5-room or EM 245 47.6% 30.2%

Household size 1 or 2 persons 62 12.0% 33.8%
3 persons 98 19.1% 21.5%
4 persons 145 28.3% 23.2%
5 persons 107 20.9% 12.6%
6 or more persons 101 19.7% 8.8%

Gender Female 1,163 53.4% 50.9%
Male 1,013 46.6% 49.1%

Age group below 15 years 367 17.0% 15.2%
15 - 24 years 316 14.6% 13.0%
25 - 34 years 364 16.8% 14.9%
35 - 44 years 338 15.6% 15.5%
45 - 54 years 294 13.6% 15.7%
55 - 64 years 272 12.6% 14.0%
65 years and above 214 9.9% 11.8%

Ethnicity Chinese 1718 78.9% 74.3%
Indian 262 12.0% 9.0%
Malay 101 4.6% 13.3%
Other 97 4.5% 3.3%

Notes: Only household members for which the relevant questions in the deployment survey
were answered are included. Ethnicity is assumed to be the same among all household mem-
bers. Information on Singapore population obtained from the Department of Statistics (sing-
stat.gov.sg) and from the open repository of public data (data.gov.sg) created by the Govern-
ment of Singapore.

ing and thereby compromise basic hygiene needs. Furthermore, we may overestimate
effects of our intervention on overall water consumption if individuals partially relocate
water usage from the private shower to other facilities (e.g. wash basin, gym showers).
To alleviate these concerns, we compare the total recorded number of showers per bath-
room across experimental conditions in Figure 4. There is no evidence for differences in
the number of showers (p = 0.9682). We confirm this in further robustness checks in
Appendix Table A2.

Another issue could be that not all actual showers are recognized as such, because we
only record detailed data for water extractions that use at least 4.5 liters. The total num-
ber of water extractions per bathroom we observe during the study period is about 510
on average. While the share of non-shower extractions seems relatively large, it should
be considered that bathrooms in Singapore are often designed as closed cubicles, and that
shower heads are frequently used for cleaning purposes. Still, one may be worried that
our treatments had an effect along this margin, for example if individuals become more
likely to take longer water flow breaks within showers in a way that a single shower

13



Control

RTF

10l goal

15l goal

20l goal

25l goal

35l goal

 

0 100 200 300 400 500 600

Number of showers/extractions per bathroom

#showers: Control
#extractions: Control
#showers: RTF group
#extractions: RTF group
#showers: RTF + goal
#extractions: RTF + goal

Figure 4: Number of showers and water extractions by experimental condition

Notes: Average number of shower and water extractions per device (bathroom) by experimental condition.
Error whiskers represent 90% confidence intervals. Showers are defined as water extractions with at least
4.5 liters of volume.

is mistakenly recorded by the device as several extractions instead. Therefore, we ad-
ditionally compare the total number of all water extractions per bathroom by treatment
condition in Figure 4. Again, there are no significant differences across groups in our
sample (p = 0.9766).

Overall, we find no evidence that our interventions induce adjustments along the ex-
tensive margin, This is important, as it allows us to make full use of the panel structure
of our data and analyze (intensive-margin) water conservation effects at the level of in-
dividual shower observations rather than at the household level.

3.5. Baseline water consumption behavior

The baseline period of twenty showers per device at the beginning of the study allows us
to gain insight into households’ water consumption behavior in the shower in the absence
of any real-time feedback or goal-setting interventions. Summary statistics are presented
in Appendix Table A1. The average shower in the baseline period lasted 4.9 minutes (ex-
cluding breaks in water flow) and used up about 20.03 liters of water, which is about 50%
less compared to earlier studies using the Amphiro smart meter in non-tropical countries
(Tiefenbeck et al., 2018; Fang et al., 2020; Byrne et al., 2021). One reason for this is the
relatively low flow rate of 4.60 liters per minute on average, which is perhaps partly due
to overall lower water pressure in the high-rise HDB buildings, and partly due to the
use of instant heaters as opposed to central hot water heating. Another reason is that
Singapore’s climate is very warm and humid, which often necessitates short showers in
the middle of the day to rinse off the sweat and freshen up. This is also reflected in a low
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(b) Bathroom-level distribution
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Figure 5: Baseline water usage per shower in liters

Notes: The left panel shows the full distribution of water volumes across all showers in the baseline period
(first 20 showers of each device), cut off to the right at 100 liters. The right panel shows the distribution of
average baseline water volume per shower at the bathroom-level.

average water temperature of 33.8 degrees Celsius and a high shower frequency of 1.3
showers per day.

Figure 5a plots the histogram of water volumes based on more than 15, 000 showers in
the baseline period. The distribution is heavily right-skewed, with a significant share of
ultra-short showers (30.5%) that require less than 10 liters of water. The median shower
only uses 14.9 liters. Hoever, there is a long tail of showers with significantly higher water
consumption, with the 90th percentile lying at about 40 liters. The histogram of average
shower volumes at the bathroom-level in Figure 5b shows that there is still large het-
erogeneity in baseline consumption behavior across houeholds and bathrooms, but the
distribution becomes more concentrated and less heavily skewed, indicating substantial
within-household heterogeneity of showers. Indeed, only 37.6% of the variation in base-
line shower volumes is explained by across-bathroom heterogeneity. This can be driven
both by differences across individuals who use the same bathroom as well by longer and
shorter showers taken by the same individual. Three outlier bathrooms with an average
baseline volume of more than 60 liters per shower, which can be spotted at the far end of
the histogram, will be excluded for all formal analyses.

Recall that we included a diverse set of goals for the maximum water volume in our
experimental design, ranging from 10L to 35L. As we can see, these goals fall into very
different spots of the distribution. The 10L goal being quite ambitious for most house-
holds — only 13% of bathrooms met this goal on average even without any intervention.
The 15L, 20L, and 25L goals fall into a range from moderately difficult to moderately easy,
with 37% of devices registering an average baseline usage below 15 liters, and 76% below
25 liters. In contrast, the 35L goal offers virtually no challenge, as in 91% of bathrooms the
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Table 3: Randomization checks

Volume Duration Flow rate Temperature
[liter] [min] [L/min] [Celsius]

RTF group 0.437 0.402 -0.368 -0.336
(1.533) (0.300) (0.325) (0.353)

10L goal group 0.475 0.353 -0.269 0.245
(1.523) (0.291) (0.334) (0.312)

15L goal group 0.598 0.110 0.148 -0.549∗∗

(1.614) (0.283) (0.396) (0.279)

20L goal group 0.147 0.163 0.152 -0.034
(1.319) (0.273) (0.365) (0.313)

25L goal group -0.115 0.071 -0.093 -0.085
(1.474) (0.277) (0.329) (0.308)

35L goal group 1.588 0.256 0.216 -0.308
(1.539) (0.296) (0.347) (0.295)

Constant 19.400∗∗∗ 3.885∗∗∗ 5.273∗∗∗ 33.892∗∗∗

(1.104) (0.208) (0.244) (0.209)

Observations 771 771 771 771
R2 0.003 0.005 0.008 0.011
p-value of joint null 0.937 0.792 0.510 0.156

Only includes devices with more than 20 showers in total. Three outliers with aver-
age baseline volume of above 60 liters are dropped. Standard errors in parentheses
clustered at household level, ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

average baseline water volume was below the goal anyway. The exogenous assignment
of different goals combined with the substantial heterogeneity across households allows
us to compare the impact of goal difficulty either by holding constant baseline behavior
or by holding constant the goal.

3.6. Randomization checks

Our identification strategy relies on randomization producing treatment groups that are
comparable with regard to observable and unobservable subject characteristics. It is nat-
urally impossible to test the latter, but Table 3 shows good balance based on a number of
key observable variables with regard to baseline behavior. Crucially, average water us-
age per shower is comparable across the seven experimental conditions, and a joint F-test
detects no significant differences overall (p = 0.937). This is of particular importance as
other studies generally find that households or individuals with high baseline consump-
tion tend to respond more strongly to policy interventions (e.g. Allcott 2011; Ferraro and
Miranda 2013; Tiefenbeck et al. 2018). Furthermore, there is no evidence for significant
pre-intervention differences along other behavioral margins in the shower, namely du-
ration of the shower, average water flow rate, and water temperature. While there is a
single t-test that indicates signficantly lower baseline water temperature in the 15L group
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relative to the Control group at the 5% level, this is in line with the rate of false positives
one would expect due to multiple testing, and the F-test cannot reject the null hypothesis
of joint equality across all groups (p = 0.156).

We further use data from the baseline survey to check for balance with regard to water
conservation attitudes as well as general environmental and cost-consciousness attitudes
from the baseline survey, because these could determine how individuals respond to our
water conservation interventions. Appendix Table A3 shows that there are no signifi-
cant differences in these attitudes across groups, further indicating that we can use the
randomly assigned treatments to estimate the causal effects of real-time feedback and
exogenous goals in our setting.

4. The main experimental outcomes

In this section, we present experimental results of how real-time feedback and goal inter-
ventions affect water consumption during showering on average. Furthermore, we test
the stability of average treatment effects over time as well as how responses differ for
subsamples of households with different baseline consumption behavior.

4.1. Descriptive evidence

In Figure 7a, we plot the moving average of water usage per shower over the course of
the study. For this purpose, we construct a study progress variable that is coded to take
values between 0% (beginning of the study) and 100% (end of 4-months study period).16

Recall that in all experimental conditions, we included a baseline period of 20 showers
per device at the beginning to collect behavioral data in the absence of any intervention.
To clearly illustrate changes in water usage when the real-time feedback and goal-setting
interventions started in the respective treatment groups, we normalize the baseline pe-
riod to end at 5% study progress for all households.

The average volume per shower is about 20 liters at baseline, with a slight upward drift
that continues over the entire study period in the Control group (blue line). In contrast,
we observe a sharp and instant drop in water usage in the RTF and Goal conditions once
the intervention started, and the conservation effects remain stable over time, with all
lines following close to parallel trend. Subjects who only receive real-time feedback con-
sistently use about 1-2 liters of water less per shower relative to the Control group. The
graph also shows that the pooled Goal conditions appear to have a stronger effect than
real-time information alone, as the average water volume per shower lies consistently be-

16Study progress of households who received the devices for six months is coded between 0 and 150.
For these households, the months 5 and 6 are not presented in Figure 7a, as the trends would become very
volatile due to the drastic drop in the number of observations. As the shower meter does not store global
time, we construct an the measure using the order of showers and assume constant shower frequency.
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Figure 6: Descriptive evidence on the effects of our interventions

Notes: The left panel (a) shows water use over the first 4 months of the study period. Lines represent average
water use at a specific study stage. Study completion percentage is defined as shower number relative to the
total number of showers, where 100% spans a period 4 months. The first 20 showers of the baseline phase
are normalized to 5% and the beginning of intervention is marked by the vertical black line. The right panel
(b) shows changes in average water use per shower from baseline to intervention period by experimental
condition. Error whiskers represent 90% confidence intervals. Both figures exclude devices with 20 or fewer
recorded showers and devices with average baseline consumption of above 60 liters.

low the outcomes of the RTF condition. It is particularly noteworthy that goals and real-
time feedback immediately unfold their full impact from the first shower in which they
become active. This suggests that the behavioral responses are driven by higher effort or
attention rather than by gradual learning about how to shower more water-efficiently.

In order to get a more accurate sense of the changes induced by the different treat-
ments, we take the average water use for each household during the intervention phase,
and subtract from it the household’s average water use during the baseline phase. This
reduces the number of observations to one per household, and allows us to perform a
graphical difference-in-difference analysis with valid standard errors. The results are dis-
played in Figure 7b. The leftmost bar in the figure shows the average change in water use
per shower during the intervention phase compared to the baseline phase for the control
group. As was visible in Figure 7a before, there is an upward drift in the Control group
of more than one liter per shower on average. By contrast, the RTF group experiences an
approximately 0.7 liters decrease in water volume compared to the baseline period. The
difference-in-difference estimate of the treatment effect is thus slightly below 2 liters per
shower, and the 90% confidence intervals around the two means are far apart from each
other, thus suggesting that the difference a strongly statistically significant.
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The dark orange bars in Figure 7b represent the average changes in water volume in
the five Goal conditions. They confirm the visual impression from Figure 7a that at least
some goals reinforce the conservation effects compared to real-time information alone.
The 15L goal shows the largest decrease in water use per shower, with a reduction that
is approximately 1.5 liters higher than in the RTF condition. In addition, the pattern
observed in the overall averages presents an interesting first impression of the behavioral
forces at work. Remember that average water use is around 20 liters during the baseline
phase. Thus, the 10L goal is relatively challenging for the average participant, whereas
the 35L goal is exceedingly easy to attain. Interestingly, the moderately hard 15L goal
performs somewhat better on average than the easier 20L goal or the harder 10L goal.
In addition, the 35L goal clearly performs worse than any other goal condition and even
worse than real-time feedback without any externally-set goal. Thus, effective goals need
to be attainable but also challenging.

4.2. Average treatment effects

While the previous analyses in Figure 6 already provided descriptive evidence of the
effects of real-time feedback and goals, we now exploit the full panel structure of the
data to obtain more efficient estimates of the average treatment effects. We do so by
estimating the following statistical model:

yis = αi + βR TR,is + β10L T10L,is + . . . + β35L T35L,is + δt + ϵis (1)

where yis is water use in shower s recorded by device i. The coefficient αi is a device-level
fixed effect that is identified through the baseline period of 20 showers at the beginning.
Tk,is are indicator variables for different treatment groups k and equal 1 if the shower
occurred in the intervention phase (s ≥ 21) and the device i belongs in the respective
treatment group. The RTF group is indicated by subscript R and the Goal groups are
indicated by their specific volume target (10L, 15L, 20L, 25L, 35L). The control group is
omitted and serves as the reference group. Due to random assignment of households into
experimental conditions, the coefficients β can be interpreted as the average treatment
effects (ATE) of each treated group. We model time fixed effects by a study progress vari-
able discussed previously, captured the coefficient δt for percentile t of the study duration.
ϵis is the shower-specific error term. As many showers are observed for the same house-
hold on possibly up to two devices, the observations cannot be considered independent
within a household. Therefore, we allow for an arbitrary covariance matrix of residuals
within households by calculating heteroskedasticity-robust standard errors clustered at
the household level (Abadie et al., 2017).

Table 4 column 1 presents the results for the ATEs that come from estimating the
difference-in-differences model in equation 1. The coefficient estimates closely resemble
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Table 4: Impact of feedback and goals on water consumption per shower

estimating separately
for three intervention periods

Full sample Early Mid Late
(1) (2) (3) (4)

RTF group -1.873∗∗∗ -1.784∗∗∗ -1.933∗∗∗ -1.816∗∗∗

(0.522) (0.495) (0.586) (0.615)

10l goal group -2.972∗∗∗ -2.951∗∗∗ -3.126∗∗∗ -2.814∗∗∗

(0.592) (0.550) (0.641) (0.741)

15l goal group -3.922∗∗∗ -4.084∗∗∗ -3.767∗∗∗ -3.871∗∗∗

(0.661) (0.648) (0.714) (0.755)

20l goal group -3.061∗∗∗ -3.185∗∗∗ -2.975∗∗∗ -3.032∗∗∗

(0.494) (0.506) (0.532) (0.612)

25l goal group -2.991∗∗∗ -3.100∗∗∗ -3.102∗∗∗ -2.775∗∗∗

(0.565) (0.537) (0.611) (0.674)

35l goal group -1.108∗ -1.115∗∗ -1.088 -1.124
(0.592) (0.546) (0.666) (0.728)

Intervention -0.260 -0.250 -0.862 0.735
(0.381) (0.346) (1.172) (1.515)

Bathroom FEs yes yes yes yes
Study progress FEs yes yes yes yes

Observations 318318 117220 117457 114461
Clusters 499 499 499 499
R2 0.335 0.325 0.325 0.376

Standard errors in parentheses clustered at household level, ∗ p < 0.1, ∗∗ p < 0.05,
∗∗∗ p < 0.01

those from Figure 7b. We find that real-time feedback alone already significantly reduced
water consumption by about 1.87 liters (p < 0.001) per shower compared to the Control
condition that did not receive any feedback. This corresponds to about 9% of the base-
line average, which is consistent with previous studies using the Amphiro smart meter
when taking into account the baseline differences (e.g. Tiefenbeck et al., 2018; Fang et al.,
2020). Crucially, we find that exogenously assigned goals can induce conservation effects
above and beyond that of real-time feedback alone. For instance, the 15L goal condition
reduced water usage by 3.92 liters per shower and thus by significantly more than the
RTF condition (p = 0.003), with the estimated ATE being about twice as large. However,
not all goals are created equal. While the 15L goal was the most effective goal based on
the point estimates, the 10L, 20L, and 25L goal all induced a water conservation effect
of around 3.0 liters and thus still performed 60% better than real-time feedback without
any goal.17 By contrast, the exceedingly easy 35L goal has does not lead to a stronger

17The difference in ATEs relative to the RTF group is statistically significant at the 5% level for the 15L
goal group (p = 0.024) and at the 10% level for the 10L group (p = 0.076) and the 25L group (p = 0.060).
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conservation effect than the RTF condition (p = 0.217), with the point estimate of −1.1
liters indicating that, if anything, it is actually less effective than having no goal assigned
at all.

The empirical patterns suggests that the relationship between goal-difficulty and water
conservation effort is not monotonic, but rather reverse-U shaped, which is consistent
with the conventional notion that good goals should be challenging yet attainable (Locke
and Latham, 1990). The easiest goal (35L) may be relatively ineffective because it offers
no challenge at all for most individuals, given that the average baseline shower only
used about 20 liters of water. On the other hand, most effective goal based on the point
estimates is not the 10L goal, which may be unattainable for many people, but actually
the 15L goal, which seems to hit a sweet spot in the trade-off between challenge and
attainability. Note, though, that we cannot statistically reject the two-sided hypothesis
that the 10L and the 15L goal perform equally well (p = 0.199), although we can strongly
reject that all five goals are equally effective (p = 0.002).

4.3. Stability of treatment effects over time

The previous results show that, on average, suitable goals can have a strong additional
effect on water conservation behavior when added to real-time feedback. Figure 7a fur-
ther indicates that the effects are stable over time when pooling all five Goal conditions.
However, it is conceivable that time trends vary depending on the difficulty of the goal
(Goette et al., 2021). In order to examine the stability over time more formally, we split
the intervention phase in three roughly equally long periods (of abut 6 weeks length) and
estimate the treatment effects separately for these periods. Columns 2 to 4 in table 4 indi-
cate a remarkable stability of effect sizes over the entire duration of the study. While the
estimated coefficients exhibit some minor fluctuations over the course of several months,
these differences are statistically insignificant for all treatment groups and quantitatively
small, well within the range of one standard error. There is also no monotonic pattern
that could indicate a clear time trend. At most, the average conservation effect of goals in
our study decreases by a magnitude in the order of 0.1 to 0.3 liters per shower from the
first weeks to the final weeks of the intervention.

Appendix table A4 further shows that these results are confirmed when interacting
treatment effects with a four-part spline of intervention progress, so the coefficients can
be interpreted as the speed with which the treatment effect changes with study progress.
Two important conclusions emerge from the analyses here. First, all of our experimental
treatments have an immediate effect on behavior: literally starting from the first shower
of the intervention phase, the treatments are fully effective. Second, the treatment effects
remain stable over our intervention period of four to six months. Therefore, there is
no evidence that real-time feedback and exogenously assigned goals begin to lose their
effectiveness on average conservation behavior as long as they remain in place.
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4.4. Interaction with baseline usage

We continue by examining how different subgroups of individuals respond to differ-
ent, randomly assigned goals. As a first step, we examine the "reduced-form" evidence
on how the treatments differ in their impact as a function of the baseline water use of a
household. Previous studies often find that households or individuals with high baseline
consumption tend to respond more strongly to policy interventions targeted at their con-
servation behavior (e.g. Allcott 2011; Ferraro and Miranda 2013; Tiefenbeck et al. 2018).
For example, Allcott (2011) reports that Opower home energy reports achieved virtually
no savings for households in the bottom decile of baseline energy use, whereas the treat-
ment effect for top-decile users was 6.3% savings. Tiefenbeck et al. (2018) estimate that
real-time feedback has an additional conservation effect of 0.31 kWh for a 1 kWh increase
in baseline energy use per shower. One straightforward way to interpret this is that high-
baseline users have higher scope for reducing their consumption. The assignment of
goals adds an additional dimension, as holding constant the specific conservation target,
e.g. 15 liters, higher baseline consumption level implies a higher difficulty of the goal.
Non-monotonicities in the response to goal difficulty would therefore also be reflected in
differential responses of high- and low-baseline users to our intervention.

We analyze heterogeneity by baseline consumption first by splitting the sample into
consumers with average baseline water use per shower above and below the sample
median (17.4 liters), respectively. Second, we also estimate an interacted model

yis = αi + β10L T10L,is + . . . + β35L T35L,is + βRTR,is + γC I(s ≥ 21)× zit (2)

+ γ10LT10L,is × zit + . . . + γ35L T35L,is × zit + γRTT35L,is × zit + δt + ϵis

where the treatment indicators are interacted with baseline consumption zi, i.e. average
water use during the baseline phase for each household. Notice that even though we
have fixed effects in place, we need to allow for a main effect interacting the interven-
tion indicator with zi, because there could be differential trends associated with different
values of zi, for example due to mean reversion or other baseline-dependent serial corre-
lation . These will be captured by the coefficient γC.

The results are displayed in Table 5. Columns (1) and (2) show the estimated treat-
ment effects for below-median and above-median consumers, respectively, and column
(3) shows the estimated interaction effects in the linear interactions model from equa-
tion 2. Consistent with previous literature, we observe that conservation effects are
significantly stronger for subjects with high baseline consumption. Real-time feedback
alone had no significant effect for low-baseline consumers, who used only 12.49 liters per
shower on average in the baseline phase, whereas it reduced water use per shower by
3.25 liters on average for high-baseline consumers, who used 27.18 liters per shower on
average in the baseline phase. This is also reflected in an estimated linear interaction of
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Table 5: Heterogeneous effects by baseline water consumption

Median split

low high linear
users users interactions

(1) (2) (3)

RTF group -0.383 -3.251∗∗∗ -0.235∗∗∗

(0.628) (0.843) (0.056)

10l goal group -2.166∗∗∗ -3.620∗∗∗ -0.122∗∗

(0.624) (0.940) (0.059)

15l goal group -1.855∗∗∗ -6.028∗∗∗ -0.354∗∗∗

(0.548) (1.105) (0.078)

20l goal group -1.585∗∗∗ -4.157∗∗∗ -0.260∗∗∗

(0.545) (0.771) (0.068)

25l goal group -1.598∗∗∗ -4.621∗∗∗ -0.251∗∗∗

(0.559) (0.985) (0.069)

35l goal group -0.635 -1.426 -0.049
(0.581) (0.948) (0.089)

Baseline – – 0.010
(0.039)

Main treatment indicators n/a n/a yes
Bathroom fixed effects yes yes yes
Study completion fixed effects yes yes yes

Observations 147837 170481 318318
Clusters 305 310 498
R2 0.170 0.242 0.336

Columns (1) and (2) estimate equation 1 for the subsamples of devices with
below- and above-median baseline consumption, respectively. Column (3) shows
the coefficients for interaction effects from estimating equation 2. Standard errors
in parentheses are clustered at the household level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗

p < 0.01

0.235 liters lower consumption per 1 liter increase in baseline consumption in the RTF
group. Note that the relative average treatment effect of real-time feedback was around
9%, hence higher baseline consumption is associated with an overproportional increase
in effectiveness, as found in several previous studies of resource conservation (see, e.g.,
Allcott, 2011; Allcott and Rogers, 2014; Tiefenbeck et al., 2018).

The treatment effects for the goal conditions exhibit qualitatively similar interactions
with baseline consumption, but there is also significant variation in the extent of het-
erogeneity induced by different goal difficulty level. Indeed, we can rule out at the 1%
level that the interaction effects in column (3) are equal among all five goal conditions
(p = 0.0084). Column (1) shows that even in the subsample of low-baseline consumers,
where real-time feedback alone was ineffective, all goal conditions except for the 35L
group induced statistically significant conservation effect of 1.59 to 2.17 liters per shower,
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which is equivalent to 13% to 17% of baseline consumption. Although we cannot reject
the null hypethesis of equal effects in the four goal conditions (p = 0.651), it is worth
noting that the point estimate is largest for the most difficult 10L goal, which achieved
a reduction in water consumption by 2.17 liters, which is significantly more than in the
RTF condition (p = 0.0032). However, despite its impressive performance among low-
baseline users, the effect of the 10L condition in the subsample of high-baseline users
(−3.62 liters) was comparable to that of the RTF condition (p = 0.7140) — accordingly,
its linear interaction coefficient in column (3) is also closer to zero (β10L − βR = .1131,
p = 0.058). This finding is consistent with the theoretical prediction that a goal so diffi-
cult that it becomes unattainable does not have strong effects. As baseline consumption of
a household increases, attaining the 10 liter goal becomes subjectively harder and harder,
thus its additional motivational power eventually vanishes. At the other extreme, the
most easy 35 liter goal had no significant conservation effect for low-baseline users, as
expected, because it is not challenging and thus likely simply ignored.18 Perhaps more
surprisingly, the 35L condition was in fact less effective than the RTF condition for high-
baseline users (β35 − βR = 1.826, p = 0.0723), which may be suggestive evidence for
boomerang effects or crowding out of intrinsic motivation to reduce water consumption
in response to feedback. As a consequence, the interaction with baseline consumption is
very low and insignificant.

The effect heterogeneity across baseline use is strongest for the intermediate 15L, 20L,
and 25L goals, which is consistent with behavioral predictions based on goal-setting the-
ory and the warm-glow model, in which effective goals need to be both challenging and
attainable. Intuitively, in a heterogenous population, an increase in baseline consumption
at the top level first induces stronger behavioral responses, because the goal becomes sub-
jectively more challenging; at the same time, it still remains attainable once moving into
the bottom level. In contrast, a goal that is on average very difficult becomes unattainable
for individuals at the bottom, whereas a goal that is too easy becomes unchallenging for
individuals at the top. In line with this reasoning, the interaction effect is quantitatively
largest for the 15L condition, which also had the quantitatively strongest ATE, as it seems
to embody a sweet spot in the trade-off between challenge and attainability. We estimate
that for every one liter increase in the baseline consumption, the treatment effect increases
by 0.354 liters in this condition, whereas the coefficients for the 20L and 25L groups are
0.260 and 0.251 and thus very similar as for the RTF group.

In Figure 8, we further illustrate the relationship between behavioral responses and
baseline consumption in a nonparametric way by estimating local linear regressions at
the bathroom level for each experimental condition separately. Note that we cut off the
graph to the right, because the confidence bands for devices with the highest baseline

18For subjects with below-median water consumption per shower, only 1.83% of showers in the baseline
phase used up 35 liters of water or more. Even for above-median users, a 35 liter shower lies approximately
in the 75th percentile of the baseline distribution.
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(b) 15L goal condition
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(c) 20L goal condition
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(d) 25L goal condition
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(e) 35L goal condition
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(f) Efficient frontier
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Figure 8: Local linear regressions of DiD estimates by baseline consumption

Notes: All figures present results from local linear regressions on bathroom-level using the Epanechnikov
kernel with a bandwidth of 4. The outcome variable is the change in average water consumption per
shower from baseline to intervention period. The independent variable is the average water consumption
per shower in the baseline period. Shaded areas represent 90% confidence bands. Devices with average
baseline consumption of more than 37 liters (93.4th percentile) are not displayed for visual reasons, as the
confidence intervals become very wide due to small local sample sizes and large noise.
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usage become very wide. The local linear estimates confirm the results in Table 5 that real-
time feedback is mostly ineffective for consumers who were already very water-efficient,
but starts to become effective for households with an average baseline usage of above
15-20 liters, with the water conservation effect now increasing approximately linearly
compared to the control group. For the Goal conditions, the pattern is in principle similar,
but varies across difficulty levels. In the 10L and 15L goal conditions, even households
with low baseline usage of around 10 liters per shower already show relatively large
conservation effects, but the effect estimates converge to those of the RTF condition for
high-baseline consumers, as the goals become too challenging, Indeed, the slope is almost
generally flatter in the 10L condition compared to the RTF condition. In contrast, the
estimates for the 15L condition exhibit a steeper slope in the range between 10 liters and
25 liters baseline usage, which is where the majority of households fall into (see Figure
5b). The estimates for the 20L and 25L goal conditions roughly resemble the estimates for
the RTF group with a downward parallel shift, whereas the local effects in the 35L goal
group are almost identical to the RTF group except for high baseline users, for which
real-time feedback without goals is actually more effective.

Figure 8f compiles the nonparametric fits for all treatment groups in a single graph,
which allows us to trace out the treatment effect “frontier” based on the most effective
goal (based on the point estimates in our sample) as a function of baseline consumption.
A highly suggestive pattern arises: at the lower end of the baseline distribution, the 10L
and 15L goal conditions induce the largest conservation effects; in the middle of the dis-
tribution, where the largest share of households fall into, the 15L goal performs best; at
the higher end of the distribution, the 20L condition and 25L condition start surpassing
it. This pattern again supports the notion that moderately challenging goals are most
motivation-enhancing, where the optimal goal may vary across individuals due to differ-
ences in subjective difficulty levels. However, the most easy 35 liter goal breaks with the
pattern to a certain degree, as it seems to become counterproductive exactly for the sub-
set of households for whom achieving it is not a sure-fire endeavor anymore. This could
be explained in a way that externally-set goals also represent a type of socially acceptable
standard, which may crowd out potentially more ambitious personal standards.

5. Behavioral mechanisms of goal-setting

The results in the previous section show that goals add a stable motivation to water con-
servation efforts on top of real-time feedback. This section discusses the evidence on the
predictions by the loss-aversion (LA) and fixed-penalty (FP) models, and assesses which
of the two models can better account for the evidence.
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5.1. Excess mass at the goals

The previous analysis examined how conditional means in water conservation outcomes
changed as a function of the experimental conditions and across various subgroups. As
a final step to better understand the behavioral mechanism underlying the motivating
effects of goal-setting, we leverage the large sample size of around 300,000 total recorded
shower observations to conduct more fine-grained analyses of treatment responses at the
individual shower level.

We do so by first exploiting the random assignment into experimental conditions to
compare the empirical distributions of showers in the intervention phase between the
goal groups and the RTF group. If conservation goals serve as reference points for evalu-
ating success and failure, e.g. by creating a kink (loss aversion) or a notch (fixed reward)
in the utility function, then we would expect a general shift in probability mass from
above the goal to below the goal, and specifically also bunching of outcomes at the re-
spective goal (Kleven, 2016). For example, Allen et al. (2017) provide evidence that the
distribution of marathon runners’ finish times exhibits excess mass below and missing
mass above round numbers (e.g. 3 hours, 4 hours).

The advantage of our setting is that we have experimentally-induced variation in both
whether households receive a goal at all and what the specific goal is, and thus do not
need to rely on smoothness and local boundedness assumptions to construct a counter-
factual distribution. Still, we need to account for the fact that the goal group receives
feedback on water use, and, e.g., individuals may have a higher likelihood of ending a
shower at, e.g., 20L even in the absence of any goal; second, we are using goal distance
as independent variable. Since goals differ across the five goal conditions, the question
arises of how to construct a counterfactual with the same conditional water consumption
but not subject to a goal. In order to address the first issue, we choose the RTF condition
as our counterfactual group, thus holding all effects from feedback on the distribution
constant. In order to construct a group with comparable conditional water use, we con-
struct the the counterfactual distribution as a function of a "placebo" goal distance, in
which we use each observation from the real-time condition five times, to calculate the
share of showers for each of the placebo goals from the goal conditions.

In Figure 9, we group shower observations during the intervention period into 1 liter
bins based on their distance to the respective goal and plot the excess and missing mass of
showers in goal group versus RTF group households. The visual impression is striking.
Assignment of an exogenous conservation goal induces a consistent shift in probability
mass from above to below the goal, thus providing compelling evidence that individuals
exert effort in order to avoid exceeding the target level that was externally assigned to
them. Moreover, the shifts in the empirical density function are not uniform. There is
strong bunching in the 1 liter bin just before the respective goal, with showers in the goal
conditions have a 0.68%p higher probability to fall into this bin, which corresponds to a
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Figure 9: Excess share of showers in the goal groups relative to the RTF group

Notes: Bars are the difference between the share of intervention phase showers falling into a respective water
volume bin in the goal conditions versus the RTF condition

relative increase in 25% compared the respective share of showers in the RTF condition
(2.7%).19 The spike in distribution just before the goal is followed by a sharp drop in
the relative share of showers just above the goal, although still remaining slightly higher
than in the absence of an explicit goal. The largest amount of missing mass is found
at about 5 to 10 liters above the goal, after which the distributions converge again at a
slow rate. While bunching is most evident just below the goal, there is an excess mass
of showers up to 20 liters below the goal relative to the RTF condition, which suggests
that the influence of goal-setting on consumption behavior is not limited to extremely
local responses around the goal. Note that due to the water volume of a shower being
bounded from below by 4.5 liters, each goal condition is only represented from −G + 4.5
onwards in Figure 9, where G is the conservation target. Appendix Figure A4 compares
the distribution of each goal condition separately with the distribution in the RTF group.
Interestingly, we observe missing mass of ultra-short showers in the 35L group, which
again suggests a boomerang effect for very easy goals.

To estimate local bunching around conservation goals more formally, we estimate a
linear probabilities model with an indicator for a shower falling in a particular volume
bin ∆V close to a salient thresholds V (e.g. 10 liters, 15 liters, ...) as dependent variable:

1{yis ∈ ∆V} = αi + β1Tis +
(

β2 + γ · 1i{V = G}
)

Tgoal
is + δs + θV + ϵis . (3)

We include fixed effects for bathroom (αi), intervention period (δs), and threshold (θV).
Tis is an indicator for a shower by a treated household (both RTF and goal groups) in the
intervention period, and Tgoal

is is an indicator for intervention period showers by house-

19The distribution of showers with regard to goal distance are presented in Appendix 6 Figure A2.
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Table 6: Probability of showers just above or below a salient threshold

below salient threshold above salient threshold

0.5L bin 1L bin 2L bin 0.5L bin 1L bin 2L bin
(1) (2) (3) (4) (5) (6)

Treated -0.008 0.002 0.014 0.005 0.007 -0.022
(0.010) (0.012) (0.015) (0.010) (0.011) (0.014)

Treated × goal group -0.010 -0.006 -0.014 -0.006 -0.011 0.008
(0.008) (0.010) (0.012) (0.008) (0.008) (0.011)

Matching goal 0.026∗∗∗ 0.031∗∗∗ 0.034∗∗∗ 0.000 -0.006∗ -0.025∗∗∗

(0.005) (0.005) (0.007) (0.003) (0.004) (0.007)

Intervention period 0.013∗∗ -0.000 0.001 0.001 0.002 0.012
(0.006) (0.008) (0.010) (0.006) (0.008) (0.010)

Constant 0.095∗∗∗ 0.159∗∗∗ 0.322∗∗∗ 0.088∗∗∗ 0.145∗∗∗ 0.282∗∗∗

(0.002) (0.003) (0.004) (0.002) (0.003) (0.003)

Bathroom fixed effects yes yes yes yes yes yes
Threshold fixed effects yes yes yes yes yes yes

N 289710 289710 289710 289710 289710 289710
R2 0.039 0.064 0.158 0.033 0.057 0.128

Notes. Results come from estimating equation 3 using ordinary least squars. The dependent variable
is an indicator for whether a shower falls into a particular volume bin around a salient threshold. We
consider thresholds in steps of 5 from 10 liters to 45 liters. Standard errors in parentheses are clustered
at the household level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

holds in one of the five goal conditions. We additionally interact the latter with a match
indicator that takes the value 1 only if the threshold coincides with the conservation goal.
The coefficients β1 and β2 indicate whether households who receive real-time feedback
use salient numbers as anchor that do not correspond to an externally-assigned conser-
vation target. The main coefficient of interest γ captures how much more likely it is that
showers fall in a certain bin close to the goal relative to other salient thresholds. Thus,
we exploit the random assignment of different goals to households to identify changes in
the local distribution around a goal.

We consider three bin sizes |∆V | ∈ {0.5L, 1L, 2L} and estimate equation 3 separately
for these bins above and below the thresholds. Table 6 presents the results of this empir-
ical exercise. Columns (1) to (3) show that there is signficant bunching of showers at the
goal. For example, showers were 3.1 percentage points (19%) more likely to be placed
less than 1 liter below a threshold that corresponds to an exogenous goal, and 2.6 per-
centage points (27%) more likely to be placed less than half a liter below a goal. On the
other hand, there are only quantitatively weak signs of missing mass up to 1 liter above
a goal threshold, but the share of showers that are up to 2 liters above a goal is 2.5 per-
centage points (9%) lower. In contrast to Allen et al. (2017), we find no evidence of strong
local responses to salient thresholds that are not associated with an explicit external goal.
However, this does not necessarily imply that individuals who receive real-time feedback
do not attempt to set and achieve personal conservation goals, as discontinuities in the
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distribution may as well be hidden by heterogeneity in self-set goals.

While models of goals as notches or kinks in the utility function both predict bunch-
ing at the goal and missing mass above it (Kleven, 2016; Allen et al., 2017), the specific
patterns — in particular the gradual build-up in excess mass starting far below the goal,
as well as the gradual manifestation of missing mass above the goal — are at odds with
a simple model without optimization frictions, but can potentially be explained by the
presence of inattention or uncertainty (Kleven and Waseem, 2013).

In general, however, inferring local behavioral responses from excess mass in the em-
pirical probability density functions can be partly complicated due to broader shifts in
the cumulative density of water consumption levels in response to feedback and goals. It
can thus be hard to interpret excess mass in a certain range, as it could be driven both by
a local change in the probability of stopping a shower or a general shift of high-volume
showers to showers with lower volume. Therefore, in the next step, we examine the stop-
ping probabilities of individual shower in terms of the hazard rate, i.e. the probability
that a shower stops at a given water consumption level conditional on “surviving” until
this point.

5.2. Goal distance and stopping hazards

To give a graphical overview of how goals affect the stopping probabilities of showers
in Figure 10, we again pool all five goal conditions and calculate the hazard rate as a
function of the distance to the goal in steps of deciliters, our most fine-grained unit of
measurement. The hazard rate at point k is defined as the conditional probability of
stopping between k − 1 and k deciliters relative to the goal, given that the relative water
volume is above k − 1 deciliters. Hence, a higher hazard rate reflects a higher probability
to end the shower at a given point and thus higher effort to conserve water, irrespective
of where k lies in the distribution. As before, we construct the counterfactual hazard
rate for the goal groups by assigning placebo goals to each observation in the RTF group
five times. To flexibly control for baseline differences across experimental conditions, we
further adjust the hazard rates in the intervention period by dividing through local linear
estimates of the baseline hazard ratio between the goal groups and the RTF group.20

Thus, the following results can be interpreted as difference-in-differences of hazard rates.

Figure 10a plots the hazard rates as a function of water volume relative to the con-
servation goal in deciliters, as well as smoothed estimates using local linear regressions.
In addition, Figure 10b plots the hazard ratio relative to the RTF counterfactual using
the smoothed hazard rate estimates, with pointwise confidence intervals obtained from a

20More specifically, we run separate local linear regressions of the baseline hazard rates by goal distance
for the goal conditions and the RTF condition with Placebo goals. We then use the smoothed estimates to
calculate the local hazard ratios and divide the intervention period hazard rates in the goal conditions by
the respective hazard ratio. The results without any adjustment for baseline differences can be found in
Appendix Figure A5 and look very similar.
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(a) Hazard rates by goal distance
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Figure 10: Stopping hazard by goal distance

Notes: The left panel (a) plots the hazard rates of showers by deciliter of distance to the respective conserva-
tion goal. Smoothed estimates are obtained through local linear regressions using the Epanechnikov kernel
with bandwidth 0.6 liters. Hazard rates are adjusted for baseline differences between experimental condi-
tions by dividing through smoothed local estimates of the hazard ratio between goal and RTF condition in
the baseline period (see footnote 20). The right panel (b) plots the hazard ratio, calculated from the ratio of
smoothed hazard rate estimates in the goal group and the RTF counterfactual. Bootstrap percentile confi-
dence intervals are obtained from clustered bootstrapping with 4,000 simulations, using households as unit
of resampling. Different shades of grey reflect 90%, 95%, and 99% confidence regions, respectively.

block bootstrapping procedure that accounts for clustering at household level.21 The
counterfactual hazard rate stays relatively constant, fluctuating around 1.25% with a
slight downward trend. Some wave-like patterns with humps at round numbers hint
at the presence of self-set goals à la Allen et al. (2017), but are too small to be detected
in Table 6. In comparison, the hazard rates in the goal conditions show a very clear pat-
tern. Stopping behavior is relatively unaffected by the exogenously assigned goal when
the water volume is still more than 15 liters below the goal, as there is large remaining
scope for finishing the shower in time.22 As individuals approach the goal, the hazard
rate increases above the counterfactual rate and reaches its peak just below the goal.
What springs to the eye is the enormous spike in the stopping probability at the very last
deciliter, which jumps from about 1.75% up to 2.5% and then immediately down again.
While the smoothed estimates generally track the movements of the empirical hazard rate
of the goal conditions very well — capturing about 84% of the variation within 30 liters
around the goal — they fail to account for the anomalous spike at the goal.23 This is per-

21Specifically, we resample households 4, 000 times and ... we intentionally undersmooth the local linear
hazard rate estimates ... obtain equal-tailed percentile confidence intervals.

22There are also some noticeable ups and downs in the goal condition hazard rate below the goal. These
wave-like patterns may driven by the subgoal at 7 liters at which point the injunctive message switches from
“very good” to “okay”, as the humps tend to coincide with 7 − G.

23We can quantify the anomaly by fitting a local linear estimate that uses all empirical hazard rates except
for the one at the last deciliter before the goal, in the spirit of the bunching estimator approach by (Chetty et
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haps the single most powerful piece of evidence in this study that individuals respond to
nonbinding, exogenously-assigned goals. Interestingly, the hazard ratio rapidly reverts
and becomes statistically indistinguishable from 1 after just three to four liters since the
goal has been missed, even dropping below 1 for showers with higher water volumes,
which stands in contradiction to loss aversion models, which would predict higher stop-
ping rates in the loss domain, i.e. when the goal has been missed, compared to the gain
domain.

This setup allows us to test the predictions of the loss-aversion and fixed-penalty model
from a different angle. If loss aversion is driving goal effects, then quitting hazards
should be unaffected (up to some uncertainty owing to randomness in stopping) before
water usage has reached the goal. The stopping hazard should increase once the indi-
vidual is past the goal and in the loss domain with the correspondingly higher marginal
disutility from water use. By contrast, the fixed-penalty model implies that stopping haz-
ards should be higher as the individual approaches the goal. Since the penalty is fixed
and incurred as the individual surpasses the goal, the individual has an incentive to stop
somewhat early owing to the randomness in the water used.24

This pattern is fully consistent with the fixed-penalty model: individuals stop some-
what ahead of the goal in order to avoid overshooting due to randomness. However,
once they overshot, goal-related efforts to stop vanish and the stopping hazard becomes
indistinguishable from the one of the real-time feedback group that was not assigned a
goal. At the same time, the pattern is difficult to reconcile with the loss-aversion model, in
which the higher marginal disutility from surpassing the goal motivates stopping efforts,
as the stopping hazard in the goal conditions quickly reverts to the one of the real-time
group once the goal is missed.

5.3. Changes in behavioral response over time?

The underlying behavioral mechanism of how goals enter the utility function also has
implications of the stability of the treatment effects over time. If one takes the view that
goals take on the role of reference points directly (See, e.g., Heath et al., 1999), then re-
sponses should remain stable over time. However, in a model of expectation-based ref-
erence points Koszegi and Rabin (2006, 2009), it is possible that goals may not only affect
reference points directly, but also shift expectations.25 In such a model, a shift in expec-
tations can be self-fulfilling and subsequently affect behavior. However, this raises the

al., 2011). Comparing the actual hazard rate to the leave-one-out estimate indicates a discontinuous jump by
0.76 percentage points at the goal, which corresponds to about 44%. Using clustered Monte Carlo bootstrap
inference, we can show that this jump is highly statistically significant, as in 4,000 bootstrap simulations
there was not a single instance in which no large positive spike in the hazard rate occurred.

24If there were no randomness in water use, the model would predict bunching at exactly the goal.
25The evidence from lab experiments with regard to the expectations mechanism is mixed. While some

papers find evidence of the comparative statics predictions (Abeler et al., 2011; Ericson and Fuster, 2011;
Goette et al., 2020), and others rejecting its predictions (Gneezy et al., 2017; Cerulli-Harms et al., 2019)
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question of whether the impact of goals becomes less effective over time. Suppose an
individual was assigned a hard goal (compared to her baseline water use). If this affects
her expectations and thus her reference point, both of the models outlined above would
predict an increased conservation effort. However, as time goes by and the individual
repeatedly falls short of the goal, this may affect her expectations, and thus her reference
point. Thus, it is possible that goal effects are temporary and gradually losing their effect
on behavior.

In Figure 11, we further split the data into the three phases of the intervention period
to examine whether behavioral responses adjust over the course of several months. The
first observation is that stopping hazards for individuals who only received real-time
feedback remain fairly stable, mirroring the results for average water consumption from
Table 4. The second observation is that, qualitatively, the pattern induced by exogenous
goals also remains similar in the later phases of the intervention, with stopping hazards
gradually increasing starting from 10 to 15 liters below the goal, peaking with an anoma-
lous spike at the goal, and then quickly plummeting again. However, the third obser-
vation is that, quantitatively, the peak at the goal diminishes considerably in magnitude
over time. In the first weeks of the intervention, the hazard rates exhibits an impressive
jump by 53% (0.96 percentage points) to 2.76% at the goal, whereas in the final weeks it
“only”goes up by 38% (0.63 percentage points) to 2.26%. We corroborate this finding in
Appendix Table A5, which extends the analysis in Table 6 by an interaction with study
progress and shows that bunching of showers in the 0.5 liter and 1 liter bins (but not the
2 liter bin) below a goal decreases significantly over time, with point estimates implying
that the excess mass vanishes competely after approximately 6 months.

While we have shown previously in section 4.3 that the average water conservation
effects induced by nonbinding goals remain largely stable over the duration of our study,
our data paints a more nuanced picture when also considering the set of results in this
section. There are two possible explanations. First, it may be the case that individuals
become comfortably numb towards the externally-set goal over time, as they develop
a more nonchalant attitude towards achieving or missing it; still, they continue to use
lower amounts of water due to, e.g., habit formation (Charness and Gneezy, 2009; Wood
and Rünger, 2016; Byrne et al., 2021) or endogenously adjusting reference points (Koszegi
and Rabin, 2006, 2009; Thakral and Tô, 2021). Second, it is possible that individuals con-
tinue striving to achieve the specific goal that was assigned to them at the beginning of
the study, but learn to become more proficient at predicting and regulating their water
usage and thereby avoiding situations in which they have to put a last-second stop to
their shower, which — analogous to finishing a task very close to a deadline — may be
somewhat more stressful than it needed to be.

One implication of the second explanation is that the overall goal attainment rate
should stay roughly constant or even rise over time, because the excess mass at the goal
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Figure 11: Stopping hazards over time

Notes: Hazard rates of showers by deciliter of distance to the respective conservation goal, split by three
phases of the intervention period. Smoothed estimates are obtained through local linear regressions. All
procedures follow the ones in Figure 10a.

would diminish simply by being diffused into lower water volume bins. In contrast, the
first explanation would predict that the success rate decreases once individuals use it less
as inflection point for evaluation. To distinguish between these two explanations, we
therefore analyze whether and how goal attainment changes throughout the course of
the study. Specifically, we estimate a linear probabilities model with a goal attainment
dummy as outcome variable and study progress as regressor of interest — normalized
such that its value is 0 at the start of the study and 1 after about four months. As bench-
mark, we look at hypothetical attainment rates by assigning placebo goals to households
in the Control and RTF conditions using the same procedure as before.

The results are displayed in Table 7. In the baseline period, about 62% of showers
would have met the conservation goal when pooling all difficulty levels. Columns (1)
and (2) show that, hypothetically, attainment rate would have been higher for the RTF
condition in the intervention period, which is simply due to the conservation effects in
response to real-time feedback shown previously. As there is a slight general upward
trend in water consumption levels in the months of our study (see Figure 7a), we ob-
serve corresponding decreases in hypothetical attainment rates from the beginning to
the end of the intervention phase by about 1%p in the Control group and 1.5 %p in the
RTF group, both statistically insignificant. When looking at actual attainment rates in
the Goal conditions, column (3) shows that after an initial jump by 8% at the start of the
intervention, the effect actually decreases by 3.8%p by the end of the four months study
duration. This decrease is significantly larger than in the Control placebo (p = 0.008) and
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Table 7: Overall goal attainment rates over time

Placebo Actual attainment rates

Control RTF Goal conditions (pooled)
(1) (2) (3) (4)

Intervention -0.009 0.017∗ 0.080∗∗∗ 0.021∗∗∗

(0.006) (0.010) (0.008) (0.004)

Study progress -0.010 -0.015 -0.038∗∗∗ -0.011∗∗∗

(0.008) (0.010) (0.006) (0.004)

Water volume FEs – – – yes
Bathroom FEs yes yes yes yes

Baseline mean 0.626 0.617 0.619 0.619

N 203275 181875 212680 212471
Clusters 70 67 360 360
R2 0.175 0.189 0.348 0.715

Notes. Linear probabilties model. Standard errors in parentheses are
clustered at the household level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

the RTF placebo (p = 0.064), suggesting that it is not only driven by broader trends in
water consumption levels but also by goal-specific behavioral mechanisms. To further
verify this, we additionally control for water volume fixed effects in column (4). If there
was only one goal level in the sample, water volume would perfectly explain goal attain-
ment in this specification. Thus, any non-zero coefficients can only be due to variation
in the share of showers below a certain goal threshold relative to households who were
assigned a different goal, e.g. when the likelihood of showers below 15 liters increases
overproportionally in the 15L goal group.26 The estimates show that, even conditional
on water volume, goal success becomes significantly more likely once the intervention
begins, again demonstrating that individuals respond specifically to the goal that was
randomly assigned to them. Crucially, the conditional goal attainment effect drops by
more than 50% by the end of the 4-month study period (p = 0.004).

Overall, the evidence here suggests that over the course of several weeks and months,
individuals respond less to the goals that were assigned to them at the beginning of the
study, as they gain a more nonchalant perspective on the feasibility and importance of
missing or achieving that particular conservation goal. Nevertheless, we see in Section
4.3 that there is no evidence for a significant decease in average water conservation over
the 4 month study period. Hence, externally-set goals seem to retain a status as vague
norm or default about water consumption levels even though the precise target numbers
associated with them become less psychologically binding.

26This is why in the Placebo checks using the RTF group and Control group, the coefficients and standard
errors would precisely be 0 when adding water volume fixed effects.
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6. Concluding remarks

In this paper, we presented evidence from a randomized field experiment in the context
of household water conservation to examine the effectiveness of goal setting and its un-
derlying behavioral mechanisms. Our experiment was designed to be representative of
the population of Singapore and lasts between four to six months, which allows us to
examine the long-term stability of goal setting as a behavioral policy tool. Importantly,
our design allows us to cleanly separate the effects from providing neutral, quantitative
feedback from the effect of goals. We further vary the difficulty of the goals by randomly
assigning households to goal conditions ranging from 10L to 35L. Our results show that
externally-set goals, when appropriately chosen, have a significant effect on conservation
efforts. Among our five goal conditions, the 15L goal was the most effective in reducing
water use, generating a treatment effect of 3.9 liters per shower, which is twice as high as
the effect of real-time feedback alone. In line with the literature in psychology, the point
estimates suggest that the best performing goals are challenging yet attainable. This does
not only hold when comparing different groups, but also when analyzing heterogenous
responses in different subgroups with regard to baseline water usage.

When analyzing fine-grained behavioral responses to goals, our data shows that the
impact of goals on the stopping hazard of showers is particularly strong before individ-
uals exceed the goal, with a large spike at the very large deciliter in which the goal is
still achieved. In contrast, once individuals have missed the goal, the stopping hazard
quickly decreases and becomes indistinguishable from the one in the experimental con-
dition with only neutral feedback but not goals. Thus, while loss aversion in the form of
higher marginal utility in the loss domain shapes behaviors in many domains (Sydnor,
2010; Fehr and Goette, 2007; Angrist et al., 2021), our evidence speaks against a prospect
theory model of goals (Heath et al., 1999) and instead points toward a fixed psycholog-
ical reward from achieving a goal, with little change in the marginal utility thereafter,
as considered also by Allen et al. (2017). Thus, it may be more appropriate to interpret
exogenous goals as norms or defaults for acceptable levels of water consumption. This is
also supported by the fact that the easiest 35L goal seemed to be less effective than having
no goal at all.

Interestingly, depending on the goal conditions, it can be the case that individuals re-
peatedly and consistently fail to meet their goal; vice versa, other individuals with (sub-
jectively) easier goals may regularly achieve them without much effort. This raises the
question of whether individuals stop paying attention to the goal over time, i.e. whether
the goal effects are potentially short-lived. We find a very stark pattern in our average
treatment effects: the full impact of the treatment materiallizes immediately, and remains
stable over the entire study period of four to six months. There is no evidence of the
effects vanishing over time as has been found with more aggregated forms of feedback
(Houde et al., 2013). However, we document that the local responses to the specific goals
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become significantly weaker over time, i.e. there is less bunching, and the goal attainment
rate drops. These two seemingly contradictory observations, stable average effects and
waning local effects, may be resolved by individuals forming habits or setting personal
targets that replace the externally-set goal.

Overall, our study suggests that goal-setting (and real-time feedback) have the po-
tential to be integrated into simple and easily scalable interventions to encourage de-
sirable behavioral change for example in the domain of pro-environmental behavior, as
modern digital technologies are becoming ever cheaper and more advanced.27 Future
research may also consider the comparison between the effectiveness of self-set goals
and externally-set goals such as the ones we use in this study. Another important ques-
tion is whether the effects of our interventions are limited only to that targeted activity,
showering, or whether there are spillover effects to other water-consuming activities in
the household. In a companion paper, we utilize billing data of households that partic-
ipated in our experiment and observe statistically significant conservation effects of our
interventions also in overall household water usage (Schmitt et al., 2021). Interestingly,
the point estimates suggest quantitatively large positive spillover effects, i.e. reductions
in water usage also outside of the shower, although we lack statistical power to detect
spillover effects more precisely. An interesting avenue for further research is whether
different types of interventions have an effect on the size and sign of spillover effects to
non-targeted activities, as this may have important implications for cost-benefit calcula-
tions.

27The Public Utilities Board and the Housing Development Board have since launched an initiative to
install smart shower meters in 10,000 newly built flats, with the configuration of the smart shower meter
based on the 15L condition from this paper (PUB, 2018b).
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Appendix A Supplementary figures and tables

Figure A1: Sites of participating households in Singapore.

Table A1: Baseline shower information – overview

Average SD 25th pctile Median 75th pctile Observationss

Volume [liter] 20.03 16.66 8.90 14.90 25.30 15500

Flow rate [l/min] 5.26 2.35 3.60 4.60 6.40 15500

Temperature [Celsius] 33.77 3.01 31 34 36 15460

Duration [min] 4.91 3.74 2.45 3.87 6.18 15500

Notes: 775 devices with at least 20 showers and valid data records are considered. For water temperature
statistics, 2 devices with broken temperature sensors are excluded. The shower duration only considers time
with water flow, i.e. excluding breaks.
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Table A2: Treatment effect on number of showers

(1) (2) (3) (4)
Total Total Total Person-Day

10 liter goal -21.30 -7.39 -12.03 0.04
(37.14) (39.60) (34.82) (0.09)

15 liter goal -0.41 -2.64 14.05 0.05
(37.37) (39.74) (37.46) (0.09)

20 liter goal 21.52 -2.38 -7.81 0.11
(37.06) (40.87) (36.91) (0.09)

25 liter goal -10.93 -17.39 22.51 0.14
(37.29) (36.57) (34.35) (0.09)

35 liter goal 12.48 12.82 41.91 0.15
(37.37) (39.49) (38.36) (0.10)

Real-time feedback -8.96 -0.57 12.12 0.08
(37.97) (42.09) (38.95) (0.10)

Constant 390.48*** 423.48*** 409.14*** 1.19***
(26.31) (29.76) (27.74) (0.07)

[Controls] No No Yes No

Devices with fewer Yes No No No
than 40 showers

Observations 822 747 707 442
R2 0.002 0.001 0.202 0.009

β10L = . . . = β35L = βRT = 0 p = 0.93 p = 0.99 p = 0.73 p = 0.67
Control variables include the time between deployment and retrieval, number of adults and
children in the household, and interactions of both. In columns (3) and (4), devices sent back
via postal service are excluded. In column (4), households with study duration shorter than 3
months and top and bottom percentiles are cut off. Robust standard errors in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

46



(a) RTF counterfactual
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Figure A2: Distribution of intervention period showers

Notes: Awesome description.
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(a) RTF group
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(b) 10L goal condition
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(c) 15L goal condition
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(d) 20L goal condition
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(e) 25L goal condition
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(f) 35L goal condition
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Figure A4: Excess mass of goal groups relative to RTF group

Notes: Bla.
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Table A3: Randomization checks — water conservation attitudes

Try generally to ... Conserve water to ...

protect the save protect the save
environment money environment money

RTF group -0.101 -0.043 -0.077 0.126
(0.132) (0.154) (0.098) (0.122)

10L goal group 0.071 0.014 0.086 0.086
(0.132) (0.162) (0.091) (0.133)

15L goal group 0.032 0.046 -0.004 0.111
(0.131) (0.180) (0.101) (0.116)

20L goal group -0.076 0.022 -0.091 0.163
(0.138) (0.168) (0.108) (0.122)

25L goal group -0.058 -0.002 -0.052 -0.033
(0.133) (0.156) (0.090) (0.135)

35L goal group -0.090 0.105 0.020 0.163
(0.128) (0.181) (0.097) (0.116)

Constant 0.743∗∗∗ -0.286∗∗∗ 1.271∗∗∗ 1.143∗∗∗

(0.095) (0.108) (0.067) (0.096)

Observations 495 495 495 495
R2 0.006 0.002 0.009 0.011
p-value of joint null 0.787 0.993 0.547 0.566

Only includes households that are included in the main analysis sample. Missing re-
sponses for four households in these survey questions. Robust standard errors in paren-
theses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Figure A5: Stopping hazard by goal distance — not adjusted for baseline differences.

Notes: Bla
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Table A4: Stability of treatment effects: four-part splines with study progress

× progress splines

initial 1st 2nd 3rd 4th
effect spline spline spline spline

10l goal × intervention -3.232∗∗∗ 0.009 0.004 0.003 0.006
(0.593) (0.017) (0.013) (0.017) (0.018)

15l goal × intervention -3.974∗∗∗ 0.012 0.008 -0.013 0.020
(0.662) (0.016) (0.013) (0.015) (0.018)

20l goal × intervention -2.956∗∗∗ -0.003 0.016 -0.021 0.031
(0.560) (0.015) (0.013) (0.016) (0.024)

25l goal × intervention -2.815∗∗∗ -0.010 0.010 0.005 0.018
(0.565) (0.015) (0.012) (0.016) (0.020)

35l goal × intervention -1.938∗∗∗ 0.025 0.003 -0.012 -0.006
(0.556) (0.018) (0.014) (0.017) (0.020)

Real-time feedback × intervention -1.558∗∗∗ -0.010 0.012 -0.014 0.005
(0.552) (0.017) (0.014) (0.016) (0.023)

Constant 19.668∗∗∗

(0.237)

F-test: all 10l goal splines = 0 p = 0.9464
F-test: all 15l goal splines = 0 p = 0.5287
F-test: all 20l goal splines = 0 p = 0.4848
F-test: all 25l goal splines = 0 p = 0.7281
F-test: all 35l goal splines = 0 p = 0.5934
F-test: all RTF splines = 0 p = 0.8419
F-test: all splines = 0 p = 0.7268

Observations 313996
R2 0.332

1st progress spline defined from 6 to 37, 2nd progress spline defined from 37 to 68, 3rd spline defined from
69 to 100, 4th spline defined from 101 to 150 (6 month devices). Standard errors in parentheses (clustered
on household level). ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A5: Probability of showers just above or below a salient threshold

below salient threshold above salient threshold

0.5L bin 1L bin 2L bin 0.5L bin 1L bin 2L bin
(1) (2) (3) (4) (5) (6)

Treated -0.008 0.002 0.014 0.005 0.007 -0.022
(0.010) (0.012) (0.015) (0.010) (0.011) (0.014)

Treated × goal group -0.010 -0.006 -0.014 -0.006 -0.011 0.008
(0.008) (0.010) (0.012) (0.008) (0.008) (0.011)

Matching goal 0.042∗∗∗ 0.046∗∗∗ 0.039∗∗∗ 0.002 -0.007 -0.032∗∗∗

(0.007) (0.007) (0.008) (0.004) (0.005) (0.008)

Matching goal × study progress -0.029∗∗∗ -0.028∗∗∗ -0.009 -0.003 0.002 0.012
(0.008) (0.009) (0.011) (0.006) (0.008) (0.011)

Intervention 0.013∗∗ -0.000 0.001 0.001 0.002 0.012
(0.006) (0.008) (0.010) (0.006) (0.008) (0.010)

Constant 0.095∗∗∗ 0.159∗∗∗ 0.322∗∗∗ 0.088∗∗∗ 0.145∗∗∗ 0.282∗∗∗

(0.002) (0.003) (0.004) (0.002) (0.003) (0.003)

Bathroom fixed effects yes yes yes yes yes yes
Threshold fixed effects yes yes yes yes yes yes

N 289710 289710 289710 289710 289710 289710
R2 0.039 0.064 0.158 0.033 0.057 0.128

Notes. Results come from estimating equation 3 using ordinary least squars. The dependent variable is an indica-
tor for whether a shower falls into a particular volume bin around a salient threshold. We consider thresholds in
steps of 5 from 10 liters to 45 liters. Standard errors in parentheses are clustered at the household level. ∗ p < 0.1,
∗∗ p < 0.05, ∗∗∗ p < 0.01
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