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Abstract

This paper studies the “common prior”assumption and its implications when agents

have differential information and rational preferences beyond subjective expected utility

(SEU). We characterize the class of consequentialist interim preferences that are dynam-

ically consistent with respect to the same ex-ante preference in terms of common limits

of higher-order expectations. We then relax common dynamic consistency by either al-

lowing for non neutral attitudes towards the timing of resolution of uncertainty or by

letting the agents only share benchmark beliefs with potentially heterogeneous prefer-

ences for uncertainty. Within this framework, we characterize the properties of equilibria

of coordination games (e.g., financial beauty contests) in terms of the agents’private infor-

mation, coordination motives, and attitudes toward uncertainty. When the agents share

the same benchmark probabilistic model, high-coordination motives completely wash out

their aversion to misspecification, producing outcomes that are indistinguishable from the

ones obtained under SEU.
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1 Introduction

The common prior assumption is one of the most used and debated concepts in economic the-

ory.1 It captures the idea of mutual ex-ante agreement about a probabilistic model describing

some aspect of the world. When paired with expected-utility maximization, it gives rise to

correlated equilibrium, that is, arguably the plainest extension of the concept of Bayesian ra-

tionality of de Finetti [16] and Savage [61] from a single decision maker to a group of interacting

agents (cf. Aumann [5] and Nau and McCardle [58]). However, systematic departures from

subjective expected utility (SEU), such as the ones highlighted by the Ellsberg paradox, are at

the same time normatively convincing and robust experimental findings. Notably, these depar-

tures are consistent with the rationality of decision makers that acknowledge their ambiguity

(or “Knightian uncertainty”, see Gilboa and Marinacci [31]) about an objective probabilistic

model and have nonneutral attitudes toward it. Therefore, it is natural to wonder whether the

ex-ante mutual agreement can be expressed independently of agents’attitudes toward ambi-

guity. More importantly, we wonder what the implications for the agents’interim preferences

and behavior of this mutual agreement are.

This paper addresses these questions by first formalizing increasing degrees of mutual ex-

ante agreement among agents with differential information and general rational preferences

(cf. Cerreia-Vioglio et al. [11]) such as SEU, maxmin expected utility, Choquet expected

utility (CEU), variational preferences, and, in general, uncertainty averse preferences. More

concretely, we impose restrictions on the agents’interim preferences that guarantee the existence

of a single ex-ante preference that is jointly “consistent” for all the agents.2 Next, we show

that, as for the baseline SEU case, all these restrictions can be fully characterized by properties

of the higher-order interim preferences of the agents. In turn, this directly allows us to study

the implications of ex-ante agreement for strategic reasoning and market behavior, which we

address in the second and third leg of the paper, respectively.

Toward this goal, we next embed rational preferences in standard coordination games (e.g.,

beauty contests and price competition). We derive a complete characterization of equilibrium

behavior in the high-coordination limit in terms of the agents’higher-order preferences without

any ex-ante agreement restriction. However, when we also impose the forms of ex-ante agree-

ment studied before, we find a striking result: the strong desire for coordination combined with

ex-ante agreement considerably tame the nonneutral attitudes toward uncertainty and, in some

critical cases, the limit equilibrium behavior is indistinguishable from the ones obtained under

SEU. Finally, we provide necessary and suffi cient conditions for ex-ante agreement in terms of

no trade, highlighting a gap specific to non-SEU preferences.

1See, for example, Morris [56] and Bonanno and Nehring [8] for complete discussions on the foundation and

the role of the common prior assumption in economics.
2The exact definition of “consistent”will specify the degree of the ex-ante agreement among agents.
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Common ex-ante preferences and beyond First, we say that there exists a common ex-

ante preference if the conditional preferences of all the agents are dynamically consistent with

respect to the same unconditional preference.3 In other words, we weaken the assumption of

mutual agreement about an objective probabilistic model to that of mutual dynamic consis-

tency with respect to a common ex-ante rational preference. The interpretation is that before

observing their private information, the agents share the same perceived ambiguity about the

probabilistic model and the same attitude toward it. Then, in the interim stage, the agents’

preferences may differ, but only insofar the nature of their private information was different.

Therefore, mutual dynamic consistency imposes restrictions between periods for each individ-

ual and restrictions across all individuals. As we show, this has non-trivial implications for the

ambiguity that the agents perceive interim, their ambiguity attitudes, their betting/trading

behavior in markets, or in general, their strategic behavior when interacting in games.

We provide a characterization of the existence of a common ex-ante preference that purely

concerns the interim preferences of the agents. There is a common ex-ante preference if and

only if all the interim higher-order (generalized) expectations of the agents converge to the same

limit, which coincides with the common ex-ante preference. This result greatly generalizes the

characterization of the common prior assumption in Samet [62], also highlighting that it is

the invariance property of dynamic consistency that allows us to characterize mutual ex-ante

agreement in terms of interim higher-order beliefs. Moreover, this characterization gives us a

way to construct the implied common ex-ante preference of the agents.

Next, we altogether remove any pure dynamic-consistency restriction on the interim pref-

erences. In this case, we can still define two extreme ex-ante preferences that are consistent

if we allow for (minimal degrees) of aversion and attraction for later resolution of uncertainty.

Similar to before, these ex-ante preferences are characterized via the extreme limits of higher-

order expectations of the agents. This generalization is essential for applying our results to

well-known updating rules that do not always induce dynamically consistent preferences (e.g.,

full Bayesian updating and proxy updating for maxmin preferences).

Finally, for the case of variational preferences, we consider an intermediate form of mutual

consistency where the agents only share some ex-ante benchmark probabilistic models, but their

interim preferences are otherwise unrelated. The existence of this mild form of ex-ante agree-

ment naturally induces a common ex-ante preference that can be ranked with the unrestricted

extreme ex-ante preferences defined above in terms of comparative uncertainty aversion. This

further generalization allows us to consider coordination and market models where the agents

share a common perception of the uncertain data-generating process(es) they face but have a

heterogeneous level of confidence in it.

3Importantly, the information structures of the agents are fixed throughout the entire analysis. Therefore,

the assumption of dynamic consistency concerning only a fixed information structure is weak enough to include

a much richer set of preferences than SEU.
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Coordination and ambiguity We next move to the implications of the assumptions on

ex-ante agreement for variational preferences. We first consider an application of our result

to network beauty contests in asset markets under incomplete information. Here, we show

that, without further restrictions than a full-support assumption on interim preferences and

connectedness of the network structure, the price dispersion in the unique equilibrium van-

ishes as coordination becomes more and more important. Notably, we provide bounds on the

equilibrium price dispersion that only depends on the joint connectivity of the network and

information structure.

Next, we analyze the unique equilibrium price in the limit for strong coordination motives.

In general, this limit is characterized by a worst-case weighted average of the benchmark interim

expectations of the agent. With this result, we can already see that a significant part of the

ambiguity aversion of the agents disappears in the limit equilibrium. Moreover, we can provide

meaningful bounds on the limit evaluation of the asset in terms of the ex-ante preferences

studied before, thereby assessing the price effect of interim information.

Our theorem implies that whenever the agents share the same unique ex-ante benchmark

probability model, the limit equilibrium price collapses to the expectation of the value of an asset

for this unique benchmark. This establishes an important irrelevance result: as coordination

motives prevail, the limit price is unaffected by ambiguity aversion, the information structure,

or the information structure.4

In addition, if a common ex-ante preference exists, then the limit price can lie strictly above

the ex-ante preference, pointing out a key difference with the limit result under SEU of Golub

and Morris [35]. However, this wedge can only obtain if the agents are ambiguous with respect

to each other information structure. Indeed, when agents are unambiguous about the aggregate

information, the standard limit equivalence of the SEU case is restored. Notably, in this case,

agents might still perceive ambiguity about the fundamental, and their full-coordination limit

price decreases in their ambiguity aversion.

The previous results depend only on the best-response structure of the game. In particular,

we can derive the same best-response functions from different games with strong coordination

motives. An example is a coordination game where agents are firms that compete in producing

partially differentiated goods under incomplete information about the demand function.

No-trade implications Finally, we study the relation between the existence of a common ex-

ante preference and no-trade implications, which are usually used to characterize the common-

prior assumption under SEU (cf. Morris [55], Samet [63], Feinberg [25], Gizatulina and Hellman

[33]). There, we start with two interim expectations as primitive objects. We first show that

if two agents with those interim expectations are willing to trade the same asset in any state,

4The irrelevance of the latter two aspects was already established by [35] for a very similar class of beauty

contests.
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they cannot be mutually dynamically consistent with respect to the same ex-ante preference.

As already established, the exact converse of this statement does not hold in general (cf. Dow

and Werlang [19]). However, the existence of a common prior is implied by the following

stronger no-trade condition. If there is no endowment economy with two large populations of

agents, each characterized by one of the primitive interim expectations, where trade can create

a Pareto gain in every state, then these interim expectations are consistent with respect to the

same ex-ante preference.

Related literature Our work lies at the intersection of several kinds of literature, including

decision theory, game theory, and information economics. Our first theorem generalizes to ra-

tional preferences the common-prior characterization of Samet [62]. This has been previously

extended to compact spaces of uncertainty in Hellman [42], and to more general payoff-relevant

spaces in Golub and Morris [34]. More generally, both Samet’s (for SEU) and our characteriza-

tion (for rational preferences) can be used to study the implication of mutual ex-ante agreement

of the agents. The support condition in Lipman [50] and the critical-path theorem in Kajii and

Morris [43] are two standard examples of implications of the common prior assumption. Our

work is a first step that provides the framework to obtain similar results in the more general

case of rational preferences. More recently, the existence of a common ex-ante preference for

non-ambiguity-neutral preferences but under both dynamic consistency and consequentialism

has been studied by Ellis [20]. This paper shows that if the agents’information has a product

structure in addition to the previous properties, then their interim preferences cannot exhibit

violations of Savage’s sure-thing principle for acts that are measurable with respect to the

aggregate information.5 The following facts nevertheless limit the implications of this critical

result for our analysis: i) We also consider and characterize weaker versions of common dynamic

consistency which allow for violations of Savage’s sure-thing principle ii) We never impose a

product structure for the information of the agents which in turn would rule out hard evidence

about the interim types of the opponents (e.g., the E-mail game has such hard evidence) iii) For

the class of games we consider in Section 4, even the residual ambiguity about the fundamental

state is relevant for the equilibrium outcomes iv) As we discuss more in detail in Section 6,

many of our results holds even without consequentialism.

Our applications generalize the standard beauty-contest settings in Shin and Williamson

[65], Allen et al. [1], or Golub and Morris [35] by allowing for ambiguity aversion and obtaining

notable equilibrium implications. More in general, our work proposes a viable theory for games

under incomplete information without SEU. For example, Epstein and Wang [23] introduce a

universal type space for a class of preferences very similar to the rational one analyzed in the

5More in detail, the agents’information has a product structure if each interim type of each player cannot

rule out any interim type of the opponents. In [20], this property is implied by Assumption 3 (Full support)

which, in general, is not implied by our full-support assumption.
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current paper. We improve on this work by characterizing, within this universal type space, the

collections of finite type spaces that admit some degree of ex ante mutual agreement. Relatedly,

we improve on the analysis of incomplete-information games under uncertainty of Kajii and

Ui [44] by considering variational preferences and deriving equilibrium properties for a specific

class of coordination games. Moreover, we focus here on simultaneous-move games rather than

analyzing the effect of ambiguity aversion in multistage-games such as Battigalli et al. [7], and

Hanany et al. [39] which in turn provide a very different set of results.

Our results in the last part of the paper are related and complementary to the extended

literature on no-trade results without SEU. On the one hand, Rigotti et al. [60] and Strzalecki

and Werner [69] study effi cient allocations under ambiguity with public information, as opposed

to the private-information setting of the current paper. On the other hand, Kajii and Ui [45] and

[46], and Martins-da-Rocha [54] provide no-trade characterizations of the existence of common

ex-ante benchmark beliefs without analyzing the case of full mutual dynamic consistency as we

do in Section 5.

Finally, our work is related to the extended literature on updating non-SEU preferences

under (relaxations of) consequentialism and dynamic consistency as in Ghirardato [27], Pires

[59], Epstein and Schneider [22], Ghirardato et al. [29], Maccheroni et al. [53], Gumen and

Savochkin [37], Faro and Lefort [24], Bastianello et al. [6]. However, rather than deriving or

studying a given updating rule as in the aforementioned works, we take an interim approach

and derive the ex-ante preferences that are consistent with the given interim ones. In turn, this

allows us to connect our results to existing updating rules by comparing the prescribed ex-ante

preferences with the ones we obtain from the interim preferences, and obtain new insights for

their implications in strategic interactions.

2 Nonlinear conditional expectations

In this section, we introduce nonlinear conditional expectations. We do so, as the examples at

the end of this section will clarify, to move from a situation of risk, where probabilities are either

known or trusted by agents, to a situation of uncertainty where agents might entertain several

probability models (ambiguity) and/or might not trust them (misspecification aversion).6

We start by recalling the usual notion of (linear) conditional expectation. This will set the

stage for discussing the generalization we consider in this paper and the formalization of our

main theoretical question: when the expectations of different agents can be seen as generated

by a common perception of uncertainty, but different sets of private information. As in Samet

[62], we consider a finite state space Ω endowed with the power set P (Ω).7 We denote by ∆

6Appendix E contains a simple axiomatic preferential foundation for linear and nonlinear conditional expec-

tations.
7Despite the finiteness of our setting, we maintain a more general notation. For instance, we keep the symbol
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the set of all probabilities over Ω. We let Π denote a partition of Ω, and for every ω ∈ Ω,

we let Π (ω) denote the unique element of Π that contains ω. Finally, we endow RΩ with the

supnorm.

2.1 The linear case

Consider a probability µ ∈ ∆ and denote by Eµ : RΩ → R the functional

Eµ (f) =

∫
fdµ ∀f ∈ RΩ.

If Π is a partition of Ω, then a map pµ : Ω×P (Ω)→ [0, 1] is a regular conditional probability of

µ given Π if and only if: (i) For each ω ∈ Ω the function pµ (ω, ·) ∈ ∆; (ii) For each F ∈ P (Ω)

the function pµ (·, F ) : Ω→ [0, 1] is a version of the conditional probability of F given Π.

Since Ω is finite, any probability µ on Ω admits a regular conditional probability pµ. More-

over, the function Vµ : Ω× RΩ → R, defined by

Vµ (ω, f) =

∫
fdpµ (ω, ·) ∀ω ∈ Ω,∀f ∈ RΩ,

is a regular conditional expectation and has the following properties:

a. For each ω ∈ Ω the functional Vµ (ω, ·) : RΩ → R is normalized, monotone, and linear;8

b. For each f ∈ RΩ the function Vµ (·, f) : Ω→ R is Π-measurable and satisfies

Eµ (f) = Eµ (Vµ (·, f)) and Vµ
(
ω, f1Π(ω) + h1Π(ω)c

)
= Vµ (ω, f) ∀ω ∈ Ω,∀h ∈ RΩ. (1)

In words, (1) contains two properties: the law of iterated expectations and the fact that the

support of the update of µ must be contained in the cell of the partition which realized. Clearly,

from a preferential viewpoint, the functionals Eµ and Vµ can be axiomatized as the conditional
representation of a subjective expected utility (SEU) decision maker who then satisfies dynamic

consistency and consequentialism.

2.2 The nonlinear case

Mimicking what we discussed above, we consider two functions V̄ : RΩ → R and V : Ω×RΩ →
R. In terms of interpretation, the functional V̄ (f) is the unconditional expectation of f while

V (·, f) describes its conditional expectation.

Definition 1. Let V̄ : RΩ → R. We say that V̄ is an ex-ante (generalized) expectation if and

only if V̄ is normalized and monotone.

of integral in place of the one of sum.
8A functional T : RΩ → R is normalized if and only if T (k1Ω) = k for all k ∈ R.
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This definition amounts to say that the preference % represented by an ex-ante expectation
V̄ is rational as in [11]. On the one hand, monotonicity is a conceptual (although mild)

requirement implying that the agents prefer larger monetary outcomes. On the other hand,

normalization requires that the representing V̄ is the certainty equivalent for the preference.

Moreover, under normalization, the comparative notion of ambiguity aversion of Ghirardato

and Marinacci [30] is easily characterized: V̄ is more ambiguity averse than V̄ ′ if and only if

V̄ (f) ≤ V̄ ′ (f) for all f ∈ RΩ.

Definition 2. Let Π be a partition of Ω and V : Ω×RΩ → R. We say that (V,Π) is an interim

(generalized) expectation if and only if for each ω ∈ Ω the functional V (ω, ·) : RΩ → R is

normalized, monotone, and continuous and for each f ∈ RΩ the function V (·, f) : Ω → R is
Π-measurable and satisfies

V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) ∀ω ∈ Ω,∀f, h ∈ RΩ. (2)

A generalized conditional expectation is a pair formed by an ex-ante (generalized) expec-

tation (i.e., the functional V̄ ) and an interim (generalized) expectation (i.e., the functional V

paired with a partition Π) that are dynamically consistent.

Definition 3. Let V̄ be an ex-ante expectation and (V,Π) be an interim expectation. We say

that
(
V̄ , V,Π

)
is a generalized conditional expectation if and only if

V̄ (f) = V̄ (V (·, f)) ∀f ∈ RΩ. (3)

Compared to the standard notion of expectation, we only removed the assumption of lin-

earity from both V̄ and V . From a preferential viewpoint, this is tantamount to weaken the

assumption of independence, but still retain consequentialism and dynamic consistency (see

also Appendix E). Consequentialism takes care of (2), while dynamic consistency is the main

axiom behind the law of iterated expectations in (3).

A natural question that emerges in this setting is whether the interim preferences of the

agents are consistent with a common ex-ante expectation. More formally, we consider the

following definition.

Definition 4. We say that V̄ is a common ex-ante preference for {(Vi,Πi)}i∈I if and only if(
V̄ , V,Π

)
is a generalized conditional expectation for all i ∈ I.

It is plain that in the case each Vi (ω, ·) is SEU our question amounts to study conditions
which yield the existence of a common prior. Samet [62] addresses this special version of our

question. As [62], we mostly focus on the case of full support which we next discuss.9 Given a

9Theorem 1 does not rely on the full-support assumption per se but rather on a regularity condition of

the sequences of higher-order beliefs (cf. Definition 5). Our full-support condition, paired with the absence of

non-trivial public information, implies that the regularity condition holds. However, this can be verified directly

and independently of the full-support assumption (cf. Example 2).
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state ω̄ ∈ Ω, we say that ω̄ is V̄ -essential (resp., V (ω, ·)-) if and only if there exists an ε > 0

such that for each f ∈ RΩ and for each δ ≥ 0

V̄
(
f + δ1{ω̄}

)
− V̄ (f) ≥ εδ (resp., V

(
ω, f + δ1{ω̄}

)
− V (ω, f) ≥ εδ). (4)

In the linear case, we clearly have that ω̄ belongs to the support of µ (resp., pµ (ω, ·)) if and only
if ω̄ is V̄ -essential (resp., V (ω, ·)-essential).10 For the general case, we use this characterization
to define the notion of support. In particular, we say that V̄ (resp., V (ω, ·)) has full support
if and only if each ω̄ ∈ Ω (resp., each ω̄ ∈ Π (ω)) is V̄ -essential (resp., V (ω, ·)-essential).
Moreover, we say that an interim expectation (V,Π) has full support if and only if V (ω, ·) has
full support for all ω ∈ Ω.

Given a collection of partitions {Πi}i∈I for the agents, that is, an information structure, we
denote by Πsup and Πinf respectively themeet and the join of the partitions.11 They respectively

correspond to the public information among agents and the aggregate information collectively

held by the agents. We conclude with few examples of generalized conditional expectations

where we also illustrate the scope of our question.

Example 1 (Maxmin expectations). Our first example considers maxmin expected utility
functionals (see Gilboa and Schmeidler [32]) with full Bayesian updating. Consider a compact

and convex set C of probabilities over Ω and a partition Π and set

V̄C (f) = min
µ∈C

∫
fdµ ∀f ∈ RΩ (5)

and

VC (ω, f) = min
p∈Cω

∫
fdp ∀ω ∈ Ω,∀f ∈ RΩ, (6)

where

Cω = {pµ (ω, ·) : µ ∈ C} ∀ω ∈ Ω (7)

and pµ is the regular conditional probability of µ given Π. Note that in this case a state ω̄ ∈ Ω

is V̄ -essential if and only if µ (ω̄) > 0 for all µ ∈ C. A similar reasoning holds for VC (ω, ·)
and Cω. It is well known that if C is rectangular and V̄ has full support (see Epstein and

Schneider [22]),12 then
(
V̄C , VC ,Π

)
is a generalized conditional expectation where both V̄ and

10As usual, the support of a probability p : P (Ω)→ [0, 1] is the set

supp p = {ω ∈ Ω : p ({ω}) > 0} .

11That is, Πsup is the finest among all partitions that are coarser than each Πi, and Πinf is the coarsest among

all partitions that are finer than each Πi.
12C is rectangular if and only if

C =

{
L∑
l=1

pµl (El, ·)µ (El) : µ, µ1, ..., µL ∈ C
}
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(VC ,Π) have full support. Clearly, linear expectations are obtained when C is a singleton and

rectangularity in that case is trivially satisfied. Next, consider a rectangular full-support set C

as before and assume that each agent has an information partition Πi which is coarser than Π

and her conditional interim expectations (Vi,Πi) depend on the collection of sets of probabilities

(Cω,i)ω∈Ω,i∈I that are computed according to (6) and (7). In this case, V̄ is a common ex-ante

preference for {(Vi,Πi)}i∈I , where V̄ is defined as in (5). N

Example 2 (Multiplier expectations). Our second example considers multiplier preferences
functionals (see Hansen and Sargent [40]). Consider a probability with full support µ over Ω

and a partition Π and set

V̄λ,µ (f) = min
ν∈∆

{∫
fdν + λR (ν||µ)

}
∀f ∈ RΩ (8)

and

Vλ,µ (ω, f) = min
p∈∆:p(Π(ω))=1

{∫
fdp+ λR (p||pµ (ω, ·))

}
∀ω ∈ Ω,∀f ∈ RΩ (9)

where λ > 0 and R (·||·) is the relative entropy. Compared to the previous example the agent
has a probability model of reference µ, but she does not fully trust it. She is willing to consider

other models ν, nevertheless the farther they are in terms of relative entropy from µ (resp.,

its update) the less plausible they are, and the smaller role they play in the minimization (8)

(resp., (9)). In this perspective, λ is a parameter that captures the decision maker aversion

to the potential misspecification of µ: the lower λ the more the decision maker considers

other probability models p. It is well known that
(
V̄λ,µ, Vλ,µ,Π

)
is a generalized conditional

expectation (see Maccheroni, Marinacci, and Rustichini [53, Section 5.2]). One can show that

linear expectations are obtained as the limit case when λ ↑ ∞ (see Maccheroni, Marinacci, and

Rustichini [51, Proposition 12]). Next, consider a full support probability µ and assume that

each agent has an information partition Πi and her conditional interim expectations (Vi,Πi)

are computed according to (9). In this case, V̄ is a common ex-ante preference for {(Vi,Πi)}i∈I ,
where V̄ is defined as in (5). In other words, in this case, a positive answer to our question

amounts to find the existence of a common prior. N

Example 3 (Misspecification and ambiguity). Our third example considers a particular case
of variational preferences recently proposed by Cerreia-Vioglio et al. [12]. Consider a set

Θ ⊆ ∆ (Ω) of probabilities with full support over Ω and a partition Π. In particular, assume

that µ|Π = µ′|Π for all µ, µ
′ ∈ Θ, that is, there is no model uncertainty with respect to the events

where Π = {E1, ..., EL}. In this case, note that

pµ (ω, ·) = pµ (ω′, ·) ∀ω, ω′ ∈ El,∀l ∈ {1, ..., L} ,∀µ ∈ C.

With a small abuse of notation, we can thus denote the update on the El cell by pµ (El, ·).
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that are Π-measurable. Next, set

V̄λ,Θ (f) = min
ν∈∆

{∫
fdν + λmin

µ∈Θ
R (ν||µ)

}
∀f ∈ RΩ.

Next, assume that each agent has an information partition Πi and her conditional interim

expectation (Vi,Πi) is

Vλ,Θ (ω, f) = min
p∈∆:p(Πi(ω))=1

{∫
fdp+ λmin

µ∈Θ
R (p||pµ,i (ω, ·))

}
∀ω ∈ Ω,∀f ∈ RΩ

where λ > 0 and pµ,i (ω, ·) is the conditional probability of µ given Πi. For every i ∈ I, if Πi

is coarser than Π, then
(
V̄ , Vi,Πi

)
is a generalized conditional expectation. The interpretation

is that the agents are uncertain about the probabilistic model beyond their aggregate informa-

tion Πinf . Moreover, the agents are averse to misspecification both about the (unique) model

restricted on Πinf as well as the set of models assigning likelihoods to events that are finer than

Πinf . N

3 Existence and implications of a common ex-ante ex-

pectation

3.1 Existence

We consider a finite set of agents I = {1, ..., n}. We assume that each agent is endowed with
an interim expectation (Vi,Πi). It might be convenient to view Vi as an operator from RΩ to

RΩ. In this case, the j-th component of this operator is Vi (ωj, f) for all f ∈ RΩ. With a small

abuse of notation, we will still denote this operator by Vi. This rewriting turns out to be useful

in order to formally discuss higher-order expectations. For instance, given two agents i, j ∈ I
and an act f ∈ RΩ, the expectation of agent i at state ω about the evaluation of act f by

agent j is Vi (ω, Vj (f)). Moreover, if we do not fix a state ω ∈ Ω, we obtain the second-order

evaluation (of i through j) Vi ◦ Vj : RΩ → RΩ. We next illustrate the relevance of this concept

in a stylized asset-pricing model.

Example 4. [Forecasting the forecaster] Consider a state-contingent asset represented by
an act f ∈ RΩ in a discrete-time economy with t ∈ N periods. Each index i ∈ I represents a
continuum of agents with interim expectations (Vi,Πi). Let (i1, ..., it) ∈ I t, with t ∈ N, be a
finite sequence of agents’classes in I. At period 0, an external agent is endowed with the asset.

At period 1 she has to sell the asset to one of the agents in class i1. The price is determined by

Bertrand competition among the potential buyers. At period 2, the agent of class i1 holding

the asset has to sell it to an agent in class i2 according to the same procedure as above. This

scheme proceeds until period t when the agent of class it holding the asset is paid its realized

value.

10



We can easily solve for the unique equilibrium by backward induction. At period t, the will-

ingness to pay for the asset of agent in class it, and therefore the (state-contingent) equilibrium

price, is exactly Vit (f). From the point of view of an agent in class it−1, the (state-contingent)

value of the asset is then Vit−1 ◦ Vit (f). Iterating this backward reasoning up to period 1, the

initial (state-contingent) price of the asset is

Vi1 ◦ Vi2 ◦ ... ◦ Vit−1 ◦ Vit (f) ∈ RΩ.

Observe that the initial price is a random variable that is measurable with respect to the

information of agent i1.

This highlights the importance of the higher-order expectations in economic interactions.

Of course, the model considered is stylized and simple. Most notably, toward pointing out the

direct role of higher-order expectations, we assumed that agents know the class of the potential

buyers (and hence their interim expectations). In Section 4, we characterize the equilibrium of

the related beauty-contest game where the relevant class of buyers is uncertain. N

Following [62], we call a sequence (it)t∈N in I an I-sequence if and only if for each individual

i ∈ I, i = it for infinitely many t indexes.

Definition 5. We say that a collection {(Vi,Πi)}i∈I of interim expectations exhibits conver-

gence to a deterministic limit if and only if for all I-sequences ι = (it)t∈N and for all f ∈ RΩ,

there exists kf,ι ∈ R such that

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf,ι1Ω.

In this case, for each I-sequence ι = (it)t∈N ∈ IN define V̄ι : RΩ → R by V̄ι (f) = kf,ι.

If there is convergence to a deterministic limit, then the sequences of higher-order expec-

tations of the agents, capturing interactive higher-order reasoning, converge to a limit whose

value is necessarily common knowledge.

Our first result shows that there is convergence to a deterministic limit, provided that all the

interim expectations of the agents have full support and there is no non-trivial public event.13

Moreover, the rate of convergence is quasi-exponential, that is, it is exponential in the number

of times that all the agents have been repeated in the sequence.

13Note that the interim expectations in Examples 2 and 3 do not satisfy the full support assumption. However,

in both cases, the interim expectation of each i can be written as

Vi (ω, f) = φ−1
λ

(
Ṽi (ω, φλ (f))

)
where φλ (z) = − exp

(
− z
λ

)
and Ṽi is an interim expectation with full support. Since, by taking iterated

expectations, φλ and φ
−1
λ cancel out, the convergence to a deterministic limit of Proposition 1 still holds.

With non-trivial public information the results of this section apply in each cell of Πsup.
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Proposition 1. If {(Vi,Πi)}i∈I is a collection of full support interim expectations such that

Πsup = {Ω}, then {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit. Moreover, there
exist ε ∈ (0, 1) and C ∈ R+ such that for each I-sequence (im)m∈N and for each τ, t ∈ N, if i
appears at least τ times in (i1, ..., it) for all i ∈ I, then∣∣∣∣V̄ι (f) 1Ω − Vit ◦ ... ◦ Vi1 (f)

∣∣∣∣ ≤ Cετ ||f ||∞ ∀f ∈ RΩ.

Quasi-exponential convergence provides a bound on the approximation error for computing

the limit higher-order expectation of f given ι using the t-th order expectation. In particular,

the bound improves in t only if additional expectations of all the agents are involved.

We next illustrate the meaning of quasi-exponential convergence to a deterministic limit in

the asset-pricing example.

(Forecasting the forecaster continued). Assume that the collection {(Vi,Πi)}i∈I of interim
expectations has full support and that Πsup = {Ω}. Then, rather than looking at a fixed-length
sequence, we consider an infinite sequence of classes (it)t∈N . We can focus on I-sequences

as, if the identity of classes are iid draws with full support on I, then with probability 1 an I-

sequence is realized. With this, Proposition 1 guarantees that, for truncation (i1, ..., it̄) of (it)t∈N
such that each agent appears suffi ciently many times, the dependence of the initial equilibrium

price on the realized state of the world is arbitrarily (and exponentially) small. Intuitively, the

willingness to pay of an agent in class i1 does not significantly depend on the state as she knows

that the selling value depends on a large number of subsequent transactions. More specifically,

this and the assumption Πsup = {Ω} imply that many of the subsequent buyers will care about
the value of the asset also in states that are ruled out by the information of i1. N

We are now ready for the main result of the paper. If there is convergence to a deterministic

limit, then there exists a common ex-ante expectation if and only if the deterministic limit of

all the I-sequences of higher-order expectations is the same.

Theorem 1. Let {(Vi,Πi)}i∈I be a collection of interim expectations that exhibits convergence

to a deterministic limit. The following statements are equivalent:

(i) There exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I ;

(ii) For each f ∈ RΩ there exists kf ∈ R such that for each I-sequence (it)t∈N

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf1Ω.

In this case, for each f ∈ RΩ, we have V̄ (f) = kf .

Observe that as an immediate corollary of Proposition 1 and Theorem 1, we get that our

characterization of common ex-ante preference holds provided that agents’interim preferences

have full support and there is no public information. Next example first illustrates the (asset-

pricing) equilibrium implications of the existence of a common ex-ante preference.

12



(Forecasting the forecaster continued). First, assume that the agents have a common
ex-ante preference V̄ : RΩ → R. For a suffi ciently long truncation (i1, ..., it̄) of (it)t∈N, the

initial equilibrium price is approximately state-independent and equal to the common ex-ante

evaluation V̄ (f) of the asset. In words, under a common ex-ante preference, the particular

order of trades does not affect the initial price. Conversely, for any two arbitrary I-sequences

truncated at t̄ ∈ N, we can falsify the existence of a common ex-ante preference by checking
whether the corresponding equilibrium prices are suffi ciently different.14 N

3.2 Beyond dynamic consistency

In this section, we relax dynamic consistency between the ex-ante and the interim expecta-

tions. First, we observe that even if we restrict attention only to the subset of acts that are

Πinf-measurable, then the equivalence of Theorem 1 continues to hold. This class of acts is

particularly relevant in strategic interactions where the payoff functions of the agents depend

on their opponents’actions and on a payoff-relevant parameter. In this case, this weaker notion

requires dynamic consistency with respect to acts that depend only on the agents’actions, since

those are measurable with respect to the aggregate information Πinf , while it does not impose

it for acts that also depend on the payoff-relevant parameter.

Remark 1. Consider the following weaker notion of common ex-ante expectation. As before,
let {(Vi,Πi)}i∈I be a profile of interim expectations. Fix any partition Π′ that is finer that

Πinf . We say that the agents have a Π′-common ex-ante preference if there exists an ex-ante

expectation V̄ that satisfies

V̄ (f) = V̄ (Vi (·, f))

for all i ∈ I and for all f ∈ RΩ that are Π′-measurable. By inspection of the proof of Theorem

1, it is easy to see that, if {(Vi,Πi)}i∈I exhibits convergence to a deterministic limit, then the
existence of this weaker form of common ex-ante expectation is equivalent to the following:

(ii’) For each Π′-measurable f ∈ RΩ there exists kf ∈ R such that for each I-sequence (it)t∈N

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) = kf1Ω.

Moreover, as in Theorem 1, this common limit coincides with the common ex-ante evaluation

for every Π′-measurable act f , that is, V̄ (f) = kf .

14Formally, consider two I-sequences with truncations (i1, ..., it̄) and (̃ı1, ..., ı̃t̄) in which each i ∈ I appears at
least τ times. By inspection of the proof of Proposition 1, we have explicit expressions for the constant C ∈ R+

and ε ∈ (0, 1) of Definition 3. With this, we can say that a common rational preference does not exist if

||Vı̃t̄ ◦ ... ◦ Vı̃1 (f)− Vit̄ ◦ ... ◦ Vi1 (f)|| > 2Cετ .
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Next, define the ex-ante preference V̄i = V̄ ◦ Vi for every i ∈ I.15 One can show that, for
every i ∈ I, the functional V̄i is the unique ex-ante preference that coincides with V̄ on the

Π′-measurable acts and is individually dynamically consistent in the sense that

V̄i (g) = V̄i (Vi (·, g)) ∀g ∈ RΩ.

Moreover, for each I-sequence (it)t∈N,

lim
t→∞

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (g) = V̄i1 (g) 1Ω ∀g ∈ RΩ,

that is, the ex-ante expectation of i1 corresponds to the limit for the higher order expectations

of every I-sequence where the first-order expectation is the one of i1. N

3.2.1 Common preferences on resolution of uncertainty

We next consider a more conceptual relaxation of dynamic consistency. Indeed, it is well known

that full-fledged dynamic consistency is restrictive outside the realm of subjective expected

utility, especially with uncertainty averse preferences (see for example [2], [7], [21], [27], and

[66]). Therefore, we consider the existence of a common ex-ante preference that is consistent

with the interim expectations of all the agents yet possibly exhibiting a strict preference for

earlier or later resolution of uncertainty.

Definition 6. We say that an ex-ante expectation V◦ is a lower common ex-ante expecta-
tion for {(Vi,Πi)}i∈I if and only if

V◦ (f) ≤ V◦ (Vi (f)) ∀f ∈ RΩ,∀i ∈ I. (10)

We say that an ex-ante expectation V ◦ is a upper common ex-ante expectation for {(Vi,Πi)}i∈I
if and only if

V ◦ (f) ≥ V ◦ (Vi (f)) ∀f ∈ RΩ,∀i ∈ I. (11)

Let V◦ and V◦ denote respectively the collections of lower and upper common ex-ante expecta-
tions for {(Vi,Πi)}i∈I .

Both relaxations have meaningful interpretations. Whenever the agents share a lower com-

mon ex-ante expectation, their interim preferences can be rationalized by the same ex-ante

expectation provided that they exhibit preferences for earlier resolution of uncertainty (cf. Dil-

lenberger [17] and Strzalecki [68]). Condition (10) is also equivalent to require that each agent

i ∈ I attaches a positive value to her information Πi.16 Moreover, such condition is satisfied by

existing updating rules for preferences under uncertainty as we next show.
15Observe that each V̄i is well defined since, for every g ∈ RΩ, Vi (g) is Π′-measurable, hence we can evaluate

through V̄ .
16Formally, condition (10) is equivalent to assume that, for each finite set of acts A ⊆ RΩ and for each i ∈ I,

V◦

(
max
f∈A

Vi (·, f)

)
≥ max

f∈A
V◦ (f) .
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Example 5 (Choquet expected utility with proxy updating). We analyze the class of prefer-
ences and updating rule recently proposed by Gul and Pesendorfer [36]. Formally, they consider

a totally monotone capacity ν : 2Ω → [0, 1] and a collection of partitions {Πi}i∈I .17 In the ex-
ante stage, all the agents evaluate every act f ∈ RΩ with the Choquet integral of f with respect

to ν, denoted as V◦ (f). Recall that the core of ν is defined as

core (ν) =
{
µ ∈ ∆ (Ω) : ∀E ∈ 2Ω, µ (E) ≥ ν (E)

}
and that, in this case, V◦ (f) = minµ∈core(ν) Ep [f ]. We let µν ∈ ∆ (Ω) denote the Shapley value

corresponding to ν. With this, the interim preferences of agent i at state ω are:

Vi (ω, f) = min
µ∈corei(ν)

Epµ,i(ω,·) [f ] ∀f ∈ RΩ

where pµ,i (ω, ·) is the conditional probability of µ given Πi and

corei (ν) = {µ ∈ core (ν) : ∀E ∈ Πi, µ (E) = µν (E)} .

In words, each agent updates her preferences with full Bayesian updating but starting from the

restricted set corei (ν). In this case, the results in [36, Axiom C.4 and Theorem 1] imply that V◦
is a lower common ex-ante expectation for {(Vi,Πi)}i∈I but not a common ex-ante expectation
in general. N

Instead, an upper common ex-ante expectation rationalizes the interim expectations of the

agents provided that they exhibit preferences for later resolution of uncertainty. Notably, if the

interim preferences {(Vi,Πi)}i∈I are maxmin obtained by full Bayesian updating starting from
the same maxmin ex-ante preference V ◦, then V ◦ is a upper common ex-ante expectation for

{(Vi,Πi)}i∈I .18 This observation also holds for the class of divergence preferences introduced in
[51] that generalizes Example 2 by allowing for other statistical distances beyond the relative

entropy.

We next show that both V◦ and V◦ are nonempty and always admit respectively a maximal
and a minimal element that we denote:

V∗ (f) = sup
V◦∈V◦

V◦ (f) and V ∗ (f) = inf
V ◦∈V◦

V ◦ (f) ∀f ∈ RΩ.

Lemma 1. The sets V◦ and V◦ are nonempty and both V∗ and V ∗ are well defined lower and
upper common ex-ante expectations for {(Vi,Πi)}i∈I .
17A capacity ν is totally monotone if and only, for all k ≥ 2 and all E1, ..., Ek ∈ 2Ω,

ν (∪ni=1Ei) ≥
∑

{J:∅6=J⊆{1,...,k}}

(−1)
|J|+1

ν (∩j∈JAj) .

18Recall from Example 1 that condition (11) is satisfied with equality if and only if each triple (V ◦, Vi,Πi)

satisfies rectangularity.
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By construction, the lower (resp. upper) common ex-ante expectation V∗ (resp. V ∗) has the

minimal attraction (resp. aversion) for earlier resolution of uncertainty among the elements in

V◦ (resp. V◦). In Online Appendix G, we provide an algorithm to compute V∗ and V ∗ starting

from the interim preferences of the agents, which are, in principle, observable.

We now provide a characterization of the extreme common ex-ante expectations in terms

of the higher-order expectations of the agents. Notably, such characterization holds regardless

of the existence of a common ex-ante preference.

Proposition 2. If {(Vi,Πi)}i∈I is a collection of full support interim expectations such that

Πsup = {Ω}, then, for every f ∈ RΩ,

V∗ (f) = inf
ι∈IN:ι is an I-sequence

V̄ι (f) and V ∗ (f) = sup
ι∈IN:ι is an I-sequence

V̄ι (f) .

The interpretation is that by looking at the lowest (resp. highest) limit of the iterated

expectations, we exactly identify the minimal attraction (resp. aversion) to earlier resolution

of uncertainty needed to jointly rationalize the interim preferences of the agents. Moreover,

observe that the previous proposition implies that V∗ (f) ≤ V ∗ (f) for all f ∈ RΩ, that is, the

ex-ante preferences V∗ and V ∗ are ranked in terms of their uncertainty aversion.

(Forecasting the forecaster continued). Consider our running example under all the pre-
vious assumptions with the exception of the existence of a common ex-ante preference. In

particular, fix an I-sequence ι = (in)n∈N and recall that the equilibrium initial price of asset f ,

for the game with length t, is equal to the random variable

Vit ◦ Vit−1 ◦ ... ◦ Vi2 ◦ Vi1 (f) .

In this case, by Proposition 1, as we let t go to infinity, the limit price is deterministic and

equal to V̄ι (f). Moreover, by Lemma 1 and Proposition 2, the limit initial price satisfies

V◦ (f) ≤ V̄ι (f) ≤ V ◦ (f) (12)

for all upper and lower common ex-ante expectations V◦ ∈ V◦ and V ◦ ∈ V ◦, and, more accu-
rately,

V̄ι (f) ∈ [V∗ (f) , V ∗ (f)] .

Equation (12) has direct implications for the equilibrium price with preferences that do not

satisfy dynamic consistency. For example, if the traders are maxmin agents and share the same

set of ex-ante probabilistic models C ⊆ ∆ (Ω), then, under full Bayesian updating, the limit

initial price with private information V̄ι (f) is smaller than the common ex-ante evaluation

V ◦ (f) = minp∈C
∫
fdp. Indeed, the initial equilibrium price is the result of a compounded

pessimistic evaluation due to full Bayesian updating and iterated minimization across all the

updated probabilistic models. N

16



Proposition 2 has also important implications for the characterization of the existence of a

common ex-ante preference, even in the SEU case.

Corollary 1. Let {(Vi,Πi)}i∈I be a collection of full support interim expectations such that

Πsup = {Ω}. The following statements are equivalent:

(i) There exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I ;

(ii) For each f ∈ RΩ, we have V∗ (f) = V ∗ (f).

Moreover, V̄ (f) = V∗ (f) = V ∗ (f) = V̄ι (f) for all f ∈ RΩ and all I-sequences ι ∈ IN.

The previous corollary provides an alternative characterization of the existence of a common

ex-ante preference in terms of the weakenings of the common ex-ante expectations that we have

proposed.

Corollary 2. Let {(Vi,Πi)}i∈I be a collection of full support interim expectations such that

Πsup = {Ω} and such that Vi is SEU for all i ∈ I. The following statements are equivalent:

(i) There exists a common prior p ∈ ∆ (Ω) for {(Vi,Πi)}i∈I ;

(ii) Both V∗ and V ∗ are SEU.

Moreover, Ep (f) = V∗ (f) = V ∗ (f) for all f ∈ RΩ.

This second corollary provides a new characterization of the common prior assumption in

the setting of Samet [62]. In particular, there exists a common prior if and only if both the

extreme ex-ante preferences of the agents are neutral with respect to the timing of resolution

of uncertainty.

We close this section with a result bounding the difference between the iterated expectations

along two different I-sequences without assuming the existence of a common ex-ante preference.

This bound is the sum of the wedge between the two extreme ex-ante evaluations V∗ and V ∗

and a quasi-exponentially vanishing term due to Proposition 1.

Corollary 3. Let {(Vi,Πi)}i∈I be a collection of full support interim expectations such that

Πsup = {Ω}. There exist ε ∈ (0, 1) and C ∈ R+ such that for every pair of I-sequence ι =

(im)m∈N and ι
′ = (i′m)m∈N, and for each τ, t ∈ N, if every i ∈ I appears at least τ times in both

(i1, ..., it) and (i′1, ..., i
′
t), then∥∥V t

ι (f)− V t
ι′ (f)

∥∥
∞ ≤ ‖V∗ (f)− V ∗ (f)‖∞ + Cετ ||f ||∞ ∀f ∈ RΩ.

Observe that, in the two-agent case, when there exists a common ex-ante preference, the

previous result gives a bound on the higher-order disagreement between agents, by getting rid

of the first term on the right-hand side.
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3.2.2 Dynamic consistency of local subjective beliefs

In this section, we consider a minimal notion of mutual dynamic consistency that only involves

the most trusted probabilistic models. We show below that it strictly linked to the concept

of subjective beliefs at an act introduced by Rigotti et al. [60, Definition 1 and Proposition

3] to study Pareto optimal allocations under ambiguity. To formalize this concept we need to

restrict ourselves to the class of variational preferences (cf. [51]).

Definition 7. A collection of interim expectations {(Vi,Πi)}i∈I is variational if and only if
and for every i ∈ I and ω ∈ Ω, there exists a lower semicontinuous, grounded, and convex cost

function ci,ω : ∆ (Ω)→ [0,∞] such that

Vi (ω, f) = min
p∈∆(Ω)

{Ep [f ] + ci,ω (p)} (13)

for all f ∈ RΩ.19

Variational interim expectations exhibit violations of subjective expected utility due to aver-

sion to ambiguity, a widely documented trait. The interpretation is that each agent considers

the evaluation of the act under many probabilistic models and ci,ω penalizes more the mod-

els (subjectively) deemed less plausible. In particular, the probabilistic models p for which

ci,ω (p) = 0 represent the ones that i trusts the most in state ω. All the examples of preferences

we have introduced are variational.20 For instance, in the case of maxmin preferences, ci,ω is

the support function of the set of probabilistic models Ci,ω.

Define the following set which captures a minimal extent of mutual dynamic consistency

among the agents:

Θ =
⋂
i∈I
co {p ∈ ∆ (Ω) : ∃ω ∈ Ω, ci,ω (p) = 0} .

In words, Θ contains all the ex-ante probabilistic models that, when updated, are among the

most trusted by every agent in every state, that is, those that minimize the interim cost function.

Following Ghirardato and Marinacci [30], we call these probability measures as benchmark

models.21 Incidentally, Θ also coincides with the set of ex-ante probabilistic models that are

consistent with a selection from the subjective beliefs at any constant act (cf. [60, Definition 1

and Proposition 3], [46], [54]) of the interim preferences of the agents.

19A cost function c is grounded if and only minp∈∆(Ω) c (p) = 0.
20Imposing the representation in equation (13) is equivalent to assume that each Vi (ω, ·) is concave and

translation invariant, that is,

Vi (ω, f + ke) = Vi (ω, f) + k

for all f ∈ RΩ and k ∈ R. From a preferential viewpoint, these functional properties are equivalent to two

axioms: uncertainty aversion and weak c-independence (cf. [51]).
21These probability measures correspond to SEU preferences that are less ambiguity averse than the interim

preference of the agent as formally showed in [51].
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Definition 8. We say that a variational collection of interim expectations {(Vi,Πi)}i∈I has a
common local subjective belief if and only if Θ 6= ∅. In this case, we define V Θ : RΩ → R as

V Θ (f) = min
µ∈Θ

Eµ [f ] .

In words, V Θ is a caution evaluation of acts that only relies on the benchmark ex-ante prob-

abilistic models. In the next result, we relate these intermediate notions of common preferences

with the ones we have already studied.

Proposition 3. Let {(Vi,Πi)}i∈I be a variational collection of interim expectations. The fol-

lowing facts are true:

1. If {(Vi,Πi)}i∈I has a common local subjective belief, then V Θ is a upper common ex-ante

expectation for {(Vi,Πi)}i∈I , hence V Θ ≥ V ∗.

2. If there exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I , then {(Vi,Πi)}i∈I has a
common local subjective belief, hence V Θ ≥ V̄ .

Not surprisingly, the new notion of ex-ante expectation introduced V Θ is less ambiguity

averse than the previous ones. The reason is that each µ ∈ Θ is obtained by mixing the interim

beliefs of the agents that correspond to SEU preferences that are less ambiguity averse.

4 Equilibrium and (un-)common ex-ante preferences

In this section, we consider the equilibrium implications of our previous analysis. To do so, we

maintain the assumption that the interim preferences have full support and belong to the class

of variational preferences (cf. Definition 7):

Assumption 1 The collection of interim expectations {(Vi,Πi)}i∈I has full support, is
such that Πsup = {Ω}, and is variational.
Under this assumption, Proposition 1 guarantees that {(Vi,Πi)}i∈I exhibits quasi-exponential

convergence to a deterministic limit.

In each of the following applications, the equilibrium outcomes σβ =
(
σβi

)
i∈I
∈
(
RΩ
)n
of

the agents will always be described by the following fixed-point condition:

σβi (ω) = Vi

(
ω, (1− β) f̂ + β

∑
j∈I

wijσ
β
j

)
∀ω ∈ Ω, ∀i ∈ I. (14)

Here, f̂ ∈ RΩ is a payoff-relevant fundamental, β ∈ (0, 1) parametrizes the relative importance

of coordination with other agents over adaptation to the fundamental, and W = {wij}i,j∈I ∈
Rn×n is a stochastic matrix where each wij captures the relative importance of agent j for i.22

22A matrix W = (wij)i,j∈I ∈ RI×I is stochastic if and only if wij ≥ 0 for all i, j ∈ I and
∑
j∈I wij = 1 for all

i ∈ I.
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The interpretation is that the equilibrium outcome for agent i coincides with her (gener-

alized) expectation of a combination of the fundamental and the equilibrium outcomes of the

other players. These kind of fixed-point conditions are ubiquitous in models of asset pricing

with beauty-contests (cf. Morris and Shin [57]), networks of financial institutions (cf. Jackson

and Pernoud [49]), and price competition (cf. Angeletos and Pavan [3]) as we show below. In

particular, in all these cases, the high-coordination limit (β → 1) of the equilibrium outcomes

is used to select an equilibrium of the pure-coordination games (cf. Shin and Williamson [65]

and Golub and Morris [35]). Therefore, this will be the main focus of our analysis.

4.1 Beauty contests: coordination and equilibrium

As a leading application, we consider a beauty-contest model with randommatching and private

information (as in [35]) that generalizes the leading example of Section 3.

Each i ∈ I represents a continuum of agents sharing the same information partition Πi.

Time is discrete t ∈ {1, ..., T, ...} and there is a random variable f̂ ∈ RΩ denoting the only asset

in this economy which is sequentially traded with random matching. Let β ∈ (0, 1). At every

period t, if an agent in class i holds the asset, with probability (1− β) she has to liquidate the

asset and obtain its fundamental (uncertain) value f̂ . With complementary probability β, she

privately has to sell the asset to an agent from a randomly selected class and then leaves the

game. The matching probabilities, conditional on not liquidating the asset, are described by a

stochastic and strongly connected matrix W , where wij is the probability with which an agent

in class i is matched to class j. In particular, the random matching is independent of the state

ω ∈ Ω and plays the role of objective lotteries a la Anscombe and Aumann in our setting.23

After the realization of the matched class j, the agents in class j compete a la Bertrand

offering a price to asset holder in i who decides to whom to sell the asset. This mechanism

implies that in equilibrium the offered price is equal to the (common) willingness to pay for the

asset of the agents in class j. If an agent in class j acquires the asset, then the game continues

to period t + 1. Observe that there is no relevant learning over time since the past owners of

the asset have left the game. Moreover, conditional on non liquidation, even if the asset holder

would learn something about the state ω ∈ Ω from the offers of the agents in j, accepting the

highest offer is still a dominant strategy given the absence of outside options.

A strategy for an agent in class i ∈ I is a random variable σi ∈ RΩ that is measurable with

respect to the information structure Πi.24 In particular, from the point of view of agents in i,

the strategies σj ∈ RΩ of agents in any class j are state-dependent offers that can be evaluated

through their interim preferences Vi as standard acts. Let Σi and Σ denote respectively the set

23In other words, the matching probabilities are used to take convex linear combinations of acts of the form

h ∈ RΩ.
24For this application, we are implicitly restricting our attention to Markov strategies where all the agents

condition their actions only on their private information.
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of strategies for agents in class i and the set of profiles of strategies for n agents, one for each

class. With this, for every β ∈ (0, 1), if we fix a profile σ = (σj)j∈I ∈ Σ of strategies for all

the agents in all classes j, the corresponding (state-dependent) willingness to pay for asset f̂

of any agent in class i ∈ I is:

Sβ,i,ω (σ) = Vi

(
ω, (1− β) f̂ + β

∑
j∈I

wijσj

)
∀ω ∈ Ω.

The equilibria of this game correspond to the fixed points of the map Sβ (·) : Σ → Σ, that is,

σβ ∈ Σ is a equilibrium if and only if it satisfies equation (14).

Proposition 4. There exists C ∈ R+ such that, for every β ∈ (0, 1), the operator Sβ : Σ→ Σ

is a contraction with respect to the supnorm and it admits a unique equilibrium σβ ∈ Σ that

satisfies

max
i,j∈I,ω,ω′∈Ω

∣∣∣σβi (ω)− σβj (ω′)
∣∣∣ ≤ (1− β)C max

ω,ω′∈Ω

∣∣∣f̂ (ω)− f̂ (ω′)
∣∣∣ . (15)

The inequality in equation (15) gives a bound on the maximum level of disagreement among

the equilibrium asset evaluations. First, we observe that the right hand side is monotonically

decreasing in β and vanishes as we let coordination become more important, that is β → 1.

This implies that the price of the asset becomes constant across states and agents in the limit.

Second, the speed of this convergence is disciplined by C which can be linked back to the

preferences, information, and network primitives, as we explain in the next remark.

Remark 2. In [10], we further elaborate on the estimate on the range of the fixed points of
equations like (14) and find an explicit expression for the estimate in Proposition 4 in terms

of the properties of Sβ. In the current setting, this translates in the following way. Define the

adjacency matrix A ∈ {0, 1}(I×Ω)×(I×Ω) over (I × Ω) by letting, for all i, j ∈ I and ω′, ω ∈ Ω,

a(i,ω′)(j,ω) = 1 if and only if wij > 0 and ω ∈ Πi (ω
′). Also, for all i ∈ I, ω′ ∈ Ω, and ω ∈ Πi (ω

′),

let εi,ω,ω′ > 0 denote the ε satisfying the full-support equation (4) for agent i at state ω′ with

respect the essential state ω. Next, let

ε = min
i,j∈I,ω,ω′∈Ω:a(i,ω′)(j,ω)=1

εi,ω,ω′wij

and with this define the bound

C =
d−1∑
τ=0

(
1 +

1

ε

)2d−τ

where d is the diameter of the graph corresponding to A. The number of connections in A

depends on both the number of connections in the network among agents W as well as on the

dependence of their information structures. In turn, increasing the number of connections in A

has two contrasting effects: first it reduces the diameter of the graph, making C smaller, second

it reduces the maximal possible magnitude of ε, making C larger. For example, the diameter
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is low when all the agents are connected and the information structure has a product form,

i.e., whenever Πi (ω) ∩ Πj (ω′) 6= ∅ for all i, j ∈ I and ω′, ω ∈ Ω, and is high under a circular

information structure, i.e., whenever for every i and ω ∈ Ω, Πi (ω) has nonempty intersection

only with two partition cells of the coplayers. N

4.2 Beauty contests: high coordination and misspecification neu-
trality

In this section, we characterize the unique equilibrium σβ as coordination becomes more and

more important, i.e. β → 1. To do so, we need to introduce some ancillary objects. First, for

all i ∈ I and ω ∈ Ω, let ∂Vi (ω, 0) denote the superdifferential of Vi (ω, ·) at 0 which is nonempty

since the latter is concave. It is easy to see that our assumption guarantees that

∂Vi (ω, 0) = {p ∈ ∆ (Ω) : ci,ω (p) = 0} , (16)

that is, each ∂Vi (ω, 0) consists of the benchmark probability models by agent i at state ω (cf.

[51, Theorem 18]). With this, define the set of interim benchmark beliefs

∂V (0) =
{
q ∈ ∆ (Ω)I×Ω : ∀ (i, ω) ∈ I × Ω, qi,ω ∈ ∂Vi (ω, 0)

}
.

With a slight abuse of notation, for every q ∈ ∂V (0), we let Eq
[
f̂
]
∈ RI×Ω denote the vector(

Eqi,ω
[
f̂
])

(i,ω)∈I×Ω
.

Each q ∈ ∂V (0) can be combined with the network structure W to obtain an interaction

structure W q ∈ R(I×Ω)×(I×Ω)
+ among agent-state pairs capturing both the interim beliefs of the

agents as well as the strength of their links. Formally, we let

wq(i,ω)(j,ω′) = wijqi,ω (ω′) ∀i, j ∈ I,∀ω, ω′ ∈ Ω. (17)

Under SEU interim preferences, there is a unique interaction structure pinned down by the

networkW and the posterior beliefs of the agents. In the SEU case, the interaction structure was

introduced by Golub and Morris [35] and used to characterize the limit equilibrium of a similar

coordination game. In the present setting, model uncertainty translates into a multiplicity

of interim relevant beliefs, hence into a multiplicity of interaction structures. However, this

multiplicity is disciplined by both the information and the interim preferences of the agents.

For example, if ω′ 6∈ Πi (ω), then we immediately have that wq(i,ω)(j,ω′) = 0 for all q ∈ ∂V (0).

Lemma 2. For each q ∈ ∂V (0), there exists a unique probability vector γq ∈ ∆ (I × Ω) such

that γq = γqW q.

This is a consequence of the connectedness properties of each W q implied by Πinf = {Ω},
full support of {Vi,Πi}i∈I , and that W is strongly connected. We are now ready to state the

main result of this section.
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Theorem 2. For all i ∈ I and ω ∈ Ω,

V∗

(
f̂
)
≤ lim

β→1
σβi (ω) = min

q∈∂V (0)

∑
(i,ω)∈I×Ω

γqi,ωEqi,ω
[
f̂
]
≤ inf

µ∈Θ
Eµ
[
f̂
]
. (18)

Moreover, if there exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I , then, for all i ∈ I
and ω ∈ Ω,

lim
β→1

σβi (ω) ∈
[
V̄
(
f̂
)
, V Θ

(
f̂
)]
.

First, we observe that, in the limit where the coordination motive prevails, the equilibrium

price is independent on the realized state and the identity of the agent. In particular, the limit

selects an equilibrium of the pure coordination game where the asset is payoff irrelevant. This

generalizes a well-known fact for subjective expected utility (cf. [35] and [65]).

Second, the constant limit price is equal to the most cautious average of the benchmark

evaluations of f̂ that are consistent with the network structure. Notably, the cautious selection

of the benchmark models q from ∂V (0) induced by the market interaction has two roles. While

selecting beliefs that evaluate the asset in a cautious way (i.e., to keep the first-order evaluations

Eqi,ω
[
f̂
]
low), it also determines how the heterogeneous evaluations are aggregated through the

eigenvector centrality γq of the interactions structure.

Third, our formula for the limit equilibrium points out that the strong coordination mo-

tives in the market attenuates the ambiguity concern exhibited by the equilibrium evaluation.

Intuitively, the asymmetric information of the traders combined with their coordination mo-

tive imply that the equilibrium prices are less variable across states than the fundamental

itself. Therefore, the uncertainty averse traders evaluate the asset more favorably than the

fundamental. More formally, we have

lim
β→1

σβi (ω) ≥ Vi

(
ω, f̂

)
∀i ∈ I,∀ω ∈ Ω,

since each collection of beliefs q ∈ ∂V (0) satisfy ci,ω (qi,ω) = 0 for all i ∈ I and ω ∈ Ω. In turn,

this immediately yields the lower bound in equation (18) and, when there exists a common

ex-ante evaluation, we actually have V∗
(
f̂
)

= V̄
(
f̂
)
(cf. Corollary 1), implying that the

equilibrium price is higher than the shared ex-ante evaluation. This is a sharp difference with

respect to the case of SEU interim preferences where, under a common prior, the equilibrium

price coincides with the prior expectation.

Fourth, the equilibrium price cannot be higher than the evaluation of the fundamental under

any ex-ante probabilistic model that is consistently trusted by all the agents in all the states.

Importantly, while the specific value of the limit equilibrium price depends on the network

structure, the two bounds we have just described are robust in the sense that they hold across

all the strongly connected network structures. Moreover, as we next show, the upper bound is

actually attained in several important cases.
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Corollary 4. Assume that, for all i ∈ I and ω ∈ Ω, it holds arg minp∈∆(Ω) ci,ω =
{
q∗i,ω
}
. For

all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) =
∑

(i,ω)∈I×Ω

γq
∗

i,ωEq∗i,ω
[
f̂
]
.

Moreover, if {(Vi,Πi)}i∈I has a common local subjective belief, then Θ = {µ∗} and

lim
β→1

σβi (ω) = Eµ∗
[
f̂
]
.

This results characterizes an extreme form of ambiguity reduction. Indeed, whenever each

interim preference has a unique benchmark model (e.g., all the agents have divergence prefer-

ences in the interim), the equilibrium price is equal to a SEU evaluation of the asset, implying

that only the interim benchmark models matter as the importance of coordination grows. This

reduction assumes a particularly stark form whenever the agents share a common local subjec-

tive belief µ∗. In this case, the ex-ante evaluation of the asset according to this probabilistic

model is the limit price equilibrium and this limit is the same regardless of the ambiguity at-

titudes and the network structure. In the next example, we illustrate this phenomenon within

the class of multiplier preferences with Bayesian updating from a common ex-ante probabilistic

model.

Example 6. Suppose that, in the ex-ante stage, the agents share the same unique benchmark
model µ∗ ∈ ∆ (Ω) but they are adverse to misspecification with possibly different attitudes:

each i ∈ I evaluates f̂ as
min
p∈∆

{
Ep
[
f̂
]

+ λiR (p||µ∗)
}

where (λi)i∈I ∈ RI++ is a profile of misspecification fear indexes. After having observed their

own private information, the agents update the benchmark model to pµ∗,i (ω, ·). Therefore, the
interim evaluation of i at ω is

Vi (ω, f) = min
p∈∆
{Ep [f ] + λiR (p||pµ∗,i (ω, ·))} ∀f ∈ RΩ.

In this case, Corollary 4 implies that

lim
β→1

σβi (ω) = Eµ∗
[
f̂
]

∀i ∈ I,∀ω ∈ Ω.

That is, the ambiguity is completely washed out in the limit and the price converges to the

expected evaluation of the asset, independently of the attitudes towards misspecification. If

these attitudes are homogeneous, i.e., λi = λ for all i ∈ I, there exists a common ex-ante

expectation

V̄ (f) = min
p∈∆
{Ep [f ] + λR (p||µ∗)} ∀f ∈ RΩ

and a wedge between V̄
(
f̂
)
and limβ→1 σ

β
i (ω) arises whenever the asset pays a different amount

in each state. More generally, this wedge remains present between V∗ and limβ→1 σ
β
i (ω) even

when the misspecification attitudes are heterogeneous. N
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The simple Example 9 in the Online Appendix illustrate how the ambiguity-attenuating

effect of the market interaction becomes relevant already at intermediate levels of coordination,

i.e., for β far from 1.

Even beyond the case of interim preferences with single benchmark models, Theorem 2 has

important implications for games with incomplete information with existing updating rules. For

example, it implies that if all the trades share the same set C ⊆ ∆ (Ω) of ex-ante benchmark

probability models, are maxmin, and update with full Bayesian updating, then equation (18)

tells us that the equilibrium price is lower than minp∈C Ep
[
f̂
]
, which is the common ex-ante

willingness to pay for the asset, hence the price of the asset in absence of information. When

the upper bound is actually attained, this effect can be interpreted as contagion of ambiguity

as the next example illustrates.

Example 7 (Contagion of ambiguity). Consider two traders I = {1, 2} that are uncertain
about an asset f̂ ∈ RΩ with Ω = {l,m, h} and f̂ (l) < f̂ (m) < f̂ (h). The agents are endowed

with the following information structures

Π1 = {{l} , {m,h}} and Π2 = {{l,m} , {h}} .

Fix γ ∈ (0, 1) and ε ∈ (0, 1/2), and assume that the agents have a common set of ex-ante

probabilistic models

C = {αδl + (1− α) (γδm + (1− γ) δh) : α ∈ [ε, 1− ε]} .

In the interim stage, conditional on each ω, each agent i has maxmin preferences with respect

to Ci,ω obtained via full Bayesian updating. In particular, we have

C1,l = {δl} and C1,m = C1,h = {γδm + (1− γ) δh} ,

and

C2,l = C2,m =

{
αδl + (1− α) δm : α ∈

[
ε

ε+ γ (1− ε) ,
(1− ε)

(1− ε) + γε

]}
and C2,h = {δh} .

In particular, in the interim stage, only agent 2 conditional on ω ∈ {l,m} perceives ambiguity.
For every β, it is easy to guess and verify that the equilibrium strategy satisfies

σβ1 (l) ≤ σβ1 (m) = σβ1 (h) .

Therefore, conditional on ω ∈ {l,m}, agent 2 behaves as if her probabilistic model assigns

the highest possible probability to l, that is, α = (1−ε)
(1−ε)+γε . With some tedious algebra, this

observation allows us to compute the equilibrium in closed form and obtain the limit equilibrium

lim
β→1

σβi (ω) = min
p∈C

Ep
[
f̂
]

= (1− ε) f̂ (l) + εγf̂ (m) + ε (1− γ) f̂ (h) .
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In words, the ambiguity aversion of agent 2 conditional on ω ∈ {l,m} is strong enough to
infect both types of agent 1 as well as her own type when she observes h. This effect leads

to full coordination on the ex-ante ambiguity averse evaluation. This is particularly sharp as

we increase the ex-ante ambiguity of the players by letting ε → 0. In this case, in the high-

coordination limit, the unique price will converge to the lowest evaluation possible f̂ (l) at every

state of the world. N

The previous two examples may suggest that, whenever limβ→1 σ
β
i (ω) is well defined and

Θ is nonempty, we have limβ→1 σ
β
i (ω) = minµ∈Θ Eµ

[
f̂
]

= V Θ, that is, the upper bound in

Theorem 2 is always achieved even beyond the scope of Corollary 4. However, the next simple

example shows that this is not always the case under these assumptions.

Example 8. Let I = {1, 2}, f̂ ∈ RΩ, and endow the two traders with no information, that

is, Π1 = Π2 = {Ω}. In the ex-ante stage, both the agents have maxmin preferences with
corresponding sets of probabilistic models C1, C2 ⊆ ∆ (Ω) such that C1 6= C2 and C1 ∩C2 6= ∅.
In this case, we have Θ = C1 ∩ C2 given that both agents have no information. Moreover, for

every β ∈ (0, 1), the unique equilibrium σβ is given by

σβi =
minp∈Ci

{
Ep
[
f̂
]}

+ βminp∈C−i

{
Ep
[
f̂
]}

1 + β
∀i ∈ I.

With this, the high-coordination limit price is given by

lim
β→1

σβi (ω) =
minp∈C1

{
Ep
[
f̂
]}

+ minp∈C2

{
Ep
[
f̂
]}

2
≤ min

p∈C1∩C2

Ep
[
f̂
]
,

and, in general, the previous inequality may be strict.25 N

The previous example with maxmin preferences and full Bayesian updating crucially relies

on the non existence of a common ex-ante expectation V̄ . Indeed, the next corollary of Theorem

2 shows that, in this setting, if V̄ exists, then the lower and upper bound collapses and are

equal to the limit price, regardless of the network structure.

Corollary 5. Let {(Vi,Πi)}i∈I be a collection of maxmin (cf. Example 1) interim preferences.

If there exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I , then, V̄ is a maxmin ex-ante

expectation and, for all i ∈ I and ω ∈ Ω,

V̄
(
f̂
)

= lim
β→1

σβi (ω) = V Θ
(
f̂
)
.

25To see this concretely, let Ω = {L,H}, C1 = {p ∈ ∆ (Ω) : p (H) ∈ [1/4, 1/2]}, C2 =

{p ∈ ∆ (Ω) : p (H) ∈ [1/3, 1/2]}, and f̂ (L) = 1− f̂ (H) = 0.
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In stark contrast with Corollary 4 and Example 6, under maxmin preferences the perception

and aversion of ambiguity is still present in the high-coordination limit. Moreover, the higher the

ex-ante ambiguity about the underlying fundamental (i.e., a lower V̄ ) the lower the equilibrium

price. However, the fact that all the ex-ante ambiguity is preserved in the limit is driven by the

fact that full Bayesian updating is an overly cautious updating rule under maxmin preferences.26

We next illustrate our results in the less cautious proxy updating of [36] already introduced in

Example 5. In particular, recall that a lower common ex-ante expectation V◦ = minµ∈core(ν) Ep
describes the ex-ante preferences of the agents. Moreover, by Theorem 2, we have, for every

network structure, the equilibrium price in the high-coordination limit belongs to[
min

µ∈core(ν)
Ep
[
f̂
]
, min
µ∈∩i∈Icorei(ν)

Eµ
[
f̂
]]

as ∩i∈Icorei (ν) is included in Θ and this intersection is always nonempty since it contains the

Shapley value µν . Importantly, whenever the probabilities in core (ν) agree on the events that

are Πinf-measurable, the two bounds collapse as, in this case, each corei (ν) = core (ν). In the

next section, we generalize this result to the whole class of variational models.

4.3 Beauty contests: unambiguous information structure

Here, we consider an important particular case: the agents are unambiguous with respect to the

information structure while still possibly perceiving ambiguity about the fundamental f̂ , i.e.,

there is no strategic ambiguity. In this case, the first-order expectations of the agents exhibits

perceived ambiguity and ambiguity aversion whereas the higher-order expectations do not, that

is, they are SEU. Formally, we say that the information structure is unambiguous if and only

if for every i ∈ I, Vi is Πinf-affi ne, that is

Vi (ω, (1− α)h+ αg) = (1− α)Vi (ω, h) + αVi (ω, g)

for all α ∈ (0, 1), for all ω ∈ Ω, and for all g, h ∈ RΩ where g is Πinf-measurable. This implies

that Vi is linear over the vector space of elements g ∈ RΩ that are Πinf-measurable. This

restriction is reasonable, for instance, in games where the agents repeatedly interact and have

the ability to observe the actions of the coplayers after each interaction. In this case, if the

agents are correctly specified, then their beliefs will converge to the true distribution on Πinf .

Proposition 5. For all i ∈ I and ω ∈ Ω,

lim
β→1

σβi (ω) ∈
[
V∗

(
f̂
)
, V ∗

(
f̂
)]
.

26The existence of a common ex-ante expectation implies that each Vi is obtained via full Bayesian updating

from V̄ (cf. [22]).
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Moreover, if there exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I , then, for all i ∈ I
and ω ∈ Ω,

lim
β→1

σβi (ω) = V̄
(
f̂
)
.

Whenever the traders are not ambiguous regarding events in their information structure,

the extreme ex-ante preferences give both an upper and lower bound for any possible equilib-

rium selection. In particular, observe that the upper bound given by the previous proposition

improves on the one of Theorem 2 since V Θ is a common upper ex-ante preference. Next,

observe that, whenever a common ex-ante preference exists, the identity V̄ = V∗ = V ∗ implies

that the limit equilibrium limβ→1 σ
β is well defined and equal to the ex-ante evaluation. This

is an implication of the common prior assumption under SEU (cf. [35]) that we extend to the

unambiguous-partition case. Finally, comparing the second parts of Theorem 2 and of Propo-

sition 5, we observe that the only ambiguity that can be tamed by the market interaction is

the one about the information structures of the agents.

4.4 Additional application: price competition

Next, we consider an alternative foundation for the equilibrium equation (14) that is the starting

point of the equilibrium characterization given in all the results in this section. Concretely,

there are n firms competing on prices. We fix a random variable f̂ ∈ RΩ representing the state

of the economy and we let y ∈ R denote its realization. The interpretation is that there is

aggregate uncertainty about the state y. Each firm i chooses the price xi ∈ R for its good, has
0 production costs, and its payoff function ui : RI × R → R depends on the state y as well as
the entire profile of prices x ∈ RI :

ui (x, y) = Di (x, y)xi

where Di : RI × R→ R is the demand function faced by firm i and is defined as

Di (x, y) = β
∑
j∈I

wijxj + (1− β) y − xi
2

for some β ∈ (0, 1) and a stochastic and strongly connected matrix W with wjj = 0 for all

j ∈ I. The demand faced by firm i negatively depends on its own price and positively depends

on the state of the economy and on the prices of the other firms respectively with coeffi cients

(1− β) and β. As usual, the interpretation is that the firms compete on the same market

with partially differentiated products and wij captures the similarity of products i and j. For

the rest of this section we strengthen Assumption 1 by letting {(Vi,Πi)}i∈I be a collection of
maxmin (cf. 1) interim preferences. In particular, let Ci,ω ⊆ ∆ (Ω) denote the set of interim

probabilistic models of agent i at state ω.
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As before, a strategy σi ∈ Σi of agent i is measurable with respect to Πi. Given a strategy

profile σ−i ∈
∏

j 6=i Σj for the co-players of i, the problem faced by i given state ω ∈ Ω is

max
xi∈R

min
p∈Ci,ω

Ep

[(
(1− β) f̂ + β

∑
j∈I

wijσj

)
xi −

x2
i

2

]
.

With this, the first-order condition characterizing the equilibrium σβ for every β ∈ (0, 1) is

σβi (ω) = min
p∈Ci,ω

Ep

[
(1− β) f̂ + β

∑
j∈I

wijσ
β
j

]
∀ω ∈ Ω,∀i ∈ I, (19)

which is just a particular case of equation (14).

5 No trade and betting implications

In this section, we give both necessary and suffi cient conditions, in terms of interim trade and

betting behavior, for the existence of a common ex-ante expectation.27 For simplicity, we let

I = {1, 2} and we suppose that the only feasible acts are f ∈ F = [−k, k]Ω, k ∈ R+. The

additional restriction we impose with respect to Section 3 is translation invariance of the interim

preferences. The class of variational preferences, considered in Section 4 and in all the examples

of the paper, satisfies this property.

First, we show that if there exist an asset f ∈ F and a price r ∈ R such that in each state
ω ∈ Ω, if endowed with the asset player 2 would like to sell it, while player 1 would like to buy

it, then there is no common ex-ante preference. Formally, we say that there exists an interim

Pareto improving transaction if there exists f ∈ F and r ∈ R such that, for all ω ∈ Ω, we have

V1 (ω, f) > r > V2 (ω, f).

Proposition 6. Let {(Vi,Πi)}i∈{1,2} be a collection of full support and translation invariant
interim expectations such that Πsup = {Ω}. If there is an interim Pareto improving transaction,
then there is no common ex-ante expectation V̄ for {(Vi,Πi)}i∈{1,2}.

This result clarifies that common dynamic consistency, even without purely probabilistic

beliefs, already implies the absence of trade between the agents. This does not come as a

surprise since, as showed by Kajii and Ui [46] for maxmin preferences and by Martins-da-Rocha

[54] for more general preferences, the absence of interim trade is equivalent to the existence of

a common local subjective belief Θ 6= ∅, which is always implied by the existence of a common
ex-ante expectation V̄ (cf. Proposition 3). However, the latter property is in general much

27Here, we do not consider the interim no-trade characterizations of the existence of the extreme common

ex-ante expectations V∗ and V ∗, as well as the existence of a common local subjective belief, i.e., Θ 6= ∅. Indeed,
the former always exist as shown in Proposition 2, whereas the no-trade implications of the latter have been

extensively studied in [46] and [54].
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stronger than the former, thereby establishing an important difference with the SEU case,

where common dynamic consistency is equivalent to the absence of interim Pareto improving

transaction (cf. [63]).

The suffi cient conditions for the existence of an ex-ante expectation can instead be ex-

pressed in terms of the existence of an interim Pareto gain in a large economy with a unit

mass of agents endowed with the interim expectation (V1,Π1) and a unit mass of agents en-

dowed with the interim expectation (V2,Π2). Formally, a two-population endowment economy

{(χi, Vi,Πi)}i∈{1,2} is composed by a pair of functions with finite range (χ1, χ2) ∈ F [0,1] × F [0,1]

and a pair of interim expectations {(Vi,Πi)}i∈{1,2}. Here χi (x) is the initial asset position of

agent x of population i. We say that an endowment economy is interim Pareto improvable if

there exists (χ′1, χ
′
2) ∈ F [0,1] × F [0,1] such that

1. Market clearing:∫
[0,1]

χ1 (x) (ω) dx+

∫
[0,1]

χ2 (x) (ω) dx =

∫
[0,1]

χ′1 (x) (ω) dx+

∫
[0,1]

χ′2 (x) (ω) dx ∀ω ∈ Ω;

2. Interim Pareto improvement:

Vi (ω, χi (x)) < Vi (ω, χ
′
i (x)) ∀i ∈ {1, 2} ,∀x ∈ [0, 1] ,∀ω ∈ Ω.

Theorem 3. Let {(Vi,Πi)}i∈{1,2} be a set of full support translation invariant interim expecta-

tions such that Πsup = {Ω}. If there is no two-population endowment economy {(χi, Vi,Πi)}i∈{1,2}
that is interim Pareto improvable, then there exists a translation invariant common ex-ante

preference V̄ for {(Vi,Πi)}i∈{1,2}.

There are two reasons behind the gap between the necessary and suffi cient conditions for

the existence of a common ex-ante preference. First, for non SEU agent the value of shortening

a position, Vi (ω,−f), is in general different from the negative of the value of the position,

−Vi (ω,−f). Therefore, to guarantee the existence of a common prior the absence of profitable

trade must be verified at every initial asset position, and it is not enough to look at neutral

initial positions. Moreover, the non additivity of Vi over the different assets implies that ruling

out bilateral improvements is not enough, and instead joint transfers between multiple agents

must be considered.

6 Discussion and conclusion

The results of this paper can be also used as a stepping stone for further analysis of games with

non subjective expected utility. Here we highlight some open questions and future research

avenues.
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First, as already stressed, despite our analysis follows an interim approach, our results can

be used in games of incomplete information with general preferences under uncertainty and a

given set of updating rules. Indeed, the disagreement bound in Proposition 4 and the limit

characterization in Theorem 2 did not put any intertemporal restriction on the agents’prefer-

ences. So, for example, if all the agents are maxmin, share the same ex ante set of probability

models, and update their beliefs with full Bayesian updating, then our results give tools to

study how the equilibrium outcomes changes with respect to the agents’private information.

Therefore, our results can be seen as a stepping stone toward a model of information design in

beauty contests under non SEU preferences.

Second, our framework enables us to revisit some classical results for SEU agents on incom-

plete information games to understand whether they carry on with more general preferences.

An example is the result established in [26] that if a stochastically monotone function (often

interpreted as the price of an asset) of the beliefs is common knowledge across the players, their

beliefs actually coincide. The result extends if the information structure is unambiguous, but

may fail more generally.

Finally, our framework and results can be used to obtain sharper equilibrium refinements in

complete information games. Indeed, in the SEU world, Monderer and Samet [52] and Kajii and

Morris [43] pioneered a robust approach that selects only the subset of equilibria that are limit

points of every sequence of incomplete information games that is approximating the original

complete information game. An even sharper refinement would only select equilibria that are

limit points including elaborations under incomplete information and non-SEU preferences.

A Appendix: Mathematical preliminaries

Recall that we have a finite state space Ω and a finite set of individuals I = {1, ..., n}. Since
Ω is finite, we can enumerate its elements Ω = {ω1, ..., ωn̄} with n̄ ∈ N. With a small abuse of
notation, we equivalently view the state space as either the set Ω = {ω1, ..., ωn̄} or as the set
J = {1, ..., n̄}. In this way, RΩ is isomorphic to the set of vectors Rn̄, where both are endowed
with the supnorm. For this reason, we still denote the elements of Rn̄ by f . We also denote the
elements of the canonical basis of Rn̄ by ej for all j ∈ J . Finally, we denote the vector whose
components are all 1s by e: it corresponds to the function 1Ω in RΩ.

In this section, we focus our attention on operators T : Rn̄ → Rn̄. In what follows any
such operator will be assumed to be normalized, monotone, and continuous with the exception

of Definition 9 and Lemma 3.28 Clearly, a normalized, monotone, and continuous operator

28That is, T is normalized if and only if T (ke) = ke for all k ∈ R. Obviously, T is monotone if and only if
for each f, g ∈ Rn̄

f ≥ g =⇒ T (f) ≥ T (g) .
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T : Rn̄ → Rn̄ is linear if and only if there exists a stochastic n̄ × n̄ matrix M such that

T (f) = Mf for all f ∈ Rn̄.29 The composition of normalized, monotone, and continuous

operators is an operator which shares the same properties. In this work, all products of n̄× n̄
matrices are to be intended backward/left, that is, Πk+1

l=1 Ml = Mk+1Πk
l=1Ml = Mk+1...M1 for all

k ∈ N. Define In̄ to be the n̄ × n̄ identity matrix. Given T : Rn̄ → Rn̄, we define by Tj the
j-th component of T , that is, Tj (f) is the j-th component of the vector T (f) for all f ∈ Rn̄.
Given j, j′ ∈ J we say that j is strongly monotone with respect to j′ (under T ) if and only if
there exists εjj′ ∈ (0, 1) such that for each f ∈ RΩ and for each δ ≥ 0

Tj

(
f + δej

′
)
− Tj (f) ≥ εjj′δ. (20)

We also say that j is constant with respect to j′ if and only if for each f ∈ RΩ and for each

δ ≥ 0

Tj

(
f + δej

′
)
− Tj (f) = 0. (21)

Given T and j, j′ ∈ J , observe that it might be the case that neither j is strongly monotone with
respect to j′ nor j is constant with respect to j′. In light of this, we say that T is dichotomic if

and only if for each j, j′ ∈ J , j is either strongly monotone with respect to j′ or constant. Our
operators T are typically nondifferentiable, when they are though, condition (20) (resp., (21))

amounts to require that the partial derivative of Tj with respect to j′ is uniformly bounded

away from zero (resp., is zero) at each f .

We next define the notion of indicator matrix for an operator T .

Definition 9. Let T be a monotone operator. We say that A (T ) is the indicator matrix of T

if and only if its jj′-th entry is such that

ajj′ =

{
1 j is strongly monotone wrt j′

0 otherwise
∀j, j′ ∈ J.

The above notion of indicator matrix generalizes the notion of indicator matrix for positive

matrices. In fact, the indicator matrix A (M) of an n̄× n̄ nonnegative matrix M is defined to

be such that ajj′ = 1 if and only if mjj′ > 0 and ajj′ = 0 if and only if mjj′ = 0.30 We say

that A (T ) is nontrivial if and only if for each j ∈ J there exists j′ ∈ J such that ajj′ = 1. The

indicator matrix A (T ) of a monotone operator T induces a natural partition of J , associated

to T . Recall that given a nonnegative n̄× n̄ matrix A with nonnull rows, we can partition the
set J = {1, ..., n̄} with the partition {Jl (A)}mA+1

l=1 of essential and inessential indexes of A. The

first mA sets consist of the essential classes while JmA+1 (A) consists of all inessential indexes

and it might be empty. This is the case if A is symmetric, that is, ajj′ = aj′j for all j, j′ ∈ J .
29As usual, a stochastic matrix is a square matrix whose entries are nonnegative and the entries of each row

sum up to 1.
30To see this, define T : Rn̄ → Rn̄ by T (f) = Mf for all f ∈ Rn̄. It is then immediate to see that

A (T ) = A (M).
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Instead, there always exists at least a nonempty class of essential indexes J1 (A).31 We call

Π (A) = {Jl (A)}mA+1

l=1 the partition of A. When A = A (T ) where T is normalized, monotone,

and continuous and A (T ) is nontrivial, we denote by Π (T ) the partition Π (A (T )).

Lemma 3. Let {Bk}k∈{1,...,K} be a finite collection of n̄ × n̄ nonnegative matrices such that

bk,jj > 0 for all k ∈ {1, ..., K} and for all j ∈ J . If A (Bk) is symmetric for all k ∈ {1, ..., K},
then A (BK ...B1) ≥ A (Bk) for all k ∈ {1, ..., K} and Π (A (BK ...B1)) is coarser than Π (Bk)

for all k ∈ {1, ..., K}.

We already observed that a normalized, monotone, and continuous operator T is linear if

and only if T (f) = Mf for all f ∈ Rn̄ where M is an n̄× n̄ stochastic matrix. Intuitively, the
next two results show that dropping the linearity assumption allows M to depend on f . The

first result will not impose much discipline on the replicating matrices M (f) while the second

one will connect the indicator matrix of M (f) to the one of T . As usual, we denote by ∆n̄ the

collection of all vectors in Rn̄+ whose entries sum up to 1.

Lemma 4. If T : Rn̄ → Rn̄ is normalized, monotone, and continuous, then there exists a
compact and convex set M (T ) of n̄ × n̄ stochastic matrices such that for each f ∈ Rn̄ there
exists M (f) ∈M (T ) such that

T (f) = M (f) f.

Moreover, if j is constant with respect to j′, then mjj′ = 0 for all M ∈M (T ).

The next result builds on [9, Proposition 8].

Proposition 7. If T : Rn̄ → Rn̄ is normalized, monotone, continuous, and such that A (T ) is

nontrivial, then there exists a compact and convex setM (T ) of n̄× n̄ stochastic matrices such
that A (M) ≥ A (T ) for all M ∈ M (T ) and for each f ∈ Rn̄ there exists M (f) ∈ M (T ) such

that

T (f) = M (f) f.

Moreover, if T is dichotomic, thenM (T ) can be chosen to be such that A (M) = A (T ) for all

M ∈M (T ).

31We follow Seneta [64]. Denote by a(t)
jj′ the jj

′-th entry of At. We write j A→ j′ if and only if a(t)
jj′ > 0 for

some t ∈ N. It is immediate to see that if j A→ j′ and j′ A→ j′′, then j A→ j′′. We also write j A←→ j′ if and only

if j A→ j′ and j′ A→ j. In this case, clearly, we have that j A→ j, that is, a(t)
jj > 0 for some t ∈ N. Next, we classify

each index j ∈ J as essential or inessential. An index j ∈ J is essential if and only if for each j′ ∈ J

j
A→ j′ =⇒ j

A←→ j′.

If instead there exists j′ ∈ J such that j A→ j′, but j′
A

6→ j, we say that j is inessential. In other words, j is

inessential if and only if it is not essential. Note that there always exists at least one essential index (see Seneta

[64, Lemma 1.1]). For each essential j ∈ J , define [j] =
{
j′ ∈ J : j

A←→ j′
}
. Note that given two essential

indexes j and j′ in J we have that either [j] = [j′] or [j] ∩ [j′] = ∅. In particular, j′′ ∈ [j] if and only if j′′ is

essential and j A←→ j′′. Moreover, given j, j′ ∈ J such that j A←→ j′, j is essential if and only if j′ is.
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Proof. For each j, j′ ∈ J if j is strongly monotone with respect to j′, consider εjj′ ∈ (0, 1) as

in (20) otherwise let εjj′ = 1/2. Define M̃ to be such that m̃jj′ = ajj′εjj′ for all j, j′ ∈ J where
ajj′ is the jj′-th entry of A (T ). Since each row of A (T ) is not null, for each j ∈ J there exists
j′ ∈ J such that ajj′ = 1 and, in particular, m̃jj′ > 0. This implies that

∑n̄
l=1 m̃jl > 0 for all

j ∈ J . Define also ε = min
{

minj∈J
∑n̄

l=1 m̃jl, 1/2
}
∈ (0, 1). Define the stochastic matrix M̄ to

be such that m̄jj′ = m̃jj′/
∑n̄

l=1 m̃jl for all j, j′ ∈ J . Clearly, we have that for each j, j′ ∈ J

m̄jj′ > 0 ⇐⇒ m̃jj′ > 0 ⇐⇒ ajj′ = 1.

This yields that A
(
M̄
)

= A (T ). Next, consider f, g ∈ Rn̄ such that f ≥ g. Define g0 = g. For

each j′ ∈ {1, ..., n̄− 1} define gj′ ∈ Rn̄ to be such that gj
′

j = fj for all j ≤ j′ and gj
′

j = gj for

all j ≥ j′ + 1. Define gn̄ = f . Note that f = gn̄ ≥ ... ≥ g1 ≥ g0 = g. It follows that

Tj (f)− Tj (g) =
n̄∑

j′=1

[
Tj

(
gj
′
)
− Tj

(
gj
′−1
)]
≥

n̄∑
j′=1

ajj′εjj′
(
gj
′

j′ − g
j′−1
j′

)
=

n̄∑
j′=1

m̃jj′ (fj′ − gj′) =

(
n̄∑
l=1

m̃jl

)(
n̄∑

j′=1

m̃jj′∑n̄
l=1 m̃jl

(fj′ − gj′)
)

=

(
n̄∑
l=1

m̃jl

)(
n̄∑

j′=1

m̄jj′ (fj′ − gj′)
)

≥ ε
n̄∑

j′=1

m̄jj′ (fj′ − gj′) ∀j ∈ J.

This implies that

f ≥ g =⇒ T (f)− T (g) ≥ εM̄ (f − g) = ε
(
M̄f − M̄g

)
. (22)

Define S : Rn̄ → Rn̄ by

S (f) =
T (f)− εM̄f

1− ε ∀f ∈ Rn̄.

By definition of S and (22) and since M̄ is a stochastic matrix and T is normalized, monotone,

and continuous, it is immediate to see that S is normalized, monotone, and continuous. We can

rewrite T to be such that

T (f) = εM̄f + (1− ε)S (f) ∀f ∈ Rn̄. (23)

Consider the set M (S) of Lemma 4. Define M (T ) = εM̄ + (1− ε)M (S). Since M (S)

is compact and convex, A (T ) = A
(
M̄
)
, and ε ∈ (0, 1), it follows that M (T ) is compact

and convex and A (M) ≥ A
(
M̄
)

= A (T ) for all M ∈ M (T ). By (23) and since for each

f ∈ Rn̄ there exists M̂ (f) ∈ M (S) such that S (f) = M̂ (f) f , for each f ∈ Rn̄ we have that
T (f) = M (f) f where M (f) = εM̄ + (1− ε) M̂ (f) ∈M (T ).
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Finally, consider j, j′ ∈ J . Since A (M) ≥ A (T ), if the jj′-entry of A (T ) is 1 so is the one

of A (M) for all M ∈ M (T ). Assume that the jj′-entry of A (T ) is 0. Since A (T ) = A
(
M̄
)
,

the jj′-entry of A
(
M̄
)
is 0 too. Since T is dichotomic, it follows that for each f ∈ Rn̄ and for

each δ ≥ 0

ε

n̄∑
l=1

m̄jlfl + (1− ε)Sj
(
f + δej

′
)

= ε
n̄∑
l=1

m̄jl

(
fl + δej

′

l

)
+ (1− ε)Sj

(
f + δej

′
)

= Tj

(
f + δej

′
)

= Tj (f) = ε

n̄∑
l=1

m̄jlfl + (1− ε)Sj (f) .

Since ε ∈ (0, 1), we can conclude that Sj
(
f + δej

′)
= Sj (f) for all f ∈ Rn̄ and for all δ ≥ 0,

that is, j is constant with respect to j′ under S. By Lemma 4, we have that mjj′ = 0 for all

M ∈ M (S). Since M (T ) = εM̄ + (1− ε)M (S) and m̄jj′ = 0, we can conclude that the

jj′-entry of A (M) is 0 for all M ∈ M (T ). Since j and j′ were arbitrarily chosen, we can

conclude that A (M) = A (T ) for all M ∈M (T ). �
The next lemma is an extension to our framework of Lemma 2 of Samet [62]. In order to

discuss it, we need to introduce some notation. Given a stochastic matrix M , we denote by

δ (M) = minj,j′∈J :mjj′>0mjj′ and d (M) = minj∈J mjj.

Lemma 5. Let M and M̄ be two n̄ × n̄ stochastic matrices. If A
(
M̄
)
is symmetric and

0 < d
(
M̄
)
, then we have that A

(
M̄M

)
≥ A (M) and

1. δ
(
M̄M

)
≥ δ (M), provided A

(
M̄M

)
= A (M).

2. δ
(
M̄M

)
≥ δ (M) δ

(
M̄
)
, provided A

(
M̄M

)
> A (M).

Moreover, if {Mk}∞k=1 is a sequence of n̄× n̄ stochastic matrices such that A (Mk) is symmetric,

δ (Mk) ≥ δ > 0, and d (Mk) > 0 for all k ∈ N, then

δ

(
m∏
k=1

Mk

)
≥ δn̄

2 ∀m ∈ N. (24)

Define

Theorem 4. Let {Ti}i∈I be a finite collection of normalized, monotone, and continuous di-
chotomic operators. If

1. A (Ti) is symmetric for all i ∈ I,

2. ai,jj = 1 for all i ∈ I and for all j ∈ J ,

3. the meet of the partitions {Π (Ti)}i∈I is {Ω},

35



then for each I-sequence (im)m∈N and for each f ∈ Rn̄ we have that

lim
m→∞

Tim ◦ ... ◦ Ti1 (f)

exists and is a constant vector. Moreover, for each I-sequence (im)m∈N and for each τ, t ∈ N,
if i appears at least τ times in (i1, ..., it) for all i ∈ I, then∣∣∣∣∣∣ lim

m→∞
Tim ◦ ... ◦ Ti1 (f)− Tit ◦ ... ◦ Ti1 (f)

∣∣∣∣∣∣
∞
≤
(

1− δ2n̄
2
n̄2
)τ2−n̄

2−1

||f ||∞ ,

where δ = infi∈I,M∈M(Ti) δ (M) > 0.

Proof. Define t̂ = 2n̄
2
. By Proposition 7, we have that In̄ ≤ A (Ti) = A (M) for allM ∈M (Ti)

and for all i ∈ I. Since M (Ti) is compact for all i ∈ I and I is finite, this implies that

δ = infi∈I,M∈M(Ti) δ (M) > 0. Define δ̂ = δt̂n̄
2
> 0. Consider f ∈ Rn̄ and an I-sequence (it)t∈N.

Define ft = Tit ◦ ... ◦ Ti1 (f) ∈ Rn̄ for all t ∈ N and set f0 = f . By Proposition 7, there exists a

sequence {Mt}t∈N of n̄× n̄ stochastic matrices such that Mt ∈M (Tit) and Tit (ft−1) = Mtft−1

for all t ∈ N. Set t0 = 0. Define recursively the following subsequence

th+1 = min {m > th : {ith+1, ..., im} ⊇ I} ∀h ≥ 0.

We next proceed by steps.

Step 1 : A
(

Π
th+1

t=th+1Mt

)
≥ In̄ and Π

(
A
(

Π
th+1

t=th+1Mt

))
= {Ω} for all h ∈ N0.

Proof of the Step. Fix h ∈ N0. Since In̄ ≤ A (Tit) = A (Mt) for all t ∈ {th + 1, ..., th+1}, we have
that A (Mt) has a strictly positive diagonal and it is symmetric for all t ∈ {th + 1, ..., th+1}. By
Lemma 3 and since {th + 1, ..., th+1} ⊇ I and the meet of the partitions {Π (Ti)}i∈I is {Ω}, so
is the meet of the partitions {Π (Mt)}th+1

t=th+1, yielding that Π
(
A
(
Mth+1

...Mth+1

))
= {Ω}. By

Lemma 3, we also have that A
(

Π
th+1

t=th+1Mt

)
≥ A (Mt) ≥ In̄ for all t ∈ {th + 1, ..., th+1}. �

Step 2 : δ
(

Π
th+1

t=th+1Mt

)
≥ δn̄

2
for all h ∈ N0.

Proof of the Step. Fix h ∈ N0. By Lemma 5 and since A (Mt) = A (Tit) is symmetric,

δ (Mt) ≥ δ > 0, and d (Mt) > 0 for all t ∈ N, the statement follows. �
Define M̄h = Π

th+1

t=th+1Mt for all h ∈ N0. By Steps 1 and 2 and [64, Lemma 4.8 and Theorem

4.19], we have that Πm
h=0M̄h converges to a stochastic matrix M whose rows coincide to each

other and, in particular, that∣∣∣∣M − Πτ−1
h=0M̄h

∣∣∣∣
∞ ≤

(
1− δ̂

) τ
t̂
−1

∀τ ∈ N.

This implies that Πm
l=1Ml → M and, in particular, that for each τ, t ∈ N, if i appears at least

τ times in (i1, ..., it) for all i ∈ I, then∣∣∣∣M − Πt
l=1Mt

∣∣∣∣
∞ ≤

∣∣∣∣M − Πτ−1
h=0M̄h

∣∣∣∣
∞ ≤

(
1− δ̂

) τ
t̂
−1

.
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Finally, it follows that

lim
m→∞

Tim ◦ ... ◦ Ti1 (f) = lim
m→∞

Πm
l=1Mlf = Mf,

and, in particular, that for each τ, t ∈ N, if i appears at least τ times in (i1, ..., it) for all i ∈ I,
then∣∣∣∣∣∣ lim

m→∞
Tim ◦ ... ◦ Ti1 (f)− Tit ◦ ... ◦ Ti1 (f)

∣∣∣∣∣∣
∞

=
∣∣∣∣Mf −

(
Πt
l=1Mt

)
f
∣∣∣∣ ≤ (1− δ̂

) τ
t̂
−1

||f ||∞

=
(

1− δ2n̄
2
n̄2
)τ2−n̄

2−1

||f ||∞

proving the statement. �

B Appendix: Existence and implications

In this section, we use the results previously discussed. For such a reason, we equivalently refer

to RΩ and Rn̄, since they are isomorphic.

Lemma 6. If V̄ : RΩ → R is an ex-ante expectation, then it is continuous at constant functions.

Lemma 7. Let (V,Π) be an interim expectation with full support. The following statements

are equivalent:

(i) ajj′ = 1;

(ii) Π (ωj) = Π (ωj′).

In particular, A (V ) is symmetric, ajj = 1 for all j ∈ J , Π (V ) = Π, and V is dichotomic.

Proof of Proposition 1. By Lemma 7 and since {(Vi,Πi)}i∈I is a finite set of full support
interim expectations, we have that A (Vi) is symmetric, Π (Vi) = Πi, and Vi is dichotomic for all

i ∈ I. Moreover, we have that ai,jj = 1 for all j ∈ J and for all i ∈ I. By Theorem 4 and since

the meet of {Π (Vi)}i∈I is {Ω}, we can conclude that for each I-sequence ι = (it)t∈N and for

each f ∈ RΩ we have that limm→∞ Vim ◦ ... ◦Vi1 (f) = kι,f1Ω for some kι,f ∈ R. Moreover, there
exist δ̂ =

(
infi∈I,M∈M(Ti) δ (M)

)2n̄
2
n̄2

∈ (0, 1) and t̂ = 2n̄
2 ∈ N such that for each I-sequence

(im)m∈N and for each τ, t ∈ N, if i appears at least τ times in (i1, ..., it) for all i ∈ I, then

||kf,ι1Ω − Vit ◦ ... ◦ Vi1 (f)|| ≤
(

1− δ̂
) τ
t̂
−1

||f || .

Finally, the last part of the statement follows from the previous claim by setting C = 1

1−δ̂ and

ε =
(

1− δ̂
) 1
t̂ . �
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Denote by P the set of permutations of agents, that is, bijections ρ : {1, ..., n} → {1, ..., n}.
Given ρ ∈ P , we denote by Vρ : RΩ → RΩ the operator defined by

Vρ = Vρ(1) ◦ Vρ(2) ◦ ... ◦ Vρ(n). (25)

As usual, we also denote by V t
ρ the composition Vρ ◦ ... ◦ Vρ︸ ︷︷ ︸

t-times

for all t ∈ N and for all ρ ∈ P .

Proof of Theorem 1. (i) implies (ii). By assumption, for each I-sequence ι = (it)t∈N and for

each f ∈ RΩ we have that limm→∞ Vim ◦ ... ◦ Vi1 (f) = kι,f1Ω for some kι,f ∈ R. By Lemma 6
and since V̄ is an ex-ante expectation and

(
V̄ , Vi,Πi

)
is a generalized conditional expectation,

we have that

kι,f = V̄ (kι,f1Ω) = V̄
(

lim
m→∞

Vim ◦ ... ◦ Vi1 (f)
)

= lim
m→∞

V̄ (Vim ◦ ... ◦ Vi1 (f))

= lim
m→∞

V̄
(
Vim−1 ◦ ... ◦ Vi1 (f)

)
= .... = lim

m→∞
V̄ (Vi1 (f)) = V̄ (f) ,

proving the implication.

(ii) implies (i). Fix a permutation ρ̄ ∈ P . Define the I-sequence (ik)k∈N by ik = ρ̄ (kmodn)

for all k ∈ N such that kmodn 6= 0 and ik = ρ̄ (n) for all k ∈ N such that kmodn = 0.32

Define V̂ : RΩ → RΩ by V̂ (f) = limτ→∞ V
τ
ρ̄ (f) for all f ∈ RΩ. By assumption, we have that

V̂ is well defined and V̂ (f) is a constant function for all f ∈ RΩ. Since Vρ̄ is the composition

of normalized, monotone, and continuous operators, so is V τ
ρ̄ for all τ ∈ N and, by passing to

the limit, V̂ is normalized and monotone. By assumption, we also have that

V̂ (f) = lim
τ→∞

V τ
ρ (f) ∀f ∈ RΩ,∀ρ ∈ P.

Since V̂ is normalized and monotone and V̂ (f) is a constant function for all f ∈ RΩ, we also

have that V̂
(
V̂ (f)

)
= V̂ (f) for all f ∈ RΩ, that is, V̂ ◦ V̂ = V̂ . Define also V̄ : RΩ → R by

V̄ (f) = V̂1 (f) for all f ∈ RΩ. Since V̂ ◦ V̂ = V̂ , it is immediate to see that V̄ is an ex-ante

expectation such that V̄ ◦ V̂ = V̄ . This implies that for each f ∈ RΩ and for each ρ ∈ P

V̄ (Vρ (f)) = V̄
(
V̂ (Vρ (f))

)
= V̄

(
lim
τ→∞

V τ
ρ (Vρ (f))

)
= V̄

(
lim
τ→∞

V τ+1
ρ (f)

)
= V̄

(
V̂ (f)

)
= V̄ (f) .

(26)

Consider i ∈ I. Consider any permutation such that ρ̃ (1) = i. By (26), we have that V̄ ◦Vρ̃◦Vi =

V̄ ◦ Vi. Consider the permutation ρ̂ such that ρ̂ (i′) = ρ̃ (i′ + 1) for all i′ ∈ {1, ..., n− 1}
and ρ̂ (n) = i. Define also Ṽ = V̄ ◦ Vi. It follows that Ṽ is an ex-ante expectation. Since

V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi, we can conclude that

Ṽ ◦ Vρ̂ = V̄ ◦ Vi ◦ Vρ̂ = V̄ ◦ Vρ̃ ◦ Vi = V̄ ◦ Vi = Ṽ .

32This is the sequence

ρ̄ (1) ρ̄ (2) ...ρ̄ (n) ρ̄ (1) ρ̄ (2) ...ρ̄ (n) ρ̄ (1) ρ̄ (2) ...ρ̄ (n) ...
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By induction, this implies that Ṽ ◦ V τ
ρ̂ = V̄ ◦ Vi = Ṽ for all τ ∈ N. By (26) and Lemma 6 and

since Ṽ is an ex-ante expectation, V̄ ◦ V̂ = V̄ , and Ṽ ◦ V τ
ρ̂ = V̄ ◦ Vi = Ṽ for all τ ∈ N, we can

conclude that

V̄ (f) = V̄
(
V̂ (f)

)
= V̄

(
Vi

(
V̂ (f)

))
= Ṽ

(
V̂ (f)

)
= Ṽ

(
lim
τ→∞

V τ
ρ̂ (f)

)
= lim

τ→∞
Ṽ
(
V τ
ρ̂ (f)

)
= V̄ (Vi (f)) ∀f ∈ RΩ,

yielding that V̄ ◦ Vi = V̄ . Since i was arbitrarily chosen, the statement follows. �

Proof of Lemma 1. Define

V◦ (f) = min
ω∈Ω

f (ω) and V ◦ (f) = max
ω∈Ω

f (ω) ∀f ∈ RΩ.

It is immediate to see that both V◦ and V ◦ are ex-ante expectations. Next, fix f ∈ RΩ, and

observe that given

Vi (ω, f) ∈
[

min
ω′∈Ω

f (ω′) ,max
ω′∈Ω

f (ω′)

]
∀ω ∈ Ω,∀i ∈ I,

we have that

V◦ (Vi (f)) = min
ω∈Ω

Vi (ω, f) ≥ min
ω′∈Ω

f (ω′) = V◦ (f) ∀i ∈ I

and

V ◦ (Vi (f)) = max
ω∈Ω

Vi (ω, f) ≤ max
ω′∈Ω

f (ω′) = V ◦ (f) ∀i ∈ I.

This proves that V◦ and V ◦ are respectively lower and upper common ex-ante expectations

for {(Vi,Πi)}i∈I , hence that V◦ and V◦ are nonempty. We next show that V∗ and V ∗ are well
defined lower and upper common ex-ante expectations for {(Vi,Πi)}i∈I . First, observe that

V∗ (ke) = sup
V◦∈V◦

V◦ (ke) = sup
V◦∈V◦

k = k ∀k ∈ R

and that, for all f, g ∈ RΩ with f ≥ g, we have

V∗ (f) = sup
V◦∈V◦

V◦ (f) ≥ sup
V◦∈V◦

V◦ (g) = V∗ (g) ,

where the inequality follows from monotonicity of each V◦ ∈ V◦. With this, V∗ is an ex-ante
expectation. With exactly the same steps we can show that V ∗ is also an ex-ante expectation.

Next, fix f ∈ RΩ and V◦ ∈ V◦. For each i ∈ I, we have

V◦ (f) ≤ V◦ (Vi (f)) ≤ sup
V ′◦∈V◦

V ′◦ (Vi (f)) = V∗ (Vi (f)) .

Given that V◦ ∈ V◦ was arbitrarily chosen, it follows that

V∗ (f) = sup
V◦∈V◦

V◦ (f) ≤ V∗ (Vi (f))
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proving that V∗ is a lower common ex-ante expectation. With exactly the same steps we can

show that V ∗ is also an upper common ex-ante expectation. �

Before proving Proposition 2, we define V? : RΩ → R and V ? : RΩ → R by

V? (f) = inf
ι∈IN:ι is an I-sequence

V̄ι (f) and V ? (f) = sup
ι∈IN:ι is an I-sequence

V̄ι (f) ∀f ∈ RΩ.

Clearly, we have that V? ≤ V ?.

Proof of Proposition 2. Since V? (resp. V ?) is a pointwise infimum (resp. supremum) of

normalized and monotone functionals, so is V? (resp. V ?). Fix f ∈ RΩ and i ∈ I. Consider
also an I-sequence ι′. Note that, by Proposition 1, we have

kVi(f),ι′1Ω = lim
t→∞

Vi′t ◦ Vi′t−1
◦ ... ◦ Vi′2 ◦ Vi′1 (Vi (f))

= lim
t→∞

Vi′′t ◦ Vi′′t−1
◦ ... ◦ Vi′′2 ◦ Vi′′1 (f) = kf,ι′′1Ω

where ι′′ is the I-sequence such that ι′′1 = i and ι′′t = ι′t−1 for all t ∈ N. This implies that

kVi(f),ι′ = kf,ι′′ ≥ inf
ι∈IN:ι is an I-sequence

kf,ι = inf
ι∈IN:ι is an I-sequence

V̄ι (f) = V? (f) .

Since ι′ was arbitrarily chosen, this implies that

V? (Vi (f)) = inf
ι∈IN:ι is an I-sequence

V̄ι (Vi (f)) = inf
ι∈IN:ι is an I-sequence

kVi(f),ι ≥ V? (f) ,

proving that V? ∈ V◦. Next, consider V ′ ∈ V◦ and suppose by contradiction that V ′ (g) > V? (g)

for some g ∈ RΩ. Since V ′ (g) > V? (g), there exists an I sequence ι′ such that

V ′ (g) 1Ω > lim
t→∞

Vi′t ◦ Vi′t−1
◦ ... ◦ Vi′2 ◦ Vi′1 (g) = kg,ι1Ω.

Since V ′ is normalized and continuous at kg,ι1Ω by Lemma 6,

V ′ (g) = V ′ (V ′ (g) 1Ω)

> V ′ (kg,ι1Ω) = V ′
(

lim
t→∞

Vi′t ◦ Vi′t−1
◦ ... ◦ Vi′2 ◦ Vi′1 (g)

)
= lim

t→∞
V ′ ◦ Vi′t ◦ Vi′t−1

◦ ... ◦ Vi′2 ◦ Vi′1 (g)

≥ V ′ (g)

obtaining a contradiction. This proves that V? = V∗. A completely symmetric argument shows

that V ? = V ∗. �

Proof of Corollary 2. (i) =⇒ (ii) By Proposition 1, Theorem 1, and Corollary 1, we have

that Ep (f) = V? (f) = V ? (f) for all f ∈ RΩ. This immediately implies (ii) via Proposition
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2. (ii) =⇒ (i) Given that both V∗ and V ∗ are SEU, there exist p∗,p∗ ∈ ∆ (Ω) such that

V∗ (f) = Ep∗ (f) and V ∗ (f) = Ep∗ (f) for all f ∈ RΩ. By Proposition 2, it follows that

Ep∗ (f) = V∗ (f) ≤ V ∗ (f) = Ep∗ (f) ∀f ∈ RΩ.

Therefore, we have that p∗ = p∗, implying that V∗ = V ∗. By Corollary 1, it follows that there

exists an ex-ante expectation V̄ such that
(
V̄ , Vi,Πi

)
is a generalized conditional expectation

for all i ∈ I and such that V̄ = Ep∗ = Ep∗, proving (i). �

Proof of Proposition 3. 1. It is immediate to see that V Θ is monotone and normalized

provided that Θ 6= ∅. Fix i ∈ I, f ∈ RΩ, and µ ∈ Θ. For every ω ∈ Ω, we have

Eµ [f ] ≥ min
p∈∆
{Ep [f ] + ci,ω (p)} = Vi (ω, f) .

In particular, we have Eµ [f ] ≥ Eµ [Vi (f)]. Given that µ was arbitrarily chosen, it follows that

V Θ (f) = min
µ∈Θ

Eµ [f ] ≥ min
µ∈Θ

Eµ [Vi (f)] = V Θ (Vi (f)) .

Given that i and f were arbitrarily chosen, it follows that V Θ ∈ V◦.
2. We first prove an ancillary claim.

Claim 1. If there exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I , there is no (ki)i∈I ∈
RI++ and (fi)i∈I ∈

(
RΩ
)I
such that

min
i∈I,ω∈Ω

{ki + fi (ω)} ≥ 0,∑
i∈I

fi (ω) = 0 ∀ω ∈ Ω,

min
i∈I,ω∈Ω

{Vi (ω, kie+ fi)− Vi (ω, kie)} > 0.

Proof. Suppose by contradiction that there exist (ki)i∈I ∈ RI++ and (fi)i∈I ∈
(
RΩ
)I
as in the

statement. Observe that

1

n

∑
i∈I

ki = V̄

(
1

n

∑
i∈I

kie+
1

n

∑
i∈I

fi

)
≥ 1

n

∑
i∈I

V̄ (kie+ fi)

=
1

n

∑
i∈I

V̄ (Vi (kie+ fi))

≥ 1

n

∑
i∈I

V̄

(
Vi (kie) +

(
min

j∈I,ω∈Ω
{Vj (ω, kje+ fj)− Vj (ω, kje)}

)
e

)

=
1

n

[∑
i∈I

V̄ (Vi (kie))

]
+ min

j∈I,ω∈Ω
{Vj (ω, kje+ fj)− Vj (ω, kje)}

=
1

n

∑
i∈I

ki + min
j∈I,ω∈Ω

{Vj (ω, kje+ fj)− Vj (ω, kje)} >
1

n

∑
i∈I

ki
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yielding a contradiction. �
We are now ready to prove the statement. By the previous claim, [54, Theorem 6.2], and

[15, Corollary 5] if there exists a common ex-ante preference V̄ for {(Vi,Πi)}i∈I , then⋂
i∈I
co {p ∈ ∆ (Ω) : ∃ω ∈ Ω, p ∈ ∂Vi (ω, e)} 6= ∅.

Finally, by [51, Lemma 32], we have that Θ 6= ∅. �

C Appendix: Equilibrium

We consider the vector space
(
RΩ
)n
. The elements of

(
RΩ
)n
are vectors of n components,

f , where each component i, fi, is an element of RΩ. We endow
(
RΩ
)n
with the norm ‖ ‖∗ :(

RΩ
)n → [0,∞) defined by

‖f‖∗ = sup
i∈I

sup
ω∈Ω
|fi (ω)| = sup

i∈I
‖fi‖∞ ∀f ∈

(
RΩ
)n
.

We say that an interim expectation Vi is nonexpansive if and only if

‖Vi (f)− Vi (g)‖∞ ≤ ‖f − g‖∞

for all f, g ∈ RΩ. Recall that variational preferences Vi (ω, ·) as in equation (13) are concave
and translation invariant, hence Vi (ω, ·) is concave and translation invariant. Therefore, by [14,
p. 346], this assumption implies that each Vi (ω, ·) is nonexpansive.
Fix f̂ ∈ RΩ and let W be an n× n stochastic matrix and assume that |I| ≥ 2. Recall that,

for each β ∈ (0, 1], we define Sβ :
(
RΩ
)n → (

RΩ
)n
by

Sβ,i (f) = Vi

(
(1− β) f̂ + β

n∑
l=1

wilfl

)
∀f ∈

(
RΩ
)n
,∀i ∈ I, (27)

where Sβ,i (f) is the i-th component of Sβ (f) for all f ∈
(
RΩ
)n
. Also, define f̂ ∈

(
RΩ
)n
as f̂i = f̂

for all i ∈ I. In addition, observe that S1 is normalized, monotone, translation invariant, and

concave.

Lemma 8. If β ∈ (0, 1] and Vi is nonexpansive for all i ∈ I, then Sβ is a β-contraction. In
particular, for each β ∈ (0, 1), there exists a unique σβ ∈

(
RΩ
)n
such that

Sτβ

(
f̂
) ‖ ‖∗→ σβ, Sβ

(
σβ
)

= σβ, and
∥∥σβ∥∥∗ ≤ ∥∥∥f̂∥∥∥∞ .

Lemma 9. Let W be strongly connected, {(Vi,Πi)}i∈I be a collection of full support interim
expectations such that Πsup = {Ω}, and f ∈

(
RΩ
)n
. The following statements are equivalent:

(i) S1 (f) = f ;

42



(ii) There exists m ∈ R such that fi = fi′ = m1Ω for all i, i′ ∈ I.

Recall that n̄ = |Ω|. For every monotone operator R :
(
RΩ
)n → (

RΩ
)n
define the adjacency

matrices A (R) , Ā (R) ∈ {0, 1}(n×n̄)×(n×n̄) as follows. For every i, j ∈ I and ω, ω′ ∈ Ω, we set

a(i,ω)(j,ω′) (R) = 1 if and only if there exists ε(i,ω)(j,ω′) > 0 such that for each f ∈
(
RΩ
)n
and

δ ≥ 0,

Ri,ω

(
f + δej,ω

′
)
−Ri,ω (f) ≥ ε(i,ω)(j,ω′)δ,

and we set ā(i,ω)(j,ω′) (R) = 1 if and only if there exist f ∈
(
RΩ
)n
and δ ≥ 0 such that

Ri,ω

(
f + δej,ω

′
)
−Ri,ω (f) > 0.

Moreover, we say that a class of indices Z, ∅ 6= Z ⊆ I × Ω, is closed and strongly connected

with respect to an adjacency matrix A ∈ {0, 1}(n×n̄)×(n×n̄) if and only if (i) for each z, z′ ∈ Z
there exists a path {zl}Kl=1 ⊆ Z such that azlzl+1

= 1 for all l ∈ {1, ..., K − 1}, z1 = z and

zK = z′; (ii) for each z ∈ Z, azz′ = 1 implies z′ ∈ Z.

Lemma 10. There exists a unique class of indices Z, ∅ 6= Z ⊆ I×Ω, that is closed and strongly

connected with respect to A (S1) and, in addition, every row of A (S1) is not null.

Proof of Proposition 4. By Lemma 8, it follows that, for every β ∈ (0, 1), Sβ is a contraction

with respect to the supnorm and it admits a unique fixed point σβ ∈ Σ. With this, the result

follows by Lemma 10 and applying [10, Proposition ?] with T = S1. �

Next, let W ⊆ R(n×n̄)×(n×n̄)
+ denote the set of stochastic matrices over I × Ω and define

∂S1 (0) =
{
Ŵ ∈ W : ∀ (i, ω) ∈ I × Ω, wi,ω ∈ ∂S1,i,ω (0)

}
,

where ∂S1,i,ω (0) ⊆ ∆ (I × Ω) is the superdifferential of the concave functional S1,i,ω at 0.

In particular, the fact that ∂S1 (0) ⊆ W easily follows from the fact that S1 is normalized,

monotone, and translation invariant.

Lemma 11. We have
∂S1 (0) = {W q ∈ W : q ∈ ∂V (0)} .

Lemma 12. Let {(Vi,Πi)}i∈I be a collection of full support interim expectations such that

Πsup = {Ω}. The following facts are true

1. If Vi is concave for all i ∈ I, then V∗ is concave. If in addition Vi is positive homogeneous
for all i ∈ I, then V∗ is positive homogeneous.

2. If Vi is Πinf-affi ne for all i ∈ I, then

V∗ ((1− λ)h+ λg) ≥ (1− λ)V∗ (h) + λV∗ (g)
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and

V ∗ ((1− λ)h+ λg) ≤ (1− λ)V ∗ (h) + λV ∗ (g)

for all λ ∈ (0, 1) and for all g, h ∈ RΩ where g is Πinf-measurable.

Lemma 13. Let {(Vi,Πi)}i∈I be a collection of full support interim expectations such that

Πsup = {Ω}. If Vi is concave for all i ∈ I, then for each β ∈ (0, 1)

V∗

(
Sτβ,i

(
f̂
))
≥ V∗

(
f̂
)

∀i ∈ I,∀τ ∈ N,

where f̂ ∈
(
RΩ
)n
is such that f̂i = f̂ for all i ∈ I. Moreover, if Vi is nonexpansive for all i ∈ I,

then V∗
(
σβi

)
≥ V∗

(
f̂
)
for all i ∈ I and for all β ∈ (0, 1).

Lemma 14. If the collection of interim expectations {(Vi,Πi)}i∈I has full support, is such that
Πsup = {Ω}, is variational and Θ 6= ∅, then Θ ⊆ int (∆ (Ω)).

Proof of Lemma 2. Fix q ∈ ∂V (0) and observe that, by Lemma 11, we have W q ∈ ∂S1 (0).

By Lemma 10, there exists a unique class of indices Z, ∅ 6= Z ⊆ I×Ω, that is closed and strongly

connected with respect to A (S1) and, in addition, every row of A (S1) is not null. Given that

S1 is concave, it follows easily from the definition of ∂S1 (0) that, for each Ŵ ∈ ∂S1 (0), Z

is the unique closed and strongly connected with respect to A
(
Ŵ
)
.33 In particular, Z is

the unique closed and strongly connected with respect to A (W q). Next, observe that, for

each γ ∈ ∆ (I × Ω), we have γ = γ
(
I+W q

2

)
if and only if γ = γW q. In addition, given that

A
(
I+W q

2

)
≥ A (W q), it follows by [48, Corollaries 8.1 and 8.2] and [67, Theorem 2.2.5] that

there exists a unique γq ∈ ∆ (I × Ω) such that γq = γq
(
I+W q

2

)
. By the previous claim, γq is

also the unique probability vector such that γq = γqW q. Given that q ∈ ∂V (0) was arbitrarily

chosen, the statement follows. �

Let s ∈ int (∆ (I)) denote the unique probability vector that satisfies s = sW , where

uniqueness and strict positivity follow from the fact that W is strongly connected.

Proof of Theorem 2. First, recall that S1 is normalized, monotone, translation invariant,

concave and, by Lemma 9, S1 (f) = f if and only if there exists m ∈ R such that fi = fi′ = m1Ω

for all i, i′ ∈ I. With this, by [10, Corollary ?], we have that

lim
β→1

σβi (ω) = min
{η∈∆(I×Ω):∃Ŵ∈∂S1(0),η=ηŴ}

∑
(i,ω)∈I×Ω

ηi,ωf̂ (ω) ,

for all (i, ω) ∈ I × Ω. By Lemmas 11 and 2, it follows that

lim
β→1

σβi (ω) = min
q∈∂V (0)

∑
(i,ω)∈I×Ω

γqi,ωf̂ (ω) .

33Here, with an abuse of notation we identify the linear operator induced by the matrix Ŵ with Ŵ itself.
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Next, fix q ∈ ∂V (0) and observe that

∑
(i,ω)∈I×Ω

γqi,ωEqi,ω
[
f̂
]

=
∑

(i,ω)∈I×Ω

γqi,ωEqi,ω

[
n∑
j=1

wij f̂

]
=

∑
(i,ω)∈I×Ω

γqi,ω

 ∑
(j,ω′)∈I×Ω

qi,ω (ω′)wij f̂ (ω)


=

∑
(i,ω)∈I×Ω

γqi,ω

 ∑
(j,ω′)∈I×Ω

wq(i,ω)(j,ω′)f̂ (ω)

 =
∑

(i,ω)∈I×Ω

γqi,ωf̂ (ω) ,

where the third equality follows from the definition of W q and the last equality follows from

the fact that γq = γqW q. This proves the equality in (18).

We now prove the left inequality in (18). Fix ı̄ ∈ I. By the previous part, we know that
there exists m ∈ R such that limβ→1 σ

β
i (ω) = m for all (i, ω) ∈ I×Ω. By contradiction, assume

that V∗
(
f̂
)
> m. By Lemma 13 and since V∗ is a nonexpansive ex-ante expectation, we can

conclude that

m = V∗ (m1Ω) = lim
β→1

V∗

(
σβi

)
≥ V∗

(
f̂
)
> m

yielding a contradiction.

Next, we prove the right inequality in (18). First, observe that, ifΘ = ∅, then infµ∈Θ Eµ
[
f̂
]

=

∞ and the right inequality in (18) trivially holds. Next, assume that Θ 6= ∅ and fix µ ∈ Θ. In

particular, we have µ ∈ int (∆ (Ω)) by Lemma 14, hence pµ,i (ω, ·) is uniquely defined for all
(i, ω) ∈ I × Ω. By definition of Θ and equation (16), we have that pµ,i (ω, ·) ∈ ∂Vi (ω, 0) for

all (i, ω) ∈ I × Ω. With this, define qµ ∈ ∆ (Ω)I×Ω as qµi,ω = pµ,i (ω, ·) for all (i, ω) ∈ I × Ω

and observe that qµ ∈ ∂V (0) by construction. With this, by Lemma 2 there exists a unique

probability vector γq
µ ∈ ∆ (I × Ω) such that γq

µ
= γq

µ
W qµ . Now, define γµ ∈ ∆ (I × Ω) as

γµi,ω = siµ (ω) for all (i, ω) ∈ I × Ω. Observe that, for all (i, ω) ∈ I × Ω, we have∑
(j,ω′)∈I×Ω

γµj,ω′w
qµ

(j,ω′)(i,ω) =
∑

(j,ω′)∈I×Ω

sjµ (ω′)wjiq
µ
j,ω′ (ω) =

∑
j∈I

sjwji
∑
ω′∈Ω

µ (ω′) pµ,j (ω′, ω)

= µ (ω)
∑
j∈I

sjwji = µ (ω) si = γµi,ω.

This show that γµ = γµW qµ, proving that γµ = γq
µ
. This in turn yields the right inequality in

(18).

The second part of the statement directly follows by the first part and by Corollary 1 (left

inequality) and Proposition 3 (right inequality). �

Proof of Corollary 4. The first part of the statement follows from Theorem 2 and from

the fact that, by assumption, ∂V (0) = {q∗}. Next, assume that Θ 6= ∅. Observe that,

for each µ ∈ Θ, we have that, by Lemma 14, pµ,i (ω, ·) = q∗i,ω is uniquely defined for all

(i, ω) ∈ I×Ω. Assume by contradiction that there exist µ, µ′ ∈ Θ with µ 6= µ′ and consider the

collection
{(
Eq∗i ,Πi

)}
i∈I of interim expectations. This collection has full support by Lemma
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14. Therefore,
{(
Eq∗i ,Πi

)}
i∈I exhibits convergence to a deterministic limit by Proposition 1. In

particular, both Eµ and Eµ′ are common ex-ante expectations for
{(
Eq∗i ,Πi

)}
i∈I by construction,

yielding a contradiction with Theorem 1. Therefore, we obtain Θ = {µ∗} for some µ∗ ∈ ∆ (Ω).

Moreover, by Lemma 2, there exists a unique probability vector γq
∗ ∈ ∆ (I × Ω) such that

γq
∗

= γq
∗
W q∗. Now, for each (i, ω) ∈ I × Ω, define γµ

∗ ∈ ∆ (I × Ω) as γµ
∗

i,ω = siµ
∗ (ω) and

observe that∑
(j,ω′)∈I×Ω

γµ
∗

i,ωw
q∗

(j,ω′)(i,ω) =
∑

(j,ω′)∈I×Ω

sjµ
∗ (ω′)wjiq

∗
j,ω′ (ω) =

∑
j∈I

sjwji
∑
ω′∈Ω

µ∗ (ω′) pµ∗,j (ω′, ω)

= µ∗ (ω)
∑
j∈I

sjwji = µ∗ (ω) si = γµ
∗

i,ω.

This show that γµ
∗

= γµ
∗
W q∗, proving that γq

∗
= γµ

∗
. Finally, we have∑

(i,ω)∈I×Ω

γq
∗

i,ωEq∗i,ω
[
f̂
]

=
∑

(i,ω)∈I×Ω

γµ
∗

i,ωEq∗i,ω
[
f̂
]

=
∑

(i,ω)∈I×Ω

siµ
∗ (ω)Epµ∗,i(ω,·)

[
f̂
]

= Eµ∗
[
f̂
]
,

proving the second part of the statement. �

Proof of Corollary 5. By Lemma 12, we have that V∗ is a maxmin ex-ante expectation.
By Corollary 1, it follows that V̄ is a maxmin ex-ante expectation as well. Let C̄ ⊆ ∆ (Ω)

denote the set of probabilities such that V̄ (f) = minµ∈C̄ Eµ [f ] for all f ∈ RΩ. Fix µ ∈ C̄,

i ∈ I, and ω ∈ Ω. Since V̄ and Vi satisfy dynamic consistency, it follows by [22] that C̄ is Πi-

rectangular. With this, we have that pµ,i (ω, ·) ∈ Ci,ω where Ci,ω is the set of probabilities such
that Vi (ω, f) = minp∈Ci,ω Ep [f ] for all f ∈ RΩ. With this, it follows that ci,ω (pµ,i (ω, ·)) = 0.

Given that i ∈ I and ω ∈ Ω were arbitrarily chosen, it follows that µ ∈ Θ. This in turn proves

that C̄ ⊆ Θ, hence that V̄
(
f̂
)
≤ V Θ

(
f̂
)
. Finally, the result follows by the second part of

Theorem 2. �

Proof of Proposition 5. Fix β ∈ (0, 1). By Lemma 8, we have that σβi = Sβ,i
(
σβ
)

=

Vi

(
(1− β) f̂ + β

∑n
l=1 wilσ

β
l

)
for all i ∈ I. This implies that σβi is Πi-measurable and, in

particular, Πinf-measurable for all i ∈ I. Since Vi is Πinf-affi ne, this implies that

σβi = Vi

(
(1− β) f̂ + β

n∑
l=1

wilσ
β
l

)
= (1− β)Vi

(
f̂
)

+ β

n∑
l=1

wilVi

(
σβl

)
∀i ∈ I. (28)

By Lemma 12, since Vi is Πinf-affi ne for every i ∈ I, we have that V∗ is such that

V∗ ((1− α)h+ αg) ≥ (1− α)V∗ (h) + αV∗ (g) (29)

and V ∗ is such that

V ∗ ((1− α)h+ αg) ≤ (1− α)V ∗ (h) + αV ∗ (g) (30)
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for all α ∈ (0, 1) and for all g, h ∈ RΩ where g is Πinf-measurable. By (28), (29), (30) and since

each Vi
(
f̂
)
is Πi-measurable, hence Πinf-measurable, we have that, for each i ∈ I,

V∗

(
σβi

)
= V∗

(
(1− β)Vi

(
f̂
)

+ β

n∑
l=1

wilVi

(
σβl

))

≥ (1− β)V∗

(
f̂
)

+ β
n∑
l=1

wilV∗

(
σβl

)
,

and

V ∗
(
σβi

)
= V ∗

(
(1− β)Vi

(
f̂
)

+ β
n∑
l=1

wilVi

(
σβl

))

≤ (1− β)V ∗
(
f̂
)

+ β
n∑
l=1

wilV
∗
(
σβl

)
.

Define x∗ ∈ Rn to be such that x∗i = V∗

(
σβi

)
−V∗

(
f̂
)
for all i ∈ I. We can conclude that x∗ ≥

βWx∗. Assume by contradiction that x∗i′ = mini∈I x∗i < 0. Since W is a stochastic matrix, we

have x∗i′ ≤ (Wx∗)i′ . Since β ∈ (0, 1) was arbitrarily chosen, it follows that x∗i′ < β (Wx∗)i′ ,

yielding the contradiction

x∗i′ < β (Wx∗)i′ ≤ x∗i′ .

Therefore, we must have V∗
(
σβi

)
≥ V∗

(
f̂
)
for all i ∈ I and for all β ∈ (0, 1). By taking the limit

for β → 1 in the previous inequality and by Lemma 6 and Theorem 2, we get limβ→1 σ
β
i (ω) ≥

V∗

(
f̂
)
for all ω ∈ Ω and for all i ∈ I. Analogous steps yield that limβ→1 σ

β
i (ω) ≤ V ∗

(
f̂
)
for

all ω ∈ Ω and for all i ∈ I. The second part of the statement follows from the first part and

Corollary 1. �

C.1 Table of bounds
Preferences Lower bound Upper bound

SEU CP µ Eµ
[
f̂
]

Eµ
[
f̂
]

MEU, FBU, RECT C minµ∈C Eµ
[
f̂
]

minµ∈C Eµ
[
f̂
]

MEU, FBU, (Ci)i∈I V∗

(
f̂
)

infµ∈∩i∈ICi Eµ
[
f̂
]

MEU, PROXY, ν minµ∈core(ν) Eµ
[
f̂
]

minµ∈∩i∈Icorei(ν) Eµ
[
f̂
]

HS, CP µ, (λi)i∈I minp∈∆(Ω)

{
Ep
[
f̂
]

+ mini∈I λiR (p||µ)
}

Eµ
[
f̂
]

CHMM, FBU, RECT, C, λ minp∈∆(Ω)

{
Ep
[
f̂
]

+ λminµ∈C R (p||µ)
}

minµ∈C Eµ
[
f̂
]
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D Appendix: No trade

LetM (F ) denote the set of countably additive measures over F , and asM0 (F ) the subset of

measures in M (F ) with finite support, and let ∆0 (F ) ⊆ M (F ) be the set of finite support

probability measures. Define

V =
{
V̄ ∈ C (F ) : V̄ is normalized, monotone, translation invariant

}
.

Given that F is compact and each V̄ ∈ V is 1-Lipschitz continuous, (see, [14, p. 346]) it follows

by Arzelà-Ascoli Theorem that V is compact in the topology of uniform convergence.

Consider the interim expectations {(Vi,Πi)}i∈I and, for every i ∈ I, define

Vi =
{
V̄ ∈ V : ∀f ∈ F, V̄ (f) = V̄ (Vi (f))

}
.

Proof of Proposition 6. Suppose there exists V̄ ∈ V1 ∩ V2. But then

V̄ (f) = V̄ (V1 (f)) > r > V̄ (V2 (f)) = V̄ (f)

yields a contradiction. �

Lemma 15. Let {(Vi,Πi)}i∈{1,2} be a set of full support translation invariant interim expecta-

tions such that Πsup = {Ω}. If there is no ν ∈M0 (F ) such that∫
F

V1 (ω, f) dν (f) > 0 >

∫
F

V2 (ω, f) dν (f) ∀ω ∈ Ω,

then there exists a translation invariant ex-ante expectation V̄ such that
(
V̄ , Vi,Πi

)
is a gener-

alized conditional expectation for all i ∈ {1, 2}.

Proof of Theorem 3. We show that if there is ν ∈M0 (F ) such that∫
F

V1 (ω, f) dν (f) > 0 >

∫
F

V2 (ω, f) dν (f) ∀ω ∈ Ω, (31)

then there exists a two populations endowment economy {(χi, Vi,Πi)}i∈{1,2} that is interim
Pareto improvable. By Lemma 15, this proves the statement. We define the endowment

economy in the following way. Let ν+ and ν− be the positive and negative components of ν,

and enumerate their respective finite supports as S+ = (f1, ..., fk) and S− = (g1, ..., gl). Observe

that at least one between ν+ (F ) and ν− (F ) is strictly larger than 0. We prove the case in

which ν− (F ) > 0, the proof of the other case being analogous. We construct the endowment

economy in the following way. There are two cases ν+(F )
ν−(F )

≤ 1 and ν+(F )
ν−(F )

> 1. In the first case,

define (c1, ..., cl−1) as

c1 =
ν− (g1)

ν− (F )
and ci+1 = ci +

ν− (gi+1)

ν− (F )
for all i ∈ {2, ..., l − 1}
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and (d1, ..., dk−1) as

d1 =
ν+ (g1) ν+ (F )

ν− (F )
and di+1 = di +

ν+ (gi+1) ν+ (F )

ν− (F )
for all i ∈ {2, ..., k − 1} .

Let

χ1 (x) = gi x ∈ [ci−1, ci), i ∈ {1, ..., l}

and

χ2 (x) =

{
fi x ∈ [di−1, di), i ∈ {1, ..., k}
0 x ∈ [dk, 1)

.

We know show that the two populations endowment economy {(χi, Vi,Πi)}i∈{1,2} is interim
Pareto improvable. Indeed, if let (χ′1, χ

′
2) ∈ F [0,1] × F [0,1] be given by

χ′1 (x) = χ2 (x) + V1 (·, χ1 (x))− V1 (·, χ2 (x)) + f̂ (·)

where

f̂ (ω) =

∫
F

V1 (ω, f) d
ν (f)

ν− (F )
−
∫
F

V2 (ω, f)
ν (f)

ν− (F )
.

Notice that by construction (χ′1, χ
′
2) satisfies market clearing, and it is an interim Pareto im-

provement if f̂ (ω) > 0 for all ω ∈ Ω. But by equation (31), this is indeed the case. �

E Appendix: An axiomatic foundation

In this section, we consider a single decision maker with preferences over monetary acts or

utility profiles, that is, RΩ. We model the decision maker preferences via a binary relation %
on RΩ. We next list four important properties:

A 1 (Weak order). The binary relation % is complete and transitive.

A 2 (Certainty equivalent). For each f ∈ RΩ there exists k ∈ R such that f ∼ k1Ω.

A 3 (Continuity). For each f, g, h ∈ RΩ the sets

{λ ∈ [0, 1] : λf + (1− λ) g % h} and {λ ∈ [0, 1] : h % λf + (1− λ) g}

are closed.

A 4 (Monotonicity). For each f, g ∈ RΩ and for each h, k ∈ R

f ≥ g =⇒ f % g

and

h > k =⇒ h1Ω � k1Ω.

49



On the one hand, transitivity and monotonicity are common assumptions of rationality

while completeness reflects the burden of choice the decision maker faces. On the other hand,

continuity is a technical assumption which will allow us to represent preferences through a

continuous utility function. The assumption of certainty equivalent shares both features. It

allows us to show that preferences admit a utility function, possibly not continuous, yet it

takes a clear behavioral interpretation: the decision maker for each random variable admits an

equivalent amount which received with certainty makes her indifferent to the random prospect.

The above axioms define the following two nested class of preferences.

Definition 10. Let % be a binary relation on RΩ. We say that % is a rational preference

if and only if it satisfies weak order, certainty equivalent, and monotonicity. We say that

% is a continuous rational preference if and only if it satisfies weak order, continuity, and

monotonicity.

It is easy to show that continuous rational preferences are rational preferences. Continuous

rational preferences were studied by Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and

Siniscalchi [11]. The next result is a version of their Proposition 1.

Proposition 8. Let % be a binary relation on RΩ. The following statements are equivalent:

(i) % is a rational preference;

(ii) There exists a normalized and monotone functional Ṽ : RΩ → R such that

f % g ⇐⇒ Ṽ (f) ≥ Ṽ (g) . (32)

Moreover, we have that:

1. The functional Ṽ is continuous if and only if % is a continuous rational preference.

2. The functional Ṽ is the unique normalized functional satisfying (32).

Proof. (ii) implies (i). It is routine.

(i) implies (ii). Since % satisfies certainty equivalent, for each f ∈ RΩ define kf to be such

that kf1Ω ∼ f . Since % satisfies weak order and monotonicity, we have that kf is unique. Define
Ṽ : RΩ → R by Ṽ (f) = kf for all f ∈ RΩ. Since % satisfies weak order and monotonicity, we
have that

f % g ⇐⇒ kf1Ω % kg1Ω ⇐⇒ kf ≥ kg ⇐⇒ Ṽ (f) ≥ Ṽ (g) ,

proving (32). Clearly, if f = k1Ω for some k ∈ R, we have that Ṽ (k1Ω) = Ṽ (f) = kf = k,

proving that Ṽ is normalized. Finally, since % satisfies monotonicity, if f ≥ g, then f % g and

Ṽ (f) ≥ Ṽ (g), proving that Ṽ is monotone.
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1. The “Only if”is routine. “If”. Since % satisfies weak order, continuity, and monotonicity,
we have that % satisfies certainty equivalent. It follows that Ṽ as defined above represents %.
Since % satisfies continuity, it follows that for each f, g ∈ RΩ and for each c ∈ R{

λ ∈ [0, 1] : Ṽ (λf + (1− λ) g) ≤ c
}

=
{
λ ∈ [0, 1] : Ṽ (λf + (1− λ) g) ≤ Ṽ (c1Ω)

}
= {λ ∈ [0, 1] : c1Ω % λf + (1− λ) g}

where the latter set is closed. By [13, Lemma 42], we have that Ṽ is lower semicontinuous. By

[13, Appendix A.3], upper semicontinuity follows similarly.

2. Assume that V̂ is normalized and satisfies (32). We have that for each f ∈ RΩ

V̂ (f) = V̂
(
V̂ (f) 1Ω

)
=⇒ f ∼ V̂ (f) 1Ω =⇒ Ṽ (f) = Ṽ

(
V̂ (f) 1Ω

)
= V̂ (f) ,

proving that V̂ = Ṽ . �
We can now discuss conditional preferences. We assume that there are two periods 0 and

1. At 0, the decision maker has no information and has also preferences over RΩ. At time 1,

the decision maker observes an event E from a partition Π of Ω and updates her preferences.

We model this by a pair
(
%, {%ω}ω∈Ω

)
. Given ω ∈ Ω, as before, we denote by Π (ω) the only

element of Π which contains ω. We consider the following assumptions.

A 5 (Rationality). The binary relation % is a rational preference and %ω is a continuous
rational preference for all ω ∈ Ω.

A 6 (Conditional preferences). For each ω, ω′ ∈ Ω

Π (ω) = Π (ω′) =⇒ %ω=%ω′ .

We thus assume that original and updated preferences are rational, where the latter are also

assumed to be continuous. At the same time, we assume that if two states belong to the same

event, then the corresponding updated preferences must be the same, incorporating exactly

nothing more than the information embedded in Π.

A 7 (Consequentialism). For each f ∈ RΩ and for each ω ∈ Ω

f1Π(ω) + h1Π(ω)c ∼ω f ∀h ∈ RΩ.

A 8 (Dynamic consistency). For each f, g ∈ RΩ

f %ω g ∀ω ∈ Ω =⇒ f % g.

On the one hand, consequentialism imposes that updated preferences over are only influ-

enced by the states that are still relevant/possible. On the other hand, dynamic consistency is

a form of monotonicity and it states that if interim f is weakly better than g, no matter which

event realized in Π, then f is weakly better than g also at time 0.
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Definition 11. Let
(
%, {%ω}ω∈Ω

)
be a collection of binary relations on RΩ. We say that(

%, {%ω}ω∈Ω

)
is a dynamic rational preference if and only if it satisfies the properties of ratio-

nality, conditional preferences, consequentialism, and dynamic consistency.

The next result provides a behavioral foundation for generalized conditional expectations.

Proposition 9. Let
(
%, {%ω}ω∈Ω

)
be a collection of binary relations on RΩ. The following

statements are equivalent:

(i)
(
%, {%ω}ω∈Ω

)
is a dynamic rational preference;

(ii) There exists two functions V̄ : RΩ → R and V : Ω × RΩ → R such that
(
V̄ , V,Π

)
is a

generalized conditional expectation and for each ω ∈ Ω

f %ω g ⇐⇒ V (ω, f) ≥ V (ω, g) and f % g ⇐⇒ V̄ (f) ≥ V̄ (g) .

Proof. (ii) implies (i). It is routine.

(i) implies (ii). By Proposition 8 and since
(
%, {%ω}ω∈Ω

)
satisfies rationality, we have that

there exists a normalized and monotone function V̄ : RΩ → R and a collection of normalized,
monotone, and continuous functions {Vω}ω∈Ω from RΩ to R such that V̄ represents % and Vω
represents %ω for all ω ∈ Ω. Define V : Ω×RΩ → R by V (ω, f) = Vω (f) for all (ω, f) ∈ Ω×RΩ.

It follows that V̄ and V satisfy the first two properties of generalized conditional expectation.

By point 2 of Proposition 8 and since
(
%, {%ω}ω∈Ω

)
satisfies conditional preferences, we have

that for each ω, ω′ ∈ Ω

Π (ω) = Π (ω′) =⇒ %ω=%ω′ =⇒ V (ω, ·) = V (ω′, ·) ,

proving that V (·, f) is Π-measurable for all f ∈ RΩ. Since
(
%, {%ω}ω∈Ω

)
satisfies consequen-

tialism, we have that for each ω ∈ Ω and for each f, h ∈ RΩ

f1Π(ω) + h1Π(ω)c ∼ω f =⇒ V
(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) .

Finally, for each f ∈ RΩ define f̄ ∈ RΩ by f̄ (ω) = V (ω, f) for all ω ∈ Ω. It follows that

f̄ ∼ω f̄1Π(ω) ∼ω f for all ω ∈ Ω and for all f ∈ RΩ. Since
(
%, {%ω}ω∈Ω

)
satisfies dynamic

consistency, we can conclude that f̄ ∼ f and, in particular, V̄ (f) = V̄
(
f̄
)

= V̄ (V (·, f)) for all

f ∈ RΩ. �
Clearly, in Proposition 9, linear conditional expectations are obtained by requiring in (i) %

and each %ω to satisfy the axiom of independence. Similarly, maxmin conditional expectations,
as in Example 1, are obtained by imposing c-independence.
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F Online appendix: Omitted proofs

Here, we collect the proofs omitted from the main appendix. We start with an ancillary result
that elaborates on how the indicator matrix of the composition of a finite collection of operators
{Th}h∈{1,...,H} is related to the product of their indicator matrices.

Lemma 16. Let S, T : Rn̄ → Rn̄ be monotone and define Â = A (T ◦ S), Ã = A (S), and
A = A (T ). If there exists k ∈ J such that ajk > 0 and ãkj′ > 0, then âjj′ > 0. In particular,
we have that:

1. If {Th}h∈{1,...,H} is a collection of H monotone operators from Rn̄ to Rn̄ and the jj′-
th entry of ΠH

h=1A (Th) is strictly positive, then the jj′-th of A (TH ◦ ... ◦ T1) is strictly
positive.

2. If t ∈ N and the jj′-th entry of A (T )t is strictly positive, then the jj′-th of A (T t) is
strictly positive.

Proof. By assumption, there exists k ∈ {1, ..., n̄} such that ajk, ãkj′ > 0, that is, there exist
εjk, εkj′ ∈ (0, 1) such that for each f ∈ Rn̄ and for each δ ≥ 0

Sk

(
f + δej

′
)
− Sk (f) ≥ εkj′δ and Tj

(
f + δek

)
− Tj (f) ≥ εjkδ.

Since S is monotone, this implies that S
(
f + δej

′) ≥ S (f) + εkj′δe
k for all f ∈ Rn̄ and for all

δ ≥ 0. Since T is monotone, this yields that for each f ∈ Rn̄ and for each δ ≥ 0

Tj

(
S
(
f + δej

′
))
≥ Tj

(
S (f) + εkj′δe

k
)
≥ Tj (S (f)) + εjkεkj′δ.

Since εjkεkj′ ∈ (0, 1), this proves that, under T ◦ S, j is strongly monotone with respect to j′,
proving that âjj′ > 0 and the main part of the statement.

1. Consider a collection of H monotone operators from Rn̄ to Rn̄: {Th}h∈{1,...,H}. We prove
by finite induction the statement that, for each l ∈ {1, ..., H}, if the jj′-th entry of Πl

h=1A (Th)
is strictly positive, then the jj′-th of A (Tl ◦ ... ◦ T1) is strictly positive.
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Initial step. Assume l = 1. In this case, we have that A (T1) = Πl
h=1A (Th). This proves that if

the jj′-th entry of Πl
h=1A (Th) is strictly positive, so is the jj′-th entry of the indicator matrix

of the composition.
Inductive step. Assume the statement is true for l. We prove it is true for l+1. Define S = Tl◦...◦
T1 and T = Tl+1. As before, set Ã = A (S), A = A (T ), and Â = A (T ◦ S) = A (Tl+1 ◦ ... ◦ T1).
Finally, define by a(l)

jj′ (resp., a
(1)
jj′ and a

(l+1)
jj′ ) the generic jj

′-th entry of Πl
h=1A (Th) (resp.,

A (Tl+1) and Πl+1
h=1A (Th)). Observe that

a
(l+1)
jj′ =

n̄∑
k=1

a
(1)
jk a

(l)
kj′ .

If the jj′-th entry of Πl+1
h=1A (Th) is strictly positive, then a

(l+1)
jj′ > 0, yielding that a(1)

jk a
(l)
kj′ > 0

for some k ∈ J , that is, a(1)
jk , a

(l)
kj′ > 0 for some k ∈ J . By inductive hypothesis, we have that

a
(l)
kj′ > 0 implies that ãkj′ > 0 as well as ajk > 0. By the main part of the statement, we can
conclude that âjj′ > 0, proving the inductive step.
The statement follows by finite induction.
2. By point 1, the statement trivially follows by considering the collection {Th}Hh=1 where

H = t and Th = T for all h ∈ {1, ..., H}. �

Proof of Lemma 3. Define B = ΠK
k=1Bk. By induction, we prove that A (Πm

k=1Bk) ≥
A (Bk) ≥ In̄ for all k ∈ {1, ...,m} and for all m ∈ {1, ..., K}. By definition and since b1,jj > 0
for all j ∈ J , if m = 1, then A (Π1

k=1Bk) = A (B1) ≥ In̄. By point 1 of Lemma 16 and
inductive hypothesis and since bk,jj > 0 for all k ∈ {1, ..., K} and for all j ∈ J , if m,m +
1 ∈ {1, ..., K}, then A (Bm+1)A (Πm

k=1Bk) ≥ In̄A (Bk) and A
(
Πm+1
k=1 Bk

)
= A (Bm+1Πm

k=1Bk) ≥
A (A (Bm+1)A (Πm

k=1Bk)) ≥ A (In̄A (Bk)) = A (Bk) ≥ In̄ for all k ∈ {1, ...,m}. By point 1 of
Lemma 16 and inductive hypothesis, we also have that A (Bm+1)A (Πm

k=1Bk) ≥ A (Bm+1) In̄ and
A
(
Πm+1
k=1 Bk

)
= A (Bm+1Πm

k=1Bk) ≥ A (A (Bm+1)A (Πm
k=1Bk)) ≥ A (A (Bm+1) In̄) = A (Bm+1) ≥

In̄. The statement follows by finite induction. In particular, this yields that

A (BK ...B1) ≥ A (Bk) ≥ In̄ ∀k ∈ {1, ..., K} .

Consider k ∈ {1, ..., K}. Since A (Bk) is symmetric, any index j ∈ J is essential under Bk. Let
l ∈ {1, ...,mBk} and j ∈ Jl (Bk). We have two cases:

1. j ∈ Jl′ (A (B)) for some l′ ∈
{

1, ...,mA(B)

}
. Consider j′ ∈ Jl (Bk). It follows that j

Bk←→ j′.

Since A (B) ≥ A (Bk), we have that j
A(B)←→ j′, yielding that j′ ∈ Jl′ (A (B)). This implies

that Jl (Bk) ⊆ Jl′ (A (B)).

2. j ∈ JmB+1 (A (B)). Consider j′ ∈ Jl (Bk). It follows that j
Bk←→ j′. Since A (B) ≥ A (Bk),

we have that j
A(B)←→ j′, yielding that j′ ∈ JmB+1

(A (B)). Otherwise, since j
A(B)←→ j′, if

j′ 6∈ JmB+1
(B), then j′ would be essential under A (B) and so would be j, a contradiction.

This implies that Jl (Bk) ⊆ JmB+1 (A (B)). �

Proof of Lemma 4. Before starting, we denote by 〈 , 〉 the inner product of Rn̄. Let j ∈ J .
Define the binary relation %∗j on RΩ by

f %∗j g ⇐⇒ Tj (λf + (1− λ)h) ≥ Tj (λg + (1− λ)h) ∀λ ∈ (0, 1] ,∀h ∈ Rn̄.
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By [3] and since Tj is normalized, monotone, and continuous, we have that there exists a
compact and convex set Cj of ∆n̄ such that

f %∗j g ⇐⇒ 〈f, p〉 ≥ 〈g, p〉 ∀p ∈ Cj (33)

and
Tj (f) = αj (f) min

p∈Cj
〈f, p〉+ (1− αj (f)) max

p∈Cj
〈f, p〉 ∀f ∈ Rn̄ (34)

where αj : Rn̄ → [0, 1]. Observe also that if j is constant with respect to j′, then ej
′ ∼∗j 0. By

(33), it follows that
pj′ = 0 ∀p ∈ Cj. (35)

Since Cj is compact, for each f ∈ Rn̄ define pmin,f , pmax,f ∈ Cj such that 〈f, pmin,f〉 =
minp∈Cj 〈f, p〉 and 〈f, pmax,f〉 = maxp∈Cj 〈f, p〉. By (34) and since Cj is convex, it follows
that pj,f = αj (f) pmin,f + (1− αj (f)) pmax,f ∈ Cj such that Tj (f) = 〈f, pj,f〉 for all f ∈ Rn̄.
Fix f ∈ Rn̄. Since j was arbitrarily chosen, define M (f) to be the matrix whose j-th row
entries correspond to the entries of pj,f . It follows that T (f) = M (f) f . Moreover, M (f)
belongs to the setM (T ) of matrices M whose j-th row belongs to Cj. Since each of these sets
is compact and convex, so isM (T ). Since f was arbitrarily chosen, the statement follows. By
construction ofM (T ) and (35), it follows that if j is constant with respect to j′, then mjj′ = 0
for all M ∈M (T ). �

Proof of Lemma 5. Since d
(
M̄
)
> 0, it follows that m̄jj > 0 for all j ∈ J . This implies that

the jj-th entry of A
(
M̄
)
is 1 for all j ∈ J , and, in particular, if the jj′-th entry of A (M) is

strictly positive, so is the one of A
(
M̄
)
A (M). By point 1 of Lemma 16, we can conclude that

A
(
M̄M

)
≥ A (M). We have two cases:

1. A
(
M̄M

)
= A (M). Set M̂ = M̄M and consider m̂jj′ > 0. We next prove that for each

l ∈ {1, ..., n̄}
mlj′ = 0 =⇒ m̄jl = 0. (36)

By contradiction, assume that there exists l̄ ∈ {1, ..., n̄} such that ml̄j′ = 0 and m̄jl̄ > 0.

Since A
(
M̂
)

= A
(
M̄M

)
= A (M) and m̂jj′ > 0 and ml̄j′ = 0, we would have that

mjj′ > 0 and m̂l̄j′ = 0. Since A
(
M̄
)
is symmetric, we would also have that m̄l̄j > 0,

yielding that m̂l̄j′ ≥ m̄l̄jmjj′ > 0, a contradiction with m̂l̄j′ = 0. By (36), we can conclude
that m̂jj′ =

∑n̄
l=1 m̄jlmlj′ ≥

∑n̄
l=1 m̄jlδ (M) = δ (M), proving the statement.

2. A
(
M̄M

)
> A (M). Set M̂ = M̄M . In this case, if m̂jj′ > 0, then m̄jl̄ml̄j′ > 0 for some

l̄ ∈ {1, ..., n̄} and, in particular, m̄jl̄,ml̄j′ > 0. It follows that m̂jj′ =
∑n̄

l=1 m̄jlmlj′ ≥
m̄jl̄ml̄j′ ≥ δ

(
M̄
)
δ (M), proving the statement.

Consider a sequence {Mk}∞k=1 of n̄× n̄ stochastic matrices such that A (Mk) is symmetric,
δ (Mk) ≥ δ > 0, and d (Mk) > 0 for all k ∈ N. By induction and the previous part, we have

that A

(
m+1∏
k=1

Mk

)
= A

(
Mm+1

m∏
k=1

Mk

)
≥ A

(
m∏
k=1

Mk

)
for all m ∈ N. Define f : N→ {0, 1} by
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f (1) = 1 and

f (m+ 1) =


1 if A

(
m+1∏
k=1

Mk

)
> A

(
m∏
k=1

Mk

)

0 if A

(
m+1∏
k=1

Mk

)
= A

(
m∏
k=1

Mk

) ∀m ∈ N.

By induction, we prove that

δ

(
m∏
k=1

Mk

)
≥ δ

∑m
k=1 f(k) ∀m ∈ N. (37)

Initial step. Assume m = 1. Since f (1) = 1, δ

(
m∏
k=1

Mk

)
= δ (M1) ≥ δ = δ

∑m
k=1 f(k).

Inductive step. Assume the statement is true for m ∈ N. We prove it is true for m + 1. Since

A

(
m+1∏
k=1

Mk

)
≥ A

(
m∏
k=1

Mk

)
, we have two cases:

1. A

(
m+1∏
k=1

Mk

)
> A

(
m∏
k=1

Mk

)
. In this case, we have that f (m+ 1) = 1. By the first part

of the statement and inductive hypothesis, we have that

δ

(
m+1∏
k=1

Mk

)
= δ

(
Mm+1

m∏
k=1

Mk

)
≥ δ (Mm+1) δ

(
m∏
k=1

Mk

)
≥ δδ

∑m
k=1 f(k) = δ

∑m+1
k=1 f(k).

2. A

(
m+1∏
k=1

Mk

)
= A

(
m∏
k=1

Mk

)
. In this case, we have that f (m+ 1) = 0. By the first part

of the statement and inductive hypothesis, we have that

δ

(
m+1∏
k=1

Mk

)
= δ

(
Mm+1

m∏
k=1

Mk

)
≥ δ

(
m∏
k=1

Mk

)
≥ δ

∑m
k=1 f(k) = δ

∑m+1
k=1 f(k).

Thus, (37) follows by induction. Since

{
A

(
m∏
k=1

Mk

)}
m∈N

is an increasing sequence with

upper bound the n̄× n̄ square matrix whose entries are all 1s, we observe that f (k) = 1 for at
most n̄2 indices, yielding that

∑m
k=1 f (k) ≤ n̄2 for all m ∈ N, proving (24) . �

Proof of Lemma 6. Consider k ∈ R and a sequence of functions {fm}m∈N ⊆ RΩ such
that fm → k1Ω. Since fm → k1Ω and Ω is finite, we have that limm→∞minω∈Ω fm (ω) = k =
limm→∞maxω∈Ω fm (ω). Since V̄ is normalized and monotone, we also have thatminω∈Ω fm (ω) ≤
V̄ (fm) ≤ maxω∈Ω fm (ω) for all m ∈ N. By passing to the limit and since V̄ is normalized, we
have that

lim
m→∞

V̄ (fm) = k = V̄ (k1Ω) ,
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proving continuity at k1Ω. �

Proof of Lemma 7. (i) implies (ii). Let j, j′ ∈ J . Since ajj′ = 1, we have that j is strongly
monotone with respect to j′. By contradiction, assume that Π (ωj) 6= Π (ωj′). Since Π is a
partition, it follows that Π (ωj) ∩ Π (ωj′) = ∅. Since (V,Π) is an interim expectation and j is
strongly monotone with respect to j′, we thus have that there exists εjj′ ∈ (0, 1) such that

0 = V
(
ωj, 01Π(ωj) + 1{ωj′}1Π(ωj)

c

)
− V (ωj, 0)

= V
(
ωj, 1{ωj′}1Π(ωj) + 1{ωj′}1Π(ωj)

c

)
− V (ωj, 0)

= V
(
ωj, 1{ωj′}

)
− V (ωj, 0) ≥ εjj′ > 0,

a contradiction.
(ii) implies (i). Note that Π (ωj) = Π (ωj′) only if ωj′ ∈ Π (ωj). Since (V,Π) is an in-

terim expectation with full support, we have that each ω̄ ∈ Π (ωj) is V (ωj, ·)-essential and, in
particular, so is ωj′ , yielding that ajj′ = 1.
By the previous part of the proof and since Π (ωj) = Π (ωj) for all j ∈ J and A (V ) is

{0, 1}-valued, we thus have that

ajj′ = 1 ⇐⇒ Π (ωj) = Π (ωj′) ⇐⇒ Π (ωj′) = Π (ωj) ⇐⇒ aj′j = 1,

proving that A (V ) is symmetric, ajj = 1 for all j ∈ J , and Π (V ) = Π. Finally, for all j, j′ ∈ J ,
if j is not strongly monotone with respect to j′, we can conclude that ajj′ = 0 and ωj′ 6∈ Π (ωj).
Since V

(
ω, f1Π(ω) + h1Π(ω)c

)
= V (ω, f) for all ω ∈ Ω and for all f, h ∈ RΩ, this implies that

V
(
ωj, f + δ1{ωj′}

)
= V

(
ωj, f1Π(ωj) + δ1{ωj′}1Π(ωj) + 01Π(ωj)

c

)
= V

(
ωj, f1Π(ωj) + 01Π(ωj)

c

)
= V (ωj, f)

for all f ∈ RΩ and for all δ ≥ 0, yielding that j is constant with respect to j′. This implies that
V is dichotomic. �

Proof of Lemma 8. Since each Vi is nonexpansive, we have that

‖Sβ,i (f)− Sβ,i (g)‖∞ =

∥∥∥∥∥Vi
(

(1− β) f̂ + β
n∑
l=1

wilfl

)
− Vi

(
(1− β) f̂ + β

n∑
l=1

wilgl

)∥∥∥∥∥
∞

≤
∥∥∥∥∥(1− β) f̂ + β

n∑
l=1

wilfl − (1− β) f̂ − β
n∑
l=1

wilgl

∥∥∥∥∥
∞

=

∥∥∥∥∥β
n∑
l=1

wil (fl − gl)
∥∥∥∥∥
∞

≤ β

n∑
l=1

wil ‖fl − gl‖∞

≤ β
n∑
l=1

wil ‖f − g‖∗ ≤ β ‖f − g‖∗ ∀i ∈ I,∀f ,g ∈
(
RΩ
)n
,

proving that ‖Sβ (f)− Sβ (g)‖∗ = supi∈I ‖Sβ,i (f)− Sβ,i (g)‖∞ ≤ β ‖f − g‖∗ for all f ,g ∈
(
RΩ
)n
.

By the Banach contraction principle, for each β ∈ (0, 1) we have that Sτβ
(
f̂
) ‖ ‖∗→ σβ as well
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as Sβ
(
σβ
)

= σβ where σβ is the unique fixed point of Sβ for all β ∈ (0, 1). Finally, since Vi is
nonexpansive and normalized, observe that

‖Sβ,i (f)‖∞ =

∥∥∥∥∥Vi
(

(1− β) f̂ + β
n∑
l=1

wilfl

)∥∥∥∥∥
∞

≤
∥∥∥∥∥(1− β) f̂ + β

n∑
l=1

wilfl

∥∥∥∥∥
∞

≤ (1− β)
∥∥∥f̂∥∥∥

∞
+ β

n∑
l=1

wil ‖fl‖∞ ∀i ∈ I,∀f ∈
(
RΩ
)n
.

By induction, this implies that
∥∥∥Sτβ (f̂)∥∥∥∗ ≤ ∥∥∥f̂∥∥∥∞ for all τ ∈ N. By passing to the limit, the

statement follows. �

Proof of Lemma 9. (i) implies (ii). Before starting, since Ω is finite, we enumerate its
elements Ω = {ω1, ..., ωn̄} and set as before J = {1, ..., n̄}. By assumption, we have that fi =
Vi (
∑n

l=1 wilfl) for all i ∈ I. By Proposition 7 and Lemma 7, for each i ∈ I there exists an n̄× n̄
stochastic matrix Mi whose diagonal is strictly positive and it is such that: 1) A (Vi) = A (Mi)
is symmetric, 2) Π (Mi) = Πi, and 3) Vi (

∑n
l=1 wilfl) = Mi (

∑n
l=1 wilfl) =

∑n
l=1 wilMifl.34 It

follows that f is also a fixed point of the operator S̃ :
(
RΩ
)n → (

RΩ
)n
where

S̃i (g) =
n∑
l=1

wilMigl ∀i ∈ I.

We next show that S̃ (f) = f only if there exists m ∈ R such that fi = fi′ = m1Ω for all
i, i′ ∈ I. By contradiction, assume that there exists ı̄, ı̄′ ∈ I and ωj̄, ωj̄′ ∈ Ω such that fı̄

(
ωj̄
)

=

maxi∈I maxj∈J fi (ωj) > mini∈I minj∈J fi (ω) = fı̄′
(
ωj̄′
)
. We begin with an observation. For

each t ∈ N denote by I t the set of (finite) sequences in I with t elements, that is, i ∈ I t if and
only if i = (i1, ..., it) with il ∈ I for all l ∈ {1, ..., t}. By induction, note that for each t ∈ N

S̃ti (g) =
∑

i∈It+1:i1=i

wi1i2 ...witit+1Mi1 ...Mitgit+1 ∀g ∈
(
RΩ
)n

and

wi1i2 ...witit+1 ≥ 0 for all i ∈ I t+1 such that i1 = i and
∑

i∈It+1:i1=i

wi1i2 ...witit+1 = 1.

Since W is strongly connected, there exists a sequence of agents (̄ı1, ..., ı̄t̄+1) such that t̄ ∈ N,
{ı̄1, ..., ı̄t̄} ⊇ I, and ı̄1 = ı̄t̄+1 = ı̄ with wı̄l ı̄l+1

> 0 for all l ∈ {1, ..., t̄}. By Lemma 3 and since
{ı̄1, ..., ı̄t̄} ⊇ I, we have that Π (A (Mı̄1 ...Mı̄t̄)) is coarser than Π (Mi) = Πi for all i ∈ I. Since
Πsup = {Ω}, we can conclude that Π (A (Mı̄1 ...Mı̄t̄)) = {Ω}, yielding that Mı̄1 ...Mı̄t̄ is strongly
connected. By Lemma 3 and since the diagonal of each Mı̄l is strictly positive, we also have
that Mı̄1 ...Mı̄t̄ has a strictly positive diagonal. This implies that Mı̄1 ...Mı̄t̄ is primitive, that
is, there exists τ ∈ N such that each entry of (Mı̄1 ...Mı̄t̄)

τ is strictly positive. Since W is
strongly connected there exists a sequence of agents

(
ı̂1, ..., ı̂t̂+1

)
such that t̂ ∈ N, ı̂1 = ı̄, and

34Given an n̄ × n̄ stochastic matrix M and h, h′ ∈ RΩ, we write h′ = Mh when h′ (ωj) =
∑n̄
j′=1mjj′h (ωj′)

for all j ∈ J .
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ı̂t̂+1 = ı̄′ with wı̂l ı̂l+1
> 0 for all l ∈

{
1, ..., t̂

}
. Next, recall that by Euclid’s algorithm for each

l ∈ {1, ...., τ t̄+ 1} there exists unique ql ∈ N0 and r′l ∈ {0, ...., t̄− 1} such that

l = qlt̄+ r′l.

We define rl = r′l if r
′
l ∈ {1, ...., t̄− 1} and rl = t̄ if r′l = 0. Finally, consider the sequence

of agents
(
ı̃1, ..., ı̃τ t̄+t̂+1

)
where ı̃l = ı̄rl for all l ∈ {1, ...., τ t̄+ 1} and ı̃l = ı̂l−τ t̄ for all l ∈{

τ t̄+ 1, ..., τ t̄+ 1 + t̂
}
. By construction, we have that wı̂l ı̂l+1

> 0 for all l ∈
{

1, ..., τ t̄+ 1 + t̂
}
.

Since f is a fixed point of S̃, note that S̃τ (f) = f for all τ ∈ N and

fı̄ = S̃τ t̄+t̂ı̄ (f) =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1
Mi1 ...Miτt̄+t̂

fiτt̄+t̂+1
.

Define f i = Mi1 ...Miτt̄+t̂
fiτt̄+t̂+1

for all i ∈ Iτ t̄+t̂+1 such that i1 = ı̄. We have that

fı̄ =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1
f i. (38)

Since each Mi is an n̄× n̄ stochastic matrix and maxj∈J fi (ωj) ≤ fı̄
(
ωj̄
)
for all i ∈ I, we have

that maxj∈J f
i (ωj) ≤ fı̄

(
ωj̄
)
for all i ∈ Iτ t̄+t̂+1 such that i1 = ı̄. We focus on the summand

wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
Mı̃1 ...Mı̃τt̄+t̂

fı̃τt̄+t̂+1
= wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

f ı̃.

By construction, we have that wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
> 0 and

Mı̃1 ...Mı̃τt̄+t̂
fı̃τt̄+t̂+1

= (Mı̄1 ...Mı̄t̄)
τ Mı̂1 ...Mı̂t̂

fı̂t̂+1
.

Set g = Mı̂1 ...Mı̂t̂
fı̂t̂+1

= Mı̂1 ...Mı̂t̂
fı̄′ . Since each Mı̂l is an n̄× n̄ stochastic matrix with strictly

positive diagonal, so is Mı̂1 ...Mı̂t̂
. Since maxj∈J fı̄′ (ωj) ≤ fı̄

(
ωj̄
)
and fı̄′

(
ωj̄′
)
< fı̄

(
ωj̄
)
, this

implies that minj∈J g (ω) ≤ g
(
ωj̄′
)
< fı̄

(
ωj̄
)
and maxω∈Ω g (ω) ≤ fı̄

(
ωj̄
)
. Since each entry of

(Mı̄1 ...Mı̄t̄)
τ is strictly positive and f ı̃ = (Mı̄1 ...Mı̄t̄)

τ g, we can conclude that f ı̃ (ω) < fı̄
(
ωj̄
)

for all ω ∈ Ω. By (38) and since wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1
> 0 and maxj∈J f

i (ωj) ≤ fı̄
(
ωj̄
)
for all

i ∈ Iτ t̄+t̂+1, this implies that

0 =
∑

i∈Iτt̄+t̂+1:i1=ı̄

wi1i2 ...wiτt̄+t̂iτt̄+t̂+1

[
f i
(
ωj̄
)
− fı̄

(
ωj̄
)]

≤ wı̃1 ı̃2 ...wı̃τt̄+t̂ ı̃τt̄+t̂+1

[
f ı̃
(
ωj̄
)
− fı̄

(
ωj̄
)]
< 0,

a contradiction.

(ii) implies (i). Since each Vi is normalized and W is a stochastic matrix, the statement is
trivial. �

Lemma 17. Fix i, j ∈ I and ω, ω′ ∈ Ω. The following are equivalent:

(i) wij > 0 and ω′ ∈ Πi (ω);

(ii) a(i,ω)(j,ω′) (S1) = 1;
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(iii) ā(i,ω)(j,ω′) (S1) = 1.

Proof. (i) implies (ii). By Lemma 7, there exists ε > 0 such that for each f ∈ RΩ and for each
δ ≥ 0

Vi

(
ω, f + δeω

′
)
− Vi (ω, f) ≥ εδ.

Next, fix f = (fl)
n
l=1 ∈

(
RΩ
)n
and δ ≥ 0, and observe that

S1,i,ω

(
f + δej,ω

′
)
− S1,i,ω (f) = Vi

(
ω,

n∑
l=1

wilfl + wijδe
ω′

)
− Vi

(
ω,

n∑
l=1

wilfl

)
≥ εwijδ

proving the statement by setting ε(i,ω)(j,ω′) = εwij.
(ii) implies (iii). Immediate.
(iii) implies (i). We prove the statement by contradiction. Fix f = (fl)

n
l=1 ∈

(
RΩ
)n
and

δ ≥ 0 and observe that

S1,i,ω

(
f + δej,ω

′
)
− S1,i,ω (f) = Vi

(
ω,

n∑
l=1

wilfl + wijδe
ω′

)
− Vi

(
ω,

n∑
l=1

wilfl

)
.

Therefore, if either wij = 0 or ω′ ∈ Πi (ω), then S1,i,ω

(
f + δej,ω

′)
= S1,i,ω (f). Given that f and

δ were arbitrarily chosen, we obtain a contradiction. �

Proof of Lemma 10. We have that Sβ (f) = S1

(
(1− β) f̂ + βf

)
for all β ∈ (0, 1) and

recall that S1 is normalized, monotone, and translation invariant. Fix λ ∈ (0, 1) and define
Sλ1 = λI + (1− λ)S1. Clearly, we have that, for each f ∈

(
RΩ
)n
,

Sλ1 (f) = f ⇐⇒ S1 (f) = f .

Therefore, by Lemma 9, Sλ1 (f) = f if and only if there exists m ∈ R such that fi = fi′ = m1Ω

for all i, i′ ∈ I. By [2, Corollary 1 and part 2 of Proposition 2], it follows that there exists a
unique class of indices Z ′, ∅ 6= Z ′ ⊆ I × Ω, that is closed and strongly connected with respect
to Ā

(
Sλ1
)
. It is easy to see that every row of Ā (S1) is not null and that Z ′ is also closed and

strongly connected with respect to Ā (S1). In addition, by Lemma 17, every row of A (S1) is
not null and Z ′ is closed and strongly connected with respect to A (S1). Finally, the statement
follows by setting Z = Z ′. �

Proof of Lemma 11. For every (i, ω) ∈ I ×Ω, by Theorem [4, Theorem 2.3.9], we have that

∂S1,i,ω (0) = {wiq̃i,ω ∈ ∆ (I × Ω) : q̃i,ω ∈ ∂Vi (ω, 0)} .

With this, the statement follows by the definitions of ∂S1 (0) and of each W q in equation (17).
�

Proof of Lemma 12. 1. Consider an I-sequence ι = (ik)k∈N ∈ IN. Consider f, g ∈ RΩ and
λ ∈ (0, 1). Since each Vi is concave, we have that

Vi1 (λf + (1− λ) g) ≥ λVi1 (f) + (1− λ)Vi1 (g) .
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By induction, assume that

Vik◦Vik−1
◦...◦Vi2◦Vi1 (λf + (1− λ) g) ≥ λVik◦Vik−1

◦...◦Vi2◦Vi1 (f)+(1− λ)Vik◦Vik−1
◦...◦Vi2◦Vi1 (g) .

Since Vik+1
is a concave interim expectation, we have that

Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g) = Vik+1

(
Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g)
)

≥ Vik+1

(
λVik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (g)

)
≥ λVik+1

◦ Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik+1

◦ Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (g) .

By passing to the limit, we obtain that

V̄ι (λf + (1− λ) g) 1Ω ≥ λV̄ι (f) 1Ω + (1− λ) V̄ι (g) 1Ω,

proving that V̄ι is concave. Since ι was arbitrarily chosen, we have that V̄ι is concave for every
I-sequence ι. Finally, given that, by Proposition 2, we have

V∗ (f) = inf
ι∈IN:ι is an I-sequence

V̄ι (f) ∀f ∈ RΩ,

it follows that V∗ is concave. With similar steps we can prove the second part of the first item.
2. Consider an I-sequence ι = (ik)k∈N ∈ IN. Consider f, g ∈ RΩ where g is Πinf-measurable,

and λ ∈ (0, 1). Since each Vi is Πinf-affi ne, we have that

Vi1 (λf + (1− λ) g) = λVi1 (f) + (1− λ)Vi1 (g) .

By induction, assume that

Vik◦Vik−1
◦...◦Vi2◦Vi1 (λf + (1− λ) g) = λVik◦Vik−1

◦...◦Vi2◦Vi1 (f)+(1− λ)Vik◦Vik−1
◦...◦Vi2◦Vi1 (g) .

Since Vik+1
is Πinf-affi ne and Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (g) is Πinf-measurable, we have that

Vik+1
◦ Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g) = Vik+1

(
Vik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (λf + (1− λ) g)
)

= Vik+1

(
λVik ◦ Vik−1

◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (g)

)
= λVik+1

◦ Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (f) + (1− λ)Vik+1

◦ Vik ◦ Vik−1
◦ ... ◦ Vi2 ◦ Vi1 (g) .

By passing to the limit, we obtain that

V̄ι (λf + (1− λ) g) 1Ω = λV̄ι (f) 1Ω + (1− λ) V̄ι (g) 1Ω,

proving that V̄ι is Πinf-affi ne. Since ι was arbitrarily chosen, we have that V̄ι is Πinf-affi ne for
every I-sequence ι. Finally, given that, by Proposition 2, we have

V∗ (f) = inf
ι∈IN:ι is an I-sequence

V̄ι (f) ∀f ∈ RΩ,

it follows that

V∗ ((1− λ)h+ λg) = inf
ι∈IN:ι is an I-sequence

V̄ι ((1− λ)h+ λg)

= inf
ι∈IN:ι is an I-sequence

{
λV̄ι (f) + (1− λ) V̄ι (g)

}
≥ λ inf

ι∈IN:ι is an I-sequence
V̄ι (f) + (1− λ) inf

ι∈IN:ι is an I-sequence
V̄ι (g)

= (1− λ)V∗ (h) + λV∗ (g)
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for all λ ∈ (0, 1) and for all g, h ∈ RΩ where g is Πinf-measurable. The statement for V ∗ follows
from completely symmetric steps. �

Proof of Lemma 13. Fix β ∈ (0, 1). By Lemma 12, V∗ is concave. This implies that

V∗ (Sβ,i (f)) = V∗

(
Vi

(
(1− β) f̂ + β

n∑
l=1

wilfl

))
≥ V∗

(
(1− β) f̂ + β

n∑
l=1

wilfl

)

≥ (1− β)V∗

(
f̂
)

+ β
n∑
l=1

wilV∗ (fl) ∀i ∈ I,∀f ∈
(
RΩ
)n
.

We now prove the statement for τ = 1. We have that

V∗

(
S1
β,i

(
f̂
))

= V∗

(
Sβ,i

(
f̂
))
≥ (1− β)V∗

(
f̂
)

+ β

n∑
l=1

wilV∗

(
f̂l

)
= V∗

(
f̂
)
∀i ∈ I.

Assume that the statement is true for τ ∈ N. Observe that for each i ∈ I

V∗

(
Sτ+1
β,i

(
f̂
))

= V∗

(
Sβ,i

(
Sτβ

(
f̂
)))

≥ (1− β)V∗

(
f̂
)

+ β
n∑
l=1

wilV∗

(
Sτβ,l

(
f̂
))
≥ V∗

(
f̂
)
.

The statement follows by induction. Next, assume that Vi is also nonexpansive for all i ∈ I. By
Propositions 1 and 2 and since each Vi is nonexpansive, we have that V∗ is nonexpansive.35 By
Lemma 8 and the previous part of the proof and since V∗ is a continuous ex-ante expectation,
we have that

V∗

(
σβi

)
= V∗

(
lim
τ
Sτβ,i

(
f̂
))

= V∗

(
Sτβ,i

(
f̂
))
≥ V∗

(
f̂
)

∀i ∈ I,∀β ∈ (0, 1) ,

proving the statement. �

Proof of Lemma 14. Assume that Θ 6= ∅ and fix µ ∈ Θ. We next show that µ ∈ int (∆ (Ω)).
First, observe that the full-support assumption on {(Vi,Πi)}i∈I implies that, for all i ∈ I,
ω′ ∈ Ω, ω ∈ Πi (ω

′), and p ∈ arg minp̃∈∆(Ω) ci,ω′ (p̃), we have p (ω) > 0.36 Second, let suppµ = E
and assume by contradiction that E 6= Ω. Since Πsup = {Ω}, we have that there exists ω ∈ Ω\E,
i ∈ I, and ω′ ∈ E such that ω ∈ Πi (ω

′). Given that µ (ω) = 0 and µ (ω′) > 0, we obtain

pµ,i (ω
′, ω) = 0,

yielding a contradiction with the fact that pµ,i (ω′, ·) ∈ arg minp̃∈∆(Ω) ci,ω′ (p̃). �

Proof of Lemma 15. We first prove an ancillary claim.
35Recall that for any collection of functionals that are nonexpansive, their pointwise infimum is also nonex-

pansive.
36Indeed, for every i ∈ I, the operator Vi : RΩ → RΩ is monotone and such that its indicator matrix A (Vi)

(cf. Definition 9) satisfies

ω ∈ Πi (ω′) =⇒ aω′ω = 1 ∀ω, ω′ ∈ Ω.

In particular, this implies that

arg min
p̃∈∆(Ω)

ci,ω′ (p̃) = ∂Vi (ω, 0) ⊆ int (∆ (Πi (ω′))) ,

where the first equality follows from [5, Lemma 32]. The inclusion follows from concavity and the definition of

the superdifferential.
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Claim 2. For every i ∈ N , Vi ⊆ C (F ) is convex and compact in the topology of uniform
convergence.

Proof. Fix i ∈ N and consider V̄ , V̄ ′ ∈ Vi as well as λ ∈ [0, 1]. Fix f ∈ F and note that(
λV̄ + (1− λ) V̄ ′

)
(f) = λV̄ (f) + (1− λ) V̄ ′ (f)

= λV̄ (Vi (f)) + (1− λ) V̄ ′ (Vi (f)) =
(
λV̄ + (1− λ) V̄ ′

)
Vi (f) ,

showing that λV̄ +(1− λ) V̄ ′ ∈ Vi. Next, consider a sequence
{
V̄n
}
n∈N ⊆ Vi such that V̄n → V̄ .

Given that uniform convergence implies pointwise convergence, it is standard to show that V̄ is
normalized, monotone, translation invariant and such that, for every f ∈ F , V̄ (f) = V̄ (Vi (f)).
Therefore, Vi is closed, hence compact, in the topology of uniform convergence. �
Suppose that there exists no ex-ante expectation V̄ such that

(
V̄ , Vi,Πi

)
is a generalized

conditional expectation for all i ∈ {1, 2}, that is,

V1 ∩ V2 = ∅.

By the Hahn-Banach separation theorem, there exists a linear continuous functional L : C (F )→
R and c ∈ R, such that

L
(
V̄1

)
> c > L

(
V̄2

)
for all V̄1 ∈ V1 and V̄2 ∈ V2. By the Riesz representation theorem, there exists ν ∈M (F ) such
that

L (V ) =

∫
F

V (f) dν (f) ∀f ∈ F .

Therefore, ∫
F

V̄1 (f) dν (f) > c >

∫
F

V̄2 (f) dν (f)

for all V̄1 ∈ V1 and V̄2 ∈ V2. Fix a ∈ [−k, k] such that a 6= 0 and define the measure νc ∈M (F )
as

νc = ν − c

a
δ{ae}

where ae ∈ F is the constant act assigning a to all states and δ{ae} is the Dirac measure on ae.
For every V̄1 ∈ V1 and V̄2 ∈ V2, it follows that∫

F

V̄1 (f) dνc (f) =

∫
F

V̄1 (f) dν (f)− c

a
V̄1 (ae) =

∫
F

V̄1 (f) dν (f)− c > 0.

Symmetrically, we also have ∫
F

V̄2 (f) dνc (f) < 0.

Therefore, ∫
F

V̄1 (f) dνc (f) > 0 >

∫
F

V̄2 (f) dνc (f) ,

for all V̄1 ∈ V1 and V̄2 ∈ V2. Given that for every i ∈ I and ω ∈ Ω

Vi (ω, ·) ∈ Vi,
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we obtain ∫
F

V1 (ω, f) dνc (f) > 0 >

∫
F

V2 (ω, f) dνc (f) ∀ω ∈ Ω,

as desired. Moreover, by [1, Corollary 5.108] M0 (F ) is dense in M (F ) endowed with the
weak*-topology, and since Ω is finite and Vi (ω, ·) is continuous for all i ∈ {1, 2} and for all
ω ∈ Ω, the implication follows. �

G Online appendix: algorithm to construct extreme ex-

ante expectations

In this section, we propose an algorithm to compute V∗. Consider any ex-ante expectation
V̂ : RΩ → R such that V̂ ≥ V∗. For example, one can choose

V̂ (f) = max
ω∈Ω

f (ω) ∀f ∈ RΩ.

Define recursively the sequence
{
V̂ τ
}
τ∈N

of real-valued functionals over RΩ by V̂ 1 = V̂ and

V̂ τ+1 (f) = min
i∈I

V̂ τ (Vi (f)) ∀f ∈ RΩ,∀τ ∈ N.

By induction, we have that each V̂ τ is an ex-ante expectation. Fix f ∈ RΩ. Since each Vi is an
interim expectation, if τ ≥ 2, then we have that

V̂ τ+1 (f) = min
i∈I

V̂ τ (Vi (f)) = min
i∈I

min
i′∈I

V̂ τ−1 (Vi′ (Vi (f))) ≤ min
i∈I

V̂ τ−1 (Vi (Vi (f)))

= min
i∈I

V̂ τ−1 (Vi (f)) = V̂ τ (f) .

Since f was arbitrarily chosen, this implies that V̂ τ+1 ≤ V̂ τ for all τ ∈ N\ {1}. Define V̂ ∞ :
RΩ → R by V̂ (f) = limτ V̂

τ (f) for all f ∈ RΩ.

Proposition 10. For every ex-ante expectation V̂ : RΩ → R such that V̂ ≥ V∗, we have
V̂ ∞ = V∗.

Proof of Proposition 10. Since
{
V̂ τ (f)

}
τ∈N

is an eventually decreasing sequence bounded

from below by minω∈Ω f (ω), V̂ ∞ is a well defined ex-ante expectation. By construction, we
have that

V̂ τ+1 (f) ≤ V̂ τ (Vi (f)) ∀f ∈ RΩ,∀i ∈ I.
By passing to the limit, we obtain that V̂ ∞ (f) ≤ V̂ ∞ (Vi (f)) for all f ∈ RΩ and for all i ∈ I,
which in turn yields that V̂ ∞ ≤ V∗ by definition of V∗. Conversely, note that

1. Since V̂ 1 = V̂ ≥ V∗, if τ = 1, then V̂ τ+1 (f) = mini∈I V̂
τ (Vi (f)) ≥ mini∈I V∗ (Vi (f)) ≥

V∗ (f) for all f ∈ RΩ.

2. By induction assume that V̂ τ ≥ V∗. It follows that

V̂ τ+1 (f) = min
i∈I

V̂ τ (Vi (f)) ≥ min
i∈I

V∗ (Vi (f)) ≥ V∗ (f) ∀f ∈ RΩ,

proving the inductive step.

By induction, we conclude that V̂ τ ≥ V∗ for all τ ∈ N, yielding that V̂ ∞ ≥ V∗ and, in
particular, V̂ ∞ = V∗. �
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H Online appendix: Omitted examples

Example 9 (Extreme information asymmetry). Consider two traders I = {1, 2} that are
uncertain about an asset f̂ ∈ RΩ and are endowed respectively with full-information Π1 = 2Ω

and no-information Π2 = {Ω}. In this case, the interim expectation of an act f by agent 1 in
each state ω ∈ Ω must coincide with f (ω). As Agent 2 does not receive any information, both
her ex-ante and interim expectations are variational and given by

V2 (f) = min
p∈∆(Ω)

{Ep [f ] + c (p)} .

With this, the interim preferences of the agents admit a common ex-ante expectation which
must coincide with the preference of agent 2, that is V̄ = V2.37 Next, for all β ∈ (0, 1), the
equilibrium strategy of player 2 does not depend on the realized state

σβ2 = min
p∈∆(Ω)

{
Ep
[
(1− β) f̂ + βσβ1

]
+ c (p)

}
,

while the equilibrium strategy of player 1 is adapted to the realized state

σβ1 (ω) = (1− β) f̂ (ω) + βσβ2 ∀ω ∈ Ω.

By simple substitution, we get

σβ2 = min
p∈∆(Ω)

{
Ep
[
f̂
]

+
1

(1− β2)
c (p)

}
≥ V̄

(
f̂
)
,

that is, the equilibrium willingness to pay of player 2 coincides with a less ambiguity-averse
version of the ex-ante common expectation. In the high-coordination limit, the ambiguity of
the agents is restricted only among the least penalized probabilistic models:

lim
β→1

σβ2 = lim
β→1

σβ1 (ω) = min
µ∈Θ

Eµ
[
f̂
]
≥ V̄

(
f̂
)

∀ω ∈ Ω,

where Θ = arg minp∈∆(Ω) c (p).38 In words, the equilibrium price is converging to a cautious
evaluation consistent with the most trusted probabilistic models, i.e., p ∈ ∆ (Ω) such that
c (p) = 0. In the maxmin model, where c is the (convex-analysis) indicator function of a set
C ⊆ ∆ (Ω), this cautious evaluation coincides with the common ex-ante expectation, so that

limβ→1 σ
β
i (ω) = V̄

(
f̂
)
. N

References

[1] C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis, 3rd ed., Springer-
Verlag, Berlin, 2006.

[2] S. Cerreia-Vioglio, R. Corrao, and G. Lanzani, Dynamic Opinion Aggregation: Long-run
Stability and Disagreement, mimeo, 2021.

37Observe that, given the extreme nature of the information structures considered, there is no need to specify

an updating rule for the preferences of the agents.
38This last step follows by [51, Proposition 12].

68



[3] S. Cerreia-Vioglio, P. Ghirardato, F. Maccheroni, M. Marinacci, and M. Siniscalchi,
Rational preferences under ambiguity, Economic Theory, 48, 341—375, 2011.

[4] F. H. Clarke, Optimization and Nonsmooth Analysis, SIAM, Philadelphia, 1990.

[5] F. Maccheroni, M. Marinacci, and A. Rustichini, Ambiguity aversion, robustness, and
the variational representation of preferences, Econometrica, 74, 1447—1498, 2006.

69


