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Abstract

This paper examines the impact of mobile phone access on the containment of an
epidemic. We study this question in the context of the 2014 Ebola Virus Disease (EVD)
outbreak in Liberia. Combining novel data on cellphone towers and EVD cases, we
estimate a high-resolution radio-wave propagation model that uses variations in terrain
topography and the spatial distribution of cellphone towers to predict signal strength on
the ground. We then employ a regression discontinuity design that compares villages at
the margin of the signal strength threshold required for coverage. We find that having
access to cellphone coverage leads to a 10.8 percentage point reduction in the likelihood
that a village has an EVD case. Results from a novel survey collected following the
epidemic suggest that this is mostly explained by cellphone access facilitating treatment
provision rather than improving access to preventive care or information.
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1 Introduction

Infectious disease outbreaks are a major burden to low and middle-income countries (Holmes

et al., 2017). For instance, we are currently in the midst of a worldwide Coronavirus epidemic

and a resurgence of Ebola in the Democratic Republic of the Congo and Guinea. For this

reason, assessing the e�ectiveness of tools that can prevent or contain these outbreaks has

become a first-order policy issue. Given their widespread availability, mobile phones have

the potential to be one such tool. A growing literature shows that mobile phone technology

can be used to improve the delivery of health care (Braun et al., 2013; Agarwal et al., 2015;

Obasola et al., 2015), to predict the spread of infectious diseases by studying mobility patterns

(Bengtsson et al., 2015; Wesolowski et al., 2015), to help diagnosing diseases (D’Ambrosio

et al., 2015), and as a tool for information sharing, reporting, and surveillance (Yang et al.,

2009; Freifeld et al., 2010; Sacks et al., 2015). While this literature o�ers guidance on the

design and use of specific tools that can be deployed during outbreaks, the broader question

of whether access to mobile phone technology has an impact on the spread (or containment)

of a disease during emergency situations remains largely unexplored.

Ex-ante, it is ambiguous whether living in an area with cellphone coverage, and thus

having access to mobile phone technology, has a positive or negative impact on the spread of

an infectious disease. Mobile phone technology can increase exposure to preventive care (e.g.,

prevention education, hygiene practices guidance), as well as facilitate access to treatment

resources (e.g., reporting sick and dead people, requesting ambulances). We refer to the

former as the preventive care channel, and the latter as the treatment care channel. In such

cases, the likelihood of transmitting a disease is expected to be lower in cellphone coverage

areas, as mobile phones can potentially lead to more desirable health behavior and/or higher

relief e�orts.

Cellphone coverage also enables individuals to more e�ciently interact with a potentially

larger network of friends and family and to improve within-network collective action during

emergencies (Hampton et al., 2011, Pew Research Center, 2011, Pew Research Center, 2019,

Blumenstock et al., 2016). For instance, with the advent of mobile money, cellphone access

can facilitate in-network transfers to help members cope with the economic consequences of

the crisis (Blumenstock et al., 2011). It is unclear whether the use of cellphone within the
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network would crowd out or not person-to-person interactions. However, during the early

stages of an outbreak when knowledge about transmission is low and alternative govern-

ment health care resources are scarce, members of a network with cellphone access can more

e�ciently coordinate person-to-person care of a�ected members of the network, reduce free-

riding within the network by better monitoring the tasks of the members, or, in the event

of a death, gather members for funerals.1 An unintended consequence is then an increase in

the number of person-to-person interactions within the network, which can lead to cellphone

access increasing the likelihood of spreading the disease along the network. We refer to this

as the network channel.2

Finally, cellphone coverage could significantly decrease the cost of access to outbreak-

related information. Simultaneously, it could also open the door to misinformation and thus

mitigate the returns of accessing quality information.3 We refer to this as the information

channel.

This paper explores the causal e�ect of mobile phone access –proxied by cellphone coverage–

on the spread (or containment) of an infectious disease, namely the Ebola Virus Disease

(EVD, hereafter) in the context of the 2014 West Africa epidemic in Liberia. We investi-

gate whether cellphone coverage a�ects the likelihood that a village reports an EVD case

by employing several novel sources of data. First, we use data on EVD cases compiled by

the authors from primary records obtained from the Liberia’s Ministry of Health (MOH).

This dataset encompasses the entire set of villages in the country for the whole duration of

the epidemic. Second, we gather data on the location and characteristics of cellphone tow-

ers across Liberia in the year 2013 –just prior to the outbreak– obtained from the Liberia

Telecommunications Authority (LTA). Third, we explore mechanisms using original survey

data conducted six months after the end of the epidemic on about 2,000 respondents across

Liberia along with more than 233 million anonymous call detail records (CDR) obtained from

1In the case of free-riding issues, by lowering the cost of communication between members of the network,
mobile phone access can enable members to repeatedly check on other members that are supposed to take
care of a�ected members, or that have not confirmed attendance to a funeral. This, in turn, can increase
person-to-person interactions between a�ected members and would-be free-riders within the network.

2Similarly, connected individuals tend to migrate and, more generally, move around more (e.g., Blumen-
stock (2012)). The implications within our context is that this can contribute to the spread of the disease.

3Refer to World Health Organization (2014); Oyeyemi et al. (2014); Onyeonoro et al. (2015); Allgaier and
Svalastog (2015); Pathak et al. (2015); Roberts et al. (2017) for studies on how misinformation can disrupt
epidemic response.
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one of the major mobile network operators in the country.

Researchers studying the impact of mobile phone coverage on any outcome of interest face

two main hurdles: how to accurately measure coverage, and how to address the endogenous

selection of locations and people into coverage. This paper proposes a novel method to address

these issues. First, we measure mobile coverage by estimating a high spatial resolution radio-

wave propagation model widely used by regulatory agencies and businesses to model coverage,

due to its high accuracy (Crabtree and Kern, 2018). This model combines cell tower footprint

with information on terrain topography and more than a dozen variables (climate, terrain

conductivity, antenna and transmitter characteristics, etc.) to provide a measure of signal

strength at each point on the ground. To the best of our knowledge, this is the most accurate

measure of mobile coverage available in the literature.4

Second, we employ a regression discontinuity (RD) design that uses the signal strength

obtained from the propagation model as the forcing variable and the minimum signal needed

for coverage as the cuto�. To account for selection into coverage, we limit our analysis to

villages within a margin of this signal strength cuto�. Within this margin, whether a village

receives just enough signal strength or not is determined by minor exogenous variations

in topography that lead to arbitrary di�ractions and blocking of the signal. We confirm

this empirically by exploring a rich set of ex-ante village characteristics to predict coverage:

topographic characteristics–not demographic or socioeconomic characteristics–are the sole

predictors of coverage within a close margin of the coverage cuto�. Further analysis of

these village characteristics also suggests a smooth transition across the cellphone coverage

cuto�, and thus little indication that the likelihood of an EVD case is explained by these

characteristics jumping at the cuto�.

We note that although the measure of coverage used in this paper is accurate, near the

coverage cuto� factors such as weather conditions, call tra�c, etc., may lead to day-to-day

changes in signal strength. Therefore, one should interpret the estimated signal strength as

4Early approaches in the literature to determine coverage include using whether a given location (town,
municipality, etc.) has a tower nearby (e.g., Jensen (2007); Aker (2010)), and using a fixed radius around
each tower to assign whether a given location receives coverage (e.g., Shapiro and Weidmann (2015)). These
approaches do not necessarily capture coverage on the ground since they inherently ignore the e�ect of topog-
raphy on signal di�usion; thus, falling within a certain distance of a tower does not necessarily imply coverage.
More recent approaches using GSMA coverage maps (e.g., Guriev et al. (2020); Manacorda and Tesei (2020);
Gonzalez (2021)) provide a more accurate measure of coverage as they take into account topography; however,
they do not provide a measure of signal strength within coverage areas.
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coverage under typical or average conditions. This is not a major concern in our setting given

that we are interested in annual coverage rather than daily coverage. Nonetheless, the e�ect

of coverage studied in this paper should be interpreted as an intent-to-treat (ITT) given the

potential fuzziness in day-to-day signal availability at the margin.

Overall, we find considerable evidence that cellphone coverage helped contain the spread

of the disease. In line with graphical evidence, RD estimates show a 10.8 percentage point

reduction in the likelihood that a village with just enough coverage reports an EVD case

relative to villages that are just under the cuto�. Additional results using a panel-RD spec-

ification that exploits monthly variation in EVD incidence, provide significant evidence of

containment e�ects. We find that the likelihood that a village reports an EVD case in a

month, given other EVD cases within the district in the previous month, is reduced by 1.9

percentage points if the village has cellphone coverage. Villages without coverage are not as

shielded, reporting instead a 1.6 percentage point increase in the likelihood of EVD given

past exposure to EVD within the district.

Our findings are robust to a battery of robustness and falsification checks. First, our

results do not change after controlling for “free-space” signal strength (signal strength in the

absence of topography) (Olken, 2009). By comparing locations that would have received the

same signal strength in the absence of topography, this exercise ensures that the identifica-

tion relies solely on variation due to exogenous topographic characteristics Furthermore, our

findings hold when: (i) using alternative measures of the outcome, (ii) using coverage one

year after the epidemic as a falsification test, (iii) using both geographic distance and signal

strength distance as forcing variables, (iv) accounting for potential non-compliance in access

to cellphone coverage, and (v) assessing the sensitivity of our RD estimates to near-cuto�

observations.

We explore several channels underlying the relationship between cellphone coverage and

the likelihood of being a�ected by the epidemic. As a first step, we take advantage of the

introduction of a toll-free, nationwide phone alert system established for rapid notification and

response (i.e., a hotline) to provide preliminary evidence on the care and network channels.

We expect the network channel to be particularly relevant during the pre-hotline period as

government-provided emergency resources were scarce, forcing individuals to rely on their
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network for support. Similarly, we expect the preventive and treatment care channels to be

more relevant after the introduction of the hotline given that they depend on the existence of a

tool, such as a hotline, that can connect individuals to the appropriate agencies (ambulances,

Ebola treatment units, NGOs providing educational material, etc.). We find that cellphone

coverage leads to a large and significant drop in the likelihood of EVD in the period after

the introduction of the hotline (August 2014), but not prior to this.

We explore the preventive and treatment care channels using survey data. We test whether

individuals in coverage areas are more likely to receive preventive care, by asking individuals

whether health workers, o�cials, and community task-forces came to their village to explain

EVD, to hold hygiene meetings, to bring information, to teach safe burial procedures, or

to bring preventive materials. We find no statistically significant evidence on this channel.

Second, we test whether survey respondents in coverage areas are more likely to receive treat-

ment care during the epidemic. We find that treatment care plays a bigger role in explaining

the e�ect of coverage on the likelihood of an EVD case. Survey respondents in cellphone cov-

erage areas are more likely to report that someone came to take sick people, that ambulances

arrived on time, and that care centers were placed near their villages. Putting together the

preventive and treatment care outcomes into summary index measures (Kling et al., 2007),

we report a statistically significant e�ect for treatment care, but not for preventive care.

Overall, the findings suggest that, while having access to mobile phones, on average, did not

increase exposure to preventive care, it did help respondents report their need for relief e�orts

and receive more treatment resources.

We proceed by testing the network channel using two alternative measures of a village’s

network. First, we use original data on more than 233 million anonymous CDR for the

universe of mobile subscribers of one of the largest mobile networks operators in Liberia. By

including information on date and time of calls, identifier for cell tower where calls originated,

and identifier for cell tower receiving the calls, the data allow us to create tower-to-tower

measures of connectedness based on day-to-day call behavior. We define networks for the

villages within the catchment areas of these connected towers. Second, we classify all villages

across Liberia according to their clan using the latest available pre-outbreak (2008) census

data. Clans are groups of villages that, although currently considered administrative units,
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correspond to historical tribal chiefdoms that were gradually fused into the state (Nyei, 2014).

We then test whether EVD spreads more easily if there is a “coverage match” between an

a�ected village and other villages within the network. In other words, we assess whether

the likelihood of an EVD case in villages with cellphone access increases or decreases if an

a�ected village within the network also has coverage. We find that a “coverage match” does

not lead to any meaningful change in the likelihood of EVD spread within the network.

Finally, we test whether respondents in coverage areas were more likely to receive EVD-

related information and whether they were more likely to be (mis)informed about the origin

of the epidemic. We conclude that survey respondents in cellphone coverage areas are as

(mis)informed as respondents living in areas with no cellphone coverage. We attribute this

finding to both, the widespread availability of radio across Liberia and potentially the lack

of Internet access at the time of the epidemic.

This paper fits into the economics literature that investigates the economic impact of

mobile phones and other information and communication technologies (ICTs) in developing

economies (Aker and Mbiti, 2010).5 It also contributes to past research exploring the role of

mobile phone technology as a tool to improve a number of health-related outcomes. Some

of the outcomes studied in this literature include the management of health records and

health care utilization (Agarwal et al., 2015), maternal and child health indicators (Obasola

et al., 2015), the remote diagnosing of diseases (D’Ambrosio et al., 2015), the quality of care,

the e�ciency of services, and the capacity for monitoring (Braun et al., 2013). Our paper

advances this literature in three areas. First, we present a way of measuring access to mobile

phone technology at a large, country-wide scale. Previous studies typically focus on limited

settings where access is determined by whether individuals or health care providers employ

study-specific tools and phone applications. Our approach of accurately measuring coverage

over a large area allows for analyses that can assess the e�ect of mobile phone interventions at

a much larger scale than previous work. Second, selection into the use of mobile technology

is endogenous. Thus, when comparing health-related outcomes across users and non-users of

the technology, it is di�cult to disentangle the e�ect of the mobile phone interventions from

5These studies explore, among other things, the e�ects on price dispersion (Jensen, 2007; Aker, 2010;
Aker and Fafchamps, 2014), education (Aker et al., 2012; Aker and Ksoll, 2018), the role of mobile money in
financial transactions (Jack and Suri, 2011, 2014), also at the time of emergencies (Blumenstock et al., 2016).
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the e�ect of other determinants of the technology such as education or attitudes towards new

technology adoption. Our empirical design addresses this underlying issue. Third, while this

literature focuses on studying the e�ect on health-related outcomes in regular, day-to-day

settings, our paper explores whether the technology is e�ective during a health crisis–namely,

a sudden-onset epidemic–in a setting characterized by general mistrust towards local and

international institutions. Our paper shows that mobile-based interventions can be e�ective

even in such settings.

This paper also contributes directly to the strand of the literature related to mobile tech-

nology and infectious diseases. Generally, studies within this area focus on how mobile tech-

nology can be used to prevent future outbreaks (e.g., using post-outbreak mobility patterns

estimated from phone usage to predict the spread of the disease (Lu et al., 2012; Bengtsson

et al., 2015; Wesolowski et al., 2015)), or evaluating phones as a “participatory epidemiology”

tool (e.g. using phone technology for information sharing, reporting, and tracking of cases

within communities (Yang et al., 2009; Freifeld et al., 2010; Sacks et al., 2015; Feng et al.,

2018)).6 While this literature evaluates specific tools that can be deployed during outbreaks,

our paper answers a more general question: whether access to mobile phones among the

general population can have an impact on spreading (or containing) outbreaks. We also go

beyond the evaluation exercise by exploring mechanisms that can potentially explain the rela-

tionship between cellphone access and epidemic spread (or containment). Our findings show

how something as simple and ubiquitous as a mobile phone can have positive externalities

on economic development by allowing communities to better access treatment health care

resources in times of crisis.

This paper proceeds as follows. Section 2 describes the context. Section 3 provides details

on the dataset used in the analysis. Section 4 describes the empirical models and Section 5

the results. Section 6 describes the channels of impact, while section 7 concludes.

6Mobile phones were also used during the 2014 West Africa Ebola epidemic to collect and share data,
to create and share digital maps of the diseases, to track contacts and the spread of the disease within a
community (Sacks et al., 2015), and to track health seeking behavior (Feng et al., 2018).
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2 Background on the 2014 EVD Outbreak in Liberia

The first case of EVD in West Africa occurred in Guinea near the border with Sierra Leone and

Liberia in December 2013, but EVD was not confirmed in Liberia until March 2014. After the

first case was recorded in the country on March 20, 2014, the Government of Liberia (GOL)

started responding to the epidemic with social mobilization, case management, treatment and

surveillance, water sanitation, and hygiene activities. The MOH took the lead in managing

the relief e�orts supported by several international institutions such as the World Health

Organization (WHO), Medicines sans Frontiers, and Samaritan’s Purse. The first wave of

EVD was contained very quickly and, by April 9, the last EVD case for almost two months

was confirmed.

However, on May 25, 2014, a new EVD case was recorded in Lofa county near the border

with Guinea. By the end of June, the disease had spread to the capital city, Monrovia. A

second wave of the epidemic started, deteriorating quickly. By August 2014 the situation

was out of control. The GOL urgently called on the international community for a massive

response, by declaring a State of Emergency on August 6. Schools and Liberia’s land borders

were closed, and strict control measures, including quarantines of neighborhoods and a nightly

nationwide curfew, were imposed. On August 8 the WHO declared the Ebola outbreak a

“Public Health Emergency of International Concern”, the highest level of international alert.

By the end of that month, there was a growing awareness of the need for more decentralized

control and involvement of local communities: the GOL created county-level taskforces to

strengthen local coordination in the fight against EVD, and an Incident Management System

(IMS) devoted exclusively to the national management of the epidemic (Nyenswah et al.,

2016, Hymowitz, 2017).

As the number of EVD cases continued to rise, international funding started being poured

into Liberia. The United States government committed US$319 million for the response in

West Africa. Other institutions, such as the World Bank, approved an additional US$105

million, with US$52 million specifically for Liberia (World Bank, 2014). Overall, about 62

countries committed US$2.3 billion to respond to the epidemic in West Africa, including

US$806 million to Liberia (White House, 2014). Over time, the GOL was able to open

Community Care Centers (CCCs), Ebola Treatment Units (ETUs), and coordinate safe buri-
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als and the removal of dead bodies from communities, through teams of governmental health

workers. Following an assessment of the major areas of intervention during the EVD outbreak,

Kirsch et al. (2017) concluded that no single intervention stopped the epidemic, rather all

interventions likely had reinforcing e�ects. In fact, the epidemic’s turning point –September

2014– coincided with a reorganization of the response, the emergence of community leader-

ship in control e�orts, and changing beliefs and practices within the population. While in

the following months the epidemic was rapidly slowing down, the GOL e�orts kept securing

additional funding, constructing the planned ETUs and coordinating the activities of the

international partners involved. By early 2015, 31 ETUs were constructed and more than 70

CCCs opened.

In January 2015 there were fewer than 15 weekly confirmed cases with the last EVD case

being reported in mid-March 2015. The country was initially declared EVD-free on May 9,

2015. However, a small number of other cases reported in July and December of the same

year led to the o�cial EVD-free declaration to take place on January 14, 2016. Along with

Sierra Leone and Guinea, Liberia was among the most a�ected countries by EVD in West

Africa. In Liberia, 10,675 confirmed, probable, or suspected cases were recorded, while the

cumulative number of deaths reached 4,809–the highest number in West Africa (World Health

Organization, 2016). Following the epidemic, the GOL’s focus shifted from the emergency

response to the strengthening of the health care system.

3 Data

3.1 Ebola Data

The data on EVD cases are primarily constructed from the patient database from the MOH

containing more than 19,000 patients tested for EVD from March 2014 to July 2015. The

data are widely considered to be the most comprehensive database to date, since every

organization taking part in the response to the outbreak was required to report cases to

the MOH (Liberian Ministry of Health, 2017). Furthermore, we supplement these data

with a database from Global Community, a development organization that managed all the

burials after July 2014. Since the database records the village where the person resided when
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suspected to have contracted EVD, we were able to manually code and match the data with

the entire list of 9,686 villages in the 15 counties of Liberia.

For each village, we construct the main outcome of interest as an indicator equal to 1

if at least one (probable, confirmed, or death) case was recorded in the village during the

study period (January, 2014-July, 2015). We rely on this extensive margin measure because

it is less likely to su�er from measurement error than an intensive margin measure such as

the number of cases. As alternative outcomes, we also explore the total number of months

a village was a�ected by EVD and whether a village recorded a suspected EVD death. We

also use the date when the blood tests were performed for individuals suspected of EVD to

explore the e�ects across di�erent stages of the epidemic.

3.2 Cellphone Coverage Data and Measures

The transmission of high-frequency radio waves between cellphone towers (transmitters) and

mobile devices (receivers) is what enables the transfer of information (e.g., voice calls, SMS,

etc.) in a cellphone network. Therefore, one can assess the strength of coverage at a given

point on the ground by modeling how these radio waves propagate across space using a signal

propagation model.

This paper uses one such model–the Irregular Terrain Model (ITM)–to determine cov-

erage strength across Liberia. The ITM is the workhorse model used by the United States

government, the Federal Communications Commission, and businesses around the world to

model coverage and signal propagation. This is primarily due to its high accuracy, its ability

to capture terrain topography, and its predictions repeatedly validated via on-the-ground

measurements (Longley and Rice, 1968; Eppink and Kuebler, 1994; Seybold, 2005; Lazaridis

et al., 2013).7

The model provides a measure of signal strength at a given point on the ground, taking

as inputs three primary sets of information: (1) the characteristics of the transmitter or cell

tower (e.g., latitude and longitude, antenna height, frequency of radio wave), (2) the charac-

7Refer to Crabtree and Kern (2018) for a detailed discussion of the ITM. Other propagation models
specifically designed to model cellphone coverage exist. However, these were mainly designed for urban and
suburban environments where obstacles to propagation come from building footprints rather than topography.
We also note that the ITM has been used in related literature to measure radio coverage Adena et al. 2015;
Gagliarducci et al. 2020; Armand et al. 2020 and television coverage (Olken, 2009)
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teristics of the receiver (e.g., antenna height and gain, receiver sensitivity), and (3) geographic

characteristics of the terrain (e.g., topography, climate, terrain conductivity). Appendix A

provides a detailed discussion of the variables and parameters used in the estimation of the

model.

We obtain the location of cellphone towers in the year 2013 for the two largest network

providers in Liberia, MTN Lonestar and Cellcom, which accounted for 91% of all mobile

subscribers during the year of study (LTA, 2014).8 The data are obtained from the Liberia

Telecommunications Authority (LTA) and provide the footprint of towers by the end of 2013,

just before the start of the outbreak. Appendix Figure B1 provides a map of the towers’

footprint. We combine these data with the most precise global-scale elevation data model

available, the 30-meter resolution ALOS Global Digital Surface Model (Open Topography,

2017) to accurately capture the e�ect of topography on signal propagation (JAXA, 2016).

Figure 1 presents the model output on a map of Liberia along with the location of cell-

phone towers. Note that areas of Liberia with no cellphone coverage in 2013 roughly corre-

spond to non-populated areas covered by forest.9 Received power on the ground is measured

in decibel-milliwatts (dBm) and typically ranges between -50 and -140dBm with values closer

to zero representing higher signal strength. However, for ease of interpretation, our measure

of coverage uses the absolute value of received power. Therefore, lower dBm levels should

be interpreted as stronger coverage. For GSM networks such as the one in Liberia, su�cient

coverage typically entails a signal strength below 95 dBm in absolute value (GSMA, 2019),

therefore areas shaded in red in Figure 1 are receiving su�cient cellphone coverage.10

When we explore the causal e�ect of cellphone coverage on the likelihood of EVD in a

8Other four operators existed in the country. The biggest by market share was Comium (less than 8%),
while LiberCell and Libtelco had less than 1% and WAT’s share was negligible. These companies had mostly
users in the capital city where phone coverage is existing for the other major companies. Note also that
Cellcom is currently Orange given its acquisition by Orange in 2016.

9Please see the location of villages in Liberia in Ma�oli (2021), Figure II; see map of Liberia on forest
land at http://www.fda.gov.lr/wp-content/uploads/2014/10/forest land2.jpg

10Refer to section 4.1.1 for more information on this cuto�. Additionally, one concern might be that
cellphone coverage estimated from the ITM might not always correspond to actual cellphone ownership on
the ground. Unfortunately, our data does not allow testing this relationship as we do not have information
on cellphone ownership. Instead, we use the Demographic and Health Survey 2013 to assess the relationship
between phone ownership and predicted coverage from the ITM, at the district level. Appendix Figure
B2 shows that there is a positive and statistically significant correlation (0.55) between the proportion of
individuals reporting owning a cellphone and the proportion of villages within each district predicted to have
coverage.
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village, our analysis will use a dichotomous indicator for whether the village had coverage or

not in 2013.

3.3 Survey Data

We use novel survey data gathered about six months after the end of the epidemic (Ma�oli,

2020) to explore potential mechanisms of the e�ects. Phone numbers from 2,265 respondents

in 571 villages across all of Liberia were selected through random dialing of phone numbers.

These respondents were then interviewed through a combination of an Interactive Voice

Response (IVR) survey to find out about their location before the beginning of the outbreak

and a mobile phone survey conducted by a local NGO. About 30% of the individuals surveyed

were living in areas that did not have coverage just prior to the outbreak in 2013, so this

allows us to perform analyses that compare outcomes across the pre-outbreak coverage cuto�.

3.4 Village Location and Census Data

We obtain GPS coordinates (latitude and longitude) of each village from the Liberia Institute

of Statistics and Geo-Information Services (LISGIS). This allows matching the village location

data with the spatial radio-wave propagation model in order to determine signal strength for

each village in Liberia. We also obtain data on road networks to construct other determinants

of EVD such as distance by road (in kilometers) to the origin point of the epidemic, and the

capital city, Monrovia.

In addition, we gather data from the 2008 National Population and Housing Census (LIS-

GIS, 2008) including information on population characteristics, such as education, household

size, working status, occupation, tribe, and religion. It also includes information on housing

and asset ownership, which we use to create proxies of village wealth. We aggregate cen-

sus data at the village level and match it to our village-level EVD and cellphone coverage

measures. We use this dataset primarily as a source of covariates for the main analysis and

to assess the validity of the empirical design. Finally, we access publicly available data on

various measures of village exposure to relief e�orts, such as the location of CCCs.11

11See the Ebola crisis page at Humanitarian Data Exchange, https://data.humdata.org/ebola.
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3.5 Call Detail Records (CDR) database

In order to create measures of each village’s network, we obtained anonymous CDR data from

Cellcom Liberia, which was the second largest mobile network operator (MNO) in the country

at the time of the study. These data include information on every single voice call and SMS for

each subscriber. Each record includes a unique (anonymized) device identifier, date and time

of call/SMS, identifier for cell tower where call/SMS originated, and identifier for cell tower

receiving the call/SMS. We were able to map 152 unique tower locations covering all counties

of Liberia. We use close to 234 million CDR from the universe of Cellcom subscribers in the

country–more than one million unique users–for June and July of 2015. For reference, Panel

(a) of Appendix Figure B3 depicts all calls during a randomly drawn day of operation (June

15, 2015). Panel (b) depicts outgoing calls for the tower servicing Ganta city, Nimba county,

as an example. The line color indicates the frequency of calls between the two locations

specified by the line, and the polygons depict Voronoi cells around each tower location.

4 Methods

4.1 Regression Discontinuity Design (RD)

We estimate the e�ect of cellphone coverage on the spread of EVD, by employing a regression

discontinuity (RD) design that uses signal strength as the forcing variable and the receiver’s

sensitivity threshold as the treatment cuto�. A receiver’s sensitivity threshold is essentially

the minimum signal strength required to be able to make a voice call or send an SMS.

In familiar terms, the received power is the underlying continuous measure of the “bars”

displayed on a mobile phone screen, while the receiver sensitivity threshold is the point

where one goes from a single “bar” to “no-service”.

Our baseline RD specification is given by the following equation:

EV Di = – + —Di + f(R̃i) + h(Gi) + ‘i (1)

where EV Di is an indicator for whether village i was a�ected by at least one EVD case

(probable, confirmed, or death) within our study period (January, 2014-July, 2015). R̃i =
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≠1◊(Ri≠c) is the received power (measured in dBm) in village i net of the receiver sensitivity

cuto� c.12 Values of R̃i greater than zero mean that cellphone coverage is available in village

i, while negative values mean that the location is below the sensitivity threshold and thus

no cellphone coverage is available. Di = {Ri Ø c} = {R̃i Ø 0} is thus an indicator for

whether village i has coverage (i.e., received power is higher than the cuto� c). f(R̃i) is the

RD polynomial. Our main analysis uses a local linear specification with a bandwidth h around

the cuto� c, optimally determined as in Calonico et al. (2014), and a triangular weighting

kernel.13 h(Gi) is a flexible polynomial in topographic characteristics such as elevation and

terrain slope. This ensures that the estimated e�ect is the result of coverage and it is not

due to changes in topography captured by the radio-wave propagation model.

We note that near the coverage cuto� factors such as weather conditions, call tra�c,

etc., may lead to day-to-day changes in signal strength. Therefore, one should interpret the

estimated signal strength from the model as coverage under average conditions. This is not

a major concern in our setting given that we are interested in annual coverage rather than

daily coverage. Nonetheless, the e�ect of coverage studied in this paper should be interpreted

as an intent-to-treat (ITT) given the potential fuzziness in day-to-day signal availability at

the margin.

4.1.1 Determining the Sensitivity Cuto�

We define the minimum required signal strength or sensitivity cuto� c based on the industry

standard for the specific network used in Liberia at the time of the study. MNOs in Liberia

primarily used a GSM900 network–the most common network in the world at the time–where

towers use a frequency band of 900 MHz.14 We further confirm this with our data on tower

characteristics: about 93% of the towers in Liberia used a 900MHz band (GSM900), while

under 7% of the towers used 1800MHz (GSM1800). These latter towers were exclusively

12For convenience, we multiply the normalization by -1 simply to make positive values mean more coverage
while negative values no coverage.

13This is the equivalent of running a weighted regression that sets f(R̃i) = R̃i + Di ◊ R̃i where weights
are obtained using a triangular kernel K(u) = 1 ≠ |ui| when |ui| Æ 1 and K(ui) = 0 when |ui| > 1, with
ui = R̃i/h. In our estimation, we use the bias-corrected estimator proposed in Calonico et al. (2014).

14GSM900 was used by most of the world with the exception of North America, and some Latin American
and East Asian countries (Burbank et al., 2013). More information specific to Liberia in the Liberia Telecom-
munications Authority (LTA) spectrum management page: https://www.lta.gov.lr/spectrum-management.
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located within the Monrovia area and therefore are not part of our estimation sample.15

With this in mind, we use a cuto� of -95 dBm (i.e., c = 95), since this is (i) the accepted

industry standard set up by the GSM Association (GSMA) for GSM900 networks,16 and (ii)

this cuto� has been repeatedly tested and validated by both the GSMA and government

regulatory agencies (Razally, 2015; GSMA, 2019).17

We further corroborate our choice of this cuto� using three separate methods designed

to detect unknown discontinuities points. First, we use the Di�erence in Kernels estimator

described in Qiu (2011) and recommended in Porter and Yu (2015) for cases similar to our

setting. This procedure compares the kernel-weighted average of our outcome Yi on the

right and left sides of a set of potential cuto�s r. Second, we employ the maximum R2

strategy, described in Card et al. (2008), that estimates a polynomial relationship between

our outcome Yi and the estimated signal strength Ri for several potential cuto�s r but

within a fixed interval [R, R]. The cuto� is chosen as the r that results in the maximum R2.

Intuitively, if there is a discontinuity at r, then any specification that uses a cuto� di�erent

than r is misspecified. Lastly, we use a modification of the method proposed by Spokoiny

(1998) adapted to our RD setting. The method fits polynomials of our outcome Yi within

gradually increasing intervals around a given point r0. The cuto� is chosen as the endpoint

of the maximal interval for which the residuals are “well-behaved”. Intuitively, after we hit

the maximal interval, the polynomial will have a hard time fitting the jump in the outcome

occurring at the cuto� point. All these three methods consistently point to a value of 95dBm

as the sensitivity cuto� (see Appendix C for more details).

15These number come from MTN–the largest MNO in Liberia at the time–which provide information on
the frequency bands of their towers.

16More specifically, the cuto� of -95dBm is the accepted standard for phone between the head and hand
(BHH) position which is the most realistic position (phone over the ear). Other cuto�s are for free-space (i.e.,
signal propagating in a vacuum) or browsing position (i.e., phone in hand for browsing). This latter position
is more relevant for networks with data/internet access and therefore more advanced than the one used in
Liberia in 2013.

17For instance, the GSMA and OFCOM (the UK’s communication regulator) have performed separate
and independent tests on the sensitivity cuto�s on BHH position. The sensitivity cuto�s for the tested
devices in the GSMA study were on average -94.45 (95% CI=-(-95.04,-93.86)). In the OFCOM study, the
overall sensitivity cuto�s averaged -94.46 (95% CI=(-95.10,-93.82)) with the cuto�s for lower channels of the
band (925.2MHz) averaging -94.93 (95%CI=(-96.21,-93.65)) and -94.83 (95% CI=(-95.89,-93.77)) for medium
channels (942.6MHz). Calculations performed by the authors based on reports (Razally, 2015; GSMA, 2019).
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4.1.2 Internal Validity of the RD Design

Coe�cient — in Equation (1) identifies the causal e�ect of cellphone coverage under the

assumption that potential outcome functions E[EV D(1)|R̃] and E[EV D(0)|R̃] are continuous

at the coverage threshold c, where one and zero denote assignment and non-assignment into

treatment, respectively. This entails that observable and unobservable characteristics must

transition smoothly across the coverage cuto�, so that villages with received power just below

the cuto� can serve as a valid counterfactual for villages where coverage is just available. This

is a plausible assumption within a reasonable bandwidth of analysis, as we will be comparing

villages that are at the margin of cellphone coverage. At this margin, whether a village

receives just enough signal strength or not is mostly determined by exogenous variations in

topography. This is clearly seen in Figure 2 which compares signal strength obtained from

estimating the ITM without accounting for topography (Panel a) and accounting for it (Panel

b). Note that minor changes in terrain topography lead to arbitrary blocking and di�raction

of the signals.

Figure 3 provides a visual depiction of our empirical strategy. In panel (a), we provide

a closer look at the estimated signal strength taking as example three cellphone towers near

Foya city along with the surrounding villages.18 Panel (b) highlights villages that are part

of a hypothetical RD design that uses a bandwidth of 10 dBm around the coverage cuto�.19

First, note that at the margin of coverage, there is rich spatial variation in treatment and

control villages. Most importantly, at this margin, treatment status is determined by minor

changes in topography that dictate whether enough signal reaches the ground.

In order to assess how village-level characteristics change with cellphone coverage, we

further explore the validity of our design by assessing various determinants of selection into

coverage. Table 1 presents results from a linear regression of signal strength, measured in

dBm, on a rich set of ex-ante village-level covariates.20 If selection is not an issue around the

cellphone coverage cuto�, then we should expect ex-ante demographic and economic charac-

18Foya is a city within Lofa county and is one of the largest cities in Liberia close to the border with Sierra
Leone and Guinea, where the outbreak originated.

19This hypothetical bandwidth is actually quite close to the optimal bandwidth of 9 dBm used in our
baseline results (section 5.1).

20The demographic and economic controls are obtained from the 2008 National Population and Housing
Census LISGIS (2008) and thus predate the cellphone coverage outcome used.
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teristics to not predict signal strength. There is evidence of significant selection into cellphone

coverage when considering the entire sample of villages (column (1)): elevation, population

size, and some socioeconomic indicators are strongly correlated with signal strength. Further-

more, the set of topographic, demographic, and economic controls are all jointly statistically

significant. However, as we restrict our analysis to villages that are within a close window

of the coverage cuto� (column (3)), only the topographic controls remain jointly signifi-

cant, while demographic and economic characteristics of the villages do not explain signal

strength. This suggests that, although there is significant selection into coverage when con-

sidering the entire sample, for villages at the margin of coverage, what largely determines

cellphone availability are minor exogenous variations in topography, and not endogenous vil-

lage characteristics. Given their importance, all baseline specifications presented in the paper

control for topographic characteristics: elevation and slope.

Appendix Figure B4 further confirms that selection of villages near the coverage cuto�

does not seem to be an issue as there is no significant jump in the density of the forcing

variable. Appendix Table B1 also provides summary statistics for village-level characteristics

for several bandwidths around the cellphone coverage threshold. Columns (1) and (2) report

the mean of these variables by coverage status for the entire sample. Columns (4) and (5)

repeat the exercise for villages within 20 dBm on each side of the sensitivity cuto�. Columns

(7) and (8) narrow the window of analysis to a 10 dBm bandwidth. Columns (3), (6), and

(9) report the clustered standard errors of the di�erence in means between villages with

and without cellphone coverage. Comparing columns (1) and (2) confirms that, among other

things, villages in areas with coverage tend to be at lower elevation and on a smoother terrain,

households in those villages have a smaller average household size, higher levels of primary

and secondary education, higher asset ownership and quality housing, and they live much

closer to the capital Monrovia and to the closest main city. As we restrict our analysis to

villages at the margin of cellphone coverage, however, most statistically significant di�erences

disappear (columns (6) and (9)). Overall, these results provide support for the continuity

assumption discussed above.21

21For a graphical depiction of the continuity of time-invariant covariates across the coverage cuto�, refer
to Appendix Figure B5. Unfortunately, we do not have baseline covariates in 2013 since the main source of
demographic and economic controls is the 2008 census which predate our coverage data.
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4.1.3 External Validity of the RD Design

Given the localized nature of the RD design, we explore how our estimation sample di�ers

from the rest of the Liberian population to broadly characterize which sub-population our

design speaks to.

Appendix Table B2 presents summary statistics for villages within our estimation sample

(column 1), and outside (columns 2 and 3). We define the estimation sample for this com-

parison as the sample within the Calonico et al. (2014)-estimated bandwidth for our main

RD design (column 1 of Table 2) at 8.9 dBm. Column 2 presents summary statistics for the

sample below the lower limit of the bandwith (i.e. < ≠8.9dBm) while column 3 presents

summary statistics for the sample above the upper limit of the bandwidth (i.e. > 8.9dBm).

Broadly speaking, locations with robust signal strength (column 3) are generally closer to

the towers and therefore more likely to be urban and developed, while locations far from

any viable signal (column 2) are far away from the towers and therefore more likely to be

isolated and rural. For ease of interpretation, Appendix Figure B6 also presents the results

by standardizing all the variables in Table B2 and showing how the means of villages below

(red) and above (blue) the bandwidth limits deviate from the estimation sample mean.

In terms of topographic characteristics, our sample villages are no di�erent than villages

with strong signal strength (above the bandwidth) and significantly less rugged than more

isolated villages (below the bandwidth). In terms of demographic characteristics, our sample

villages are quite similar to richer villages in terms of ethnicity, religion, and household size,

among other characteristics. However, they are closer to more isolated villages in terms of

population size, and educational attainment. In terms of economic characteristics, the sample

villages tend to own less assets and have lower quality housing than villages with strong signal

strength (above the bandwidth), but tend to have significantly better housing than isolated

villages. They also tend to be as close to main cities and Monrovia as the richer villages and

significantly closer than unconnected villages (below the bandwidth).

Overall this exercise points to clear distinctions between our sample of analysis and loca-

tions outside the sample. Relative to villages with strong signal strength (above the band-

width), our sample villages are quite similar in terms of topographic characteristics and most

demographic indicators. However, they are significantly poorer and less educated while being
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as centrally located as richer villages. This latter fact, in particular, points to our sample vil-

lages likely including peri-urban locations and the urban poor–a subpopulation of key policy

relevance both in Liberia and the rest of the developing world. With this in mind, results from

our design speak to this likely group and not to more richer/urban or more isolated/rural

locations.

4.2 Panel-Regression Discontinuity Design (RD)

We also explore whether cellphone coverage helped contain the spread of the disease by ex-

ploiting the (monthly) time variation of the EVD epidemic. Specifically, we disaggregate

our EVD measure in Equation (1) and create a village-by-month panel database. We are

interested in learning whether the likelihood that EVD spreads into a village from surround-

ing a�ected villages diminishes with cellphone coverage. Our empirical specification is the

following:

EV Dijt = – + —Dij + “EV Dj(i),t≠1 + ”Dij ◊ EV Dj(i),t≠1 + f(R̃ij) + ⁄j + ‹t + ‘ijt (2)

where EV Dijt is an indicator for whether village i in district j was a�ected by EVD in month

t, i.e., whether a (probable, confirmed, or death) EVD case was ever recorded in the village

that month. R̃ij , R̃ij , and Dij are defined as in Equation (1) since these variables do not

vary by month. EVDj(i),t≠1 is an indicator for whether district j, where village i is located,

was a�ected by EVD in the previous month t ≠ 1. ⁄j and ‹t are district and month fixed

e�ects, respectively. The district fixed e�ects account for any time-invariant unobservables

that may lead to endogenous selection into EVD within a village’s district.

To account for endogenous selection into cellphone coverage, we integrate into our panel

study a RD design that uses a linear specification in R̃ij , while restricting our analysis to the

same bandwidth as the baseline specification in Equation (1).22 Equation (2) estimates the

likelihood of an EVD case in village i given that there was at least one EVD case within that

village’s district in the last month. Coe�cients “ and ” estimate how this contagion e�ect

varies by whether village i has coverage or not.

22Specifically, we let f(R̃ij) = ◊1R̃ij + ◊2Dij ◊ R̃ij + ◊3EV Dj(i),t≠1 ◊ R̃ij + ◊4Dij ◊ EV Dj(i),t≠1 ◊ R̃ij .
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5 Results

5.1 Graphical Analysis

Figure 4 presents regression discontinuity plots for the outcome variable EV Di in Equation

(1). The solid vertical line indicates the cellphone coverage cuto�, and the signal strength

is normalized so that positive (negative) dBm values represent coverage (no coverage). The

circles give the averages of the outcome variable for 2 dBm signal strength bins, while the

circle size is weighted by the number of villages within each bin. The solid trend lines predict

EV Di using a third degree polynomial in the normalized signal strength (panels a and b) and

a linear specification (panel c). The gray dots and lines provide a representation of potential

EV Di by shifting upwards the predicted trend and binned averages of treated villages to the

point where they intersect the observed trends in non-treated locations.

Panel (a) focuses on villages within 40 dBm of the coverage cuto�–about 68% of all

villages in the sample. Overall, the likelihood of an EVD case increases as signal strength

increases, and this is plausible considering that urban areas with higher cellphone coverage

were the areas most a�ected by the epidemic. Note from the representation of potential EVD

that there would have been a clear continuity in EVD likelihood in the absence of coverage.

However, as soon as a village receives enough signal strength to allow cellphone use, we

observe a clear drop in the likelihood of an EVD case.

Panel (b) zooms in to a window of 20dBm around the coverage cuto�. Note again, a

clear continuity in our representation of potential EVD in the absence of coverage. As soon

as coverage is available, the likelihood of an EVD case drops by about 10 percentage points.

In addition, there is no clear change in the number of villages near the cuto� consistent with

our density analysis in section 4.1.2.

Finally, panel (c) provides a graphical depiction of our baseline results presented in section

5.2 below. Specifically, the di�erence at the cuto� gives the RD coe�cient — in the local linear

regression specification of Equation (1).
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5.2 Main RD Estimates

Table 2 presents estimates of the RD coe�cient — in Equation (1). Given the relationship

between signal strength and topography (Table 1), all specifications include controls for

terrain elevation and slope. Columns (1)-(3), and (5) use a linear specification of the RD

polynomial while column (4) uses a third degree polynomial in signal strength given the

wider bandwidth. In column (1), we document a reduction of about 10.8 percentage points

in the likelihood that a village has an EVD case relative to villages that are just under the

coverage cuto�. The optimal bandwidth used in this empirical specification is about 9 dBm.

The estimates remain very similar after including a set of socio-economic and demographic

characteristics (column (2)), confirming that the estimated drop in the likelihood of EVD at

the cellphone coverage cuto� is not explained by these covariates.

Columns (3)-(6) show that the results are robust to a set of alternative specifications.

Column (3) includes a flexible polynomial in elevation and slope to capture whether the e�ect

on EVD is simply driven by changes in topography captured by the ITM. The e�ect remains

robust suggesting that this is unlikely. Column (4) estimates a parametric RD specification

that uses almost the entire sample of villages (50 dBm bandwidth) and a flexible third

degree polynomial in signal strength. The results are consistent with the optimal bandwidth

estimates in columns (1)-(3), although there is a gain in precision given the larger number

of observations. Column (5) confirms that the estimated e�ect is robust to the choice of

kernel (uniform) and that are not driven entirely by observations near the cuto�. Given our

binary outcome variable, column (6) estimates a Probit model within a specified bandwidth

around the coverage cuto�. The marginal e�ect (at 7 percentage points) is not far from

our previous estimates. We also probe the sensitivity of our baseline results to the choice of

bandwidth. Appendix Figure B7 confirms that the coverage e�ect on EVD remains negative

and statistically significant for a wide set of bandwidths.

Appendix Tables B3 and B4 also show that the findings are robust to two alternative

measures of EVD: whether a suspected death from EVD was recorded in the village, and the

total number of months the village was a�ected by the epidemic.23 Lastly, it is important

23Unfortunately, the Ebola data do not allow us to distinguish between EVD and non-EVD deaths since
all cases reported in the patient database from the MOH were suspected with EVD and not every case was
tested before dying.
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to highlight that if access to cellphone coverage arbitrarily led to more reporting of cases in

coverage villages relative to non-coverage villages, then our estimates would be a lower bound

on the actual magnitude of the drop in EVD cases due to coverage.

5.2.1 Panel RD Estimates

Columns (1) and (2) in Table 3 present panel-RD estimates of the e�ect of cellphone coverage

on the likelihood that a village has an EVD case. Column (3) presents estimates of the

contagion e�ect, namely the association between a village’s district having an EVD case in

the last month and the likelihood that that village subsequently has an EVD case in month

t. Columns (4) and (5) present estimates on how this contagion e�ect varies by whether

village i has cellphone coverage or not. In line with previous findings (Table 2), we find that

cellphone coverage leads to a 0.69 percentage point drop in the likelihood of an EVD case

in any given month (column (1)). Column (3) provides strong evidence of contagion e�ects

within districts: the likelihood of a village reporting an EVD case in a given month increases

by 0.56 percentage points if there was at least one EVD case in the previous month within

that village’s district. Column (4) disaggregates this contagion e�ect by whether a village

has cellphone coverage or not. The results provide evidence that the spread of the disease

is considerably undermined by the presence of cellphone coverage. In fact, the likelihood

of reporting an EVD case given past EVD cases within the district increases by about 1.6

percentage points in villages without coverage, while it significantly decreases by about 1.9

percentage points if a village has coverage. The estimates are quantitatively similar after

adding controls (column (5)).

5.3 Robustness Checks

5.3.1 “Free-Space” ITM

We proceed by presenting further evidence supporting our main results. We use the ITM

to estimate signal strength without accounting for topography. This is typically called a

“Free-Space” model and it assumes that there is a direct line-of-sight between the tower and

the receiver (Olken, 2009). Figure 2 compares the output from the two models. Note that

minor changes in terrain topography lead to arbitrary blocking or di�raction of the signals.
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Following Olken (2009), we use the free-space predicted signal strength and coverage as addi-

tional controls in Equation 1. This allows identifying our coverage e�ect using the variation

in signal strength that is solely due to idiosyncratic changes in topography. Intuitively, by

controlling for free-space signal strength and topography, we are comparing villages that are

observationally identical in terms of their average topography and the signal strength they

would have received in “free-space”, but that di�er in their actual signal strength due to

minor exogenous changes in terrain. We estimate an expanded version of Equation (1):

EV Di = – + —Di + f(R̃i) + ”DF ree
i + f(R̃F ree

i ) + h(Gi) + ‘i (3)

where R̃F ree
i = RF ree

i ≠c is the received power (measured in dBm) using the “free-space” ITM

in village i net of the receiver sensitivity cuto� c. DF ree
i = {RF ree

i Ø c} = {R̃F ree
i Ø 0} is

an indicator for whether village i has coverage (i.e., received power is higher than the cuto�

c). Coe�cient — gives the e�ect of coverage after controlling for free-space coverage DF ree
i

and a flexible form of free-space signal strength f(R̃F ree
i ). We estimate Equation (3) within

a bandwidth of the coverage cuto� c that is optimally determined following Calonico et al.

(2014). The remaining terms are defined as in Equation (1). Note from Equation (3) that

we are combining our RD strategy comparing villages at the margin of coverage with the

free-space strategy. This allows obtaining results that are potentially more robust to any

concerns of endogenous selection into coverage.

Columns (1)-(4) of Table 4 present the estimates for di�erent versions of Equation (3).

All specifications include topographic, economic, and demographic controls.24 The e�ect of

coverage remains statistically significant and similar in magnitude to our main results in Table

2 even after controlling for free-space coverage (column (1)) and free-space signal strength

(column (2)). Columns (3) and (4) present the fully specified version of Equation (3). Again,

we find that our coverage e�ect remains robust even after including a flexible polynomial in

topography (column (4)).

We perform two falsification tests designed to rule out the possibility of the modeling

details of the ITM driving our results. First, column (5) presents results from estimating

Equation (1) using free-space coverage instead of actual coverage. As expected, we find no

24Refer to the notes on Table 4 for a list of these controls.
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e�ect when using the free-space measure of coverage. Second, we estimate signal strength

around towers built in 2015 when the epidemic was practically over. We limit the analysis

to districts that did not have any coverage in 2013 so that we do not pick up any e�ect from

the coverage footprint in 2013. In all, that leaves us with 383 villages, of which 77, that

did not have coverage in 2013, obtained coverage from the towers built in 2015. Given the

low number of observations, we cannot employ a RD design that limits observations within

a bandwidth. Therefore, we run a regression of EVD likelihood in 2013 on the measure of

coverage in 2015 for all villages within districts that did not have any coverage in 2013. We

should find no e�ect as this is essentially a placebo test that uses a boundary that did not

exist in 2013. Column (6) presents no statistically significant e�ect of 2015 coverage on the

likelihood of EVD in the previous years.

5.3.2 RD Estimates using Geographic and Technological Distance

The results in section 5.2 compare villages within a close window of the signal strength cuto�.

This section adds geographic distance as another dimension by which villages are compared.

Specifically, we construct the geographic distance from each village to its closest point on the

two-dimensional coverage boundary. We then restrict the analysis to villages that are both,

technologically (i.e., within a close bandwidth of the signal strength cuto�) and physically

(i.e., within a close bandwidth of the spatial coverage boundary) close to each other.

Appendix Table B5 presents the results for the baseline RD (columns 1-3) and the RD

specification that adds controls (columns 4-6). Columns (1) and (4) present estimates without

putting any restrictions on physical distance to the coverage boundary and thus replicate

columns (1) and (2) of Table 2. Instead, columns 2 and 5, and columns 3 and 4, consider a

physical distance of 2 and 4 km, respectively. The results remain quantitatively similar to the

main results (columns 1 and 4) after restricting the analysis to villages that are geographically

close to each other. This is not surprising since there is a significant correlation between

geographic and technological distance, i.e., villages close to each other in terms of signal

strength tend to be geographically close.
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5.3.3 Sensitivity of Results to Near-Cuto� Observations

Appendix Figure B8 examines the sensitivity of our main results to observations near the

signal strength cuto�. We start by performing 250 replications where, within each replication,

we randomly drop 5% of the observations within a 1 dBm window of the cuto� and estimate

our model (Equation (1)) using the restricted sample. We then repeat this exercise dropping

10, 15, . . . , 95% of the sample within the 1 dBm window. Appendix Figure B8 plots the

set of 250 estimated RD coe�cients for each of the dropped sample levels (5 to 95%) along

with 95% confidence intervals for each set of estimates. As we drop a larger share of the

sample, the estimates tend to get smaller in magnitude relative to our baseline RD estimate

presented in column (1) of Table 2. However, the estimates are consistently negative and

significantly di�erent from zero even after dropping up to 95% of the observations near to the

cuto�. This suggests that, although observations nearest the cuto� understandably influence

our results to some degree, they are not the sole drivers of the negative e�ect of coverage on

the likelihood of having EVD.

5.3.4 “Walking” to Coverage Boundary

Recall that our analysis estimates intention-to-treat (ITT) e�ects. In principle, individuals

in a non-coverage village can own phones and travel to nearby coverage villages to take

advantage of the technology. If that is the case, then our main estimates would be attenuated

since villages assigned to control (non-coverage) areas would arguably receive some degree of

treatment (coverage).25

For all non-coverage villages, we calculate travel distance to the nearest coverage village.

We rely on the Open Source Routing Machine (OSRM) engine for calculations and Open-

StreetMap as the base map.26 Appendix Table B6 presents the average calculated travel

distances. We were able to estimate travel distances for about 59% of the full sample of

non-coverage villages (7,830 villages). Since the calculated travel distances for 2,816 villages

(36%) came out shorter than the Euclidean distance, we drop these observations for this

25Note that this is a problem only if non-coverage villages that are physically near coverage villages also
happen to fall within the signal strength bandwidth used in the analysis. However, since physical distance
and signal strength across villages are correlated, this can still attenuate our main estimates.

26We use “georoute” package (Weber and Péclat, 2017) for travel distance calculations.
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analysis.27 Overall, we find that the average travel distance from non-coverage villages to the

nearest coverage village is about 26 kilometers (column 1). When we reduce our analysis to

villages closer to our main estimation sample–i.e., within 10dBm of signal strength threshold

(column 3)–the average distance is reduced to about 5.7 kilometers with a standard deviation

of about 10 kilometers.

We cannot directly observe whether individuals in non-coverage villages traveled to nearby

coverage villages. However, we can assess how our baseline RD estimates respond to re-

stricting the comparison sample to non-coverage villages spatially close to coverage villages,

where individuals could have traveled to make a phone call. By restricting the sample to

non-coverage villages within 2, 4, 6, 8, and 10 kilometers of a coverage village, we find no

evidence that that being spatially close to a coverage village significantly attenuates our

estimates (Appendix Table B7).

The fact that we find little evidence of people “walking” to coverage is contextually plau-

sible for several reasons. First, there were significant restrictions on mobility. All a�ected

counties were under full quarantine and strict curfews at the height of the epidemic (IFRC,

2014). Furthermore, villagers informally enforced strict protocols to limit outsiders from en-

tering their villages (Ruble, 2015). Second, mobile phones are a technology that is inherently

dependent on a network e�ect. If other members of the network do not have access, then

there is little incentive for a single member to select into the technology (e.g., incur costs of

purchasing handset, call/data plan, SIM cards, etc.). To explore this possibility, Appendix

Figure B9 presents a histogram using 5 percentage point bins of the share of villages within

a clan that have access to coverage. Clans can serve as a proxy for a village’s network based

on historical links between villages within clans. A key takeaway is that in most clans (about

63%) only a small fraction of villages actually have coverage (less than 5%). This suggests

that individuals within these clans, even if they live near a coverage village, might be less

willing to incur the costs of the technology until a larger mass of villages within their own

clans receives coverage. Lastly, financial uncertainties inherent to epidemics can lead indi-

viduals in non-coverage villages to delay investments in the technology (handset, call/data

27The calculated travel distance can be shorter than the Euclidean distance if a village is relatively far
from, or not directly connected to, the road network used in the calculation. We use the best available road
segments but this leads to an arbitrarily short travel distance for part of the sample. Also note that the travel
distances for 375 non-coverage villages (5%) could not be calculated.
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plans, SIM cards, etc.).

6 Channels of Impact

This section explores several potential channels underlying the relationship between cellphone

coverage and the likelihood of a village being a�ected by the epidemic.

Cellphone access can better connect individuals to preventive care resources (e.g., preven-

tion education, hygiene practices guidance), as well as facilitate access to treatment resources

(e.g., taking sick and dead people, ambulances). We refer to the former as the preventive

care channel and the latter as the treatment care channel.

Cellphone coverage also enables individuals to more e�ciently interact with a potentially

larger core network of friends and family and therefore improve within-network collective

action during emergencies (Hampton et al., 2011, Pew Research Center, 2011, Pew Research

Center, 2019, Blumenstock et al., 2016). For example, individuals living in a cellphone

coverage area can more easily tap into their network if they need care, transfers, or if they

want to gather family for events such as funerals, one of the main factors contributing to

how quickly EVD was transmitted (Alexander et al., 2015, Fallah et al., 2015). As a result,

within-network person-to-person interactions–potentially with sick (or dead) members of the

network–may increase. This is especially concerning during the early stages of the epidemic

when knowledge about transmission was low and government-provided alternatives to in-

network care were scarce. We refer to this mechanism as the network channel.

Last, cellphone coverage can significantly decrease the cost of access to information. This

in turn, can increase exposure to outbreak-related information (e.g., latest recommendations,

preventive measures, treatment resources, etc.). Cellphone coverage also considerably reduces

the cost of access to misinformation potentially damping any benefits from increased access

to quality information.28 We refer to this mechanism as the information channel.

Overall, if cellphones are not perfect substitutes for in-person interactions–especially dur-

ing an emergency, we might expect the network channel to increase the likelihood of EVD
28The spread of misinformation during epidemics is significant (Venkatraman et al., 2016; Ortiz-Mart́ınez

and Jiménez-Arcia, 2017; Carey et al., 2020). The 2014 West Africa Ebola epidemic was no exception (Krishna
and Thompson, 2019). Refer to World Health Organization (2014); Oyeyemi et al. (2014); Onyeonoro et al.
(2015); Allgaier and Svalastog (2015); Pathak et al. (2015); Roberts et al. (2017) for information on how
misinformation can disrupt epidemic response.
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(spread) in cellphone coverage areas, while the preventive and treatment care channels to

decrease it (containment). The e�ect of information on containment or spread will depend

on the type of information provided (quality information versus misinformation).

It is also possible that access to cellphones generated benefits pre-pandemic for individuals

living in coverage areas (e.g. improvements in market e�ciency (Jensen, 2007; Aker, 2010),

literacy (Aker et al., 2012; Aker and Ksoll, 2018), access to mobile banking (Jack et al., 2010;

Jack and Suri, 2011), and risk sharing (Jack and Suri, 2014; Blumenstock et al., 2016)).

This may enable individuals in coverage areas to better cope with the epidemic shock and

thus leading potentially to lower incidence within these areas. Yet, our evidence suggests that

households in villages at the margin of coverage (Appendix Table B1) as well as individuals in

the survey sample (Appendix Table B8) are similar across the signal strength cuto� in terms

of socio-demographic characteristics including wealth, job opportunities, and education. One

exception is the education level in the survey sample which is slightly higher in cellphone

coverage areas. However, results are robust to controlling for this covariate (not shown).

Overall, this suggests that the income channel do not play a major role in reducing EVD

likelihood at the cellphone coverage margin.

6.1 Preliminary Evidence

Recall that we document a negative e�ect of cellphone coverage on the likelihood that a

village reports an EVD case (Tables 2 and 3, column (1)). These results then suggest that

the network channel is either trivial, or that the care channels dominate whatever detrimental

e�ect cellphone access might have –via the network channel– on the spread of the disease.29

We will discussed the information channel separately later.

We use the introduction of a hotline set up during the epidemic as a first step in disen-

tangling the relative importance of the network and care channels. Specifically, the hotline

was a toll-free, nationwide phone alert system established for rapid notification and response,

in collaboration with private cellular telephone companies (Kirsch et al., 2017), thought as a

vital link between the public and the government-provided relief e�orts. The GOL General

Service Agency opened a call center on August 7, 2014 to answer callers’ questions about

29Note that in the presence of a non-trivial network channel, our estimates would have a downward bias.
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EVD, and to enter requests to dispatch ambulances to take sick individuals to treatment

centers, or to dispatch management teams to pick up suspected corpses for safe disposal.30

The success of the care channels likely depends on the existence of this tool (e.g., a hotline)

that can connect individuals to the appropriate agencies (ambulances, Ebola Treatment Units,

NGOs providing educational material, etc.). Therefore, we argue that the preventive and

treatment care channels are relevant after the introduction of the hotline. Consequently, any

e�ect of cellphone coverage during the pre-hotline period is likely attributed to the network

channel, given that alternative, government-provided emergency resources were scarce and

ine�cient at that point in time and individuals were likely relying on their network for relief

during this period. We should then expect the e�ect of cellphone coverage to be much larger

after the introduction of the hotline.

Table 5 provides estimates of Equation (1) separating the analysis by whether the hotline

was in place or not. Note that the e�ect of coverage in the pre-hotline period is indistinguish-

able from zero. After the introduction of the hotline, we document a consistent and robust

drop in the likelihood that a village has an EVD case. It is important to highlight that if the

hotline arbitrarily led to more reporting of cases in coverage villages then the results in Table

5 would underestimate the magnitude of the drop in EVD cases in the post-hotline period.

Appendix Figure B10 confirms these e�ects for a wide set of bandwidths.

Note that the percentage of villages with any EVD case in the period pre-hotline is much

smaller than the percentage of villages with any EVD case in the period post-hotline, so

we cannot fully exclude that the lack of statistically significant results pre-hotline might be

partially explained by the limited variation in the data. Despite this caveat these preliminary

findings point to two main takeaways. First, we find suggestive evidence that the network

channel is less important in the pre-hotline period. Second, we find suggestive evidence of

the care channels likely at play given how EVD responds following the introduction of the

primary tool (hotline) used to implement these channels.

30While the center received queries from nearly 1,000 people within its first two days (Kirsch et al., 2017),
pranksters’ calls were also common especially at the beginning (Baker, 2014). The number of ambulances to
be dispatched to collect suspected cases was also limited compared to the volume of calls received. It took
few months to be fully e�ective.
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6.2 Preventive and Treatment Care Channels

In order to explore the preventive and treatment care channels, we use the novel survey data

described in Ma�oli (2020). However, note that the survey sample is not representative of

the national population, instead it is biased towards respondents with access to a mobile

phone during the time of the survey, i.e. male and educated individuals from urban areas.31

However, once we restrict the analysis to a small bandwidth around the cellphone coverage

cuto� to assess the continuity of a number of individual-level characteristics in the survey,

we find that most di�erences disappear (Appendix Table B8). This gives us confidence to

implement a RD design similar to the one used in our main results.32

Using the survey data, we construct self-reported measures of access to preventive care

and treatment care. Consider that we do not directly observe hotline-specific call behavior.

However, we can use a set of outcomes that capture whether cellphone access allowed com-

munities to be more exposed to either care e�orts. This can happen if, for instance, cellphone

access improves coordination between communities and teams in charge of delivering preven-

tive or treatment care. The survey asked whether during the Ebola crisis anyone from the

government, health workers, NGO, or international organizations came to the community,

and if so, what was the purpose of the visit: explain what EVD was, hold hygiene meetings,

distribute prevention material, do contact tracing, explain how to conduct safe burials, take

sick people or dead bodies. Respondents were also asked directly whether a taskforce came

to their villages as the taskforce was directly set-up to bring information about EVD. In

addition, we asked respondents to report how long it took, on average, for ambulances to get

to their communities, whether the ambulance came very late, or never came, after the hotline

was called for people sick with Ebola symptoms. Finally, we use publicly available data on

the location of CCCs to construct a variable equal to 1 if the village had a CCC within a

10km radius.

Specifically, for the preventive care channel (Table 6), we study whether individuals,

31We refer to Ma�oli (2020) for more details on the methodology used to sample and screen respondents
and to gather data, and for more details on the sample characteristics and how it compares to a nationally
representative sample.

32Note that using a bandwidth of 10 dBm (columns (7)-(9)) there is still a slight di�erence in education
levels and in Kpelle tribe. Given this, we make sure to include these two variables in our set of covariates in
all the analysis implemented using the survey data.
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among those who report any response during the Ebola crisis, report that someone (from

government, health workers, local or international NGOs) came to their village to do contact

tracing (column (1), explain what EVD was (column (2)), to teach EVD-related hygiene

practices (column (3)), whether a community taskforce came to share information on EVD

and how to prevent it (column (4)), or someone came to explain how to conduct safe burials

(column (5)) and brought preventive material such as buckets for chlorine (column 6). For

the treatment care channel (Table 7), we explore indicators for whether someone came to

take sick people or dead bodies (columns (1)-(2)). We further examine if individuals report

that ambulances arrived within 4 hours after being requested through the hotline (column

(3)), and whether a CCC was built within 10 kilometers of the village (column (4)).33 We

replicate the RD design and estimate Equation (1) using each of the information and care

measures as our outcomes of interest.34

Table 6 presents results for the preventive care channel. Respondents in coverage areas

are 10.2 percentage points more likely to report contact tracing (column (1)), 12.3 percentage

points more likely to report that someone came to their village to explain what EVD was

(column (2)), 13.5 percentage points more likely to report that the community taskforce

came to teach preventive measures (column (4)), 9 percentage points more likely to report

that someone came to explain how to conduct safe burials (column (5)), and 7.9 percentage

points more likely to report that someone brought preventive material (column (6)). Instead,

respondents in coverage areas are less likely to report that hygiene meetings were held in their

villages (column (3)). This might be consistent with the fact that in areas with cellphone

coverage simple information on hygiene practices, such as washing or not shaking hands,

can be channeled through mobile phones or radio, instead of using and sending already

limited personnel. On the other hand, even in areas with cellphone coverage, it might still

be necessary to send health workers to explain and show how to conduct safe burials or to

gain the trust of individuals with limited knowledge on EVD. Overall, we find that, while

the signs of the coe�cients are, generally, in the right direction, the results lack statistical

power.

33In the survey data, 4 hours is the median time taken from an ambulance to reach the village of destination
from the dispatch.

34The analysis uses village clustered standard errors given that the sample selection in the survey data was
done at the individual level, and outcomes could be correlated for individuals within the same village.
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Table 7 explores the treatment care channel. We find evidence that survey respondents

in coverage areas are 22.3 percentage points more likely to report that someone came to take

sick people (column (1)). They are also 20.6 percentage points more likely to report that

when they called an ambulance, it arrived on time (column (3)), and significantly more likely

to report that a CCC was placed near their village (column (4)).35 We find a null e�ect on

the likelihood of someone coming to take dead bodies.

Combining the results in Tables 6 and 7, we conclude that the treatment care channel

seems to play a bigger role in explaining the e�ect of coverage on the likelihood of an EVD

case. In the case of the preventive care outcomes, while the signs of the cellphone coverage

e�ect are generally reasonable, the results lack precision. This is further corroborated when

we explore summary indexes of each of the two care channels constructed following Kling

et al. (2007). The index of all preventive care outcomes results in a null coverage e�ect

(Table 6, column (7)), while we find a positive and statistically significant e�ect in the case

of the combined treatment care outcomes (Table 7, column (5)).36 Overall, these results

are quite plausible given our setting. In the midst of a crisis, an additional ambulance or

a CCC near a village is likely more impactful and immediately observed, compared to an

additional information session on prevention. The e�ects of preventive care may take longer

to materialize as they essentially entail a change in health behavior.

6.3 Network Channel

We are unable to directly test whether there is evidence of a network channel as this would

entail observing an individual’s or village’s social network. However, we provide suggestive

evidence that the network channel is trivial in our context, using two di�erent measures of a

village’s network.

First, we use CDR data to define each village’s network using call patterns between the

cell tower servicing that village and other cell towers across Liberia. Broadly speaking,

we consider two villages to be connected if there is significant call tra�c between their

35Appendix Tables B9 and B10 present results that only include controls for topographic characteristics
(elevation and slope). The results are qualitatively similar.

36Note in Appendix Table B9 that, although we find that the share of individuals reporting that they
received EVD information and that a community taskforce visited the village are statistically significant, the
overall information index remains statistically insignificant.
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corresponding cell towers (Appendix Figure B3 shows for example that the core network

for Ganta city likely lies in villages to the North and East of this tower). We then use

Voronoi cells to draw catchment areas around each of the 152 unique Cellcom cell tower

locations.37 For each tower k, we then calculate the number of outgoing calls from that tower

to all other towers across Liberia (including itself). We use several definitions of a network:

(1) all villages within the catchment areas of tower k plus the tower receiving the highest

number of calls from k; (2) all villages within the catchment areas of tower k plus the towers

receiving the top five highest number of calls from k; (3) all villages within the catchment

areas of tower k plus the towers receiving 50% of all calls from k; (4) all villages within the

catchment areas of tower k plus the towers receiving 75% of all calls from k; and (5) all

villages within the catchment areas of tower k plus the towers receiving 90% of all calls from

k.38

Second, we use historic Liberian clans as a way to define a village’s closest social network.

O�cially, clans in Liberia are a third-tier administrative division.39 However, clans also

correspond to historical tribal chiefdoms that were merged into the state, throughout Liberian

history, with chiefs simply assuming the role of agents of the central government (Nyei, 2014).

Therefore, villages within the same clan are more likely to be socially interconnected than

villages within another administrative unit. Based on the Census data (LISGIS, 2008), there

are 631 clans in Liberia with an average of about 38 villages within each clan.

To assess whether the network channel is relevant, we estimate the following empirical

model:

EV Dijt = – + “EV Dj,t≠1 + ”Matchij ◊ EV Dj,t≠1 + ⁄i + ‹t + ‘ijt (4)

where j indexes a network (CDR or clan-based definition). EV Dijt is an indicator for whether

there is an EVD case in village i of network j, in quarter t. EV Dj,t≠1 is an indicator for

37Voronoi cells define the area for which any village within the cell is closest to that cell tower. Refer to
Blumenstock et al. (2016) for earlier work using Voronoi cells to denote the catchment area of cell towers.
Note that being within a tower’s catchment area does not necessarily mean that the location gets coverage.
It simply means that the location is closest to that specific tower.

38As an example, Appendix Figure B11 depicts the networks around the cell tower located in Ganta city,
Nimba county, using these di�erent definitions. Appendix Figure B12 also shows that most outgoing calls go
to relatively few towers. Notice in panel (a) that for a given tower, 10 to 60% of all outgoing calls go to only
one tower (the top called tower). However, only 0 to 5% of outgoing calls go to the 5th ranked tower. This
indicates that the networks are generally small in terms of geographic extent.

39Administrative divisions in Liberia are county, district, clan, and village in this order.
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whether there is at least one EVD case within village i’s network j in the previous quarter.

We define Matchij as a “coverage match” between village i and any of the a�ected villages

in the past quarter within village i’s network, i.e., Matchij equals 1 if village i has cellphone

coverage and at least one of the villages within i’s network j having an EVD case in the past

month also has coverage. ⁄i is a village fixed e�ect. ‹t is a quarter fixed e�ect. The village

fixed e�ects ⁄i account for any time-invariant unobservables that may lead to endogenous

selection of villages into EVD.40

In the presence of a network channel, we should expect the likelihood of an EVD case in

village i in quarter t to decrease or increase if there is a “coverage match” between village

i and a village within i’s network with an EVD case at time t ≠ 1. Thus, we should expect

coe�cient ” to be nonzero if the network channel is non-trivial. We restrict the analysis to

the pre-hotline/early-outbreak period when access to centralized relief e�orts was limited and

individuals likely relied on their network for help. This allows us to better isolate the e�ect

of the network channel from other channels that likely relied on the existence of the hotline.

Table 8 presents the results. First, we find significant evidence of contagion within net-

works: Villages where another village within their network had an EVD case in the previous

quarter are significantly more likely to report an EVD case in the current quarter. Although

the evidence is stronger when using the CDR-defined networks (columns (1)-(5)), there is

still some evidence of contagion within clans (column (6)). Not surprisingly, the magnitude

of the contagion e�ect diminishes as we expand our definition of a network (0.0399 in column

1 versus 0.0310 in column 2, and moving from column 3 to column 5). This is expected if one

considers that the likelihood of an interaction (and thus EVD transmission) is higher within

a tighter definition of a network compared to a wider one. More importantly, we find no

evidence of a network channel: for various definitions of a network, the coe�cient estimates

on the interaction term are small and statistically insignificant. This suggests that although

there is evidence of a contagion e�ect, this e�ect does not significantly increase if two villages

within the network happen to be connected.

40Given data sparsity in terms of EVD cases at the village-month level, we decide to aggregate cases to
the village-quarter level. Note that we cannot estimate a coe�cient for the Matchij variable by itself as it is
collinear to the village fixed e�ect since coverage status does not change within our sample period.
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6.4 Information Channel

We finally test whether access to cellphones lead individuals to have di�erent access to

(mis)information by the end of the epidemic. As part of our survey, we asked individuals

whether they received daily information related to EVD (transmission, prevention, treat-

ment). The survey also recorded each individual’s beliefs on the origin of the outbreak. We

use this latter information to classify individuals as informed if they reported that the epi-

demic originated at the border with Guinea and Sierra Leone or with traders from these areas.

We classify individuals as misinformed if they reported that the origin of the outbreak was

other institutions, distinguishing between government, foreign organizations/people (white

people, UNMIL, foreign NGOs) and others (god, witches, the Fula, Mandingo, or Kissi) (see

Gonzalez and Ma�oli (2021) for more information on the classification).

We find almost no variation in the likelihood of receiving EVD-related information on a

daily basis in our sample: more than 93% of respondents reports receiving information and

this proportion does not change with coverage status.41 Table 9 presents the results on the

degree of knowledge about the origin of the epidemic. We do not find any evidence that

individuals are more likely to be either informed or misinformed in cellphone coverage areas

compared to non cellphone coverage areas.

The fact that we find no meaningful impacts of cellphone coverage on access to EVD-

related information is not surprising in our context. First, access and use of radio in Liberia is

much more ubiquitous than access to cellphone coverage (International Media Support, 2007).

In our survey 80% of individuals report owning a radio, while in a national media survey 94%

of urban dwellers and 91% of rural dwellers reported listening to the radio in the past week

(Montez, 2010). Radio coverage is also widespread with several radio stations broadcasting

at the national level and local community stations covering each county (International Media

Support, 2007). In such a setting, the informational returns of cellphone access are likely

trivial.

Second, recall that during the period of study the predominant cellphone technology

available in Liberia was 2G (i.e., no data/Internet access through the phone). For instance,

starting in 2014 only two towers in Monrovia and one tower near Roberts International
41We do not present any formal RD results on this given the lack of any meaningful variation in receiving

information
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Airport had 3G capabilities (i.e., slow Internet browsing ability) and none had 4G capabilities

(fast Internet, TV and video streaming).42 Thus, individuals at the time did not have access

to video, social media, and other Internet content that can potentially be fertile ground for

misinformation and EVD-related conspiracy theories. Therefore, it is not surprising that

cellphone coverage within our context is not strongly associated with being misinformed.

7 Conclusion

Combining novel data on cellphone tower locations and Ebola cases in Liberia, we show

that cellphone coverage contains the spread of the Ebola Virus Disease (EVD). Specifically,

comparing villages at the margin of the signal strength threshold, we find that having access

to cellphone coverage leads to a 10.8 percentage point reduction in the likelihood that a

village has an EVD case. There is some indication that most of the e�ect is accrued to

the introduction of a cellphone hotline designed to provide information about the disease

and ease the provision of care. Using novel survey data collected after the epidemic, we

assess the relative importance of several channels that may explain the observed relationship

between cellphone coverage and epidemic containment. We provide evidence that the negative

relationship between cellphone coverage and EVD is likely explained by facilitating access

to treatment care, rather than improving access to prevention. This result is quite plausible

as, in the short run, the returns to an additional ambulance or care center in the midst of

a health crisis are likely higher and immediately realized. On the other hand, the e�ects

of prevention may take longer to materialize as they essentially entail a change in health

behavior.

Infectious disease outbreaks are still a major burden to low and middle-income countries

(Holmes et al., 2017), and extreme events, such as health epidemics, are expected to remain

a worldwide threat (United Nations O�ce for Disaster Risk Reduction, 2015). For instance,

we are currently in the midst of a worldwide Coronavirus epidemic and a resurgence of Ebola

in some African countries. Even though they might be unpredictable, the ultimate human

and economic costs could be mitigated through appropriate governmental actions.

42These observations are made by the authors using the GSMA Collins Bartholomew Coverage Explorer
GSMA (2014) which provides the type of coverage (2G,3G,4G) for GSM networks across the world.
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Our findings show how something as simple and ubiquitous as a mobile phone can have

positive externalities on economic development by allowing communities to better access

health care treatment resources in times of crisis. From a policy perspective, it is fundamen-

tal for governmental stakeholders to know the relative e�ectiveness of potential tools, such as

mobile phones, in mitigating the detrimental e�ect of infectious diseases. The results in this

paper can help guide policymakers in choosing more e�cient allocations of limited funds. For

example, in normal times, longer term policies such as investments in the expansion of cell-

phone coverage to remote areas and information campaigns to prompt changes in preventive

health behavior can be fruitful. During times of crisis, policymakers should take advantage of

increased cellphone coverage to implement shorter-run, emergency policies such as hotlines,

and measures that enhance access to treatment care and thus improve the e�ectiveness of

the response. However, further research should explore specific interventions that directly

take advantage of this technology and the e�ects of these tools in the context of other health

epidemics.
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Ortiz-Mart́ınez, Y. and L. F. Jiménez-Arcia (2017). Yellow fever outbreaks and twitter:

Rumors and misinformation. American Journal of Infection Control 45 (7), 816–817.

Oyeyemi, S. O., E. Gabarron, and R. Wynn (2014). Ebola, twitter, and misinformation: a

dangerous combination? Bmj 349, g6178.

Pathak, R., D. R. Poudel, P. Karmacharya, A. Pathak, M. R. Aryal, M. Mahmood, and A. A.

Donato (2015). Youtube as a source of information on ebola virus disease. North American

journal of medical sciences 7 (7), 306.

43



Pew Research Center (2011). Social networking sites and our lives: How people’s trust,

personal relationships, and civic and political involvement are connected to their use of

social networking sites and other technologies. Technical report.

Pew Research Center (2019). In emerging economies, smartphone and social media users

have broader social networks. Technical report.

Porter, J. and P. Yu (2015). Regression discontinuity designs with unknown discontinuity

points: Testing and estimation. Journal of Econometrics 189 (1), 132–147.

Qiu, P. (2011). Jump regression analysis. International Encyclopedia of Statistical Science.

Razally, F. (2015). Mobile Handset Testing: A Report for OFCOM, The UK Communication

Regulator. Technical report.

Roberts, H., B. Seymour, S. A. Fish, E. Robinson, and E. Zuckerman (2017). Digital health

communication and global public influence: a study of the ebola epidemic. Journal of

Health Communication 22 (sup1), 51–58.

Ruble, K. (2015). The village that beat ebola: How one liberian community avoided the

outbreak. Vice News.

Sacks, J. A., E. Zehe, C. Redick, A. Bah, K. Cowger, M. Camara, A. Diallo, A. Nasser,

I. Gigo, R. S. Dhillon, and A. Liua (2015). Introduction of mobile health tools to support

ebola surveillance and contact tracing in guinea. Global Health: Science and Practice 2

(4), 646–659.

Seybold, J. S. (2005). Introduction to RF propagation. John Wiley & Sons.

Shapiro, J. N. and N. B. Weidmann (2015). Is the phone mightier than the sword? cellphones

and insurgent violence in iraq. International Organization, 247–274.

Spokoiny, V. G. (1998). Estimation of a function with discontinuities via local polynomial fit

with an adaptive window choice. The annals of statistics 26 (4), 1356–1378.

United Nations O�ce for Disaster Risk Reduction (2015). The human cost of weather-related

disasters: 1995-2015. Technical report.

44



Venkatraman, A., D. Mukhija, N. Kumar, and S. Nagpal (2016). Zika virus misinformation

on the internet. Travel medicine and infectious disease 14 (4), 421–422.
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Figures and Tables

Figure 1: Irregular Terrain Model, Liberia (2013)

Notes: Cellphone towers’ location obtained from the Liberia Telecommunications Authority (LTA).
Estimates of the ITM model described in Section 3.2. Lower dBm values mean higher signal strength (i.e.,
more coverage).
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(b) ITM with Topography

Figure 2: ITM “Free-space” versus ITM with Topography, Liberia (2013)

Notes: Green dots give the location of towers. Sample along the border of Nimba and Bong counties in
Northern Liberia.
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(a) ITM detailed

(b) Villages within 10dBm Bandwidth of Cuto�

Figure 3: Irregular Terrain Model with Village Sample

Notes: Cellphone towers’ location obtained from the Liberia Telecommunications Authority (LTA).
Estimates of the ITM model described in Section 3.2. Lower dBm values mean higher signal strength (i.e.,
more coverage). Dots indicate the location of villages.
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(c) Local Linear Regression

Figure 4: Regression Discontinuity (RD) Plots for Likelihood of EVD Case

Notes: Dots give EVD likelihood for each bin of signal strength (dBm). Dot size weighted by the number of
observations within each bin. “Signal strength (dBm)” refers to the received power or signal strength,
measured in decibel milliwatts, at the village level. Signal strength is normalized so that negative values
mean no coverage (i.e., not enough signal strength). Bin width is 2 dBm. Window of analysis is -40 to
40dBm (panel a) and -20 to 20 dBm (panels b and c). Solid lines give the predicted values from a regression
of the outcome variable on a third degree polynomial in distance to threshold that uses a triangular kernel
(panels a and b) and a linear trend using a triangular kernel (panel c). Light gray dots and dashed lines give
a representation of the potential outcomes by shifting upwards the graph for positive dBm values to the
point where the trends on each side of zero intersect.
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Table 1: Determinants of Coverage

Dep. variable: Signal strength (dBm)
Full sample Within 20 dBm Within 10 dBm

(1) (2) (3)

Topographic controls
Elevation (m) -0.082*** -0.032** 0.005

(0.024) (0.014) (0.009)
Slope (%) -0.283 1.129*** 0.828***

(0.455) (0.379) (0.256)
Demographic controls

Household size -0.194 0.014 0.118
(0.171) (0.131) (0.087)

Population (log) 0.880*** 0.225 -0.013
(0.166) (0.162) (0.117)

Female (%) -0.367 1.805 1.474
(2.456) (3.029) (1.775)

Married (%) -4.267* -1.750 1.236
(2.170) (1.679) (1.481)

Christian (%) 1.974 3.553** -0.340
(2.593) (1.543) (1.603)

Muslim (%) 1.655 -0.263 -1.721
(3.180) (2.473) (1.982)

African religion (%) 6.102 6.790 -0.579
(5.602) (6.518) (7.128)

Kpelle (%) -0.040 -1.410 -1.190
(1.159) (1.430) (0.946)

Bassa (%) 3.648 1.031 0.497
(2.229) (1.771) (1.163)

Economic controls
Primary education (%) -0.347 0.142 -1.199

(1.665) (1.269) (1.200)
Secondary education (%) 5.027** 2.097* 0.925

(2.091) (1.107) (1.137)
Owns house (%) 1.084 -0.498 -0.403

(1.189) (0.858) (0.568)
House condition: Good (%) 9.476*** 4.908*** 0.858

(2.175) (1.332) (0.941)
Assets ownership (%) 2.350 1.413 0.505

(3.844) (2.828) (1.621)
Distance to Monrovia (km) -0.098** -0.013 -0.020

(0.047) (0.049) (0.024)
Distance to closest city (km) -0.306*** -0.064 -0.035

(0.113) (0.088) (0.049)

Observations 7,014 3,839 1,913
P-value for F-test for joint significance:

Topographic controls 0.00 0.00 0.00
Demographic controls 0.00 0.01 0.35
Economic controls 0.00 0.00 0.79
Demographic and economic controls 0.00 0.00 0.15

Notes: Standard errors clustered at district level. All specification include district fixed e�ects. *, **, and
*** indicate 10, 5, and 1 percent significance, respectively.50



Table 2: E�ect of Coverage on Likelihood of EVD Case

Dep. Variable = {Number of Reported EVD cases > 0}

Baseline Controls Topography
Poly

Polynomial
RD

Kernel
choice

Probit
model

(1) (2) (3) (4) (5) (6)

Coverage -0.108** -0.100** -0.110** -0.096*** -0.106*** -0.429**
(0.048) (0.042) (0.048) (0.035) (0.041) (0.206)

Mean outside coverage 0.09 0.09 0.09 0.06 0.09 0.06
Bandwidth (dBm) 8.99 8.17 9.07 50.00 8.21 8.99
Observations 1547 1547 1741 7014 1547 1547
Districts 83 83 84 115 83 83
Marginal E�ect - - - - - -0.070

Notes: Columns (1) and (2) present estimates of — using a local linear regression specification of Equation (1). All
specification include controls for elevation and slope. Column (2) adds controls for average household size, population,
female, married, Christian, Muslim, African religion, Kpelle, Bassa, primary education, literacy, house ownership
and quality, an index of asset ownership, distance to Monrovia, and distance to closest main city. Optimal bandwidth
chosen as in Calonico et al. (2014). Column (3) uses topography polynomial: h(Gi) = fl1elevi + fl2elev2

i + fl3slopei +
fl4elevi ◊ slopei + fl5elev2

i ◊ slopei + fl6slope2
i + fl7elevi ◊ slope2

i + fl8elev2
i ◊ slope2

i . It also includes distance to tower
as additional control. Column (4) uses a wider bandwidth of 50 dBm and a third degree polynomial specification for
f(R̃i). Column (5) uses a rectangular kernel. Column (6) estimates a probit specification of Equation (1). Optimal
bandwidths chosen as in Calonico et al. (2014) except for column (4) which uses a fixed, wider bandwidth. Standard
errors clustered at district level. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.
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Table 3: E�ect of Coverage on Likelihood of EVD, by Past EVD Exposure

Dep. Variable = {Number of Reported EVD cases > 0}

(1) (2) (3) (4) (5)

Coveragei -0.0069** -0.0059** 0.0005 0.0013
(0.003) (0.002) (0.002) (0.002)

EVDj(i),t≠1 0.0056** 0.0167** 0.0159**
(0.002) (0.007) (0.007)

Coveragei ◊ EVDj(i),t≠1 -0.0191*** -0.0191***
(0.006) (0.006)

Mean outside coverage 0.007 0.007 0.006 0.007 0.007
Observations 33079 33079 31338 31338 31338
Bandwidth (dBm) 9.00 9.00 9.00 9.00 9.00
Districts 84 84 84 84 84
District FE Yes Yes Yes Yes Yes
Controls No Yes Yes No Yes

Notes: Coveragei equal 1 if village i has coverage. EVDj(i),t≠1 equals 1 if there is one or more EVD
cases in at least one village within village i’s district in the past month. Standard errors clustered at
district level. Columns (2), (3), and (5) include controls for average household size, population, female,
married, Christian, Muslim, African religion, Kpelle, Bassa, primary education, literacy, house ownership
and quality, an index of asset ownership, distance to Monrovia, and distance to closest main city. *, **,
and *** indicate 10, 5, and 1 percent significance, respectively.
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Table 4: Controlling for “Free-Space” Signal Strength and Falsification Tests

Dep. Variable = {Number of Reported EVD cases > 0}

Controlling for Free-space signal strength Falsification tests
(1) (2) (3) (4) (5) (6)

Coverage -0.087** -0.084* -0.077** -0.081**
(0.038) (0.041) (0.037) (0.040)

Free-space coverage -0.013 -0.044* -0.045* -0.003
(0.020) (0.024) (0.026) (0.040)

Free-space signal strength 0.000 -0.000 -0.000 0.002
(0.001) (0.001) (0.001) (0.006)

Free-space coverage ◊ Free-space signal strength 0.003 0.003 -0.008
(0.002) (0.002) (0.007)

Coverage (2015) 0.084
(0.112)

Signal strength (2015) 0.001
(0.002)

Mean outside coverage 0.093 0.101 0.094 0.093 0.094 0.057
Bandwidth (dBm) 8.35 7.99 9.14 8.93 9.36 -
Observations 1547 1352 1720 1528 1540 383
Districts 83 81 84 83 84 53
Controls Yes Yes Yes Yes Yes Yes
Topography Polynomial No No No Yes No No

Notes: Columns (1)-(5) present estimates using a local linear regression specification of Equation (1). Column (1) adds controls for
coverage under free-space. Column (2) adds controls for free-space signal strength. Columns (3) and (4) add the full interaction of
free-space coverage and strength. Column (5) estimates the local linear regression specification of Equation (1) using free-space coverage.
Column (6) estimates the e�ect of coverage in 2015 excluding districts that had coverage in 2013, including district fixed-e�ects. All
specifications include controls for elevation, slope, average household size, population, female, married, Christian, Muslim, African
religion, Kpelle, Bassa, primary education, literacy, house ownership and quality, an index of asset ownership, distance to Monrovia, and
distance to closest main city. Optimal bandwidth in Columns (1)-(5) chosen as in Calonico et al. (2014). Column (4) adds topography
polynomial: h(Gi) = fl1elevi + fl2elev2

i + fl3slopei + fl4elevi ◊ slopei + fl5elev2
i ◊ slopei + fl6slope2

i + fl7elevi ◊ slope2
i + fl8elev2

i ◊ slope2
i .

It also includes distance to tower as additional control. Standard errors clustered at district level. *, **, and *** indicate 10, 5, and 1
percent significance, respectively.
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Table 5: E�ect of Coverage on Likelihood of EVD: Before and After Hotline Introduction

Dep. Variable = {Number of Reported EVD cases > 0}

Pre-Hotline Post-Hotline

Baseline Controls Topography
Poly

Poly
RD

Kernel
choice

Probit
model Baseline Controls Topography

Poly
Poly
RD

Kernel
choice

Probit
model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Coverage -0.01 -0.00 -0.01 -0.00 -0.01 -0.01 -0.11** -0.10*** -0.11** -0.10*** -0.09*** -0.44***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.44) (0.04) (0.04) (0.04) (0.03) (0.03) (0.15)

Mean outside coverage 0.010 0.012 0.012 0.012 0.010 0.010 0.087 0.088 0.087 0.056 0.087 0.054
Bandwidth (dBm) 10.33 11.23 11.21 50.00 8.81 . 9.00 8.31 9.14 50.00 9.40 .
Observations 1913 2139 2139 7014 1547 1547 1741 1547 1741 7014 1741 1741
Districts 86 87 87 115 83 83 84 83 84 115 84 84
Marginal E�ect -0.000 -0.069

Notes: Columns (1), (2), (7), and (8) present estimates of — using a local linear regression specification of Equation (1). All specification include controls for elevation and
slope. Columns (2) and (8) add controls for average household size, population, female, married, Christian, Muslim, African religion, Kpelle, Bassa, primary education,
literacy, house ownership and quality, an index of asset ownership, distance to Monrovia, and distance to closest main city. Columns (3) and (9) use topography polynomial:
h(Gi) = fl1elevi + fl2elev2

i + fl3slopei + fl4elevi ◊ slopei + fl5elev2
i ◊ slopei + fl6slope2

i + fl7elevi ◊ slope2
i + fl8elev2

i ◊ slope2
i . It also includes distance to tower as additional

control. Columns (4) and (10) use a wider bandwidth of 50 dBm and a third degree polynomial specification for f(R̃i). Columns (5) and (11) use a rectangular kernel.
Columns (6) and (12) use a probit specification of Equation (1). Optimal bandwidths chosen as in Calonico et al. (2014) except for columns (4) and (10) which use a fixed,
wider bandwidth. Standard errors clustered at district level in all specifications. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.
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Table 6: E�ect of Coverage on Preventive Care

Contact
tracing

Explain
EVD

Hygiene
meetings

Bring
info

(Task-
force)

Explain
burials

Prevention
material

Preventive
care

index

(1) (2) (3) (4) (5) (6) (7)

Coverage 0.102 0.123 -0.173 0.135 0.090 0.079 0.049
(0.084) (0.086) (0.110) (0.088) (0.092) (0.111) (0.131)

Mean outside coverage 0.200 0.897 0.465 0.282 0.174 0.779 0.047
Bandwidth (dBm) 8.80 14.89 17.12 8.94 11.77 16.46 15.17
Observations 268 434 551 296 328 518 447
Villages 86 166 203 86 122 189 175

Notes: Results present estimates of — using a local linear regression specification of Equation (1) on preventive
care variables. The observations are respondents in the survey sample (2016). Optimal bandwidth chosen as
in Calonico et al. (2014). The information index is constructed following Kling et al. (2007). All specifications
include controls for elevation, slope, sex, age, urban, secondary education level, and categories for Kpelle, Bassa,
and other tribes. Standard errors clustered at the village level. *, **, and *** indicate 10, 5, and 1 percent
significance, respectively.

Table 7: E�ect of Coverage on Treatment Care

Take
sick

Take
dead

Ambulance
on-time

CCCs
within
10km

Treatment
care

index
(1) (2) (3) (4) (5)

Coverage 0.223*** -0.006 0.206*** 0.416* 0.340**
(0.036) (0.044) (0.076) (0.235) (0.146)

Mean outside coverage 0.123 0.070 0.835 0.455 -0.036
Bandwidth (dBm) 8.13 11.17 12.35 9.40 8.00
Observations 268 328 385 317 268
Villages 86 122 139 100 86

Notes: Results present estimates of — using a local linear regression specification of
Equation (1) on treatment care variables. The observations are respondents in the survey
sample (2016). Optimal bandwidth chosen as in Calonico et al. (2014). The care index is
constructed following Kling et al. (2007). All specifications include controls for elevation,
slope, sex, age, urban, and education level, and categories for Kpelle, Bassa, and other
tribes. Standard errors clustered at the village level. *, **, and *** indicate 10, 5, and 1
percent significance, respectively.
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Table 8: Likelihood of EVD within the Network

Dep. Variable = {Number of Reported EVD cases > 0}

Network: Call Detail Records (CDR)
Top Top 5 50% call 75% call 90% call Network:

tower towers share share share Clan
(1) (2) (3) (4) (5) (6)

EVDj,t≠1 0.0399*** 0.0310*** 0.0406*** 0.0179** 0.0095** 0.0338
(0.007) (0.009) (0.007) (0.008) (0.004) (0.028)

Matchij ◊ EVDj,t≠1 0.0061 0.0064 0.0109 0.0112 0.0085 -0.0030
(0.033) (0.024) (0.036) (0.016) (0.006) (0.045)

Observations 18864 18864 18864 18864 18864 19372
Villages 9432 9432 9432 9432 9432 9686
Clusters 96 96 96 96 96 631
Village FE Yes Yes Yes Yes Yes Yes
Quarter FE Yes Yes Yes Yes Yes Yes
Controls No No No No No No

Notes: Dependent variable is a dummy indicator for whether there is at least one EVD case in village
i in quarter t. EVDj,t≠1 equals 1 if there is at least one EVD case within village i’s network j(i) in the
past quarter. Matchij equals 1 if there is a cellphone coverage match between village i and any of the
a�ected villages in the past quarter within village i’s network (i.e., village i has coverage and at least
one EVD-a�ected village within i’s network also has coverage). Columns 1-5 define village i’s network
using call detail records (CDR) data between village i’s cell tower and other cell towers across Liberia.
Columns 1 and 2 define i’s network as all villages within the service area of the top and top-5 towers
receiving calls originating from i’s tower. Columns 3-5 define i’s network as all villages within the service
area of cell towers receiving 50%, 75%, and 90%, respectively, of all calls originating from i’s tower. CDR
data obtained from Cellcom Liberia. Column 6 defines i’s network as all villages within the same clan
as village i. Standard errors clustered at the network level. All specifications include village and quarter
fixed e�ects. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.

Table 9: E�ect of Coverage on (Mis)information

Informed Misinformed Gov Foreign Other
(1) (2) (3) (4) (5)

Coverage 0.102 -0.097 -0.027 0.011 -0.088
(0.124) (0.107) (0.089) (0.012) (0.118)

Mean outside coverage 0.415 0.326 0.170 0.012 0.143
Bandwidth (dBm) 13.02 10.94 13.50 10.47 14.34
Observations 445 331 445 331 477
Villages 146 111 146 111 166

Notes: Results present estimates of — using a local linear regression specification of
Equation (1) on information and misinformation. The observations are respondents in
the survey sample (2016). Optimal bandwidth chosen as in Calonico et al. (2014). All
specifications include controls for elevation, slope, sex, age, urban, and education level,
and categories for Kpelle, Bassa, and other tribes. Standard errors clustered at the village
level. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.
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Appendix A Estimation of the Irregular Terrain Model (ITM)

The estimation of cellphone coverage involved two major steps. First, we estimated the

Irregular Terrain Model (ITM) to obtain signal strength on the ground for each individual

tower using the CloudRF API (available at: https://api.cloudrf.com). Table A1 lays

out the specific inputs used in the estimation of the ITM. For each tower, the output from

the cloudRF API is an ArcGIS-readable polygon shapefile containing as attribute the signal

received on the ground for di�erent bands of the polygon file. For each tower, the estimated

signal strength ranged between -50 and -140 dBm. We clarify that the cloudRF API actually

gives the absolute value of the signal strength, thus technically the output ranged between

50 and 140.

Second, the polygon shapefiles obtained from the ITM were processed in Arcmap 10.7

using the ArcPy package. The processing involved three steps. First, we projected the

shapefiles using the Project tool to an appropriate coordinate system (UTM 29N) for analysis.

Second, we converted the shapefiles to raster files with cell size of 50X50 meters using the

Polygon to Raster tool. Third, we used the Mosaic to Raster tool to combine the raster files

for each tower into one single raster file for all of Liberia (depicted in Figure 1). For raster

cells where there was overlap in coverage between several towers, we used the “Minimum” rule

to assign the signal strength to that particular cell. This assigns the highest signal strength

available to that cell since the lower the estimated absolute value dBm, the higher the signal

strength.
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Table A1: Main Variables and Parameters of Irregular Terrain Model (ITM)

Model variables Description Parameters

Transmitter (cell tower) characteristics
Transmitter power (txw) Transmission power (Watts) 5
Frequency (frq) Radio wave frequency (MHz) 900
Latitude (lat) Latitude of cell tower e.g., 6.27069
Longitude (lon) Longitude of cell tower e.g., -10.73158
Transmitter height (txh) Height of cell tower above ground (meters) 30
Radius (rad) Maximum coverage radius (kilometers) 20
Antenna gain (txg) Transmitter antenna gain (dBi) 2.14
Antenna (ant) Antenna type 39 (omnidirectional)
Azimuth (azi) Antenna azimuth angle (degrees) 0¶

Antenna tilt (tlt) Antenna vertical angle (degrees) 0¶

Antenna polarization (pol) Vertical/Horizontal v (vertical)

Receiver (handheld device) characteristics
Receiver sensitivity (rxs) Minimum power received threshold (dBm) -140
Receiver height (rxh) Receiver height above ground (meters) 1.5
Antenna gain (rxg) Receiver antenna gain (dBi) 2.14

Geographic characteristics
Resolution (res) Topographic model 30 (DSM30)
Clutter (clh) Consider clutter (trees, buildings, etc.) Yes
Climate (cli) 1: Equatorial 3

2: Continental Subtropical
3: Maritime Subtropical
4: Desert
5: Continental Temperate
6: Maritime Temperate, over land
7: Maritime Temperate, over sea

Terrain conductivity (ter) Salt water : 80 15 (farmland)
Fresh water : 80
Good ground : 25
Marshy land : 12
Farmland, forest : 15
Average ground : 15
Mountain, sand : 13
City : 5
Poor ground : 4

Other inputs
Model (pm) Propagation model 1 (ITM)
Model subtype (pe) Conservative, Average, Optimistic 2 (Average)
Measure (out) Measurement units 2 (dBm)
Engine (eng) API Engine 2 (SLEIPNIR)
Knife edge di�raction (ked) Yes(=1) or No(=0) 0
Color scheme (col) Color scheme 9 (Grayscale/GIS)

Notes: Refer to CloudRF API (available at: https://api.cloudrf.com for more information. CloudRF API code
within parenthesis in “Model variables” column. 58
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Appendix B Additional Figures and Tables

(a) All Towers

(b) By Network Operator

Figure B1: Cellphone Towers, Liberia (2013)

Notes: Cell towers’ location obtained from the Liberia Telecommunications Authority (LTA).
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Figure B2: Predicted Coverage versus Reported Cellphone Ownership

Notes: Correlation between the proportion of villages within a district that are estimated to have cellphone
coverage by the ITM (X axis) and the proportion of individuals reporting owning a cellphone in the
Demographic and Health Survey (DHS, 2013) (Y axis).
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(a) All calls (June 15, 2015)
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(b) Sample calls and called towers

Figure B3: Example of Call Detail Records

Notes: Panel a: All calls for the day of June 15, 2013. Panel b: Calls originating from cell tower in Ganta
city (highlighted in blue) to all other towers in Liberia (black dots) in June and July of 2015. Color gradient
represents the number of calls originating from Ganta city to the indicated tower. Darker shades mean a
larger number of calls going to the indicated tower. Polygons indicate the service areas for each tower.
Service areas calculated using a Voronoi/Thiessen polygon.
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(a) Histogram (b) Test for manipulation

Figure B4: Histogram and Test for Manipulation of Forcing Variable

Notes: “Signal strength (dBm)” refers to the received power or signal strength, measured in decibel
milliwatts, at the village level. Signal strength is normalized so that negative values mean no coverage (i.e.,
not enough signal strength). Histogram bar width is 2 dBm. Panel (b) uses the test for breaks in the density
of the forcing variable proposed in Cattaneo et al. (2019) and uses the code discussed in Cattaneo et al.
(2018). P-value for test presented in figure caption.
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Elevation (m) Slope (%)

Distance to Monrovia (km) Distance to closest city (km)

Figure B5: Regression Discontinuity Plots, Covariates

Notes: Solid dots give the average of the specified variable for each bin of signal strength (dBm). “Signal
strength (dBm)” refers to the received power or signal strength, measured in decibel milliwatts, at the
village level. Signal strength is normalized so that negative values mean no coverage (i.e., not enough signal
strength). The solid line trends give the predicted values from a regression of the outcome variable on a
fourth degree polynomial in distance to the boundary that uses a triangular kernel.
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Figure B6: Di�erence in Means (RD Sample Villages vs Other Villages)

Notes: All variables are standardized for convenience. For each variable, dots give the di�erence in means
between the specified group and the RD estimation sample. RD estimation sample is the sample within the
Calonico et al. (2014) estimated bandwidth of analysis: [-8.9dBm, 8.9dBm]. Red dots refer to the sample
below -8.9 dBm (less coverage than RD estimation sample). Blue dots refer to the sample above 8.9 dBm
(more coverage than RD estimation sample). Lines around the dots give the 95% confidence interval for the
di�erence in means. Dashed horizontal lines divide variables by topographic, demographic, and economic
characteristics.
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Figure B7: Bandwidth Sensitivity

Notes: Solid dots indicate the RD estimate from Equation (1) using the specified bandwidth. Range spikes
indicate 95% and 90% confidence intervals of the estimates.
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Figure B8: Sensitivity of Results to Observations near Treatment Cuto�

Notes: Each dot gives the estimated RD coe�cient from 250 replications that estimate Equation (1) after
randomly dropping the specified percent of observations within a 1 dBm window around the cuto�. White
vertical lines indicate the 2.5th and 97.5th percentile of the estimated 250 coe�cients within each percent
dropped category. Blue dashed line gives the RD coe�cient estimate from estimating Equation (1) without
any restrictions (i.e., dropping 0% of observations near cuto�).
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Figure B9: Histogram of the share of villages within a clan that have coverage

(a) Pre-hotline (b) Post-hotline

Figure B10: Bandwidth Sensitivity, by Hotline Timing

Notes: Solid dots indicate the RD estimates from Equation (1) using the specified bandwidth. Range spikes
indicate 95% and 90% confidence intervals of the estimates.
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(a) Top tower
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(b) Top 5 towers
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(c) Top 50% calls
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(d) Top 75% calls
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(e) Top 90% calls

Figure B11: Example of Network for Ganta City, Di�erent Definitions

Notes: Networks for Ganta city tower, di�erent definitions. Villages that are part of the network according
to the specified definition are highlighted. Villages outside the network are gray. Given tower k, panels a and
b define a network as all villages within the service area of tower k and the top and top-5 towers receiving
calls originating from k. Panels c-e define a network as all villages within the service area of tower k and the
towers receiving 50%, 75%, and 90%, respectively, of all calls originating from k. CDR data obtained from
Cellcom Liberia.
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(a) Share of calls per tower (top-10 towers) (b) Cumulative share of calls per tower (top-10 towers)

(c) Share of calls per tower (d) Cumulative share of calls per tower

Figure B12: Share and Cumulative Share of Calls per Tower

Notes: Panels (a) and (c) depict for all towers in the sample, the share of all outgoing calls by the rank of
the tower called. For example, the share of outgoing calls going to the top-ranked tower (most called tower)
ranged between 10 to slightly above 60% (panel a). Panels (b) and (d) depict the cumulative share of
outgoing calls.
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Table B1: Summary Statistics by Coverage Status (Villages)

Full sample Within 20 dBm Within 10 dBm
Inside Outside S.E. Inside Outside S.E. Inside Outside S.E.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Topographic characteristics:
Elevation (m) 122.8 165.3 (14.69)*** 123.5 124.6 (12.26) 122.3 117.7 (11.69)
Slope (%) 0.68 0.89 (0.05)*** 0.68 0.64 (0.04) 0.67 0.62 (0.04)

Demographic characteristics:
Household size 4.68 5.02 (0.10)*** 4.66 4.58 (0.07) 4.64 4.52 (0.08)
Population (log) 4.38 4.32 (0.07) 4.25 4.17 (0.06) 4.16 4.19 (0.08)
Female (%) 0.48 0.48 (0.00) 0.48 0.48 (0.00) 0.48 0.48 (0.01)
Married (%) 0.37 0.38 (0.01) 0.37 0.39 (0.01)** 0.38 0.39 (0.01)
Christian (%) 0.85 0.87 (0.03) 0.85 0.85 (0.02) 0.83 0.85 (0.02)
Muslim (%) 0.11 0.10 (0.03) 0.11 0.13 (0.02) 0.13 0.13 (0.02)
African religion (%) 0.01 0.01 (0.00) 0.01 0.00 (0.00) 0.00 0.00 (0.00)
Kpelle (%) 0.31 0.28 (0.04) 0.31 0.33 (0.03) 0.31 0.36 (0.03)*
Bassa (%) 0.25 0.24 (0.06) 0.26 0.24 (0.04) 0.26 0.21 (0.04)
Other ethnic group (%) 0.43 0.48 (0.05) 0.42 0.42 (0.03) 0.42 0.42 (0.03)

Economic characteristics:
Primary education (%) 0.28 0.25 (0.01)** 0.28 0.26 (0.01)** 0.26 0.26 (0.01)
Secondary education (%) 0.38 0.33 (0.02)*** 0.37 0.34 (0.01)** 0.35 0.35 (0.01)
Owns house (%) 0.80 0.87 (0.02)*** 0.81 0.84 (0.01)*** 0.82 0.82 (0.01)
House condition: Good (%) 0.26 0.14 (0.02)*** 0.25 0.20 (0.01)*** 0.22 0.21 (0.01)
Asset ownership (%) 0.13 0.11 (0.01)*** 0.13 0.12 (0.01)* 0.12 0.12 (0.01)
Distance to Monrovia (km) 112.3 166.9 (12.51)*** 111.1 126.1 (10.08) 111.3 119.9 (9.11)
Distance to closest city (km) 19.82 33.72 (2.15)*** 19.67 22.52 (1.36)** 19.58 21.06 (1.24)

Observations 1,856 7,830 1,698 2,141 1,112 801
Notes: Columns (1), (2), (4), (5), (7) and (8) give the means of the corresponding variable. Columns (3), (6) and (9) give the clustered standard

errors for the di�erence in means in parenthesis. Clustered standard errors at the district level. *, **, and *** indicate 10, 5, and 1 percent
significance, respectively.
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Table B2: Summary Statistics, RD Sample Villages versus Other Villages

(1) (2) (3) (4) (5)
Within Bandwith Below Above P-value P-value

[≠8.9dBm, 8.9dBm] (< ≠8.9dBm) (> 8.9dBm) ((1)-(2)) ((1)-(3))

Topographic characteristics:
Elevation (m) 120.10 169.42 123.65 0.000 0.775

(119.46) (131.93) (137.61)
Slope (%) 0.66 0.91 0.69 0.000 0.413

(0.62) (0.94) (0.67)
Demographic characteristics:

Household size 4.62 5.06 4.70 0.000 0.422
(1.52) (1.85) (1.59)

Population (log) 4.18 4.33 4.58 0.061 0.000
(1.40) (1.41) (1.77)

Female (%) 0.48 0.48 0.49 1.000 0.593
(0.10) (0.09) (0.09)

Married (%) 0.39 0.38 0.36 0.133 0.000
(0.12) (0.11) (0.11)

Christian (%) 0.83 0.88 0.88 0.258 0.067
(0.30) (0.25) (0.24)

Muslim (%) 0.13 0.10 0.09 0.302 0.061
(0.29) (0.24) (0.22)

African religion (%) 0.00 0.01 0.01 0.579 0.530
(0.03) (0.03) (0.03)

Kpelle (%) 0.34 0.27 0.31 0.170 0.475
(0.40) (0.39) (0.36)

Bassa (%) 0.24 0.24 0.24 0.885 0.819
(0.38) (0.40) (0.37)

Other ethnic group (%) 0.42 0.48 0.44 0.264 0.627
(0.42) (0.45) (0.40)

Primary education (%) 0.26 0.25 0.30 0.556 0.000
(0.17) (0.18) (0.16)

Secondary education (%) 0.35 0.33 0.42 0.330 0.000
(0.21) (0.21) (0.22)

Economic characteristics:
Owns house (%) 0.82 0.87 0.78 0.000 0.056

(0.27) (0.22) (0.29)
House condition: Good (%) 0.21 0.14 0.31 0.000 0.000

(0.21) (0.17) (0.27)
Asset ownership (%) 0.12 0.11 0.15 0.213 0.000

(0.09) (0.09) (0.11)
Distance to Monrovia (km) 114.47 171.30 111.58 0.000 0.767

(89.33) (102.05) (103.47)
Distance to closest city (km) 20.41 34.84 19.47 0.000 0.540

(15.61) (20.67) (16.42)

Observations 1547 7207 932

Notes: Columns (1), (2), (3) give the means and standard deviations of the corresponding variable. Columns
(4) and (5) give the p-value for the di�erence in means between column 1 and 2 (column 4) and columns 1
and 3 (column 5). Clustered standard errors at the district level. *, **, and *** indicate 10, 5, and 1 percent
significance, respectively.
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Table B3: E�ect of Coverage on Likelihood of EVD Suspected Death

Dep. Variable = {Number of Suspected EVD Deaths > 0}

Baseline Controls Topography
Poly

Polynomial
RD

Kernel
choice

Probit
model

(1) (2) (3) (4) (5) (6)

Coverage -0.069* -0.074** -0.069* -0.058 -0.067* -0.243*
(0.037) (0.030) (0.036) (0.036) (0.035) (0.129)

Mean outside coverage 0.111 0.111 0.109 0.091 0.106 0.087
Bandwidth (dBm) 10.64 10.26 11.10 50.00 9.02 .
Observations 1913 1913 2139 7014 1741 1741
Districts 86 86 87 115 84 84
Marginal E�ect -0.048

Notes: Columns (1) and (2) present estimates of — using a local linear regression specification of Equation (1).
All specification include controls for elevation and slope. Column (2) adds controls for average household size,
population, female, married, Christian, Muslim, African religion, Kpelle, Bassa, primary education, literacy, house
ownership and quality, an index of asset ownership, distance to Monrovia, and distance to closest main city. Optimal
bandwidth chosen as in Calonico et al. (2014). Column (3) uses topography polynomial: h(Gi) = fl1elevi +
fl2elev2

i + fl3slopei + fl4elevi ◊ slopei + fl5elev2
i ◊ slopei + fl6slope2

i + fl7elevi ◊ slope2
i + fl8elev2

i ◊ slope2
i . It also

includes distance to tower as additional control. Column (4) uses a wider bandwidth of 50 dBm and a third
degree polynomial specification for f(R̃i). Column (5) uses a rectangular kernel. Column (6) estimates a probit
specification of Equation (1). Optimal bandwidths chosen as in Calonico et al. (2014) except for column (4) which
uses a fixed, wider bandwidth. Standard errors clustered at district level. *, **, and *** indicate 10, 5, and 1
percent significance, respectively.
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Table B4: E�ect of Coverage on Number of Months A�ected by EVD

Number of Months A�ected by EVD

Baseline Controls Topography
Poly

Polynomial
RD

Kernel
choice

(1) (2) (3) (4) (5)

Coverage -0.209** -0.188** -0.220** -0.158** -0.199**
(0.096) (0.084) (0.099) (0.074) (0.087)

Mean outside coverage 0.128 0.128 0.128 0.090 0.142
Bandwidth (dBm) 8.72 8.97 8.59 50.00 7.10
Observations 1547 1547 1547 7014 1369
Districts 83 83 83 115 81

Notes: Columns (1) and (2) present estimates of — using a local linear regression specification of
Equation (1). All specification include controls for elevation and slope. Column (2) adds controls
for average household size, population, female, married, Christian, Muslim, African religion, Kpelle,
Bassa, primary education, literacy, house ownership and quality, an index of asset ownership, distance
to Monrovia, and distance to closest main city. Optimal bandwidth chosen as in Calonico et al. (2014).
Column (3) uses topography polynomial: h(Gi) = fl1elevi + fl2elev2

i + fl3slopei + fl4elevi ◊ slopei +
fl5elev2

i ◊ slopei + fl6slope2
i + fl7elevi ◊ slope2

i + fl8elev2
i ◊ slope2

i . t also includes distance to tower
as additional control. Column (4) uses a wider bandwidth of 50 dBm and a third degree polynomial
specification for f(R̃i). Column (5) uses a rectangular kernel. Optimal bandwidths chosen as in
Calonico et al. (2014) except for column (4) which uses a fixed, wider bandwidth. Standard errors
clustered at district level. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.

Table B5: E�ect of Coverage on Likelihood of EVD Case, By Distance to Coverage Boundary

Geographic Distance to Coverage Boundary
No re-

striction
Within

2km
Within

4km
No re-

striction
Within

2km
Within

4km
(1) (2) (3) (4) (5) (6)

Coverage -0.108** -0.110** -0.107** -0.101** -0.105** -0.100**
(0.048) (0.049) (0.049) (0.042) (0.043) (0.042)

Mean outside coverage 0.093 0.094 0.093 0.093 0.093 0.093
Bandwidth (dBm) 8.99 9.04 8.96 8.13 8.15 8.07
Observations 1547 1729 1542 1547 1535 1542
Districts 83 84 83 83 83 83
Controls No No No Yes Yes Yes

Notes: Dependent variable equal 1 if there is at least one EVD case reported within the village. Columns (1)-(3)
present estimates of — using a local linear regression specification of Equation (1). All specification include controls
for elevation and slope. Columns (4)-(6) add controls for average household size, population, female, married,
Christian, Muslim, African religion, Kpelle, Bassa, primary education, literacy, house ownership and quality, an
index of asset ownership, distance to Monrovia, and distance to closest main city. Standard errors clustered at
district level. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.
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Table B6: Average Travel Distance to Closest Village with Coverage

No dBm
restrictions

Within 20
dBm

Within 10
dBm

(1) (2) (3)

Mean (km) 25.94 6.73 5.69
Std. Dev. 45.69 10.45 10.26
Observations 4,639 1,060 367
Share of non-coverage sample 0.59 0.50 0.46

Notes: Stata program “georoute” (Weber and Péclat, 2017) used for travel distance
calculations. Program uses Open Source Routing Machine (OSRM) engine for calculations
and OpenStreetMap as base map. Villages with calculated travel distance shorter than
Euclidean distance dropped from analysis. Calculated travel distance can be shorter than
Euclidean distance if village is far from road network used in the calculation and program
uses segment of road available. Share of non-coverage sample refers to the share of non-
coverage villages for which a travel distance was calculated.

Table B7: E�ect of Coverage on Likelihood of EVD Case, Control
Villages close to Coverage

Closest coverage village within:
2km 4km 6km 8km 10km
(1) (2) (3) (4) (5)

Coverage -0.114* -0.098* -0.106** -0.103** -0.104**
(0.060) (0.055) (0.052) (0.049) (0.048)

Obs 1515 1612 1651 1677 1695
Bandwidth 9.082 9.216 9.297 9.348 9.507

Notes: Estimates of — using a local linear regression specification of Equation
(1). All specifications include controls for elevation and slope. Optimal band-
width chosen as in Calonico et al. (2014). Standard errors clustered at district
level. *, **, and *** indicate 10, 5, and 1 percent significance, respectively.
Stata program “georoute” (Weber and Péclat, 2017) used for travel distance
calculations. Program uses Open Source Routing Machine (OSRM) engine
for calculations and OpenStreetMap as base map. Villages with calculated
travel distance shorter than Euclidean distance dropped from analysis. Cal-
culated travel distance can be shorter than Euclidean distance if village is far
from road network used in the calculation and program uses segment of road
available.
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Table B8: Summary Statistics by Coverage Status (Survey Sample)

Full sample Within 20 dBm Within 10 dBm
Inside Outside S.E. Inside Outside S.E. Inside Outside S.E.

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Topographic characteristics:
Elevation (m) 191.1 227.2 (42.99) 189.8 157.9 (50.68) 195.8 124.7 (77.05)
Slope (%) 0.70 0.88 (0.17) 0.61 0.74 (0.11) 0.65 0.62 (0.13)

Demographic characteristics:
Household size 4.79 4.98 (0.19) 4.64 4.75 (0.32) 4.40 4.99 (0.52)
Christian 0.86 0.87 (0.02) 0.86 0.83 (0.04) 0.87 0.83 (0.06)
Muslim 0.10 0.09 (0.02) 0.10 0.12 (0.04) 0.07 0.13 (0.05)
Female 0.37 0.32 (0.03)* 0.32 0.34 (0.04) 0.28 0.28 (0.06)
Age 32.02 33.91 (0.54)*** 33.45 34.69 (0.94) 33.82 34.33 (1.37)
Married 0.44 0.57 (0.03)*** 0.53 0.58 (0.05) 0.57 0.53 (0.08)
Kpelle 0.25 0.33 (0.08) 0.17 0.35 (0.06)*** 0.15 0.34 (0.09)**
Bassa 0.09 0.13 (0.03) 0.17 0.16 (0.08) 0.23 0.15 (0.13)
Mano 0.16 0.09 (0.06) 0.19 0.09 (0.07) 0.24 0.10 (0.10)
Other tribe 0.50 0.44 (0.06) 0.47 0.40 (0.07) 0.38 0.41 (0.08)
Urban 0.80 0.50 (0.05)*** 0.63 0.46 (0.08)** 0.62 0.50 (0.13)

Economic characteristics:
Secondary education 0.62 0.58 (0.03) 0.62 0.57 (0.04) 0.67 0.57 (0.06)*
Works for wage 0.17 0.19 (0.02) 0.17 0.20 (0.03) 0.20 0.20 (0.06)
Lost job (2013) 0.15 0.16 (0.02) 0.17 0.22 (0.03) 0.17 0.24 (0.06)
Not working 0.28 0.18 (0.02)*** 0.26 0.17 (0.03)*** 0.25 0.19 (0.05)
Self-employed 0.40 0.48 (0.03)*** 0.42 0.47 (0.05) 0.42 0.48 (0.09)
Wealth index (<20th percentile) 0.18 0.34 (0.03)*** 0.20 0.35 (0.05)*** 0.24 0.27 (0.07)
Wealth index (20-40th percentile) 0.28 0.23 (0.02)* 0.26 0.21 (0.03) 0.25 0.29 (0.06)
Wealth index (40-60th percentile) 0.12 0.10 (0.01)* 0.14 0.09 (0.02)* 0.14 0.09 (0.04)
Wealth index (60-80th percentile) 0.20 0.19 (0.02) 0.17 0.20 (0.03) 0.17 0.14 (0.04)
Wealth index (>80th percentile) 0.22 0.14 (0.03)*** 0.24 0.15 (0.04)** 0.19 0.21 (0.06)
Distance to Monrovia (km) 145.03 172.26 (31.81) 157.44 130.70 (26.38) 175.02 116.62 (40.31)
Distance to closest city (km) 6.57 29.82 (2.69)*** 15.86 23.09 (5.08) 11.61 22.34 (4.53)**
Observations 1,495 648 516 202 245 86

Notes: Columns (1), (2), (4), (5), (7) and (8) give the means of the corresponding variable. Columns (3), (6) and (9) give the clustered
standard errors for the di�erence in means in parenthesis. Clustered standard errors at the village level. *, **, and *** indicate 10, 5, and 1
percent significance, respectively.
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Table B9: E�ect of Coverage on Preventive Care

Contact
tracing

Explain
EVD

Hygiene
meetings

Bring
info

(Task-
force)

Explain
burials

Prevention
material

Preventive
care

index

(1) (2) (3) (4) (5) (6) (7)

Coverage 0.127 0.187* -0.172 0.212** 0.122 0.054 0.062
(0.082) (0.112) (0.110) (0.090) (0.097) (0.145) (0.128)

Mean outside coverage 0.194 0.874 0.472 0.282 0.174 0.745 0.040
Bandwidth (dBm) 7.99 12.25 19.18 8.68 11.69 13.58 16.18
Observations 251 346 589 296 328 404 518
Villages 77 139 228 86 122 146 189

Notes: Results present estimates of — using a local linear regression specification of Equation (1) on preventive
care variables. The observations are respondents in the survey sample (2016). Optimal bandwidth chosen as
in Calonico et al. (2014). The information index is constructed following Kling et al. (2007). All specifications
include controls for elevation and slope. Standard errors clustered at the village level. *, **, and *** indicate
10, 5, and 1 percent significance, respectively.

Table B10: E�ect of Coverage on Treatment Care

Take
sick

Take
dead

Ambulance
on-time

CCCs
within
10km

Treatment
care

index
(1) (2) (3) (4) (5)

Coverage 0.123*** -0.022 0.217** 0.494** 0.345**
(0.038) (0.051) (0.087) (0.223) (0.156)

Mean outside coverage 0.100 0.070 0.802 0.477 -0.036
Bandwidth (dBm) 10.76 11.59 10.75 10.43 8.22
Observations 300 328 331 331 268
Villages 111 122 111 111 86

Notes: Results present estimates of — using a local linear regression specification
of Equation (1) on treatment care variables. The observations are respondents in
the survey sample (2016). Optimal bandwidth chosen as in Calonico et al. (2014).
The care index is constructed following Kling et al. (2007). All specifications include
controls for elevation and slope. Standard errors clustered at the village level. *, **,
and *** indicate 10, 5, and 1 percent significance, respectively.
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Appendix C Determining the Coverage Cuto�

In principle, although one may know the typical range for the minimum required signal

strength or sensitivity cuto�, the exact cuto� c is generally unknown (Farahani, 2008). We

employ three methods to determine potential cuto�(s).

First, we use the Di�erence in Kernels estimator described in Qiu (2011) and Porter and

Yu (2015). We estimate equation (5) below for each potential signal strength cuto� r. In

order to limit our search, we restrict values of r to be within 80 to 110 dBm.

M(r) = 1
nh

nÿ

i=1
YiK1

3
Ri ≠ r

h

4
≠ 1

nh

nÿ

i=1
YiK0

3
Ri ≠ r

h

4
(5)

where Ri denotes the ITM-estimated received power (i.e., signal strength) in each village i.

Yi is our outcome of interest. K1(.) and K0(.) are one-sided kernel estimators on the right

and left side of potential cuto� r, respectively. We use a triangular kernel and a bandwidth h

of 2 dBms. Intuitively, this procedure compares the kernel-weighted average of our outcome

on the right and left sides of point r. M(r) should be large if r is a cuto� point and small if

r is not a cuto� point (or, if there is no treatment e�ect). Figure C1 presents the estimates

of M(r) for di�erent values of r. There is a clear and distinct jump in the di�erence in the

kernels estimator at r = 95.

Second, we employ one of the strategies described in Card et al. (2008). Specifically, we

estimate a simple relationship between our outcome Yi and the estimated signal strength Ri

for several potential cuto�s r but within a fixed interval [R, R]:

Yi = – + —1 [Ri > r] + f(Ri) + Ái with Ri œ [R, R] (6)

where f(.) is a function of the estimated signal strength Ri. We then choose potential cuto� r

based on the r that yields the highest R2. Intuitively, if there is a discontinuity at r, then any

specification of (6) that uses a cuto� di�erent than r is misspecified. As before, we restrict

the search to values of r within 80 to 110 dBm and fix the interval [R, R] to be within these

values as well.

Figure C2 plots the R2 for the specified cuto�s r and for a linear, quadratic, cubic, and

quartic specifications of f(Ri). Note that maximum fit is reached when equation (6) uses
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Figure C1: Di�erence in Kernels

Notes: Each dot represents the estimate of M(r) in equation (5). Estimation

r = 95 suggesting that this is likely the cuto� at which our outcome jumps.

Lastly, we use a modification of the method proposed by Spokoiny (1998) adapted to our

RD setting. Specifically, we proceed in three steps:

Step 1: We use a flexible polynomial f(.) to estimate Yi = f(Ri ≠ r0) + Ái within a

neighborhood U of point r0. Given our setting, we start with r0 = 75 which is to the left of

any plausible cuto� point and a fourth degree polynomial specification for f(.).

Step 2: We then examine the RMSE of the residuals from Step 1 at point v œ V where

V = U fl U Õ is the set of boundary points of interval U . In our one-dimensional case, V are

simply the left and right endpoints of the interval U . Furthermore, given that our potential

cuto� is to the right of r0 = 75, we focus only on the right endpoint residuals.

Step 3: We then gradually increase interval U around r0 and repeat steps 1-2 until there

is a clear jump in the RMSE of endpoint residuals. Cuto� point r is chosen as the endpoint

of the maximal interval for which the endpoint residuals are “well-behaved” (i.e., the RMSE

of the endpoint residuals does not jump significantly).

Intuitively, after we hit the maximal interval, the polynomial will have a hard time fitting
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Figure C2: Model fit by Cuto� point r

Notes: Each dot represents the R2 obtained from estimating equation (6) using di�erent values for r
(x-axis), and using the specified polynomial for f(Ri) in equation (6).

the jump in the outcome occurring at the cuto� point. Panel A of Figure C3 illustrates the

method by presenting polynomial f(Ri ≠r0) estimated within three di�erent intervals around

r0 = 75: intervals U1, U2, and U3, with right endpoints at 85, 95, and 96 dBm, respectively.

Note that the fit of f(.) is reasonably well at the endpoints of U1 and U2, but performs

poorly at the endpoint of U3. This likely suggests that we have reached the maximal interval

at U2. This is confirmed in panel B of Figure C3 that plots the RMSE at the enpoints of each

interval used to estimate f(Ri ≠ r0). Notice that once we get to a right endpoint of 96, the

RMSE increases substantially. This suggests that the cuto� point is 95, the right endpoint

of the maximal interval.
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(a) Polynomial within interval U around r0 = 75
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(b) RMSE at interval endpoints

Figure C3: RMSE of Endpoint Residuals

Notes: Solid dots in Panel A give the average of the outcome variable for each bin of signal strength (dBm).
“Signal strength (dBm)” refers to the received power or signal strength, measured in decibel milliwatts, at
the village level. Bin width is 2 dBm. The solid lines are the polynomials estimated within the specified
intervals. Dashed vertical line is the initial r0 = 75. Refer to text for more detail.
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