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Abstract

Univariate processes with non-fundamental representations have been employed to
characterize nonlinear dynamics driven from predictable future innovations. In this pa-
per, we propose a novel estimation technique of general linear time series which are
possibly non-invertible and non-causal relying on the dependence structure of residuals.
The generalized spectral cumulative function is considered to capture general depen-
dence of non-Gaussian residuals. The loss function is constructed by means of an Lo
distance between the dependence measure in the unrestricted case and the one conjec-
tured in the restricted case under the iid assumption. The information at all quantiles
is used to achieve model identification. This method yields consistency of estimates of
the model parameters without imposing stringent conditions on higher order moments
of innovations. Due to non-differentiability of the original loss function, the asymptotic
distribution of the estimates is established by using a smoothed cumulative distribution
function to approximate the indicator function. Finite sample properties are studied
through Monte Carlo simulations. An empirical application of this approach is provided
by fitting the daily trading volume of Microsoft stock by autoregressive models with

noncausal representation.

Keywords: non-causality, non-invertibility, minimum distance estimation, cumulative
distribution function, univariate time series.
JEL Classification: C22, C13.

1 Introduction

Time series models with non-fundamental solutions have drawn considerable attention in
the econometrics literature during the last two decades. They are typically represented
by noncausal and noninvertible processes models. In Macroeconomics, nonfundamentalness
arises from moving average part, namely non-invertibility, has been interpreted as economic
agents being endowed with larger information set than econometricians (Hansen and Sar-
gent, (1991))). [Lippi and Reichlin (1993} 1994) pointed out the importance of exploration of

noninvertible moving average representations for the analysis of impulse-response functions
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with empirical applications in GNP-unemployment and interest rate-inflation. |Leeper et al.
(2013)) explained noninvertibility as a natural by-product of agent’s foresight with an an-
alytical case in tax news. More empirical examples of non-invertible processes applied to
modeling forward-looking behavior can be found in|Alessi et al. (2011]). Noncausal processes
have been broadly applied in Engineering, see Tekalp et al. (1986), |Gaeta et al. (1997,
etc. In Economics and Finance, noncausal linear models are utilized to mimic nonlinear
dynamics like locally explosive behavior and asymmetric cycles in time series. For example,
a noncausal autoregression (AR) with heavy-tailed innovations could simulate the trajectory
of a phase of repetitive upward trends followed by instantaneous drops, which is opposite to
the pattern followed by a causal process, see Fig where simulated AR(1) processes with
root equal to 0.9 and (0.9)~! are depicted. This feature contributes to modelling speculative
bubbles in stock markets (Gouriéroux and Zakoian| (2017)), [Hecq and Voisin| (2020)). More-
over, a noncausal process is capable of displaying clustering volatility like ARCH behaviors
which are commonly observed in financial data (Breidt et al.|(2001)). [Lof and Nyberg (2017
take noncausality into account in autoregressions (AR) to improve forecasting of commodity
prices. [Hecq et al.| (2020)) highlight gains in ex-post forecasting by proposing a mixed causal-
noncausal AR model with inclusion of exogenous regressors. Noncausal autoregression can
also be an alternative to fitting non-invertible processes (Lanne and Luotol| (2013))) .

The conventional estimation techniques based-on second order moments, like OLS, fail to
distinguish causal (invertible) and noncausal (non-invertible) processes due to the fact that
all weakly stationary processes admit a casual and invertible representation. The informa-
tion contained in the variance-covariance matrix of residuals is not sufficient to characterize
the serial independence assumption of error terms. There are linear transformations on id
data that generate white noise sequences with the same second-order moment structure but
not serially independent, like all-pass ﬁlterE] The logic behind pseudo Gaussian maximum
likelihood (ML) is that second-order moments suffice to identify the Gaussian probabilis-
tic structure but are not adequate for other distributions. Hence it is not applicable to
noncausal and noninvertible processes driven by non-Gaussian innovations. |Gourieroux and
Jasiak (2018) have shown that ML method can lead to misspecification of orders of AR
models when noncausality is introduced in the process. Therefore, alternative estimation
techniques of general time series models are required. In the existing literature, Breid et al.
(1991) introduce approximate ML procedure for estimation noncausal processes given full
knowledge of the distribution of the innovations. This method achieves efficiency but imposes
restrictive assumptions since in most empirical cases the distribution of the innovations is
not known. Breidt et al.| (2001)) use the least absolute deviation (LAD) method to estimate
an all-pass time series. They construct an approximate likelihood function from Laplace dis-
tribution and show that the method is efficient if and only if the innovations exactly follow
that distribution. Later, ML method (Andrews et al.| (2006)) and rank-based estimation
(Andrews et al. (2007)) have been developed to improve the performance or relax the strin-
gent assumptions required for estimation.

However, all the aforementioned estimation techniques are confined to all-pass time series

!That is, an autoregressive moving average model where all of the roots of autoregressive polynomials are
the reciprocals of the roots of moving average polynomials
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models. As a result, of general AR processes, a two-step procedure is required to conduct
analysis based on the residuals sequences. First, fit a causal autoregrssion to the data by
Gaussian ML and obtain the residuals. Second, fit the residuals by a purely noncausal
all-pass model. In this approach, the validity of the second step depends on whether the
residuals from the first step is a white noise sequence but not independent. In addition,
the asymptotic analysis of the estimates remains open since the estimation is conducted on
the residuals rather than the raw data directly. More recently, Velasco and Lobato| (2018])
use information from higher order moments to identify general linear time series process,
but this method requires finite eighth moment of innovations to achieve the consistency of
estimates. Some more recent progress has been made by |Velasco| (2021) and |Cabello| (2021))
in the estimation in univariate and multivariate processes respectively by measuring inde-
pendence of innovations through the characteristic functions. All the literature shows that
more information on innovation serial independence beyond serial uncorrelation needs to be
exploited for the identification and estimation of possibly noncausal noninvertible processes.
In this paper, we construct a measure of pairwise independence of innovations based on cu-
mulative distribution function. The distance between the joint distribution function and the
product of marginal distribution functions is an indicator of independence of two random
variables. This intuitive measure was originally proposed by Hoeftding (1948)) and has been
extended to m-dimensional random vectors by Blum et al. (1961). |Skaug and Tjgstheim
(1993) and Delgado| (1996)) consider tests of first-order and p serial dependence in the time
series context grounded on this measure. Hong (1998) proposes a consistent test against
all pairwise dependence via empirical distribution function by taking all lags into account.
Throughout this paper, following [Hong (2000) we adopt a generalized spectral distribution
function based on the Fourier transformation of the measure to capture serial dependence.
In a similar fashion, Du and Escanciano (2015) construct a distribution free test based on
residuals for serial independence.

The loss function for estimating linear time series is constructed by an Lo distance between
the proposed measure of dependence in the unrestricted case and the conjectured one in the
restricted case aplied to empirical cumulative function. There are some appealing attributes
of our one-step estimation technique compared to other alternatives. First it achieves iden-
tification of the model without imposing causality and invertibility. Second, we only impose
regularity conditions on the distribution of the innovations without stringent conditions on
moments. Unlike other procedures using spectral densities, it does not involve subjective
choices of lag windows. Moreover, compared to the approach based on characteristic func-
tions, cumulative distribution function is more robust to outliers and more general in the
sense that it can be extended to many types of dependence, for example, 7-quantile inde-
pendence, conditional mean independence and pairwise independence.

The rest of paper is organized as follows. The second section introduces measure of pair-
wise independence based on the cumulative distribution function. Section 3 investigates the
identification of the model, consistency and asymptotic properties of the proposed estima-
tor under serial independence condition. Section 4 presents results from some Monte Carlo
experiments and discusses its finite sample performance. Section 5 illustrates the use of this

method by means of an empirical application. Finally, section 6 concludes and discusses
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Figure 1.1: Simulated processes from causal and noncausal AR (1) models

some possible extensions of our estimates in procedure.

2 Model estimation based on pairwise independence measure

Consider a time series model generated by

o0
YVi= Y pjuj, (2.1)

j=—00

where {u;}iez is a sequence of independent identically distributed (iid) innovations with
zero mean. Double-sided summation in the representation of infinite moving average
allows the model to be either noncausal or noninvertible. The stationarity of Y; is guaranteed
under conditions like ¢; being absolutely summable and E |u;| < co. The operator ¢ (6, L) =
2 oo @y (0) L7 with coefficients ¢;(6) and lag operator L defines the generation of Y; in
terms of parameter § € © C R?. Without loss of generality, we assume og(6) = 1 for any
0 cO.
A common example is an autogressive moving average process of order (p, q), abbreviated as
ARMA(p, q),

o (L)Y, = B(L)ut, (2.2)

where o (L) =1 — ?’:1 oszj is an autoregressive polynomial of order p and § (L) = 1 +
Zgzl Bj L7 is a moving average polynomial of order g. We allow the roots to both polynomials
to lie both inside and outside unit circle, while a(z) and 3(z) have no common zeroes. The
parameter of interest in is 0 = (a1,...,0p,B81,...,8) C {0 € RFFY . a(2)B(2) #
0 for all z € C such that |z| =1, # 0,8, # 0}. The restriction defined on the parameter
space guarantees the existence of the Laurent expansion of a~!(L)B(L), from which the
coefficients ¢; in the infinite moving average representation are determined.

The residuals evaluated at any value 6 are computed by
u(9) = =10, L)Y: = o~ (0, L) (00, L)us,
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where ¢(0, L) = 3272 ¢;(0 )L’. Evaluation of (6, L) at the true value of the parameter
allows to recover the sequence of innovations, i.e., ¢;(6p) = ¢; and u¢(6y) = u; when 6 = 6.
Prior to proceeding with the estimation method based on measure of independence of
residuals, we shall introduce some statistical notations to be used in the sequel. The
marginal distribution of u;(#) and joint distribution function of (u(6),u;—;(#)) are denoted
by Fp(x) = P (u(8) < x) and Fy j(z,y) = P (u(0) < x,u—;(0) < y), respectively. Let f(u)
be the probability density function (pdf) of us and f;(u,v) be the pdf of (us,ui—;). © is a
compact set containing the true parameter 6y and I(A) is the indicator function of event A
taking place. C'is a generic positive constant that may vary in different situations.

In order to capture the generic serial dependence of the residual sequence {u:(6)} without
imposing moment conditions at higher orders, we consider the distance between the joint
cumulative distribution function of any pair of residuals (u:(#),u:—;()) and the product of

marginal distribution functions at any given (z,y) € R?

09 (x,y) = Fyj(x,y) — Fop(x)Fy(y)

=E (I(ut(0) <) (ur—3(0) < y)) = E(I(ur(0) <)) E(I(u—;(0) <)), J=0,%1,...

(2.3)

which can also be interpreted as Cov ({(u¢(0) < x), I(u—;(#) < y)), namely, a generalization
of the standard covariance between u;(6) and u;—;(6) by applying an indicator transformation
on the random variables of interest. It is worth noting that oy _;(x,y) = 09 ;(y, x) for j > 1,

so that, without losing generality we can define our measure of dependence by

09,4 (x,y) = 055(x,y) for j =0,£1,+2,... V(z,y) € R*. (2.4)

If the dependence decays fast enough as j increases in the sense
o0

sup Z |0'9,j(33',y)| < 00,
(a},y)GRQ j=—00

we can define the generalized spectral density based on measure (2.4) at any frequency w in
[—7, 7] with i = /-1, by

hg(x,y;w) =5 U@,j(xay)ei , wE [—71',71']-

and the associated generalized spectral distribution function by

AT
Hy(z,y; \) =2 ho(z,y; )dw—ago(a:y)\—i—QZUgjxy)
7j=1

sin jﬂ')\

Aef0,1]. (2.5)

The same approach has been applied to test the hypothesis of serial independence against all
possible pairwise dependence alternatives in|Hong (2000). Some statistics exploiting the same
distributional information have been developed by either replacing (z,y) with corresponding

quantiles or by defining covariance based on copulas associated with any pair of random
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variables of interest. The latter procedure has been used to characterize nonlinear sequential
dependence that cannot be fully captured by correlations of higher order moments in [Lee
and Rao| (2011)), Kley et al. (2016]) and [Hagemann| (2011)).

Under the independent structure on (),

1
h@(.T, yaw) = %0-9,0(:1:73/) V(flf,y) € R2 (26)

at any frequency w since oy j(z,y) = 0 for all j # 0 and any given pair (z,y) € R? , where

op0(z,y) = Fy (x Ny) — Fo(x)Fy(y) = Fp (z ANy) (1 — Fy (zV y)).
Moreover, the associated generalized spectral distribution function becomes

Hy(z,y; \) = ogo(x,y)A, Ae[0,1]. (2.7)

3 Model estimation under serial independence

In this section, we study the identification of general linear time series models and investi-
gate the asymptotic properties of the proposed estimate based on the generalized spectral

distribution function introduced in Section 2.

3.1 Model identification under serial independence

In this paper, the criterion we adopt to identify the parameter 6 in the model is based on
the quadratic distance between the generalized spectral distribution function Hy(z,y; \) of
residuals u: () and the counterpart under iid-ness.

Given any 6 € ©, the residuals u(#) are computed by
u(0) = (0, L)p(0o, Lyur = 6(0, L)uy

where the linear filter ¢(6, L) plays a crucial role in the dependence of sequence of u (). If
uy follows non-Gaussian distribution, u(#) will be serially dependent as long as ¢(6, L) # 1.
The conventional methods based on second-order moments fail to discriminate noncausal and
noninvertible process from causal and invertible counterparts, as this linear filter can generate
uncorrelated but not independent sequences like all-pass models, see e.g. Breidt et al.[ (2001)).
In the Gaussian probabilistic structure, being uncorrelated implies independence. Therefore,
in order to achieve identification we need to impose following assumption to rule out this
possibility.

Assumption 1. 1. Given a compact ©, for any 0 # 0y, $(0,2) # agz’® for any jo and

some nonzero constant ay in a subset of positive measure of C such that |z| = 1.

2. If |6(0,2)]> = 1 a.e. for z € C such that |z| = 1 for some 0 # 0y, then u; is non-

Gaussian.

Assumption [I]1 guarantees that the true innovation sequence can be only recovered at 6.

Assumption [I}2 controls for the special case when the innovation is Gaussian and the residual
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sequence permits non-unique serially independent solutions. If such a linear filter generating
an uncorrelated sequence exists with ¢(, z) # 1, we have to impose non-Gaussianity on the

innovation.

Assumption 2. For compact © and pg > 1,
-1 (- .
sup 0;(0) +sup |}~V (0)] < Cljl o, = 41,42,
0cO 0cO

We bound coefficients in the filter ¢(6, L) uniformly in 6 in order to make it summable in
absolute value. Together with E |us| < oo this assumption ensures that any residual sequence
determined by 6 is stationary. Further it allows us to analyze some statistical properties of

u¢(#) which are time invariant.

Given Assumption |1}, when 6 # 60y, u.(6) is not pairwise independent if u; follows non-
Gaussian distribution. oy ;(z,y) # 0 for some j # 0 and (z,y) € R? since F (u¢(0) < 2, u—;(0) < y)
cannot be factorized into a product of two marginal probabilities. In order to exploit all in-
formation contained in the distribution of u:(#), the Lo distance defined on the generalized
spectral distribution function is aggregated over (z,y) and frequency A in Cramér-von Mises

criterion,

Qo (0) ==L? (Hy(x,y; \), Hy(z,y; )
2

1 sin jm\
- 2 () 22T AW (e,
/Rz/o j;a@”(x N5, (@9) (3.1)

> 1
:2/ o2 (x,y) ——=dW (z,y),
R2 Jz::l 9,]( y) (]W)Q ( y)

where the last equality comes immediately from Parseval’s identity and for any weighting

function W which satisfies the following condition.

Assumption 3. W(x,y) = W(x)W (y) where W is a probability distribution defined on R,

continuous and strictly increasing.

The unboundedness of the support of W is required for the full characterization of pair-
wise independence of (u¢(f),u;—;(6)) at any j. The continuous weighting function rules out
the special case in which og j(x,y) # 0 but Qy(#) = 0, see |Hoeflding (1948). The factoriza-
tion of weighting functions is to simplify the subsequent analysis of estimates based on this
population function without sacrificing any power of detecting pairwise dependence. Under
Assumption ut being iid with zero mean and E |us| < oo,

Qo(6) > 0 when 6 # 6

due to some non-degenerated term 03 j(x, y). By Weierstrass theorem, the continuous non-
negative function Qo(f) admits its minimum at 0 in the compact set ©. Assumption

ensures that the minimum can be only attained when 6 = 6y. Thus, the identification of the



parameter 6y in © is achieved.

It is worth noting that population distance function can be interpreted as an infinite
weighted sum of pairwise dependence measure [po ag’ j (z,y)dW (z,y), which is a generaliza-
tion of test statistic proposed by Skaug and Tjgstheim| (1993) by replacing joint distribution
Fy j(x,y) by any function satisfying Assumption [3| as a weighting function. The summand
is down weighted for higher order lags by the factor (jm)~2. An equivalent criterion can be

constructed by replacing general covariance by copula covariance defined as
Ugjj(ul,'lm) = Cov (I (Ut<9) S u, Ut_j(ﬁ) S UQ))

where Uy(0) is the cumulative distribution function of u.(f) and (ui,ug) is defined in the
interval [0,1]. The copula covariance is invariant to monotonic transformations and free of
subjective choice in the weighting functions. However the effect of estimating U, () is not

trivial in the asymptotic analysis.

3.2 Asymptotic properties of estimates under serial independence

In this section, we investigate the asymptotic properties of the estimates based on the sample
counterpart of population distance function Qy(#) using residuals. In practice, since we only
observe T finite samples, the computed residuals are approximated by a truncation in infinite

moving average representation,
:(0) = o (0, L)Y, I{1 <t < T}

where the information lost from the part

t—T-—1
o7(0) =: us(0) — (8 Zsoj Do)+ Y @ 0) | viey

j==o0

can be shown to be asymptotically negligible as Assumption [2] guarantees that coefficients

(-1

®; )(9) decay at a sufficient rate when j — oo uniformly in 6. Based on the sequence of

residuals 1:(6) for any €, the sample loss function can be constructed as

T-1 .
0) =2 ]Zl (1 _ %) (ji)? /RQ 62 5(z, y)dW (z, ) (3.2)

where
T
G0,5(2,y) T Z < @)1 (—;(0) < y)— T Z I(a(0) <) Y I(t—3(0) <y)
J = t=j+1 t=j+1

and (1 — %) is a finite sample correction. Compared to the distance criterion defined on the
generalized spectral density function h(x,y; \), this criterion has the appealing advantage of

avoiding any subjective choice of smoothing functions which can be a delicate issue in finite

8



samples. The proposed estimator of 6; is defined as the minimum of QT(H)

07 = argmin Op(6)
0cO
A deeper analysis on the dependence of residual process is required prior to the analysis on
the estimates. Assumption [2] plus the condition of u; having a continuous pdf guarantee
the mixing condition of process if the moving average representation of u(f) is one-sided,
i.e. purely causal or noncausal, or contains only finite lags and leads. The problem stays
unclear when we allow for two sided infinite summation. Nevertheless, we are able to draw
a uniform bound for the generalized covariance at any j € Z under the following extra

smoothness condition on the distribution of w;.

Assumption 4. The innovation uy admits a density f(u) with the first order derivative
FO(u) that is Lebesgue integrable and has a'® order bounded moment, i.e. [g ‘f(l)(u)‘ du <

oo and [ uaf(l)(u)’du < 00.

Lemma 3.1. Assume u; is iid, mean zero, E |us| < oo, satisfying Assumption with a =1,

then, under Assumption[3, we have
|o9,5(z, y)| < Cji7He

uniformly in (z,y) € R? and 6 € ©, for pg > 1 and C < oo

Lemma [3.1] provides the geometric decay of the covariance at any percentiles in the distri-
bution of residuals in a similar fashion as mixing condition. The condition on the derivative
of density can be regarded as a slightly stronger version of uniformly boundedness of f(u)

and E |u| < 0o to contain the "thickness” of the tail of the distributions.

The uniform convergence of the estimator is shown by the Theorem 2.1 in |[Newey| (1991)
given that our loss function is not differentiable. The stochastic equicontinuity of Qt(a) can
be deduced from the following Lemma, [3.2] and Assumption

Lemma 3.2. Assume uy is iid, mean zero, & (w)2 < 00, satisfying Assumption with a = 2,
under Assumption[3, for 6 € ©,

) 9 j j2—H0 lnT
ElE, . N <C(1IN—— C ¢
B i) — Fala,y)| < ( T_j)+ T—; P @y

uniformly in (z,y), for up >1 and C < oo, j =1,2,...

Assumption 5. The filter ¢(6; z) is differentiable with the first order derivative ¢V (6; z) =
%qb_l(e; z) =y ¢§-1)(9)zj such that there exists a pp > 1,

j=—o0

1 - .
sup||of(0)|| < CliI ™, j= 41,42,
fco
Assumption 5| imposes further restrictions on the smoothness of the linear filter ¢;(0)

to achieve uniform boundedness of the derivative of the expectation of empirical cdf which
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plays a crucial role in achieving stochastic equicontinuity and consistency. Then, the follow-

ing theorem provides us the consistency.

Theorem 3.3. Assume {u;} is iid with zero mean and B (u;)* < oo and satisfies Assumption
[Awitha =2, 0y € O, po > 3, u1 > 1, Under Assumptions[1{3 and Assumption[d, as T — oo,

éT —p 90.

In the investigation of asymptotic normality of the estimates based on the sample coun-
terpart of population function. The non-differentiability of indicator function does not enable
us to derive the asymptotic distribution based on the linear expansion of the score around
the true value. Neither we can adapt the method in quantile regression to this estimate as
the function is not convex. Therefore, we first approximate the indicator function with a
smoothed cumulative distribution function A(u) with positive and uniformly bounded pdf
A(u) together by means of a smoothing parameter h such that
z

A(h

) = I(z>0) for |z] >0 when h — 0
The positiveness of pdf A(u) ensures no loss of information in the transformation procedure.
The new smoothed loss function is obtained by replacing the indicator function with the

smoothed cdf in the original formula,

_ ' B T-1 ] 1 Ly '
QT (Ha h) - 2]2221 <1 - T> (j?T)2 /R2 UQ,j(:Evyv h)dW(‘/L’ay)a

where
Go,j(z,y;h) = Fyj (x,y; h) — Fp j (z, 00y h) Fy j (00,y; h)

- 1 < — (8 — diy— (0
Fe,j(w,y;h):Ti_j A<$ st( ))A<y u;zj( )>.
t=j+1

The corresponding estimator from the smoothed version is defined by

6% = argmin Q7 (0 h) .
0O
We start with the simple case when £ is fixed and positive. The identification of the parameter
in the model is fulfilled for any given i > 0 as A(5) is a transformation from the class that
is totally revealing, see Stinchcombe and White (1998)).

Theorem 3.4. Let {u;} be iid with zero mean, E|u| < 00,0p € ©, and A be a strictly

increasing cdf defined on unbounded support with density A uniformly bounded by C, po >
3,1 > 1, under Assumptions and[d, as T — oo,

ér_}ﬁ —p Oy for any fixed h > 0

The proof of the consistency for é% given any fixed positive h is similar to the consis-
10



tency theorem in [Velasco| (2021)) by replacing the characteristic function with our proposed
smoothed cdf A. The choice of smoothing parameter h does not affect consistency. Before an-
alyzing the asymptotic distribution of 5%, it is useful to define following variables to simplify

the notations,

o= [ (A (55") - @) ) W) (a)
= [ (8 (55) - @) ) u @) aw )
B =Y o060,
=17
Vi =Y ol oo,
=17

where

o'(z) :=F <A (:1: ;W)) MN(z) = %E ()\ (x _hut)> p(z) :=E (utA <g3 _hut>> .

As described above, {e}'}, {v}'} are iid sequences with mean zero with their corresponding

variance {ag;h,ag;h} and covariance azy;h. Likewise, {efV/ |}, {v}E} |} are martingale

difference sequences conditional on the o—field generated by {u;—;,j > 1} set.

o0

Soa =37 %00 (00)6 (00)  Th. =3 5260 00)0) (8

Jj=1 J=1

and E[TM = Z;ilj_%qb;l)(@o)gbg} (6g) for a =1,2.

Hyp = (EOQ + 23,2) a?;mih + (E(T),z + E(T)/,z) Ugu;h
Hop = (EOJ + Z8,1) plos + (E(T)J + Z(Jg/,l) (P}f2)2,

where

o= [ (w"@) W) ph= [ (V@) aWi@) oy = [ W@ @)W (@)

Finally, two further assumptions need to be used for asymptotic normality.

Assumption 6. The filter $(0) = 3252 ¢;(0) with three derivatives ) (0) satisfies fol-
lowing condition:

Slelg Hqﬁga) (G)H < Cj|™" with ng > 1

for a=1,2,3 and C.

Assumption 7. 1. The smoothed cumulative distribution function A(u) admits uniformly
bounded positive probability density function A\(u) with differentiable first order and sec-

ond order derivatives A(u) and A(u) uniformly bounded by some constants C.

2. Hy, is positive definite.
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Stronger conditions on smoothness of linear filter ¢(0;z) and cdf A are imposed for the
analysis of the score and Hessian matrix of Qp(6; k). Finite third order moment of innova-
tions and uniform boundedness of density function A together with its higher order derivatives
are necessary for the convergence of the aforementioned score and Hessian matrix. Assump-

tion [7]2 ensures the components of covariance-variance matrix is invertible.

Theorem 3.5. Let {u:} be iid with zero mean, E|ut|3 < oo and, po >3, u1 > 1,00 € O,
Under Assumptions I3 and [G]7, as T — oo,

T2 (0~ 00) —+a N (0, Hy  Hy oy Hy L)

Now we set h arbitrarily close to zero to numerically approximate the asymptotic distri-
bution of the original estimator based on the indicator transformation of the residuals.
As h — 0,
Pl(x) = Fz), A'(z) = f(z),

and p(z) — p(x) = E (wd (uy < 2)). The asymptotic variance becomes

Hy = (20,2 + 23,2) oloy + (E(T),z + Eg,z) a2,

Hy = (20,1 + E3,1) pip2 + (28,1 + EJ{S/J) (p12)?,

with {oe, 04, 0cv, p1, p2, p12} being the limits of {oe.h, 00k, Tersn, o, pB, phy} when h — 0.
The identification of this model is still valid under the same structure as h goes to zero. This

immediately follows from

Qo(0; h) = Qo(6) + O(h?).

Some extra care need to be taken on the smoothing parameter h to preserve the classical
rate T7/2 in the application of CLT. In effect, the rate of convergence of %69,3'(:& y; h) needs

to be controlled unchanged as h — 0. From the bias square and variance

o (it i),

0 . 0
E H(%O-Go,j(xv Y; h‘) - %090,]’(%‘7 y)

it can be concluded that h has to go to zero but not faster than 7! to guarantee the
approximation effect is asymptotically negligible. The other restriction comes from the non-

centering error

" ()" (y) = F(2)F(y) + O(h?).

This bias must be o(T~1/2) to be negligible in the asymptotic distribution. Hence, h cannot
go to zero too slowly, implying that h = o(Tfl/ 4). Induced from preceding assumption for

fixed h, we propose following conditions for the limiting behavior of 5% as h — 0.

Assumption 8. 1. The innovation {u;} admits uniformly bounded probability density
function f(u) with differentiable derivatives f\®(u) of order a uniformly bounded by

some constants C for a =1,2.
2. Hy is positive definite.
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Theorem 3.6. Under Assumptions and Assumptions @-@ {u} did with zero mean,
E\utlg <00,00€0, up >3, 41 >1,asT — oco,h — 0

T2 (0%~ 09) —p N (0, Hy ' Hy Hy ')

Theorem [3.6] states the asymptotic distribution of the estimates based on the smoothed
cdf when A approaches the indicator function as T' — oo. It can numerically represent the
asymptotic behavior of 1 obtained from the sample loss function based on the empirical
cdf .

The asymptotic variance in the causal and invertible models can be simplified to
K¥01%50.2501

2

with k = 0202(p1p2) 2 since some components like %0,q and 287 ., are degenerated fora = 1, 2.

The potential gain in the efficiency of the estimates can reach £ (1) by replacing spectral cdf

2

with spectral pdf in the loss function, in which the natural down weights j~“ on the higher

lags are not imposed. It can be shown ¥ %20,22& i - (1) is positive semidefinite.
Remark.

Boldin et al.| (1997) introduce a sign-based estimation method of causal AR models where

the information is exploited from the generalized autocovariance
E (sgn (uy(0)) sgn (us—;(0))) = E((21 (ue(0) > 0) = 1) (21 (us—;(0) > 0) — 1))

at any lag j > 1 with condition that F'(0) = 1/2. The proposed approach in this paper could
be regarded as an extension of sign-based estimator in the sense it takes into account all the

percentiles of the distribution by replacing (0,0) by any (z,y) € R?

- E (sgn (us(9), x) sgn (ui—;(8),y)) dW (z, y),

where
sgn (ug(0), z) = 21 (u(0) > ) — 2 (1 — Fy(x))
= =21 (uw(0) < x) + Fy(x),
and replacing the weighting factor on higher lags by exponential terms arising from the

derivative of the population generalized covariance. Uniform analysis can be carried out on

the basis of this adaptation.

3.3 Standard error calculation

Generally there is no closed-form expression of integration in the variance, i.e. Hy and H;.
We propose to estimate the components in asymptotic variance directly for the sake of time-

saving in comparison with bootstrap method. Following the definitions of e; and 14, they

13



can be replaced by their sample counterparts:

where

t=1
R F(x) — F(a/
flx) = :U—,(a: for a properly chosen sequence of x
x—x
1 & (2 —a(br)
or = — Z A | ————= | for a sufficiently small h and smooth density A
Th = h
| AR R
fle) = = > ()1 (@(0r) < z).
t=1

The estimation of the density function can be also computed by any consistent kernel density.
We use numerical integration algorithm to calculate the integration with smoothed weighting
function W(x). Alternatively, one can choose the empirical cdf as weighting function to

replace integration by averages at data points,

where {62,62,62,} are the sample element of covariance-variance matrix of (&;,7;). The
estimates of {p1, pa, p12} involve numerical integration of {(fi(z))?, (f(x))2 () f(z)} with
respect to x over a chosen W (x). The derivative of the linear filter can be obtained from the
model once the order is determined and {2, Zaa, Zg,a}a=1,2 are estimated by plugging 9T

in the corresponding expressions.

4 Simulation

In this section we carry out some Monte Carlo simulations to investigate finite sample prop-
erties of the proposed estimates with different innovation distributions and sample sizes.
Recall that the method works regardless of subjective choice of weighting function W, but in
practice it can be affected by scaling. The indicator in the loss function is scale-free but the
weights imposed on 6y j(x,y) could differ before and after rescaling the residuals u(#). For
example, if W is set as standard normal distribution, residuals us(f) whose values lie outside
interval (—3,3) will be assigned very trivial weights as a result of 3-¢ rule of thumb. In
this case, the estimates would lose efficiency since they do not fully exploit the information

contained in the extremes (tails) of the residuals. To overcome this issue, we propose two

14



approaches.

In the first one we standardize the residuals by dividing the original sequence by its standard

i (6) = wl)
¢ +X0 (w(0) - u(®))

where u(0) is the sample mean of the residual sequence. The standard normal distribution

deviation

is chosen to be W (Logistic distribution can also be a good candidate and it does not
make much difference compared with Gaussian distribution). The detailed calculation of
the loss function in finite samples can be found in the Appendix. It can be shown that this
standardization does not change the asymptotic properties of the proposed estimator. The
second approach relies on fitting the weighting functions using the empirical distribution
functions of residuals which play a role as an automatic rescaling scheme for each sequence
of residuals respectively. The loss function can be simplified to

1 T

T-1 ] T
2y (1_T) S S67 5 (us(6), ().
7j=1

(Jﬂ—) s=1t=1

Both approaches allow to avoid numerical integration and subjective choice of rescaling pa-
rameter.

In the first experiment, we consider AR(1) processes with iid innovations generated by uni-
form distribution Uj_j 5, t-distribution ¢3 and centered chi-square distribution x5. These
choices of innovations basically cover various distributions with symmetry and asymmetry
(k3 = 0,0 and \/g), bounded and heavy-tailed property (k4 = —g, oo and %) We try sam-
ple sizes T=100 and 200. The parameter in AR(1) models are 0.4 (0.471) and 0.9 (0.971)
in the causal (noncausal) cases. The simulation results over 100 replications are reported in
Table which includes percentage of correct root identification in 100 replications (PCI),
bias of the estimates (Bias) and mean square errors (MSE) given the sample size, distribution
of innovations and true parameters of AR(1) models in both approaches.

As can be observed, when the innovation has either heavy tail or asymmetry, our proposed
method works better. That indicates we gain more information from skewness and kurtosis.
This result coincides with the estimation technique proposed by Velasco and Lobato (2018)
exploiting information from higher order moments. The percentage of correct root identifi-
cation increases and MSE of estimates decreases as the sample size increases. Generally both
approaches either using standardization or weighting by empirical cdf work well. In the case
of t3 and x5, the approach by standard normal cdf outperforms the one by empirical cdf but
in the other way around when the innovation follows uniform distribution. Hence, we suggest
the approach based on standard normal cdf in the empirical example as long as there is no
strong evidence of the processes being generated by a uniform distributed innovation. We
also report the results of estimation when the true parameter is close to unity. As expected,
it can be more difficult to discriminate the location of the root from being outside or inside
the unit circle since they are similar in magnitude.

In the second experiment we estimate an AR(2) process generated by centered x5 in-

2k5 is skewness and k4 is kurtosis.
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novations. In this simulation, we look into the identification of causality and noncausality
since it can have different combinations of causality and noncausality when the order of
autoregression is greater than 1, such as mixed causal and noncausal processes discussed
in Hecq et al. (2016). We pick p1 = 0.4 and 6y = 0.8 as two parameters of polynomial
(1—=6p1L)(1—6p2L) in the causal case and we construct other three types of processes. The
sample size varies from 100 to 200 and the replication is 100. The results are displayed in
Table [2| In this simple setup we have four types of processes in terms of causality: two are
mixed causal and noncausal AR(2), one is purely causal AR(2) and the other one is purely
noncausal AR(2). So far we only discuss about identification of number of noncausal roots
included in the process. Hence within the group of mixed causal-noncausal models, we are
unable to discriminate them but it may be feasible after we develop confidence interval of
the estimates. The first row in the Table reports the percentage of correct identification of
number of noncausal roots in the process and the second row presents us the percentage of
identification which detects the existence of noncausality. As shown in the result, we can ob-
serve that the proposed method works better in the processes with noncausality than causal
case. In the purely casual case, it tends to work less satisfactorily in a relative small sample
like T=100 but the proportion of correct identification is greatly improved when the sample

size increases to 200.

5 Empirical application

In this section we apply our method to analyze 753 daily trading volume of Microsoft (MSFT)
stock from 6/3/1996 to 5/26/1999. Breidt et al.| (2001)) has argued that a noncausal AR(1)
model fits the data better than a causal AR (1) model by the diagnostics of residuals computed
from both model respectively. We remove the heteroskedasticity and drift by taking the
logarithm and demeaning the sequence (see fig.??). The ADF test indicates rejection of
existence of unit root in the resulting sequence. The partial autocorrelation of the sequence
suggests that AR model with order 1,2 or 3 are appropriate (see fig.??). Here we fit the
data by an AR process of order 1 as the correlation at lags 2,3 are close to insignificant. The

proposed method yields result
g =Y, — 1.7953Y;

By factorizing the AR(1) polynomial, we find the noncausal root in this sequence. The
stationary solution would be Y; = (1.7953)_1Yt+1 + uz. In another word, the investment
in this stock is more influenced by the forward-looking behavior of agents. The clustering
phenomenon in the process can be explained as a result of foresight of uncertainty of stock
market held by investors. Intuitively, the perception of a more volatile market environment
in the future would lead to more variant investment strategies of agents of different types.
Instead of fitting the date with AR-ARCH model, with noncausal AR(1) model we can
avoid estimating more parameters. It also matches the result by Breidt et al. (2001) that
noncausal processes can mimic ARCH-type behavior. Here we plot autocorrelation function

(ACF) of squared value of residuals {@?} and {7} from causal model using Gaussian MLE
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(i = Y;—0.5854Y;_1) and noncausal model using our approach respectively. The upper part
of the Figure[6.2] displays a clear correlation in the residuals from causal AR(1) model at first
lag, indicating ARCH would be an appropriate alternative to characterize the residuals as we
observe significant correlation of the residuals at the first lag both in absolute and squared
value. The lower part of the Figurel6.2] shows residuals generated from noncausal model
does not show evident sign of correlation on variance of the residuals. Apart from volatility
clustering behaviour, noncausal autoregression can also characterize the dependence between
different percentiles that conventional GARCH models cannot explain. These nonlinear
dynamics observed in Microsoft stock data may be linked to ”informational heterogeneity”

of investors in the financial market.

5.1 Another application on bubbles

6 Discussion: Measure of dependence under martingale dif-

ference sequence

The assumption on the innovation used to generate data process can be relaxed to martin-
gale difference sequence(mds), which is more commonly observed in empirical data. It can
broaden the class of time series including conditional heteroskedasticity(ARCH).

Denote the o-field generated by the past sequence of u; by I;_1 = o (u4—1,us—2,...). By the

definition of mds, we obtain
E (ut’-[t—l) =K (ut|a (Ut_l, Ut—92y -+ )) =0

By theorem in Bierens (1982)), this infinite dimensional conditional restriction can be ex-
pressed equivalently as
E (utem“t*j) =0forj>1 VzxeR

The exponential function can be replaced by indicator function I(-) or any other parametric
family considered in |Escanciano| (2006]). Here we choose indicator function to be consistent
with the notation introduced throughout this paper and also its simplicity in computation.

We define the following measure of dependence
Yo,5(x) = E (us(0)I(us—;(0) <)) for j > 1,Vr € R

and g j(w) = 7p,;/(z) for j < 0. The corresponding spectral density and distribution based

on this measure are
1 .
dolw;w) == 3 7(@)e™ ), we [-m 7,
j=—00

Dy(x;A) =y0,0(x)A +2 ) 70,5(2)
=1

sin jwA

A€ [0,1].

Following the same approach in iid case, the population loss function is constructed by a

Lo distance of the generalized cdf in the unrestricted case and the conjectured one in the
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restricted case

QF™*(9) : = L? (Dy(a; A), D (23 1))

> 1
2 jzzlyg,j(x) G (@)

The study on the identification and estimation of the model is left to further research.
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Table 1: Comparison of estimates using empirical cdf and standard normal cdf under different distributions of
innovations: study in AR(1) case

W: empirical cdf standard normal cdf

Uy T 6o: 0.4 0.4 T 0.9 0.97T 0.4 0.47 T 0.9 09T
U_sz 100 PCI 67.00% 84.00% 53.00% 54.00% 62.00% 77.00% 45.00% 41.00%
Bias -0.0148 0.3112 -0.0254 0.0421 -0.0211  0.5532 -0.0405 0.0598

MSE 0.0092 0.5532 0.0067 0.0146 0.0122 0.09017 0.0076 0.0177

200 PCI 87.00% 86.00% 64.00% 63.00% 82.00% 78.00% 50.00% 54.00%

Bias -0.0101  0.0507 -0.0130 0.0155 -0.0169  0.0964 -0.0203 0.0206

MSE 0.0046  0.2240  0.0031  0.0047 0.0054  0.3443  0.0037  0.0049

ts 100 PCI 60.00% 69.00% 69.00% 57.00% 81.00% 86.00% 75.00% 72.00%
Bias -0.0089 0.1421 -0.0079 0.0170 -0.0145 0.0792 -0.0162 0.0257

MSE 0.0131  0.4052 0.0036  0.0079 0.0102  0.2954  0.0035 0.0075

200 PCI 76.00% 75.00% 63.00% 59.00% 90.00% 84.00% 71.00% 76.00%

Bias -0.0105 0.1740 0.0121  0.0053 -0.0087 0.1285 0.0023  0.0162

MSE 0.0037 0.2849 0.0026  0.0043 0.0034  0.2090  0.0024  0.0040

x5 —5 100 PCI 94.00% 94.00% 71.00% 69.00% 94.00% 93.00% 78.00% 73.00%
Bias -0.0035 0.1921 -0.0372 0.0550 -0.0062 0.2085 -0.0377 0.0699

MSE 0.0078 0.6751 0.0062 0.0149 0.0071  0.6660  0.0063 0.0181

200 PCI 99.00% 98.00% 80.00% 76.00% 99.00% 99.00% 81.00% 77.00%

Bias -0.0101 0.1082 0.0060 0.0134 -0.0085 0.1674  0.0034  0.0025

MSE 0.0045 0.2281 0.0032  0.0041 0.0045 0.3838  0.0031 0.0043

PCI: percentage of correct root identification using our method
Bias: computed by Er(67) — 6
MSE (mean squared error): computed by sum of Var(fr)and Bias?

Table 2: Estimates of AR(2) generated by innovations following x5 — 5

X*(5) =5
T= 100 T= 200
6: (04,08) (045,087 (04 1,08) (04087) (04,08 (045,087 (04 508) (0.4,087)
PCI 59.00% 81.00% 84.00% 85.00% | 80.00% 94.00% 95.00% 90.00%
PN 41.00% 95.00% 96.00% 85.00% | 20.00% 100.00% 98.00% 99.00%

PCI: percentage of correct root identification including the number of roots lying inside unit circle
PN: percentage of detecting existence of noncausality in the process. 1.e. There is at least one root lying inside unit
circle.
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Sample Partial Autocorrelation

Volume of MSFT stock after transformation
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Figure 6.1: Microsoft daily trading volume from 6/3/1993 to 5/26/1999
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1Samp'rhﬂ.- autocorrelation function of squared residuals from causal AR(1)
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Figure 6.2: Diagnostics of residuals from both causal and non-causal models: a comparison in ACF

of residuals in squared values
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7 Appendix: Proofs

7.1 Proof to Lemma [3.1]

Define
Fy(w) = E (Fy;(z,00)) = E(I (w(0) < 2)) = E (F (z - u{"(0)))

where ¢g(f) =1 for all 6 € O,
w(@) = 3 6;Ouy, u(0) =u(0) —u =3 ¢;(0)ur;.
j=—00 J#0

For any j > 0,

(I (ut <x- ugo)(a)) I <¢—j(9)ut <y-— u,t?(G)))
(1 (w+ djuy <2 —u?(O) I (65O +uy <y — w7
I (Z +¢j(0)w < x — ugo’j)(ﬂ)) I (qﬁ,j(e)z +w<y-— ui(i’j’j)(@)

9))
/ ) #(:)fw)dzdu)
/I (u <x- ugo’j)(ﬁ)) I (U <y-— ul(f(i’j_j)(e)> fq(gq))(u,v)dudv>

=E(FY) (z = u®™(0),y —u779)))

where the last second equality comes from the change of variables

<u>:< z+ ¢j(O)w ) <Z>: 1 ( u—¢;(0)v )
v p_i(0)z+w )’ w 1—=¢;(0)0—3(0) \ v—9_;(O)u )

The Jacobian equals

1
(1= ¢;(0)¢—;(6))*

1 —;(0)
—¢—;(0) 1

_ 1=9i(0)0(0)] _ 1 >0

(1= 6,(8)0—;(6)°  1—;(0)95(0)

For sufficiently large j, |px(0)¢_(0)] < 1 for all k¥ > j and for relatively small j, there is
always a compact set of 6 € © such that |¢;(0)¢p_;(6)] < 1 since ¢;(0) is zero at the true

parameter value for j # 0.
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By applying Mean Value Theorem on f, we can get

1 f< 0;(6)v >f< G
=600 \T= 0,00 ) T\ T=0,000-,0)

- 00000 1 (5 ) 1 (7 )

= J(00) (140 (65(0)6-

(9)))

o u—¢;(0)v ' ¢ (B)un

O( ¢—J(9)f<1¢j(0)¢j(9)> f<1¢3(9)¢ i(0) ))
v, v —¢_ju (w0 (0)vn

+O< ¢J(9)f<1—¢j(9>¢jw))f(l—WW’ i) >>

for n € (0,1). Under Assumption {4 with a = 1,

Fi)(u,v) =

F)(a,y) = F(2)F(y) + 0 (6;(0) + ¢—5(6))

uniformly in (z,y) € R2.

Before proceeding to next step, we define trucated versions of ug%)(e) and ug(l)j,m(ﬁ) for

some j/2 < m < j.

u"7(0) =ul% (0) + %7 (6)
u®(0) =u”, . (0) + 2, . (0)

where

W00 = u®O) = S Gu@ur

k=—m

and for each # € © and pp > 1,

o) —m—1
S0 \<E|ut|( S e+ Y rqbk(e)r) < C(m+1)! 70 < cjt

k=m+1 k=—00

Using this representation,

E

E 0) F (y—u277(0)) + 0 (6;(0) + 6-,(9)))

E 0) F (y—u2;200))) + mE[els OF (y - w7 (0))]
+ B |2 OV F (z = u(0)) |+ 0 (¢;(0) + 6-5(8)  where n,m € (0,1)
E 0) F (y— w25 20))) +0G* )

E 0))E(F (y—u2;20))) + 0 ")
E (

(F(y=u27®)) + 00" )
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The second equality follows immediately from the application of MVT and the fourth one
comes from independence after designed truncation on the residuals. The last second equality
in induced from redoing truncation and filling the gaps at lag j and leads —j. Therefore, we

conclude uniformly in 6 and (x,y) € R?
|70, (z, )| < O(3'7H)

7.2 Proof to Lemma [3.2

To analyze the varaince of 6y j(x,y), we start with the joint moment of 4 indicators involved
in the computation in a similar manner with Lemma [3.1]
Assume t >/, j>0and t —t' >2j,s0t—t' —j > (t —t') /2,

E (1 (up—j(0) < 9) T (up(8) < 2) 1 (u—j(6) < 9) I (ue(6) < )
I (214 6-(0)22 4+ G20z + bus5(0)z <y — ;7 0(0))
/ T(03(0)21 + 22+ Guats Oz + dua(B)ea < & =P 0O)) () () f (20) 20
[(g-v(0)21 + $rv—(0)2 + 23 + 6 5(0)za <y — w277 (0)) dzydzodzsdzy
I(é1-45(0)21 + 61 (0)22 + 6 (0) 2 + 24 < w — w47 g))
<y — 0 A —t—jt' —t) < g g (0t —t5t =)
=E / j EZ; ; z B ZEO jat t'—jt— ”EZB _1,. Ezz ; z _ ZEOJ’”’“?“”EZB ) fu(u)du>

_ (Fu (y . UE/O ‘]t —t—j,t'—t) (9)7 T — u§0,j,t/7t+j,t’7t) (0)7 y— UEOJ Git—t' —jt—t )(0), r— ugO,j,tftUrj,tft/) (9))>

j
where
Uy 21+ ¢ j(0)z2 + dp—1(0)23 + dpr—i—;(0) 24
ue | v | $;(0)z1 + 22 + dr—145(0) 23 + dpr—1(0) 24
us3 e (0)21 + Gr—p—(0)22 + 23 + d_;(0) 24
(N Gt 4(0)21 + v (0)22 + ¢j(0)23 + 24
1 ¢—;(0) bp—t(0)  Py_i—;(0) 21
_ #;(0) 1 brr—145(0)  dr—1(0) 22
v (0)  Prv—j(0) 1 ¢—;(0) 23
Geyv15(0)  Pr—p(0) ¢;(0) 1 24
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and

1 ¢—;(0) v —i(0)  dy—i—5(0)
®;(0) 1 Gr—145(0)  dr—1(0)
¢t7t’(0) ¢t7t’fj(9) 1 ¢—j(9)
Grv+5(0)  Pr—v(0) ;(0) 1
0 0
(o 0)
1 6

( 1 ¢j(9))1
_ o;(0) 1

(o) (")
00 9;(0) 1

(1+ 0 (¢r—v(0) + dv—1(9)))

1 —0;(0) 0 0
_ 1 —¢_;(0) 1 0 0 , |
1-0,09-50) | 0 0 L gy | LTO GO+ 00,
0 0 —¢(0) 1
Hence the Jacobian is
1

0 orr @ ey & T O Ger )+ 0r-i(0)))

and by applying MVT to the argument of each f in the linear mappings z, = z4(u),a =
1,2,3,4, and only keeping components involved with 1, ¢;(6), —;(0),

fu(w)

_ 1 2f< up — Pjug >f< —pjur + ug )f( uz — Pjus >f< —juz +ug
(1—9;(0)¢—;(0)) 1—¢;(0)o—;(6) 1—¢;(0)o—;(0) 1 —¢;(0)o—;(6) 1—¢;(0)o—;(0),
X (1+ 0 (¢r—v/(0) + dr—1(0))) + g(w)O (¢r—v () + dr—1(0))

=f12 (u1,u2) f3a (ug, ua) (1 + O (¢r—v (0) + dpr—1(0))) + g(w)O (Dt (0) + dr—+(6))

where

_ 1 Uy — ¢jU2 —quUl + ug 0 (0 , 9
fi2 = f34 due to stationarity and g(u) is integrable in v € R? under Assumption [4| with
a=2.

By integrating the joint density over u, we get

Fy(z) = F12 (x1, 22) F34 (23, 24) + O (¢ (0) + dr—4(0))
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uniformly in o = (21, 79, x3, 24) € R,

Therefore,

E (I (uy—j(0) <y) I (up(9) <)l (up j(ﬁ) ur(0) < x)

g [ B (r =0y )N
— ’ t— t’ t—
Fiy (m— EO,],t tt— t+g)(9) (0,— ]t tt—t' — 9))

Y — ut—j

CD

0,j 0,—j 2 1
:E(Flg (ac—ug J)(G),y—ug_j])(ﬁ))) —i—O( “0)
=Fy @,y +0 (|t —¢"")
The second last equality comes from truncation, independence and refilling the truncation,

the same tricks used in the previous proof.
Then,

Var (Fp;(z,9)) = Z Z Cov (I (ur—j(0) < ) T (ue(0) < ), T (up_;(0) < ) I (up(0) < z))

2
T —j) t=1+j t'+j

where the covariance equals

and

SC’(l/\g >>+CT1 22 S -t

t=j+1 ¢/ t—t/|>25

. -2 — 10 1 T
gC(lA J .>+C‘7 -+ C Og. 1
J T—j (T — )"

7.3 Proof to Theorem [3.3

First we need to show pointwise convergence of Qr(6) to Qg(0) for each € ©i.e.
Or(0) — Qo(6) = o0,(1) for each § € ©.

We first approximate population loss function by the

i (L= 3/T) o (@, )/ )W (2, 9)

190(6) = Qe ®)| = |3 [ (o) G a5 + Z [ k) G (a.)
SJ:TFUQny (jm)dW (z,y) QZ/T (2, y)/3dW (. y)
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Note that |og j(z,y)| is uniformly bounded by 2 in (,z,y) € © x R? for each j =1,2,...T.

Hence

1 & ,
sup|Qo(8) = Q@) < > [ swp ol )l /() AW (@)
0O ™ ]:T R2 (9,x,y)€@><R2

1 T-1 )
trr 2 [, s o) iAW @)
T J; B2 (0.04)cOXR?

SCL Gt T
C Cl(T-1)
S f—i_ T —0(1)

From the above statement, showing Or(#) — Qo(6) = 0,(1) is equivalent to showing
|Q7(6) — Qr(6)] = 0,(1) (7.1)

First we define z,(6,x) := I (u(0) < ) — Fy(x) and

_ 1 &
00,5(v,y) = T_ 4 Z 2 (0, ) 2e—5 (6, y)
J =i
Since
63,]‘(377 y) - 037]-(1',3;) :&g,j(x7y> - 5’37]‘(37, y) + 537]'(1',20 - ng»(:r,y)

65 (. y) — 55 j(x,y) =160,5(x,y) — Go (. y)* + 2 (60(x,y) — Go,j(z,y)) o,5(x,y)
By Cauchy-Schwarz inequality,

E |(69,5(x,y) — 70,5(x,y)) 50,5 (2, )|

<{E|(80; (@) — 50,(2,9)) " Elos,(2,9)}
<C(T—j)"

1/2

The last inequality comes from |og j(x,y)| < 2 and

T 4 T 4 1/2
(T — ) El605(z,y) — Goj(z,y)> <SE| Y. z(0,2)| E| Y 2-;(0,y)
t=j+1 t=j+1
<C(T —j)°

The proof of above result uses the Marcinkiewicz-Zygmund inequality in Theorem 1 of
Doukhan and Louhichi (1999) for a sequence of weakly dependent random variable cen-
tered at expectation.

Similarly,
_ _ 2 _
1532, ) = 03 (@, 9)| = 1503 (2,9) = 0052, ) + 2 (G03(2,9) — 00,5(2,9)) 70 5(2,y)
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so that

E|a3 ;(2,9) — o5 ;(z,1)]

_ 2 _ 2 2\1/2
<E|50(z,y) — 003(2,9)” + 2 {E|60(2, ) — 00,1, y)* E|o0;(z, )"}
. :9— 110 InT
J J n
<C (1 VAN ) +C -+ C
T—j T- (T — j)o~t
co(ind NP dT o (DY
T—j YR — yio/2-1/2
J (T =) (T'=J)
by Lemma [3.2] Hence
T-1
£[0r(0) - 0r(0)] =B|Y_ [ (68,00 — by (e.0) (1= £) W (a,)
o e N 7 T (jm) ’
1 T-1 iy 1
JR— —_—— —_— A2 . —_— 72 . 72 . — 2 .
< T2 st (1 T) j2 /RQ {E ’0'973(33,y) 0-9,](‘/1"’3/)’ +E ‘09,](1"’:1/) O-G,j(xvy)‘}dw(l
1= AR
_— — —_ 52 . — 2 .
< ﬁ = (1 T) j2 /RQE ‘0'9’](%,:!4) 0-9,]('%'7y)‘ dW(xvy)
1 -1 i1 )
+ 2 L (17F) 7 L Bloustonn) ~ )P )
2 ' AR
t3 2 (1 - T) 7 /RQ E|(60,5(x,y) — 00,5(x,y)) 00,5(z,y)| dW (2, 1)
=A+B+C

C\? j) 1 W A Y
a<Es (12 ,7/ <1/\ ,)+ .+ AW (z,
_7-(2 ; ( T j2 R2 T —J T -7 (T _j)'uo—l ( y)

J=1
e ; <1 - T> ﬂ/ua ((l : T—j> T e | W)
<5 T —iA)+5 (g Ko 4 = (InT) (T — j)° “0)
=17 j=1

c = i\ 1 L, o™= ¢
B_szzl(l T)jQ(T ) _TjZIjQ_T o(1)

Similar for C,



The proof of pointwise convergence of Q7 () to Qr(0) is completed.

As the result of non-differentiability of the objective function, we need to show stochastic
equicontinuity of QT(G). For the definition of stochastic equicontinuity see chapter 36 section
2.7 in Newey and McFadden| (1994).

By definition, equivalently we have to prove

sup | Qr(6) — Or(0)| = A(en) = 0p(1) as T 2 Ty(em),
0€6(e,n)

which can be decomposed into

E ‘QT — 9r(0)
sup ’QT
0€0(e,m)

The first part can be shown in the similar way as previous discussion and the second part
immediately follows from the continuity of population function Qr(#) in 6.
Theorem 2.1 of Newey| (1991)) confirms uniform convergence in probability of objective func-
tion in a compact set of parameter ©. The fundamental consistency theorem for extremum
estimators implies

9T—>p90asT—>oo

7.4 Proof to Theorem [3.4]

To obtain the asymptotic distribution of the proposed estimator, due to non-differentiability
of the objective function, we first investigate the asymptotic behaviour of the estimator based
on the smoothed cumulative distribution function.

In this part, we approximate empirical (joint) cumulative function of residuals u; by

Fe,j(x Yy h) = —— Z ( ‘9)) A (y—ué_j(9)> 7

t=j+1

where A is a continuous cdf with twice differentiable pdf A and h is a smoothing parameter
so as to make A(7) converge to I (—z <0) for any |2| > 0 as h goes to 0. Based on this

approximation, the general correlation of residuals defined in the section 2 becomes
50,]'(1‘7 Y3 h) = Fe,j(xa Y; h) - F@,j(xa S OH h)ﬁb,j(ooa Y3 h)7

and its corresponding objective function

T—1 .
) — 2 EFANE
QT(ev h) - 2/7%2 jzz:l U@,j(xvya h) (1 T) (]ﬂ,)gdW(xvy)
The score can be computed by

06y ; ih
7QT 0 h _4/722 Z < ) 1)2 9,](‘73 y7h)(md(8‘7;7y7)dw($7y)7
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where

969,(x, y; h)
a0
zaFe’jg;’y; h_ aFH’j(géOO;h) Fy j(00,y; h) — Fy j(x, 00; h)aFe’j(gz’y; "
1 T x — u(0) y—w—j;(0)\ 1 1) x — u(0) y—u—j;(0)\ 1 M o
_T—Jt:zlij{A (P2 ) A () 5 (Fulo) + 4 (T ) () £ (el

+ By (00,5 h) —— i A(‘”_“t(9)> LD 9) + By 5 (w, 005 h)—— ET: A(y_utj(9)> L ()
0,7 » Y3 . 7 Wt 0,7\ Ly ; . 7 Wy )
T—j t=1+j h h T—j t=1+j h
with
O — S s
u(0) = > &5 (O)ur

Jj=—00
By Taylor expansion of %QT(Q; h) at 0 = 9~ we have

2

92 . . _ ~
+ o557 @O (0% — 60) , for some B} < (6o, 07)

0 ~  ~ 0 ~
= —Qr(0};h) == Q" (00; h
Given consistency of 5:]}, SO as éT, we have

i »? T d
T1/2 (9{,5 — 00) = — (WQT(QO) + Op(1)> T1/2%QT<90)

First we would like to replace the score by

o ~ = J\ 1 . —— 06¢;(x,y;h)
%QT(H) = 4/732 jz:: <1 - T) Wae,j(xaya h)TdW(w,y)

where
0@ h) = 7 t; (4 (1) — ) (a (2D - i)
where

3The minimizer of Qr(8;h)
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T . N
i\ 1 /. .\ 95¢,(z,y; h)
=4 E (1—) - Go.i(x,y;h) — Gp.i(x,y; b)) —222 2 dW (x,
o 2 (177 Gy (03w h) = 0o,y ) =25 (,y)
I L 069 ;(x,y;
<4 Z 1—— agja:y,h)—agd(a:,y,h))i dw (z,y)
t=1+j
L 2 1106¢ i(z,y; h) | 1/2
<4 Z (1—> / < Go.j(®, v h) = Go3(x,y: )| E‘WH) AW (z, y)
t=1+j
C
—O(ﬁ)
as )
E| (50,5, y; h) = 5o (z,y: h) | < C(T = §)~*
and )
969 j(z,y; h)
E g\ Yy <
e

The convergence of Hessian matrix evaluated at 8 = 6y in probability is induced from the
uniform boundedness of the third order derivative of the objective function and consistency

of the estimator.
9% -
@QT(G)
T—1 . . ~ . .
- L) L (sl 0 (900 IOV (5 gy POt
_4/R2 ]2::1 (1 T) ('7T)2 {( o0 00 + | 90.4(@y: 1) 9000’ dW (z,y)

For simplicity, we would conduct analysis of uniform boundedness of the third order moments

in single dimension.

O3 -
@QT(Q)
T—1 ) ~ . N
AN 95g,(z,y; h)\ 8*Go,4(x,y;h) | (- 03G9 (x,y; h)
]:
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where

06¢,j(w,y; h)
00
OFy j(z,y;h)  OFpj(x,00;h) ~ _ - O (00, y; h)
90 90 F@,j(oouyv h) F@,](:’Ua Oovh)T
9269 (x,y; h)
062
O?Fy j(x,y;h)  0%Fp j(x,00;h) = OFy i(x, 005 h) OFy i(00,y; h)
, s Y _ , ’ ; o i _9 ,7 Ly ) \J ' Y
962 962 (00,43 h) a0 a0
. 0?Fy j(00,y; h)
— Fy j(z, 00; h)]ﬁT
&3p,4(x, y; h)
063
PEy (v, y;h)  03Fpj(z,00;h) = 9% Fp ;(x,00;h) dFp ;(00,y; h)
, ' Yy _ , ) ) o “h) — N ) ) ,J v Yy
BIE BYE 0,500, y3h) =3 962 a0
OFp j(z,00;h) 0%Fy j(c0,y;h) = L O3Fy (00, y; )
3 a0 902 = Fo (@, 00; h)T
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+T1_j§;{A () y (1 teal®)) (—ui)w)) A (O 5 (1) (uiﬂ@))

+2% ET: A (xut(9)> A (y“tj(e)) (“gl)(e)ugl)j(e))

h2

leél{k(xgt(e))A(y ui0) (Wg:“’)) o (T 5 (1) (—uﬁ%(m
+ Tl_]é;l {x <:c—;:t(9)) \ (y—u;l_j(e)) <u§1;<9>>2 ug”]iw)}
4 Tl—jtil {A <m —th)) R (y - u]ijw)) u§1;(9) (ugl)}i(@))?}
o7 B PO (=) (05
+ Tl]i {A (”” —;f@) i (y - u}i—jw)) ] (u§32<9> u@gw)) }
{ ( )ui‘””(e)m(ﬂ”—gt(@))A(y uﬁj(e)) 00

Provided Assumption @ and boundedness of E |ut|3, after applying Minkowski’s inequality,

we can show

[E sup Huﬁ“)(e)Hb
0cO
b

<Esup
e

> 6470 ful
Jj=—00

< Cbgggj:io:oo chga)(ﬁ)HbE lug|® < oo for a,b=1,2,3.
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By Holder’s inequality,
Esup | ("' @ )(uf?@)H
< (zz0p]t0)

0cO
by
E sup Hut =
0cO 0cO

Esup | (u(©))" (u20)"|

o\ /2 o\ 12
< (Esup H (ugl)(0)>mH ) <Esup H (uﬁb(@))nu ) for m,n=1,2and j =0,+1,+2,...

0cO 0cO

2
) < oo for aj,a9 = 1,2,b1,b0 > 1 and j =0,£1,+2, ...

Following above inequalities together with the uniform boundedness of density of the smoothed

cumulative functions and its derivatives of order 1 and 2, we are able to prove

9°Fy,j(x,y; h)

E sup < 00, and

0€0,(z,y)ER? a0
0950 ;(x,y; h

E  sup ‘Wi’y’)H<oo,fora:1,2,3andj:i1,i2,...

0€O,(z,y)eR? a0
Then,
(3'3
E
glelg aegQT( )H

— AN 9G9.j(x,y; h)\ %G9, (z,y; h

54/ (1—) —5E  sup 3( = ) o AW (z,y

R? ]Z:; T) (37)*  geo,(ey)er? 00 002 )

+4/ TZ_1<1 j) L E A LY .

T B su g9 T, Y, _— l'
R* i3 T) (jm)? 06@,(1:,5)6732 by 063 Y

T-1 4
<C - < 00
- ]Zl (jm)?

The score evaluated at 0 = 6, is
00
- y_utfj l . (1) T — Ut y_utfj l B (1)
_Jtzl;r]{ ( )A< h )h(ut (00)>+A( h ))\( h >h<“tj(90)>}
g : ! - z—u) 1 @ 2 ) 1 d y—u—j\ 1 (1)
T F@OJ(OO, Cl h)ft; )\ T Eut (90) + F907j($, ;5 h)Ti—j Z )\ T Eut_j(QO)
=1+ t=1+j
with
(90) = U,
Z d) 90 ut —J
j=—00
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Given E (u¢) = 0, we have that, for j =1,2,...

95,5 (x, y; h)
a0
=g E (s (5 ) ) (4 (15) ) = Gl 00 8 (s (152 ) (0 (55
et () )R (1 () - el e (o (45)) 2 (4 (5)
el (8 (1) ) (o (552 4 Gl 00 (a (25 ) (war (25
oo (o (757 ) (3 (5 ) - e (s (5) ) (0 (75
= — ¢\ (Bo)u" () A" (x) — ) (B0 )" (2) N (3)

As smoothing parameter h is sufficiently small, A can perform like indicator function. Hence,

=0 (5)) =7 2 () s s

( )) h/u)\<$ “) u)du — zf(x)

2 () = [ () seomg [ o () o i
(5 )) ) du—h/ A1) e [rwa (i

u) du

:FwMPJwa+[inyMu:Ewuus@)zmw

. . - . . . . 069, i(x,y;0 . .
We treat the derivative of Gy, j(x,y) derived from indicator function as % which is

. 069, i(x,y;h
defined as limj,_,q 060’]8(; yih)

—p— 0 (B0) E (ul (u < 1)) f(x) — ) (60) E (ul (u < x)) f(y)
= — o8 (00)u(y) f (@) — 6 (00) () £ (3)
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The limit coincides with the limit using ”generalized” derivative of indicator function.

Similarly, for any fixed h,

9% -
@QT(Q; h)
o 1 6690,j($>y;h) 8590,j(£>y;h) '
—rt /722 ; (jm)’ {E ( a0 ) . ( a0 ) } AW (@,y)
=fgjfojl<z>§”(90)¢]”(90)’].12 / (1) daw () /R (W (@) aw(a)
+ éjj?wo)qﬁ“}(%)’jﬁ | (@) aw@) [ () avw)
+ :i (" @000 60y + o) 6ol 00)) 5 ([ uh<y>Ah<y>dW<y>)2
:% (20,1 + 23,1) Pl + % (EJ{M + 28:1) (P?z)Z
Tﬂ/Qgélé;;Eggsh)

00
L E L5 20) (5 e
x {z o000 [ (A () - ') B (wa (2 dw<y>}

_ ;12;/2;:/7% (A (x ;ut> - Wh(a:)) E (utA (x ;Lut>> AW ()
AS B [ ((22) - ) 1o (5 (15w o)

=17

4 & 4 E
hysh h
=- E :et Vita — E By + op(1)
T1/2 = T1/2 =

We can apply CLT for martingale difference sequence Brown| (1971) on e!V;}* | and v, E} ;.
We obtain
T %QT(G(); h) —p N 0, Hl,h

w4
where Hy p, is
{Jg;hag;h (20,2 + E3,2) + 00 (Z(T),z + Eg,?)}
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)

Since E (e;) = E (14) =

=2 ((4)) E<</R (2 (5") - ¢'@) N@aw e >)2>
—///(( Z)—so )Ah(x>dw (( ) y>/\h
=] 55) ( )

2
z)dzA y)dW (y ( >
—>/2Fx/\y) W(z,y) — (/F )Eazash_)()
R
Similarly,

025 =E (ev]!)
_/// (x Z)A< ) 2 de N (2)dW ()t () dWV ()

~(hrer@are) ([ )
—>/me ) p(y)dW (z,y) — /F (/F ) 02, as h — 0

e () -2 ( (L (0 (5 Dz >)>
_/// ( = ( )21’ 2)dzp( AW ()
( (@) (@)dW (x )

—>/ (x Ay) flx)p(z)p(y)dW (z,y) — (/F )_ofash—m
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8 Numerical Calculus

8.1 Joint distribution and marginal distribution

Recall uy(0) = ¢ '(0, L)p(6o, L)uy = ¢(0, L)uy = Y32 ¢j(0)us—j. For simplicity, we
normalize ¢o(#) = 1. The joint distribution of (u¢(6), u;—;(6)) evaluated at (z,y) is

P (u(0) < z,u—5(0) < y)

:P(Z¢k Jue— < Z¢k Utj—kéy)
k= —oo it
=E | P|u+¢j0)w—j <z — Z O (O)up—p, ue—j + d—j(O)us <y — Z o0 (O)ur s x|
k#0,j it
-2 SO u—r Y=, Lo Se(@u—j_k
=E (/ k£0,5 / k£0,—j J thZthJ (b1, t2) it

=F (//D fu17u2|9t,j (ulv Uz)duldu2>

. 1 Zk;éoj Ok Oui—r [y Zk;ﬁo ] O)ut—j—k t1 — ¢j(9)t2 to — gb_j(é?)tl
=000 </oo /. =500 T 5,000 "

where 21 = us + ¢ (0)ur—j, 20 = wp—j + (O uy, up = %, U = %ﬁﬁ()(@) and

D ={(t1,t2) € R* : ti+¢j(O)ta <z — > Gp(O)tsp,to+d—;(0)tr <y— Y Sp(O)us—j—i}
k+#£0,j k+#£0,—j

Qj=0( ., U jo1, Ug—jp1,s - - -, Ut—1, Us41, - - - ) is information set generated by all innovations but wu, u;—;

Furthermore we assume 1 — ¢;(6)¢_;(8) # 0.

Taking the derivative of above joint probability w.r.t 8, we obtain

00
6@ </—oo M@, T o060 " o0 )

| mo) o (o) 6:(0)t ty— 6 (0)ty
+|1—¢j<e>¢_j<9>|E{/_oo 56 </oo s e <>)dt2>dt1}

| s (1= 95(0)0-4(9)) (65" 0)0-(0) + 6,(0)62)(0))
1= 0,00 >¢ < )

XE{/WQ/ m—¢g ﬁ(b—¢ﬂW) Mmﬁ}

1—925] () 1—¢;(0)p—;(0)
:D1(9,.I, y) + DQ(G; x7y) + D3(97‘737y)
(8.1)
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where

0) =z — > or(0)usr

k#£0,j

n@)=y— Y. or()u—_j

k#0,—j

and D3(0,x,y) can be re-expressed as following form for further study,

Dy (0, . y) = sgn (1 — ¢;(0)9—5(6)) (5" (0)6—5(6) + ¢;(0)6")(0)) Fi (. y)

Regarding the first component in the first order derivative
Dl (‘97 xz, y)

_ O m(0) — ¢;(O)ta | . ta — p—;(0
‘E<fﬁ)“1—¢ﬁ> 9“1—¢A@¢;
A

)m(6
(6

). om(6) |

0" 56 )u—@wwﬁwﬂ
>

0

0
| [ m0) = 6 (O)t2 Om©), . M (gvu 1
—E([m=”1—@<> OBk TOTwONa Ezﬂ(mt*awr—@wwﬁwn

k£0,j

Before we continue analyzing second component, we first study the following derivative

o [ 6;(0)t ty— d_;(0)t1
%<meﬂ—@u¢<>”5—@u¢<>wg

¢ (O)n(0) |, n(0) —P_;(O)t1, [ D) gV -
1—@H¢<>”H—@<w <ﬂ(k%;jk@tﬂ*)

n(0) 0 t — )t2 ) 0 (0)t2 t2 — ¢—j(0)ta
v 1—@ pan 2 Cure i G e ey

n(0) — —
/_: f(1_¢J¢J() )£ ( ty — ¢ () )8( ts — ¢ (0)y )Vt

= S

)dts

(0)0—;0) 1= 0;(0)0-50) 90 1= 6,(0)9;(6)
where
2 bbb ):(¢>wwuxm+¢xm¢%w>tr—@$Nm+¢ﬁm¢@th
90°1— 6;(0)6;(0) (1—6,(0)9-;(6))°
a(b_¢jwﬁl)_(%>wwﬂww+@ww3wnm—(&mm+¢;wwﬁwnm
001 — ¢;(0)—;(6)" (1 - ;(0)0—;())?
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Then we can move on to

11— ¢;(0)¢—;(0) D2(6, 2, y)
)

B m@) g ¢;(0)ta ta — ¢—;(0)ta
_E{/_oo 0 </oo f(l—qm 1o 0 T 50 <>)dt2>dt1}

m(o) n(8) |, n0) —¢_;(0)t - W
E{/w 1—% <>)f(1—¢3< s <>)dt1( 2 o _k)}

k#0,—j
¢;(0)t2 ta —¢_;(0)t

m(6) 1 t1—¢J 0)ts t1 — ¢; , (
+E{/ / 1_¢J ( ))(1_¢j(9)¢fj(9))f(1—¢]( 0)6_ ( ))dtgdtl}

m(0) i1 — ¢J 1y, t2— d—;j(0)t1 to—d_;(O)t1 ., }
L S S e

The partial derivative of Fy ;(x,y) evaluated at true value 6 = 6y, that is ,

¢j(90) =0 for ] = :|:1,:|:2,. ..
$o(bo) =1

Under this condition, m(6y) = z, n(6p) = y and D;(0p, x,y) can be simplified to

D1 (6o, 7, y) = Eq,, (/y f(@) f(ta)dta(— ¢k (Bo)ug— k:))
> k#0,j
= f(z)F(y) Eq,, (— > ¢](€1)(00)Ut—kz)

k0,5
— f(@)F(y) x 0=0

Dy(6o, z,y) = Eq, { f(t1) f(y)dts (- > ¢;(€1)(9)Ut—j—k)}

k#0,—j

/ / o (9o)t2)><f( )dtgdtl}
AL

P FO (1) x <—¢< ) 60)t0)deadts |

=0-¢\"(60)f / F(ta)tadts — 1) (60) £ () /; Ft)tidty
Ds(0g,z,y) =0

= D1(0o,z,y) + D2(0g, z,y)

=~ f@ [ fwudu -0 @) [ Fwpudu

Following similar procedures, we can also derive the expression for partial derivative of

(8.2)
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marginal cdf of u.(6)

(a)

The following two conditions are sufficient for uniform boundedness of %

Z sup "¢§1)(0)“ < 00

00€0

t( :c—ZgZ)] JUt—j) U ])<oo

Jj#0

The first is guaranteed by Assumption[7]and second can be induced from uniform bounded-
ness of marginal density function of innovations f(-) and E(|u:]) < oo.

To bound M we need to bound D1, Do uniformly respectively,

sup sup Di (‘9, xz, Z/)
0€O (z,y)eR?

sup sup Ds(0,z,y)
0€0 (z,y)eR?
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First we deal with Dy (6, x,y),

sup  Di(0,z,y)
0€0,(z,y)ER?

Y I O m(0) = ¢;(0)ts |, t2 — ¢—;(0)m(0) " )

- eee,u,g)emE (/oo f(1_¢j(9)¢—j(9>)f(1—¢y( 0)p—; (0 ) Jdta(= k;fb’“ bk 11—¢j(9)¢_j(9)y)‘
su 1 Oty — i (6)m(0) sup || — "

= (0669 s T 00500 e 7T 0100 18 2o O e k)

= su max n(0) — ¢—;(0)m(0) n(0) — ¢ J(H)m(e) Su B "

=CE (96@ (:cyp)eR2 {F( 1—9¢;(80)p—;(8) ), 1 —F( 1~ 6:(0)p_; 9) p k§J¢k [ug— k])

<§up Z quk O E(us—|) <

k#0,5

sup || Do(0, 2, y)||
0€O,(z,y)eR?

N m(6) 0 (0)n(0) n(0)—¢_j(9)t - D g |
= sco e E{/oo e o oL e o “( 2 o) f-rk)}%(@

n(0) (1) (9)t2 0 gb() to — P (0)t1 '
" ieotrper {/ [ 1—@ TN e i Sereiors <>)‘“2dt1}"](0)‘

“ @) n(9) t2 1) to — d—;(0)t1 2 ty — p_; ()t |
" o mpen {/ N e o R e o 2 ey )dtzd“} o) ‘

=Dg1 + Dag + Dos

where
1

11— ;(0)p—;(0)]

Dy, is uniformly bounded following similar steps as one in D1 (6, z,y)

n;(0) =

Doy

vy O =0 On0), | m0) =6, (O)nl6) )
SCE<ae@(wp>eRz CO g @o,m T g me,m V|, 2 A O] e
<su <;5 E(|lui—j—k|) < o0
eeg,@;]” O)I E(| kl)

Here we assume

1
<
11— 0;(0)p-;(0)|
This is implied by mixing condition for residual sequence(like supycg ¢j(0) < C|j|* for a
w>1forall j=+1,£2,....)

<C
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To prove boundedness condition of Doy and Dog ,

Doy
_ n(®) £ ti—¢i(0)t2 | 0 0 (0)t2 ty — o (0)t } ‘9‘
= oD s {/ / T 0,06, (0 >)ae(1—¢j< 06,8 T—g,@)0_,@) 22 (1)
1 ty — ¢;(0)t2 d—j(0)t1 (0
S e L {/ / ' 5,606,0)" f(l—m 66,0 >)dt2dt1}’“( )‘
oM (0)0_;(0) + 6;(0)9")(6)
i <1—¢j<9>¢7-<0>>2
£ t1 — ¢;(0)t2 ty — ¢_j(0)t1 dbod } 9‘
T ool s {/ M 06,0 T g @0, @ 2 | 5O
o\ (9) + 626 >¢<_1}<>
ven || (1= 6;(0)p_;(0))2
The uniform boundedness of ¢§l)(?if&;%§ggg;¢g © and ¢%11)£62;:§§2x)ﬁ;;)(26) is guaranteed

by assumption [7] and mixing condition.

Now we need to discuss the rest,
m n(0) t1 — ¢;(0)t2 — ¢ (0)t1 1
1) L J
L L e @™ g M T ms
:// FO () (ur + ¢;(0)us) f (uz)duidus
—// £ (ur)uy f(ug)duydug + ¢;(0 // ug f (u2)df (uy)dus

—¢—;(O)ur
< [T 0w sy + 1oy 0] [ [ Jus] () U7 du
—o0 J—o0 —oo Jf 71 (U1)<m(0)—¢;(0)uz

:/0:0 1O (wr)ur | F(n(6) — ¢—;(0)ur)duy + |d;(6)] /O:O f(u2)|uz| AU, | dus

/f‘l(Ul)Sm(9)¢j(9)u2

< [ 1) ldu + CloyO)] [ luz)lualdus

where Uy = f(u1).

The first inequality comes from the expansion of zones of a nonnegative integrand:

D= {(ul,uQ) € R?: U + ¢](9)UQ < m(g),UQ + ¢_j(0)u1 < n(ﬁ)}
- {(ul,ug) e R?: u; € Ryug < n(@) - qb,j(H)ul}

Similarly,

D= {(ul, UQ) € RQ U+ ¢j(9)u2 < m(@), U + ¢_j(9)u1 < n(9)}
- {(ul,ug) € R2 tuo € R, up < m(&) — d)j(g)’lm}

The second inequality follows from uniform boundedness of F'(-) and f(-).
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Once we have above inequality, we can show

9) ¢ (0)ty 1
dtodt
seo e {/ PR e e i } 1=0,0 >q>_j<e>||
<9€@ ?;Hy)en2 // f (u1)uy f(ug)duidug| + o Sglclly))eRQ E |¢;( \// ug f (u2)df (uy)dus
gzgg/_oo‘ uu‘du—k(]ggg\@- |/_Oofu\u|du
<00
(8.3)
as long as -
/ ‘f(l)(u)u’ du < 00

and

/_O:Of(u)|u]du< 00

Following same steps, we can show Dyo and Ds3 are uniformly bounded by some constant
C.

Following above calculation, the second order partial derivative of Fy ;(x,y) is

02 . 0D1(9,x,y) + 8D2(03$7y) + 8D3(0>:U7y)
B 06’ 06’ 00’

@

_ _ D 9y, O MO m(0) — d;(0)t2 | b2 — ¢ ](e)m(a) 4
n0 . m(0) = ¢i(O)t2  , ta — d—;(0)m(6) a9, M (g1 '
i { </oo S ¢j(9)¢—j(9))f( 1—6;(0)p-;(0) )dt2> (69’( 74¢’“ (6) t‘”) i (0)}

W "0 m() — b,(O)ta |t~ -y O)m(O), | Iny(6)
E{(‘X?%‘”W*)</w-”r—@wﬁjwﬂﬂl—¢/ybx>““> éf}

k#0.j

For the first term,

OO m(0) = ¢j(O)ta b — ¢ (0)m(6)
39/</Oo f(1_¢]() ())f(1_¢J Yo )dt2>

(¢
n(0) — ¢_;(0)m(0)

()
k;é[) —j

_m(0) — 6,0)n(0) TP
ﬂl—@() <>)(1 5@ >)( kW)“*Q
n(0 0 m - ta — ¢—;(0)m(6)
v 1—@ o1 < eﬂ>ﬂf—@w> S0
"0 m(o) %(ﬁz Dt2— by Om®) (D ts— _yB)m(®)
+/;>“1—@wwﬁwﬂf(1—@<w <ﬂ<%‘1—@<w3wﬂ>“2

47



where

0, m(0) - ¢;(0)ts

(= Shsog 01 @) (1= 6;(0)6-5(8)) + m(6) (61" (0)6—;(9) — 0;(9)6")(0) )
56'1— 6;8)0—,(0) 2

(1= 0;(0)¢—;(0))

)=

(470 - 30)650)) 2
<1—¢]< J6—5(0))?
_ (0)6%0) = 6-5(0)) (= Sisos A4 @) — (675(0) - 62,(0)5"(0)) m(6)

(16,06, 0))?
(602(0)6-5(0) + 0,006 (0)) 12
(1~ 6,06, 0)?

For the second term in the partial derivative of D1 (6, x,y),

_|_

80’ Z <l5 0)ut—)

k#0,j

== 3 ¢ O

k#0,j
The third term,

on;(0) 0 1
06~ 00 L— 6;(0)0,(6)]
sen(1— 6;(0)0-5(60)) (6" ()0(0) + 6;(0)6)(9))
1= 6;(0)6,6)]

Regarding the derivative of Dy(6, z,y), we need to calculate three parts:

81)2(9 X y
o0’
m(e) tl—qﬁ] n() ., n(0) —é_;(0)t - Wy,
89,13{/00 1= 6: (00,0 ))f(l_%( o ](9))dt1< kg;quk (0) t_]_k)}

i o @ O)t2 (0 [ _ti—¢;(0)t2 ta — ¢ (0)ts
o {/OO [ <>)69<1—¢j<9>¢>jw))f(l—@( oL <>>dt2dtl}

)2 m(6) (n(0) tl—aﬁ] Wy, t2—d_(Ot 9 ( ts— 6_;(0)tr > }
+ nj o6’ {/Oo /Oo 1— 6,0 ))f (1_¢j(9)¢7]’(9))89 T~ 0;(0)6_;(0) dtadty

"0t 6 E00) |, 10— bs RSP R0
vEY I e - a0 ()”“( 2 0 t”)} o0

(0)
m(0) n(0) — (0t O 1 — $;(0)ts to — ¢_i(0)ty on;(0)
1) 1 J v Jj J j
“E{/oo L. <1—¢j<9>¢_r<e>)89<1—¢j<> <>>f(l—qu(ew-jw))d”d“} o0

i E /_TZO)/ng)f( — ¢ (0)ts ) tos — ¢—j(0)ta )(5( by — ¢ (;0)75(1)>dt2dt1}a77j(9)

—

—oo 1= ¢j(0)p—;(0) o6’

1—6;(0)9—;(0) 1—¢;(0)
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We calculate these three components one by one:

8 m(@) tl — gf)j (0)71(9)
O = 0,0)n(0) | () — 6,0y
—E{ (- ¢(1)0ut_‘_) 3/( dt)}
{( 2 O O | 5 /oo ey T (1—@() ;@)™
Ot —¢i(0)n(0) |, n(0) — o—;(0)ta B o
HE{(/-OO M50 100 )sb-())dt)ae/( 2 <>t—n—k)}

:E{(— > o ()W_j_k) [ B0 0, 1 On0))  1i0)— -0 dtl}
E

o TG 06,0 0 T 00-,0)
(— > S’(em_j_k) [ gl oo >f<1><”(6)‘¢j<92;>‘9<”(9)‘,¢j(?’%dt{

1 —¢;(0)p—;(0) 1—¢;(0)p—;

m(0) ~ 6,O0n), n®) —6,OmO) [ oo V(s s )
M =000 = 6,000-,0) >< 2 ) k)( 2 a0 k)}

m(6) ¢;(0)n(8) |, n0) —¢_;(0)ta - @y
+E{</°° f(1_¢J< 0)o— ())f(l—%(@)qﬁ ](0))dt1> ( > o (O)ujr }

k7éo’7j

The second term

t (0)t 0 t1 — ¢;(0)t ty —¢_;(0)t
aef {/ / FO( 1_1% 2( )) 50 (1_1¢j(9)¢_j2( )> f(li%(@ o0 ))dtgdtl}

~—

B I ) 8 T g hsemin T a5 )}
- {/_n:m 3 </n(9) e e Y et e s e >>dt2> dtl}
—e [ <z2]< > - )(@))(%(1 pRC (@);) i G jj.éﬁi)”f @5 }
{/ N (f e e IR (?(—9)@(;@5?2;)62@9)) dtl}
i {/ G i asj T B T 0 T g hoa ) T i)
+E {/’Zf [ et qﬁj G o e >>‘“2d“}
i {/ O e e s G
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The third term:

(0) to — ¢ (Q)tl 0, to
( 2
{/ [ Tt e B g “ﬂ“}

O m(0) = ¢ (0)ta L)tz — d—(0)m(0), D ta—¢_;(O)ts 9}
‘E{[mtﬂl—@wwﬁwﬂf(l—@<m 0967 5,0)0- wﬂmnmﬂ

m(0) 9 n(6) t QSJ( ) to gb_ (G)t 0, tyg—
+E{K@<%<[ﬂ>ﬂlf@wwﬁwﬂﬂwl—@ww Ol o ﬁg }

3 O  m(0) = ¢;(O)ts | ) t2 — ¢ (O)m(0), D, tr—d_;(O)ty %
‘E{lm‘“l—@wmjwﬂf(1—@wm]<ﬂaﬁl—%<w wﬂmvme o0
on(0)
to=n(0) OO’ )dtl}

+E{/z®<ﬂty—@wmw>NﬂNmm—¢jwﬁwa(tw-@<@n)
+E{/m(9/ £ t1—¢g 0)t2 )8( — 9;(0)t2 )8( ts — ¢—j(0)ta )FO( t2 — ¢—;(O)ta )

1—¢;(0)¢—;(6) 1—0;(0)p—;(0)’ 901 — ¢;(0)p—;(0)
1—@ ()7 00°1 = ¢;(0)6_;(0)" 96" 1 — 6;(0)p—;(0) 1—¢;(0)p—;(0)

m(0) t2 9 = (Ot | ay, ta— o (0)h }
*E{/ [ 1—@ @) 9805 T 4010, =680y 2
m(®) 0, ta—¢_j(O)tr O ta—d_j(O)tr | o) t2—P—;(O)1 |
+E{/ /‘ 1—¢J 96¢1—¢A>¢ )00 T 5,000,0) T500,0)"
0Ds3(0,x,y)
a0’
:8Sgn (1 _gé/(0)¢_j(9)) <¢§1)(9)¢_j(0) + ¢j(0)¢(_1])(0)) Fyj(z,y)

2 (61 (0)o_(0) + ¢;(0)0™) (9)
T ”é,”) ) gy o

s (1= 65(0)650)) (6 (0) <>+@<w3wna”§f”
=sgn (1 - 6;(0)65(0)) (617 0)0—;(9) + 6;0)62)(0) + 6" (0)6") (0) + 6)(0)6"(0)) Fo (. )
)

o
T sgn (1 ¢;(0) OFs;(z,4)

P
3(0)) (57 0)6-5(0) + 6;(0)6%)(9)) =5

The second order partial derivative of Fy ;(x,y) evaluated at § = 6y is

62
g9 L 00d (@Y (8.4)
_9D1 (09, 2,y) N 0D2(0o, z,y) n 9D3(00,z,y)
a oo’ o0’ a0’
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where

90 fory

8D2(907'1" y)

D1(%, z,y) (z o5 (00) (0 >>)E<u%> (f@)f) + FO@)F ()
oo’ f

[ f(”(U)udU) (¢§-”<eo>¢93<eo>')

1) ([ swuan) (~)00) + 19 ([ afn) (6260160 60))

ODaG2I) _ (50 (80)6 )00 + 6% (60)6") 00)') Ei ()

oy’

Asymptotic distribution: We first carry out the analysis of the asymptotic study of the

estimator based on its approximation using joint cdf and marginal cdf.

0
00

60'9 ,‘(xay)
/722 Z 2000 ](SL‘ y)#dW(:ﬂ,y)

=-9r(b)

= ) 80907‘('1.73/)
=2 ]Zl(l - T)W /722 T6y.j (x,y)#dﬂ/(%y)

= ] i(x x
9 Z(l _ %)0302 /732 0907j($’y) (8F€0,59( ) _ 8F209( )Feo(y) — Fy, (w)aFZOQ(y)> dW (z, )

n0i@0) (~0@0)1(a) [ fupudu = 6060 (0) [ flapudu) W ()

since og, j(z,y) = 0 for all (z,y) € R? and j = +1,+2,... Hessian matrix:

62
aoa9 <7)
T-1 . )
= _J 1 / dag j(x,y) 0oy j(2,Yy) ‘ w
_2].2::1(1 T)(jﬂ')Q R2 ( o0 o0’ +06,5(,y) 2000 dW(z,y)

o1



where

30.9,é(056,y) _ 3F0,t,ajé§x,y) B 3th9($)F9’t_j(y) B Fe,t(x)aFe’ééj(y)
9%0q,5(x,y) _ PFyrj(x,y)  OPFpu(x) () — OFp () OFy1—;(y)
9000’ 9000’ o000 I 90 00’
_ OFpu—j(y) OFps(z) (x)62F9,t—j(y)
90 00’ 6.t 9000’
Hessian matrix at 0 = 6;:
82
a0 <7 (%0)
T-1 . 2
- B l 1 80’90,]‘(%,?/) aa@o,j(xvy) ) 8 Uﬁo,j(x)y)
= ]Z_:l(l TG /R ( 00 o 0@y gpae ) AW (@)
T—-1 .
_ . i 1 / (aUGO,j <3:', y) aa@o,j (1.7 y))

=23 (- ) (0 @ @) [ (P faudn?) dwe.

230 7) oz (00 [ (P rudn?) awa.y)

+ 2§< - P (o)) [ (1@ ([ ) avey)

+ 220 - ) (ji)g (6606 60)) [, (r@rw) [ fwudn ([ fudn)) .y
_22 o (0006 0)) [ (@[ pwudn?) awa.y)

+ 2503 (ji)z (8 e0s)en) [ (PO swudn?)dwe.y

+ 22 oz (el [ (1@ [ ([ i ) aw .y

+ 2§ o (000 @0)) [ (r@rw [ ([ s ) e + o)

8.2 Calculation in Simulation

The objective function in Monte Carlo experiments can be computed as follows:

R = g1
Or(0) =2 [ 3 63,(e.0)(1 ~ ) g W (2.9)
j=1

where
a-g,j(xa y) = Fg,j(x’ y) - 2F9,j(xa y)-ﬁ‘@,j(‘rﬂ OO)FQJ(OO? y) + FG%,]('I’ OO)FQ%J(OO, y)a
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Fyj(z,y) fj Z I(ur(0) < 2)I(ue—;(0) < ).
t=j+1

The integration of 63’]-(30, y) over weighting function W can be decomposed into following

three components:

/ngxy

-l o= S 1) < i (6) < DI(00) < D) s < AV V()

t= J+1S =j+1
1
s Z Z /1 wi(0) < 2)I(us(0) < 2)dW (x /1 e (0) < y)(us_;(8) < y)dW (y)
( '7) t=j+1s=75+1
b aww) [ AW (y)
(T —j)? ;1521/max{ut<> (0)} max {ur—;(0)us—; (0)}

7= jz S (1 I (max {un(6), a(8)) (1 W (mse (y 6), e (6)))

t=j+1s=j+1

where W is set to be a continuous probability measure.

Similarly,
/ Fpi(a y)Fej< >F9j<oo Y)W (z,y)

- / / Z I(u(8) < ) (up—;(0) < )1 (us(8) < 2)I(ur—;(6) < )dW (2)dW (1)

—j+1 5= j+1 r=j+1

T T

T =P Z Y. > (=W (max {uy(6),us(0)})) (1 = W (max {u—;(0), ur—;(0)}))

t=j+1s=j+1r=j+1
and
[ B2 (w000 B (00, )W ()

T

1 T T
=(T_j)4 Y Y S Y [ M) < ) 06) < ) nes) < 1)) < )W 21)

t*j—l—l s:]+1 m= j+1 n= j+1

T 7 4 Z Z Z Z (1 — W (max {u¢(0),us(0)})) (1 — W (max {wm—;(0),un—;(6)}))

t=7+1 s=j+1m=j+1n=j5+1
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