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Abstract

This paper considers the estimation of the effect of a binary treatment from a panel
of groups in which the treatment rate may evolve over time. We assume common trends
and consider fuzzy designs: within some groups, some units may be treated while others
are not. In such contexts, the popular two-way fixed-effect regressions are not robust to
heterogeneous treatment effects. Under some conditions allowing for such heterogeneity,
we show that we can estimate average treatment effects with simple, linear estimators.
Importantly, such estimators only rely on average outcomes and treatment rates at the
group level. Thus, they can be used even if micro data with both the treatment status
and outcome of units are not available. We apply our method to revisit the effect of radio
programs on the rise of Nazism.
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1 Introduction

Difference-in-differences is one of the most popular methods to identify causal effects of a binary
treatment using observational data. This idea is very often implemented using a panel of groups
exhibiting both cross-sectional and temporal variation in the treatment. Then one considers two-
way fixed effect regressions, where the outcome of interest is regressed on group fixed effects,
time period fixed effects and the treatment rate at the group level. However, even if the so-called
common trends assumption holds, such regressions suffer from an important limitation: they are
not robust to heterogeneous treatment effects (see de Chaisemartin and D’Haultfœuille, 2020,
for general designs and Borusyak and Jaravel, 2017 and Goodman-Bacon, 2021 for staggered
adoption and sharp designs). Specifically, the coefficient of the treatment rate in such regressions
identifies a weighted average of treatment effects over all groups and periods of time, but with
possibly negative weights. This implies that the coefficient may be negative even if all groups
benefit from the treatment at all periods.

Realizing this has led to the development of several alternative estimators, robust to such hetero-
geneous treatment effects. We refer in particular to those of de Chaisemartin and D’Haultfœuille
(2020) and de Chaisemartin and D’Haultfœuille (2021b) in a static framework and those of Call-
away and Sant’Anna (2021), Sun and Abraham (2021), Borusyak et al. (2021) and de Chaise-
martin and D’Haultfœuille (2021a) in a dynamic framework (for more details and a survey of
this recent literature, see de Chaisemartin and D’Haultfœuille, 2022). However, these estimators
only apply to sharp designs, namely designs for which the treatment status of all units belonging
to the same group is the same. Yet, this requirement often fails to hold. For instance, consider
a program that is in place in some districts but not in others. Only a fraction of the population
in the first set of districts may benefit from the program.

Obviously, if individual data are available, and to the extent that the treatment is strictly
exogenous, one can still rely on the aforementioned methods by defining “groups” as individuals.
However, in many cases, only aggregated data at the group level are available, in the form of
the average outcome and treatment rate at the group level. It could also be the case that the
treatment is available at the individual level but the outcome is not, or conversely. For instance,
many studies look at treatment effects on voting (see e.g. the study we revisit in our application
in Section 5, or Enikolopov et al. (2011)) and voting is never available at the individual level
The aim of this paper is to develop estimators robust to heterogeneous treatment effects for such
contexts.

To this end, we consider an individual-level model and posit that both potential outcomes are
additively separable into a group fixed effect, a time fixed-effect and idiosyncratic shocks. While
this model implies some restrictions on average treatment at the group level, it still allows for
heterogeneity in such effects across groups and over time. Not surprisingly given that we do not

2



rely on individual data, we also restrict selection into treatment within groups. Nevertheless, we
show that this restriction is compatible with a generalized Roy model, provided that individuals
do not have a rich information about their potential gains from being treated.

Under these restrictions, our individual-level model, once aggregated at the group level, leads to
the correlated random coefficient model studied by Chamberlain (1992). Under a restriction on
the design, this implies that average treatment effects on “movers”, namely groups experiencing
a change in their treatment rate, are identified. We show that the design restriction is weak
with three periods or more and the estimator may still hold with two periods. Moreover, the
identification strategy leads to elementary linear estimator, which are asymptotically normal as
the number of groups tend to infinity.

We consider two important extensions. First, we show that it is straightforward to include time-
varying covariates in our model, and modify the estimators accordingly. Such covariates are
important in practice as they may render the common trend conditions more credible. Second,
we show that we can quantify the importance of the heterogeneity of average treatment effects
across groups sharing the same history of treatment rates.

Finally, we apply our results to revisit Adena et al. (2015) who study the impact of radio programs
on the rise of Nazism during the Weimar Republic. This application is particularly suited to
our methodology for at least three reasons. First, the design is fuzzy, and only aggregated
data are available. Second, during the period under consideration, subscription to the radio
increased substantially, with nonetheless important regional variations. Third, the content of
the German radio programs changed substantially, from being first apolitical, then biased against
Nazis and finally biased in favor of the Nazis. We thus expect important temporal variations in
the treatment effects. Compared to the results of Adena et al. (2015), our results highlight in
particular that the propaganda against Nazis did not have much impact, whereas the pro-Nazis
slant of the 1933 radio programs had a large and positive impact on the votes for Nazis.

Our paper is related to de Chaisemartin and D’Haultfœuille (2018), which also considers fuzzy
designs. An important difference is that the two estimators that are robust to heterogeneous
treatment effects, their so-called “Wald-TC” and “Wald-CIC” estimators, cannot be computed
with solely average outcomes and treatment rates at the group level. Another difference is that
the asymptotic framework in de Chaisemartin and D’Haultfœuille (2018) is in the number of units
rather than in the number of groups, as we do here. Adapting their result to a growing number of
groups could be difficult, as they acknowledge (see Section 2.1 in their supplement). Our paper
is also related to Chamberlain (1992). Specifically, we rationalize his model at the group level by
a model on potential outcomes at the unit level. We thus show that estimators closely related
to his are useful in the context of grouped panel data with heterogeneous treatment effects.

The paper is organized as follows. We display our basic set-up and main assumptions in Section 2.
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Section 3 presents the identification results and our estimators for this basic set-up. Extensions
are considered in Section 4. Section 5 is devoted to the application. All the proofs are gathered
in the appendix.

2 Set-up and model

We consider a panel of G groups over T periods. For all (g, t) ∈ {1, . . . , G} × {1, . . . , T}, we let
Ng,t denote the number of units in this “cell” (g, t). For any random variable Ai,g,t defined at the
individual level, we let Ag = (Ai,g,t)1≤t≤T,1≤i≤Ng,t be the vector collecting all the corresponding
variables for group g. Then, we let Ag,t = ∑Ng,t

i=1 Ai,g,t/Ng,t be the average of Ai,g,t over the
cell (g, t) and Aa

g = (Ag,1, . . . , Ag,T )′. If Ag,t is defined at the cell level, we define similarly
Ag = (Ag,t)1≤t≤T . We first impose that no group appears or disappears over time.

Assumption 1 (Balanced panel of groups) For all (g, t) ∈ {1, . . . , G}× {1, . . . , T}, Ng,t >

0.

We are interested in measuring the effect of a binary treatment on some outcome. For every
(i, g, t), let Di,g,t, Yi,g,t(0) and Yi,g,t(1) respectively denote the treatment status and the potential
outcomes without and with treatment of the ith unit in cell (g, t). The observed outcome of
the ith observation in group g at period t is Yi,g,t = Yi,g,t(Di,g,t). Let ∆i,g,t = Yi,g,t(1) − Yi,g,t(0)
denote the treatment effect of ith unit in group g at period t. We consider the following static
model. For all (i, g, t) ∈ {1, . . . , Ng,t} × {1, . . . , G} × {1, . . . , T},

Yi,g,t(0) = αi,g + βt + ξi,g,t

∆i,g,t = Λi,g + µt + ζi,g,t

(1)

αi,g and Λi,g are unit-specific parameters while βt and µt are common across units of all groups.
Without loss of generality and for identification purposes, we suppose that β1 = µ1 = 0. Let
Ui,g,t = (Di,g,t, αi,g, ξi,g,t,Λi,g, ζi,g,t). We impose the following assumptions.

Assumption 2 (Independent groups and exchangeability within groups) (i) The G ran-
dom vectors (Ug)g=1,...,G are independent and (ii) for all (g, t) ∈ {1, . . . , G}×{1, . . . , T}, the Ng,t

random vectors (Ui,g,t)i=1,...,Ng,t are exchangeable conditional on Da
g .

Assumption 2 requires that potential outcomes and treatment statuses of units in different groups
be independent. Yet, treatment statuses and potential outcomes of units in the same group may
be correlated over time. Also, units within the same group are assumed to exchangeable, which
implies that they are identically distributed but allows for dependence between them.
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Assumption 3 (Strong exogeneity) For all (g, t) ∈ {1, . . . , G} × {1, . . . , T}, E[ξ1,g,t|Da
g] =

E[ζ1,g,t|Da
g] = 0.

Assumption 3 requires that the shocks affecting a unit’s potential outcome be mean-independent
of the unit’s treatment sequence and of the other units’ belonging to the same group. It is related
to the strong exogeneity condition for panel models, which is necessary to obtain the consistency
of the fixed effect estimator. With Assumption 3, it is easy to see that the model implicitly rests
on the following common trends assumption:

E[Yi,g,t(0)− Yi,g,t−1(0)] =βt − βt−1 (2)
E[Yi,g,t(1)− Yi,g,t−1(1)] =βt − βt−1 + µt − µt−1. (3)

Similar conditions are imposed in de Chaisemartin and D’Haultfœuille (2020, see Assumptions
4 and 9 therein) and in de Chaisemartin and D’Haultfœuille (2020, see Assumptions 4’M in the
supplement). Finally, we consider the following assumption:

Assumption 4 (Sufficiency of the average treatment rates) For all (g, t) ∈ {1, . . . , G}×
{1, . . . , T}, E[Λ1,g|D1,g,t,D

a
g ] = E[Λ1,g|Da

g ].

Assumption 4 states that, conditional on group g’s average treatment rates over time, all unit-
specific treatment effects Λg are mean independent of the treatment status of units in the group
(in particular of the unit’s corresponding treatment status). Noteworthy, Assumption 4 is still
compatible with some generalized Roy models. Specifically, assume that for all (i, g, t),

Di,g,t = 1 {E[∆i,g,t|Ii,g,t] ≥ Ci,g,t} , (4)

where Ii,g,t is the information set of the agent (technically, a sigma-algebra) at the time of his
decision and Ci,g,t represents the expected cost for i of being treated. Then, we have the following
result:

Proposition 1 Suppose that (1) and (4) hold, Ci,g,t = Cg,t + ηi,g,t, Ii,g,t is the sigma-algebra
generated by (Zg,t, Cg,t, ηi,g,t) for some variables Zg,t, ((Λi,g)i,Zg,Cg) ⊥⊥ (ηg, ζg) and the variables
ηi,g,t are i.i.d. over i and t. Then, Assumption 4 holds.

The main restriction we imposed on this Roy model is that the returns expected by individuals
are all the same within a group g at t (and equal to E[∆i,g,t|Zg,t, Cg,t]. On the other hand,
this model is compatible with self-selection of groups, where groups with the highest average
treatment effect displaying also the highest treatment rates.
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3 Identification and estimation

3.1 Identification

Our main insight is that under Assumptions 1-4, the average outcome and treatment variables
Yg,t and Dg,t satisfy the correlated random coefficient model of Chamberlain (1992). Then,
identification of average treatment effects follow under a restriction on the design. Before pre-
senting this restriction and the result, we introduce new notation. Let δ0 = (δ0,1, . . . , δ0,2T )′ =
(β2, µ2, . . . , βT , µT )′. We also define “movers” as groups experiencing at least one change in Dg,t:

Mg = 1 {∃(t, t′) : Dg,t 6= Dg,t′} .

The reason why we introduce such movers is that in our model with heterogeneous treatment
effects, we do not learn anything on the average treatment effects of “stable” groups (g such that
Mg = 0). Thus, we focus hereafter on the average treatment effect on movers at date t:

∆0,t := E[∆i,g,t|Mg = 1].

Given our model, the identification of ∆0,t will follow from that of δ0 and φ0 = (φ0,1, φ0,2) =
(E[α1,g|Mg = 1], E[Λ1,g|Mg = 1])′.

We also introduce useful vectors and matrices. First, we let en,k denote the row vector of size n
with 1 at coordinate k and 0 elsewhere, 0n (resp. 1n) denote the row vector of size n with all
coordinates equal to 0 (resp. 1). Then, let Xg = (1′T Da

g) and

Wg =


02(T−1)

eT−1,1 ⊗ (1, Dg,2)
...

eT−1,T−1 ⊗ (1, Dg,T )

 .

Hence, with T = 3 for instance, we have

Wg =


0 0 0 0
1 Dg,2 0 0
0 0 1 Dg,3

 .

Similarly to φ0, we also define φ0(Da
g) =

(
E[α1,g|Da

g ], E[Λ1,g|Da
g ]
)′
. Finally, for any matrix A,

let A+ denote its Moore–Penrose inverse and let Π(A) = I − AA+ be the orthogonal projector
on the kernel of A′.

We can now present the design restriction and our main result.
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Assumption 5 (Design restriction) For all g ∈ {1, . . . , G}, E[W ′
gΠ(Xg)Wg] is non-singular.

Theorem 1 Suppose that Model (1) and Assumptions 1-4 hold. Then

E[Yg|Da
g] = Wgδ0 +Xgφ0(Da

g). (5)

Moreover, if Assumption 5 holds, δ0, φ0 and ∆0,t are respectively identified by

δ0 = E[W ′
gΠ(Xg)Wg]−1E[W ′

gΠ(Xg)Yg], (6)
φ0 = E

[
(X ′gXg)−1X ′g(Yg −Wgδ0)|Mg = 1

]
, (7)

∆0,t = φ0,2 + δ0,2(t−1)1 {t > 1} . (8)

Note that Equation (5) is a particular case of Model (4.4) in Chamberlain (1992). The identifi-
cation of δ0 presented here is the same as in Arellano and Bonhomme (2012), and extends that
in Chamberlain (1992). Specifically, we need not focus on groups g such that Xg is full column
rank (namely, the movers) and can also include “stayers”, for which Da

g,1 = · · · = Da
g,t. In fact,

stayers are necessary to achieve identification if T = 2, as shown below. Once δ0 is known,
identification of φ0 and average treatment effects on movers follow easily from (7) and (8).

Assumption 5 is key for the identification of the model. To understand this condition better,
Proposition 2 relates it to the distribution of Da

g .

Proposition 2 Assumption 5 holds:

1. when T = 2, if and only if P (Mg = 0) > 0 and V (Dg,1|Mg = 0) > 0.

2. when T ≥ 3, if for all t, there exists (t′, t′′) such that Dg,t′−Dg,t′′ , Dg,t(Dg,t′−Dg,t′′), Dg,t−
Dg,t′′ and Dg,t′(Dg,t −Dg,t′′) are not collinear.

As already pointed out by Graham and Powell (2012), the two cases T = 2 and T ≥ 3 are
fundamentally distinct. With T = 2, Π(Xg) = 0 except if Mg = 0. This is why Assumption
5 requires that there is a positive fraction of stable groups. In order to identify µ2, we also
require variation in the treatment rates across such groups (V (Dg,1|Mg = 0) > 0). An example
where such conditions hold is when some groups are untreated at both periods, while some other
groups are fully treated at both periods. When T ≥ 3, on the other hand, Π(Xg) is never
null. Then, a sufficient condition is that, roughly speaking, the treatment rates vary sufficiently
from one period to another. The condition is actually weak: it may hold even if the support of
(Dg,t, Dg,t′ , Dg,t′′) takes only four distinct values. As another example, in a sharp design where
the support of Dg,t is only {0, 1} and T = 3, the condition above holds if the trajectories (0, 0, 1),
(0, 1, 0), (0, 1, 1) and (1, 0, 1) are in the support of (Dg,1, Dg,2, Dg,3).
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3.2 Estimation

We consider estimators based on the identification results in Theorem 1. As pointed out by
Graham and Powell (2012), we have to regularize the empirical counterpart of (8). The reason
behind is “quasi-stayers”, for which X ′gXg is close to being singular: if the density of the variable
det(X ′gXg) is positive at 0, the plug-in estimator is inconsistent. To remedy this issue, we focus
on movers exhibiting sufficient variation. Specifically, let

Mg,h = 1
{
| det(X ′gXg)| > h

}
.

We focus hereafter on ∆h
0,t = E [∆i,g,t|Mg,h = 1]. Let Gh = #{g : Mg,h = 1}. The estimator we

consider is a variation of Chamberlain (1992)’s two-step GMM estimator:

δ̂ =
 1
G

G∑
g=1

W ′
gΠ(Xg)Wg

−1 1
G

G∑
g=1

W ′
gΠ(Xg)Yg


φ̂h = 1

Gh

∑
g:Mg,h=1

(X ′gXg)−1X ′g(Yg −Wg δ̂).

Then, we let ∆̂h
t = φ̂h

2 + δ̂2(t−1)1 {t > 1}. As one could expect, this estimator is asymptotically
normal.

Proposition 3 Suppose that Assumptions 1-5 hold. Then√
Gh

(
∆̂h

t −∆h
0,t

)
d−→ N (0, V (ωg,t)) ,

where ωg,t is defined in Equation (20) in the appendix.

Estimating ∆0,t rather than ∆h
0,t is possible by letting h tend to 0 at an appropriate rate as

G tends to infinity. Then, one faces a usual bias-variance trade-off: the bias decreases while
the variance increases as h tends to 0. We refer to Graham and Powell (2012) for a thorough
discussion of this issue.

4 Extensions

4.1 Including covariates

Our basic model implies the common trend conditions (2) and (2). Such conditions may not
be credible unconditionally, but may hold conditional on some observed covariates. We show
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here that our model can be simply extended to include time-varying covariates. First, we now
assume that for all (g, t) ∈ ×{1, . . . , G} × {1, . . . , T} and i ∈ {1, . . . , Ng,t},

Yi,g,t(0) = αi,g + βt + Z1
i,g,t
′λ0,1 + ξi,g,t

∆i,g,t = Λi,g + µt + Z2
i,g,t
′λ0,2 + ζi,g,t

. (9)

We allow the vectors Z1
i,g,t and Z2

i,g,t to be empty by simply letting Z1
i,g,t
′λ0,1 = 0 or Z2

i,g,t
′λ0,1 = 0

in such cases. Though Z1
i,g,t and Z2

i,g,t are allowed to be identical, it is important to distinguish
them for informational reasons. Our estimators will eventually rely on the averages Z1

g,t and∑Ng,t

i=1 Di,g,tZ
2
i,g,t/Ng,t, and we may not observe this latter average, for the same reasons we may

not observe simultaneously Yi,g,t and Di,g,t. Note that even if the vector Z2
i,g,t is empty, Model

(9) still allows for heterogeneous treatment effects through the other terms in ∆i,g,t, in particular
Λi,g.

Let Zi,g,t = (Z1
i,g,t
′, Di,g,tZ

2
i,g,t
′) and λ0 = (λ′0,1, λ

′
0,2)′, with, e.g., Zi,g,t = Z1

i,g,t and λ0 = λ0,1 if
Z2

i,g,t is empty. We modify the previous assumptions as follows:

Assumption 2’ (Independence and exchangeability with covariates) (i) The G random
vectors (Ug,Zg)g=1,...,G are independent; (ii) the Ng,t random vectors (Ui,g,t, Zi,g,t)i=1,...,Ng,t are ex-
changeable conditional on (Da

g ,Z
a
g ).

Assumption 3’ (Strong exogeneity with covariates) For all (g, t) ∈ {1, . . . , G}×{1, . . . , T},
E[ξ1,g,t|Dg,Zg] = E[ζ1,g,t|Dg,Zg] = 0.

Assumption 4’ (Sufficient statistics with covariates) For all g ∈ {1, . . . , G}, E[Λ1,g|Dg,Za
g] =

E[Λ1,g|Da
g ,Za

g].

Assumption 5’ (Design restriction with covariates) For all g ∈ {1, . . . , G}, the matrix
E[(Wg Z

a
g )′Π(Xg)(Wg Z

a
g )] is non-singular.

Note that the generalized Roy model (4) remains compatible with Assumption 4’ as Proposition
1 still applies. The only difference is that some components of Zg are observed by the econo-
metrician. Our main identifying result also extends in a straightforward way to this set-up with
covariates.

Theorem 2 Suppose that Model (9) and Assumptions 1, 2’-4’ hold. Then

E[Yg|Da
g,Zg] = Wgδ0 +Za

gλ0 +Xgφ0(Da
g,Zg). (10)

Moreover, if Assumption 5’ holds, δ0, λ0, φ0 and ∆0,t are respectively identified by

(δ′0 λ′0)′ = E[(Wg Z
a
g )′Π(Xg)(Wg Z

a
g )]−1E[(Wg Z

a
g )′Π(Xg)Yg], (11)

φ0 = E
[
(X ′gXg)−1X ′g(Yg − (Wg Z

a
g )(δ′0 λ′0)′)|Mg = 1

]
, (12)

∆0,t = φ0,2 + δ0,2(t−1)1 {t > 1} . (13)
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Based on these constructive identification results, we obtain estimators of average treatment
effects on the movers that are very similar to those in Section 3.2. Details are omitted.

4.2 Group variation in average treatment effects

We have focused so far on average treatment effects. Actually, Equation (5) shows that for all
movers g, we directly identify φ0(Da

g) by

φ0(Da
g) = (X ′gXg)−1E

[
Yg −Wgδ0|Da

g

]
. (14)

Recall that the second component of φ0(da) is E
[
Λ1,g|Da

g = da
]
, the average treatment effect of

groups with a trajectory of treatment rates equal to da. Equation (14) implies that we identify
these conditional average treatment, and thus their distribution. In particular, we identify

V
[
φ0(Da

g)|Mg = 1
]

= V
[
(X ′gXg)−1E

(
Yg −Wgδ0|Da

g

)
|Mg = 1

]
.

This variance is appealing for at least two reasons. First, we have

V [Λ1,g|Mg = 1] ≥ V
[
E
(
Λ1,g|Da

g = da
)]
.

Therefore, V
[
φ0(Da

g)|Mg = 1
]
is a lower bound on the variance of group-level average treatment

effects. Second, apart from the time trend µt in the average treatment effects, it is the hetero-
geneity of φ0(Da

g), rather than that of Λ1,g conditional on Da
g , that is responsible for the bias

of the estimator of ∆t obtained by the two-way fixed effect regression (see de Chaisemartin and
D’Haultfœuille, 2020).

5 Application to the impact of radio programs on the rise of Nazism

5.1 Set-up and descriptive statistics

In this section, we revisit Adena et al. (2015), who investigate the impact of biased radio programs
in Germany on votes for the Nazi party in the period 1928-1933. To this end, Adena et al. (2015)
use votes and radio subscription rate at the district × election level and two-way fixed effect
regressions. They exploit the fact that subscription rates are quite heterogeneous over districts
and increase substantially during the period 1928-1933.

As Adena et al. (2015) stress, the political content of radio broadcasts changed dramatically
over time. At first, radio programs were completely apolitical (see Panel A, Figure 1 in Adena
et al., 2015). But in 1929, the Weimar government decided to include political news with a
pro-government slant. The Nazis and the communists were denied airtime, unlike other political
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parties. This all changed in January 1933, when Hitler was appointed chancellor and gained
control over radio. Radio broadcast turned from having no Nazi messages to airing pro-Nazi
propaganda. To account for these changes, Adena et al. (2015) define their treatment as, basically
“radio broadcast with a pro-Nazi inclination”. Then, Di,g,t is equal to 1 if i in district g at t has
access to radio with a pro-Nazi slant (as in 1933), 0 if she does not have access to radio or the
programs are politically neutral (as in 1928) and -1 if she has access to radio and programs are
anti-Nazi (as between 1929 and 1932).

This definition implies strong restrictions on treatment effects. If having access to radio reduces
the probability of voting for the Nazi party by 5% in 1929-1932, say, the model predicts that it
should increase the probability of voting for that party by the same 5% in 1933. As our model
allows for unconstrainted time-varying treatment effects, we simply define Di,g,t to be 1 if i in
district g has access to radio at t, 0 otherwise.

The subscription rates at the district level are not observed precisely on the election dates: they
are only available in the month of April for 1931, 1932 and 1933, whereas election dates are
May 1928, September 1930, July and November 1932 and March 1933. Adena et al. (2015)
construct a predicted value of Da

g,t based in particular on local radio signal strength. However,
their predicted value does not match well the overall increase in subscription rates observed over
the period; see the second and third columns of Table 1 and Figure II in Adena et al. (2015).
This prediction also leads to an important reduction in the standard deviation of subscription
rates between districts.

We thus compute another predicted subscription rate as follows. First, we interpolate the radio
subscription rates for the elections of July 1932, November 1932 and March 1933 based on
the district-level quadratic model of radio subscription rates on time that fits the 3 observed
rates of April 1931, April 1932 and April 1933. When only two observations are available, we
interpolate these subscription rates using the district-level linear model that fits the two known
values. Second, as the national subscription rate exhibits a linear time trend, we extrapolate
the radio subscription rates for the elections of May 1928 and September 1930 from the linear
model Da

g,t = αg + βgt+ ut at the district level, using all observed subscription rates.

Table 1 presents some descriptive statistics on the observed subscription rates, the predictions
obtained by Adena et al. (2015) and our own predictions. Our predicted subscription rate in
March 1933 is much closer than Adena et al. (2015)s prediction to the actual subscription rate
in April 1933. Table 1 also shows the average and dispersion of the outcome, which is the vote
share for the Nazi party at the five parliamentary elections between 1928 and 1933.
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Table 1: Descriptive Statistics

Radio Subscription Rates Vote Share for
Date Observed Adena et al. (2015) Ours the Nazi Party

May 1928
18.51 8.09 3.16
(3.60) (10.37) (3.99)

September 1930
18.85 16.21 18.96
(3.75) (8.61) (8.81)

April 1931
18.74
(8.25)

April 1932
22.18
(8.27)

July 1932
22.25 23.18 39.30
(2.96) (8.30) (14.35)

November 1932
22.22 24.58 35.19
(2.52) (8.42) (13.34)

March 1933
22.94 26.05 47.20
(2.68) (8.74) (12.20)

April 1933
26.43
(8.87)

G = 850. Notes: April 1931, 1932 and 1933 are the three dates where subscription rates are

observed at the district level. The other five dates are election dates. Adena et al. (2015)

estimate subscription rates on these dates using a fitting of subscription rates by local radio

signal strength. We use district-specific models with linear time trends. Standard deviations

over district are under parentheses.

We also slightly depart from Adena et al. (2015) in the way we include covariates. Adena et al.
(2015) consider a rich specification by including 115 covariates in their TWFE regressions (see
Appendix B for the whole list of such variables). As a result, the matrix

G∑
g=1

(Wg Z
a
g )′Π(Xg)(Wg Z

a
g )/G

is singular and the identification condition for our set-up with covariates (Assumption 5’) does
not hold on our sample. To solve this issue, we select the most relevant covariates using the dou-
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ble selection procedure of Belloni et al. (2014). Basically, the idea is to keep the most important
control variables (in terms of their correlation with either the outcome or the treatment), while
ensuring that the matrix above is non-singular. We refer to Appendix B for more details on the
procedure and the subset of covariates that are selected by it.

5.2 Results

We first present the results of different TWFE regressions that we consider in Table 2. First,
we replicate the results of Adena et al. (2015) in Column (I).1 The treatment coefficient implies
that having access to radio with anti-Nazi propaganda decreases the probability of voting for
the Nazi party by 12.3% from 1929 to 1932, and then increases this probability by the same
amount in 1933. This specification assumes away any effect in 1928. We then consider the
same specification, but controlling for the radio subscription rate in 1928. This may be seen as
a placebo test: given the absence of political programs at the radio that year, we expect the
coefficient to be 0. The coefficient is not significant but note that it is quite large, around 1.5 as
large as the coefficient of the treatment. Next, we consider the same two regressions, but with
our predicted treatment rates, and with the subset of covariates obtained through the double
selection procedure mentioned above rather than those used by Adena et al. (2015). We again
find a positive and significant coefficient, though its magnitude is smaller. Also, the coefficient
of the subscription rate in 1928 is now significant at the 10% level in Column (IV). Note that
with these new specifications, only 850 districts are included, rather than 959. This is because
the radio subscription rates are missing for 109 districts. As Adena et al. (2015) rely on a model
based on radio signal strength, which is known for every district from 1928 to 1933, to predict
subscription rates, they can still include these districts in their analysis, unlike us. We checked
that the specification of Adena et al. (2015) gives similar results on this subsample: Colum (V)
shows that results are very similar to the original ones.

1We were able to replicate their point estimate, though we obtain a larger standard error.
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Table 2: Effects of radio on voting for the Nazis - TWFE regressions.

Adena
(I) (II) (III) (IV) (V)

et al. (2015)

Radio subscr. 0.123∗∗∗ 0.123∗∗∗ 0.092∗ 0.054∗∗ 0.046∗∗ 0.115∗∗∗

rates (0.027) (0.042) (0.047) (0.018) (0.020) (0.043)

Radio subscr. 0.137 0.057
rates in 1928 (0.111) (0.034)

Subscr. rates Adena Adena Adena
Ours Ours

Adena
and cov. et al. et al. et al. et al.

G 959 959 959 850 850 850
R2 0.972 0.991 0.991 0.992 0.992 0.992

Share of
63%

negative weights

Sum of
-3.145

negative weights
Notes: the first column is from Adena et al. (2015), Table 3. (I) replicates their specification. (II)
adds to that specification subscription rates in 1928. Column (III) (resp. (IV)) is like (I) (resp.
(II)) but with our own subscription rates and subset of covariates. Column (V) is Adena et al.
(2015)’s specification using our restricted set of districts. Standard errors (under parentheses)
are clustered at the electoral region level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.

However, the results above may be biased, because of spatial or temporal heterogeneity in
the treatment effects. We follow de Chaisemartin and D’Haultfœuille (2020) and compute the
weights that the TWFE estimator in Adena et al. (2015)’s specification assigns to each district
× elections average treatment effects. We estimate that 63% of district × election cell receive
negative weights and negative weights sum to -3.145. The risk of a bias is thus a major concern
here. There is no reason to assume that the effect of radio subscription would be exactly the
opposite between 1930-1932 and 1933. We thus consider our model, where heterogeneity in the
treatment effects is much less restricted. The results are displayed in Table 3. None of the
treatment effects are significant. However, we do observe a large and statistically significant
evolution in favor of Nazis of the average treatment effects in 1933 compared to 1928, with
a point estimate for µ̂03/1933 around 19.3%. Another interesting finding is that the anti-Nazi
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propaganda that took place between 1929 and 1932 did not seem to have much impact: none
of the µ̂t for t before 1933 are statistically significant. Finally, and reassuringly, the coefficient
for 1928 is not significant at all usual level. But note that its sign is negative, contrary to what
we obtained in Table 2. Accounting for possible heterogeneity in treatment effects thus had an
important impact on the results.

Table 3: Effects of radio on voting for the Nazis - our estimates

Parameter 1928 1930 07/1932 11/1932 1933

∆̂t -0.093 -0.087 -0.027 -0.039 0.100
(0.118) (0.139) (0.154) (0.153) (0.160)

µ̂t 0 0.006 0.067 0.054 0.193∗∗

– (0.038) (0.066) (0.070) (0.084)
Notes: G = 850. We use our estimator with the covariates selected by Belloni

et al. (2014)’s double selection procedure. Standard errors, under parentheses,

are clustered at the electoral region level. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01.
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A Proofs of the results

A.1 Proposition 1

Let us define ∆n
g,t = E[∆i,g,t|Zg,t, Cg,t]− Cg,t, so that

Di,g,t = 1
{

∆n
g,t − ηi,g,t ≥ 0

}
. (15)

Since the (ηi,g,t)i,t are independent of ∆n
g and i.i.d., we have

P
(
D1,g,1 = d1,1, . . . , DNg,T ,g,T = dNg,T ,T |∆n

g

)
=

T∏
t=1

[
F (∆n

g,t)
∑Ng,t

i=1 di,t

(
1− F (∆n

g,t)
)Ng,t−

∑Ng,t
i=1 di,t

]
,

where F is the cumulative distribution function of ηi,g,t. This implies that

Dg ⊥⊥∆n
g |Da

g . (16)

Now, conditional on (Zg,Cg), Dg is a function of ηg. Thus, by the independence assumption,

Λi,g ⊥⊥Dg|Zg,Cg. (17)

As a result,

E [Λi,g|Dg] = E [E [Λi,g|Zg,Cg] |Dg]
= E

[
∆n

g,t − µt − E[ζi,g,t|Zg,Cg]|Dg

]
= E

[
∆n

g,t − µt|Dg

]
= E

[
∆n

g,t − µt|Da
g

]
.

The first equality follows by the law of iterated expectations and (17). The second equality
follows by Model (1). The third holds since ζi,g,t is independent of (Zg,Cg). The fourth follows
by (16). The last equality implies that E [Λi,g|Dg] only depends onDa

g . Therefore, E [Λi,g|Dg] =
E
[
Λi,g|Da

g

]
, which proves that Assumption 4 holds.

A.2 Theorem 1

First, we have for all (i, g, t) ∈ {1, . . . , Ng,t} × {1, . . . , G} × {1, . . . , T},

E[Yi,g,t|Da
g ] =βt + E[αi,g|Da

g ] + E[Di,g,t(Λi,g + µt)|Da
g ]

=βt + E[α1,g|Da
g ] + E[D1,g,t(Λ1,g + µt)|Da

g ]
=βt + E[α1,g|Da

g ] + E[D1,g,t|Da
g ]
(
E[Λ1,g|Da

g ] + µt

)
=βt + E[α1,g|Da

g ] +Dg,t

(
E[Λ1,g|Da

g ] + µt

)
.
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The first equality follows by Model (1) and the exchangeability condition in Assumption 3.
The second uses Assumption 2. The third follows by Assumption 4. The last follows again by
exchangeability. Hence,

E[Yg,t|Da
g ] = βt +Dg,tµt + E[α1,g|Da

g ] +Dg,tE[Λ1,g|Da
g ].

We obtain (5) by stacking the equations above over t.

Next, consider (6). We have

E[W ′
gΠ(Xg)Yg|Dg] =W ′

gΠ(Xg)Wgδ0 +W ′
gΠ(Xg)Xgφ0(Dg)

=W ′
gΠ(Xg)Wgδ0.

The first equality follows by (5) and since W ′
gΠ(Xg) is a function of Dg. The second equality

holds because Π(Xg)Xg = 0. Equation (6) follows by the law of iterated expectations and the
fact that E[W ′

gΠ(Xg)Wg] is nonsingular. Equation (7) then follows from (5), (6) and φ0 =
E[φ0(Dg)|Mg = 1]. Finally, Equation (8) follows by Model (1) and the normalization µ1 = 0.

A.3 Proof of Proposition 2

1. If Mg = 1, Xg is invertible and thus Π(Xg) = 0. Hence,

E
[
W ′

gΠ(Xg)Wg

]
= E

[
W ′

gΠ(Xg)WgMg

]
.

Now, some algebra shows that if Mg = 1,

Π(Xg) = 1
2

 1 −1
−1 1

 .
Then, we obtain

E
[
W ′

gΠ(Xg)WgMg

]
=1

2

 E[1−Mg] E[Dg,1(1−Mg)]
E[Dg,1(1−Mg)] E[D2

g,1(1−Mg)]


=P (Mg = 0)

2

 1 E[Dg,1|Mg = 0]
E[Dg,1|Mg = 0] E[D2

g,1|Mg = 0]

 .
This matrix is nonsingular if and only if P (Mg = 0) > 0 and the determinant of the last matrix
is not 0, which is equivalent to V (Dg,1|Mg = 0) > 0.

2. Let’s suppose that det(X ′gXg) 6= 0 so that Π(Xg) = IT −Xg(X ′gXg)−1Xg. Then, one can show
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that for all (i, j){1, . . . , T}2, i 6= j,

Π(Xg)i,i =
T∑

k=2
k 6=i

l−1∑
l=1
l 6=i

(Dl −Dk)2/ det(X ′gXg)

Π(Xg)i,j =
T∑

k=1
k 6=i
k 6=j

(Di −Dk)(Dj −Dk)/ det(X ′gXg)

where Π(Xg)i,j denotes the component on the ith line and jth column of matrix Π(Xg). Then,
sinceW ′

gΠ(Xg)Wg = (Π(Xg).,2 D2Π(Xg).,2 . . . Π(Xg).,T DT Π(Xg).,T ) where for all i ∈ {2, . . . , T},
Π(Xg).,i is the ith column of matrix Π(Xg), the sufficient condition arises straightly. When
det(X ′gXg) = 0, the condition always holds unless D = 1 or D = 0.

A.4 Proposition 3

First, it follows from (6) that

δ̂ = δ0 +
 1
G

G∑
g=1

W ′
gΠ(Xg)Wg

−1 1
G

G∑
g=1

W ′
gΠ(Xg)εg

 ,
where εg = Yg −Wgδ0 −Xgφ0(Dg). Thus, by the central limit and Slutsky’s theorems,

√
G
(
δ̂ − δ0

)
= 1√

G

G∑
g=1

ψg + op(1), (18)

where ψg = (ψ1,g, . . . , ψ2(T−1),g)′ := E
(
W ′

gΠ(Xg)Wg

)−1
W ′

gΠ(Xg)εg. Next, let

φ̃h = 1
Gh

∑
g:Mg,h=1

(X ′gXg)−1X ′g(Yg −Wgδ0),

so that

φ̂h = φ̃h −

 1
Gh

∑
g:Mg,h=1

(X ′gXg)−1X ′gWg

 (δ̂ − δ0
)
. (19)

The delta method and some algebra show that

√
G
(
φ̃h − φh

0

)
= 1√

G

G∑
g=1

χg + op(1),

where χg = Mg,h

[
(X ′gXg)−1X ′g(Yg −Wgδ0)− φh

0

]
/E[Mg,h]. Combined with (18), (19) and Slut-

sky’s theorem, this yields

√
G
(
φ̂h − φh

0

)
= 1√

G

G∑
g=1

νg + op(1),
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where νg = (ν1,g, ν2,g)′ := χg − E[(X ′gXg)−1X ′gWg|Mg,h = 1]ψg. Finally, we obtain

√
G
(
∆̂h

t −∆h
0,t

)
= 1√

G

G∑
g=1

ωg,t + op(1),

where
ωg,t = ν2,g + ψ2(t−1),g1 {t > 1} . (20)

The proposition follows by the central limit and Slutsky’s theorems.

A.5 Theorem 2

First, we have for all (i, g, t) ∈ {1, . . . , Ng,t} × {1, . . . , G} × {1, . . . , T},

E[Yi,g,t|Da
g ,Zg] =βt + Zg,tλ0 + E[αi,g|Da

g ,Zg] + E[Di,g,t(Λi,g + µt)|Da
g ,Zg]

=βt + Zg,tλ0 + E[α1,g|Da
g ,Zg] + E[D1,g,t(Λ1,g + µt)|Da

g ,Zg]
=βt + Zg,tλ0 + E[α1,g|Da

g ,Zg] + E[D1,g,t|Da
g ,Zg]

(
E[Λ1,g|Da

g ,Zg] + µt

)
=βt + Zg,tλ0 + E[α1,g|Da

g ,Zg] +Dg,t

(
E[Λ1,g|Da

g ,Zg] + µt

)
.

The first equality follows by Model (9) and the exchangeability condition in Assumption 3’.
The second uses Assumption 2’. The third follows by Assumption 4’. The last follows again by
exchangeability. Hence,

E[Yg,t|Da
g ,Zg] = βt +Dg,tµt + Zg,tλ0 + E[α1,g|Da

g ,Zg] +Dg,tE[Λ1,g|Da
g ,Zg].

We obtain (10) by stacking the equations above over t.

Next, consider (11). We have

E[(Wg Zg)′Π(Xg)Yg|Dg,Zg] =(Wg Z
a
g )′Π(Xg)(Wg Z

a
g )(δ′0 λ′0)′ + (Wg Z

a
g )′Π(Xg)Xgφ0(Dg,Zg)

=(Wg Z
a
g )′Π(Xg)(Wg Z

a
g )(δ′0 λ′0)′.

The first equality follows by (10) and since (Wg Z
a
g )′Π(Xg) is a function of (Dg,Zg). The second

equality holds because Π(Xg)Xg = 0. Equation (11) follows by the law of iterated expectations
and the fact that E[(Wg Zg)′Π(Xg)(Wg Zg)] is nonsingular. Equation (12) then follows from
(10), (11) and φ0 = E[φ0(Dg,Zg)|Mg = 1]. Finally, Equation (13) follows by Model (9) and the
normalization µ1 = 0.

B Additional details on the application

The control variables considered by Adena et al. (2015) include first socio-demographic charac-
teristics. These are: a fifth order polynomial of population, the share of Jewish and Catholic
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people in 1925, the share of workers in white- and blue-collar occupations in 1925, the share of
unemployed and partially employed people in 1933, the number of World War I participants per
1,000 inhabitants in 1925, the number of social housing renters per 1,000 inhabitants in 1925,
the number of welfare recipients per 1,000 inhabitants in 1925 and the logarithm of the average
property tax in 1930. Second, variables related to preexisting political preferences are included:
the shares of votes for the DNVP and the NSFB nationalistic parties, the shares of votes for
the Zentrum and SPD non-nationalistic parties in the 1924 Parliamentary election and turnout.
Finally, Adena et al. (2015) control for the determinants of radio transmitters location by adding
the average altitude of the district, a dummy for city status of the district and the distance to
the closest city with at least 50,000 inhabitants. All the variables above are interacted with
time.

As the total number of covariates amounts to 115, we implement the double selection procedure
from Belloni et al. (2014) to select the most relevant ones. In a first step, the treatment (radio
subscription rate) is regressed on the whole set of control variables (including time and district
dummies) using a Lasso. The variables whose estimated coefficient is different from zero are
kept. In a second step, the outcome (vote share for the Nazi party) is regressed on the whole
set of control variables (including time and district dummies) also using a Lasso. Once again,
the variables whose associated estimated coefficient is different from zero are kept. Finally, vote
share for the Nazi party is regressed on radio subscription rate and all the selected variables,
that is to say variables that were kept in at least one of the two previous steps, using OLS. We
adapt this last step by keeping all time and electoral districts dummies in the regression. The
selected variables are presented in Table 4. Preexisting political preferences and socio-economic
characteristics seem to be the most relevant determinants of support for the Nazi Party and/or
radio exposure.
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Table 4: Selected Covariates from Belloni et al. (2014)’s Procedure

Elections Selected Control Variables

May 1928
Vote share for the Zentrum party in the 1924 parliamentary election
Vote share for the DNVP party in the 1924 parliamentary election

Share of blue-collar workers in 1925, Turnout

September 1930

Vote share for the Zentrum party in the 1924 parliamentary election
Vote share for the DNVP party in the 1924 parliamentary election
Vote share for the NSFB party in the 1924 parliamentary election

Share of the Catholic population in 1925
Share of the blue-collar workers in 1925

Altitude, Turnout

July 1932

Vote share for the NSFB party in the 1924 parliamentary election
Vote share for the DNVP party in the 1924 parliamentary election

Share of the Catholic population in 1925, Share of white-collar workers in 1925
Logarithm of the average property tax in 1930, Altitude

November 1932

Vote share for the Zentrum party in the 1924 parliamentary election
Vote share for the NSFB party in the 1924 parliamentary election
Vote share for the DNVP party in the 1924 parliamentary election

Share of the Catholic population in 1925
Share of white-collar workers in 1925, City dummy

Share of unemployed people in 1933
Logarithm of the average property tax in 1930

March 1933

Vote share for the Zentrum party in the 1924 parliamentary election
Vote share for the NSFB party in the 1924 parliamentary election
Vote share for the DNVP party in the 1924 parliamentary election

Share of the Catholic population in 1925
Share of white-collar workers in 1925

City dummy, Altitude
Share of unemployed people in 1933

Logarithm of the average property tax in 1930

23


