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Abstract

We introduce the concept of financial stability real interest rate using a macroeconomic
banking model with an occasionally binding financing constraint as in Gertler and Kiyotaki
(2010). The financial stability interest rate, r**, is the threshold interest rate that triggers the
constraint being binding. We discuss r** and its dynamics, and show that persistently low real
rates induce an increase in financial vulnerabilities and a consequent decline in the level of r**.
We also provide a measure of r** for the US economy and discuss its evolution over the past 50
years, highlighting that during periods of financial stress that are associated with a decline in
r** , the real rate tracks r** —a feature of monetary policy known as “Greenspan’s put”.

1 Introduction

One of the key aspects that has characterized the global economy and in particular advanced

economies in the last two decades is the secular decline in real interest rates. The decline in global

real interest rates has largely occurred in a context of relatively low and stable inflation suggesting

that the drop in observed real interest rates reflects a fall in what researchers refer to as the “natural

real interest rate,” also known as r* (see, for example, Holston et al., 2017, and Del Negro et al.,

2019). The concept of natural real interest rate dates to Wicksell (1898) and it is usually defined as

the “real rate consistent with real GDP equals to its potential in the absence of shocks to demand. In

turn potential GDP is defined to be the level of output consistent with stable price inflation absent

transitory supply shocks” (see Laubach and Williams (2003)). In short, the concept of natural real

interest rate is associated with the notion of macroeconomic stability.

In this paper we propose a complementary concept that we call the “financial stability real

interest rate, r**.” The core idea relies on determining the underlying level of real interest rate that

might generate financial instability dynamics. Both conceptually and observationally r** di↵ers

from the “natural real interest rate” and from the observed real interest rate reflecting a tension in

terms of macroeconomic stabilization versus financial stability objectives.

First, we discuss r** from a conceptual standpoint. To define the financial stability real interest

rate one first needs to develop a concept of financial stability. To this end, we consider an environment

in which some agents in the economy face a credit constraint that gives rise to debt-deflation or asset

fire-sale dynamics. Importantly, the credit constraint is occasionally binding. This implies that the

economy is characterized by two states: when the constraint is not binding the economy is in a

normal state or tranquil period; when the constraint binds the economy is in a crisis mode and
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a financial instability dynamic arises. The financial stability real interest rate is the interest rate

that, for a given state of the economy (for example for a given amount of private debt), would be

consistent with the constraint being just binding.

Just like the natural rate of interest provides a benchmark for monetary policy in terms of

macroeconomic stability, r** is meant to provide a benchmark for financial stability: if the real rate in

the economy is at or above r**, the tightness of financial conditions may generate financial instability.

Like the natural interest rate, the financial (in)stability real interest rate is state dependent: it evolves

with the conditions of the economy, and in particular with the degree of imbalances in the financial

system.

The notion of a financial (in)stability real interest rate broadly applies to any model where

the economy fluctuates between normal state and a crisis state (see for example Mendoza (2010),

Benigno et al. (2013), and Akinci and Chahrour (2018) in the context of the sudden stop literature).

For concreteness, in this paper we use a particular model to illustrate how r** is constructed. The

specific approach that we will follow in developing the concept of the financial stability real interest

rate builds upon the banking framework developed by Gertler and Karadi (2011) and Gertler and

Kiyotaki (2015). One of the virtues of using the Gertler-Kiyotaki framework is that it allows to relate

the concept of financial stability real interest rate also to key variables for financial intermediaries

such as the net worth or the asset/liability ratio.

In this framework, financial intermediaries channel funds from households to firms. The key

imperfection is that banks have a limit in their ability to raise funds because of a moral hazard

problem. It is assumed that after raising funds and buying assets at the beginning of the period,

and then the banker decides whether to operate honestly or divert assets for personal use. This

moral hazard problem gives rise to an incentive compatibility constraint that creates a link between

the value of the bank and the value of the assets that can be diverted.

In their seminal work, Gertler and Karadi (2011) and Gertler and Kiyotaki (2015) always assume

that the constraint is binding. The key departure that we would like to consider, as in Akinci and

Queralto (forthcoming), is to allow for the constraint to be occasionally binding so that the economy

can display both a tranquil and a crisis state. This departure requires using a global solution method

for solving the model and takes into account the non-linearity generated by the occasionally binding

constraint.

As a first pass we focus on a version of the model in which there is no need to determine nominal

variables as contracts are expressed in real terms. Therefore by construction, the real rate in this

economy coincides with the natural rate of interest r*, that is, the underlying interest rate consistent

with macroeconomic stability. In order to further simplify the exposition, in this paper we illustrate

the mechanism in a situation where the real interest rate is exogenous as, for example, in a small

open economy. We leave the discussion of the rich interactions between monetary policy and the

financial (in)stability real interest rate to further research.

Within our modeling approach, we characterize some key properties of our conceptualization.

Given the non-linearity built in our approach, the response of the economy to a shock di↵ers de-

pending on the underlying state. In particular the level and the evolution of the financial stability

real rate r** depends on the economy being in a high or low fragility state. For example, when the
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economy is in a high fragility state (high leverage), a negative shock that triggers a binding credit

constraint is associated with a spike in credit spreads and a relatively low level of the financial sta-

bility real interest rate, r**. Interestingly, during the period of financial stress r** stands below the

natural real interest rate. This suggests that, under these circumstances, a policy rate that tracks

the natural real interest rate leads to financial instability. Moreover, prolonged period of low real

interest rate leads eventually to an increase in leverage of the banking sector and a lower level of

the financial stability real interest rate. Low for long (in terms of real interest rates) tends then to

reduce the policy space as the gap between the natural and the financial stability real interest rate

shrinks.

We then provide an empirical measure of r** for the US economy and discuss its evolution over

the past 50 years. We construct our measure by building on the properties of our model economy to

identify in the data episodes of financial instability. First, periods of financial stress coincides with

very volatile credit spreads. Such volatility is a consequence of the non linearity of the model: when

financing constraints are binding, the financial accelerator mechanism amplifies the impact of shocks

to the economy and to credit spreads in particular. Second, the level of credit spreads is connected

with the tightness of the financial constraint, and therefore with the gap between r** and the real

rate r. Again, this relationship is non linear as it changes depending on the constraint being binding

or not: during periods of financial stress, credit spreads predict the latent r**-r gap very well. The

relationship becomes much looser during tranquil financial periods, where movements in spreads are

much noisier proxies for the r**-r gap. Our empirical measure of r** shows that in post-1970s US

data as r** falls during periods of financial stress the real rate tends to track r** —a feature of

monetary policy known as “Greenspan’s put”. This has been a feature of all financial stress episodes

in the US, with the only exception being the later part of the Great Financial Crisis, when the

nominal interest was stuck at the zero lower bound. In general we note that financial stress episodes

are associated with periods in which the real interest rate is above our measure of r**.

The next section describes the model, section 3 discusses our calibration strategy and section 4

presents the quantitative properties of r**. In section 5 we construct the empirical measure of r**.

Section 6 concludes.

2 Model

We propose a framework that builds upon the banking model developed in Gertler and Kiyotaki

(2010). In this setting, banks make risky loans to nonfinancial firms and collect deposits from

domestic households. In addition, banks may also hold a perfectly safe asset, supplied by the

foreign sector (or, under an equivalent formulation, by the government sector). Because of an

agency problem, banks may be constrained in their access to external funds. The key aspect for

the purpose of our analysis is to allow for this constraint to be occasionally binding, as in Akinci

and Queralto (forthcoming). In normal, or “tranquil,” times, banks’ constraints do not bind: credit

spreads are small and the economy’s behavior is similar to a frictionless neoclassical framework.

When the constraint binds the economy enters into financial stress mode: credit spreads become

large and volatile, and investment and credit drop, consistent with the evidence.
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As we mentioned above for simplicity at this stage we consider a real model in which there is no

nominal determination.

2.1 Households

Each household is composed of a constant fraction (1�f) of workers and a fraction f of bankers.

Workers supply labor to the firms and return their wages to the household. Each banker manages

a financial intermediary (“bank”) and similarly transfers any net earnings back to the household.

Within the family there is perfect consumption insurance.

Households do not hold capital directly. Rather, they deposit funds in banks. The deposits held

by each household are in intermediaries other than the one owned by the household. Bank deposits

are riskless one-period securities. Consumption, Ct, deposits, Dt, and labor supply, Lt, are given by

maximizing the discounted expected future flow of utility

Et

1X

i=0

�
i
U(Ct+i, Lt+i),

subject to the budget constraint Ct +Dt  WtLt +R
d
t�1Dt�1 +⇧t 8t.

Et denotes the mathematical expectation operator conditional on information available at time

t, and � 2 (0, 1) represents a subjective discount factor. The variable Wt is the real wage, Rd
t is the

(gross) real interest rate received from holding one-period deposits, and ⇧t is total profits distributed

to households from their ownership of both banks and firms.

2.2 Banks

Banks are owned by the households and operated by the bankers within them. In addition to its

own equity capital, a bank can obtain external funds from domestic households, dt. In each period

the bank uses its net worth nt and deposits dt, to purchase securities issued by nonfinancial firms,

st, at price Qt, as well as safe assets bt. In turn, nonfinancial firms use the proceeds to finance their

purchases of physical capital.

2.2.1 Agency friction and incentive constraint

We follow Gertler and Kiyotaki (2010) in assuming that banks are “specialists” who are e�cient

at evaluating and monitoring nonfinancial firms and at enforcing contractual obligations with these

borrowers. For this reason firms rely solely on banks to obtain funds and there are no contracting

frictions between banks and firms. However, as in Gertler and Kiyotaki (2010), we introduce an

agency problem whereby the banker managing the bank may decide to default on its obligations and

instead transfer a fraction of assets to the households, in which case it is forced into bankruptcy and

its creditors can recover the remaining funds. In recognition of this possibility, creditors potentially

limit the funds they lend to banks. In our setup, banks may or may not be credit constrained,

depending on whether or not they are perceived to have incentives to disregard their contractual

obligations.
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More specifically, after having borrowed external funds but before repaying its creditors, the

bank may decide to default on its obligations and divert fraction ⇥(xt) of risky loans. In this case,

the bank is forced into bankruptcy and its creditors recover the remaining funds. To ensure that

the bank does not divert funds, the incentive constraint must hold:

Vt � ⇥(xt)Qtst (1)

where Vt stands for the continuation value of the bank. This constraint requires that the bank’s

continuation value be higher than the value of the diverted funds.

The variable xt is the economywide ratio of risky to safe assets held by the banking sector:

xt ⌘ QtKt

Bt
. We assume that the agency friction worsens as the banking sector portfolio becomes

more risky: ⇥0(xt) > 0. The rationale for this assumption is that risky loans are more opaque and

hard to monitor relative to safe assets, which leads creditors to turn more cautious when the banking

sector’s portfolio becomes riskier.1

2.2.2 The banker’s problem

The bank pays dividends only when it exits. If the exit shock realizes, the banker exits at the

beginning of t+1, and simply waits for its asset holdings to mature and then pays the net proceeds to

the household. The objective of the bank is to maximize expected terminal payouts to the household.

Formally, the bank chooses state-contingent sequences {st, bt, dt} to solve

Vt(nt) = max (1� �)Et⇤t,t+1

�
RK,t+1Qtst +Rtbt �R

d
t dt

�
+ �Et⇤t,t+1Vt+1(nt+1)

subject to

Qtst + bt +R
d
t�1dt�1  RK,tQt�1st�1 +Rt�1bt�1 + dt (2)

and the incentive constraint given in equation (1). Here Rt is the return on the safe asset and ⇤t,t+1

is the household’s stochastic discount factor, given by the marginal rate of substitution between

consumption at dates t + 1 and t. Equation (2) is the bank’s budget constraint, stating that the

bank’s expenditures (consisting of asset purchases, Qtst + bt, and repayment of deposit financing,

R
d
t�1dt�1) cannot exceed its revenues, stemming from payments of previous-period asset holdings,

RK,tQt�1st�1 +Rt�1bt�1 and deposits dt. The bank’s problem is also subject to the balance sheet

identity

Qtst + bt ⌘ nt + dt (3)

This equation is equivalent to a definition of net worth, and states that the bank’s assets are funded

by the sum of net worth and deposits.

In this setting, banks can perfectly arbitrage between deposits and holdings of the safe asset. As

a consequence, we will have that R
d
t = Rt. Thus, Rt is e↵ectively the economywide risk-free rate.

Using this condition and combining (2) with the balance sheet identity we obtain the law of motion

1
The assumption that xt is the aggregate ratio, as opposed to the bank-specific one, implies that banks do not

internalize the e↵ect on ⇥ of their choice of xt. We make this assumption for convenience, but expect our key results

to also apply to the case in which the e↵ect of banks’ choice of xt is internalized.
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of net worth:

nt = (RK,t �Rt�1)Qt�1st�1 +Rt�1nt�1 (4)

We next guess that the value function satisfies, Vt(nt) = ↵tnt, where ↵t is a coe�cient to be

determined. Let

µt ⌘ Et[⇤t,t+1(1� � + �↵t+1)(RK,t+1 �Rt)] (5)

⌫t ⌘ Et[⇤t,t+1(1� � + �↵t+1)]Rt (6)

Note that ↵t+1, capturing the value to the bank of an extra unit of net worth the following period,

acts by “augmenting” banks’ stochastic discount factor (SDF) so that their e↵ective SDF is given

by ⇤t,t+1 (1� � + �↵t+1).

With these definitions, the problem simplifies to

↵tnt = max
st

µtQtst + ⌫tnt (7)

subject to the incentive constraint

µtQtst + ⌫tnt � ⇥(xt)Qtst (8)

and (4). The solution is as follows. Let the banker’s (risky) leverage be �t ⌘
Qtst
nt

. If µt = 0, the

banker is indi↵erent as to its leverage choice. If µt > 0, the banker leverages up as much as allowed

by the constraint. Rearranging (8), maximum leverage, denoted �t, is given by

�t =
⌫t

⇥(xt)� µt

. (9)

Observe that �t is decreasing in ⇥(xt), and therefore falls as the banking sector’s porftolio shifts

toward risky assets (i.e. as xt rises).

Since the bankers problem is linear, we can easily aggregate across banks. For surviving banks,

the evolution of net worth is given by (4). We assume entering bankers receive a small exogenous

equity endowment, given by fraction ⇠/f of the value of the aggregate capital stock. Thus the law

of motion of aggregate net worth is the following:

Nt = �
⇥
(RK,t �Rt�1)Qt�1Kt�1| {z }

=Qt�1St�1

+Rt�1Nt�1

⇤
+ (1� �)⇠Qt�1Kt�1 (10)

2.2.3 Credit spreads and the financial constraint

The model highlights how the behavior of credit spreads depends crucially on whether the finan-

cial constraint binds. We define the credit spread as the (annualized) expected return on nonfinancial

firms’ securities, Et(RK,t+1), minus the risk-free rate, Rt. When the constraint is not binding, banks
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can fully arbitrage away this excess return, and the following condition holds:

Et (⌦t+1RKt+1) = Et (⌦t+1)Rt, (11)

where ⌦t+1 ⌘ 1� � + �↵t+1 is the banker’s SDF. If the economy is far a way from the constraint,

the credit spread Et(RK,t+1)�Rt will tend to be low on average, and relatively stable. The model

then implies a behavior of investment similar to standard (frictionless) models, with the condition

Et(RK,t+1) ⇡ Rt determining the response of investment to movements of the real rate: a higher

Rt, for example, raises the required expected return on investment, triggering a fall in Qt and It.

By contrast, when the constraint binds, banks’ lending is constrained by their net worth: from

the constraint at equality, we have ⇥(xt)QtSt = ↵tNt. Banks cannot fully arbitrage away excess

returns: we have

Et (⌦t+1RKt+1) > Et (⌦t+1)Rt,

and the credit spread will tend to be large and volatile. In this regime, investment behavior is heavily

influenced by financial accelerator / fire-sale dynamics: a lower asset price Qt erodes net worth and

tightens the constraint further, which pushes investment down, triggering another round of decline

in Qt. Along the way, credit spreads skyrocket.

2.3 Nonfinancial Firms

There are two categories of nonfinancial firms: final goods firms and capital producers. In turn,

within final goods firms we also distinguish between “capital leasing” firms and final goods producers,

in order to clarify the role of bank credit used to finance capital goods purchases.

2.3.1 Final Goods Firms

We assume that there are two types of final goods firms: capital leasing firms and final goods

producers. The first type of firm purchases capital goods from capital good producers, stores them

for one period, and then rents them to final goods firms. The second type uses physical capital

(rented from capital leasing firms) and labor to produce final output. Importantly, capital leasing

firms have to rely on banks to obtain funding to finance purchases of capital, as explained below. In

addition, final goods producers need to rely on banks to finance working capital.

In period t � 1, a representative capital leasing firm purchases Kt�1 units of physical capital

at price Qt�1. It finances these purchases by issuing St�1 securities to banks which pay a state-

contingent return RK,t in period t. At the beginning of period t, the realization of the capital

quality shock  t determines the e↵ective amount of physical capital in possession of the firm, given

by e
 tKt�1. The firm rents out this capital to final goods firms at price Zt, and then sells the

undepreciated capital (1 � �)e tKt�1 in the market at price Qt. The payo↵ to the firm per unit

of physical capital purchased is thus e
 t [Zt + (1� �)Qt]. Given frictionless contracting between

firms and banks, it follows that the return on the securities issued by the firm is given by the
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following (note that this equation implies that capital leasing firms make zero profits state-by-state):

RK,t = e
 t

Zt+(1��)Qt

Qt�1
.

The capital quality shock  t ⇠ N(0,� ), which provides a source of fluctuations in returns to

banks’ assets, is a simple way to introduce an exogenous source of variation in the value of capital.2

These variations are enhanced by the movements in the endogenous asset price Qt triggered by

fluctuations in  t.

In the aggregate, the law of motion for capital is given by

Kt = �(It) + (1� �)e tKt�1 (12)

Final goods firms produce output Yt using capital and labor: Yt = F (e tKt�1, Lt). The first

order conditions for labor and for physical capital are as follows:

F1(Kt, Lt) = Zt (13)

F2(Kt, Lt) = Wt (14)

2.3.2 Capital Goods Producers

Capital producers, owned by households, produce new investment goods using final output, and

they sell those goods to firms at the price Qt. The quantity of newly produced capital, �(It), is an

increasing and concave function of investment expenditure to capture convex adjustment costs.

The objective of the capital producer is then to choose {It} to maximize profits distributed to

households:

max {Qt�(It)� It} (15)

The resulting first-order condition yields a positive relation between Qt and It:

Qt = [�0(It)]
�1

(16)

2.4 Interest rate determination

We assume that the safe rate, Rt, evolves (mostly) exogenously. The goal is to capture a first pass

at fluctuations in the natural real interest rate, without taking a stance on their causes. Accordingly,

Rt satisfies

Rt = Rt + �
�1 + f(Bt/B), (17)

where Rt follows the stochastic process

log(Rt) = ⇢R log(Rt�1) + ✏R,t,

2
This may be thought of as capturing some form of economic obsolescence. Gertler et al. (2012) provide an explicit

microfoundation of fluctuations in capital quality  t based on time-varying obsolescence of intermediate goods.
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with ✏R,t ⇠ N(0,�R). The (endogenous) term f(Bt/B) is a small portfolio cost we introduce for

technical reasons, as it helps ensure stationarity of safe asset holdings Bt (Schmitt-Grohe and Uribe

(2003)).

2.5 Resource Constraint, Market Clearing, and Equilibrium

The resource constraint and the balance of payments equations, respectively, are given by:

Yt = Ct + It +Tt (18)

Tt = Bt �Rt�1Bt�1 (19)

where T stands for net exports (or transfers (taxes) under an equivalent formulation where safe

assets are provided by the government sector). An equilibrium is defined as stochastic sequences for

the eight quantities Yt, Ct, It,Tt, Bt, Lt,Kt, Nt, four prices RK,t, Qt, Rt,Wt, and four banking sector

coe�cients µt, ⌫t,↵t,�t such that households, banks, and firms solve their optimization problems,

and all markets (for short-term debt, securities, new capital goods, final goods, and labor) clear,

given exogenous stochastic sequences for  t, and Rt.

3 Functional Forms and Parameter Values

In this section we describe, in turn, the functional forms and the parameter values used in the

model simulations.

3.1 Functional Forms

The functional forms of preferences, production function, and investment adjustment cost are

the following:

U(Ct, Lt) =

⇣
Ct � �

L1+✏
t
1+✏

⌘1��
� 1

1� �
(20)

F (Kt, Ht) = (e tKt�1)
⌘
L
1�⌘
t (21)

� (It) = a1 (It)
1�# + a2 (22)

⇥(xt) = ✓

⇣
xt

x̄

⌘
(23)

The utility function, equation (20), is defined as in GHH(1988), which implies non-separability

between consumption and leisure. This assumption eliminates the wealth e↵ect on labor supply by

making the marginal rate of substitution between consumption and labor independent of consump-

tion. The parameter � is the coe�cient of relative risk aversion, and ✏ determines the wage elasticity

of labor supply, given by 1/✏. The production function, equation (21), takes the Cobb-Douglas

form. The coe�cient ⌘ is the elasticity of output with respect to capital. Equation (22) defines the

the investment technology, with the # corresponding to the elasticity of the price of capital with
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Table 1: Calibrated Model Parameters

Parameter Symbol Value Source/Target

Conventional
Discount factor � 0.995 Interest rate 2%, ann.)
Risk aversion � 2 Standard RBC value
Capital share ⌘ 0.33 Standard RBC value
Capital depreciation � 0.025 Standard RBC value
Debt elast. of interest rate ' 0.01 Standard RBC value
Reference debt/output ratio b 2 Steady state B/Y of 200%
Labor disutility � 2.22 Steady state labor of 33%
Inverse Frisch elast. ✏ 1/8 Gertler and Kiyotaki (2010)
Elasticity of Q w.r.t. I # 0.25 Gertler, Kiyotaki, Prestipino (2019)
Investment technology a1 0.925 Q = 1
Investment technology a2 �0.975% �(I) = I

Financial Intermediaries
Survival rate � 0.95 Exp. survival of 5 yrs
Transfer rate ⇠ 0.1827
Fraction divertable ✓ 0.20 { Frequency of crises around 3%,
Elasticity of ⇥x w.r.t. x  1.5 Leverage of 5}

Shock Processes
Persistence of interest rate ⇢R 0.915
SD of interest rate innov. (%) �R 0.175
SD of capital quality (%) � 0.75

respect to investment. Finally equation (23) defines the positive relationship between the ratio of

risky-to-safe assets, xt, and the degree of financial frictions, ⇥x, in the economy, as described before.

We assign values to the structural parameters of the model using a combination of calibration

and econometric estimation techniques. We calibrate several preference, production, and financial

sector parameters to standard values when possible, and report them in Table 1.

We set the discount factor, �, to 0.995, which implies an annual real neutral rate of interest

rate of 2%. The following four parameters are standard values in business cycle literature: The risk

aversion parameter, �, the capital share, ⌘, and the depreciation of capital, �, are set to 2, 0.33, and

0.025, respectively. The reference debt to output ratio is set to 2, which yields a ratio of external

debt to GDP of 50% annually—a conservative estimate.

The values we assign to the Frisch labor supply elasticity (given by 1/✏) is at the upper end of a

wide range of values used in the literature. We found that these parameters are hard to identify in

the estimation procedure described below. Accordingly, the Frisch labor supply elasticity is set to 8,

a value that is above the range typically found in the literature. As in Gertler and Kiyotaki (2010),

this relatively high value represents an attempt to compensate for the absence of frictions such as

nominal wage and price rigidities, which are typically included in quantitative DSGE models. While

our framework excludes these frictions to preserve simplicity, they likely have a role in accounting for

employment and output volatility in the countries we study, hence, as Gertler and Kiyotaki (2010)

do, we partly compensate for their absence by setting a relatively high elasticity of labor supply.
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We follow Gertler et al. (2019) in choosing the parameters governing the investment technology.

More specifically, we set #, which corresponds to the elasticity of the price of capital with respect

to investment rate, equal to 0.25, a value within the range of estimates from panel data. We then

choose a1 and a2 to hit two targets: first, a ratio of quarterly investment to the capital stock of

2 percent and, second, a value of the price of capital Q equal to unity in the risk-adjusted steady

state.

We then assign values to the four parameters relating to financial intermediaries: the survival

rate of bankers, �, the transfer to entering bankers, ⇠, the fraction of assets that bankers can divert,

✓, and the parameter determining the responsiveness of the degree of financing frictions to the ratio

of risky-to-safe assets, . We calibrate � to 0.95 as in Gertler and Kiyotaki (2010), implying that

bankers survive for about 5 years on average. This value of banks’ survival rate is around the

mid-point of values found in the literature.

The start-up transfer rate ⇠ ensures that entering bankers have some funds to start operations.

We set  to 1.5. We calibrate the remaining parameters related to financial intermediaries to hit two

targets: a leverage ratio of about 5 in the risk-adjusted steady state, and a frequency of financial

crises of 3 percent annually. The target leverage ratio is an estimate of the average financial sector

leverage.

Finally, as we have direct observations on real country interest rates, we fix the persistence and

standard deviation of innovation for the interest rate shocks, ⇢R and �R, to the real interest rate

from the U.S. data. We then choose the standard deviation of innovation for the capital quality

shock to broadly match the standard deviation of output growth in the U.S.

4 Model Results

4.1 The financial stability rate, r⇤⇤: Dynamics

In this section we define and then characterize the dynamic properties of the financial stability

interest rate in a calibrated version of the simple model as described above. We calculate the

implied real interest rate in the economy that makes the constraint just binding, and call it the

financial stability rate, r⇤⇤. When the leverage constraint is slack, this implied real interest rate is

a benchmark rate for financial stability: if the real rate is to increase beyond r
⇤⇤, the tightness of

financial conditions would generate financial instability. In those states in which the constraint binds,

conversely, we compute the counterfactual real interest rate that makes the constraint nonbinding.

Thus, we define r
⇤⇤ as the threshold rate above which financial instability arises.

Before showing the financial stability rate dynamics, it is useful to illustrate the nonlinearity and

state-dependence induced by the financial constraint, as well as the amplification via the financial

accelerator mechanism that occurs when the constraint binds. Figure 1 shows the responses to a 1.5

percent capital quality shock which hits when the economy is initially at the risk-adjusted steady

state (red dashed line in Figure 1). The shock leads net worth to drop about 8 percent on impact.

The decline in net worth, however, is not large enough to push the economy into the constrained

region. As a consequence, the shock has only modest e↵ects on investment and credit spreads.
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Figure 1: State-dependent e↵ects of decline in capital quality
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shows the level of the real interest rate in the model economy.

We next perform a similar experiment, i.e. we hit the model with a 1.5 percent capital quality

shock at t = 0, but we now assume that the economy is initially in a state of high financial fragility—

with bank leverage very close to the maximum allowed by the constraint. Formally, we assume that

the quality-adjusted capital stock e
 tKt�1 (a key state variable in the model), is about five percent

below its steady-state value in period t = �1, right before the shock hits at t = 0.

The blue solid line in Figure 1 shows the dynamic e↵ects of the capital quality shock when the

economy starts from this high-fragility state (in deviation from the path that the economy would

have followed absent the shock). The decline in bank net worth is now large enough to bring banks

12



up against their constraints. As a consequence, the spread jumps by about 175 basis points annually.

The decline in net worth is roughly 14 percent on impact, almost twice as much as the decline that

occurs with a capital quality shock of the same size but with a less-fragile initial state. The sharp

decline in net worth is explained by the financial accelerator mechanism that operates when the

constraint binds: falling net worth leads investment to drop, which drives asset prices down, leading

net worth to drop further. As a consequence, there is a severe drop in investment, of about 3.5

percent –several times larger than the decline of 0.7 percent that occurs when the economy is not

in a fragile state.

The last panel of the figure shows the dynamic evolution of financial stability interest rate, r⇤⇤,

when the shock hits starting at risk-adjusted state (high-fragility state) as shown by the red dashed

line (blue solid line). The economy’s initial states are di↵erent in these two cases, thus the model-

implied financial stability rate di↵ers markedly at these initial points (denoted by t = �1). As it is

just illustrated, the economy is further away from the constraint at the risk-adjusted steady state,

causing r
⇤⇤ to take much higher values compared to the high-fragility state (around 5 percent vs

just above 2 percent). Note that the constraint is not binding in either cases at the initial points,

as a result r⇤⇤ is still higher than the real interest rate of 2 percent before the shock hits.

The shock that hits at t = 0 at the risk-adjusted steady state leads r⇤⇤ to fall from 5 percent

to 3.7 percent, which is still above the underlying real interest rate in the model economy. When

the same shock hits at the high-fragility state, on the other hand, the constraint binds and r
⇤⇤

falls below the real interest rate of 2 percent. It is because the real interest rates consistent with

financial stability has to be much smaller than the underlying real interest rate to be able to alleviate

financial instability pressures generated by the binding financing constraints by boosting asset prices

and bank equity valuations.

This exercise illustrates that responses of the economy to a shock can be very di↵erent depending

on the underlying state – in the example, the stock of quality-adjusted capital. More importantly,

this figure displays that both the level and the evolution of financial stability real rate, r**, could

be di↵erent depending on the underlying state of the economy.

We next show the dynamic evolution of the endogenous variables in the model, such as output,

asset prices, leverage, capital and safe assets, as well as the the financial stability interest rate, r⇤⇤,

to an unexpected fall in the real rate of interest. These results are displayed in Figure 2. The figure

also shows the dynamics of financial stability interest rate gap, defined as the di↵erence between the

financial stability rate and the underlying real rate of interest in the model economy.

Before the shock arrives at time t = 0, the economy is at the risk-adjusted state state, which

features a real rate of interest of 2 percent and a financial stability rate of 5 percent (shown in the

first two panels of the figure, respectively). The real rate then falls by 1 standard deviation at t = 0

and stays low for an extended period before going back to its steady-state level of 2 percent. As

show in Figure 2, persistent reductions in real rates (such as those associated with accommodative

monetary policy) lead to an improvement in financial conditions (price of capital, Q, rises sharply

on impact) and banks’ balance sheets improve (not shown).

As the economy’s state variables remain unchanged at the time of the shock, financial stability

interest rate remains at around 5 percent. This, along with a fall in real rate, leads to a short-run
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Figure 2: Dynamics of r**: Response to decline in real interest rates
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increase in financial stability rate gap (r-gap). In the medium-to-long run, however, the financial

stability real rate starts to fall. This happens in the model both because the positive impact of the

shock on asset prices and bank equity values fades over time (Q goes back to steady state relatively

quickly, leading N to decline gradually after its initial rise), and because banks shift their portfolios

from safe assets (B falls) towards riskier capital (K increases), as real interest rates fall. This type

of “reach for yield” behavior arises naturally in the model: in the face of persistently lower return

on safe assets, agents respond by saving less in safe assets and more in risky assets. Thus, the

ratio of risky-to-safe assets, xt, builds up. As a result, the distance of banks’ actual leverage to the

maximum leverage that the bank can assume (due to the agency friction) shrinks over time, leading

both the financial stability real rate and r-gap to decline markedly. As a result, the model implies

that persistent declines in real interest rates today cause the real rate consistent with financial

stability to be at low levels in the future. Note that while the model we are currently working with

features flexible prices, this result suggests that the extension with nominal rigidities may feature

an interesting tradeo↵ between macroeconomic and financial stability.

To further illustrate the dynamic relationship between the real interest rate and the financial
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Figure 3: Real Rate, Credit Spreads and r**, Lead-Lag Correlations
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stability rate, Figure 3 shows the model-implied cross-correlogram between the real interest rate,

the credit spread (a measure of financial stress), the ratio of risky-to-safe assets in banks’ portfolio

(xt), and the financial stability rate (r⇤⇤). The first panel in the figure, for example, shows the

correlation between the real interest rate rt+h and the period-t credit spread, for a range of values

of h. The contemporaneous correlation between these two variables is positive: higher interest rates

today erode asset prices and bank net worth, leading the economy to move toward the constrained

region and pushing up credit spreads. By contrast, the correlation between current credit spreads

and the lagged interest rate is negative: low levels of interest rates today are associated with greater

future financial stress. The reason is that low interest rates are associated with a higher ratio of

risky-to-safe assets in the banking sector (second panel of Figure 3). This buildup of risky lending

moves the economy closer to the financial stress region, as it raises the extent of financial frictions

(measured by ⇥(xt)). Accordingly, the model implies a positive correlation between r and r
⇤⇤, a

shown in the bottom panel, as well as a lead of r over r
⇤⇤: lower current real interest rates are

associated with lower future values of the financial stability rate.

4.2 The financial stability rate in a quantitative model

We next augment the model with additional features shown to improve the empirical realism

of DSGE models, such as introducing adjustment cost at the level of investment, working capital
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Figure 4: Equilibrium objects as a function of states

Note: Model endogenous variables as a function of quality of Bank Assets, Kt, and the debt of the banking sector

from the previous period, Nt�1. All other states kept at risk-adjusted-steady-state value.

frictions for financing labor input, and adding shocks to total factor productivity. We also estimate

some of the parameters of the model to match long run business cycle moments in the data. We

then show while the model is still extremely simple, it is quantitatively realistic, enabling us to use

it for constructing an empirical measure of the financial stability rate in the data.

We first describe banks’ behavior as a function of the endogenous states in our calibrated economy.

Figure 4 displays the three dimensional policy functions for a given level of the banking sector debt

and the quality of bank assets. The constrained region is not only characterized by very low values

of asset quality or by very high values of banking sector debt, but also by a combination of relatively

low values the former and relatively high values of the latter. The threshold of banking sector debt

for which the constraint becomes binding, and hence the level of r**, is a function of the level

of asset quality. Note that interestingly, while all the other charts are very non linear, the r**

chart looks very linear. This is because the power of changes in the real interest rate a↵ecting the
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Figure 5: Histogram of Credit Spreads
Model Stochastic Simulation
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Gilchrist and Mojon (2014), Bank of England, Gilchrist and Zakrajsek (2012).

financing conditions varies with the extent to which the economy is constrained: When the economy

is deep in the constrained region, the financial accelerator becomes very powerful, thus it benefits

tremendously from a rate cut.

Figure 5 shows histogram of credit spreads. As shown in the panel on the right, credit spreads

display occasional large spikes in the data. Spreads hover around 100 basis points a large fraction

of the time, while they infrequently take values as large as 700 basis points. The panel on the left

shows a histogram of credit spreads obtained from model stochastic simulations. As shown, the

model delivers an asymmetric distribution of credit spreads, as in the data.

Our model economy displays strong nonlinearities consistent with the evidence from the macro-

finance literature (see, for example Merton (2009), Kenny and Morgan (2011), Hubrich et al. (2013),

He and Krishnamurthy (2019), or more recently Adrian et al. (2019)). Figure 6 illustrates the asym-

metric relation between credit spreads and economic activity: when financial stresses are relatively

elevated, they tend to be more strongly associated with real activity than when they are relatively

compressed. In particular, considering positive values of spreads yields a correlation between credit

spreads and real economic activity (calculated as year-ahead deviation of real investment from its

HP trend) of about -0.41, compared with -0.19 obtained when we consider negative values of credit

spreads, consistent with empirical results shown in the lower panel of the same figure. Key to

explaining the model’s ability to generate this asymmetry is the occasionally binding incentive con-

straint: a binding constraint tends to be associated with elevated levels of financial stresses, and at

the same time leads to amplified movements in real activity (via the financial accelerator).

Finally, Figure 7 shows how our model produces occasional financial crisis episodes that are

extreme manifestations of the asymmetric and nonlinear behavior in the model economy. The model
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Figure 6: Credit Spreads and Output
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Note: The upper (lower) left (right) panel shows the relationship between year-ahead real GDP, expressed as a
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(data). The lower panel shows Data sources: Haver Analytics, Gilchrist and Mojon (2014), Bank of England, Gilchrist

and Zakrajsek (2012), authors’ calculations.

can broadly reproduce quantitatively realistic crisis dynamics, particularly the size of the increase in

spreads. In the quarters leading up to the crisis, bank equity (first panel, right column) deteriorates

sharply. These equity losses eventually put banks up against their borrowing constraints, leading

credit spreads (first panel, left column) to jump significantly: the spread increases from just below 2

percentage points annually to about 6 percentage points in only two quarters. Along the way, with

a binding constraint, the financial accelerator mechanism operates, with the drops in net worth,

investment, and asset prices reinforcing each other. All told, investment at the trough is about 15

percent below trend in the simulation, close to the average drop in investment in the data.

The lower right panel of Figure 7 shows the behavior of the financial stability real rate gap,

r
⇤⇤ � r. In the period preceding or following the crisis, when the constraint is not binding, r-gap is

fairly constant. As soon as the crisis hits and the constraint becomes binding, r-gap drops suddenly.

This behavior of the financial stability interest rate gap is qualitatively consistent with the evidence
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Figure 7: Average Financial Crisis: Model versus Data
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Note: A financial crisis event in the model is defined as an event in which banks’ constraint binds for at least four

consecutive quarters and the spike in the credit spread is at least one-and-three-quarters standard deviations above

average. We simulate the economy for 10,000 periods and compute averages across identified financial crisis events.

Dashed-dotted blue lines show the dynamics of macro aggregates surrounding the identified financial crisis episodes

in the model.

that central banks tend to cut interest rates quite rapidly at the onset of financial crises.

5 Measuring r**

The previous sections defined r** and discussed its properties. This section provides a measure

r** for the US economy and discusses its evolution over the past 50 years.

Within the context of the model of course measuring r** is straightforward: there is a mapping

between the model’s state variables (debt and quality adjusted assets) and the financial instability

real interest rate on which we elaborate in the previous sections. In principle one could measure

these very same variables in the data and use the same mapping to derive r**. In practice this
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Figure 8: Spreads and financial constraints in the model
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approach may not be very promising however, because it is hard to construct empirical counterparts

for these state variables.

A possibly more promising avenue which we pursue here is to identify a variable that is easy

to measure in the data and that is tightly associated with r**. In the reminder of this section we

argue that this variable is credit spreads. Given the model’s nonlinearities however, the relationship

between any observable, and specifically spreads, and r** is likely to be di↵erent depending on

whether the constraint is binding. For this reason it is important to first identify periods where

the economy is likely to be under financial stress, in the sense that the intermediaries’ leverage

constraints are binding. As it turns out, credit spreads are very helpful for this task as well. In the

first part of the section we will argue that the volatilty of spreads helps identify episodes of financial

stress. In the second part of the section, we show that the level of spreads is tightly associated with

r**, and more precisely with the gap between r** and the real rate r, especially during episodes
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Figure 9: Credit Spreads and Financial Stress Episodes, Model

of financial stress. Finally, we will present estimates of r** in the data and discuss some specific

historical episodes, such as the Great Recession.

5.1 Identifying Financial Stress Episodes

As discussed in the section 2 there is a tight relationship in this non linear model between

credit spreads and financial constraints. When financial constraints are not binding, intermediaries

can arbitrage between riskless and risky assets, thereby keeping spreads very tight.3 When the

constraint is binding however this arbitrage is neither possible—because of the binding constraint—

nor desirable as risky assets become a very poor hedge for intermediaries, so spreads open up.

Moreover, as discussed before, financial accelerator dynamic kick in this non linear model, with the

result that the economy becomes very sensitive to shocks and spreads turn very volatile.

Figure 8 illustrates these dynamics using data simulated from the model. The top panel displays

credit spreads and the bottom panel shows the value of the lagrange multiplier on the leverage

constraint µ. The red and green dashed lines mark the beginning and the end of a financial stress

episode, respectively. The figure shows that whenever µ is positive spreads are volatile, with the

beginning of an episode generally characterized by a large increase, and the end by a decrease.

Of course µ is not directly observable in the data. We therefore want to construct a heuristic

rule for identifying financial stress episodes that works correctly the model and that can be applied

to the data. The above observations lead us to construct such a rule as follows. Call “spread jumps”

changes in spread �spreadt that are above some quantile q of the distribution, i.e., |�spreadt| > q.

3
In the model we are missing features inducing liquidity or default premia that would keep spreads positive even

when financing constraints are not biding.
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Figure 10: Credit Spreads and Financial Stress Episodes, Data

We then define a financial stress region as a sequence of jumps no more than two quarters/six months

apart, beginning with an upward jump and ending with a downward jump. The requirement that

jumps are no more than two quarters apart is dictated by the desire to avoid including in our

definition non constrained regions in which spreads are less volatile. One can think of this heuristic

approach as an alternative to estimating a regime switching model where the spread data is divided

into high and low volatility regions.

Figure 9 shows how well the rule works in the model: the shaded areas are the financial stress

episodes as identified by the rule when we pick q = q85, that is, the 85th quantile of the distribution.

As before, the red and green dashed lines mark the beginning and the end of true financial stress

episodes. The red and green crosses mark spread jumps satisfying |�spreadt| > q85 (red are positive,

green are negative). The figure shows that the episodes defined as crisis by the heuristic rule are

indeed µ > 0 periods, that is, the rule entails no false positives (we verified that this is the case in
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Figure 11: Spreads and and r**-r in the model
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a much longer simulation). For instance, the solitary jump in spread around period 90 is correctly

not recognized as the start of a financial stress episode. However, the rule entails quite a few false

negatives, that is, stress episodes that are not recognized as such. This occurs both because the

initial rise in spread is not large enough to satisfy the |�spreadt| > q85 requirement (eg, see the

episode around t=5 in Figure 9) or more often because more than two quarters pass between jumps
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Figure 12: True vs Predicted r-gap, r⇤⇤t � rt, Model
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in spreads (eg, the stress episode around t=150 is not recognized as there are more than two quarters

that do not satisfy the |�spreadt| > q85 requirement in between the beginning and the end of the

crisis). If course, lowering the required quantile to, say, q80 would reduce false negatives but would

also introduce some false positives. We want to avoid doing so for reasons discussed in the next

section.

Figure 10 shows the result of the heuristic rule when applied to Gilchrist and Zakrajsek (2012)’s

GZ spread in the period for which this spread is available. The shaded areas are all arguably periods

associated with some degree of financial stress, from the LTCM crisis in the late 1990s to the period

following 9/11/2001 to the Great Recession and its aftermath.

5.2 Credit Spreads and r**

Figure 8 shows that the level of spreads is very correlated with the leverage multiplier µ when

the constraint is binding, but of course not correlated at all (since µ = 0) when the constraint does
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Figure 13: Financial stability rate, r⇤⇤t , vs real FFR, rt, Data

not bind. In the constrained region, the level of the multiplier µ is likely to be correlated with the

(negative) gap between r** and the current level of the real rate: how much r would need to fall
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Figure 14: Episode 1: LTCM
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from its current level in order to improve the intermediaries’ balance sheet (via its e↵ect on asset

prices) depends on how binding the constraint is. If the constraint is just binding, a small cut in the

real rate may su�ce. If the economy is in the throngs of a financial crisis, a larger cut in real rates

may be needed to restore the health of the financial system.

These considerations lead us to run two separate regressions of the r**-r gap on the level of

spreads, one for financial stress periods and one for “normal” periods. Ultimately, we want to use

the estimated relationship on the data and map the observed level of spreads onto a measure for

r**-r, and then use the level of the real rate to infer r** itself.

When considering US data, this approach runs into the following problem: if in the simple model

we built spreads are stationary, there is ample evidence that in US data they are not (e.g., Del Negro

et al., 2017). Looking at Figure 10 it is apparent that the peak of spreads during the LTCM crisis

in the late 1990s amounts to a relatively low level of spreads in the 2010s, for instance. For this

reason we amend the above strategy as follows: instead of using the level of spreads, we use (both

in the model and in the data) the level of spreads relative to what they were in the period right

before the economy first entered the current regime. To the extent that right before entering the

constrained regime (or right after exiting the constrained regime) the constraint is “close to” being
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Figure 15: Episode 2: Financial Crisis
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binding, then in that period the gap between r** and r is close to zero, and therefore normalizing

spreads using their initial level is harmless in the model, and beneficial in the data as it e↵ectively

removes the trend.

In sum, we run the separate regressions using model-generated data for the financially constrained

regime (µ > 0)

(r⇤⇤t � rt) = ↵c + �cDspreadt + ✏t, V ar(✏t) = �
2
c ; �̂c = �0.34, �̂2

c = 0.034 (24)

and unconstrained (µ = 0) regime

(r⇤⇤t � rt) = ↵u + �uDspreadt + ✏t, V ar(✏t) = �
2
u; �̂u = �1.67, �̂2

u = 0.693 (25)

where Dspreadt = (spreadt � spread⌧ ), with ⌧ being the period before/after the economy en-

ters/exits a financial stress episode. The estimates coe�cients are displayed next to each regression

and the fitted regression line is shown in Figure 11 together with the simulated data.

The results of the regressions confirm the intuition outlined above. In periods of financial stress
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there is a very tight relationship between credit spreads and the tightness of financial constraints,

implying that the r**-r gap is well predicted by the level of spreads. Conversely, in unconstrained pe-

riods the relationship is much looser, as indicated by the higher standard deviations of the regression

errors. The slope is negative in both regions—when spreads are low/high, r** is well above/below r

and hence the gap is high/low—but the slope is very di↵erent. It is much lower in the constrained

region indicating that in this region an increase in the tightness of the constraint (and therefore a

decrease in the r**-r gap) leads to large increases in credit spreads. Since such spreads are in the

right hand side in the above regression, this translates into a low slope. Vice versa, in the uncon-

strained region the slope is more negative: when the economy is close to the constraint (that is, the

r**-r gap is positive but close to zero), in this non linear model intermediaries incorporate the risk

that the constraint may become binding in pricing assets, leading to an increase in spreads. But

this increase is still relatively mild, so that when spreads are on the right hand side of the regression

the slope is more negative.

Figure 12 shows how well the fitted regressions do in capturing the r**-r gap in the model.

Specifically, the black solid lines display the true gap, the blue line is the fitted gap, and the shaded

areas are the 95 percent coverage intervals implied by the estimated �̂c and �̂u. Shaded gray areas

identify financial stress episodes. The figure shows that at least in the model spreads work very well

in essentially nailing the r**-r gap during the periods of financial stress. The distance between true

and fitted values is generally small in these regions, and almost always within the relatively narrow

bands. Outside of financial stress periods the fit becomes much poorer. This ignorance is reflected

however in the wider bands, so that at least in those simulated data it is never the case that the

true value of the gap falls outside the bands.

5.3 r** in the Data

The bottom line of the previous two sections is that the volatility of credit spreads helps to

identify regions of financial distress, and that especially in these regions the level of spreads can

quite accurately pin down the gap between r** and r, at least in the model. In this section we

will make use of these results to provide an estimate of the time series of r** for US data over the

past fifty years, and argue that this estimate is sensible. We will also show that the popular notion

of a “Greenspan’s put”, namely that the central bank cuts rates whenever financial intermediaries

become constrained, seems to be supported by the data: when financial constraints become binding

and r** falls, the real rate soon follows it down so to close the gap between the two and ameliorate

impact of the constraint.

The blue line in Figure 13 shows the real rate, as measured by the ex-post real federal funds

rate. The green line shows the point estimate of r** implied by the regressions (24) and (25), with

the green shaded areas being the 95 percent coverage intervals. Vertical shaded gray areas identify

financial stress episodes as in Figure 10. By construction, r** is below r during periods of financial

stress, and above it otherwise, although the uncertainty is often large enough that that the 95

intervals include r. Broadly speaking, it appears that during the first part of the Great Moderation

period, in the mid to late 80s and the 90s, r** is significantly above r except for short-lived episodes

28



of stress such as the LTCM crisis. In the 2000s and right after the Great Recession the gap between

r** and r is close to zero, meaning that the constraints is close to being binding, even in periods

that are not classified as financial stress episodes. In the mid to late 2010s r** is generally well

above r, except again for a couple of very short-lived periods of stress, until the Covid pandemic

hits the economy in March 2020. We also note that in most financial stress episode r** is rarely

if ever significantly below r for extended periods of time, with the Great Recession being the only

exception, when monetary policy was constrained by the zero lower bound.

The bird’s eye view on r** a↵orded by Figure 13 makes it di�cult to disentangle what happens

during specific episodes. For this reasons in the reminder of the section we will zoom into two

such episodes. The first, shown in Figure 14, is the LTCM financial stress period in the late 1990s.

Because of the currency crisis in Russia and related turmoil in emerging markets in the summer of

1998, the hedge fund LTCM ran into liquidity and solvency problems and had to be bailed out. As

LTCM had large trades with a number of important counterparties, the events of 1998 put the US

financial system under considerable stress. The left panel of Figure 14 shows that credit spreads

jumped by about 100 basis points within two months. The right panel shows that r** (green line)

falls by about 75 bps from the beginning to the end of the financial stress episode. That is exactly

by how much Greenspan cut interest rates during this period, thereby quelling the financial distress

(middle panel). During the first part of the Great Recession (Figure 15) the story is quite similar.

Spreads increase and, as a consequence, r** falls. Initially the real rate r follows r** downward,

thereby closing the r**-r gap and limiting the e↵ects of the financial turmoil. In mid 2008 the

nominal rate hit the zero lower bound however, and as a consequence r could not fall any longer.

When the Lehman crisis hit the economy, spreads increased further, r** fell and a persistent gap

between r** and r opened until late 2009 and early 2010.

6 Conclusion

In this paper, we introduce the concept of financial stability real interest rate, r**. As a vehicle

to illustrate our idea, we use a macroeconomic banking model based on Gertler and Kiyotaki (2010)

where the banking sector faces a constraint in terms of a limit on the amount of funds that it can

raise. When the constraint binds the economy experiences financial instability with increasing credit

spreads, declining asset prices and contraction in economy activity.

We show that as the banking sector becomes more leveraged, the financial stability interest rate

becomes lower. This has implications for monetary policy, in that even relatively low levels of the

real interest rate could trigger financial instability.

Our analysis is conducted within a simple real model where the natural real interest rate is

exogenously determined. In future work we plan to explore the interaction between macroeconomic

stability and financial stability within a richer framework in which monetary policy is endogenously

specified.
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Appendix: Model State Variables

Let Kt ⌘ e
 tKt�1 denote the e↵ective amount of physical capital at the beginning of period t

(after the capital quality shock is realized), and define Bt�1 ⌘ Rt�1Bt�1 to be the stock of external

debt plus interest. Let also N t�1 refer to the predetermined part of aggregate net worth (i.e., the

component of net worth that does not depend on time-t variables like Qt), given by the following:

N t�1 = �

2

64xt�1Nt�1 +Rt�1

0

B@Nt�1 �Qt�1Kt�1| {z }
=�Dt�1

1

CA

3

75+ (1� �)⇠Qt�1Kt�1

Note that N t�1 is equal to aggregate new equity issued by surviving banks (�xt�1Nt�1), plus

startup transfers to entering banks ((1��)⇠Qt�1Kt�1), minus the total stock of debt (with interest)

carried over by surviving banks (�Rt�1Dt�1). Given our calibration the latter term will always be

large relative to the first two, so that N t�1 < 0.

Given these definitions, let St denote the model’s aggregate state vector, given by seven variables:

St ⌘
�
Kt,�N t�1, Bt�1, Rt

 

We use the negative of N t�1 so that St > 0. Our solution method relies on using parametric

functions to approximate the model’s one-step-ahead expectations (see Akinci and Queralto (forth-

coming), Judd, Maliar and Maliar (2011) and Den Haan (2007) for details of our solution method).
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