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Abstract

Many empirical studies estimate impulse response functions that depend on the state of the
economy. Most of these studies rely on a variant of the local projection (LP) approach to estimate
the state-dependent impulse response functions. Despite its widespread application, the asymp-
totic validity of the LP approach to estimating state-dependent impulse responses has not been
established to date. We formally derive this result for a structural state-dependent vector autore-
gressive process. The model only requires the structural shock of interest to be identified. A crucial
condition for the consistency of the state-dependent LP estimator of the response function is that
current and future states are conditionally mean independent of the structural shocks, given the
information available at the time the shock is realized. This rules out models in which the state of
the economy is a function of current or future realizations of the outcome variable of interest, as
is often the case in applied work. Even when the state is a function of past values of this variable
only, consistency may hold only at short horizons.
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1 Introduction

The recent empirical macroeconomics literature has emphasized the importance of allowing for nonlin-
earities when estimating the effects of exogenous shocks in macroeconomic variables of interest. A key
question in empirical work is how impulse response functions depend on the state of the economy. For
example, many studies estimating the government spending multiplier allow for the possibility that
this multiplier may be different during recessions and expansions (e.g., Auerbach and Gorodnichenko
(2012, 2013a,b), Bachmann and Sims (2012), Owyang, Ramey and Zubairy (2013), Caggiano, Castel-
nuovo, Colombo and Nodari (2015), Ramey and Zubairy (2018), Alloza (2019), and Ghassibe and
Zanetti (2020)). There is also a related literature on the dependence of tax multipliers on the business
cycle (e.g., Candelon and Lieb (2013), Alesina, Azzalini, Favero, Giavazzi and Miano (2018), Sims and
Wolff (2018), Eskandari (2019), and Demirel (2021)). Similar questions arise in many other contexts
including the analysis of monetary policy shocks. For example, Santoro, Petrella, Pfajfar and Gaffeo
(2014), Tenreyro and Thwaites (2016), Angrist, Jorda and Kuersteiner (2018), Barnichon and Matthes
(2018) and Klepacz (2020) allow the responses to monetary policy shocks to vary as a function of the
state of the economy. Other studies allow these responses to vary depending on whether the zero lower
bound is binding (e.g., Ramey and Zubairy 2018, Mavroeidis 2021). Yet another example of the esti-
mation of state-dependent responses is the work of Caggiano, Castelnuovo and Groshenny (2014) who
examine the dependence of the effects of uncertainty shocks on whether the economy is in recession
or expansion.

Most of these studies rely on a variant of the local projection (LP) approach of Jorda (2005, 2009)
to estimate the state-dependent impulse response functions. One argument for using state-dependent
local projections rather than structural nonlinear vector autoregressive (VAR) models to estimate the
impulse response functions is its computational simplicity. Estimating impulse responses in state-
dependent VAR models by numerical methods tends to be computationally more challenging than
the estimation of state-dependent local projections by the method of least squares.! Yet, despite
its widespread application, the validity of the LP approach to estimating state-dependent impulse
responses has not been established to date.?

In this paper, we clarify the conditions under which the state-dependent LP estimator can be

'For example, Ramey (2016, p. 87) stresses that “if one is interested in estimating state dependent models, the ...
local projection method is a simple way to estimate such a model and calculate impulse response functions.”

2LPs have become an increasingly popular alternative to VAR based estimators of impulse responses. The original
LP estimator, as proposed by Jorda (2005, 2009) did not allow for the impulse response function to change depending
on the state of the economy. For a review of the rationale underlying standard linear LPs the reader is referred to
Plagborg-Mgller and Wolf (2021). In this paper we are not concerned with linear approximations to nonlinear processes
as in Plagborg-Mgller and Wolf (2021), but with approximations that are explicitly state dependent and hence nonlinear.



expected to recover the population impulse responses in multivariate models. Our analysis only re-
quires the structural shock of interest to be identified, allowing the user to remain agnostic about
the identification of the remainder of the structural model. As it turns out, the crucial condition for
the validity of the LP estimator in this context relates to the information set used to compute the
state indicators. If this set only includes exogenous variables determined outside of the model, the
state-dependent LP estimator is asymptotically valid and recovers the conditional IRF at any finite
horizon. If instead the state indicator is a function of endogenous model variables, the asymptotic
validity of the LP estimator depends on whether the state of the economy is a function of current,
lagged or future realizations of the endogenous model variables. For example, if the state depends
on current values of these variables, the LP estimator asymptotically recovers the impact response,
but not the responses at horizons greater than zero. Basing the state only on lagged values instead
allows the LP estimator to consistently estimate impulse responses at longer horizons. The longer the
horizon of interest is, the more restrictive the lag structure needs to be when determining the current
state of the economy as a function of endogenous variables in the model. In particular, to identify
impulse responses up to order h,,q., the minimum lag order should be h,,q,. Put differently, to be
able to identify impulse responses at horizon h = 0,1,..., hnax, the state indicator H; has to be a
function of ys—p s Yt—hmax—15 -

While these results do not formally establish the inconsistency of the LP estimator when our
sufficient conditions are violated, we show by simulation that the LP estimator of the response function
tends to be asymptotically biased except for the impact response, when the state of the economy is
endogenous. These asymptotic biases may become substantial when cumulating the level responses of
the model variables, as required for computing fiscal or monetary multipliers, for example.

State-dependent local projections are extremely popular in macroeconomics because they are easily
implemented and because they are believed to be more robust to dynamic model misspecification than
numerical estimates of impulse response functions obtained from state-dependent structural VAR
models. Our results suggest that researchers need to think carefully about the model specification
underlying these local projections. In fact, assessing the validity of the state-dependent LP estimator
requires the user to explicitly state the underlying structural data generating process.

Of particular concern is that in many macroeconomic applications one would expect exogenous
shocks to affect not only the future realizations of the model variables, but also the future state of the
economy, rendering the state of the economy endogenous with respect to the model variables. The
implicit assumption in many empirical studies is that the state of the economy is exogenous with respect

to the model variables. This assumption often is empirically implausible. For example, in models that



include log real GDP and express the state of the economy as a function of the unemployment rate,
as in Ramey and Zubairy (2018), the unemployment rate changes systematically with the current
log-level of real GDP. This renders the state of the economy endogenous with respect to the model
variables.

The exogeneity assumption is also implausible when including log real GDP among the endogenous
model variables, while measuring expansions and recessions of the economy based on the deviations of
log real GDP from a two-sided HP filter trend, which makes the state of the economy dependent on
past, current and future realizations of the endogenous model variables (e.g., Auerbach and Gorod-
nichenko 2013a). Similarly, exogenously imposing NBER business cycle dates, as suggested in Ramey
and Zubairy (2018), is inconsistent with the state of the business cycle depending on the response
of the model variables to an exogenous shock, since these model variables are correlated with the
data underlying the NBER business cycle definition. Defining the state of the business cycle based
on one-sided moving average filters, say, by defining a recession as two successive quarters of negative
real GDP growth or by defining the business cycle based on the deviation from a one-sided HP filter
trend, as in Alloza (2019), does not materially change this result. As in the case of endogenous states,
only the impact response can be consistently estimated.

Although we make these points in the context of specific state-dependent VAR data generating
processes, they apply more generally to other data generating processes as well. The remainder of
the paper is organized as follows. In Section 2, we describe the state-dependent structural model
of interest in this paper and define the conditional impulse response function. As is customary in
applied work, this response function conditions on the state of the economy in the most recent period,
but not on the state of the economy in the current period or in future periods. In Section 3, we
define the state-dependent LP estimator of this response function and provide sufficient conditions for
its consistency. Section 4 explains why this estimator is not expected to be asymptotically valid in
general, when the state of the economy is endogenous with respect to the model variables. We show
by simulation that in this case, the state-dependent LP estimator tends to be asymptotically valid
in the impact period, but not at longer horizons. We also quantify the large-sample bias of the LP

estimator of the response function for several DGPs. The concluding remarks are in section 5.



2 Framework

2.1 The model

Let 2, = (:ct,y,’f)/ denote an n x 1 vector of strictly stationary time series, where g is k x 1 with

k =mn — 1. We consider a structural state-dependent VAR process of the form
Ci-12zt = Bi1 (L) 211 + &4, (1)
where &; = (14, h;) defines the vector of mutually independent structural shocks. Let
By1(L)=DB14 1+ By 1L+...+ By 1P,

where p denotes the polynomial lag order. For later convenience, we partition B;_; (L) conformably

with z; as
Bi14-1(L) Biag1(L)
B — L = ? )
t-1(L) < Bo14-1(L) Bagg1(L)

where A;; denotes the (7, j) block of any partitioned matrix A.
All model coefficients evolve over time depending on the state of the economy. In the simplest

case, there are only two states (such as a recession and an expansion). Let

Ci-1 = CpHi1+Cr(1—Hi1),

Bji1 = BjpHi 1+ Bjr(1—Hyq) forj=1,...,p,

where H;_1 is a binary stationary time series that takes the value one if the economy is in expansion
and 0 otherwise. Unlike in Markov switching models, H;_; is observed.?

We are interested in the response of {y;1p, : h =0,1,..., hyax} to a one-time shock in e14, condi-
tionally on observing H;_1 = 1 or H;_1 = 0. Here, huax denotes the largest horizon of the impulse
response function of interest. To identify this conditional impulse response, we need to impose further

restrictions on the model coefficients. In particular, we postulate that

1 0
Ct = , 2
=l < —Co140-1 Cooy—1 > 2)

where C1 ;-1 is k x 1 and Caz—1 is a k x k non-singular matrix (we set its diagonal elements to
1, which is a standard normalization condition). Under these assumptions, x; is predetermined with
respect to y;. Note that we do not restrict Caa;—1 to be lower triangular, which allows C;_; to be
block recursive. Hence, the model is only partially identified in that only the responses to €1, are

identified.

Following the applied literature (see e.g. Auerbach and Gorodnichenko (2012, 2013a,b), Alloza (2009)), we index the
parameters for the system at time t with the index t — 1, e.g. we write Cy—1. This reflects the fact that C;_; depends
on H;_1, the value of the state indicator at time ¢t — 1.




We further restrict z; to be a directly observed exogenous shock such that

0 0
Bii 1= , 3
7 ( Bji-121 Bji-1.22 > (3)

for all j =1,...,p. This implies that z; = £1; and corresponds to the empirically relevant case where
€1; is identified using extraneous information outside the model. For instance, it is popular to use a
narrative approach to identification when identifying monetary policy shocks (e.g., Romer and Romer
(1989), Tenreyro and Thwaites (2016)) and fiscal policy shocks (e.g., Ramey and Shapiro (1998),
Ramey (2011), Ramey (2016)).

With these restrictions, the structural model for z; can be written as

Tt = €1t
(4)
Co -1yt = Corp—12¢ + Borg—1 (L) we—1 + Bog¢—1 (L) yr—1 + €21

Without further restrictions (such as postulating that Cag ;1 is lower triangular), the parameters in
the equations for y; are not identified. However, the fact that 1+ is identified suffices to identify the
conditional response function of y; to a one-time shock in &1;.

We impose the following standard martingale difference sequence (m.d.s.) assumption on the

structural errors &;.

Assumption 1 Let F'=! = o(21,Hi_1,2-2,Hy_2,...). Then, &|F=! ~ (0,%), where ¥ is a

diagonal matriz with diagonal elements given by o2 fori=1,...,n.

Assumption 1 stipulates that the structural errors ¢; are a martingale difference sequence (m.d.s.)
with respect to Ft~1, the information set generated by the past realizations of z; and H;. This standard
assumption implies that e; is serially uncorrelated. Since x; = €1, this rules out serial correlation in
x¢. We conjecture that these results could be generalized to allow x; to depend on lags of z; , as in
Alloza et al. (2021) or Goncalves et al. (2021), at the cost of more complicated notation, but our
focus is on the empirically most common setting where x; is a directly observed structural shock. This
setting facilitates the derivation of analytical results for the nonlinear response functions and makes
our analysis more transparent. Assumption 1 also rules out conditional heteroskedasticity in &; by
assuming that X is constant. This assumption is key to establishing the consistency of state-dependent
local projections, as we will explain later. Finally, the assumption that ¥ is diagonal implies that the

structural errors are mutually uncorrelated, as is standard in the structural VAR literature.
2.2 Conditional impulse response function

Consistent with the empirical literature, our goal is to define the causal effect on y;15 of a one-time

shock in €14, conditionally on H;_1, the state of the economy at time ¢ — 1. The fact that our model



is state dependent is reflected in our definition of the conditional IRF. A common approach in the
literature on nonlinear impulse response functions (e.g., Gallant, Rossi and Tauchen (1993), Koop,
Pesaran and Potter (1996), Potter (2000), Gourieroux and Jasiak (2005), Kilian and Vigfusson (2011),
Gongalves et al. (2021)) is to compare, all else equal, two sample paths for the outcome variables of
interest, one where £1; is subject to a one-time shock at time ¢ and another one where no such shock
is present. In a state-dependent model such as ours, this would require fixing €9; and Hy across the
two sample paths. This thought experiment is not realistic when g; is correlated with current and
future values of H; because it ignores the possibility that a shock in €7, may change the states of the
economy on impact and in the future.

Hence, we define the conditional IRF more generally as follows. We denote by {y:+1} the baseline
path that corresponds to the observed data. This is implied by the sequence of structural disturbances

and state indicators

EUH = { < E1t—1, €14, ELt41, - - -, €2t —1, €25 E2¢+1, - - } U { . '7Ht—1aHt7Ht+17 . } .

The other sample path is {y{tIs +h}, which is the path implied by an alternative sequence of shocks and

state indicators given by
* * * * *
E*UH® = { e E1t—15E14s E1t 1y - - - 5 E2—15,E25 EQLT - - } U { o He g, Ht 7Ht+1? .. } .

With this choice of structural shocks and state indicators, the two sample paths are identical prior to
shock in €1;. At time ¢, the shock hits ey, yielding €], = €14 + 1. All other shocks are kept the same.
This choice of perturbation is consistent with the assumption that structural shocks are mutually
uncorrelated. However, to accommodate the possibility that a shock to €1; may change current and
future states, we allow for H* # H, for s > t when defining H*. If the states are exogenous (in a sense
made precise in the next section), we can set H} = H, for all s, in which case H* = H.

Our definition of conditional IRF is given next.

Definition 1 The conditional impulse response function of yi1n to a one-time shock of size 1 in €14

is given by CIRFh (Ht—l) = E[y:+h - yt+h|Ht—1]f fOT’ h = 07 17 27 KRR hmax~

Note that Definition 1 conditions only on H;_1, the state of the economy in the period prior to
the shock. Rather than conditioning on the current or future states of the economy, we average them
out. This corresponds to the standard approach in applied macroeconomics, where two types of IRFs
are often provided, depending on whether the economy was in an expansion or in a recession prior to

the shock.



Although the counterfactual y; ; is not observed, it may be recovered from the structural model
given &* and H*. The values of y/, , obtained from solving the model given these sequences is related
to the notion of potential outcomes, as defined by Angrist and Kuersteiner (2011) and Angrist, Jord4
and Kuersteiner (2016). Further discussion of potential outcomes for time series processes can be

found in White (2016) and Rambachan and Shephard (2021).

3 What happens when H,; is exogenous?

3.1 Expression for CIRF

In this section, we present an expression for CIRF}, (H;—1) for the state-dependent structural model
given in (4). We focus on a counterfactual that treats H; as exogenous with respect to e; such that
H* = H in Definition 1. To describe the population IRF, we evaluate the difference between y;, ,
and y;4p. Since Cy_; satisfies the identification condition (2), the inverse matrix of Cy_; exists and is

given by

1~ o )+ (ch )
= 0272%71021&1 0272271 —\ o)
where for any matrix A, we let A% denote the block (i,7) of A~

Pre-multiplying (1) by C;7} yields
2t = C;llBt_l (L) zZt—1 + 0;11515,
which we rewrite as
2z = Ap—1 (L) 21 + 1y, (5)

where 1, = C;_'¢; and
A1 (L) = C;_llBt,1 (L) = Al,tfl + Ag’tflL —+ ...+ Ap’tfle_l,

with A;; 1 = C;lle_l. Note that the elements of the first row of A;;_; are all zero when z; is equal
to ey (i.e., when Bj; 1 is as in (3)).
The value of y¢1p, and y;, ;, can be obtained from the companion-form representation of the reduced-

form model (5). Let

Z :(22722_1,...,Z£_p+1)/, gt :(77:570,)/7

npx1 npx1
and
A1 Asgr -0 Apigmr Apra
I, 0 e 0 0
Ay = . . , . .
npxnp : : . : .
0 0 e I, 0



We can rewrite (5) as

Zt = At_lzt_l + gt' (6)

To obtain y; from Z;, let
Sk = ( Orx1 Ik Opscnp—1) )

kxnp

denote a k x np selection matrix (with £ = n — 1 equal to the number of variables in y;) which selects

the subvector y; from the vector Z;. With this notation,
Yt = SgZy,

and, more generally, for any h,
Ytrh = SkLtth-

Note that for & = 1 (i.e., for a bivariate system with n = 2), S, = €5 ,,, where e22, = (0,1,0) is a
2p x 1 vector whose only non-zero element is equal to 1 and occurs in position 2. More generally, we
let e;,,, denote a m x 1 vector with 1 in position j and 0 elsewhere.

Next, we use the companion form (6) to obtain the difference y;, , — y;1n for different values of h.

Starting with A = 0, and noting that the two sample paths coincide up to time ¢t — 1, we have that
Zy=AaZy 1 +& and Zf = A 1Z 1+

Hence,

Gion-g-a-( ).

n(p—1)x1
where nf —n, = C,_ 11 (ef —&¢). Since we only perturb the first element of ¢, the following decompo-

sition of n, is useful:
_ -1 1 0 — 1 ~1
Ny = Ct_lst = 021 €1t + C22 €2t = Ct_lelnglt + Ct_1[2:n52t7

where ey, = (1, 0’)' isn x 1 and Is., is kK X nand is equal to the n x n identity matrix with its first

column removed:
I2:n:(e2n enn)-
With this notation,
N — Ny = Ct_—lleln(ETt —e1) + Ct_—11]2:n(5§t —€9t) = Ct_—llelnv
— %

given our definition of £ and £*. It follows that

-1
* _ nE =M > _ < Ci_iemn ) . 1
75 — 7 = = =e1, ® C,_e1n,

! ! < On(p—l)xl On(p—1)><1 e -1t

8



and, consequently,

yr — vyt =Sk (Zi — Zt) = Sk, (€1, ® C; Y e1n)

The conditional response at h = 0 is given by
CIRFy (Hy—1) = E (yf — ye|Hi—1) = S (e1p ® Ci_je1n) (7)

since C,_ 11 is known conditionally on H; 1. In particular, the individual impact responses of each

variable in y; can be obtained as
CIRFy; (Hy 1) = E (v} — yjelHi1) = €}, (€1, ® Ce1n)

for j =2,...,n. When n =2 (bivariate system), k& = 1, implying that Sy, = €} ,,.
The expression (7) shows that the conditional impact response can take on two different values,

depending on whether H;_; =1 or Hy;_; =0,

Sk (elp (=) CEleln) , fHy 1=1

CIRFO (Ht—l) = { Sk (elp X C}Eleln) s if Ht—]_ = 05

since Cy_1 = CgHy_1 + CrH;_1. It also shows that only the first column of Ct:ll (i.e., C',;llem)
matters for the identification of the conditional impact response.
For h = 1, we use the companion form to evaluate first Z;, ; — Z; 11 and then ¥, | —y;41, as follows.

In particular,

Zi1 = AtZi + &y,

where &1 = (7},4, 0’)/ = ((Cier+1)', 0’)/, and where A; and C; depend on Hy. Similarly,
i1 = AT ZE +

where ¢,1 = (141, 0) = (7= H)’,o')' and A7 and C; depend on H;. Given our choice of
structural shocks, €7, ; = €;41. Moreover, under the assumption that Hf = H;, A} = A; and Cf = C}.
This implies that

Zi — Zemr = Ay (ZF — Zy) = Ay (e1p @ O en)

given that Z — Z; = e1, ® C’;_lleln. Thus, we have that
3/?+1 — Yt+1 = Sk (Zt*—i-l - Zt+1) = SkA: (e1p ® Ct_—lleln) )

implying that
CIRFl (Ht—l) = SkE (At|Ht_1) (61p X Ot:lleln) .

This expression generalizes to other values of h as follows.



Proposition 3.1 Let £, H, £* and 'H* be as defined in Section 2.2. If H* = H, the impulse response

of y¢ to a one-time shock in €1;, conditional on Hy_1, is
CIRF) (Hi—1) = E (y; — ye|Hi—1) = Si (e1p ® C;enn)
and for any h > 1,
CIRF), (Hy—1) = E (yf1h — Yeen|Hi—1) = SkE (Aprn—1Aiin—2 ... Al Hi—1) (e1p @ Crjenn) -

The impulse response function defined in Proposition 3.1 conditions only on H;_1, the state of the
economy in the period prior to the shock. It does not condition on the current or future states of the
economy. Nor does it condition on the history of states prior to ¢ — 1 or on the histories of z;.

To identify CIRF}, (Hy—1), we need to identify the first column of C’[_ll, C{_lleln, as well as the
coefficients that enter the matrices A; 151 through A;. Given that these matrices are linear in the state
indicators, identification can be achieved from the reduced-form model (5). Even when the model is
fully identified, evaluating F (Ay1p—1Aiin—2 ... A¢|Hi—1) is challenging and requires knowledge of the
conditional density of Hyyp—1,..., Hy, given H;_j. Local projections are a much simpler alternative. In

the next section, we provide a set of sufficient conditions under which local projections are consistent.

3.2 Local projections

A state-dependent LP regression is a direct regression of gy, onto a constant, x; and Z;_1, each
interacted with Hy_; and 1— H;_1. The slope coefficients associated with z; H;_1 are usually interpreted
as the CIRF of y;4p, conditionally on Hy;_; = 1, whereas the slope coefficients associated with x;(1 —
H;_1) describe the CIRF of y;, when we condition on H;_1 = 0. The goal of this section is to provide
a set of regularity conditions under which this interpretation is asymptotically valid.

Let W;—1 = (1,Z]_,)" denote an (np + 1) x 1 vector of control variables which include a constant
and p lags of z;. A state-dependent LP for identifying the causal effect on y;, of a one-time shock in

T+ = €14 can be written as
Yirh = bppeiHi 1 + U y)Wi1Hyq + bppae(1 — Hi—q) + gy W1 (1 — Hi—1) + vigp, (8)

where the k x 1 vectors bg j, and bg contain the main parameters of interest. In particular, bg ), is
interpreted as the CIRF of y;4, when H;_; = 1, whereas bg ;, contains the CIRF of 4,4, conditionally
on Hy_y = 0. The matrices Ilgj, and IIgy, are of size k x (np + 1); each row contains the constant
and the slope coefficients associated with Z;_; for the LP regression of each variable in 4;15. The LP

regression for variable ¥, 14, is
Yitrn = bejntiHi a1 + 7 Wi 1 He 1 + brjnee(1 — Hi1) + 7 Wi (1= Heo1) 4+ vjen,  (9)

10



where j = 2,...,n. The scalar coefficients bg jj and bg jj, are the (j — 1) elements of b and bp p,
respectively. Similarly, 7 ;, and 7', , are the corresponding rows of Ilg j, and Ilg p.

Since H; is observed, the coefficients in the multivariate state-dependent LP regression (8) can
be obtained by running a multivariate LS regression of y.yp onto xyHy—1, Wy_1Hy—1, x4 (1 — Hy—1)
and W;_1 (1 — H;—1). Note that this is equivalent to running a regression of y;;,p onto x;H;_1,
Wi_1Hy—1, ¢ (1 — Hy—1) and Wy_q (1 — Hy—1), for each j = 2,...,n. Put differently, the multivariate
LS regression (8) is equivalent to the k univariate OLS regressions (9), equation-by-equation.

Let lA)E’;I and I;R,h denote the LS estimators of bgj and bgrp in (8) based on a sample of size T
given by {yrin,xt, Zi—1, Hi—1 :t=1,...,T}. We can estimate each of these vectors separately, by
restricting the sample to H;—; = 1 and H;—1 = 0, respectively. For instance, l;Eﬁ can be obtained
from a regression of y;.pon xyHy—1 and Wy_1H; 1 (omitting x; (1 — H;—1) and Wy_1 (1 — H;—1) in
the regression). This follows because the H; 1 (1 — H;—1) = 0 for all ¢. Similarly, we can obtain lA)R,h
from a regression of y;1p, on z; (1 — Hy—1) and Wiy (1 — H;—1) (omitting =, H;—1 and W;_1H;—1 in
this regression).

As it turns out, Assumption 1 suffices to show the consistency of lA)E,h and BR,h when h = 0. To

identify the CIRF at horizons h = 1,..., hnax we add the following assumption.

Assumption 2 Let hyax > 1 denote the mazimum horizon of the response function of interest. Then,

fOTh:]'""7hmaX7
(@ B (el Hunons o Ho 1) = B (271,

() E (e Husps-oooFo 71 = (a7,

Assumption 2 characterizes the relationship between the structural shocks {e;} and the state in-
dicators {H;}. This condition is crucial for proving the validity of state-dependent local projections.
A sufficient condition for Assumption 2 is to assume that {H;} is fully independent of {es}. This
assumption is satisfied if we construct H; on the basis of variables not contained in z; that are in-
dependent, of the structural errors ;. Assumption 2 is a milder assumption than full independence
between ¢; and H;. It only requires the conditional first two moments of €; to be independent of
{Hy, Hyy1,...,Hyp—1}, conditionally on F*~!, where h < hpax. This allows for the possibility that
H, is obtained as a function of past values of z;. How many lags of z; can be included in H; depends
on the value of hpax. For hmax = 1, Hy can depend on z;1 (and previous lags of z;_1), but for
hmax = 2, H; can depend only on z;_o (or further lags of z;_3). As hmax increases, the set of lags used

to construct Hy shrinks. In the limit, if we are interested in the entire impulse response function, Hy

11



cannot be chosen as a function of {z;}. We will further illustrate the content of Assumption 2 in the
next section when we specialize H; to be a deterministic function of z;.

Under Assumptions 1 and 2, we can prove the following result.
Proposition 3.2 Under Assumptions 1 and 2, as T — oo, for any h =0,1,..., hmax,
bgp —p CIRF, (Hi_1 = 1) and brj, —p, CIRF, (H;_1 = 0),
where CIRFy, (Hy—1 = 1) = Si E (At+h—1At+h—2 A (elp ® C’;lleln) |Hi—1 = z) fori=1,0.

The proof of Proposition 3.2 is in the Appendix. Proposition 3.2 shows that the LP regression
(8) identifies the conditional IRF defined in Proposition 3.1. The latter corresponds to the CIRF of
Yr+n derived under the counterfactual experiment that sets H* = H, i.e., we assume that the shock
of €14 does not change the state of the economy on impact nor in the future. This is consistent with
Assumption 2, which imposes mean-independence conditions on ¢; and H; p_1, ..., H;, conditionally
on Ft=1

The model equation for y;j implied by the companion form representation of the structural model
may be used to heuristically understand why the state-dependent LP works without Assumption 2

when h = 0, but not otherwise. More specifically, note that for any h, we can write
Yt+h = SkZt+h,
where Z;,j, is obtained from (6). Consider first h = 0. Then,
Zy= A 1211 + &,

where

Crlemer + C Y Inipe _ _
§ = ( 7(7; ) B ( e 0 ) = (elp@ct—lleln)glt+elp®ct—11[2:n€2t7

given that n, = Ct__llet and g = Ct__llemau + Ct__IIIQ;n€2t, where ey, and Is.,, are as defined in

Section 3.1. Hence,
Yt = SkZ = Si(e1p ® C; hern)er + SkAr1Z11 + Sp(erp @ O Y Ionea).
If we condition on H;_; = 1, this equation implies that

Yt = SkZs = Sg(e1p ® Cplen)ert + SkApZi—1 + S(e1p ® Cpl Iomear),

:OIRFO(Ht_lzl) =Uut
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where the coefficient associated with €14 is the conditional IRF when H; 1 = 1. A linear regression of
y; on €14 and Z;_1 which conditions on H;_1 = 1 estimates consistently this coefficient if conditionally
on H; 1 = 1 the regressors are uncorrelated with the error term given by wu;. This orthogonality
condition holds under the m.d.s. assumption on &; (i.e., Assumption 1) without further restrictions
on H;.

For h = 1, the model equation for y;11 is now

Yirr = SpZiyr = Se(AsZe +&44q)
= Sp(A(Ar1Zi1+ &) + &)
= SpA& + SpAAi_1Zi 1 + Sk,

where £, = (e1, ® C’S__lleln)als +e1p ® C’S__lllgmags for s = t,t + 1. Hence, conditionally on H; 1 = 1,

Yir1 = [SkAt(e1p @ Cplern)len + SkAtApZi—1 + SpAi(erp @ CplInmeat) + Sképyr- (10)

=, =Ut+1

The coefficients in this equation depend on H; (through A;), conditionally on Hy;_1 = 1. This implies
that a linear projection of 4,11 on €14 and Z;_1 which conditions on H;_; = 1 estimates a conditional
average of these state-dependent parameters. In particular, the estimand of the coefficient associated
with £1; in this restricted OLS regression is E (¢,|H;—1 = 1) = CIRF) (Hy—1 = 1) provided the error
term w41 is orthogonal to €1;, conditionally on H;_1 = 1. As w41 depends on Hy, this requires that
H; and e1; are uncorrelated, conditionally on H;_; = 1.

For general values of h, we can write y;1p as a function of €14 and Z;_; and an error term that
depends on Hyip—1,...,H;—1. Conditionally on Hy_1, this is a state-dependent equation as it depends
on Hyypq,...,H;. A linear local projection of y;.p on €14 and Z;_; which conditions only on Hy_1
recovers the conditional IRF derived in Proposition 3.1 provided the error term is orthogonal to £14,
conditionally on H;_1. Since this error depends on Hiyp_1,...,H;, we require that €14 (and more
generally ¢;) be independent of H;yp_1,..., H;, conditionally on H;_j. Assumption 2 formalizes this
independence condition. Because local projections are least squares estimates, it is natural that only
first- and second-order conditional mean independence conditions on €; are required.

Note that the asymptotic validity of the state-dependent LP estimator does not depend on the full
identification of the structural model parameters. The crucial condition is that the shock of interest
€1 is identified. This shocks equals z; in our setting, but one could instead allow it to be a function
of lagged values of z;. With this condition, and under Assumptions 1 and 2, the LP identifies the
correct conditional IRF even though the contemporaneous state-dependent matrix Cy_1 is only block

recursive. This result is as expected. Proposition 3.1 shows that the conditional IRF depends on the
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conditional expectation of a function of As4p—1,...,A; and the first column of C;_ 11, which can all be

identified from the reduced-form model (5).

4 What happens when H; is endogenous?

In this section, we investigate the properties of state-dependent LPs when H; does not satisfy As-
sumption 2. In particular, we consider the case when H; depends on current values of the outcome
variables y;. To simplify the exposition and make the arguments clearer, we consider the special case
of a bivariate structural model for z; = (x4,%;)’, where z; is a directly observed shock and g; has

limited dynamics:
Tt = €1t
(11)
Yt = Be_1Tt + Vi 1Yt—1 + €21

In terms of our previous notation, n = 2, k = 1, Cagy—1 = 1, Co14—1 = S4_1, Ca14—1(L) = 0 and
Boyy—1 (L) = 7;_1. The state-dependent parameters §,_; and «;_; depend on H;_; as before. For
instance, 8,_1 = BpHi—1 + Br (1 — Hi—1). Crucially, we now endogenize H; with respect to the
structural shocks g;. In particular, we let H; = 1(y; > 0). Given that the structural model sets the
time t coeflicients as a function of H;_1, as is typically assumed in the empirical literature, setting
H; = 1(y: > 0) implies that §,_; and 7,_; are a function of y;_1. A generalization of this scenario is
to allow H; to depend on current and lagged values of y;, as in Alloza’s (2019) study of the impact of
a fiscal policy shock on output. Alloza sets H; = 1(y; > 0 and y;—1 > 0).

Next, we discuss the implications of this choice of H; for the validity of the LP estimator. First, we
show that the conditional IRF of interest is no longer given by the formula derived in Proposition 3.1.
Next, we show that the LP estimand is not the same as the one derived in Proposition 3.2. Finally,
because an analytical characterization of this estimand is infeasible, we numerically illustrate the

magnitude of the asymptotic bias of the state-dependent LP estimator in this context.

4.1 Conditional IRF when H, is endogenous

The goal is to obtain the response of y,; to a shock of size 1 in £1;. We follow the same approach
as in Section 2.2 and compare the value of y;,, with a counterfactual value y;,;, which corresponds to
what we would have been observed if we had perturbed €14 by 1 without changing any of the other
inputs to the system. Note that when H; depends on 1, the current and future values of H; cannot be
kept constant across these two sample paths. Thus, the counterfactual experiment that sets H* = H
is not consistent with this choice of Hy. We need to account for the impact of the shock in £1; on the

current and future values of the states of the economy such that H} # H, for s > ¢.
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Consider A = 0. Following the same steps as in Section 3.1, we can show that

Y —yt =Py (vy —x¢) = By = BpHi 1+ Pr(1 — Hi 1),

since x; = x4 + 1, and importantly, 8;_; = 8, and 7}_; = 7,_;. This follows because S ; and
vi_, are defined as 3;_; and 7;_;, but depend on Hy ; =1 (y;“_l > 0) = Hy1 = 1(yt—1 > 0) since
y;_1 = Yt—1. This implies that the conditional impact response defined in Proposition 3.1 is

BE lf Htfl =1

CIRFy (Hi—1) = By = { Br it Hi—1 =0.

To see that this expression is a special case of Proposition 3.1, note that when k£ = 1, S = (0, 1),
e1p =1 and C Y ey, = (1,6t,1)’.

For h = 1, an important difference emerges. Now, 3} and 7} depend on H;} =1 (y; > 0). Since y
is not equal to y;, we cannot set §; = 3, and 7} = 7, when defining the counterfactual value of y;41.

In particular, we now have

* * * * ok * * * ok
Yir1 = BiTip1 + V1Y 241 = BrTet1 + 7Y + €241,

where the second equality follows because €3,,, = €211, and z},; = €;,1 = €1441. The difference

between y;',; and y;41 is

*

Yivr — Y1 = (B = Be) w1 + (0F = v vi +ve Wi —we) s

where yf —ys = B;_1. The fact that H; is a function of y; implies that a shock at time ¢ in €14 has an
impact on y; and hence an impact on the state-dependent coefficients 8 and ~;. This explains the
presence of the two extra terms in ¥/, ; — y41-

The conditional impulse response at horizon h = 1 is the expectation of this difference, conditionally

on H; 1:
CIRFy (Hi1) = E(yj1 — yer1|Hi-1)
= E[(B} — B) 1| He—a] + E[(v; — 7)Y [He—1] + E (7| He—1) By_1-
Indirect effect Direct effect

The second term corresponds to the CIRF derived in Proposition 3.1 under the assumption that the
counterfactual value of H} is equal to the observed value Hy, i.e., H = H*. We interpret this as the
direct effect as it captures the effect on y;41 of the shock in €1, assuming that there is no change in the
state H; (and therefore no change in 3, and ~,). The first term accounts for the effect on y;41 that

occurs because H; has changed. When H; is exogenous, this indirect effect is zero, but not otherwise.
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Note that we can use the model equations to express the indirect effect as a function of observables.

In particular, it can be shown that?

Indirect effect = (yg —vg) E[1 (y¢ + By—1 > 0) — 1 (y¢ > 0) (y¢ + By_1) | Hi—1].

The decomposition of the conditional response into a direct effect and an indirect effect generalizes to

larger values of h. For instance, for h = 2,
CIRF, (Hi—1) = E(yjy9 — Yi42|Hi—1)

= E[(BI+1 - 5t+1) Tiy2 + (VIH - 7t+1) Yip1|He—1]
Indirect effect due to time ¢+1 change in parameters

+E[Yer1 (BF — Be) Ter1 +verr (Vi — 7o) ¥ [ Hi—1]

Vv
Indirect effect due to time ¢ change in parameters

+ Elyi17eBe—1Hi—1] ;

Direct effect if no change in parameters

where the last term is the CIRF at h = 2 derived in Proposition 3.1 under the assumption that
‘H* = H. This term captures the direct effect for h = 2. The indirect effect is represented by the
first two terms. Characterizing these expectations analytically becomes intractable, even under strong
assumptions about the conditional distribution.

The overall message is that when H; depends on g, the conditional IRF is no longer the same as
the one defined in Proposition 3.1. It now contains additional terms that capture the indirect effect
of the shock in 14 on y.yp that operates through the effect of the shock on the transition path of H;
through Hyp_1.

4.2 Asymptotic bias in the LP estimator when H, is endogenous

We now investigate the effect of endogenizing H; on the estimand of a state-dependent LP. For sim-
plicity, we again focus on the simple bivariate model considered in (11) with H; = 1(y < 0). The

state-dependent LP in this context is given by
Yornh = bppriHi 1 + 7 W1 Hy 1 + brpwe(1 — He1) + 7 ,3We1(1 = Heo1) 4 ve g, (12)

where W/_; = (1,y4—1).
Proceeding as in Section 3.2, we can show that the LP estimate of bg ;, is converges in probability

to

by = E(xiHyayen)  E(zyenHi = 1)
’ E (22H;_1) E (22|Hi—1 =1)

4Further simplifying this expression involves computing truncated moments of y; + B+_1, conditionally on H;_1. This
can be done for h = 1 under parametric assumptions on the conditional distribution of y: given H;_1. However, this
approach quickly becomes intractable as we increase the value of h. A simpler approach is to use numerical methods to
approximate this expectation, which is the approach we use below to evaluate the asymptotic bias of the LP estimates.
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The LS estimate of by j, in (12) can be obtained from an OLS regression of y;1, on z, conditionally on
H;_; = 1. This result does not depend on whether H; is exogenous or endogenous. Rather it follows
from the fact that E (z;H;—1W;_1) = 0 by the m.d.s. assumption on &; (i.e., by Assumption 1).
When h = 0, one can easily show that b o = S = CIRFy(H;—1). Thus, the state-dependent
LP recovers the correct impact conditional IRF even when H; depends on y;. This follows because

conditionally on H; ;1 = 1, the structural model equation for ¥ is

Yyt = BTt + YpYi—1 + €21,

and a linear local projection of 3; onto x; and y;—1 that conditions on observations with H;_; = 1
recovers B provided eg; is orthogonal to x; and y;—1 (conditionally on H;—q = 1). Assumption 1
alone suffices for this result.

When h = 1, evaluating bg 1 = plim ZA)EJ is more challenging when H; is endogenous. To see this,

note that conditionally on H;_; = 1, the equation for y;41 can be described as®

Y41 = ’YtﬁEaﬁt + VeVYEYE—1 + U1,

where
U1 = Be€1e41 + V€2t + €241

Thus, conditionally on H;_1, the model for y;,1 is state-dependent because it depends on H; through
the parameters ~,; and f;.

As explained in Section 3.2, under exogeneity of H; (as stated in Assumption 2), the LP estimand
of the slope coefficient associated with z;H;_; is equal to E (v,|H;—1 = 1) 8. This is the correct CIRF
when H; satisfies Assumption 2 and it is the direct effect contained in the population CIRF when H; is
endogenous. The LP estimand of this coefficient is not necessarily equal to E (v;|H;—1 = 1) S, when
H; =1(y; > 0). The main reason is that Assumption 2 is not satisfied. For this choice, H; and &; are

no longer mean independent, conditionally on H;_;. For instance,
E (e Hy, F'71) = E (eulyr > 0, 7'71) = E (1l B yene + €20 > =y ape1, 771

which is a conditional truncated moment of £1;. Although under Assumption 1, £1; has mean zero
conditionally on F¢~!, adding information on H; in the form of the restriction 8, je14+€2t > —Y 191
makes this mean not zero. The same is true for the second conditional moment of ;. For instance,
E (e3,|Hy, F'71) is no longer equal to o7 = E (14| F'1).

Next, we evaluate the limit of the LP estimator by simulations and compare it with the population

CIRF and its decomposition into a direct and indirect effect.

’Note that this is the analogue of (10) for the bivariate model (11).
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4.3 Does the LP Estimator Converge to the Population Response?

The literature has taken for granted that the LP estimator asymptotically recovers the population
response, when the DGP is a state-dependent structural VAR model (see, e.g., Auerbach and Gorod-
nichenko 2013a; Alloza 2019). Our analysis shows that this conclusion is indeed correct, when H; is
exogenous with respect to z;. In the empirically more relevant case when Hy directly or indirectly
depends on 1, however, our sufficient conditions ensure the asymptotic validity of the state-dependent
LP estimator only for the impact response. Although our theoretical analysis does not formally prove
that the LP estimator of the response function is invalid at other horizons in this case, there is no
presumption that it does recover the population response function. In this section, we explore this
question based on several stylized bivariate DGPs and show that the LP estimator of the response
function indeed appears to be inconsistent when H; is endogenous. We consider three DGPs.

Let

Tt = E1t (13)

Y = Bi_1%e +Y_1Yi—1 + €2

where

Bi1 = BrpHi1+Br(l—Hi 1),

Y1 = YeHi1+vp(1— Hiq), (14)

g = (Elt,&‘gt)/ ~ N (0,12) and H; is an indicator function that determines the state of the economy.
When H; = 1 the economy is in an expansion, F, and when H; = 0 the economy is in recession, R. In

DGP1, Hy = F (¢;) = 1 (gt > 0), where ¢ follows an exogenous process
qt = 0.6g1—1 + uy,

and u¢ ~ N (0,1) is independent of ;. DGP2 and DGP3 differ from DGP1 in that the indicator func-
tion is given by H; = F (y;) = 1 (y; > 0), so that the state of the economy is determined endogenously.
DGP2 sets B = 2.4, fp = 1.6, 7 = 0.7 and 7z = 0.1, whereas DGP1 sets S = 2.5, Bp = 3.5,
vg = 0.9 and v = —0.1. In all DGPs the intercepts have been normalized to 0.

We consider the effect on y;4p of a shock of size 1 in e1;. The conditional impulse response
function is evaluated as F (y;rh - yt+h|Ht,1) , whereas the LP estimands are evaluated as (12). We
also compute the direct effect (given by the formula in Proposition 3.1) and the indirect effect (which
we obtain as the difference between £ (yli/k o yt+h]Ht,1) and the direct effect). The number of draws

used to compute all these conditional expectations is equal to 50 millions. In addition to reporting
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results of the effect of the shock on the level of y; 5, we also compute the cumulative effects. These
are obtaining by summing the individual CIRFs and the corresponding LP coefficients. For instance,
the cumulative CIRF at horizon h = 1 equals Z]]:(,ZOE (y;‘ h yt+h]Ht_1) and the LP estimand is
Soh—obin with by, = bgy, if Hiy =1 and b;j, = bgy, if H;—y = 0.

Figures 1 and 2 contain the results when H; is exogenous (DGP1) whereas Figures 3 through 6
contain results for the endogenous case (DGP2 and DGP3). Starting with DGP1, Figure 1 shows that
the CIRF is equal to the LP estimand at all horizons. In addition, the indirect effect is zero, making
the CIRF equal to the direct effect. This is consistent with our theoretical results (cf. Proposition 3.2).
Because the LP estimand coincides with the CIRF for y;4, LP also recovers the cumulative effect, as
shown by Figure 2.

Figures 3 through 6 show that these results change when H; = 1 (y; > 0), making H; endogenous
with respect to €1;. These figures show that the LP estimands no longer coincide with the population
response function of interest (both in levels and as a sum). In particular, although the impact effect
is well recovered by the state-dependent LP, this is no longer true at intermediate values of h (as h
increases, the CIRF and the corresponding LP estimand both tend to zero, making the bias disappear;
this is no longer true for the cumulative LP bias, which remains non-zero for all values of h). The
decomposition of the CIRF into the direct and indirect effect shows that the LP estimand follows
closely the direct effect, missing the indirect effect. Thus, the bias in the LP estimator is close to the
indirect effect in these simulations.

The size of the asymptotic bias depends on the parameter values we choose. In this simple model,
the bias increases with v — vp, implying that it is larger in absolute value in DGP3 than in DGP2
(compare Figures 3 and 5 for the CIRF and Figures 4 and 6 for the cumulative CIRF). Although
Figures 3 and 5 seem to suggest that the bias of the LP estimator is modest relative to the value of the
impulse response function, this bias is significant when measured as a function of the population CIRF
of interest. For instance, for DGP1, the bias of LP relative to the CIRF is equal —10%, —13%, —14%,
and —15% for h = 1,2, 3,4, when in expansions, and —20%, —20%, —20%, —21% when in recessions.
These numbers imply a relative bias for the cumulative response function that varies between —4% and
—7% in expansions and —6% and —10% in recessions. For DGP2, the relative bias of the LP estimator
for the CIRF varies between —6% and —14% in expansions and —29% and —40% in recessions. This
translates to a relative bias in the cumulative CIRF that varies between —3% and —8% for expansions

and —11% and —23% for recessions.
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5 Conclusion

State-dependent LP impulse response estimators have become one of the most commonly used tools
in empirically macroeconomics in recent years. The idea that the effects of economic shocks may
differ depending on the state of the economy has a long tradition, but apparent nonlinearities in
recent macroeconomic data such as the zero lower bound on interest rates have, if anything, further
heightened interest among applied researchers in such state dependencies. Much of what we know
about the state dependence of fiscal multipliers and the state-dependent effects of monetary policy
shocks, for example, is based on this LP approach, yet its validity has never been formally established.

Although there has been much discussion of the perceived advantages of this approach in the
literature compared to the estimation of state-dependent structural VAR models, including its apparent
simplicity and its potential robustness to possible dynamic misspecification of nonlinear VAR models,
the question remains under what conditions the state-dependent LP estimator recovers the population
impulse response functions of interest. It also remains unclear what impulse response function the LPs
are estimating, among many competing impulse response concepts. In this paper, we made precise
the nature of the state-dependent impulse responses captured by the LP estimator, and we provided
sufficient conditions, under which this estimator is consistent. These conditions tend to be violated in
many empirical studies. Our analysis suggests that, when the state of the economy is endogenously
determined, the LP estimator tends to be valid only for the impact response. This is a concern not
only for impulse response analysis but also for the construction of fiscal and monetary multipliers that
are often computed at higher horizons (or relative to the peak in the response function).

While our theoretical analysis does not formally establish the inconsistency of the LP estimator
(and the multipliers derived from those responses) in cases not covered by our theoretical analysis,
we showed by simulation that in practice the LP estimator of the response function tends to be
asymptotically biased, unless the state of the economy is exogenous. The fact that many applications
of the state-dependent LP estimator implicitly treat the state of the economy as exogenous with
respect to the model variables, when it clearly is endogenous, calls into question their substantive
conclusions. This result is important not only from an econometric point of view, but also for the
ongoing debate about the magnitude of fiscal and monetary multipliers. Our analysis highlights the
need to be specific about nature of the state dependence when applying the state-dependent LP
estimator. LP estimators cannot be interpreted and their validity cannot be assessed without taking

a stand on the data generating process.
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Appendix

Proof of Proposition 3.1. The proof for h = 0 and h = 1 is in the text. We omit the proof for

general h since it follows from similar arguments.

Proof of Proposition 3.2. To define lA)EJL, let

yi-‘,—h x1Ho WéHO
Y = : , X1 = : , and Xy = : ,

/ !
Yran xrHr Wyr_1Hpq

and define My = It — Xo (X5 X5) ™" X},

By the Frish-Waugh-Lovell (FWL) Theorem, bl , = (X{MaX1)™" X{M,Y, or
. _ _ —1 A A
bE,h =T 1(5/,]\42)(1) (T 1X{M2X1) = 1y-27hQ111.2-
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A similar expression holds for BR,h with the difference that the regressors x; and W;_; are interacted
with 1 — H;_q rather than H;_1.

Our goal is to derive the probability limit of lA)E’h (and BR7h) as T — oo. We can write

Que2 = T'X[X;-T'X|X, (TﬁlXéXg)_1 T7'X}X;, and
Quyon = TW'X -T7YV'X, (T_lXéXg)f1 T71X5X.

If a law of large numbers applies to each term?,

Quz2>Qu2 = E (x7Hi1) — E (2 HioaW/_y) [E (WeeaWi_1He1)] ' E (Wim1 Hy—12¢) , and

Quy2n = Quyzn = EWnziHi1) — E (yeynHiaWi_y) [E(Wea W/ Hy )] 7' E (Wi Hy )
It is easy to see that E (a:th_lW{_l) = 0 under the assumption that x; = €1+ is a m.d.s. Thus,
Qu2 = E (27Hy—1) and Quy2 = E (yipnweHi—1)

implying that’
bgp > bep = E (yronzHi1) [E (27 Hi-1)] 7

A similar argument implies that
; P _ 2 -1
br = brp = B (yernwe(1 — Hio1)) [E (27 (1 — Hi-1))] 7

Next, we express Q112 and Q1,2 in terms of the model’s parameters. Under the conditional

homoskedasticity assumption on z; = ey,
Qui2=E (e},|Hi—1) Pr(Hyoy = 1) = 03 Pr(Hy = 1).
To evaluate Qiy.2,n = F (YernwiHi—1), we use the fact that for any h,
Yt+h = SkZtvn,

where Z; 1} is obtained from the companion form representation of the model given by (6). Consider
first h = 0. Then,
Zy= A 1211 + &,

6We assume that the data are strictly sationary and ergodic and that the usual moment and rank conditions on the
regressors are satisfied. We leave these as implicit high level assumptions since our focus here is on the conditions that
H; needs to satisfy in order for the LP estimator to be consistent.

"This result is consistent with the fact that when x; is a directly observed shock we can simply regress i, onto
x¢H;—1 to obtain a consistent estimator of bg,,. When z; = €14, adding the controls Wy_1H;_1 is not required for
consistency, but can be important for efficiency. More generally, when x; is only predetermined with respect to yi,
adding controls becomes important for consistency.
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where

Crlemer + C Y Inpe _ _
§ = ( 7(7; ) - ( s 0 ) = (elp@ct—lleln)glt+elp®ct—11[2:n€2t7

given that n, = Ct__llet and g = Ct__llemau + C't__llfgms% where ey, and Is.,, are as defined in

Section 3.1. Hence,
Yt = SkZ = Si(e1p ® Cy i ern)er + SkAr 1711 + Sp(erp @ O Y Tonea). (15)

We use this expression to evaluate Qiy20 = E (yixiHi—1). More specifically, using the fact that

x; = €1; and the above decomposition of 4, we can write

Qy20 = E (yrxeHi—1) = Q1,0 + Q2,0 + Q3.0,

where

Qo = E[Sk(e ® Gy yern) Hi167y),
Q20 = FE[SpA—1Zi—1Hi—1e14), and

Qs0 = E[Sk(e1p ® C; Y Iomea)Hy— 1614

Under Assumption 1, it can be shown that Q20 = Q30 = 0, implying that Q1,20 = Q1,0. More
specifically, by the LIE,
Q2,0 = E[SkA-1Z-1Hy 1 E(en| F71)] = 0,
=0

given the m.d.s. condition on e1;. Similarly, we have that

Q3,0 = E[Sk(e1p ® C; Y Innea Hy—1211)] = ESk(e1p ® O I Hy 1 E (sa0e1:| F71))] = 0,
—_—— —
=0

where the last equality holds by the assumption that > = F (etsﬂf tfl) is diagonal. Finally, note that

Q1o = E[Sglep,® 0;11€1n)Ht71E (ﬁt\}—t_l)]

N———

— g2
=07

= 02E[Sk(e1, ® Chern) Hi 1]

= EfSk(ep ® 0;11€1n)|Ht—1 =1]o2Pr(H;_y = 1).
=Q11.2

Since bE70 = Qly_&()@l_llz, and Qly.Q,O = Ql,O = E[Sk(elp &® Ct__lleln)‘Ht—l = 1]@11.2, we conclude that

beo 2 bro = E[Sk(e1p ® C ern)|Hi—1 = 1] = Sp(e1, @ Cglenn).
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A similar argument shows that
BRJ) LA bR70 = E[Sk(elp & C;lleln”Ht_l = O] = Sk(elp ® C’ﬁleln).

These results show that the state-dependent LP regression (8) recovers the conditional IRF obtained
in Proposition 3.1 with A = 0 under Assumption 1. No further assumptions are required (provided a
law of large numbers can be applied to Q11.2 and Qly,gp).

As we will show next, this is no longer the case when h > 0. To illustrate this, consider h = 1.

Now,
bp1 2 be1 = E (yp1zcHi—1) [E (27 Hi-1)] ' = Quy21Q11ss

where Q11.2 = 03 Pr (H;—1 = 1), as for h = 0. To obtain Q1,.21, we can use the fact that

Yir1 = SpZip1 = Sp(AZi +&441)
= Sp(A(A1Zi1+ &) +&01)

= SpAy +SpAtAr1Zi1 + Sp€iqs (16)
where £, = (e1, ® C’S__lleln)gls +e1p® 08__11[2;71825 for s = t,t + 1. This implies that

Quy21 = E (Yyrr1x:He—1) = Qa1 + Q21 + Q3.1

where

Qiq = E(SpAHi—1611),
Q21 = FE[SpAtA1Z;1Hi 1€1), and

Q31 = E[Sp& 1 Hi 1]

Given the definition of §,,,, we can easily see that 37 = 0 by Assumption 1, since it implies that
E (ft +1]f't) = 0. However, to conclude that Q)2 1 = 0, we need further assumptions. More specifically,
this term now depends on Ay = AgH; + Ag (1 — H;) and &1 (in addition to A1, Z;—1 and H;_1).
Conditionally on F'~!, H; and e1; may be correlated, implying that Q21 # 0. Indeed, by the law of
iterated expectations,

Q2,1 = E[SKE (Awen|F'™1) A1 Z 1 Hy 1],
where
E (At€1t|ft_1) = AEE (Ht€1t|.7'-t_1) + ARE ((1 — Ht)€1t|ft_1)
= (Agp—AR)E (Ht&‘lt’ftfl) + ArE (€1t|ft71)
= (AE — AR)E (Ht€1t|.7'—t_1) s
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since F (51t|ﬁ_1) = 0. Thus, unless F (Htelt]f't_l) =0 (or Ap = AR), Q2,1 # 0. Assumption 2(a)
(with h = 1) implies that E (He14|F*~!) = 0, ensuring that Q21 = 0.

Additional conditions are also required to simplify Q11 = E (S A& H;—1€1¢) and show that the LP
recovers the conditional IRF when H;_; = 1. Using the definition of &,, this term can be decomposed

as follows:
Q11 = E[SpAs(e1, ® O Ye1n) Hi_163,] + B[SkAi(e1p ® Cp Y o Hy—169t611)].

The presence of A; (which depends on H;) again complicates the evaluation of these expectations.
For instance, the second term is not zero if £ (61t52t|Ht,ft*1) # 0 even if ¥ is diagonal. Similarly,
we cannot conclude that the first term simplifies to E[S;A¢(e1p ® Ct__lleln)\Ht_l =1)o?Pr(H;_1 = 1)
unless we impose the condition that E (¢3,|Hy, F©~') = 0%. This is Assumption 2(b) with h = 1,
which together with Assumption 1 and 2(b) ensures the consistency of the LP estimator for h = 1.
The proof for other values of h follows from similar arguments provided Assumption 1 is strengthening

by Assumption 2.
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