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Abstract
In standard macroeconomic models, the costs of inflation are tightly linked

to the price dispersion of identical goods. Therefore, understanding how price
dispersion empirically relates to inflation is crucial for welfare analysis. In this
paper, I study the relationship between steady-state inflation and price disper-
sion for a cross section of U.S. retail products using scanner data. By comparing
prices of items with the same barcode, my measure of relative price dispersion
controls for product heterogeneity, overcoming an important challenge in the lit-
erature. I document a new fact: price dispersion of identical goods increases
steeply around zero inflation and becomes flatter as inflation increases, display-
ing a Υ-shaped pattern. Current sticky-price models are inconsistent with this
finding. I develop a menu-cost model with idiosyncratic productivity shocks and
sequential consumer search that reproduces the new fact and exhibits realistic
price-setting behavior. In the model, inflation-induced price dispersion increases
shoppers’ incentives to search for low prices and thus competition among retailers.
The positive welfare-maximizing inflation rate optimally trades off the efficiency
gains from lower markups and the resources spent on search.
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1 Introduction

A salient feature of micro-level data is that the prices of identical goods vary across
sellers. In current macroeconomic models, inflation is a crucial determinant of price dis-
persion, and the costs of inflation mainly arise from inflation-induced price dispersion.
In this paper, I address three questions: What is the empirical relationship between
inflation and price dispersion? What does this relationship imply for current monetary
theories? What do we learn for the welfare analysis of inflation?

Studying how price dispersion empirically relates to inflation imposes several chal-
lenges. The first is to measure price dispersion accurately. For this, we need to observe
the prices different sellers charge for identical goods. Typically, granular datasets which
have been essential to establish facts on micro-price rigidity do not satisfy this require-
ment. For instance, the micro-prices underlying the CPI are assigned to a product
category, not to a specific good. Thus, cross-sectional comparison of prices within a
category would not take product heterogeneity into account.

I overcome this challenge using highly detailed scanner data for retail products in
the U.S. The dataset contains prices and quantities of products sold in over 35,000
stores across the country between 2006 and 2017. The observations are identified by
the product barcode, the week, and the retailer where the transaction was carried out.
More than 3 million barcodes are available, each of them sold by 50 stores on average.
Each retailer belongs to one of over 200 geographically dispersed markets. With these
data, I can compare prices of products with identical barcodes sold across different
retailers on the same date and geographic market. Hence, my measure of relative price
dispersion controls for several sources of heterogeneity which a priori are unrelated to
inflation.

A shortcoming of this dataset is that it is only available for a relatively low and
stable aggregate inflation period. Therefore, the variation in aggregate inflation is
insufficient to statistically identify its time-series comovement with price dispersion.
On the other hand, the variation in product-level inflation rates across markets and
product categories is substantial. While aggregate inflation fluctuated between -1%
and 7% over the sample period, product-level inflation ranged between -20% and 30%.
Thus, my approach is to exploit cross-sectional variation studying the relationship
between product-level inflation and price dispersion.

I contribute to the literature by documenting a new fact: in the cross section,
small deviations from zero inflation sharply increase price dispersion of identical goods.
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As inflation increases, price dispersion becomes a flatter function of inflation. When
plotting price dispersion against inflation, the relationship resembles the Greek capital
letter upsilon; thus, I refer to it as Υ-shaped. The Υ-shaped pattern is prevalent in the
data and robust to various econometric specifications. Moreover, the cross-sectional
behavior of additional pricing moments such as the average frequency and the absolute
size of price changes is consistent with time-series evidence in the literature.

Standard sticky-price models cannot reproduce the Υ-shaped pattern while account-
ing for the other pricing moments. Thus, I develop a menu-cost model with idiosyn-
cratic productivity shocks and sequential consumer search that is consistent with my
findings and exhibits realistic price-setting behavior of retailers. In the model, the
representative household has a worker who supplies labor and a measure-one contin-
uum of shoppers who purchase a homogeneous good. A measure-one continuum of
retailers produces and sells the good using labor. Retailers set nominal prices and face
a menu cost; they adjust because real prices erode at the deterministic inflation rate
and idiosyncratic shocks hit their productivity. The non-degenerate and time-invariant
cross-sectional distribution of real prices results from both inflation and idiosyncratic
shocks.

Every period, a continuum of shoppers enter, search, purchase, and leave the prod-
uct market. They take the real-price distribution as given and search sequentially for
the lowest price. For each additional price draw, shoppers pay a heterogeneous search
cost. Their strategy is to search until finding an offer lower than their reservation price.
Each buyer ends up purchasing the good from one of many nearly identical retailers.
Therefore, shopping behavior determines the equilibrium demand curve. Inflation, on
the other hand, affects the returns to search by directly impacting price dispersion.

A demand curve that changes endogenously with inflation through search is key to
replicate the Υ-shaped relationship between inflation and price dispersion in the data.
The intuition is as follows. At zero inflation, the only source of price dispersion is the
idiosyncratic productivity shocks. Thus, searching might be profitable only for low-
search-cost buyers. In this case, retailers with high productivity draws have incentives
to set a price low enough to attract searchers. It turns out that, since real prices
are fixed, sellers optimally bunch at the reservation price of searchers. Only retailers
with low productivity draws, serving high-search-cost shoppers who do not search, set
higher prices. Because of this bunching behavior, price dispersion at zero inflation is
relatively low.
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A small deviation from zero inflation makes real prices continuously drift downward;
bunching at any price would require retailers to pay the menu costs every period, which
is suboptimal. Therefore, retailers let their prices erode before adjusting, and price
dispersion increases. More dispersed prices increase the returns to search, producing
a feedback effect on price dispersion. On the one hand, highly productive sellers have
incentives to charge lower prices, attracting more customers and increasing their sales
volume. On the other hand, because searchers flee from high prices, the least productive
retailers end up serving a larger fraction of non-searchers or captive shoppers. Thus,
these retailers can even have incentives to increase their prices. As a result, price
dispersion rises sharply.

I jointly calibrate the parameters of the model to match the average markup, the
absolute size and frequency of price changes, and the Υ-shaped pattern of price dis-
persion in inflation. The latter is crucial to identify the parameters of the search-cost
distribution. When search is relatively cheap, search intensity and price dispersion
at zero inflation are relatively high. Therefore, deviations from zero inflation have a
small impact on equilibrium price dispersion. Conversely, when search is relatively
expensive, a positive inflation rate increases price dispersion and the returns to search
considerably.

Furthermore, I provide empirical evidence on shopping behavior and inflation that
supports the theory. The model predicts the higher is absolute inflation in a given
market, the lower are the prices shoppers visiting several stores pay. I test this pre-
diction using consumer panel data for the same retail products in the scanner data.
These data contain the barcodes of the items households purchased on each shopping
trip, the quantities they bought, and the prices they paid. In addition, we can identify
the number of distinct retailers a household visited to purchase the good. I merge
shopping-behavior measures from these data to product-level inflation from the retail
scanner data. I find that a household visiting ten stores when absolute inflation is 10%
pays 1% less than when inflation is zero and 3% less than a household visiting only
one store. Moreover, simulated data from the calibrated model closely matches this
empirical result, which I did not target.

In my model, the welfare effects of inflation are ambiguous. The costs of inflation
stem from adjustment costs, as in standard menu-cost models, and from search costs:
inflation-induced price dispersion increases shoppers’ returns to search, and thus the
resources spent on the search for the best prices. Through price dispersion and costly
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search, inflation can be beneficial for welfare. The calibrated model suggests that it
is. Given that search activity is limited at zero inflation, retailers set high markups
and extract the surplus from consumers. A low positive inflation rate increases price
dispersion and the returns to search considerably. Highly productive retailers charge
lower prices to attract more shoppers, particularly those who have a lower search
cost and search more. As a consequence, markups decrease, generating significant
efficiency gains. These gains dissipate for large levels of inflation: the least productive
retailers, whose customers become mostly captive shoppers, optimally charge higher
prices, increasing aggregate markups.

Related literature Extensive research on the theoretical relationship between price
dispersion and inflation exists. My paper is directly related to two types of models
in the literature. First, monetary models in which sticky prices and inflation generate
price dispersion. Second, models of monetary exchange in which price dispersion arises
from buyers’ incomplete information on the prices charged by each seller.

In models where nominal price changes are costly and no aggregate or idiosyncratic
uncertainty exists (Sheshinski and Weiss, 1977; Benabou, 1988), the optimal policy
is an (S, s) pricing rule: the firm keeps the nominal price fixed while the real price
drifts continuously from the initial level S to the terminal level s, at which point it
jumps back to S. The higher the expected inflation, the larger the distance between
such bounds. If inflation is constant and firms follow a common (S, s) rule, the cross-
sectional distribution of real prices is log-uniform on [s, S].1 In this case, the coefficient
of variation is increasing and concave in the max-min price ratio, S/s.2 Because this
ratio generally increases with inflation, price dispersion tends to be increasing and
concave in inflation. Such a prediction on cross-sectional pricing behavior is in line
with my findings. On the other hand, the predictions regarding firms’ dynamic price-
setting behavior are at odds with micro-level empirical evidence: at low to moderate
inflation rates, price decreases are as common as price increases, and the absolute size
of adjustments is significantly larger than aggregate inflation.

Golosov and Lucas (2007) replicate those features of firms’ dynamic pricing behavior
by introducing idiosyncratic productivity shocks in a menu-cost model. In their setting,

1Caplin and Spulber (1987) show a log-uniform on [s, S] is the only cross-sectional distribution
consistent with: (i) time-invariant common (S, s) rules, and (ii) a price index that grows at the
aggregate inflation rate.

2The coefficient of variation of a log-uniform distribution is
√(

S/s+1
S/s−1

)
log(S/s)

2 − 1.
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firms adjust not only because the real price is declining but also because the real cost
of production is changing stochastically. For low to moderate inflation levels, the large
idiosyncratic shocks induce firms to adjust before inflation erodes their real prices too
much; cross-sectional price dispersion is practically constant and increases smoothly
with inflation. When inflation is high, the main reason for firms to adjust is to catch up
with aggregate inflation, as in Sheshinski and Weiss (1977). Therefore, price dispersion
is U -shaped in inflation.

On the other hand, New Keynesian models typically assume prices are sticky but
adjusting opportunities arrive at an exogenous rate, as in Calvo (1983). Because firms
do not have the option to adjust before their prices drift far from optimal levels, cross-
sectional price dispersion rises rapidly with inflation. Nevertheless, idiosyncratic shocks
tend to make price dispersion smooth at zero inflation. Thus, both models predict a U -
shaped relationship between inflation and price dispersion, in contrast to the empirical
evidence in my paper.

Head and Kumar (2005) study the effects of inflation on price dispersion by embed-
ding the price posting environment of Burdett and Judd (1983) in a model of monetary
exchange. In their setting, buyers hold fiat money and search non-sequentially for a
seller. The equilibrium price distribution is non-degenerate if some buyers observe
a single price quote, whereas others observe more than one. The model predicts a
positive relationship between inflation and price dispersion which, as in my model, is
tightly related to market power. Inflation erodes the purchasing power of fiat money,
so the fraction of buyers observing a single price increases. In response, sellers pricing
at the upper end of the distribution raise their prices by a relatively large amount:
since a higher share of their customers are captive buyers, the decline in sales will be
small. Conversely, sellers pricing at the lower end of the distribution are constrained
in their price increases by the fact that they can lose a significant volume of sales
to competitors. An important shortcoming of this framework is that prices are fully
flexible, contrary to what the data shows.3

In the theory, I assume sellers face idiosyncratic productivity shocks and a menu
cost of adjusting nominal prices. These assumptions generate realistic firm pricing
behavior and allow us to take the model to the data. I borrow the firm price-setting
block from Golosov and Lucas (2007), as is standard in the literature with micro-
founded sticky prices. On the consumer’s side, I assume heterogeneous shoppers search

3In the data, prices stay fixed for at least four months on average. See Nakamura and Steinsson
(2008) for a representative characterization of price changes in the U.S.
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sequentially for the lowest price. Sequential search facilitates the introduction of firm-
level heterogeneity and the mapping between model and data on the firms’ side.4 The
consumer search block is primarily based on Benabou (1992). As we will see, both price
stickiness and incomplete information of consumers are key to generate the Υ-shaped
relationship between inflation and price dispersion in the data.

My paper also contributes to the scarce literature studying the empirical relation-
ship between inflation and price dispersion.5 Tommasi (1993) finds a positive correla-
tion between absolute inflation and price dispersion of identical goods, but the scope
of the findings is limited: the sample is for 15 products sold by five supermarkets in
Argentina. Reinsdorf (1994) uses the micro-level data underlying the U.S. CPI to com-
pute price dispersion of similar goods. Assuming price dispersion is linear in inflation
– not absolute inflation – he finds the variables are negatively correlated.

Nakamura et al. (2018) extend the dataset used by Reinsdorf (1994) back to 1977;
the resulting data exhibit significant variability in aggregate inflation. Nevertheless,
products are identified by narrow categories (e.g., “carbonated drinks”), not by barcodes
or brands. Therefore, as the authors state, much of the within-category dispersion likely
results from differences in product size and quality. To overcome this data limitation,
they analyze the relationship between inflation and the absolute size of price changes
instead. They argue that such a relationship should inform about inflation and price
dispersion because that is the case in current sticky-price models (i.e., New Keynesian
and Golosov and Lucas style menu-cost models). They show that, although annual
inflation has fluctuated between -2% and 12% since 1977, the mean absolute size of
price changes has been practically constant. They conclude that the main costs of
inflation in the models they study are absent in the data.

Alvarez et al. (2019) use the micro-level price data underlying the Argentinian CPI
between 1988 and 1997, a period in which monthly inflation ranged from 200% to less
than zero. These data allow comparing the prices of goods, with the same brand and
package, across stores every two weeks. The authors measure aggregate price dispersion
as the residual variance in a regression of prices on a rich set of fixed effects. They find

4In models with inflation and non-sequential search (Head et al., 2012; Burdett and Menzio, 2018),
firms follow mixed pricing strategies, making the concept of a firm-level price spell elusive.

5Mostly due to data limitations, earlier research focused on price change dispersion – or relative
price variability (RPV) – instead of price level dispersion. Van Hoomissen (1988), Lach and Tsiddon
(1992), and Beaulieu and Mattey (1999) study the relationship between inflation and intra-market
RPV; Parsley (1996) and Debelle and Lamont (1997) focus on inter-market RPV and inflation. Al-
though some of these papers use RPV as a proxy for price dispersion, the relationship between both
variables is not straightforward in models or data (Nakamura et al., 2018).

7



the elasticity of price dispersion with respect to absolute inflation is zero for inflation
below 10% per year and close to one-third at high inflation rates.

Sheremirov (2020) studies the cross-sectional relationship between inflation and
price dispersion using retailer scanner data. The main differences with the data I use,
aside from being gathered by a different company, are the period (2001-2011), the
coverage (31 categories comparable to the 1,000 I have), and the existence of flags for
temporary price reductions (i.e., sales). He documents a negative relationship between
inflation and dispersion of prices including sales. After removing sales, this correlation
becomes positive. Although my measures of price dispersion include sales, Sheremirov’s
findings suggest removing them should not affect my results qualitatively.

Because I observe products at the barcode level, I overcome the challenge Naka-
mura et al. (2018) and earlier research faced. In addition, by comparing prices of
identical goods before computing aggregates, my measure of price dispersion is closer
to the models than the measure in Alvarez et al. (2019). Unlike Reinsdorf (1994) and
Sheremirov (2020), I do not impose linearity when studying the comovement of infla-
tion and price dispersion; the flexibility of a non-parametric specification allows me to
uncover the Υ-shaped relationship between both variables.

Finally, I contribute to the literature on the costs and benefits of inflation. The costs
of inflation are typically associated with price dispersion of identical goods. In current
sticky-price models (i.e., New Keynesian or menu-cost models with idiosyncratic shocks
and without consumer search), inflation-induced price dispersion tends to decrease
aggregate labor productivity and welfare. The intuition is that as nominal prices stay
fixed, real prices drift away from their optimal levels under a positive inflation rate.
Hence, relative prices no longer reflect the relative costs of production, negatively
affecting efficiency. The welfare losses – even for low to moderate inflation rates – are
substantial in the New Keynesian model because price dispersion increases significantly
with inflation (Burstein and Hellwig, 2008; Nakamura et al., 2018).

Menu-costs models, on the other hand, predict the negative effects of low to mod-
erate inflation on welfare are negligible because: (i) price dispersion is essentially flat
in inflation, and (ii) the physical cost of changing prices is relatively small (Nakamura
et al., 2018; Alvarez et al., 2019).6 Moreover, in the presence of a zero lower bound on
nominal interest rates, the benefits from a positive level of inflation more than offset

6Burstein and Hellwig (2008) consider, in addition, the effects of inflation on the opportunity cost
of holding real money balances. They find the welfare costs arising from price dispersion are negligible
compared to those from this extra channel.
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such costs (Blanco, 2021).7

In monetary models with consumer search (Benabou, 1988, 1992; Diamond, 1993;
Head and Kumar, 2005), inflation-induced price dispersion can be welfare-improving.
In particular, if monopolistic competition arises from costly consumer search instead
of imperfect substitutability of the goods, consumers could exclusively buy from sellers
charging the lowest prices. Then, by increasing price dispersion, inflation can increase
the returns to search and decrease firms’ market power, potentially increasing welfare.

The article proceeds as follows. Section 2 presents evidence from scanner data on
the Υ-shaped relationship between price dispersion and inflation. Section 3 develops
the menu-cost model with endogenous consumer search that reproduces the Υ-shaped
pattern. Section 4 explains the intuition behind this result and shows the model fit
to the data. Section 5 presents evidence on shopping behavior and inflation that
supports the mechanism. Section 6 discusses the welfare implications of inflation in
the calibrated model. Section 7 concludes.

2 Evidence on inflation and price dispersion

How does price dispersion empirically relate to aggregate inflation? The first require-
ment to answer this question is to precisely measure the price dispersion of identical
goods. To do so, we need to observe the prices that several sellers in a particular geo-
graphic area charge for the same good on the same date. The NielsenIQ Retail Scanner
dataset for the U.S. satisfies this condition, as I explain in the next subsection.

Second, we would require these granular price data over different economy-wide
inflation regimes: we are interested in the relationship between aggregate inflation –
which can be influenced by the monetary authority – and price dispersion. Nonetheless,
the dataset is available only for a relatively low and stable aggregate inflation period,
implying the variation for a time-series analysis is insufficient. On the other hand, the
variation in market- and product-level inflation rates is substantial. Thus, I identify the
relationship between inflation and price dispersion exploiting cross-sectional variation
and discuss the limitations of this estimation strategy in the model section.

7Danziger (1988) shows that in a menu-cost model without idiosyncratic shocks, a low positive
inflation rate can be better than zero. Intuitively, in the absence of inflation, firms charge the static
profit-maximizing price at all times; under positive inflation, lower real prices in the periods preceding
the adjustment make consumers better off.
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2.1 Data

The NielsenIQ Retail Scanner Data are available for the 2006-2017 period and have non-
durable items at the barcode level (Universal Product Code — UPC), sold mostly by
grocery, drugstore, and mass-merchandise chains. These products can be categorized
at the module level (i.e., highly substitutable products that differ only in their brand),
then at the group level (i.e., modules serving similar purposes), and finally at the
department level. An example of a module would be “Ground and Whole Bean Coffee”
in the product group “Coffee” from the department “Dry Grocery”. The data contain
10 departments, 125 groups, and 1,075 modules, approximately.

For each week and UPC, stores report total units sold and total revenues. At the
UPC level, we observe product description, brand, multi-pack, size, and additional
characteristics in some cases (e.g., flavor).8 Over 35,000 stores are located across the
U.S., classified into around 200 geographic markets (Designated Market Area – DMA).9

Each store can be associated to a retail chain. I use the Retail Scanner dataset to
compute disaggregate inflation measures and retailer-level statistics on price dispersion.

Price dispersion is defined as contemporaneous discrepancies between the prices
offered by different sellers of the same good around an average price. Scanner data allow
us to be consistent with such a definition because a product is defined by its barcode,
so we compare prices of the same good across stores. Therefore, we can compute price
dispersion controlling for product heterogeneity. Moreover, each product is linked to
a store, enabling us to control for sellers’ heterogeneity; and because each store is
associated to a geographic market, we can control for systematic regional differences.
Lastly, weekly-level data allow us to compare the prices across stores at a given instant
of time.

2.2 Variable construction

I define products as items that have the same barcode and thus the same brand, size,
and characteristics. I compute inflation and price dispersion at the product × geo-
graphic market × month level. Then, I aggregate product-level statistics into product

8I exclude private-label products because NielsenIQ alters the barcode so a particular store cannot
be identified: for generics, the UPC does not represent a unique good.

9A DMA region is defined as a non-overlapping group of counties in which the commercial TV
stations in the Metro/Central area achieve the largest audience share. Each DMA has, on average,
15 counties. Examples are Chicago IL, Milwaukee WI, and Columbus OH.

10



modules – or categories – using total annual sales as weights. Therefore, the unit of
observation in my analysis is a category × geographic market × month (c,m, t) triple.

We work with category- instead of product-level statistics for at least two reasons.
The first is to make the dataset computationally manageable.10 The second is to
overcome the issue that these products are typically short lived and that we want to
carry out a comparative static analysis.11 Therefore, if we keep a panel of products
(as opposed to categories) present in the data for several years, we might be selecting
goods that are not representative of the rest of the economy (e.g., products with large
market shares).

To minimize the incidence of missing values, I only keep product × store pairs that
appear in every month of a given year, and I use monthly instead of weekly prices. To
compute meaningful measures of price dispersion, I require that each product is sold
by at least five stores in each market and week.

Inflation I define the price that store i in market m and month t charges for product
k as

Pikm,t =

∑Tt
τ=1Revikm,τ∑Tt
τ=1 qikm,τ

=
Revikm,t
qikm,t

,

where Revikm,τ and qikm,τ are total revenues and total units sold, respectively, in each
week τ of month t; Tt ∈ {4, 5}, depending on the month. Price-level inflation is the
annualized monthly average price change across stores selling product k in market m,

πkm,t = 12×
Nkm,t∑
i=1

(lnPikm,t − lnPikm,t−1)

Nkm,t

,

where Nkm,t is the number of stores.12 Category × market-level monthly inflation
corresponds to

πcm,t =
Kcm∑
k=1

ωkmπkm,t,

10The RMS dataset has information about more than 3 million UPCs, sold by 35,000 stores in over
than 620 weeks; its estimated size is over 7 TB.

11Argente et al. (2018) show one third of all products in the U.S. are either created or destroyed
in a given year, and more than 20% are less than one year old.

12Weighting by annual stores sales or using week-level prices does not affect the main results.
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where Kcm is the number of products in the category and market, and ωkm are product
weights from annual sales:

ωkm =

∑12
t=1

∑Nkm,t
i=1 Revikm,t∑Kcm

k=1

∑12
t=1

∑Nkm,t
i=1 Revikm,t

.

To validate this inflation measure, I compute a sales-weighted average over all food-
related category × market pairs and compare it with the official statistics. Figure A.1
shows aggregate inflation for food categories in these data closely tracks the food-at-
home CPI reported by the BLS for the same period.

Price dispersion The main measure of price dispersion that I use is the unweighted
standard deviation of log prices across stores for each product, market, and month13:

σkm,t =

√√√√ 1

Nkm,t − 1

Nkm,t∑
i=1

(
lnPikm,t −

∑Nkm,t
i=1 lnPikm,t
Nkm,t

)2

.

To obtain price dispersion at the category × market level, I aggregate product-level
measures weighting by total sales in the corresponding year:

σcm,t =
Kcm∑
k=1

ωkmσkm,t.

Using the same methodology, I compute alternative measures of price dispersion — the
max-min, the 90-10, the 90-50, and the 50-10 ratios of the price distribution for each
(c,m, t).

2.3 Estimation and results

In the theoretical section, we study how price dispersion varies with inflation. These
comparative statics assume inflation is constant and that price dispersion is computed
using an invariant distribution. Therefore, to analyze the data, we need to choose a
time horizon within which we assume retailers’ behavior completely adjusts to changes
in inflation. Because the data show retailers adjust their prices every four to six months

13Weighting prices using annual stores sales, using weekly instead of monthly prices, or removing
persistent differences across sellers yield similar qualitative results.
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on average, I conjecture that the adjustment period is 12 months.14 Annual inflation
and price dispersion for each category × market correspond to the average across
months for each year:

π̄cm,t =

∑12
j=1 πcm,j

12
; σ̄cm,t =

∑12
j=1 σcm,j

12
.

Table A.1 shows descriptive statistics for these measures and for a sales-weighted
average inflation. The final sample for estimation includes 138,485 category × market
pairs for 1,042 categories in 204 geographic markets. Each pair is present in the data
for an average of 8.8 years and contains information for an average of 50 stores. Dis-
aggregate inflation exhibits significantly larger variation than aggregate inflation, with
a coefficient of variation (CV) of 4.647 and 1.267, respectively.

To understand the relationship between price dispersion and inflation, I start by
constructing a binned scatterplot: I divide annual disaggregate inflation π̄cm,t into 100
equally sized bins and obtain average price dispersion σ̄cm,t within each bin. In this
way, we can analyze the data without imposing any parametric structure. As Figure 1
shows, price dispersion is at its lowest average levels when inflation is close to zero; as
inflation deviates from zero, price dispersion increases steeply, flattening at 2%. Hence,
the data suggest the relationship between both variables is non-differentiable at zero.
Because this pattern resembles the Greek capital letter upsilon, I hereafter refer to it
as upsilon-shaped, or Υ-shaped.

Next, I assess how the results change when controlling for observable and unob-
servable factors in the category, market, or time dimensions. In particular, I estimate
the following non-parametric regression of price dispersion on inflation:

σ̄cm,t =
100∑
n=1

βn1{π̄cm,t∈Bn} + ac,t + bm,t + α logNcm,t + εcm,t. (1)

The coefficients {βn}100
n=1 correspond to average price dispersion at each equally-sized

inflation bin {Bn}100
n=1, conditional on covariates: am,t and bc,t are market-year and

category-year fixed effects, respectively, and Ncm,t denotes the average number of stores
across goods in the category × market pair. This specification implies we identify

14Simulations from the calibrated model suggest the economy takes five months to adjust between
two equilibria with different inflation rates. On the other hand, in the appendix, I present the results
when assuming convergence to the ergodic distribution in 6, 24, or 36 months.
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Figure 1: Price dispersion and inflation, raw data

Each dot corresponds to average price dispersion for each of 100 equally sized inflation bins.
The unit of observation is a category × market × year, for 1,219,414 in total.

{βn}100
n=1 by exploiting the cross-category inflation variation within each geographic

market and year, taking into account unobservable category-level differences that might
be changing over time. In addition, we control for the number of stores, because
research has shown this variable explains a substantial degree of the cross-sectional
price-dispersion variation in the data (Hitsch et al., 2019).

Figure 2 shows the price dispersion predicted by inflation using estimates from
equation (1). The results confirm the Υ-shaped pattern between price dispersion and
inflation is prevalent in the data, even when comparing different categories in a given
market-year, or a category across markets for the same year. In particular, includ-
ing fixed effects increases average price dispersion around zero inflation and makes
price dispersion a steeper function of absolute inflation for values larger than 2% (Fig-
ure A.2).

Moreover, the Υ-shaped relationship is robust to controlling linearly (Figure A.3) or
non-parametrically (Figure A.4) for the number of stores; that is, binned scatterplots
of π̄cm,t and σ̄cm,t by quartile of the number of stores display the same pattern.

On the other hand, price dispersion is approximately symmetric around zero. Fig-
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Figure 2: Price dispersion and inflation

The dots correspond to average price dispersion conditional on covariates for each of 100
equally sized inflation bins as predicted by equation (1). The unit of observation is a category
× market × year, for 1,219,414 in total.

ure A.5 plots estimates of equation (1) for 100 equally sized absolute inflation bins
and the curves in Figure 2 on the same x-axis. The figure shows that the relationship
between price dispersion and absolute inflation is increasing and concave around zero;
it becomes linear for values larger than 2%, and steeper for negative than positive
inflation.

2.3.1 Robustness checks

Statistical significance To assess the statistical significance of the estimated rela-
tionship, I compute confidence bands that reflect the underlying variance of the data.
I construct these bands with standard errors clustered by category × market pair to
control for within-pair error correlation over time. Because the confidence band in
Figure A.6 covers the entire function with probability 0.95 we cannot reject, visually,
that price dispersion is Υ-shaped in inflation.
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Year-by-year estimates I test whether the relationship holds for each market and
year separately. I start by assuming price dispersion is a symmetric, continuous, and
differentiable function of inflation, which I identify exploiting within-market-year vari-
ation across categories15:

σcm,t = fm,t (|πcm,t|) + α logNcm,t + εcm,t. (2)

Under these assumptions, I test two hypotheses for each market-year function fm,t.
The first is that the function is monotonically non-decreasing; the second is that it is
concave16:

inf
π>0

f ′m,t (π) ≥ 0;

sup
π>0

f ′′m,t (π) ≤ 0.

The top panel in Table A.2 shows the first hypothesis is rejected for 23% and the
second for 18% of the total market-year combinations. When we restrict absolute
inflation to values lower than 2%, the same hypotheses are rejected for only 5% and
6%, respectively, of the market-year pairs. The bottom panel of the table shows similar
results when we estimate the relationship for each category and year, exploiting cross-
market variation.

Future inflation Up to this point, we have analyzed the relationship between cur-
rent inflation and price dispersion. In the model, nonetheless, price-setting behavior
depends on the inflation rate retailers expect between nominal price adjustments, not
the one they observe. Define future inflation as the average realized inflation rate for
the expected duration of the nominal price. As before, I choose 12 months as an upper
bound for price duration. Figure A.7 shows the Υ-shaped pattern also holds for price
dispersion and future inflation – an expected result in an environment with low and
stable aggregate inflation.

Alternative measures of price dispersion To verify that the results are not spe-
cific to the standard deviation of log prices, I repeat the estimation procedure using

15I estimate this function non-parametrically by fitting a second-degree polynomial within each bin
and forcing the curves to be smoothly connected at the boundaries of the bins.

16Both tests require differentiability of fm,t. The estimates using pooled data suggest this function
might be non-differentiable at zero. I assume fm,t is symmetric around zero to overcome this issue.
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different measures of price dispersion. The top panel of Figure A.8 shows the relation-
ship between the max-min ratio of the price distribution and inflation, which, again,
is Υ-shaped. The same pattern holds for the 90-10 ratio (bottom panel), 90-50, and
50-10 ratios of the price distribution and inflation (Figure A.9).

3 Model

In this section, I develop a one-good, one-sector monetary model that generates a Υ-
shaped relationship between price dispersion and aggregate inflation as in the previous
section. We start by describing the general structure of the model, which is illustrated
in Figure 3.

Time is continuous and no aggregate uncertainty exists. A representative house-
hold has a worker who supplies labor and a measure-one continuum of shoppers who
purchase a homogeneous good.

The consumption good is sold by a measure-one continuum of monopolistically
competitive retailers. Retailers are infinitely lived, set nominal prices, and have a
production technology linear in labor. A fixed cost is incurred when changing nominal
prices, and retailers would like to adjust them for two reasons: (i) they face idiosyncratic
transitory shocks to their productivity, and (ii) the nominal wage is increasing at a
deterministic rate. These elements change retailers’ production costs and therefore
their desired prices.17 At the same time, both wage inflation and idiosyncratic shocks
are key to produce a non-degenerate and stationary cross-sectional distribution of real
prices. Retailers make their price-setting decisions taking into account the shopping
behavior of buyers.

Each instant of time, a continuum of shoppers enter, search, purchase, and leave the
product market. Shoppers take the real-price distribution as given and search for the
lowest price, paying a cost for each new price draw. The search cost is heterogeneous
across buyers. As in a McCall (1970) type of search, buyers follow a reservation-price
strategy: they accept offers up to a real reservation price at which they are indifferent
between buying and searching again. Each buyer ends up purchasing the good from

17Equivalently, we could assume the existence of a perfectly competitive sector of manufacturers
who produce one unit of the good using one unit of labor. Retailers purchase the good from manu-
facturers and face idiosyncratic shocks to the cost of selling – rather than producing – the good. As a
result of perfect competition, the price that retailers pay for one unit of the good equals the nominal
wage.
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Figure 3: General model structure

one of many nearly identical retailers.
Monopolistic competition is an outcome of the model. Because search is costly,

each retailer sells the good to a positive share of buyers. In equilibrium, the magnitude
of this share depends inversely on the retailer’s price. The aggregation of consumer
search rules generates a downward-slopping demand curve for the retailer. Through
shopping behavior, the equilibrium demand curve (thus, the profit function) depends
on the inflation rate. This feature will be at the center of the Υ-shaped pattern between
inflation and price dispersion.

In equilibrium, the price level of the good and nominal wages grow at the same rate.
We assume such an inflation rate is the policy parameter that the monetary authority
can control.

Relationship between model and data In the model, we study the relationship
between aggregate inflation, that is, the growth rate of an economy-wide nominal
production cost, and price dispersion. On the other hand, the empirical evidence speaks
to the relationship between product-level inflation and price dispersion. Product-level
inflation has a product-specific real component – due to, for example, productivity or
cost trends – and a nominal component. Because the inflation variation I exploit is
not purely nominal, we cannot directly conclude the relationship between aggregate
inflation and price dispersion is Υ-shaped.

In appendix C, I extend the baseline model to multiple goods and sectors. In such a
model, sectoral variation in inflation is explained by sector-specific productivity growth
rates: the mapping between the model and data is direct. Nevertheless, I show the
sectoral equilibrium in this extended model is isomorphic to the aggregate equilibrium
in the simple model. Thus, to focus on the mechanisms behind the Υ shape between
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inflation and price dispersion, I analyze the simple model for the remainder of the
paper.

3.1 Retailers

A measure-one continuum of monopolistically competitive retailers is indexed by i.
These retailers are infinitely lived, with discount rate ρ. Money is used as the unit of
account, so retailers set their prices Pi,t in nominal terms. The production technology
of each retailer is linear in labor li,t, and the retailer-specific labor productivity is given
by vi,t. We assume the retailer’s productivity follows the mean-reverting process:

d log vi,t = −ρv log vi,tdt+ σvdZi,t, ρv > 0,

where Zi,t is a standard brownian motion with zero drift and unit variance, distributed
independently across retailers.

The labor market is competitive and retailers hire labor at a nominal wage Wt.
We assume all the aggregate prices, particularly the nominal wage, are growing at a
constant rate π. Because real prices are defined with respect to the nominal wage, that
is, pi,t ≡ Pi,t/Wt, a fixed nominal price implies a real price eroding at a rate π. Each
nominal price adjustment costs the retailer κ > 0 labor units.

A central aspect of the model is that the demand curve that a single retailer faces
is endogenously determined by the optimal behavior of shoppers and other retailers.
Denote this downward-sloping demand as a function of the relative price by D (p). The
instantaneous nominal profit function for a retailer charging a nominal price Pi,t, given
the nominal wage Wt and the stochastically determined labor productivity vi,t, is

Πt (Pi,t, vi,t) =

(
Pi,t −

Wt

vi,t

)
×D

(
Pi,t
Wt

)
.

At any date t, retailers are characterized by a pair (Pi,t, vi,t). Because nominal ag-
gregates grow at a constant rate and the productivity follows a stationary process, real
aggregates are expected to be time invariant. Therefore, we can express the problem
in terms of prices relative to the wage, p, and conjecture an equilibrium in which the
current joint distribution of real prices and productivity, φt (p, v), is time invariant.
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The equilibrium static real profit function is

Π (pi,t, vi,t) =

(
pi,t −

1

vi,t

)
×D (pi,t) .

Let ψ (pi,0, vi,0) denote the present value of a retailer that begins at t = 0 with
the relative price pi,0 and productivity vi,0. Given the strategies of shoppers and other
retailers, this retailer chooses a time Ti ≥ 0 to adjust and a reset price p′i so as to solve

ψ (pi,0, vi,0) = max
Ti

E
{∫ Ti

0

e−ρtΠ (pi,t, vi,t) dt+ e−ρT max
p′i

[ψ (p′i, vi,T )− κ]

}
.

This time-invariant Bellman equation is standard in the literature, and its solution is
well known.18 The optimal policy of a retailer with productivity level vi,t is to leave its
nominal price unchanged if pi,t is between pL (vi,t) and pU (vi,t). If the real price hits
any of these bounds, the retailer pays the menu cost κ and adjusts to p̂ (vi,t).

Before stating the problem of the representative household, defining the stationary
posted-price distribution F as the marginal of φ (p, v) over v is useful:

F (p) =

∫ p

p

∫
v

φ (x, v) dvdx, p ∈
[
p, p̄
]
,

where the bounds
{
p, p̄
}
are determined in equilibrium by the retailers’ optimal pricing

behavior.

3.2 Representative household

A representative household has a worker and a measure-one continuum of shoppers
buying a homogeneous good. The worker supplies labor and shares income equally
across shoppers. Each instant t, the shoppers enter, search, purchase, and leave the
product market. The worker and the shoppers are replaced by a new household an
instant later. Because the problem of the household is static, I drop the time subscripts
in what follows.19 20

18In fact, firms in Golosov and Lucas (2007) solve the same problem. The main difference is that
in the present paper, monopolistic competition is a result of costly consumer search.

19Under this assumption, we rule out complex issues such as learning and intertemporal arbitrage.
Then, we can focus on the main links between search and price-setting behavior.

20The assumption of instantaneous consumers also implies search happens quickly compared with
real-price erosion. This implication is reasonable for the U.S. economy, where inflation is low and
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Shoppers have incomplete information about the prices: they know the posted-
price distribution F , but not the price that each seller charges. Because the good
is homogeneous and price dispersion exists, buyers have incentives to search for the
lowest price. Shoppers j search sequentially for a retailer i. They receive a first price
quote for free but need to pay γj labor units for each subsequent draw. We assume the
search cost is heterogeneous, randomly distributed across shoppers according to G.21

The shopper searches Sj times to find a retailer i from whom he buys qj units of the
good at the nominal price Pi(j).

Given the search outcomes of shoppers, Pi(j) and Sj, the household head chooses
labor supply L and quantities of the consumption good to solve

max
qj ,L

∫ 1

0

(
qj

1− 1
η

1− 1
η

)
dj − L

s.t.

∫ 1

0

Pi(j)qjdj +W

∫ 1

0

γj (Sj − 1) dj = WL+D,

where D are the dividends the household gets from the retailers. The solution to this
problem implies the indirect utility of the household is

W =

∫ 1

0

[
V
(
pj(i)

)
− γj (Sj − 1)

]
dj +

D
W

; (3)

V (p) =
p1−η

η − 1
,

where V (p) is the surplus that each shopper derives from buying q (p) = −V ′ (p) units
of the good at price p.

Shoppers take as given the retailers’ pricing strategies F and the utility they con-
tribute to the household as a function of the relative price, V (p). The optimal strategy
of the shoppers is to search for a retailer until they find an offer below their reservation
price.22 To compute the optimal stopping rule, we first define the value that an offer
p has for a shopper j, Bj (p). This value is the maximum between accepting such an

sellers take between 4 and 10 months (Bils and Klenow, 2004; Nakamura and Steinsson, 2008) to
change the prices of goods that households purchase every week.

21Heterogeneity in γ is key to generate a link between inflation and search activity. If buyers were
identical, they would search at most once for any inflation level. Therefore, higher levels of inflation
would not increase the resource cost of search and affect welfare through this margin.

22Because utility is linear in search expenditures and the number of searches is not limited, the
solution to this problem is the same with or without recall of previous offers.
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offer and continuing to search after paying the search cost γj:

Bj (p) = max

{
V (p) ,−γj +

∫ p

p

Bj (u) dF (u)

}
.

Then, we define the reservation price rj as the relative price that makes shopper j
indifferent between buying and searching again:

V (rj) =

∫ p

p

[max {V (p) , V (r)}] dF (p)− γj.

If this equation has a solution, the optimal policy for the shopper is to accept any offer
p if p ≤ rj, and to continue searching otherwise.23 Alternatively, the reservation price
equates the expected benefit and the cost of the marginal search:

Γ (rj) ≡
∫ rj

p

[V (p)− V (rj)] dF (p) = γj. (4)

A buyer with γj < γ̃ ≡ limr→∞ Γ (r) would rather search than accept a zero-surplus
offer: the expected benefit of rejecting the first free offer and searching is greater than
the marginal search cost. Because the marginal return to search Γ (r) is increasing and
continuously differentiable on

[
p,∞

)
, the reservation price is well defined and given

by rj = R (γj) ≡ Γ−1 (γj), with p ≤ rj < ∞.24 Buyers with γj > γ̃ accept the first
free offer as long as it does not exceed their maximum willingness to pay, so we let
R (γj)→∞. These results are illustrated in Figure 4a.

The reservation price R (γj) is an increasing function of the search cost. This finding
implies all the buyer types γj for which p ≤ R (γj) accept a given offer p. An equivalent
and convenient statement is that buyers whose search cost is larger than the marginal
return to search at offer p, that is, γj ≥ Γ (p), are the ones that accept such an offer
(see Figure 4b).

23Lippman and McCall (1976) present a detailed discussion and proof.
24By noting V (p) =

∫∞
p
q (u) du and integrating by parts, it is possible to show that Γ (rj) =∫ rj

p
q (p)F (p) dp. Therefore, Γ′ (rj) = q (rj)F (rj) ≥ 0.
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Figure 4: Optimal search strategies

3.3 Demand function

Assume γ ∈
[
γ, γ̄
]
and that the distribution G is continuous and differentiable, with

an associated probability density function g. Therefore, g (γ) buyers exist with search
cost γ. They search at random until finding one of the F (R (γ)) retailers charging
p ≤ R (γ). Each of these retailers retains g (γ) /F (R (γ)) buyers type γ, and each of
them purchases q (p) units of the good. From the previous section, we know the buyers
with γ ≥ Γ (p) would accept the offer p. The equilibrium demand function for a retailer
charging p results from aggregating the individual demands of all of those buyers:

D (p) =

∫ γ̄

Γ(p)

q (p)× g (γ)

F (R (γ))
dγ. (5)

We can define the total number of transactions at a given price p as

N (p) =

∫ γ̄

Γ(p)

g (γ)

F (R (γ))
dγ.

Because the quantity each buyer purchases is independent of its type γ, we can express
the endogenous demand curve (5) as the product of two components:

D (p) = q (p)×N (p) .

The first term on the right represents the intensive margin of demand, or the units
that each buyer purchases at price p, q (p) = p−η. The second and novel component
for menu-cost models corresponds to the extensive margin of demand, N (p). This
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function indicates the number of shoppers that a seller serves by setting a price p.
Using that Γ′ (p) = q (p)F (p), we can show the extensive margin is decreasing in

the price:

N ′ (p) = −q (p)× g (Γ (p)) ≤ 0.

Intuitively, shoppers can take advantage of price dispersion and flee from higher prices.
Nonetheless, in an equilibrium where γ > γ̃, a fraction of the shoppers will accept the
first free draw, independently of the price. In this case, the number of transactions at
each price is

N (p) =

∫ γ̃

Γ(p)

g (γ)

F (R (γ))
dγ + 1−G (γ̃) ,

where 1−G (γ̃) is the fraction of captive shoppers.
On the other hand, the number of shoppers that a retailer can attract by lowering

its price is limited. Denote by r the minimum reservation price in the market, R
(
γ
)
.

A seller who sets p ≤ r serves all shoppers and reaches the maximum number of
transactions, N (r).

The extensive margin plays a crucial role in determining the price elasticity of
demand that a retailer faces. For p > r, the extensive margin tends to increase the
overall elasticity of the demand curve:

εD (p) =

η p ≤ r

η + εN (p) p > r
(6)

εN (p) =
p

N (p)
× q (p) g (Γ (p)) ≥ 0. (7)

An extensive-margin elasticity that is determined endogenously is at the center of
the relationship between inflation, price dispersion, and efficiency: optimal search rules
in equation (4) depend on the price distribution F , which in turn depends on inflation.
Thus, the demand elasticity at each price changes with inflation through shopping
behavior, affecting markups and efficiency. This feature is absent in the standard Dixit-
Stiglitz framework used in the literature, where monopolistic competition is attained
by assuming product differentiation.
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3.4 Equilibrium

In a steady-state equilibrium, the optimal strategies correspond to the following:

1. reservation prices,

R (γ;F ) =

Γ−1 (γ;F ) γ < γ̃

∞ γ > γ̃,

that each buyer γ ∈
[
γ, γ̄
]
chooses given the time-invariant posted-price distri-

bution F ; and

2. pricing strategies,

Ψ (v;R,F, π) = {pL (v;R,F, π) , pU (v;R,F, π) , p̂ (v;R,F, π)} ,

that solve the dynamic retailer problem ψ (p, v;R,F ) for each v, given the search
behavior of buyers (R), the strategies of competitors (F ), and the level of in-
flation π. The optimal policy functions Ψ (v;R,F, π) are consistent with an
invariant distribution φ (p, v;R, π) and a posted-price distribution F (p;R, π), for
p ∈

[
p (R, π) , p̄ (R, π)

]
.25 Including π as an explicit argument in the retailer’s

policies will be useful when conducting comparative static analyses.

The equilibrium is solved as a fixed-point problem for any inflation level. Given a guess
for the posted-price distribution F0 (p), we compute the optimal search strategies of
each buyer γ, R0 (γ;F0). Then, we aggregate search rules into the retailer-level demand
function, D0 (p;R0, F0), to obtain the endogenous profit function, Π0 (p;R0, F0). We
solve the retailers’ problem to get the policy functions, Ψ0 (v;R0, F0), and the associated
invariant distribution, φ1 (p, v;R0, F0). Finally, we update the posted-price distribution
by taking the marginal of φ over v:

F1 (p) =

∫ p

p
1

∫
v

φ1 (x, v;R0, F0) dvdx, p ∈
[
p

1
, p̄1

]
.

25Retailer pricing strategies are monotonic in productivity v, implying p (R, π) = pL (v̄;R, π) and
p̄ (R, π) = pU (v;R, π) in equilibrium.
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We repeat this process until F1 (p) = F0 (p) for every p and find an equilibrium if the
total number of transactions equals the total number of buyers:∫ p̄

p

N (p;R,F ) dF (p;R) = 1.

The posted-price distribution weighted by the number of transactions, NdF , can be
interpreted as the distribution of transaction prices.

Defining the transaction-weighted average markup in this economy is helpful:

µ̃ =

∫
v

∫ p̄

p

pvN (p)φ (p, v) dpdv.

Given the distributional assumptions on the productivity shocks, we can write µ̃ as the
sum of transaction-weighted average markups conditional on productivity, µ̃ (v):

µ̃ =

∫
v

µ̃ (v) φ̌ (v) dv;

µ̃ (v) = vp̃ (v) ;

p̃ (v) =

∫ p̄

p

pN (p) φ̂ (p |v ) dp.

We denote the marginal distribution of the shocks by φ̌ (v), the distribution of prices
conditional on productivity by φ̂ (p |v ), and the transaction-weighted average price
conditional on productivity by p̃ (v).

4 Inflation and price dispersion in the theory

The model in the previous section produces a Υ-shaped relationship between price
dispersion of identical goods and inflation. To understand the mechanism behind this
result, starting to analyze the equilibrium at zero inflation as a fixed point is useful.
Figure 5 describes such an equilibrium.

At zero inflation, retailers face a demand with a sharp kink at the lowest reservation
price, r. For retailers with higher productivity draws, r maximizes static profits. If
they charge a price slightly lower than r, they will not attract more customers, because
they are already serving the maximum possible. On the other hand, if they charge a
price slightly larger than r, low-search-cost shoppers will reject the offer and search:
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Figure 5: Equilibrium at π = 0

The figures describe an equilibrium with zero inflation. The value r indicates the lowest
reservation price among shoppers. The upper-right panel shows the profit function for retailers
with 90th and 10th percentile productivity draws.

the extensive margin of demand activates and demand elasticity increases discretely.
Moreover, staying at the kink is not only optimal but also feasible for these retailers:

real prices are fixed, because zero inflation implies that real and nominal prices are
equal. Therefore, more productive retailers bunch at r, which generates a point mass
in the price distribution. When inflation equals zero, price dispersion is relatively low:
its only source is idiosyncratic productivity shocks, which manifest in dispersion at the
top of the price distribution.

The point mass in the posted-price distribution implies shoppers who search will
likely find an offer p = r. Thus, only those shoppers with very high search cost will
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Figure 6: Equilibrium for π > 0

The figures describe an equilibrium with positive inflation. The value r indicates the lowest
reservation price among shoppers. The upper-right panel shows the profit function for retailers
with 90th and 10th percentile productivity draws.

accept a price greater than r; those who actively search will only accept r (lower-
right panel in Figure 5). From the retailer’s perspective, a small increase in the price
decreases discretely the number of shoppers who accept the offer, explaining the sharp
kink in demand at r.26

For a positive level of inflation (Figure 6), real prices are continuously drifting
downward.27 To stay at the kink, retailers would need to pay the menu cost every

26The kinked demand complicates the analytical proof of uniqueness of the equilibrium at π = 0
considerably. To evaluate whether the equilibrium is unique, I solve the model for different guesses of
the posted-price distribution F0 (p). I find convergence to the same equilibrium always exists.

27Moving forward, I focus on the comparison between zero and positive inflation with monetary
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period: bunching at any price is not optimal. Thus, retailers – particularly those with
higher productivity draws – set wider adjustment bands, letting their real prices erode
to save on menu costs. As a result, the minimum market price is lower than in the
zero-inflation equilibrium, and dispersion at lower prices is higher.

Inflation-induced price dispersion increases the returns to search, so low-search-
cost shoppers search more, and their reservation prices decrease.28 To attract these
shoppers, productive retailers charge even lower prices, and price dispersion increases
further.

In sum, the Υ-shaped relationship between inflation and price dispersion is tightly
related to consumer search and market power. When inflation is zero, the price disper-
sion generated by productivity shocks is not enough for significant search activity to
occur. Thus, productive retailers set the maximum price that low-search cost shoppers
will accept, and enjoy relatively high markups (Figure 7).

From zero to positive inflation, price dispersion increases discontinuously through
two channels. The first is the menu-cost channel: relative prices drift downward con-
tinuously, so more productive retailers allow lower (and higher) price levels to pay the
menu cost less often. Thus, price dispersion conditional on productivity increases. The
second is the search channel: higher price dispersion increases the returns to search,
and to attract more shoppers, more productive retailers charge even lower prices. With
more competition, their markups decrease.

In the next subsection, we assess the model fit to the data by matching the Υ-shaped
pattern in Figure 2.

4.1 Parametrization and calibration

We choose a flexible search cost distribution: γ ∼ Beta (α, β), where α > 1, β > 1,
and γ ∈ [0, 1].29 We jointly calibrate the size of menu cost κ, the persistence ρv,
and volatility σv of idiosyncratic shocks, the shape parameters α and β of search-cost

policy in mind.
28On the other hand, more dispersion at the bottom of the distribution implies finding the minimum

market price is harder: search intensity decreases as the individual search cost increases. Thus,
retailers can increase their prices without a discrete loss in the number of consumers they serve.
Inflation smooths out the kink in demand, making demand more inelastic at lower prices and more
elastic at higher prices.

29Under these assumptions, the density of shoppers at γ = 0 is zero, and the density smoothly
increases from γ = 0. Thus, the presence of the kink is unrelated to the specific distribution of the
search cost.
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Figure 7: Optimal pricing and productivity

The left panel shows transaction-weighted average prices conditional on productivity, p̃ (v);
the right panel, transaction-weighted average markups conditional on productivity, µ̃ (v).

distribution, and the price elasticity of demand η of shoppers to match the following:
(i) the standard deviation of log prices at π = 0, π = ±2%, and π = ±20%; (ii) the
frequency of price changes and the average size of price changes at π = 2%; and (iii)
an average markup of 30% at π = 2%.30 Following the literature, we set the monthly
discount rate to ρ = 0.961/12.

The Υ-shaped relationship between inflation and price dispersion is key to calibrate
the search-cost distribution. When this distribution has a small mean and variance (low
α or high β), search activity is relatively cheap; search intensity and price dispersion
at π = 0 are relatively high. Thus, going from zero to positive inflation increases
price dispersion by a relatively small amount. The opposite happens when search is
relatively expensive (high α or low β): inflation generates a steep increase in price
dispersion and in the returns to search.

Figure 8 shows the model matches the Υ-shaped relationship between inflation
and the standard deviation of log prices in the data. At the same time, the calibration
produces pricing moments and average markups consistent with the empirical evidence,
as seen in Table 1. It is noteworthy that, although the absolute size of price changes
is only targeted at π = 2%, the model matches its relationship with inflation (bottom
panel in Figure 8). The calibrated parameters are in Table 2.

30In appendix B I explain how I compute additional pricing moments using the same scanner data.
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(b) Absolute size of price changes
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Figure 8: Pricing moments and inflation, model fit

The top figure shows the relationship between inflation and price dispersion in the calibrated
model (dashed line) and in the data (dots); the bottom figure shows the equivalent for the
absolute size of price changes.
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Table 1: Additional moments, model fit

Moment Model Data Targeted

Monthly frequency of adjustment at π = 2% 14.41% 15.00% Yes
Average abs. size of price changes at π = 2% 17.86% 18.00% Yes

Average markup at π = 2% 1.30 1.30 Yes

Average fraction of price increases at π = 2% 53.82% 51.00% No

Table 2: Calibrated parameters

Parameter Description Value

κ Menu cost 0.061
ρv Mean-reversion rate of shocks 0.553
σv Volatility of shocks 0.123
α Shape of search cost distribution 1.056
β Shape of search cost distribution 4.087
η Intensive margin elasticity of demand 1.947

4.2 Comparison with the literature

The calibrated model shows the theory in this paper explains the Υ-shaped relationship
between inflation and price dispersion in the data. At the same time, it is consistent
with two additional pricing facts for positive and low inflation. The first is that, on
average, around half of the price changes are decreases. The second is that the absolute
size of price changes is significantly larger than average inflation (18% versus 2%), and
as absolute inflation increases, it does not increase as steeply as price dispersion.

Menu-cost models with idiosyncratic shocks but without search (Golosov and Lucas,
2007; Alvarez et al., 2019; Nakamura et al., 2018) match the additional pricing facts
but miss the Υ-shaped relationship between inflation and price dispersion. Moreover,
as Figure 9 shows, these models predict both price dispersion and the absolute size of
the price changes are flat in inflation. In the model with search, the direct relationship
between those pricing moments breaks.

To understand the intuition behind these results, decomposing price dispersion as
the sum of two components is helpful:

σ̄2 (p; π) = E [V (p |v ; π)] + V [E (p |v ; π)] .
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Figure 9: Pricing moments in different models

The figure plots pricing moments and inflation in Benabou (1992), Golosov and Lucas (2007), the data, and my model. The left
panel shows price dispersion measured by the standard deviation of log prices, and the right panel plots the absolute size of price
changes.

33



The first term on the right-hand side corresponds to average price dispersion conditional
on productivity; the second, to variation of the average price across retailers with
different levels of productivity. In menu-cost models with idiosyncratic shocks and no
consumer search, the first term increases with inflation: retailers need to adjust more
often as real prices erode faster, but because adjustments are costly, they optimally
choose wider inaction regions [pL (v) , pU (v)]. Around zero inflation, optimal pricing
behavior is mainly determined by the relatively large idiosyncratic shocks, so this
term remains roughly unchanged. The second term is essentially exogenous because it
approaches the cross-sectional dispersion of productivity (Alvarez et al., 2019). Thus,
price dispersion is smooth at zero inflation.

In the model with idiosyncratic shocks and search, both sources of price dispersion
increase around zero inflation. On the one hand, as inflation goes from zero to a positive
rate, the transaction-weighted average price p̃ (v) increases more for higher productivity
draws, as shown in Figure 7. Thus, the variance of the conditional expected price
increases.

On the other hand, most productive retailers set a fixed real price under π = 0.
When inflation deviates from zero, their real prices drift downward, so they optimally
widen their adjustment bands: price dispersion conditional on productivity increases.

At the same time, those retailers increase nominal prices by less than the retailers
that were adjusting under π = 0: the average absolute size of price changes decreases
discretely. Nonetheless, this pricing moment increases with inflation and remains rel-
atively flat around zero because the size of the adjustment bands stabilizes for low
and positive inflation rates. In this way, the current theory matches price dispersion
Υ-shaped in inflation and the absolute size of price changes flat in inflation (except at
π = 0).

Menu-cost models without idiosyncratic shocks, with search (Benabou, 1988, 1992)
or without (Sheshinski and Weiss, 1977), match price dispersion Υ-shaped in inflation
but miss other features of realistic price-setting behavior. In particular, for positive
inflation, all price changes are price increases. Additionally, the only motive for ad-
justment is inflation, implying the absolute size of price changes is close to zero around
zero inflation and increases steeply with inflation.

In the next section, we see the menu-cost model with idiosyncratic shocks and
consumer search not only matches key price-setting statistics, but is also supported by
empirical evidence on households’ shopping behavior.
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5 Evidence on price dispersion and search

The model predicts that, within a market, buyers who visit more sellers pay lower
prices. Moreover, the expected price reduction from visiting an additional seller is
more significant the larger the absolute inflation.

To test this prediction and provide supporting evidence for the theory, I use the
NielsenIQ Consumer Panel Data. These data contain the barcodes of the items that
households purchased on each shopping trip, the quantities they bought, the prices they
paid, and whether they used coupons to pay. Although information about the physical
store is limited, every transaction can be associated to a retail chain. Therefore, we
observe from how many different retailers a household purchased a particular product
in a given time period. In the model, the latter variable is inversely correlated with
the search cost of shoppers.

Households are sampled from 54 geographically dispersed Scantrack markets (each
roughly corresponding to an MSA), and detailed demographic information about them
is available.31 The product categories are the same as in the NielsenIQ Retail Scanner
Data.

A unique feature of NielsenIQ’s datasets is that they can be merged through product
categories and geographic markets, so household shopping patterns can be linked to
product × market variables such as inflation and price dispersion. In this way, we can
study how shopping behavior interacts with inflation to affect the prices buyers pay
for a given good while controlling for several sources of heterogeneity.

5.1 Variable construction

The unit of analysis is a household × department × quarter. For each household in
the Consumer Panel Data, I compute the relative price paid for a basket of goods
belonging to a department in a given quarter, and the number of distinct retailers
visited to purchase such a basket in the same quarter. Then, I merge these data with
inflation and price dispersion at the department-quarter level in the geographic market
to which the household belongs.

I aggregate purchases and shopping trips at the department level for two reasons.
First, in an average shopping trip to a particular retailer, households purchase 7.4

31NielsenIQ provides projection factors to make the sample demographically representative of the
Scantrack market population.
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distinct items. Thus, households likely consider the price of a bundle of goods when
deciding which store to visit. Working at the department level takes this element into
account.

Second, this level of aggregation maximizes the amount of variation in the variables
of interest. At the household × module level, for instance, shoppers visit, on average,
1.1 retailers each quarter (CV of 0.20), whereas at the household × department level,
they visit three retailers (CV of 0.71). Working at the household level produces an
even larger variation in the number of retailers visited (8.2 on average, with a CV of
1.9) but limits the inflation variation required for the analysis.

Relative price paid For each product with barcode k in the market m and quarter
t, we define the average price paid among households as

P̄km,t =

∑Hkm,t
h=1

∑Lhkm,t
l=1 P h,l

km,tq
h,l
km,t∑Hkm,t

h=1

∑Lhkm,t
l=1 qh,lkm,t

,

where P h,l
km,t is the price household h paid for qh,lkm,t units of good k in shopping trip l;

Hkm,t denotes the number of households buying product k in market m and quarter t,
and Lhkm,t is total shopping trips by household h. Following Kaplan and Menzio (2015),
I construct the relative price that a household pays for the goods in a department as
total expenditure over hypothetical expenditure at market-average prices:

phdm,t =
Xh
dm,t

X̄h
dm,t

=

∑Ddm,t
k=1

∑Lhkm,t
l=1 P h,l

km,tq
h,l
km,t∑Ddm,t

k=1

∑Lhkm,t
l=1 P̄km,tq

h,l
km,t

,

where Ddm,t is the total number of products in department d, market m, and quarter
t.

Number of retailers visited The expenditure by households in a department d and
quarter t, Xh

dm,t, can also be expressed in terms of shopping trips to distinct retailers:

Xh
dm,t =

Nh
dm,t∑
i=1

Lh,ikm,t∑
l=1

Xh,l
dm,t,
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where Xh,l
dm,t is expenditure in shopping trip l; Lh,ikm,t denotes the total number of shop-

ping trips to retailer i; Nh
dm,t is the number of distinct retailers household h visited to

purchase items in department d and quarter t.
Table A.3 shows descriptive statistics for the sample. The total number of house-

hold × department × quarter observations is 19,376,570, with 130,262 households, 10
departments, 44 quarters, and 53 geographic markets.

5.2 Estimation and results

Let π̄dm,t denote department × market-level quarterly inflation, corresponding to a
sales-weighted average of category × market-level quarterly inflation. I study the
effects of inflation through shopping behavior on the relative prices paid by households
by estimating

log phdm,t =
10∑
s=1

αs1{Nh
dm,t=s} +

10∑
s=1

θs1{Nh
dm,t=s} × |π̄dm,t|

+ µ′Xh
t + ad + bm + ct + εhdm,t. (8)

The indicator variables take the value of 1 when household h visits s ∈ [1, 10] distinct
stores in a given quarter to purchase items in department d; the coefficients {αs}10

s=1

correspond to average relative prices paid by households that visit s retailers; more
importantly, the coefficients {θs}10

s=1 indicate how and by how much absolute inflation
affects the relative prices paid by households according to their shopping behavior.
The theory predicts θ10 < 0 and that the sequence {θs}10

s=1 is increasing: when absolute
inflation is high, shoppers that search more find the lowest prices.

The vector Xh
t contains a set of demographic controls (household size, household

income bin, household head age and education, employment status, and presence of
children) and shopping behavior controls (number of shopping trips and fraction of
transactions paid with coupons). In addition, I include department, market, and quar-
ter fixed effects. The observations are weighted using NielsenIQ sampling weights, and
standard errors are two-way clustered by household and product department × market
× quarter combination.

Figure 10 shows the average relative prices paid by households depending on the
number of distinct retailers they visit and the level of absolute inflation. The findings
support the theory: a household that visits 10 stores when absolute inflation is 10%
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Figure 10: Shopping behavior and absolute inflation

The figure shows the relationship between log relative prices paid, number of retailers visited,
and absolute inflation as predicted by equation (8). The unit of observation is a household
× product department × quarter, and the total number of observations is 19,376,570. Obser-
vations are weighted using NielsenIQ sampling weights. The confidence intervals (bars) use
standard errors that are two-way clustered by household and product department × market
× quarter combination.

pays 1% less than when inflation is zero, and 3% less than a household that visits only
one store.

In the theory, inflation is relevant for the shopping behavior of households only
through price dispersion. Therefore, I provide additional evidence by estimating equa-
tion (8) using inflation-induced price dispersion rather than absolute inflation. To
obtain a measure of price dispersion that is only explained by inflation, I estimate
equation (1) at the quarter level and predict price dispersion for each category × mar-
ket pair:

ˆ̄σcm,t =
100∑
n=1

β̂n1{π̄cm,t∈Bn}.

I compute inflation-induced price dispersion for each department × market × quarter,
ˆ̄σdm,t, by aggregating category-level measures using annual sales as weights.
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Figure 11: Shopping behavior and price dispersion

The figure shows the relationship between log relative prices paid, number of retailers visited,
and inflation-induced price dispersion as predicted by equation (8). The unit of observation
is a household × product department × quarter, and the total number of observations is
19,376,570. Observations are weighted using NielsenIQ sampling weights. The confidence
intervals (bars) use standard errors that are two-way clustered by household and product
department × market × quarter combination.

Figure 11 shows the effects of shopping behavior on prices paid depending on the
amount of inflation-induced price dispersion in the market. A household that visits 10
stores when price dispersion is high (at the 95th percentile of the distribution) pays
1% less than when price dispersion is low (at the 5th percentile of the distribution),
and 3% less than a household that visits only one store. As with absolute inflation,
the evidence is consistent with the model.32

Additionally, I test the fit of the calibrated model to these results. For each level
of inflation, I take the equilibrium posted-price distribution and the optimal search
policies of shoppers j, and simulate the search stage. Using the relative prices paid –
constructed as in the data – and the number of sellers visited, I estimate the equivalent

32In Figure A.11, I show the qualitative results hold if we use raw – rather than predicted – price
dispersion.
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(a) Absolute inflation
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(b) Price dispersion
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Figure 12: Shopping behavior and prices paid, data and model

The lines show the empirical relationship between log relative prices paid and number of
retailers visited for different levels of absolute inflation (upper panel) and inflation-induced
price dispersion (lower panel), as predicted by equation (8). The dots correspond to simulated
data using the calibrated model.
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of equation (8) in the model:

log pjdm =
10∑
s=1

αs1{Nj
dm=s} +

10∑
s=1

θs1{Nj
dm=s} × |π̄dm,t|+ µ′Xj + εjdm.

A department × market pair is identified exclusively by its level of inflation, so I choose
department × market pairs to replicate the cross-sectional distribution of inflation in
the data. The shopper-level controls include deciles of the search cost – the only source
of heterogeneity across buyers. Figure 12 shows the calibrated model closely replicates
the data, especially when we repeat the exercise for inflation-induced price dispersion.

6 Welfare implications of inflation

The theory in this paper matches the Υ-shaped relationship between inflation and price
dispersion, exhibits realistic pricing behavior, and is supported by empirical evidence
on shopping behavior and inflation. What are the implications of this model for the
costs and benefits of inflation?

Welfare per instant of time dt is given by equation (3). Expressing its components
in terms of the posted-price and the search-cost distributions is useful. The household
gross surplus from consumption V̄ is the transaction-weighted average of the shopper’s
surplus in terms of real prices:

V̄ =

∫ 1

0

V
(
pj(i)

)
dj =

∫ p̄

p

V (p)N (p) dF (p) .

To derive the total cost of search, note a shopper type γ accepts an offer p ≤ R (γ) with
probability F (R (γ)) and continues searching with probability 1−F (R (γ)). Therefore,
the probability of receiving a successful offer after s searches is

Pr [K (γ) = s] = F (R (γ))× [1− F (R (γ))]s−1 .

Because the number of searches they can conduct is not limited, a shopper with cost
γ searches, on average, S (γ) times, where

S (γ) =
∞∑
s=1

s× Pr [K (γ) = s] =
1

F (R (γ))
.
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Taking into account that the first price draw is free, the total resources spent on the
search for better prices are

C =

∫ 1

0

γj (Sj − 1) dj =

∫ γ̄

γ

γ

[
1

F (R (γ))
− 1

]
dG (γ) .

On the other hand, each dt, real dividends are aggregate real profits net of aggregate
adjustment costs. Gross aggregate real profits are

Π̄ =

∫ 1

0

Π (pi,t, vi,t) di =

∫ p̄

p

∫
v

Π (p, v)φ (p, v) dvdp.

If Λ is the number of retailers that reprice each dt, total adjustment costs are κΛ.
Then, social welfare is aggregate consumer surplus net of search costs plus total

real profits net of adjustment costs. Each one of these terms depends on inflation:

W (π) = V̄ (π) + Π̄ (π)− C (π)− κΛ (π) .

The first two terms on the right correspond to the aggregate gains from trade, and
the last two terms to the resources spent on market frictions (i.e., search and price
adjustment). In the calibrated model, inflation increases price dispersion, and thus
the returns to search for low prices. As search activity increases, the resource cost of
search tends to increase. Price-adjustment costs are also increasing in inflation: the
higher inflation is, the faster real prices drift away from their optimal levels, requiring
more frequent price adjustments.

The gains from trade reflect the allocative role of prices through search. If, with
positive inflation, consumers search for better prices, markups at higher prices decrease,
increasing efficiency. Thus, whether inflation improves welfare depends on the size of
the efficiency gains from lower markups.

Figure 13 shows the relationship between welfare and inflation in the calibrated
model. We see that as inflation departs from zero, aggregate consumer surplus jumps.
Higher consumer surplus offsets lower profits and the positive search and adjustment
costs that come with inflation, generating a net welfare gain. On the flip side, av-
erage transaction-weighted markups decrease, reflecting the source of the efficiency
gains. Furthermore, the efficiency gains from positive inflation are limited: welfare is
maximized at a finite inflation rate. What determines such a rate?
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Figure 13: Welfare and inflation

The figure in the left panel shows the relationship between inflation and welfare and the
contribution of each of its components. The one in the right panel also plots the average
transaction-weighted markup.

When inflation is zero, production is shared relatively evenly among retailers. For
a small positive inflation, a large part of the production shifts from less to more pro-
ductive retailers: with increased search activity (right panel in Figure 14), retailers
with high productivity draws charge lower prices to attract more shoppers, and their
markups decrease (left panel in Figure 14).

Nevertheless, as inflation increases and more shoppers flee from higher prices, most
of the customers of the least productive retailers become non-searchers, or captive shop-
pers. As Figure 14 shows, their search behavior does not change with inflation. Thus,
for retailers with low productivity draws, charging higher prices to captive shoppers,
raising their markups, is optimal.

For large positive inflation, we see from Figure 13 that aggregate consumer surplus
is still increasing in inflation: shoppers who search are paying even less for the good
as price dispersion increases with inflation. On the other hand, aggregate gross profits
start to increase: the least productive retailers increase their markups by extracting
the surplus of captive shoppers. If the latter effect exceeds the former, efficiency gains
from positive inflation dissipate, reducing welfare.
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Figure 14: Heterogeneous effects of inflation

The left panel plots average transaction-weighted markups as a function of inflation for re-
tailers in the top and bottom quintiles of the productivity distribution; the right panel plots
the number of visits as a function of inflation for shoppers in the top and bottom quintiles of
the search-cost distribution.

7 Conclusion

In this paper, I show the empirical relationship between product-level inflation and
price dispersion is Υ-shaped. Current sticky-price models cannot simultaneously ac-
count for this fact and other features of pricing behavior. I develop a menu-cost model
with idiosyncratic shocks and endogenous consumer search that can. Furthermore,
evidence on shopping behavior and inflation supports the theory.

In the model, the costs of inflation arise from two market frictions: price adjust-
ment and search. If inflation carries benefits, as the calibrated model suggests, they
stem from higher price dispersion and returns to search. As search activity increases,
competition intensifies, decreasing markups. The positive welfare-maximizing inflation
rate optimally trades off the efficiency gains from lower markups and the resources
spent on search.
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A Additional figures and tables
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Figure A.1: Aggregate inflation, validation

The solid blue line corresponds to the Consumer Price Index for food at home reported by
the Bureau of Labor Statistics. The red dashed line is the NielsenIQ Price Index for food
categories, which results from aggregating category × market level inflation πcm,t using annual
sales as weights.
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(a) No fixed effects
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(b) Category-year
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(c) Market-year
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(d) Category-year and market-year
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Figure A.2: Controlling for different fixed effects

The dots correspond to average price dispersion for each of 100 equally sized inflation bins
as predicted by equation (1), for different combinations of the fixed effects and excluding the
number of stores. The unit of observation is a category × market × year, for 1,219,414 in
total.
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Figure A.3: Controlling for number of stores

The dots correspond to average price dispersion for each of 100 equally sized inflation bins
as predicted by equation (1), without fixed effects. The unit of observation is a category ×
market × year, for 1,219,414 in total.
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Figure A.5: Price dispersion and absolute inflation

The dots correspond to average price dispersion for each inflation bin conditional on controls.
The label “Symmetric” shows results when we estimate equation (1) for absolute inflation.
The labels “Positive” and “Negative” indicate estimates in Figure 2 with absolute inflation on
the x-axis. The unit of observation is a category × market × year, for 1,219,414 in total.
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(a) Less than 15 stores

-0.2 -0.1 0 0.1 0.2
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

(b) Between 15 and 30 stores
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(c) Between 30 and 55 stores
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(d) More than 55 stores
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Figure A.4: Dividing sample by number of stores

The dots correspond to average price dispersion for each of 100 equally sized inflation bins
when observations are divided according to quartiles of the average number of stores. The
unit of observation is a category × market × year, for 1,219,414 in total.
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Figure A.6: Statistical significance

The dots correspond to average price dispersion for each of 100 equally sized inflation bins
as predicted by equation (1). The band covers the entire function with probability 0.95. The
unit of observation is a category × market × year, for 1,219,414 in total. Standard errors are
clustered by category × market pair.

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Figure A.7: Current and future inflation

The dots correspond to average price dispersion for each inflation bin as predicted by equa-
tion (1), using future instead of current inflation. The unit of observation is a category ×
market × year.
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(a) Levels
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(b) Decomposition
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Figure A.9: Price dispersion and inflation by half of the distribution

The dots correspond to average price dispersion for each inflation bin conditional on controls.
Price dispersion is measured using the log 90-10, 90-50 or 50-10 ratio of the price distribution.
The top panel shows levels of the 90-50 and 50-10 ratios; the bottom panel, deviations from
their π = 0 values. The unit of observation is a category × market × year, for 1,219,414 in
total.
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(a) Max-min ratio of price distribution
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(b) 90-10 ratio of price distribution
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Figure A.8: Alternative price dispersion measures and inflation

The dots correspond to average price dispersion for each inflation bin as predicted by equa-
tion (1). The top and bottom panel show estimates using the log max-min and the log 90-10
ratios of the price distribution, respectively, as measures of price dispersion. The unit of
observation is a category × market × year, for 1,219,414 in total.
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(a) 6-month averages
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(b) 12-month averages
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(c) 24-month averages
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(d) 36-month averages

-0.2 -0.1 0 0.1 0.2
0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

Figure A.10: Inflation for different period lengths

The dots correspond to average price dispersion conditional on covariates for each of 100
equally sized inflation bins assuming convergence to an ergodic distribution in 6, 12, 24, and
36 months. That is, we estimate equation (1) averaging monthly inflation and price dispersion
over non-overlapping time periods with different lengths. The unit of observation is a category
× market × period.
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Figure A.11: Shopping behavior and raw price dispersion

The figure shows log relative prices paid by number of retailers visited when we estimate
equation (8) using raw price dispersion rather than absolute inflation. The unit of observation
is a household × department × quarter, for 19,376,570 in total. Observations are weighted
using NielsenIQ sampling weights. The confidence intervals (bars) use standard errors that
are two-way clustered by household and department × market × quarter combination.
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Table A.1: Descriptive statistics, pricing behavior

Percentile

Mean Std.Dev. 1st 10th 25th 50th 75th 90th 99th

Inflation 0.017 0.079 -0.194 -0.057 -0.016 0.009 0.047 0.101 0.263
Absolute inflation 0.052 0.061 0.000 0.004 0.012 0.032 0.069 0.124 0.288
Aggregate inflation 0.015 0.019 -0.011 -0.005 0.000 0.009 0.029 0.042 0.068
Price dispersion
Std. dev. of log prices 0.087 0.049 0.001 0.027 0.054 0.084 0.115 0.147 0.231
Max-min price ratio 1.431 0.305 1.006 1.112 1.235 1.391 1.570 1.774 2.352
90-10 percentile ratio 1.217 0.172 1.000 1.028 1.095 1.193 1.305 1.425 1.740
90-50 percentile ratio 1.096 0.088 1.000 1.006 1.030 1.079 1.138 1.200 1.389
50-10 percentile ratio 1.110 0.106 1.000 1.009 1.038 1.090 1.156 1.230 1.449

Number of stores 49.548 62.102 6.507 11.275 16.655 28.208 54.397 111.977 306.507

Notes. The table shows descriptive statistics for the sample used to estimate equation (1). All variables are in annual terms. The total number
of observations is 1,219,414 for 138,485 category × market pairs between 2007 and 2017, with 1,042 unique categories and 204 geographic
markets. The fraction of observations with deflation is 0.397. Aggregate inflation corresponds to an average over all category × market pairs
using annual sales as weights.
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Table A.2: Numerical tests, year-by-year estimates

Full |π| range |π| < 2%

Market-year estimates, fm,t
% reject null: Increasing 22.68 4.91
% reject null: Concave 17.63 5.85
Average # categories per market-year 573.65 226.53
Total # market-year observations 2,121 1,916

Category-year estimates, fc,t
% reject null: Increasing 33.53 10.27
% reject null: Concave 24.13 10.75
Average # markets per category-year 139.63 96.69
Total # category-year observations 7,985 1,898

Notes. The functions fm,t and fc,t denote the relationship between price dispersion and absolute
inflation for each market-year and category-year combination, respectively. The top panel shows a
summary of the results for fm,t: the percent of market-year estimates that reject the null hypothesis
of monotonicity and concavity; the average number of categories used to estimate each function fm,t;
and the total number of estimated functions fm,t. The first column shows estimates of fm,t for the full
absolute inflation range; the second, for absolute inflation lower than 2%. The bottom panel shows a
summary of the results for fc,t, and the description is analogous.
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Table A.3: Descriptive statistics, shopping behavior

Percentile

Mean Std.Dev. 1st 10th 25th 50th 75th 90th 99th

Household × department × quarter
Log relative price paid -0.003 0.110 -0.348 -0.091 -0.029 0 0.035 0.085 0.264
Number of retailers visited 2.984 2.120 1 1 1 2 4 6 10
Number of shopping trips 8.775 8.694 1 2 3 6 11 18 43
Fraction of trans. with coupons 0.079 0.172 0 0 0 0 0.071 0.286 0.862

Department × market × quarter
Inflation (annualized) 0.015 0.033 -0.075 -0.017 -0.002 0.011 0.029 0.054 0.112
Absolute inflation (annualized) 0.025 0.026 0.000 0.003 0.008 0.016 0.034 0.059 0.118
Std. dev. of log prices 0.082 0.023 0.029 0.052 0.066 0.083 0.098 0.110 0.132
Std. dev. of log prices, predicted 0.087 0.002 0.083 0.085 0.086 0.087 0.089 0.090 0.093

Notes. The table shows descriptive statistics for the sample used to estimate equation (8). Household-related measures are computed using
the Consumer Panel Data; inflation and price dispersion, using the Retail Scanner Data. The total number of observations for estimation are
19,376,570 household × department × quarter triples, with 130,262 households, 10 departments, 44 quarters, and 53 Scantrack markets. At
the department × market × quarter level, 23,296 distinct observations for inflation and price dispersion are available.
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B Additional pricing-behavior measures

Two relevant statistics of price stickiness are the frequency and size of regular price
changes (i.e., excluding price changes due to temporary sales). To construct these
measures, I start by defining a price spell as an uninterrupted sequence of weekly
prices for a given product × store pair.33 Following Coibion et al. (2015), I classify
the difference between two consecutive prices within a spell as price change when it is
larger than one cent or 1% in absolute value (or more than 0.5% for prices larger than
$5). The purpose of this restriction is to remove small price changes that could arise
from rounding errors, given that the weekly price is constructed as revenues over units
sold.

Temporary price reductions are not flagged in the RMS data. To identify sales, I
use the weekly version of Nakamura and Steinsson’s filter, as in Coibion et al. (2015).
In particular, I classify a price as a sale when the price decreases (for up to three weeks)
and then returns to its previous level. At the same time, I classify a price change as
regular when neither period has a sale episode.

For each product × market × month, I obtain the number of regular price changes
across weeks and stores. The frequency of adjustment is given by this number over the
total price observations. The size of a regular price change is the log difference between
the price in the period identified as having a regular price change and the price in the
preceding period. At the product level, it is the unweighted average across weeks and
stores in a given month. To aggregate across products within a category × market ×
month, I average the product-level statistics using annual sales as weights.

33That is, I do not impute missing values using the preceding or subsequent price.
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C Multi-sector model

In the data, the measure of inflation is sectoral: it is the rate at which sector-level prices
grow. The baseline model contains a unique sector in the economy, where the nominal
price level increases because nominal wages increase. In the multi-sector model, sec-
toral inflation rates have have two sources: a sector-specific productivity drift and a
common drift that is influenced by the monetary authority. I assume the only source
of heterogeneity across sectors is the rate at which their prices grow.

Assume the existence of a continuum of sectorsm in the economy. Following Klenow
and Willis (2016), I let sectoral prices exhibit differential trends; I continue assuming
idiosyncratic productivity shocks are stationary because relative prices within a product
category exhibit mean reversion. The wage rate grows at a rate λW , Wt = W0e

λW t,
and sectoral productivity grows at a rate λA,m, so Am,t = Am,0e

λA,mt.

Households The economy contains a measure-one continuum of households h. Each
household consists of a continuum measure one of shoppers and a worker. Each shopper
j visits every sectorm, populated by a measure-one continuum of retailers im. Dropping
time subscripts, the problem of the household is

max
qhj,m,L

h

∫ 1

0

∫ 1

0

Z 1
η
mqhj,m

1− 1
η

1− 1
η

 djdm− Lh

s.t.

∫ 1

0

∫ 1

0

P h
j(im),mq

h
j,mdjdm+W

∫ 1

0

∫ 1

0

γhj,m
(
Shj,m − 1

)
djdm = WLh +D,

where the search cost γhj,m is in labor units and it is randomly and identically distributed
among shoppers, sectors, and households. A deterministic demand shifter Zm exists
for each sector. For convenience, we assume Zm = A1−η

m . Household h’s head decides
optimal labor supply and quantities given the prices:

qhj,m =

P h
j(im),mZ

− 1
η

m

W

−η = Am

(
P h
j(im),mAm

W

)−η
.

The associated indirect utility of the household is

Wh =

∫ 1

0

∫ 1

0

[
V
(
phj(im),m

)
− γhj,m

(
Shj,m − 1

)]
djdm+

D
W
,
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where the relative prices are in effective labor units required to purchase one unit of
the sector m good:

phj(im),m =
P h
j(im),mAm

W
.

Shoppers in each sector follow similar search rules as in the baseline model. The main
difference is that because the posted-price distribution Fm (p) is sector specific, the
rules they follow are also sector specific: Rm (γ).

Demand function Under the assumption that the search cost is randomly and iden-
tically distributed among shoppers within and across households, each sector is pop-
ulated by a continuum of shoppers with the same search-cost distribution, g. The
aggregation of individual search rules of shoppers yields a sector-specific demand func-
tion:

Dm,t (p) = Am,tp
−η ×Nm (p) ;

Nm (p) =

∫ γ̄

Γm(p)

g (γ)

Fm (Rm (γ))
dγ.

The intensive and extensive margins of demand are nearly identical to those in the
baseline model. In this case, the demand function is time specific because the intensive
margin is affected by the sector-specific trend.

Retailers Nominal profits for retailers in sector m are

Πm,t (Pim,t, vim,t) =

(
Pim,t −

Wt

Am,tvim,t

)
×Dm,t

(
Pim,tAm,t

Wt

)
.

The time-invariant profit function in labor units is given by

Πm (pim,t, vim,t) =

(
pim,t −

1

vim,t

)
× p−ηim,tNm (pim,t) .

Equilibrium Under this simple specification of preferences, the sector-level equilib-
rium can be computed as the one-sector model equilibrium. Therefore, analyzing the
sectoral equilibrium of this multi-sector model is equivalent to analyzing that of a
one-sector model for different steady-state levels of inflation.
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Aggregate inflation and welfare The sectoral price level is defined as the deflator
of nominal output in sector m:

Pm,t =
Wt

∫
p1−ηNm (p) dFm (p)

Am,t
∫
p−ηNm (p) dFm (p)

.

Therefore, the sectoral inflation rate is πm = λW − λA,m. Assuming an economy-wide
price index such as

Pt = exp

{∫
logPm,tdm

}
yields the following expression for aggregate inflation as a function of cross-sectional
inflation rates:

π = λW −
∫
λA,mdm.

The assumptions on the search-cost distribution imply Wh = W̄ for every household.
Moreover, we can express aggregate welfare as

W̄ =

∫ 1

0

Wmdm;

Wm = V̄m − Cm + Π̄m − κΛm.

Alternatively, using that sectors only differ with respect to their inflation rate,

W̄ =

∫ 1

0

W (πm) dm

⇒ W̄ (π) =

∫ 1

0

W
(
π +

∫
λA,mdm− λA,m

)
dm.

The calibrated baseline model provides a function W (·) that matches the Υ-shaped
pattern between sectoral inflation πm and sectoral price dispersion. From the mi-
crodata, and using aggregate estimates of λW , we can recover the real component of
sectoral price-level growth: λA,m = λW − πm. By setting λA,m equal to the data and
using the calibrated function W (·), we can study how aggregate welfare changes with
aggregate steady-state inflation according to the model: dW̄ (π) /dπ.
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