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Abstract

This paper shows that local productivity spillovers can propagate throughout the
economy through the plant-level networks of multi-region �rms. Using con�dential
Census plant-level data, we �nd that large manufacturing plant openings not only
raise the productivity of local plants but also of distant plants hundreds of miles away,
which belong to multi-region �rms that are exposed to the local productivity spillover
through one of their plants. To quantify the signi�cance of plant-level networks
for the propagation and ampli�cation of local productivity shocks, we develop and
estimate a quantitative spatial model in which plants of multi-region �rms are linked
through shared knowledge. Our model features heterogeneous regions as well as rich
within-region, across-plant heterogeneity in productivity, wages, and employment.
Counterfactual exercises show that while knowledge sharing through plant-level
networks ampli�es the aggregate e�ects of local productivity shocks, it can widen
economic disparities between workers and regions in the economy.
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1 Introduction

Local governments spend billions of dollars in subsidies every year for companies to
locate within their jurisdictions (Story, 2012; Bartik, 2020). From an e�ciency standpoint,
a common rationale for such place-based incentives is the existence of Marshallian
agglomeration economies—spillovers to the local economy in the form of input sharing,
labor market pooling, and knowledge externalities—that raise the productivity of local
workers and businesses (Moretti, 2010; Kline and Moretti, 2014a; Neumark and Simpson,
2015). In this paper, we provide both reduced-form and model-based evidence that these
local productivity spillovers propagate throughout the economy through the plant-level
networks of multi-region �rms.

Identifying local productivity spillovers is di�cult. In our reduced-form analysis, we
build on the natural experiments in Greenstone, Hornbeck, and Moretti (2010), who study
the e�ects of large plant openings (“Million Dollar Plants,” or MDPs) on the productivity
of incumbent plants. In their setting, plants in one or more runner-up counties, which
narrowly lost the competition, provide a counterfactual for incumbent plants in the
“winner” county, where the MDP ultimately located. Using con�dential plant-level data
from the Census Bureau, we show that the MDP openings raise the productivity of
incumbent plants by 4%. This (“local”) productivity spillover is strong within a 50 mile
radius around the MDP, weaker within a 100 mile radius, and insigni�cant beyond. Hence,
consistent with a large empirical literature, we �nd that productivity spillovers between

(plants of) di�erent �rms decay rapidly with geographical distance.1

A di�erent picture emerges when we examine how productivity spillovers spread
within �rm boundaries. We consider large multi-plant, multi-region �rms which are
exposed to the MDP openings, and thus to the local productivity spillover, by having a
plant in the winner county. We �nd that, in response to the MDP openings, these �rms’
plants outside the winner county (“treated plants”) experience productivity gains of 1.8%,
along with employment gains of 1.6%. To identify the (“global”) productivity spillover on
plants outside the winner county, we compare plants in the same county, industry, and
year that belong to �rms which either own plants in the winner county (treatment) or the
runner-up counties (control). This speci�cation accounts for the possibility of correlated

1Rosenthal and Strange (2004, 2020) and Combes and Gobillon (2015) review the empirical literature on
agglomeration economies. Most empirical studies �nd that these economies are highy localized.
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shocks between the county of the treated plant and the winner county, thus addressing
potential concerns that the productivity gains at treated plants may be due to common
regional shocks rather than internal spillovers within the �rm’s boundaries.

What explains the global productivity spillover? While the local productivity gains
may be due to either labor market pooling or knowledge spillovers, it is unlikely that a
thicker labor market in the winner county would a�ect the productivity of treated plants
hundreds of miles away. Knowledge, on the other hand, can be used in local and distant
plants alike. Indeed, once it spills over to the �rm’s local plant, it can be freely shared
with other plants inside the �rm’s boundaries (Markusen, 1984). To explore this issue, we
examine if the global productivity spillover becomes weaker as we increase the distance to
the MDP. We �nd that the estimates remain virtually unchanged if we exclude all plants
within a 500 mile radius, or within the same state or Census division as the MDP. Hence,
unlike the local productivity spillover, which takes place across plants of di�erent �rms,
the global productivity spillover, which takes place across di�erent plants of the same �rm,
does not decay with geographical distance. Further, and also consistent with knowledge
sharing, we �nd that the global productivity spillover is much stronger if the distant plant
and either the MDP or the �rm’s plant in the winner county are in the same industry or in
(knowledge-based) industries characterized by mutual R&D �ows or patent citations.

In a recent survey article, Rosenthal and Strange (2020) write:

“Implicit in the idea that spatial concentration increases productivity is another
idea: the degree of proximity matters. Agglomeration economies must decay
with distance. How close, then, do �rms and workers need to be to each other
to bene�t from agglomeration economies? Or more colloquially, how close is
close?” (p. 27).

Our paper provides a nuanced answer. On the one hand, �rms must have a nearby plant
to bene�t from knowledge spillovers. As we show, the local agglomeration economy is
strongly signi�cant only within a 50 mile radius around the MDP. On the other hand, not
all of a �rm’s plants need to be located nearby. In fact, it may su�ce if only one of the
�rm’s plants is located in close proximity to the MDP. Once the knowledge spills over to
that plant, it can be passed on to other plants inside the �rm’s boundaries, increasing the
productivity of distant plants hundreds of miles away.

To quantify the signi�cance of knowledge sharing through plant-level networks,
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we develop and estimate a quantitative spatial model with goods trade, labor mobility,
plant-level networks, and a rich and realistic geography. While we build on the theoretical
framework developed by Allen and Arkolakis (2014), Ahlfeldt et al. (2015), Redding (2016),
and Monte, Redding, and Rossi-Hansberg (2018), we depart from the canonical model in
a number of signi�cant ways.2 Our model features �nitely many �rms, some of which
have multiple plants in di�erent regions. Plants of the same �rm, across regions, are
linked through shared knowledge, as in Markusen (1984). Speci�cally, we assume that
plant-level productivity depends on local knowledge and knowledge in the other regions
in which the �rm operates. This generates heterogeneity in plant-level productivity within
a given location and provides a direct mechanism through which productivity shocks in
one location may propagate to other locations.3

Another point of departure from the canonical model is our focus on within-location
labor markets. Speci�cally, we assume workers have idiosyncratic preferences over both
locations and plants within a location. In conjunction with heterogeneity in plant-level
productivity, this implies plants within a given location pay di�erent wages, departing
from the standard assumption of each location having a single wage. Similar to McFadden
(1978), we express workers’ location choice problem as a nested choice between di�erent
locations and then, within locations, between di�erent plants. This decomposition results
in analytically separable within- and across-location problems, which greatly simpli�es the
computational and analytical characterization of the model’s solution. Given parameter
values and fundamentals, the model has a unique equilibrium. Moreover, given parameter
values and observed data, there exist unique values of the unobserved fundamentals that
rationalize the data as an equilibrium of the model.

The typical economic geography model focuses on regional outcomes; parameters
can thus often be identi�ed using regional aggregates. By contrast, our model features
within-region, across-plant heterogeneity. Hence, plant-level micro moments are needed
to identify the parameters. To this end, we use an indirect inference approach and target
as moments reduced-form estimates—semi-elasticities of plant-level employment, wages,

2Redding and Rossi-Hansberg (2017) provide a comprehensive taxonomy of the modeling assumptions
and building blocks in quantitative spatial models.

3Our model is designed to study productivity spillovers within �rms across regions, as well as their
implications for the within- and across-region distribution of economic activity. This sets our model apart
from a recent literature on endogenous growth that focuses on the evolution of the (national) productivity
distribution through the di�usion of knowledge (e.g., Lucas and Moll, 2014; Perla and Tonetti, 2014; and the
papers surveyed in Buera and Lucas, 2018).
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and productivity to the MDP openings—that are informative about plant-level outcomes.
To obtain model-based estimates that correspond to these reduced-form estimates, we
build a model economy that mirrors the geography of production networks in the United
States. Within this model economy, we simulate local productivity shocks that resemble
the MDP openings, providing us with a micro-level data set with “pre-” and “post-shock”
observations. We then use this data set to estimate plant-level di�erence-in-di�erences
regressions that mirror those in our reduced-form analysis, providing us with model-based
moments and allowing us to estimate the parameters.

Given our parameter estimates, we undertake counterfactual analyses to quantify
the signi�cance of knowledge sharing through plant-level networks for the distribution of
economic activity, as well as for the propagation and ampli�cation of local productivity
shocks. In one counterfactual, we increase the strength of within-�rm, across-region
knowledge sharing. We �nd that knowledge sharing between plants widens economic
disparities between regions: those with high real GDP become richer, while those with
low real GDP become poorer. In another counterfactual, we simulate local productivity
shocks—such as those arising from place-based policies—with and without knowledge
sharing between plants. While the welfare gains are 64% higher with knowledge sharing,
they are not evenly distributed. In particular, workers in other regions working for plants
that are “connected” (through plant-level networks) to the region with the productivity
shock experience utility gains that are �ve times larger than workers at non-connected
plants. At the regional level, we �nd that the welfare gains are disproportionately
concentrated in highly populous regions, as those tend to have the most connected
plants. Hence, knowledge sharing through plant-level networks leads to a highly uneven
distribution of the welfare gains from local productivity shocks.

Our paper is related to several strands of literature. First, it is related to papers
that study the aggregate implications of place-based policies. In this literature, general
equilibrium e�ects arise from worker migration and goods trade, and possibly also from
�rm sorting (Busso, Gregory, and Kline, 2013; Kline and Moretti, 2014b; Gaubert, 2018;
Fajgelbaum and Gaubert, 2020; Rossi-Hansberg, Sarte, and Schwartzman, 2020; Gaubert,
Kline, and Yagan, 2020). Our paper focuses on a new (direct) channel through which
place-based policies may a�ect the rest of the economy: productivity gains that spill
over to other regions through the plant-level networks of multi-region �rms. Unlike
classical externalities from place-based policies, this externality has a positive e�ect on
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other regions.4 However, not all regions bene�t equally; we �nd that the welfare gains are
disproportionately concentrated in the most populous regions.

Relatedly, Caliendo et al. (2018) and Hornbeck and Moretti (2020) document how
regional productivity shocks may impact other regions through trade �ows and worker
migration. Our paper focuses on productivity spillovers through the plant-level networks
of multi-region �rms. Our paper is also related to Bilir and Morales (2020) who, in an
international setting, study how parent �rm R&D may a�ect the value added of foreign
a�liates. We study a domestic setting. Moreover, we consider productivity shocks that
originate outside of �rms’ boundaries. That being said, both papers have in common the
idea that knowledge is being shared within the �rm.

Finally, our paper is related to a growing literature, going back to Long and Plosser
(1983) and Acemoglu et al. (2012), that studies how shocks propagate through production
networks. In particular, our paper is related to a branch of this literature that considers
shocks at the �rm (as opposed to sectoral) level, both empirically (Barrot and Sauvagnat,
2016; Carvalho et al., 2020) and theoretically (Acemoglu and Tahbaz-Salehi, 2020). In
contrast to this literature, our paper focuses on production networks within �rms.5 Also,
productivity spillovers in our framework are not driven by input-output linkages. On the
other hand, our paper shares with the literature on production networks the idea that small
shocks may propagate and have signi�cant aggregate e�ects.6

The remainder of the paper is organized as follows. Section 2 provides reduced-form
evidence. Section 3 develops a quantitative spatial model in which plants of multi-region
�rms are linked through shared knowledge. Section 4 presents the structural estimation of
the model. Section 5 provides counterfactual analyses. Section 6 concludes.

4The prevailing view is that, unless workers migrate to regions with higher elasticities of productivity
to agglomeration, place-based policies are at best a zero-sum game (Glaeser and Gottlieb, 2008; Moretti
2010; Kline and Moretti, 2014a). However, Fajgelbaum and Gaubert (2020) and Rossi-Hansberg, Sarte, and
Schwartzman (2020) show that even when agglomeration elasticities are homogeneous, the decentralized
equilibrium may be ine�cient, leaving room for welfare-enhancing spatial policies. Bartelme et al. (2019)
analyze optimal industrial policies at the sectoral (as opposed to regional) level.

5Giroud and Mueller (2019) study an alternative channel through which establishments of the same �rm
may be linked: through a �rm-wide �nancial (or budget) constraint. Focusing on large restaurant and retail
(i.e., nontradable) �rms during the Great Recession, they show how a drop in local consumer demand in one
location tightens the �rm’s �nancial constraint and forces it to lay o� employees in other locations.

6Our result that local productivity shocks may spread and amplify within �rm boundaries provides a
possible microfoundation for �rm-level productivity shocks in granular economies (Gabaix, 2011).

5



2 Reduced-Form Evidence

2.1 Research Design

We examine how local productivity spillovers propagate across U.S. regions through the
plant-level networks of multi-plant, multi-region manufacturing �rms. To identify local
productivity spillovers, we build on the natural experiments in Greenstone, Hornbeck,
and Moretti (2010, GHM), who study the e�ects of large plant openings (“Million Dollar
Plants,” or MDPs) on the productivity of local incumbent plants. In their setting, plants
in one or more runner-up counties, which narrowly lost the competition after surviving
a long selection process, serve as a counterfactual for incumbent plants in the “winner”
county, where the MDP ultimately located.7 We match the MDP openings in the Appendix
of Greenstone and Moretti (2003) to plants in the Census Bureau’s Standard Statistical
Establishment List (SSEL) based on �rm and county name. Like GHM do, we identify 11
MDP openings between 1982 and 1985, 18 MDP openings between 1986 and 1989, and 18
MDP openings between 1990 and 1993, adding up to 47 MDP openings.

We source data from three establishment-level data sets provided by the Census
Bureau. The �rst two data sets are the Census of Manufactures (CMF) and the Annual
Survey of Manufactures (ASM). They contain information about key plant-level variables,
such as shipments, assets, material inputs, employment, payroll, capital expenditures,
industry sector, and location. The third data set is the Longitudinal Business Database
(LBD). It contains longitudinal establishment identi�ers along with data on employment,
payroll, industry sector, location, and �rm a�liation.

We �rst study the (“local”) spillover from the MDP openings on incumbent plants
in the winner county. For each MDP opening, we identify all plants in the winner and
runner-up counties. We require a plant to be present before and after the MDP opening.
We use all observations from �ve years before until �ve years after, which leaves us with
157,000 plant-year observations.8 We next study the (“global”) spillover on plants outside
the winner county belonging to multi-county (MC) �rms with plants in the winner county.
To have a counterfactual for these plants, we construct various control groups. We use
again all observations from �ve years before until �ve years after the MDP opening. We

7Winner and runner-up counties are from the reported location rankings of �rms in the corporate real
estate journal Site Selection. The journal includes a regular feature article, Million Dollar Plants, that describes
where a �rm decided to locate a large manufacturing plant. The feature article was last published in 1993.

8All sample sizes are rounded to the nearest 1,000 following Census Bureau disclosure guidelines.
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always exclude the MDPs themselves, as well as any plants owned by �rms that own the
MDPs. Depending on the control group, this leaves us with 1,407,000; 1,046,000; or 423,000
plant-year observations. The sample period is from 1977 to 1998.

Table 1 provides descriptive statistics from the year before the MDP opening. Panel
A shows that the typical plant in the local spillover sample has 141.7 employees, pays an
average wage of $39,530, and its productivity (TFP) is close to the industry average.9 Panels
B and C pertain to the global spillover sample with 423,000 plant-year observations. This
sample is composed of plants outside the winner and runner-up (or “loser”) counties that
belong to MC �rms with plants in the winner county (“treated plants”), as well as plants in
the same counties as the treated plants belonging to MC �rms with plants in the runner-up
counties (“control plants”). Panel B shows that the typical plant in the global spillover
sample has 268.2 employees, which is larger than in the local spillover sample, since the
global spillover sample only includes plants of MC �rms. Moreover, the typical plant in
the global spillover sample pays an average wage of $38,850, and its productivity is again
close to the industry average. Finally, Panel C describes the parent �rms associated with
the plants in Panel B. As can be seen, the typical parent �rm has 1,987.5 employees and 7.4
plants, which are spread out across 5.4 counties and 2.7 states.

2.2 Local Productivity Spillover

We �rst study the local productivity spillover from the MDP openings on incumbent plants
in the winner county. We estimate the following speci�cation:

~82:BC = b2 + b: + bBC + V1%>BC2C + V2(,8==4A8 × %>BC2C ) + Y82:BC , (1)

where ~82:BC denotes plant-level productivity (TFP), 8 denotes counties, 2 denotes cases, :
denotes plants, B denotes industries, C denotes years, %>BC2C is an indicator for case 2 from the
treatment year (i.e., the year of the MDP opening) onward,,8==4A8 is an indicator for the
winner county, and b2, b: , and bBC are case, plant, and industry × year �xed e�ects. A “case”
comprises the winner county and the associated runner-up counties. The case and plant
�xed e�ects capture time-invariant heterogeneity across cases and plants, respectively.

9TFP is the estimated residual from a plant-level regression of output on capital, labor, and material inputs
(all in logs). To allow for di�erent factor intensities across industries and over time, we estimate the regression
separately for each 3-digit SIC code industry and year. Accordingly, TFP can be interpreted as the relative
productivity of a plant within a given industry and year.
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Importantly, the case �xed e�ects force comparisons to be made between plants within
a given winner-loser pair. The industry × year �xed e�ects capture time-varying shocks at
the industry level. Industries are de�ned at the 3-digit SIC code level. The main coe�cient
of interest is V2, which captures the mean change in productivity among plants in the
winner county relative to plants in the runner-up counties.

Table 2 presents the results. In this and all other tables, we only report the main
coe�cient(s) of interest and write “MDP” in lieu of ,8==4A8 × %>BC2C for brevity. As
column (1) shows, the MDP openings raise the productivity of incumbent plants in the
winner county by 4%.10 In column (2), we examine if the local productivity spillover varies
with distance between the incumbent plants and the MDP. To this end, we �rst identify
all incumbent plants within a 250 mile radius around the MDP. Naturally, this includes
plants outside the winner county. We then create three dummy variables, (< 50 miles): ,
(50 to 100 miles): , and (100 to 250 miles): , that indicate whether the incumbent plant lies
within 50 miles, between 50 and 100 miles, or between 100 and 250 miles from the MDP,
and interact these dummy variables with both terms in equation (1). As is shown, the
local productivity spillover decays rapidly with geographical distance. It is strong within
a 50 mile radius around the MDP, much weaker within a 100 mile radius, and insigni�cant
beyond. Hence, consistent with a large empirical literature, we �nd that productivity
spillovers between (plants of) di�erent �rms are highly localized.

2.3 Global Productivity Spillover

We next study the global productivity spillover on treated plants outside the winner
county that belong to �rms with plants in the winner county. We estimate the same
di�erence-in-di�erences speci�cation as above, except that ,8==4A8 is now an indicator
for whether the plant’s parent �rm owns a plant in the winner county, the �xed e�ects
vary by control group, and a “case” is more generally de�ned as comprising all treated
plants as well as all plants in the corresponding control group.

Table 3 presents the results. In column (1), the control group consists of all plants
outside the runner-up counties that belong to MC �rms with plants in the runner-up

10Our estimate lies well within the range of TFP estimates reported by GHM (1.46% to 6.13%), albeit it is
slightly lower than their baseline estimate (4.77%). While we require plants to be present before and after
the MDP opening, their baseline analysis requires plants to be present for eight consecutive years before the
MDP opening. This excludes smaller plants in the ASM, which are randomly (re-)sampled every �ve years.
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counties (“runner-up �rms”). This speci�cation includes plant, industry × year, and case
�xed e�ects. Accordingly, we compare treated plants with plants of runner-up �rms in
the same industry and year, but possibly in di�erent counties. In column (2), the control
group consists of all plants of MC �rms in the same county as the treated plant. This
speci�cation includes plant and industry × county × year �xed e�ects. Thus, we compare
treated plants with other plants in the same county, industry, and year. This accounts for
the possibility of common shocks between the county of the treated plant and the winner
county, thus addressing potential concerns that the productivity gains at treated plants
may be due to common regional shocks rather than internal spillovers within the �rm’s
plant-level network. Finally, in column (3), the control group is a subset of that in column
(2): it consists of all plants of runner-up �rms in the same county as the treated plant. In
addition to plant and industry × county × year �xed e�ects, this speci�cation also includes
case �xed e�ects. Hence, we compare plants in the same county, industry, and year that
belong to parent �rms which either own plants in the winner county (treatment group) or
in the corresponding runner-up counties (control group).

As is shown, the MDP openings raise the productivity of treated plants outside
the winner county by 1.8% to 2%. The estimate is stable across speci�cations, despite
varying control groups and �xed e�ects. While the productivity gains at treated plants
are less than the productivity gains in the winner county, Table 1 shows that the typical
“treated” MC �rm has about 6.3 (treated) plants outside the winner county. Indeed, using
a back-of-the-envelope calculation, we illustrate below that almost twice as many jobs are
created outside the winner county than among all plants in the winner county combined.

2.4 Treatment E�ect Dynamics

Table A.1 of Online Appendix A shows the dynamics of the treatment e�ect, both for the
local and global productivity spillover. The purpose of the analysis is twofold: i) provide
support for the parallel trends assumption, and ii) compare the timings of the local and
global spillovers. If the productivity gains spread through �rms’ plant-level networks,
then the global spillover should set in around the same time as (or at least not before)
the local spillover. As is shown, there are no signi�cant di�erences in pre-trends between
either plants in the winner and runner-up counties, or between treated plants and plants
of runner-up �rms in the same county as the treated plant. Furthermore, the global
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productivity spillover sets in around the same time as the local productivity spillover. In
either case, the estimates remain economically large and stable until the end, suggesting
that the productivity gains are not temporary.

2.5 Mechanism

Marshall (1890) famously divides agglomeration economies into three categories: i) labor
market pooling, ii) knowledge spillovers, and iii) input-output linkages. Using various
measures of economic distance between the MDP and the incumbent plants, GHM �nd that
the local productivity spillover is consistent with either labor market pooling or knowledge
spillovers, but not with input-output linkages.11

While labor market pooling and knowledge spillovers may both contribute to the
local productivity spillover, it is unlikely that a larger labor market in the winner county
would a�ect the productivity of distant plants hundreds of miles away. Knowledge, on the
other hand, can be used in local and distant plants alike. Indeed, once it spills over to the
�rm’s local plant, it can be freely shared with other plants inside the �rm’s boundaries
(Markusen, 1984). To explore this issue, we examine if the global productivity spillover
becomes weaker as we increase the distance to the MDP. Table 4 shows the results. Based
on our tightest speci�cation in column (3) of Table 3, we exclude all plants within a 100
mile, 250 mile, or 500 mile radius around the MDP (columns (1) to (3)), or in the same state
or Census division as the MDP (columns (4) and (5)). As is shown, the estimates are stable
and practically identical to the original estimate in column (3) of Table 3. Hence, unlike the
local productivity spillover, which takes place across plants of di�erent �rms, the global
productivity spillover, which takes place across di�erent plants of the same �rm, does not
decay with geographical distance.

Why is the local productivity spillover twice as large as the global productivity
11“[T]his evidence is consistent with intellectual externalities to the extent that they are embodied in

workers who move from �rm to �rm and to the extent that they occur among �rms that use technologies that
are reasonably similar. The estimates ... seem less consistent with the hypothesis that agglomeration occurs
because of proximity to customers and suppliers” (p. 577). In Tables A.2 and A.3 of Online Appendix A, we
con�rm that input-output linkages play no signi�cant role for either the local or global productivity spillover.
This also addresses the possibility that the global productivity spillover may be driven by local demand from
the MDP, which in turn relaxes �rm-wide �nancial constraints and thereby bene�ts distant plants. To further
explore this hypothesis, we have examined if the global productivity spillover is stronger for more �nancially
constrained �rms. As Tables A.4 and A.5 of Online Appendix A show, �rm-wide �nancial constraints play
no signi�cant role for either the local or global productivity spillover.
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spillover?12 For one, not all of the productivity gains in the winner county may be due
to knowledge spillovers. As noted above, they are likely due to both knowledge spillovers
and thicker labor markets. Furthermore, some knowledge may not be passed on to other
plants of the �rm, as it may be location-speci�c or di�cult to share (“soft information”).
In contrast, knowledge about speci�c products or production processes is likely relevant
for, and easier to share with, other plants of the �rm. We explore this idea in columns (1)
and (2) of Table 5 by interacting both terms in equation (1) with indicators for whether the
treated plant is in the same 4-digit SIC code industry as either the MDP or the �rm’s plant
in the winner county. The 4-digit industry classi�cation is extremely �ne; it comprises 459
manufacturing industries in the CMF/ASM. Plants in the same 4-digit industry produce
similar goods and use similar production processes. For example, “nitrogenous fertilizers”
(SIC 2873), “phosphatic fertilizers” (SIC 2874), and “fertilizers, mixing only” (SIC 2875) all
have di�erent 4-digit SIC codes. As is shown, the global productivity spillover is much
stronger if the treated plant and either the MDP or the �rm’s plant in the winner county
are in the same narrow industry.

Finally, in columns (3) to (6), we interact both terms in equation (1) with measures
of knowledge sharing at the industry-pair level. The �rst measure, “mutual R&D �ows,”
captures how R&D in one industry �ows out to bene�t another industry. The second
measure, “mutual patent citations,” captures the extent to which technologies associated
with one industry cite technologies associated with another industry.13 In either case, we
measure the extent of knowledge sharing between the industry of the treated plant and
either the industry of the MDP or the industry of the �rm’s plant in the winner county. As
is shown, the global productivity spillover is much stronger if the treated plant and either
the MDP or the �rm’s plant in the winner county are in (knowledge-based) industries
characterized by mutual R&D �ows or patent citations.14 The e�ects are economically
signi�cant. For instance, in column (3), a one-standard deviation increase in the R&D �ow
measure (0.022) raises the productivity gains at treated plants by 1.3 percentage points.

12This is true even if we estimate the local productivity spillover using only plants of MC �rms. Their
productivity gain in the winner county is 3.9%, which is twice as large as outside the winner county.

13The measures of mutual R&D �ows and patent citations are the unidirectional measures Tech8 9 ≡
max{TechIn8←9 , TechOut8→9 } and Patent8 9 ≡ max{PatentIn8←9 , PatentOut8→9 } at the 3-digit SIC code level
from Ellison, Glaeser, and Kerr (2010). As the authors note (p. 1202): “we base our metrics of information
�ows on patents and research and development (R&D), which re�ect only the highest level of information
�ows.”

14Table A.6 of Online Appendix A applies the tests from Table 5 to the local productivity spillover. The
results mirror those in Table 5.
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2.6 Employment and Wages

We �nally study the implications for employment and wages. Table 6 examines the local
employment and wage spillovers in the winner county. As can be seen, employment and
wages increase by 3.5% and 3.7%, respectively, which is of the same order of magnitude as
the productivity gains.15 Table 7 examines the global employment and wage spillovers. As
is shown, employment at treated plants increases by 1.6% to 1.7%, which is again of the
same order of magnitude as the productivity gains.16 However, wages only increase by a
small amount. This is not surprising; in any given county outside the winner county, only
relatively few plants are treated, putting only mild pressure on local wages.

With the usual caveats, we can perform a simple back-of-the-envelope calculation
to determine the total number of jobs created outside the winner county versus those
created in the winner county. In the winner county, about 52,600 workers are employed
in manufacturing prior to the MDP opening. By comparison, about 211,900 workers are
employed at treated plants outside the winner county. Given the estimates in Tables 6 and
7, this implies that 0.035 × 52, 600 = 1, 841 jobs are created in the winner county versus
0.016 × 211, 900 = 3, 390 jobs outside the winner county. Hence, almost twice as many jobs
are created outside the winner county than at all plants in the winner county combined.

3 Theoretical Framework

We develop a quantitative spatial model to quantify the impact of knowledge sharing
through plant-level networks on sub-regional, regional, and aggregate outcomes. At the
regional level, our model resembles a canonical Armington model in which regions are
linked through goods trade and labor mobility (Armington, 1969; Anderson, 1979; Allen
and Arkolakis, 2014). We extend the model to include �nitely many plants in each region.
Plants can either be stand-alone (“single-county plant” or “SC plant”) or belong to a parent
�rm which has plants in other locations (“multi-county plant” or “MC plant”). Plants’
productivities depend on local knowledge; MC plants’ productivities additionally depend

15The increase in employment is much larger when the MDP itself is included. Using county-level data,
which includes the MDP, Monte, Redding, and Rossi-Hansberg (2018) �nd that employment in the winner
county increases by 5.7% after the MDP opening. Indeed, GHM (Table 1) note that the average MDP is large
relative to the rest of the winner county—it accounts for 8.6% of total output one year before the MDP opening.

16Table A.7 of Online Appendix A shows that the employment e�ects do not decay with geographical
distance to the MDP.
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on knowledge in other regions in which the parent �rm has a plant. This induces direct
productivity linkages across regions and heterogeneity in plants’ productivities within a
region. At the sub-regional level, our production technology is reminiscent of Eaton and
Kortum (2002) and similar Ricardian models. The main di�erence is that, in our model,
multiple plants in each location produce a location-speci�c continuum of intermediate
goods instead of multiple countries producing an economy-wide continuum.17 Moreover,
we extend traditional preferences over locations to preferences over both locations and
plants within a location. In equilibrium, this induces plants in the same location to pay
di�erent wages; in particular, more productive plants pay higher wages. Altogether, our
model includes classical Armington model forces at the regional level; Ricardian model
forces at the sub-regional level, plant-level network-based productivity linkages across
regions; and within-location heterogeneity in productivity, employment, and wages.

3.1 Primitives

Our model economy consists of # heterogeneous regions (also “locations” or “counties”)
which interact through trade in goods markets and labor mobility. Locations, denoted
by 8 , =, ℓ , exogenously di�er from one another with regard to knowledge stock, land
supply, amenities, and the spatial allocation of intermediate goods producers. We refer
to intermediate goods producers as plants. Plants are organized into � networks which
we call �rms, denoted by 9 , : . � (� �rms consist of a single plant (“single-county �rms”
or “SC �rms”), while �"� �rms have plants in multiple counties (“multi-county �rms” or
“MC �rms”). Each county has at least one SC plant, and each MC �rm has at most one
plant per county. We refer to individual plants by their location-�rm tuple {8, 9}. Let E 9
be the set of locations in which �rm 9 has a plant, and let ℰ8 be the set of �rms with a
plant in location 8 . Plant {8, 9}’s productivity depends on location 8’s knowledge as well
as knowledge in all other locations in E 9 . Plants in each region produce a region-speci�c
continuum of intermediate goods, which is aggregated by �nal goods producers, and then
shipped to, and consumed by, consumers in all regions.

17When combined with the rest of our model, this di�erence allows us to separate the calculation of the
across-location equilibrium from the calculation of the within-location equilibrium, which greatly simpli�es
the computational and analytical characterizations of the model equilibrium and its inversion.

13



3.2 Consumer Preferences

Workers are geographically mobile and endowed with one unit of labor each that is
inelastically supplied. Worker [ working for plant {=, 9} earns wage F=9 and derives
utility from goods consumption (�[), residential land use (ℎ[), and plant-level idiosyncratic
amenities (1=9[):

D=9[ = 1=9[

(
�[

U

)U (
ℎ[

1 − U

)1−U
, (2)

where U ∈ (0, 1) and 1=9[ is drawn from a multivariate Fréchet distribution given by:

P
©«
#⋂
==1

⋂
9∈ℰ=

{
1=9 ≤ C=9,

}ª®¬ = 4G?

−
∑
=∈#

©«
∑
9∈ℰ=

�
1

1−d
= C

− n
1−d

=9

ª®¬
1−d (3)

for all
{
C=9

}
=∈# : 9∈ℰ= ∈ [0,∞)

∑
= |ℰ= | . The amenity scale parameter �= indexes the average

draw of idiosyncratic utility for plants in location =. The amenity shape parameter n > 1
controls dispersion in idiosyncratic draws across locations; as n → ∞, the distribution
degenerates to a set of mass points ordered by {�=}=∈# . Finally, the amenity correlation
parameter d ∈ [0, 1) controls the strength of the correlation of within-location, across-plant
idiosyncratic utility draws.

Consumers have CES preferences over �nal goods sourced from each location with
an elasticity of substitution equal to f :

�[ =

(∑
8∈#

2
f−1
f

8[

) f
f−1

(4)

where 28[ is the amount of location 8’s �nal good consumed by consumer [.

3.3 Production Technology

Perfectly competitive plants located in county 8 produce a location-speci�c continuum of
intermediate goods l8 ∈ [0, 1] with technology @8 9 (l8) = I8 9 (l8);8 9 (l8), where I8 9 (l8) and
;8 9 (l8) are plant {8, 9}’s (idiosyncratic) productivity and labor, respectively, for producing
good l8 . We assume 1

I8 9 (l8 ) is a Pareto distributed random variable with productivity scale
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parameter 1
Ī8 9

and common productivity shape parameter a .18 We assume idiosyncratic
productivity draws which are independent across plants and intermediate goods. Plants
take their wageF8 9 and productivity distribution as given.

Perfectly competitive �nal goods producers use intermediate goods to make the
location-speci�c �nal good and ship it to all regions for consumption. Final goods producers
use equal quantities of each intermediate good to assemble the �nal good. Goods trade is
subject to bilateral “iceberg” trade costs such that g=8 ≥ 1 units must be shipped from
location 8 in order for one unit to arrive in location =. Final goods producers’ marginal cost
is thus the product of trade costs and the average production cost of intermediate goods. We
assume trade is frictionless within a location, g== = 1. Across locations, for our estimation,
we parameterize trade costs as a constant elasticity function of haversine distance between
country centroids, g=8 = g=8 = 38BC

k

=8
.

3.4 Knowledge and Productivity

We assume plants’ productivity scale parameters depend on exogenous knowledge
and endogenous agglomeration economies that depend on local population size !8 .19

Speci�cally, building on Markusen (1984), we assume plants draw on �rm-wide shared
knowledge (or “knowledge capital”):

Ī
9

8
=  8

(
 
9

−8

)\
!
V

8
, (5)

where  8 is knowledge in county 8 ,  9

−8 represents �rm 9 ’s knowledge from its other plants,
and !V

8
represents classical, local agglomeration economies.

For MC �rms, we assume  9

−8 is the geometric mean of knowledge in the other
locations in which the �rm operates:

 
9

−8 = Πℓ∈E 9\{8} 

1
|E 9 |−1

ℓ
. (6)

For SC �rms, which operate in a single location, we set  9

−8 = 1, in which case equation
(5) reduces to Ī 9

8
=  8!

V

8
. In counties with only SC plants, our productivity process is

18We employ the inverse Pareto distribution for two reasons: (1) closed-form expressions for realized
productivity and labor shares, and (2) to allow plants to produce with heterogeneous realized productivity.

19Plant output is thus a function of both labor and knowledge, as in Caliendo and Rossi-Hansberg (2012)
and Caliendo, Monte, and Rossi-Hansberg (2015).
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thus similar to a standard Armington model. By contrast, counties with MC plants are
connected to other counties through a knowledge-sharing network allowing for direct
productivity spillovers across locations, in line with our global spillover estimates. The
key parameter which controls the strength of within-�rm, across-location productivity
spillovers is the “knowledge-sharing parameter” \ . Ceteris paribus, a higher \ puts more
weight on knowledge in the other locations in which the �rm operates.

3.5 Solution to Consumer Problem

3.5.1 Goods and Housing

Consider consumer [ in location =. Standard CES demand results give us:

28[ = G[?
−f
=8 %

f−1
= , (7)

where G[ is the amount consumer [ spends on goods, ?=8 is the price of �nal goods shipped
from location 8 to location =, and %= is the Dixit-Stiglitz price index:

%= ≡
(∑
8∈#
(?=8)1−f

) 1
1−f

. (8)

Consumption choices aggregate such that:

2=8 = -=?
−f
=8 %

f−1
= , (9)

where 2=8 is the quantity of location 8’s �nal good consumed in location =, and -= is total
expenditure on consumption in location =.

We assume that land is inelastically supplied and owned by immobile landlords, who
receive land rents '= from workers as income and consume their local consumption bundle
(see Monte, Redding, and Rossi-Hansberg, 2018). Cobb-Douglas preferences across goods
and land imply that the expenditure share of labor income on land consumption is given
by (1 − U).20 Total labor income is the product of average wages,= and local population
!= . Land market clearing implies that equilibrium land rents are given by:

20See Davis and Ortalo-Magné (2011) for evidence in support of the constant housing expenditure share
implied by the Cobb-Douglas representation in equation (2).
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'= =
(1 − U),=!=

�=
. (10)

Our assumptions on competition and landlords’ consumption imply that total consumption
expenditures in each location equal total labor income, which in turn equals total
expenditures on goods produced in that location:

!=,= =
∑
8∈#

?1−f
8= %f−1

8 !8,8 . (11)

3.5.2 Location Choice and Welfare

Each worker chooses a plant that maximizes her utility. Worker [’s indirect utility from
working for plant {=, 9} is given by 1=9[

F=9

%U= '
1−U
=

. In the spirit of McFadden (1978), worker
[ faces a nested choice; we can decompose this choice problem into a choice of location
= and, within location =, a choice of plant 9 ∈ ℰ= . Using results from Lind and Ramondo
(2021), we show in Online Appendix B.1 that the labor share of location = is given by:

!=

!̄
≡ P {[ chooses =} =
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(
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=
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1−U
=

)n
∑
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ℓ
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where the “amenity wage”, 1
= is an aggregator of plant-level wages in location =:

, 1
= := ©«
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1−d
n

. (13)

Furthermore, Online Appendix B.1 shows that within-location (supply-side) labor
shares are given by:

;(= 9

!=
= P {[ chooses 9 | [ chooses n} =

F
n

1−d
=9∑

: :=∈E: F
n

1−d
=:

, (14)

where ;(= 9 represents labor supplied to plant {=, 9} given plant-level wages {F=:}:∈ℰ= .
Plants face an upward-sloping labor supply curve. To attract additional workers with
lower idiosyncratic preference draws, real wagesF=9/(%U='1−U

= ) must increase. When plant
{=, 9}’s real wage increases, if d > 0, it attracts workers from both within location = and
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other locations. As d → 1, within-location preferences become perfectly correlated.
In Online Appendix B.1, we show average realized utility, or welfare, is given by:

*̄ = Γ
(n − 1
n

) [∑
=∈#

�=

(
, 1
=

%U='
1−U
=

)n ] 1
n

, (15)

where Γ(·) denotes the gamma function.

3.6 Solution to Producer Problem

3.6.1 Plant Production

Under perfect competition, each intermediate good is produced by the plant with the lowest
marginal cost. We show in Online Appendix B.1 that within-location (demand-side) labor
shares are given by:

;�8 9

!8
= LD8 9

(
a, {Ī8: ,F8:}:∈ℰ8

)
, (16)

where ;�8 9 represents labor demand by plant {8, 9} given productivity scale parameters and
wages {Ī8: ,F8:}:∈ℰ8 . LD8 9 is homogeneous of degree zero and exhibits gross substitution
in both productivity scale parameters and wages.21 LD8 9 is also strictly greater than zero,
which ensures that all plants produce in equilibrium.22 Finally, a controls the elasticity of
LD8 9 with respect to both productivity scale parameters and wages ; as a increases, labor
demand becomes more elastic. We provide the exact form of LD8 9 in Online Appendix B.1.

We also show in Online Appendix B.1 that plants produce with realized average
productivity Î8 9 given by:

Î8 9 ≡ E
[
I8 9 (l8) | 9 produces l8

]
= E

[
I8 9 (l8)

]
RS8 9

(
a,

{
Ī8:

F8:

}
:∈ℰ8

)
, (17)

where E
[
I8 9 (l8)

]
= a

a+1Ī8 9 is �nite for all a > 0. RS8 9 denotes Ricardian spillovers

21In our model, gross substitution in productivity scale parameters is equivalent to mLD8 9

mĪ8 9
> 0 and mLD8 9

mĪ8:
<

0∀: ∈ ℰ8\ { 9} ; gross substitution in wages is equivalent to mLD8 9

mF8 9
< 0 and mLD8 9

mF8:
> 0∀: ∈ ℰ8\ { 9} .

22This is di�erent from models of granular �rms in international trade (e.g., Eaton, Kortum, and Sotelo,
2012; Gaubert and Itskhoki, 2021), where only a subset of �rms produces in equilibrium. In our (domestic)
setting, it is crucial that all plants produce in equilibrium in order to mimick the economic footprints of
plant-level networks in Census data.
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capturing productivity gains from comparative advantage across plants. It is bounded
between 1 and a+1

a
, homogeneous of degree zero in wage-adjusted productivity scale

parameters
{
Ī8:
F8:

}
:∈ℰ8

, decreasing in a , increasing in |ℰ8 |, and decreasing in Ī8 9
F8 9

. We provide
the exact form of RS8 9 in Online Appendix B.1.

3.6.2 Final Goods Production

Since plants and �nal goods producers are perfectly competitive, �nal goods are supplied
at marginal cost. This implies:

?=8 =<2=8 ≡ g=8
∫ 1

0
<28 (l8) 3l8 =, I

8 g=8, (18)

where<28 (l8) is the marginal cost to supply intermediate good l8 and the (Marshallian)
“e�ciency wage” , I

8
captures the average cost to produce one unit of output. Without

dispersion in wages, we would have , I
8

= ,8E

[
min 9 1

I
9

8
(l8 )

]
. However, because more

productive plants will o�er higher wages in equilibrium, the formula is somewhat more
subtle in our case. We show in Online Appendix B.1 that:

, I
8 = Z

(
a,

{
Ī8 9

F8 9

}
9∈ℰ8

)
, (19)

where the productivity aggregator Z is homogeneous of degree -1, decreasing in
wage-adjusted productivity scale parameters, and decreasing in |ℰ8 |. The parameter a
controls the relative importance of e�cient and ine�cient plants; as a increases, plants with
a higher wage-adjusted productivity scale parameter become relatively more important. We
provide the exact form ofZ in Online Appendix B.1.

3.7 General Equilibrium

De�ne the following endogenous objects: within-location labor shares l :=
{
;=9
!=

}
=∈# : 9∈ℰ=

,

within-location relative wages w :=
{
F=9
,=

}
=∈# : 9∈ℰ=

, county-level labor L := {!=}=∈# , and
county-level average wages W := {,=}=∈# . Moreover, de�ne the following exogenous
fundamentals: land endowments H := {�=}=∈# , amenity scale parameters B := {�=}=∈# ,
knowledge K := { =}=∈# , plant-level networks E :=

{
E 9

}
9∈� , and bilateral trade costs

τ := {g=8}{=,8}∈# 2 .
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We are ready to characterize equilibria of our model. Equilibrium labor allocations
and wages {l,w,L,W } are pinned down by equations (11) (total expenditure equals labor
income), (12) (county-level labor shares), (14) (within-location (supply-side) labor shares),
and (16) (within-location (demand-side) labor shares). Further, if {l,w,L,W } solve all four
equations, there exists an equilibrium with those labor allocations and wages and, given
fundamentals {H,B,K,E, τ }, we can recover the equilibrium values of all endogenous
objects in closed form. We thus refer to equilibria by their corresponding labor allocations
and wages, {l,w,L,W }.

Proposition 1. Given parameter values {U, V, f, n, \, a, d} and fundamentals

{H,B,K,E, τ }, if Un−n−1
Un

+ V ≤ 0 and 1+fV+(f−1) Un−n−1
Un

1+V (1−f)−f Un−n−1
Un

∈ [−1, 1], the equilibrium of

the model exists and is unique (up to a normalization in wages).

Proof. See Online Appendix B.2. �

The �rst condition in Proposition (1) guarantees that dispersion forces are (weakly)
stronger than agglomeration forces. The second condition is the same condition as in
Theorem 2 of Allen and Arkolakis (2014), subject to a relabeling of the parameters.23

The proof of Proposition (1) hinges critically on the separability of the within-location
equilibrium conditions from the across-location equilibrium conditions. We �rst prove
that each location has unique within-location labor shares and relative wages satisfying
equations (14) and (16). We then show that the unique within-location solution implies
that, in equilibrium, e�ciency wages and amenity wages are linear functions of average
wages. Finally, using the linearity of e�ciency wages and amenity wages, if the su�cient
conditions in Proposition (1) hold, we prove the existence of unique vectors of county-level
employment and (up to a normalization) county-level average wages satisfying equations
(11) and (12). In the �nal step of the proof, we show that the across-location equilibrium
conditions are isomorphic to (a discretized version of) the equilibrium conditions in Allen
and Arkolakis (2014) and apply the main theorem from Allen, Arkolakis, and Li (2020).24

23Allen and Arkolakis (2014) show that for certain parameter values the second condition is implied by the
�rst.

24Allen and Arkolakis (2014, Online Appendix A.2) in turn show that their model is isomorphic to a broad
class of gravity models, including models with exogenous entry (e.g., Eaton and Kortum, 2002; Melitz, 2003,
as considered in Chaney, 2008) and free entry (e.g., Krugman, 1980; Melitz, 2003, as considered in Arkolakis
et al., 2008), as well as economic geography models (e.g., Redding, 2016).
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3.8 Model Inversion

The following proposition shows that the model can be inverted to recover unique (up
to a normalization) values of {B,K} and {l,w} which are consistent with the observed
distribution of economic activity.

Proposition 2. Given parameter values {U, V, f, n, \, a, d}, fundamentals {H,E, τ }, and
observed data {L,W }, if \ < 1, there exist unique (up to a normalization) unobserved

fundamentals {B,K} and plant-level distributions of employment and wages {l,w} that
rationalize the data as an equilibrium of the model.

Proof. See Online Appendix B.2. �

We �rst prove that, given parameter values, fundamentals, and observed data, there exist
unique (up to a normalization) e�ciency wages that satisfy equation (11) (total expenditure
equals labor income). We then invert the formula for e�ciency wages (equation (19)) to
provide a recursive formulation for unobserved knowledge. We prove that, if \ < 1, this
recursive formulation is a contraction mapping. This implies the existence of a unique
vector of unobserved knowledge that generates the recovered e�ciency wages, which in
turn uniquely pins down the plant-level distributions of employment and wages. We �nally
show that there exist unique (up to a normalization) amenity scale parameters that satisfy
equation (12) (location labor shares).

4 Structural Estimation

4.1 Model Economy

We simulate an economy with a large number of locations, plants, and �rms that mirrors
the geography of production networks in U.S. Census data. Each location = = 1, ..., #
corresponds to a speci�c county. We assign each county its actual geographical coordinates
and land area using information from the U.S. Gazetteer Files provided by the Census
Bureau. Moreover, we assign each county its actual manufacturing employment and wages
using 1987 Census data. We use data from 1987 as our estimation targets reduced-form
estimates based on the MDP openings, which took place between 1982 and 1993.

We populate the economy with SC and MC plants and �rms as in 1987 Census data.
Key for our estimation and counterfactuals is the spatial allocation of MC plants. We assign
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MC plants to counties by matching their empirical distribution in Census data. As Figure
1 shows, this distribution is heavily skewed. While about 60% of MC plants are located in
the 10% most populous counties, the 50% least populous counties have only about 7% of
MC plants. We assign MC plants to �rms based on their empirical distribution in Census
data. As plants in our model are uniquely identi�ed by their location and �rm a�liation,
we assume that any given MC �rm has at most one plant per location. Also, we assume SC
�rms are single-plant �rms.25 Overall, our model economy consists of 328,000 plants.26

4.2 Parameters

We divide the parameters, � := {U, V,k, f, n, \, a, d, ^}, into two sets. The �rst consists
of parameters which we calibrate using values from the literature. We set the share of
housing in consumer expenditure (1 − U) equal to 0.34 (Davis and Ortalo-Magné 2011;
Monte, Redding, and Rossi-Hansberg, 2018), the elasticity of local �rm productivity to
agglomeration (V) equal to 0.023 (Gaubert, 2018), the elasticity of trade cost to distance (k )
equal to 0.43 (Monte, Redding, and Rossi-Hansberg, 2018), the elasticity of substitution (f)
equal to 4 (Bernard et al., 2003; Broda and Weinstein, 2006; Redding, 2016), and the amenity
shape parameter (n) equal to 3 (Redding, 2016; Bryan and Morten, 2019). The second set
consists of parameters which have no direct counterpart in the literature, and which we
therefore estimate: the knowledge-sharing parameter \ , the (Pareto) productivity shape
parameter a , the amenity correlation parameter d , and the parameter ^ described below.

4.3 Micro-Level Data Set

Our model features within-region, across-plant heterogeneity. Hence, plant-level micro
moments are necessary to identify the parameters. To this end, we employ an indirect
inference approach and target as moments reduced-form estimates—semi-elasticities
of plant-level employment, wages, and productivity to the MDP openings—that are
informative about plant-level outcomes. To obtain model-based estimates that correspond
to these reduced-form estimates, we simulate local productivity shocks that resemble the

25The ratio of SC plants to �rms in the 1987 CMF is 1.01; thus, practically all SC �rms are single-plant �rms.
26Our model economy has 275,000 SC plants and 53,000 MC plants, exactly as in the 1987 CMF. Figure A.1

of Online Appendix A shows that our model economy implies a realistic geography of manufacturing activity.
As in the data, most manufacturing plants are located in the North East, the Rust Belt, and along the West
coast, and to a lesser extent in the South East.
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MDP openings. This provides us with a micro-level data set with “pre-” and “post-shock”
observations, allowing us to estimate plant-level di�erence-in-di�erences regressions that
closely mirror those in our reduced-form analysis. We construct the data set in two steps.
Further details are provided in Online Appendix C.

Step 1. Pre-Shock Equilibrium and Recovery of Fundamentals. Given parameter values
and observed fundamentals, we recover the unobserved fundamentals and plant-level
distributions of employment and wages that rationalize the data as an equilibrium of
the model. Speci�cally, we assign each county its employment, wages, and observed
fundamentals using Census data. We then invert the equilibrium conditions of the model
and use its recursive structure to recover the unobserved county-level fundamentals
(amenity scale parameters and knowledge) and within-county plant-level distributions of
employment and wages that rationalize the data as an equilibrium of the model.

De�nition 1. Given parameter values � and fundamentals {H,B(�),K (�),E, τ (k )}, the
pre-shock equilibrium is given by {L,W , l(�),w(�)}.

We explicitly write B(�), K (�), l(�), and w(�) as a reminder that the unobserved
county-level fundamentals {B,K} and within-county plant-level distributions {l,w} are
functions of the parameters to be estimated. Proposition 2 shows that the model can be
inverted to recover unique (up to a normalization) values of {B,K} and {l,w}.

Step 2. Post-Shock Equilibrium. The second step involves re-computing the endogenous
objects after perturbing the pre-shock equilibrium with local productivity shocks that
resemble the MDP openings. Speci�cally, we randomly select 47 winner and runner-up
county pairs from the top quintile of the population distribution (as in the actual MDP
openings) and assume the MDP openings increase log local knowledge  8 in the winner
county by ^. The parameter ^, which measures the semi-elasticity of knowledge in the
winner county to the MDP openings, is jointly estimated with the other parameters. For
each MDP opening, we compute the post-shock equilibrium implied by the reallocation
of economic activity under the new distribution of knowledge. Precisely, holding �xed
all parameters and fundamentals (except in the winner county, where  8 increases) at
their pre-shock values, we solve for the unique county- and plant-level distributions of
employment and wages that constitute an equilibrium of the model.
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De�nition 2. Given parameter values� and fundamentals {H,B(�),K ′
2 (�),E, τ (k )}, the

post-shock equilibrium is characterized by {L′2 (�),W
′
2 (�), l

′
2 (�),w

′
2 (�)}.

The prime superscript denotes variables that are a�ected by the MDP openings, and 2
denotes “cases,” consistent with our reduced-form analysis.

Proposition 1 states that, under certain parametric restrictions, the post-shock
equilibrium is unique up to a normalization. It is easy to verify that these restrictions
hold under the calibrated parameter values. Proposition 2 states that we can recover
unique values of the unobserved fundamentals and plant-level distributions of employment
and wages that rationalize the data as an equilibrium of the model. Together, these two
uniqueness results imply that our counterfactuals yield determinate predictions.

4.4 Estimation

Using the micro-level data set, we run plant-level di�erence-in-di�erences regressions that
mirror those in our reduced-form analysis. This yields model-based estimates m(�) that
constitute the counterparts of our reduced-form estimates m. Given the estimates, the
parameter vector estimate �̂ minimizes the loss function (m −m(�))′G (m −m(�)),
where G is a positive de�nite weighting matrix set equal to the inverse of the sample
variance-covariance matrix of the data moments.

Panel A of Table 8 presents the estimation results.27 The parameter ^ measures the
semi-elasticity of knowledge in the winner county to the MDP openings. The estimated
value of 0.039 implies an increase in local knowledge which, in conjunction with the
(calibrated) elasticity of local productivity to agglomeration V , allows us to perfectly
match the local productivity response in the winner county. The parameter \ controls
the magnitude of the global productivity spillover. The estimated value of 0.94 implies a
signi�cant degree of knowledge sharing across plants within �rm boundaries, generating
productivity spillovers that are consistent with our reduced-form estimates. Finally,
the parameters d and a control within-location labor supply and demand, respectively.
Together, they determine the wage and employment responses to the global productivity
spillover. As for d , the estimated value of 0.61 implies within-location labor supply is

27Standard errors are calculated using conventional asymptotic theory. The sample variance-covariance
matrix is estimated via in�uence functions (Hampel, 2011); the Jacobian of the objective function is calculated
using numerical di�erentiation.
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highly elastic, albeit not perfectly elastic, generating meaningful within-location wage
heterogeneity. As for a , the estimated value of 0.013 implies a relatively high degree of
specialization across plants within a given location, implying a muted response of labor
demand to productivity changes.

Panel B compares the model-based estimates with their reduced-form counterparts.
We target four central moments which, as discussed above, are tightly linked to the four
parameters of interest: the local productivity spillover estimate (linked to ^), the global
productivity spillover estimate (linked to \ ), and the global employment and wage spillover
estimates (linked to d and a). As is shown, our model exactly matches all four moments,
a�rming the close link between structural parameters and economic forces in our model.
We note that our model also matches the other two spillover estimates well; it (almost)
exactly matches the local employment spillover estimate, and our estimate of the local wage
spillover lies comfortably within one standard error of the reduced-form estimate.

5 Counterfactuals

Given our parameter estimates, we can undertake counterfactuals to quantify the
signi�cance of knowledge sharing through plant-level networks for the distribution of
economic activity, as well as for the propagation and ampli�cation of local productivity
shocks. We �rst consider the e�ects of an increase in within-�rm, across-location
knowledge sharing on the distribution of economic activity. Subsequently, we consider
the general equilibrium e�ects of local productivity shocks, such as those arising from
place-based policies, with and without knowledge sharing between plants.

5.1 Distributional E�ects of Knowledge Sharing

In our model, the strength of within-�rm, across-location knowledge sharing is governed
by the structural parameter \ . Holding all (other) parameters and fundamentals �xed,
we counterfactually increase \ by 1% and solve for the (new) county- and plant-level
distributions of employment and wages that constitute an equilibrium of our model.
Intuitively, an increase in \ makes MC plants more productive. Given a reduction in
marginal costs, MC plants increase labor demand, pushing up nominal wages, but not
enough to o�set the reduction in marginal costs. As a result, goods prices decline, which

25



pushes up real wages. In equilibrium, counties with more MC plants experience relatively
large average real wage increases, as well as labor in�ows, while counties with fewer MC
plants experience smaller average real wage increases and labor out�ows.28

Figure 2 shows the distributional e�ects of an increase in \ . Counties are sorted
into percentiles based on their population in 1987 Census data. As can be seen, the
county-level population distribution is strongly skewed; the 10% most populous counties
have a population share of about 63%. Importantly, as shown in Figure 1, these counties
have about 60% of all MC plants. Hence, the productivity gains from an increase in \

are disproportionately concentrated in the most populous counties. As Figure 2 shows,
these counties experience large average real wage gains, as well as labor in�ows, while
less populous counties experience smaller average real wage gains and labor out�ows.
The combined e�ect—i.e., combining changes in real wages and labor �ows—is that the
most populous counties experience large gains in real GDP, while less populous counties
experience real GDP losses.29 Note that more populous counties also exhibit higher levels
of real GDP; the correlation between population and real GDP at the county level in 1987
is 92%. Accordingly, an increase in the strength of within-�rm, across-location knowledge
sharing widens economic disparities between regions: those with high real GDP become
richer, and those with low real GDP become poorer.

5.2 Knowledge Sharing and Local Productivity Shocks

Our reduced-form analysis shows signi�cant spillover e�ects of local productivity
shocks; treated plants in distant counties experience large increases in productivity and
employment. While informative, inferences drawn from our reduced-form analysis are
limited, for two reasons. For one, without a suitable empirical proxy for utility, it cannot
speak to the welfare implications of local productivity shocks. Second, since all plants in
the economy are a�ected through general equilibrium e�ects (labor �ows, goods trade),
non-treated plants in distant counties provide an imperfect counterfactual to quantify the
signi�cance of knowledge sharing for the ampli�cation of local productivity shocks. For
example, as (manufacturing) goods are tradable, changes in goods prices a�ect real wages

28While labor in�ows (out�ows) cause land prices to increase (decrease), this does not fully o�set the
nominal wage and goods price e�ects.

29In our model, county-level real GDP is ,=!=
%U= '

1−U
=

. Hence, for real GDP to decline in less populous counties,
the (percent) gain in average real wages must be less than the (percent) decrease in county-level employment.
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across all plants in the economy, including non-treated plants.
Our second counterfactual addresses both of these issues. We measure changes in

worker-level utility resulting from local productivity shocks, such as those arising from
place-based policies, with and without knowledge sharing between plants. In the scenario
with knowledge sharing, we implement Steps 1 and 2 of Section 4.3 using the estimated
parameter values. In the scenario without knowledge sharing, we do the same, except
we counterfactually set \ = 0.30 In both cases, we simulate productivity shocks at
the state level by increasing log local knowledge  8 in the state by ^.31 Together with
classical agglomeration forces, this implies state-level productivity increases by 4%. We
independently shock all 50 U.S. states and report averages across the 50 experiments.

5.2.1 Aggregate Welfare

We �rst quantify by how much knowledge sharing ampli�es the aggregate welfare e�ects
of local productivity shocks. Aggregate welfare is computed as in equation (15). Without
knowledge sharing, a 4% state-level productivity shock generates, on average, a 0.083%
increase in aggregate productivity and a corresponding 0.053% increase in aggregate
welfare. With knowledge sharing, aggregate productivity increases by 0.15%, while
aggregate welfare increases by 0.087%. Thus, knowledge sharing through plant-level
networks signi�cantly ampli�es the welfare gains from local productivity shocks.

5.2.2 Worker-Level Heterogeneity

We next explore heterogeneity in worker-level utility changes from local productivity
shocks. In models with labor mobility and Fréchet-distributed idiosyncratic preferences
over locations, changes in average utility are equalized across locations. However, utility
changes are not (generically) equalized across individuals. To explore heterogeneity in
utility changes at the individual level, we compare workers based on their ex-ante (i.e.,
pre-shock) location and plant choices.32 Speci�cally, we compare the utility changes of i)
workers who ex-ante live in the state with the productivity shock, ii) workers who ex-ante

30If \ = 0, our model admits a representative plant in each location, similar to a standard Armington model.
31Simulating county-level productivity shocks yield similar results, except the welfare gains are smaller.
32Equalization of changes in average utility across locations is based on comparing the utilities of workers

who ex-post live in a location with the utilities of workers who ex-ante live in the location. Thus, if there is
either in- or out-migration, equalization of changes in average utility is based on comparing di�erent sets of
workers. By contrast, we hold individual workers �xed and compare their utilities before and after the shock.
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live in another state working for a plant that is connected to the shocked state (through the
�rm’s plant-level network), and iii) workers who ex-ante live in another state working for
a plant that is not connected to the shocked state.

Table 9 presents the results. Without knowledge sharing, only plants in the shocked
state become more productive. Workers in that state experience utility gains of 1.19%,
driven by wage increases and falling prices of goods produced in the state (and only
partly o�set by rising land prices). Worker in other states also bene�t from the fall in
goods prices, albeit much less due to the gravity relationship in goods trade. Their utility
increases by 0.029% (non-connected plants) and 0.028% (connected plants), respectively.
Thus, without knowledge sharing between plants, workers in other states bene�t similarly
from the productivity shock, regardless of which type of plant they work for.

With knowledge sharing, some plants in other states also become more productive.
Workers in the state with the productivity shock experience utility gains of 1.22%, which
is only slightly higher than before. For those workers, the wage and price e�ects in their
own state remain the driving force behind their utility gains. In contrast, for workers in
other states, the utility gains are now much higher than before. As some plants in those
states become more productive, goods produced in those states become cheaper, which
mainly bene�ts workers in (or near) those states due to the gravity relationship in goods
trade. As a result, workers at non-connected plants now experience utility gains of 0.056%,
which is almost twice as large as before. Crucially, workers at connected plants experience
utility gains of 0.30%, which is ten times larger than before. Those workers bene�t from
nominal wage increases, in addition to falling goods prices, as their plants have become
more productive. Hence, while knowledge sharing between plants bene�ts all workers, it
especially bene�ts workers in other states working at connected plants.

5.2.3 Region-Level Heterogeneity

To explore the regional implications of the worker-level heterogeneity, we average changes
in worker-level utility at the county level based on workers’ ex-ante location choices.
In Figure 3, counties are sorted into percentiles based on their population in 1987. As
can be seen, without knowledge sharing, all counties bene�t similarly from a state-level
productivity shock; the distribution of average utility gains is e�ectively �at. With
knowledge sharing, the entire distribution is shifted upward. Importantly, it is highly
skewed; the most populous counties, which have the most connected plants, exhibit by
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far the largest average utility gains. Hence, knowledge sharing between plants leads to a
highly uneven distribution of the welfare gains from local productivity shocks.

6 Conclusion

We provide both reduced-form and model-based evidence that local productivity spillovers
propagate throughout the economy through the plant-level networks of multi-region �rms.
In our reduced-form setting, we show that large manufacturing plant openings not only
raise the productivity of local incumbent plants but also of distant plants hundreds of
miles away, which belong to multi-region �rms that are exposed to the local productivity
spillover through one of their plants. This “global” productivity spillover does not decay
with geographical distance and is stronger in (knowledge-based) industries characterized
by mutual R&D �ows and patent citations.

To quantify the signi�cance of plant-level networks for the propagation and
ampli�cation of local productivity shocks, we develop and estimate a quantitative spatial
model with goods trade, labor mobility, plant-level networks, and a rich geography,
where plants of the same �rm, across regions, are linked through shared knowledge.
Counterfactuals show that knowledge sharing between plants widens disparities across
regions; those with high real GDP become richer, whereas those with low real GDP
become poorer. Moreover, while knowledge sharing ampli�es the aggregate e�ects of local
productivity shocks, it leads to a highly uneven distribution of the welfare gains—highly
populous regions, which tend to be more connected (through plant-level networks) to the
region with the productivity shock, experience by far the largest average utility gains.
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Figure 1: Spatial Allocation of MC Plants

This �gure shows the distribution of MC plants across counties. Counties are sorted into deciles
based on their population in 1987 Census data. The gray bars depict the share of MC plants, relative
to all MC plants in the economy, associated with a given decile in the 1987 CMF. The blue bars depict
the corresponding shares in the model.
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Figure 2: Increase in Knowledge Sharing

This �gure shows changes in average real wages and employment at the county level from a 1%
increase in \ . Counties are sorted into percentiles based on their population in 1987 Census data.

Panel A: Changes in average real wages

Panel B: Changes in employment
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Figure 3: Propagation and Ampli�cation of Local Productivity Shocks

This �gure shows changes in average worker-level utility at the county level from a 4% increase in
productivity in one state. All 50 states are independently shocked; the �gure shows averages across
all 50 experiments. Counties are sorted into percentiles based on their population in 1987 Census
data. Panel A considers an economy without knowledge sharing between plants. Panel B considers
an economy with knowledge sharing between plants.

Panel A: Without knowledge sharing

Panel B: With knowledge sharing
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Table 1: Descriptive Statistics

Panel A provides plant-level statistics for the local spillover sample consisting of 157,400 plant-year
observations. Panel B provides plant-level statistics for the global spillover sample consisting of
422,500 plant-year observations. Panel C provides �rm-level statistics for the parent �rms associated
with the plants in Panel B. Column (4) reports p-values of the di�erence between columns (2) and (3).
Wages are in $1,000. All statistics are from the year before the MDP opening. Standard deviations
are in parentheses. The sample period is from 1977 to 1998.

(1) (2) (3) (4)

Panel A: All Winner Loser p-value
(2)-(3)

Employees 141.7 146.3 139.8 0.377
(571.4) (589.3) (562.8)

Wages 39.5 41.5 38.7 0.454
(852.7) (877.2) (763.9)

TFP 0.002 0.003 0.001 0.672
(0.586) (0.610) (0.551)

Panel B: All Treated Control p-value
(2)-(3)

Employees 268.2 272.6 266.3 0.482
(846.7) (903.4) (821.8)

Wages 35.9 34.3 36.5 0.535
(202.2) (311.5) (162.9)

TFP 0.016 0.017 0.016 0.903
(0.640) (0.653) (0.637)

Panel C: All Treated Control p-value
(2)-(3)

Employees 1,988 1,968 1,997 0.834
(6,702) (6,862) (6,548)

Plants 7.4 7.3 7.5 0.661
(10.9) (10.6) (11.0)

Counties 5.4 5.3 5.5 0.532
(7.7) (7.2) (7.8)

States 2.7 2.6 2.8 0.448
(2.8) (2.6) (2.9)
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Table 2: Local Productivity Spillover

The dependent variable is TFP at the plant level. MDP is an indicator for the winner county that is
one from the year of the MDP opening onward. In column (2), (< 50 miles), (50 to 100 miles), and
(100 to 250 miles) are indicators for whether a plant lies within 50 miles, between 50 and 100 miles,
and between 100 and 250 miles, respectively, of the MDP. Observations are weighted by plant-level
employment. Standard errors are double clustered at the county and year level. The sample period
is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

(1) (2)

MDP 0.040**
(0.016)

MDP × (<50 miles) 0.043***
(0.015)

MDP × (50 to 100 miles) 0.027*
(0.014)

MDP × (>100 miles) 0.011
(0.010)

Plant FE Yes Yes
Industry × year FE Yes Yes
Case FE Yes Yes

R-squared 0.88 0.86
Observations 157,000 2,209,000
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Table 3: Global Productivity Spillover

The dependent variable is TFP at the plant level. MDP is an indicator for whether the plant’s parent
�rm has a plant in the winner county before and after the MDP opening. The indicator is one from
the year of the MDP opening onward. All samples are restricted to plants of MC �rms outside the
winner or runner-up counties. Observations are weighted by plant-level employment. Standard
errors are double clustered at the county and year level. The sample period is from 1977 to 1998. *,
**, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

(1) (2) (3)

MDP 0.018** 0.020** 0.018**
(0.007) (0.008) (0.008)

Plant FE Yes Yes Yes
Industry × county × year FE No Yes Yes
Industry × year FE Yes - -
Case FE Yes - Yes

Countrol group Plants of Plants of Plants of
runner-up �rms MC �rms runner-up �rms

in same county in same county

R-squared 0.87 0.86 0.88
Observations 1,407,000 1,046,000 423,000

40



Table 4: Distance to MDP

This table presents variants of the regression in column (3) of Table 3 in which treated plants in close proximity to the MDP are excluded
from the sample. Observations are weighted by plant-level employment. Standard errors are double clustered at the county and year level.
The sample period is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

Excluding plants Excluding plants Excluding plants Excluding plants Excluding plants
within 100 within 250 within 500 in MDP state in MDP Census

miles of MDP miles of MDP miles of MDP division

(1) (2) (3) (4) (5)

MDP 0.018** 0.017** 0.018** 0.018** 0.018**
(0.007) (0.007) (0.008) (0.008) (0.008)

Plant FE Yes Yes Yes Yes Yes
Industry × county × year FE Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.89 0.88 0.88
Observations 402,000 365,000 286,000 395,000 345,000
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Table 5: Industries, R&D Flows, and Patent Citations

This table presents variants of the regression in column (3) of Table 3. In columns (1) and (2), both terms in equation (1) are interacted with a
dummy variable indicating whether the treated plant is in the same 4-digit SIC code industry as eiher the �rm’s plant in the winner county
(“winner plant”) or the MDP. In columns (3) to (6), both terms in equation (1) are interacted with measures of either mutual R&D �ows or
mutual patent citations between the industry of the treated plant and either the industry of the �rm’s plant in the winner county or the
industry of the MDP. Observations are weighted by plant-level employment. Standard errors are double clustered at the county and year
level. The sample period is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

Same industry Mutual R&D �ows Mutual patent citations

(1) (2) (3) (4) (5) (6)

MDP 0.017** 0.017** 0.014* 0.015* 0.013* 0.013*
(0.008) (0.008) (0.008) (0.008) (0.008) (0.007)

MDP × "winner plant" industry 0.011** 0.581** 0.324*
(0.005) (0.240) (0.168)

MDP × MDP industry 0.012** 0.533** 0.356**
(0.005) (0.263) (0.175)

Plant FE Yes Yes Yes Yes Yes Yes
Industry × county × year FE Yes Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes Yes

R-squared 0.88 0.88 0.88 0.88 0.88 0.88
Observations 423,000 423,000 423,000 423,000 423,000 423,000
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Table 6: Local Employment and Wage Spillovers

This table presents variants of the regressions in Table 2 in which the dependent variable is
either plant-level employment or plant-level wages. Observations are weighted by plant-level
employment. Standard errors are double clustered at the county and year level. The sample period
is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

Employment Wages

(1) (2) (3) (4)

MDP 0.035*** 0.037**
(0.013) (0.016)

MDP × (< 50 miles) 0.037*** 0.039**
(0.013) (0.017)

MDP × (50 to 100 miles) 0.021** 0.015
(0.010) (0.014)

MDP × (100 to 250 miles) 0.005 0.004
(0.006) (0.010)

Plant FE Yes Yes Yes Yes
Industry × year FE Yes Yes Yes Yes
Case FE Yes Yes Yes Yes

R-squared 0.97 0.96 0.80 0.75
Observations 157,000 2,209,000 157,000 2,209,000
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Table 7: Global Employment and Wage Spillovers

This table presents variants of the regressions in Table 3 in which the dependent variable is either plant-level employment or plant-level
wages. Observations are weighted by plant-level employment. Standard errors are double clustered at the county and year level. The sample
period is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

Employment Wages

(1) (2) (3) (4) (5) (6)

MDP 0.017*** 0.017** 0.016** 0.001 0.003 0.002
(0.006) (0.007) (0.007) (0.004) (0.005) (0.004)

Plant FE Yes Yes Yes Yes Yes Yes
Industry × county × year FE No Yes Yes No Yes Yes
Industry × year FE Yes - - Yes - -
Case FE Yes - Yes Yes - Yes

Control group Plants of Plants of Plants of Plants of Plants of Plants of
runner-up �rms MC �rms runner-up �rms runner-up �rms MC �rms runner-up �rms

in same county in same county in same county in same county

R-squared 0.98 0.96 0.98 0.58 0.62 0.58
Observations 1,407,000 1,046,000 423,000 1,407,000 1,046,000 423,000

44



Table 8: Estimation Results

Panel A shows the parameter estimates along with the standard errors. Panel B shows the model
moments along with the reduced-form estimates. Targeted refers to moments that are targeted in
the estimation.

Panel A: Parameter Estimates

Estimate Standard error

^ 0.039 0.008
\ 0.94 0.293
d 0.61 0.333
a 0.013 0.004

Panel B: Model Moments vs. Data Moments

Data Model

Targeted
TFP (local) 0.04 0.04
TFP (global) 0.018 0.018
Employment (global) 0.016 0.016
Wages (global) 0.002 0.002

Non-targeted
Employment (local) 0.035 0.034
Wages (local) 0.037 0.027

Table 9: Worker-Level Heterogeneity

This table shows changes in worker-level utility (in %) from a 4% increase in productivity in one
state for i) workers in the shocked state, ii) workers in other states at plants that are not connected
to the shocked state, and iii) workers in other states at plants that are connected to the shocked
state. All 50 states are independently shocked; the table reports averages across all 50 experiments.

Without With
knowledge knowledge

sharing sharing

Shocked 1.19 1.22
Non-connected 0.029 0.056
Connected 0.028 0.30
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A Additional Figures and Tables

Figure A.1: Geography of Economic Activity

In Panel A, counties are sorted into deciles based on the number of plants in the 1987 County
Business Patterns (CBP). The map is based on CBP data due to Census Bureau disclosure
requirements. In Panel B, counties are sorted into deciles based on the number of plants in the
model. A darker color indicates more plants. Counties with no available data in the 1987 CBP are
shown in white.

Panel A: Data

Panel B: Model
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Table A.1: Treatment E�ect Dynamics

Columns (1) and (2) present variants of the regressions in column (1) of Table 2 (local productivity
spillover) and column (3) of Table 3 (global productivity spillover), respectively, where Post is
replaced with event-year dummies. MDP(0) denotes the year of the MDP opening. The base year
is g = −5. Observations are weighted by plant-level employment. Standard errors are double
clustered at the county and year level. The sample period is from 1977 to 1998. *, **, and *** denotes
signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

(1) (2)

MDP(-4) -0.004 0.001
(0.024) (0.013)

MDP(-3) 0.006 0.004
(0.024) (0.011)

MDP(-2) -0.005 -0.003
(0.021) (0.010)

MDP(-1) 0.002 0.001
(0.020) (0.009)

MDP(0) 0.017 0.006
(0.018) (0.008)

MDP(1) 0.038** 0.015*
(0.018) (0.008)

MDP(2) 0.041** 0.019*
(0.020) (0.010)

MDP(3) 0.049*** 0.022**
(0.022) (0.010)

MDP(4) 0.050** 0.024**
(0.023) (0.011)

MDP(5) 0.048** 0.023**
(0.022) (0.011)

Plant FE Yes Yes
Industry × year FE Yes -
Industry × county × year FE - Yes
Case FE Yes Yes

R-squared 0.88 0.88
Observations 157,000 423,000
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Table A.2: Input-Output Linkages (Local Productivity Spillover)

This table presents variants of the regression in column (1) of Table 2 in which both terms in equation
(1) are interacted with measures of either input �ows or output �ows between the industry of the
incumbent plant and the industry of the MDP. The measures of input and output �ows are Input8 9 ≡
max{Input8←9 , Input8→9 } and Output8 9 ≡ max{Output8←9 , Output8→9 } at the 3-digit SIC code level
from Ellison, Glaeser, and Kerr (2010), where Input8←9 (Output8→9 ) is the share of industry i’s
inputs (outputs) that come from (are sold to) industry j. Observations are weighted by plant-level
employment. Standard errors are double clustered at the county and year level. The sample period
is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

Input �ows Output �ows

(1) (2)

MDP 0.037** 0.038**
(0.017) (0.016)

MDP × MDP industry 0.476 0.339
(0.520) (0.476)

Plant FE Yes Yes
Industry × year FE Yes Yes
Case FE Yes Yes

R-squared 0.88 0.88
Observations 157,000 157,000
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Table A.3: Input-Output Linkages (Global Productivity Spillover)

This table presents variants of the regression in column (3) of Table 3 in which both terms in equation
(1) are interacted with measures of either input �ows or output �ows between the industry of the
treated plant and either the industry of the �rm’s plant in the winner county (“winner plant”)
or the industry of the MDP. The measures of input and output �ows are described in Table A.2.
Observations are weighted by plant-level employment. Standard errors are double clustered at the
county and year level. The sample period is from 1977 to 1998. *, **, and *** denotes signi�cance at
the 10%, 5%, and 1% level, respectively.

TFP

Input �ows Output �ows

(1) (2) (3) (4)

MDP 0.016** 0.017** 0.017** 0.017**
(0.008) (0.008) (0.008) (0.008)

MDP × "winner plant" industry 0.242 0.161
(0.291) (0.234)

MDP × MDP industry 0.194 0.138
(0.276) (0.250)

Plant FE Yes Yes Yes Yes
Industry × county × year FE Yes Yes Yes Yes
Case FE Yes Yes Yes Yes

R-squared 0.88 0.88 0.88 0.88
Observations 423,000 423,000 423,000 423,000
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Table A.4: Financial Constraints (Local Productivity Spillover)

This table presents variants of the regression in column (1) of Table 2 in which both terms in
equation (1) are interacted with either the KZ-index of Kaplan and Zingales (1997) or the SA-index of
Hadlock and Pierce (2010). Observations are weighted by plant-level employment. Standard errors
are double clustered at the county and year level. The sample is restricted to �rms that have a match
in Compustat. The sample period is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%,
5%, and 1% level, respectively.

TFP

KZ-index SA-index

(1) (2)

MDP 0.041*** 0.040***
(0.018) (0.017)

MDP × FC -0.001 -0.001
(0.002) (0.004)

Plant FE Yes Yes
Industry × year FE Yes Yes
Case FE Yes Yes

R-squared 0.89 0.89
Observations 42,000 42,000
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Table A.5: Financial Constraints (Global Productivity Spillover)

This table presents variants of the regression in column (3) of Table 3 in which both terms in
equation (1) are interacted with either the KZ-index of Kaplan and Zingales (1997) or the SA-index of
Hadlock and Pierce (2010). Observations are weighted by plant-level employment. Standard errors
are double clustered at the county and year level. The sample is restricted to �rms that have a match
in Compustat. The sample period is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%,
5%, and 1% level, respectively.

TFP

KZ-index SA-index

(1) (2)

MDP 0.018** 0.019**
(0.008) (0.009)

MDP × FC -0.000 -0.001
(0.002) (0.002)

Plant FE Yes Yes
Industry × county × year FE Yes Yes
Case FE Yes Yes

R-squared 0.90 0.90
Observations 130,000 130,000
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Table A.6: Industries, R&D Flows, and Patent Citations
(Local Productivity Spillover)

This table presents variants of the regression in column (1) of Table 2. In column (1), both terms
in equation (1) are interacted with a dummy variable indicating whether the incumbent plant is in
the same 4-digit SIC code industry as the MDP. In columns (2) and (3), both terms in equation (1)
are interacted with measures of either mutual R&D �ows or mutual patent citations between the
industry of the incumbent plant and the industry of the MDP. The measures of mutual R&D �ows
and mutual patent citations are described in Section 2.5. Observations are weighted by plant-level
employment. Standard errors are double clustered at the county and year level. The sample period
is from 1977 to 1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

TFP

Same Mutual R&D Mutual patent
industry �ows citations

(1) (2) (3)

MDP 0.039** 0.034** 0.028*
(0.017) (0.017) (0.016)

MDP × MDP industry 0.032** 0.997** 0.723**
(0.015) (0.401) (0.334)

Plant FE Yes Yes Yes
Industry × year FE Yes Yes Yes
Case FE Yes Yes Yes

R-squared 0.88 0.88 0.88
Observations 157,000 157,000 157,000
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Table A.7: Distance to MDP (Global Employment Spillover)

This table presents variants of the regressions in Table 4 in which the dependent variable is plant-level employment. Observations are
weighted by plant-level employment. Standard errors are double clustered at the county and year level. The sample period is from 1977 to
1998. *, **, and *** denotes signi�cance at the 10%, 5%, and 1% level, respectively.

Employment

Excluding plants Excluding plants Excluding plants Excluding plants Excluding plants
within 100 within 250 within 500 in MDP state in MDP Census

miles of MDP miles of MDP miles of MDP division

(1) (2) (3) (4) (5)

MDP 0.017** 0.016** 0.016** 0.016** 0.017**
(0.007) (0.008) (0.008) (0.008) (0.008)

Plant FE Yes Yes Yes Yes Yes
Industry × county × year FE Yes Yes Yes Yes Yes
Case FE Yes Yes Yes Yes Yes

R-squared 0.98 0.98 0.98 0.98 0.98
Observations 402,000 365,000 286,000 395,000 345,000
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B Model Appendix

B.1 Derivations

B.1.1 Consumer Problem

In this section, we derive the labor supply functions and equilibrium utility implied by the
solution to the consumer’s problem. Equation (3) implies that the CDF of indirect utility is
given by:

P
©«
#⋂
==1

⋂
9∈ℰ=

{
1=9

F=9

%U='
1−U
=

≤ C=9,
}ª®¬ = 4G?

−
∑
=∈#

©«
∑
9∈ℰ=

�
1

1−d
=

(
F=9

%U='
1−U
=

) n
1−d
C
− n

1−d
=9

ª®¬
1−d . (A.1)

Using the notation of Lind and Ramondo (2021), the multivariate Fréchet CDF in equation
(A.1) is generated by the Archimedean copula:
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Moreover, by Lemma A.5 (part 1) in Lind and Ramondo (2021), (supply-side) plant
labor shares are given by:
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and within-location (supply-side) labor shares are given by:
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B.1.2 Plant Problem

In this section, we provide the solution to the plant’s problem. For formulae provided in
this section, assume plants are ordered in descending order by Ī8 9

F8 9
(e.g., 9 = 1 corresponds to

the most e�cient plant) for all references to plant identity. Let �8 B |ℰ8 | denote the number
of plants in location 8 .

Distribution of Productivity and E�ciency Wages. Let /8 9 be the random variable
corresponding to �rm 9 ’s idiosyncratic productivity draw I8 9 (l). Since 1

/8 9
is Pareto

distributed with scale parameter 1
Ī8 9

and shape parameter a , the CDF of 1
/8 9

is given by:
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corresponds to �rm 9 ’s idiosyncratic e�ciency wages. Its
CDF is given by:
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with corresponding density:
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The random variable ,̄8 := min 9 ,̄8 9 represents (equilibrium) region-level idiosyncratic
e�ciency wages. Its CDF is given by:
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, (A.4)

with corresponding density:
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Output Shares. We derive within-market plant-level output shares as an intermediate
quantity that is useful for both productivity and labor shares. Output shares are given by:
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Plugging in equations (A.2) and (A.3) and solving the integral gives:
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Realized Productivity and Inverse Productivity. For realized productivity, we have
the following expression:
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Plugging in equations (A.2), (A.3), and (A.6), and solving the integral gives:
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Ī8 9

F8 9

) 9a+1
ΠM
:=9+1

(
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This gives the exact form of RS8 9 in equation (17). Let z8 9 represent realized inverse
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productivity:

z8 9 ≡ El
[

1
I8 9 (l)

��� 9 produces l
]
=

1
B8 9F8 9

∫ ∞

0
C 5,̄8 9

(C) Π:≠ 9
(
1 − �,̄8:

(C)
)
3C . (A.8)

Plugging in equations (A.2) and (A.3) and solving the integral gives:
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Labor Demand. Our production technology implies that plant-level labor (;8 9 ) per unit
of �nal goods produced in location 8 (@8 ) is ;8 9

@8
= B8 9z8 9 . Summing over all plants 9 ∈ ℰ8 gives:
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This implies that within-location (demand-side) labor shares are given by:
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With some manipulation, plugging in equation (A.8) gives:
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Ī8:
F8:

)−a )
∑
K∈ℰ8

1
F8K

( (
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This provides the exact form of LD8 9 in equation (16).

County-Level E�ciency Wages. Equilibrium county-level e�ciency wages are given
by the following expression:
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This gives the exact form ofZ in equation (19).

B.2 Proofs

B.2.1 Uniqueness of the Equilibrium

In this section, we provide the proof of Proposition 1. We prove two intermediate claims
before proving the proposition.

Claim 1. For each market =, given dispersion in productivity scale parameters, captured by{
 
9
−=

}
9∈ℰ=

, there exists unique within-county labor shares and relative wages
{
;=9
!=
,
F=9
,=

}
9∈ℰ=

that

satisfy equations (14) and (16).

Proof. The within-location labor market equilibrium is characterized by setting
within-location labor supply (equation (14)) equal to within-location labor demand
(equation (16)):
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If equation (A.13) characterizes an excess demand system with the gross substitution
property, equilibrium labor shares and relative wages are unique. This requires four
properties: (i) �=9 is continuous, (ii) �=9 is homogeneous of degree zero, (iii)

∑
9∈ℰ= �=9 = 0,

and (iv) �=9 exhibits gross substitution in wages.
It is straightforward to show that labor demand is continuous by plugging equation

(A.8) into equation (A.10) and applying the dominated convergence theorem; by inspection
of equation (14), labor supply is clearly continuous. Thus, property (i) holds. Properties (ii)
and (iii) follows immediately by inspection of equations (14) and (A.11).33 We show that
property (iv) holds for each of supply and demand. For labor supply, using the labor supply

33Note that labor demand is also homogeneous of degree zero in {Ī=: }:∈ℰ=
; this property ensures that the

within-location equilibrium depends only on
{
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}
9 ∈ℰ=

.
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function in equation (14) we have:
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mF8 9
=

1
F8 9

(
(a − 1)ℒ�8 9 − aΠ:≠ 9

(
1 − �,̄8:

(
F8 9

Ī8 9

)))
<

a

F8 9
ℒ�8 9 ,

which implies mLD=9
mF8 9

< 0 and mLD=9
mF8:

> 0∀: ∈ ℰ8\ { 9}. �

Claim 2. For each market =, there exist unique functions 6=, ℎ= : R�=++ → R++ such that,

∀
{
F=9

}
9∈ℰ= that satisfy equation (A.13), the following holds: (1), 1

= = ,=6=

({
 
9
−=

}
9∈ℰ=

)
,

and (2), I
= =,=!

−V
=  −1

= ℎ=

({
 
9
−=

}
9∈ℰ=

)
.

Proof. We can re-write equation (13) as, 1
= = ,=

(∑
9∈ℰ=

(
F=9
,=

) n
1−d

) 1−d
n

. By Claim 1, ∀=, 9 ,

we can express the unique relative wage F=9
,=

= 6̃=9

({
 
9
−=

}
9∈ℰ=

)
for some unique function

6̃=9 : R�=++ → R++. Thus:

, 1
= =,=

©«
∑
9∈ℰ=

(
6̃=9

({
 
9
−=

}
9∈ℰ=

)) n
1−d ª®¬

1−d
n

︸                                  ︷︷                                  ︸
=:6=

({
 
9
−=

}
9 ∈ℰ=

)
. (A.14)
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Similarly, we can re-write e�ciency wages (equation (A.12)) as:

, I
= =,=!

−V
=  −1

=

�=∑
9=1

©«
(
 
9
−=

)\
6̃=9

({
 ℓ−=

}
ℓ∈ℰ=

) ª®®¬
−1 ©«

( (
 
9
−=

)\
6̃=9

(
{ ℓ−=}ℓ∈ℰ=

) ) 9
Π:≤ 9

( :−=)\
6̃=:

(
{ ℓ−=}ℓ∈ℰ=

)
ª®®®®®®®¬

a (
− a

(a 9 − 1) (a ( 9 − 1) − 1)

)
︸                                                                                               ︷︷                                                                                               ︸

=:ℎ=
({
 
9
−=

}
9 ∈ℰ=

)

.

(A.15)
�

Using the results in Claims 1 and 2, we proceed with the proof of Proposition 1.

Proposition 1. Given parameter values {U, V, f, n, \, a, d} and fundamentals

{H,B,K,E, τ }, if Un−n−1
Un

+ V < 0 and 1+fV+(f−1) Un−n−1
Un

1+V (1−f)−f Un−n−1
Un

∈ [−1, 1], the equilibrium of

the model exists and is unique (up to a normalization in wages).

Proof. Equations (10), (12), (15), and (A.14) imply:

%= =

[
!̄*̄ −nΓ(n − 1

n
)n (1 − U)n (U−1)

] 1
Un

︸                                     ︷︷                                     ︸
=:,̃

,=!
Un−n−1
Un

= �
1
Un
= �

1−U
U

=

(
6=

({
 
9
−=

}
9∈ℰ=

))U
︸                              ︷︷                              ︸

=:i=

. (A.16)

Let o= :=  −1
= ℎ=

({
 
9

−8

}
9∈ℰ8

)
. Setting equation (A.16) equal to equation (8) and plugging in

equations (18) and (A.15) gives:

, 1−f
= !

(1−f) Un−n−1
Un

= =
∑
8∈#

,̃ f−1, 1−f
8 !

V (f−1)
8

o1−f
8 if−1

= g1−f
=8 . (A.17)

Plugging equations (18), (A.15), and (A.16) into equation (11) gives:

, f
= !

1+V (1−f)
= =

∑
8∈#

,̃ f−1, f
8 !

1+(f−1) Un−n−1
Un

8
if−1
8 o1−f

= g1−f
8= . (A.18)
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Equations (A.17) and (A.18) are isomorphic to (a discretized version of) equations (10) and
(11), respectively, in Allen and Arkolakis (2014).34 We conclude the proof by applying
Theorem 1, Remarks 2 and 3, from Allen, Arkolakis, and Li (2020). First, employing the
notation from Remark 3 gives:

Γ −K =

[
1 − f (1 − f) Un−n−1

Un

f 1 + V (1 − f)

]
,

B =

[
1 − f V (f − 1)
f 1 + (f − 1) Un−n−1

Un

]
.

When Un−n−1
Un
+ V ≤ 0, this yields the elasticity matrix:

A =
��B (Γ −K)−1��

� =


Un−n−1
Un
−1

f Un−n−1
Un
−(1+V (1−f))

f ( Un−n−1
Un
+V)

f Un−n−1
Un
−(1+V (1−f))

(f−1)( Un−n−1
Un
+V)

f Un−n−1
Un
−(1+V (1−f))

−1−V
f Un−n−1

Un
−(1+V (1−f))

 ,
where |·|� denotes element-wise absolute value operator. The eigenvalues of A are _ =

1 and _ =
1+fV+(f−1) Un−n−1

Un

1+V (1−f)−f Un−n−1
Un

. Thus if 1+fV+(f−1) Un−n−1
Un

1+V (1−f)−f Un−n−1
Un

∈ [−1, 1], d (A) = 1. Finally, since the
substituted system is a constant elasticity system, by Remark 2 of Allen, Arkolakis, and Li
(2020), if d (A) = 1, the equilibrium is unique (up to a normalization in wages). �

B.2.2 Uniqueness of the Inversion

In this section, we provide the proof of Proposition 2.

Proposition 2. Given parameter values {U, V, f, n, \, a, d}, fundamentals {H,E, τ }, and
observed data {L,W }, if \ < 1, there exist unique (up to a normalization) unobserved

fundamentals {B,K} and plant-level distributions of employment and wages {l,w} that
rationalize the data as an equilibrium outcome of the model.

We break the proof into three sub-claims.
34The isomorphism holds under the following parameter restrictions (with the left-hand side representing

Allen and Arkolakis (2014, AA) and the right-hand side representing our setup): (1) U�� = V , (2) V�� = Un−n−1
Un

,
and (3) f�� = f . Under these restrictions, given the same wage normalization and inputs, both models
generate the same equilibrium labor allocations and wages, {L,W }.
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Claim 3. Given parameter values {U, V, f, n, \, a, d}, fundamentals {E, τ }, and observed data
{L,W }, there exists a unique (up to a normalization) set of county-level e�ciency wages{
, I
8

}
8∈# that is consistent with an equilibrium of the model.

Proof. Plugging equations (8) and (18) into equation (11) gives:

�=

({
, I
8

}
8∈#

)
:= F=!= −

∑
8∈#


©«

, I
= g8=(∑

ℓ∈#
(
, I
ℓ
g8ℓ

)1−f
) 1

1−f

ª®®®¬
1−f

!8F8

 = 0. (A.19)

If equation (A.19) characterizes an excess demand system with the gross substitution
property, the set of, I

8
that solve it are unique (up to a normalization). This requires four

properties: (i) �= is continuous, (ii) �= is homogenous of degree zero, (iii)
∑
9∈ℰ= �= = 0,

and (iv) �= exhibits gross substitution. Properties (i) and (ii) follow immediately from
inspection. Property (iii) follows from:

∑
=

�= =
∑
=

F=!= −
∑
8∈#

∑
=∈#

(
, I
= g8=

)1−f∑
ℓ∈#

(
, I
ℓ
g8ℓ

)1−f︸                ︷︷                ︸
=1

!8F8 = 0.

To see that Property (iv) holds, note that, for : ≠ =:

m�=

m, I
:

= (f − 1)
∑
8∈#


©«

, I
= g8=(∑

ℓ∈#
(
, I
ℓ
g8ℓ

)1−f
) 2

1−f

ª®®®¬
1−f (

, I
:

)−f
g1−f
8:

!8F8

 > 0.

Since �= is homogenous of degree zero, by Euler’s homogenous function theorem, we have
W I∇�= = 0. This immediately implies m�=

m�,=
< 0. �

Claim 4. Given parameter values {U, V, f, n, \, a, d}, fundamentals {E}, observed data

{L,W }, and e�ciency wages
{
, I
8

}
8∈# that satisfy equation (A.19), if \ < 1, there exists

a unique set of knowledgeK that is consistent with equation (A.12) and that pins down the

plant-level distributions of employment and wages {l,w}.

Proof. This proof is based on the proof technique for the main theorem in Allen, Arkolakis,
and Li (2020). Plugging equation (5) into equation (A.12) for all# locations gives the system
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of equations:

 8 =,8

(
, I
8

)−1
!
−V
8

�8∑
9=1

(
 
9

−8

)−\ ©«
(
 
9

−8

) 9
Π:≤ 9 

:
−8

ª®®¬
\a [

F8 9
,8

]1− 9a

Π:≤ 9
[
F8:
,8

]−a (
−a

(a 9 − 1) (a ( 9 − 1) − 1)

)
.

(A.20)
Let ~8 := ;= 8 , ^8 :=,8

(
, I
8

)−1
!
−V
8

, and F̃8 9 := F8 9
,8

. Let:

Q8 9 :=
(
 
9

−8

)−\ ©«
(
 
9

−8

) 9
Π:≤ 9 

:
−8

ª®®¬
\a [

F̃8 9
]1− 9a

Π:≤ 9 [F̃8:]−a
(

−a
(a 9 − 1) (a ( 9 − 1) − 1)

)
.

By Claim 1, F̃8 9 is pinned down by
{
 
9

−8

}
9∈ℰ8

. Denote the LHS of the equation as a function
68 . This gives the system:

68 (y) = ;=^8 + ;=
©«
∑
9∈ℰ8
Q8 9 (y)

ª®¬ . (A.21)

For brevity, we suppress dependence of Q8 9 on y in future expressions. We have:

m68

m~ℓ
=

∑
9∈ℰ8 Q8 9

(
(a 9 − 1)

(
\
m;= 

9

−8
m~ℓ
− m;=F̃8 9

m~ℓ

)
− a

(
\
∑
:≤ 9

m;= :−8
m~ℓ
−∑

:≤ 9
m;=F̃8:
m~ℓ

))
∑
9∈ℰ8 Q8 9

. (A.22)

We can show that m68
m~ℓ
≤ 0. First, note that the denominator is always positive, so the sign

of the derivative is determined by the sign of the numerator. De�ne:

U8,ℓ
9

:=
\1ℓ∈E 9\{8}��E 9 �� − 1

−
m;=F̃8 9

m~ℓ
,

I8 9 :=

©«

( (
 
9

−8

)\
F̃8 9

) 9a−1

Π:≤ 9

(
( :−8)\
F̃8:

)a
ª®®®®®®®¬
(

−a
a ( 9 − 1) − 1

)
+

�8∑
M= 9+1

a2

(aM − 1) (a (M − 1) − 1)

©«
(
( M−8 )\
F̃8M

)Ma−1

Π:≤M

(
( :−8)\
F̃8:

)a ª®®®®®¬
.

Note that the numerator of equation (A.22) is equal to
∑
9∈ℰ8 U

8,ℓ
9
I8 9 . First, we show that
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U8,ℓ
9
≥ 0. Consider the case where ℓ ∉ E 9\ {8}. It is straightforward to show that m;=LD8 9

m~ℓ
≤

0, which implies m;=F̃8 9
m~ℓ

≤ 0. Next, consider the case where ℓ ∈ E 9\ {8}. Suppose that
m;=F̃8 9
m~ℓ

>
\1ℓ∈E 9 \{8 }
|E 9 |−1 . This implies, in response to small shocks, that labor demanded by plant

{8, 9} decreases, but labor supplied to plant {8, 9} increases→←. Thus, m;=F̃8 9
m~ℓ
≤

\1ℓ∈E 9 \{8 }
|E 9 |−1 .

Next, it is straightforward to show that I8 9 < −F8 9B8 9z8 9,8 
−1
8 !

−V
8

< 0 for (almost) all 9 .
Combined,U8,ℓ

9
≥ 0 and I8,ℓ

9
≤ 0 implies that the numerator of equation (A.22) is less than

or equal to zero, and thus m6=
m~ℓ
≤ 0 for any =, ; .

Next, we characterize
∑
ℓ∈#

m6=
m~ℓ
(ŷ). After some manipulation of equation (A.22), we

get:

−\ ≤
∑
ℓ∈#

∑
9∈ℰ8 Q8 9

(
\ (a 9 − 1)

(
m;= 

9

−8
m~ℓ

)
− a\ ∑

:≤ 9
m;= :−8
m~ℓ

)
∑
9∈ℰ8 Q8 9

≤ 0.

Using the chain rule, we can re-write wage responses as m;=F̃8 9
m~ℓ

= \
∑
:∈ℰ8

m;=F̃8 9
m;=Ī8:

1ℓ∈E: \{8 }
|E: |−1 .

By Claim 1, m;=F̃8 9
m;= 8

= 0. Applying again the chain rule, m;=F̃8 9
m;= 8

=
∑
:∈ℰ8

m;=F̃8 9
m;=Ī8:

m;=Ī8:
m;= 8

=∑
:∈ℰ8

m;=F̃8 9
m;=Ī8:

→ ∑
:∈ℰ8

m;=F̃8 9
m;=Ī8:

= 0. Altogether, it can be shown that:

−\ ≤
∑
ℓ∈#

m6=

m~ℓ
(ŷ) ≤ 0.

Finally, we move on to prove the result. By the mean value theorem, ∀ {y,y′} ∈ R2#
++ , ∃g ∈

[0, 1] such that (i) ŷ = gy + (1 − g) y′ and (ii) 6= (y) − 6= (y′) = ∇6= (ŷ) (y − y′). This
implies:

|6= (y) − 6= (y′) | ≤ −
∑
ℓ∈#

��~ℓ − ~′ℓ �� m6=m~ℓ (ŷ) ≤ −∑
ℓ∈#

max
^∈#

��~^ − ~′^ �� m6=
m~ℓ
(ŷ)

= −max
^∈#

��~^ − ~′^ ��∑
ℓ∈#

m6=

m~ℓ
(ŷ) ≤ \ max

^∈#

��~^ − ~′^ �� . (A.23)

Recall that
(
R# , 3∞

)
is a complete metric space. Equation (A.23) shows that, if \ < 1, the

function 6= is a contraction mapping. Uniquess of K follows from the Banach Fixed Point
Theorem. Finally, by Claim 1,Kpins down {l,w}. �

Claim 5. Given parameter values {U, V, f, n, \, a, d}, fundamentals {H,E, τ }, observed data

{L,W }, (recovered) e�ciency wages
{
, I
8

}
8∈# , and (recovered) plant-level distributions of
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employment and wages {l,w}, there exists a unique (up to a normalization) set of amenity

scale parametersB such that the observed data are an equilibrium of the model.

Proof. The proof is identical to the proof of Proposition 3 in Redding (2016). �

C Estimation Appendix

The parameter vector estimate �̂ minimizes the loss function (m−m(�))′G (m−m(�)),
where m denotes data moments and m(�) denotes model-based moments. We obtain
m(�) by estimating plant-level di�erence-in-di�erences regressions using a data set with
“pre-” and “post-shock” observations. Given a guess of the model parameters �, we
construct this data set in two steps:

1. Pre-Shock Equilibrium and Recovery of Fundamentals: We generate a
plant-level data set that corresponds to the pre-shock equilibrium of the model. To
this end, we invert the equilibrium conditions of the model and use the recursive
structure from the proof of Proposition 2. We �rst recover the set of county-level
e�ciency wages that satis�es equation (A.19) (see Claim 3 in Appendix B.2).
Second, we implement the contraction mapping that recovers the set of county-level
knowledge K (�), described in equation (A.21) (see Claim 4). By Claim 1, K (�)
pins down within-county labor shares and relative wages, l(�) andw(�). Third, we
recover the set of amenity scale parametersB(�) that satisfy equation (12) (see Claim
5). By Proposition 2, the recovered county-level characteristics and within-county
distributions are unique up to a normalization.35

2. Post-Shock Equilibrium. We shock the economy with 47 independent local
productivity shocks that resemble the MDP openings, as described in Section 4.3.
For each MDP case 2 , we use the model’s recursive structure to recover wages and
employment for the post-shock equilibrium, {L′2 (�),W

′
2 (�), l

′
2 (�),w

′
2 (�)}. First,

givenK ′
2 (�), we recompute plants’ productivity scale parameters using equation (5).

Second, we recover within-county labor shares and relative wages, l(�) and w(�),
using the recursive structure of equation (A.13) (see Claim 1 in Appendix B.2). Third,
we use equations (A.14) and (A.15) to solve for the exogenous amenity wage and

35We normalize e�ciency wages and and amenity scale parameters such that their geometric mean is one.
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e�ciency wage “slopes”
{
6=

({
 
9
−=

}
9∈ℰ=

)
, ℎ=

({
 
9
−=

}
9∈ℰ=

)}
=∈#

(see Claim 2). Finally,

we iterate over post-shock equilibrium county-level wages and employment,W ′
2 (�)

and L′2 (�), until we �nd the values that simultaneously satisfy equations (A.17) and
(A.18) for each MDP case 2 .
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