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Abstract

We derive necessary and sufficient conditions for weather fluctuations
to systematically identify the marginal long-run effect of climate on an
optimized outcome. Empirical estimates of local marginal effects flexi-
bly trace out a common long-run response function that can be used for
non-marginal climate counterfactual analysis. Our empirical application
considers the effect of temperature and precipitation on county-level agri-
cultural GDP in the United States. Overall, agricultural GDP is predicted
to decrease by 6–10% under a 2°C warming scenario.
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Since the seminal work ofMendelsohn et al. (1994), economists have sought
ways to predict the impacts of climate change on economic outcomes using
observational data. Econometric damage estimates can be informative by
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themselves, but they are also needed to calibrate larger models of the econ-
omy (Auffhammer, 2018). One of the main empirical challenges in exploiting
historical patterns of climate or weather and economic outcomes is attribution.
In an ideal but unrealistic situation, one could observe two otherwise identical
economies subject to different climates, and track relevant outcomes.

By necessity, empiricalwork has departed from this ideal comparison in two
main directions. Keeping with the core idea that the relevant counterfactual
comparison should involve different climates, Mendelsohn et al. (1994) and
the ensuing “Ricardian” literature have compared outcomes across locations
exposed to different climates, controlling to the extent possible for potential
cross-sectional confounders (Schlenker et al., 2005; Ortiz-Bobea, 2020). The
belief that no amount of care would allay concerns about omitted variable
bias has led another branch of literature to favor panel approaches with fixed
effects, which exploit assumedly random weather fluctuations as a source of
identifying variation (Deschênes and Greenstone, 2007).1 A weakness of that
approach is that the effect of weather is conceptually different from the effect
of climate due to plausible adaptation (Hsiang, 2016; Auffhammer, 2018).2

The present paper proposes a novel theoretical and empirical framework
intended to make the best out of both worlds. Our main empirical objects are
a collection of local marginal effects identified purely from random weather
fluctuations using historical data. We use these objects to trace out a common
long-run climatic response function without any parametric restriction beyond
that inherent in the choice of relevant climatic variables, making use of the
Envelope Theorem and the Gradient Theorem, as initially suggested byHsiang
(2016). The fact that we rely on these theorems for identification of climatic
effects does put restrictions on the applicability of our framework, however.

We thus begin by characterizing formally instances wherein the Envelope
Theorem may be legitimately invoked to argue that the long-run, adaptation-
inclusive marginal effects of permanent changes in environmental conditions

1A third approach, explored in Burke and Emerick (2016), exploits county-level climatic
trends, residual of state-level trends, between distant periods.

2Nonlinear panel approaches exploit both weather variation and climatic differences, and
can be expected to deliver a response that is a mix of short-run and long-run effects (Kolstad
and Moore, 2020; Mérel and Gammans, 2021).
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(say, climate as measured over several decades) on an outcome of interest are
identical to the marginal effects of transient, adaptation-exclusive changes in
these conditions (say, yearlyweather). Indoing so,weare led to introduce anew
nomenclature meant to clarify the discourse about long-run effects in climate
impact assessment. This nomenclature defines and relates a series of outcome
response functions, notably that inferable from high-frequency observational
data and those that may be used to build relevant climate counterfactuals. We
show that in addition to the usual smoothness assumption and the fact that
the outcome of interest must be an optimized value, exploiting the envelope
property requires certain functional restrictions on the relationship between
weather, climatic adaptation, and the outcome of interest. These restrictions
relate directly to Theil (1954)’s sufficient conditions regarding the use of expec-
tations in social welfare maximization problems.3 A notable contribution of
our paper is to prove that these conditions are not only sufficient, as argued by
Theil (1954), but also necessary.

We then demonstrate how the envelope property can be leveraged em-
pirically to trace out a global long-run response to climate while addressing
concerns about omitted variables. Intuitively, we exploit assumedly random
fluctuations in weather at each given climate value to estimate a local slope,
which reflects both short-run and long-run effects under the tangency prop-
erty implied by the Envelope Theorem. Riemann integration of local slope
estimates across adjacent climates then delivers the global long-run response
function without imposing any further parametric assumption.

Our empirical implementation of this envelope-gradient-theorem approach
uses agricultural GDP observed over a 19-year period across more than a
thousandUS counties. In spite of the flexibility of themethod and the demands
put on our data to estimate climate-specific marginal responses, the long-run
responses to climatic variables that we obtain are surprisingly smooth and
precisely estimated. In addition, they are coherent with stylized expectations
as well as basic restrictions imposed in prior parametric work on temperature

3Theil (1954) is concerned with the use of expectations of random variables in static,
nonlinear welfare maximization programs in place of full distributions of these variables.
Simon (1956) and Theil (1957) address a similar issue in the context of dynamic programming.
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and agricultural outcomes such as yields or farmland values.
Previous literature has already discussed important restrictions to the use of

the Envelope Theorem in climate impact assessment; these pertain to whether
the outcome is optimized and whether adaptations can be considered to have
a continuous, rather than discrete, effect on the outcome (Guo and Costello,
2013; Nordhaus, 2010; Hsiang, 2016; Blanc and Schlenker, 2017; Deryugina and
Hsiang, 2017). Here, we show that even for optimized outcomes that depend
smoothly on adaptation actions, the Envelope Theorem does not necessarily
imply that random weather variation can be used to identify the slope of
the long-run outcome function with respect to climate. The reason is that
tangency between long-run and short-run responses at the mean weather (i.e.,
the first moment of climate) is guaranteed only when long-run actions are
taken to optimize outcomes under such mean weather. More realistically
however, long-run actions are taken to optimize expected outcomes under the
entire weather distribution, as recognized in several studies (Kelly et al., 2005;
Schlenker, 2017; Shrader, 2021; Maue and Kolstad, 2020; Carleton et al., 2020;
Mérel and Gammans, 2021). As a result, even under risk neutrality the slopes
(and the values) of the short-run and long-run responses may not coincide
at the mean weather.4 Thus, without a proper tangency condition, random
weather fluctuations are of little use if analysts care about long-run responses
that include adaptation, which is almost always the case (Auffhammer, 2018).

Having made that point formally, our paper goes on to derive structural
restrictions on the outcome function that ensure that even under expected out-
come maximization, an envelope result systematically holds at mean weather,
allowing the identification of long-run effects of environmental change from
random high-frequency fluctuations. These conditions are shown to be both
necessary and sufficient within a broad class of smooth and convex optimiza-
tion problems assumed to underlie long-run adaptation choices. Like previ-
ous authors, we assume that observed outcomes H(G, 0) depend structurally
on a realization of weather G and unobserved actions 0 taken in response to
climate, and that conditional on the weather realization, climate influences

4If not, they coincide at some other weather value, but without further functional assump-
tions it is impossible to know where, obviating the practical benefit of the tangency property.
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outcomes only through these actions. This structural relationship gives rise
to a reduced-form relationship between weather, climate, and the outcome.
The key structural restriction implied by the tangency property is that the ac-
tions 0 are allowed to interact only with a linear function of weather, that is,
H(G, 0) = Γ(G)+Ψ(0)G+Φ(0), for some smooth but otherwise unrestricted func-
tions Γ,Ψ, andΦ. Said differently, tangency between the short-run response to
weather and the long-run response to climate (at mean weather) requires the
marginal effect of farmers’ actions to depend on weather in a linear fashion.5
This condition may seem restrictive, but it is needed if one is to exploit the tan-
gency property implied by the Envelope Theorem to recover marginal climate
impacts from the observation of weather effects. In fact, a comparable trade-off
is described by Theil (1954) in the context of the social welfare maximization
problem under uncertainty.6

Armed with a deeper understanding of what the envelope property, in its
most usable form, implicitly assumes, we proceed with its empirical impli-
cations. The main consequence of local tangency is that, for the purpose of
delineating marginal climate effects, weather fluctuations can be considered as
good as climatic changes. Because the assumption of exogeneity is much more
likely to hold for weather than for climate, this property opens the door to
consistent estimation of marginal climate effects, which can then be integrated
across adjacent climates to obtain a common long-run response function. In
our application, we regress annual measures of US county-level agricultural
GDP on average temperature (or degree days, a measure of heat accumulation
rooted in agronomy) and cumulative precipitation. For each climate variable,

5Wefurther show that themarginal response toweather also identifies themarginal expected
response to climate if and only if the function Γ is quadratic.

6Specifically, Theil (1954) writes the following:

Themain conclusion is that there is a central class of cases for which the short-cut
is permissible [and] is bound to lead to the same policy decisions as those taken
in the case of full information. The important thing is that this result does not
require any additional specifications of the policy maker’s preferences. In other
cases the short-cut will usually lead to choice bias. It is in principle possible
to avoid this by replacing the stochastic vector [...] by a non stochastic vector
different from the expectation, but such a short-cut requires specifications of the
welfare function that go much farther than [our] assumption.
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we estimatemarginal effects for 100 climatic intervals. We then use these slopes
to construct the long-run response functions of agricultural GDP to tempera-
ture and precipitation, free of functional form restrictions.

We explore more demanding models to address plausible threats to iden-
tification. Indeed, different regions may exhibit distinct responses to weather
based on geographic variables such as soils. To the extent that these variables
are correlated with climate, the climate-specific marginal effects we identify
may be biased as they would also reflect the influence of these factors. Con-
sequently, we allow marginal weather effects to vary systematically with soil
quality. We further exploit the fact that climates may have changed during the
period of observation, meaning that counties may have moved across climatic
intervals over time. Namely, we expand the climatic variation present in the
data by defining a county’s climate as a moving average of past weather. As
a result, differences in weather slopes across climatic intervals are identified
from comparing a county to itself under different climates, and from compar-
ing counties with different climates but similar soils. We find the results to be
extremely close to those from our baseline model.

Our paper relates to recent and ongoing work by several authors. The idea
of integrating marginal effects along a climate gradient originates in Hsiang
(2016). Our empirical approach differs from the follow-up work of Deryugina
and Hsiang (2017) however, as these authors directly estimate a global flexible
(polynomial) panel model with fixed effects. Interpreting their global rela-
tionship as the underlying long-run response would require more than the
Envelope Theorem (Mérel and Gammans, 2021), and although the counterfac-
tual predictions may be close in some applications, they do not need to.7 The
quadratic model proposed by Mérel and Gammans (2021) is a special case of
the framework proposed here whereby the tangency property holds by design.
Their approach does not require integration of marginal effects, and it delivers
short-run response curves in addition to the common long-run response, but
at the cost of functional form assumptions regarding the data generating pro-
cess. Schlenker (2017) even relaxes the tangency condition, again within the
confines of a parameterized representation of the structural outcome function.

7The difference between the two approaches is explained formally in Section 2.1.
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Finally, Lemoine (2021) analyzes adaptation to climate and weather forecast
information in the context of a dynamic optimization model. In contrast, our
behavioral model is static and ignores adaptation to weather forecasts. Yet,
focusing on the process of long-run climatic adjustment affords a more sophis-
ticated treatment of it. For instance, Lemoine (2021) posits that long-run actions
are taken to maximize the long-run value of payoffs under mean weather, an
assumptionwe relinquish in favor of themore common assumption of expected
outcome maximization. Another difference is that our framework allows for
possibly nonlinear long-run climatic responses, whereas he recovers a single
adaptation-inclusive slope coefficient for each weather variable.

The rest of the paper proceeds as follows. Section 1 investigates the theo-
retical underpinnings of the envelope property. Section 2 discusses its conse-
quences in termsof empirical identification of climate effects. Section 3presents
our empirical application, and Section 4 concludes.

1 The envelope argument: what are we assuming?

Previous literature has already acknowledged two central assumptions un-
derlying the use of the Envelope Theorem, namely differentiability (Guo and
Costello, 2013) and the fact that outcomes must be optimized (Hsiang, 2016).
Here, we argue that in addition to these caveats, functional restrictions are in
fact needed to usefully invoke the envelope property as a basis for the empirical
identification of amarginal long-run response to climate from randomweather
fluctuations. To our knowledge, we are the first to make these restrictions ex-
plicit.

For clarity’s sake, we consider unidimensional weather, denoted by G ∈ R.
We relax this assumption in our empirical application. We denote by � the
cumulative distribution function of G and call it the climate. The expectation of
weather is denoted by E[G] = �. In many empirical studies it is the only aspect
of climate taken into consideration.8

The outcome is a structural function H(G, 0) of weather and an action 0 ∈

8Schlenker (2017) is a notable exception.
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* ⊂ R taken prior to (or without knowledge of) the realization of weather,
where * denotes an open, convex subset of R. Importantly, conditional on
the weather realization G, the value of the outcome only depends on climate
(or its moments) through the action 0. If multiple actions can be taken, then
0 is interpretable as an index (mapping) that varies according to this set of
actions. Hence, the assumption of a univariate action does not unduly restrict
the analysis. We call H(G, 0) the structural outcome function.

1.1 Regularity assumptions

We restrict the function H to be continuously differentiable with respect to G
and 0, to be concave with respect to 0, and to have a unique maximizer in the 0
dimension, for given G. As a result, for all values of G, this unique maximizer,
to be denoted 0̂(G), is characterized by the first-order condition

%H

%0
(G, 0) = 0.

The solution to the previous equation, 0̂(G), thus answers the question: “what
action would be optimal to maximize the outcome under weather G?” Note
that the concavity assumption is made here without loss of generality once we
require that there be a unique critical point characterizing the globalmaximum,
as one can always redefine the index 0 through awell-chosen change of variable
such that the resulting function be concave. (For a formal proof of this claim,
see Appendix A.)

We further assume that the function 0̂(G) is surjective, though not neces-
sarily bĳective, on * , that is, each possible action 0 ∈ * is optimal for some
value(s) of weather. This implies that the equation %H

%0 (G, 0) = 0 has at least one
solution G ∈ R for any given value 0 ∈ * . Solving this equation for G rather
than 0 answers the question: “for what value(s) of weather would the action 0
be optimal?”

We also make the following assumption:

Assumption 1 The function %H
%G (G, 0) is injective with respect to 0, that is,

%H
%G (G, 0) =

%H
%G (G, 0′) ⇒ 0 = 0′.
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Assumption 1 requires that the marginal effect of weather on the outcome
depend on the action taken, in the sense that different actions imply different
marginal effects for givenweather. Note that this assumption does not preclude
the same action 0 from being optimal for different values of weather, say G and
G′, as the corresponding conditions would be %H

%0 (G, 0) =
%H
%0 (G′, 0) = 0.

Finally, note that the fact that the action 0 is taken without knowledge of
the weather realization does not mean that there is no possibility of adaptation
to weather once realized; if there is, the effects of such adaptation are simply
accounted for in the structural outcome function H(G, 0). That is, H(G, 0) can be
thought of as the value function of an optimization problem where adaptation
to weather is assumed to maximize the outcome, conditional on weather G and
the long-run action 0.

1.2 Statement of the problem

We define the long-run outcome response function to climate � as the value of the
following problem:9 {

max
0∈*

H(�, 0)
}
= H

(
�, 0̂(�)

)
≡ .(�). (1)

This definition conforms with the concept of “long run” as typically used in
microeconomics textbooks, e.g., Perloff (2016) or Nicholson and Snyder (2016).
For instance, although firms cannot vary capital in each production period, the
long-run cost function is one that minimizes the cost of producing any given
quantity when allowing all factors, including capital, to vary with output.
This long-run cost function tells us how production costs would change if
output quantity were to change from say, durably low levels to durably high
levels. However, it is not very informative if we are interested in the effects
of transient production shocks, because it assumes a degree of flexibility that
the firm typically does not have. Similarly, the function .(·) indicates how the
outcomewould respond to weather, if the action 0 could be taken in anticipation

9The squiggly brackets around the maximization problem, although perhaps redundant,
are meant to emphasize that the element on the right-hand side of the equality sign is equal to
the value, rather than the objective, function. The equivalency sign (≡) indicates a definition.
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of weather. It is informative about how the outcome would respond if climate
changed from say, a durably cool climate to a durably warm climate.

The Envelope Theorem implies that .′(�) = %H
%G

(
�, 0̂(�)

)
. This theorem has

been invoked in the literature as a way to justify the use of weather fluctuations
to identify the marginal effects of changes in climate. The reason is that it
is easier to observe weather shocks than climatic shocks in empirical work.
Weather changes at a yearly frequency, sometimeswith large swings, providing
arguably exogenous variation in many settings. In contrast, climate may be
stationary, or may only change at a slow pace over time. These changes may
only be detectable over very long periods of time during which other relevant
factors may change, raising concerns about omitted variable bias.

Unfortunately, the function observed in the data may not be H
(
G, 0̂(�)

)
,

as implicitly assumed by the use of the Envelope Theorem. For 0̂(�) is the
long-run adaptation that maximizes the outcome under mean weather. Instead, if
economic agents are taking long-run actions in response to climatic signals, a
more tenable assumption is that they choose 0 to maximize expected outcomes,
that is, the expected realization of H given the climate �. The same point
has been made, for instance, in contributions by Kelly et al. (2005), Schlenker
(2017), Shrader (2021), or Carleton et al. (2020).10 Conceptually, agents’ choice
of action, denoted 0̃(�), would thus solve the following problem:{

max
0∈*

∫
H(G, 0)3�(G)

}
=

∫
H (G, 0̃(�)) 3�(G). (2)

There is a conceptual difference betweenmaximizing the outcome under mean
weather, as in Problem (1), and maximizing the expectation of the outcome
under given climate, as in Problem (2). Notably, maximization of expected
outcomes implies that higher-order moments of the climate, for instance its
variance, may influence choices, whereas only the mean matters in Problem
(1).

10Lemoine (2021) proposes a hybrid approach in the context of a dynamic optimization
model, whereby some actions affecting future payoffs are taken so as to maximize the ex-
pected discounted payoff given weather forecast information, while others are assumed, for
convenience, to be taken so as to maximize the long-run value of the payoff evaluated at mean
weather.
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Table 1 Definitions of functions

Function Name
H(G, 0) structural outcome function
Ĥ(G, �) ≡ H

(
G, 0̂(�)

)
conditional reduced-form outcome function

.(�) ≡ Ĥ(�, �) long-run outcome response function
H̃(G, �) ≡ H (G, 0̃(�)) short-run reduced-form outcome function
Y(�) ≡

∫
H̃ (G, �) 3�(G) long-run expected outcome response function

We will denote Ĥ(G, �) ≡ H
(
G, 0̂(�)

)
the reduced-form outcome function

that would obtain if 0 were chosen to solve Problem (1). The long-run out-
come response function is related to this reduced-form outcome function
because .(�) = H

(
�, 0̂(�)

)
= Ĥ(�, �), and .′(�) = %Ĥ

%G (�, �) since
%Ĥ
%�(�, �) =

%H
%0

(
�, 0̂(�)

)
0̂′(�) = 0 from the first-order condition to Problem (1). In contrast,

we will denote H̃(G, �) ≡ H (G, 0̃(�)) the reduced-form outcome function that
obtains when 0 is chosen to solve Problem (2). It is this latter function, not
Ĥ(G, �), that we expect to observe in the data. We will thus refer to H̃(G, �)
as the short-run reduced-form outcome function, and to Ĥ(G, �) as the conditional
reduced-form outcome function.

Unfortunately, the relationship between the functions H̃(G, �) and.(�) is not
as straightforward as that between Ĥ(G, �) and .(�). Due to Assumption 1, the
slopes %H

%G

(
�, 0̂(�)

)
and %H

%G

(
�, 0̃(�)

)
differ unless 0̂(�) = 0̃(�). If 0̂(�) ≠ 0̃(�) and

agents solve Problem (2) rather than (1), then the Envelope Theorem, which is
based on Problem (1), cannot be legitimately invoked in empirical work. That
is, a local slope obtained using random weather fluctuations (i.e., %H̃

%G

(
�, �

)
)

does not identify the underlying long-run slope .′(�) = %Ĥ
%G (�, �).

In addition to the long-run outcome response function .(�), one may be
interested in what we may call the long-run expected outcome response function,
defined as

Y(�) ≡
∫

H (G, 0̃(�)) 3�(G) =
∫

H̃ (G, �) 3�(G).

This function recognizes that economic agents decide on actions 0 based on
expectations, but that once actions are set optimally outcomes are still random
due to the randomness of weather. Said differently, Y(�) is the expectation of
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the short-run reduced-form relationship H̃(G, �) thatwe expect to observe in the
data, and it is the value function of Program (2). Can the Envelope Theorem
be used here to argue that the marginal effect of climate on the expected
outcome, %Y%� , can be identified from the empirically identifiedmarginal change

in weather, namely %H̃
%G

(
�, �

)
? Unfortunately the answer is still no, because

taking the partial derivative of the objective function in Program (2) with
respect to the mean weather � (holding actions 0 constant at 0̃(�)) would entail
taking the derivative of the probability density function, rather than that of the
function H(G, 0) itself. Intuitively, the objective function of Program (2) is an
average, while the function we observe in the data is a particular realization.

Table 1 summarizes the definitions of the various functions discussed above.
In what follows, we first derive a necessary and sufficient condition on the
structural outcome function H(G, 0) under which 0̃(�) = 0̂(�) for all �, where
� denotes the expected weather under climate �.11 This is, in essence, the
same problem as that analyzed by Theil (1954) in the context of the social
welfare maximization problem under uncertainty, although his specification
of the structural outcome function is slightly different from ours and he does
not attempt to prove necessity. While Theil (1954)’s interest lies chiefly in
identifying restrictions under which a policymaker may use expected values in
lieu of distribution functions in the expected welfare maximization program,
in our context the property 0̃(�) = 0̂(�) further implies that the marginal effect
of weather, evaluated at the mean weather, identifies the long-run marginal
effect of climate, that is, %H̃

%G = .
′. In addition to this key property, we derive a

more restrictive necessary and sufficient condition under which the marginal
effect of weather also identifies the marginal effect of climate on the long-run
expected outcome, that is, %H̃%G =

%Y
%� .

1.3 Necessary condition for 0̃(�) = 0̂(�)
Suppose that, despite the fact that Problem (1) andProblem (2) are conceptually
different, it is nonetheless the case that 0̃(�) = 0̂(�) for all �, where � denotes

11Alternatively, one could imagine placing restrictions on the set of distributions � forwhich
the tangency property holds. Such an approach lies beyond the scope of the present paper.
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the expectation of �. We now show the following key lemma:

Lemma 1 The function %H
%0 (G, 0) must be affine in G for all 0 ∈ * .

Proof: Consider some 0 ∈ * . By assumption, there exists � ∈ R such that
%H
%0 (�, 0) = 0, that is, 0 = 0̂(�). Then for all distributions � with mean �, it must
be the case that

∫ %H
%0 (G, 0)3�(G) = 0 from the first-order condition of Problem

(2). Define the function )0(G) = %H
%0 (G + �, 0). Then )0(0) = 0. It is also the

case that for all distributions � with mean zero,
∫
)0(G)3�(G) = 0. To see why,

rewrite∫
)0(G)3�(G) =

∫
%H

%0
(G + �, 0)6(G)3G =

∫
%H

%0
(G, 0)6(G − �)3G = 0

where 6 is the p.d.f. associated with � and the last equality obtains because
the density 5 (G) ≡ 6(G − �) has mean �. (To see why, note that

∫
G 5 (G)3G =∫

G6(G − �)3G =
∫
(G + �)6(G)3G = � since � has mean zero.)

Using the fact that
∫
)0(G)3�(G) = 0 for all � with mean zero, we will

now show that )0 is a linear function. First, for all G ∈ R, we must have that
)0(G)

2 +
)0(−G)

2 = 0 since G
2 + −G2 = 0. That is, )0 is an odd function. Second, for all

G > 0, consider the distribution �G =
(
−1, G; G

G+1 ,
1
G+1

)
that takes on the value -1

with probability G
G+1 and the value G with probability 1

G+1 . �G is a zero-mean
distribution, therefore we must have

G

G + 1)0(−1) + 1
G + 1)0(G) = 0

that is, )0(G) = −G)0(−1) = G)0(1)where we have used the fact that )0 is odd.
Finally, for G < 0, we have )0(G) = −)0(−G) = −(−G))0(1) = G)0(1). Therefore,
for all G ∈ R, we have that )0(G) = )0(1)G, that is, )0 is a linear function.

Since )0(G) = %H
%0 (G+�, 0), wemust have %H

%0 (G, 0) = )0(G−�) = )0(1)(G−�) =
)0(1)G − )0(1)�, which shows that the function %H

%0 is affine in G. Q.E.D.
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1.4 Implied structural outcome function

Given that %H
%0 is affine in G for all 0 ∈ * , it must be that

H(G, 0) = Γ(G) +Ψ(0)G +Φ(0) (3)

for some C1 functions Γ,Ψ, and Φ. Note that the structure in Equation (3) only
imposes that actions interact with a linear function ofweather, but the functions
Γ,Ψ, and Φmay themselves be nonlinear.

It is easy to check that for the class of functions H(G, 0) defined by Equation
(3),

∫ %H
%0 (G, 0)3�(G) =

%H
%0 (�, 0), where � is the mean of the distribution �.

Therefore, if 0maximizes
∫
H(G, 0)3�(G), it alsomaximizes H(�, 0), hence 0̂(�) =

0̃(�) and the structure in (3) is also sufficient for tangency. These results are
summarized in the following proposition.

Proposition 1 A necessary and sufficient condition for %H̃
%G = .

′ is that the structural
outcome function follow the structure in Equation (3).

This proposition directly relates to the so-called “certainty equivalence”
principle in dynamic programming, which finds its origin in the static work
of Theil (1954) and was developed by Simon (1956) and Theil (1957). This
principle states that under certain functional restrictions, the optimal policy
strategy under uncertainty is equivalent to that which would be optimal if
all uncertain variables were replaced by their expected value. In Appendix
B, we show that the structure in Equation (3) is equivalent to the functional
restrictions identified by Theil (1954).

1.5 Long-run expected outcome response function

Here we are interested in the behavior of the functionY(�), particularly how it
changes when the mean of climate changes, that is, when there is a shift in the
weather distribution, say towards higher temperatures, without a change in
the shape of that distribution. We derive a necessary and sufficient condition
under which %Y

%� =
%H̃
%G , which provides the needed envelope result (equality of

slopes).
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For expositional convenience, we consider distribution functions � that can
be parsimoniously described by two parameters � and �2 reflecting the mean
and variance of weather, respectively. Our derivations would still hold if we
allowed higher moments to describe the set of possible distributions. We
denote 5 (G, �, �2) the p.d.f. of �. We can then view Y(�) as a function of the
two distributional parameters, sayY(�, �2). We are interested in the change in
the expected outcome with respect to �, holding �2 constant, that is, %Y

%� , and
therefore it may be useful to derive conditions under which the empirically
identified effect %H̃

%G (�, �) represents the effect %Y
%� , in addition to representing

the effect .′(�) discussed previously. We thus consider the set of structural
outcome functions H(G, 0) satisfying the structure in Equation (3), and ask
what additional restrictions, if any, are needed for the empirically identified
marginal effect to also reflect the local behavior of the function Y(�, �2) with
respect to �.

GivenEquation (3),wehave that H̃(G, �, �2) = Γ(G)+Ψ
(
0̃(�, �2)

)
G+Φ

(
0̃(�, �2)

)
and therefore %H̃

%G (�, �, �2) = Γ′(�) +Ψ
(
0̃(�, �2)

)
. We also have that Y(�, �2) =∫

Γ(G)3�(G) +Ψ
(
0̃(�, �2)

)
� +Φ

(
0̃(�, �2)

)
and therefore

%Y
%�
(�, �2) =

∫
Γ(G)

% 5

%�
(G, �, �2)3G +Ψ

(
0̃(�, �2)

)
+

[
Ψ′

(
0̃(�, �2)

)
� +Φ′

(
0̃(�, �2)

) ] %0̃
%�
(�, �2)

=

∫
Γ(G)

% 5

%�
(G, �, �2)3G +Ψ

(
0̃(�, �2)

)
where we have used the fact that 0̃(�, �2) = 0̂(�) together with the first-order
condition for the maximization of H(�, 0).

Therefore, it is apparent that the essential condition for %Y
%� =

%H̃
%G , under

the structural model implied by (3), is that, for all distributions �, Γ′(�) =∫
Γ(G)% 5%�(G, �, �2)3G, that is:

Γ′(�) = %

%�

(∫
Γ(G)3�(G)

)
. (4)
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Condition (4) is trivially satisfied if Γ(G) is affine. It is also satisfied if Γ(G) is
quadratic. To see why, write Γ(G) = 0G2 + 1G + 2. We then have:∫
Γ(G)3�(G) = 0

∫
G2 5 (G, �, �2)3G + 1

∫
G 5 (G, �, �2)3G + 2

∫
5 (G, �, �2)3G

= 0(�2 + �2) + 1� + 2

and therefore %
%�

(∫
Γ(G)3�(G)

)
= 20� + 1 = Γ′(�).

However, the property does not carry forward if Γ(G) is cubic.12 As ex-
pressed in the following proposition, it turns out that the fact that Γ(G) be
quadratic is necessary for condition (4) to hold for all �.

Proposition 2 A necessary and sufficient condition for %Y
%� =

%H̃
%G for all � = (�, �2)

is that
H(G, 0) = �G2 +Ψ(0)G +Φ(0) (5)

for some � ∈ R and some C1 functionsΨ andΦ. In that case,Y(�, �2) = .(�)+��2,
that is, the long-run expected outcome function is a vertical translation of the long-run
outcome response function.

Proof: We have already argued sufficiency. To show necessity, consider the
class of probability distributions �G,G0 ,? =

(
G, G0 + G; 1 − ?, ?

)
that take on the

value G with probability 1 − ? and the value G0 + G with probability ?, and
0 ≤ ? ≤ 1. The expectation is � = ?G0+ G, while the variance is �2 = G2

0?(1− ?).
Therefore, if one holds G0 and ? constant, then a change in the mean �, keeping
the variance constant, is equivalent to a change in the value of G. Applying

12Consider the function Γ(G) = 0′G3 + 1′G2 + 2′G + 3′. Writing G3 = (G − � + �)3 = (G − �)3 +
3�(G − �)2 + 3�2(G − �) + �3 and defining "3 ≡

∫
(G − �)33�(G), we obtain:∫

Γ(G) 5 (G, �, �2)3G = 0′("3 + �3 + 3��2) + 1′(�2 + �2) + 2′� + 3′

and therefore
∫
Γ(G) % 5%� (G, �, �2 , "3)3G = 30′(�2+ �2)+21′�+ 2′which is different from Γ′(�) =

30′�2 + 21′� + 2′.

16



condition (4) to this class of distributions, we get

Γ′(?G0 + G) =
%

%G

����
?,G0

[
(1 − ?)Γ(G) + ?Γ(G0 + G)

]
= (1 − ?)Γ′(G) + ?Γ′(G0 + G).

If condition (4) is to hold for all distributions, it must hold for all values of the
distribution parameters G0 and ? within the �G,G0 ,? class. That is, wemust have

∀G0, ∀G, ∀? ∈ [0, 1] Γ′(?G0 + G) = (1 − ?)Γ′(G) + ?Γ′(G0 + G),

that is,

∀G0, ∀G, ∀? ∈ [0, 1] Γ′
(
(1 − ?)G + ?(G0 + G)

)
= (1 − ?)Γ′(G) + ?Γ′(G0 + G),

that is

∀G, ∀H, ∀? ∈ [0, 1] Γ′
(
(1 − ?)G + ?H

)
= (1 − ?)Γ′(G) + ?Γ′(H).

This last property implies that Γ′ must be affine (as a function that is both
concave and convex), and thus Γ itself must be quadratic. Given that the
structure in (3) already allows for an interaction between G and an unspecified
function of 0 (which may include a constant), the restriction of Γ(G) to a single
quadratic term does not constrain the model specification beyond what has
been shown to be necessary. The last part of the proposition is obtained by
specializing the definitions of . and Y to the assumed structure for H(G, 0).
Q.E.D.

Proposition 2 provides an interesting result in light of the common use of
the quadratic functional form to represent the relationship between weather
and outcomes in empirical work. However, it should not be construed as
implying that estimating a quadratic panel regression of the outcome on
weather, even with fixed effects, will trace out the long-run expected outcome
response function, or even the long-run outcome response function. Mérel and
Gammans (2021) demonstrate how a quadratic weather panel leads to biased
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counterfactual estimates when the structural outcome function is of the form
H(G, 0) = �0 + �1G + �2G

2 + �3(G − 0)2, with �3 < 0. This is a special case of
Equation (5) with � = �2 + �3, Ψ(0) = �1 − 2�30, and Φ(0) = �0 + �30

2. The
authors show that estimates of the parameters (�1, �2) obtained from a simple
quadratic panel with fixed effects are biased, affecting identification of both the
long-run outcome response function .(�) and the long-run expected outcome
response functionY(�). The intuition behind this result is that although fixed
effects account for the function Φ(0), structurally the slope termΨ(0)G still de-
pends on actions and thus climate, whereas the simple quadratic specification
imposes common coefficients on G across panels.

An econometric panel implementation of the structural relationship in
Equation (5) that remained totally agnostic about the functionsΨ andΦwould
be:

H8C = 8 + �18G8C + �2G
2
8C + &8C

where 8 indexes panels and C indexes time. Assuming stationary climates, this
regressionwould identify the function Γ through the �2 coefficient, but itwould
not identify H(G, 0) itself because the actions 0 are unobserved and instead left
implicit in the coefficients 8 and �18 . Thus, the estimated relationship would
be useless to recover the long-run outcome function (or the long-run expected
outcome function), and so counterfactual analysis of climate impacts would be
precluded.

Finally, note that although Proposition 2 establishes a result about equality
of slopes, it does not ensure tangency, as there is no guarantee that Y(�, �2) =
H̃(�, �, �2). Of course, equality in levels is not required for counterfactual
analysis of changes in climate, so one should not view this caveat as aweakness.
For the sake of completeness, the proposition below establishes that tangency
requires Γ(G) to be affine, that is, � = 0 in Equation (5).

Proposition 3 A necessary and sufficient condition for Y(�, �2) to be tangent to
H̃(G, �, �2) at G = � for all (�, �2) is that

H(G, 0) = Ψ(0)G +Φ(0) (6)
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for some C1 functionsΨ and Φ.

Proof: Under the structure of Proposition 2, .(�) is tangent to H̃(G, �, �2) at
G = � and %Y

%� (�, �2) = %H̃
%G (�, �, �2). Since Y(�, �2) = .(�) + ��2, a necessary

and sufficient condition for tangency betweenY and H̃ is that � = 0.

1.6 How restrictive are these conditions?

Admittedly, the results of the preceding sections may be viewed as “bad news”
for empiricists seeking to identify climatic impacts from random weather fluc-
tuations. While they certainly call for some caution when invoking envelope
arguments to interpret panel estimates, in our view they certainly do not close
the door to empirical work on the subject. First, note that the conditions of
Proposition 3 are not needed for counterfactual analysis. Second, the restric-
tion in Proposition 2 is only needed for inference on the long-run expected
outcome response function, not the long-run outcome response function it-
self. In addition, relative to Proposition 1 that proposition only requires the
additional assumption that the outcome depend quadratically on weather, an
assumption many empiricists have already been willing to make in parametric
models.13 Thus, the discussion boils down to Equation (3), which imposes that
actions interact with a linear function of weather in the structural outcome
function.

Another way to express this key restriction is to say that the marginal ef-
fect of weather on the marginal effect of actions is constant with respect to
weather. Importantly, the restriction does not preclude actions from attenu-
ating marginal weather effects, since %H

%G = Γ
′(G) +Ψ(0). In particular, it does

not prevent adaptation from turning a negative marginal weather effect into
a positive one; but it precludes turning a locally concave relationship into a
locally convex (or less concave) one.14 Also note that if Equation (3) is violated

13See the discussion of Section 1.5, however.
14Note that while it is possible for actions to affect the slopes of the weather-outcome

relationship without affecting its convexity, it is not possible for actions to affect the convexity
of that relationship without also affecting the slopes. Even if at some weather value the slope
is invariant to actions, if convexity varies across actions then slopes must be different in a
neighborhood of that weather value.
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because actions interact with a nonlinear function of weather, it may still be
possible to redefineweather through a change of variable so that the restriction
is met. For instance, assume a structural outcome function of the form:

H(G, 0) = Γ(G) +Ψ(0)Λ(G) +Φ(0)

where Λ(G) is a bĳective function. Then, the restriction is met for the transfor-
mation of weather I = Λ(G), that is, for the structural outcome function

 (I, 0) = Γ ◦Λ−1(I) +Ψ(0)I +Φ(0).

Thus, as long as actions interact with a monotonic function of weather, there
exists a transformation ofweather for which the restriction holds, although this
particular transformation may remain unknown to the analyst. This could call
for implementing multiple model specifications involving different transfor-
mations of weather variables. One instance where the monotonicity condition
would fail is if the marginal effects of the action on the outcome were identical
at distant values of climate, say extremely cold and extremely hot tempera-
tures, without being constant between those climate values. In practice, such
situation would call for restricting the analysis to a climate support over which
the marginal effect of the action can be assumed to be monotonic with respect
to weather.

One may further assess the restrictiveness of the identifying assumptions
by considering graphical depictions of outcome response functions that meet
them. Figure 1 depicts a short-run reduced-form outcome function, the long-
run outcome response function, and the long-run expected outcome response
function in the special case where the structural outcome function has the
form H(G, 0) = �0 + �1G + �2G

2 + �3(G − 0)2, with �3 < 0 and �2 < 0. This
structure satisfies Assumption 1 because %H

%G = �1 − 2�30 + 2(�2 + �3)G and
�3 ≠ 0. It is a special case of the structure in Proposition 2 with � = �2 +
�3 < 0, Ψ(0) = �1 − 2�30, and Φ(0) = �0 + �30

2. Because the restriction of
Proposition 1 is satisfied, there is tangency between the short-run reduced-
form outcome function corresponding to climate �0 and the long-run outcome
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Figure 1 Key outcome functions and their relative positions

response function at �0. Because the restriction of Proposition 2 is satisfied,
there is also equality of slopes between the short-run reduced-form outcome
function and the long-run expected outcome function at �0. But because the
restriction of Proposition 3 does not hold, these last two functions are not
tangent to each other at �0.

One important restriction in the previous example is that the second-order
derivative of the long-run outcome response function is constant across cli-
mates. Clearly, this need not be the case under the confines of Proposition 1, as
structural outcome functions of the form H(G, 0) = Γ(G) + �3(G − 0)2, with �3 a
constant independent of 0 and Γ unrestricted, would also meet the minimum
restriction for tangency between the long-run outcome response function and
the short-run reduced-form outcome function. Such an example is represented
in Figure 2. The figure shows that Proposition 1 still allows for substantial het-
erogeneity in the shape of the short-run response functions. The key restriction
here is that the second-order derivative must be identical across short-run re-
sponses at any givenweather value G (even if this commonderivative is allowed
to vary with G). In practice however, the restriction would only apply to the
set of short-run responses at locations whose weather distribution support
actually includes the weather value G.

To conclude this section, we note that onemay still be able to exploitweather
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Figure 2 Long-run outcome response function and three short-run reduced-form
outcome functions

fluctuations to identify long-run responses of optimized outcomes in panel
settings while relinquishing the tangency property, at the cost of an explicit
parameterization of the adaptation process, as in Schlenker (2017). That study
proposes a functional parameterization of H(G, 0) that accommodates an inter-
action between actions (which, like here, are not observed in the data) and a
nonlinear (quadratic) function of weather. Interestingly perhaps, the results of
the study indicate that relaxing the tangency restriction does not necessarily
lead to large differences in the estimated long-run outcome response function.

2 Consequences for empirical work on optimized
outcomes

A large literature has sought to exploit randomweather fluctuations to identify
the response of optimized or quasi-optimized outcomes to climate (Dell et al.,
2014; Blanc and Schlenker, 2017; Auffhammer, 2018). While some of this liter-
ature, notably Deschênes and Greenstone (2007), acknowledges at the outset
that the identified effect may not reflect long-run adaptation to climate, sev-
eral papers have invoked the Envelope Theorem to argue that this effect is still
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relevant for climate change analysis, at least at the margin. A recent working
paper goes further by using the Envelope Theorem as a justification for non-
marginal analysis, arguing that a global nonlinear relationship between an
optimized outcome (GDP) and weather identified in a panel with fixed effects
represents a long-run relationship inclusive of climatic adaptation (Deryugina
and Hsiang, 2017).

Such a strong result requires more than the Envelope Theorem to hold
(Mérel and Gammans, 2021). Nonetheless, it remains true that, to the extent
that an Envelope result holds locally, as in the instances highlighted in Section
1, a global long-run relationship may be recovered by stepwise integration, as
initially suggested byHsiang (2016). This is the approach taken in the empirical
part of this paper. While we cannot claim as our own the idea of integrating
marginal effects estimated using local time-series variation, to the extent of our
knowledge we are the first to implement it empirically. After laying out the
method, we discuss the testability of the structural restriction embedded in
Equation (3).

2.1 Recovering a long-run response by integrating marginal
effects across climates

By assuming that the long-run and short-run responses of the outcome are tan-
gent to each other at the mean weather (which, as shown above, is tantamount
to assuming the structure in Equation (3) for some unspecified functions Γ,
Φ, and Ψ), we can use local time-series variation in weather to identify local
marginal responses in a first step, and in a second step integrate stepwise across
climates to recover the global relationship between climate and the outcome.

More specifically, assume that we have panel data, where each panel rep-
resents a location, e.g., a county, and the outcome is observed at a yearly
frequency. We may estimate marginal responses for each county, or more par-
simoniously we may group counties by climates by defining climatic intervals,
and estimate local marginal responses for each climate interval. The first step
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Figure 3 Stepwise integration between two climates
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Note: Vertical dashed lines delimit climatic intervals. Δ̂H represents our estimate of
the change in outcome resulting from a movement from climate �0 to climate �1
along the estimated long-run response function.

of our analysis thus consists of estimating the following regression:

H8C = ��(8)G8C + 5state(8)(C) + 8 + C + &8C (7)

where 8 denotes a county, C denotes a year, H8C denotes the outcome (in our ap-
plication, agricultural GDP), G8C denotes weather, state(8) is the state of county
8 and 5state(8)(C) is a state-specific time trend, and 8 and C are respectively
county and year fixed effects. The parameters of interest are the set of marginal
weather effects ��, identified from the marginal weather responses of counties
whose climate �(8) falls within the interval

[
� − Δ�

2 , � +
Δ�
2

]
, where Δ� is the

width of the climatic interval. Although one could imagine identifying these
marginal effects by estimating non-linear functions specific to each climatic
interval

[
� − Δ�

2 , � +
Δ�
2

]
and evaluating them at climate �, the specification

in (7) is the most parsimonious and delivers first-order approximations to the
underlying short-run response functions, which is sufficient for the purpose of
computing local marginal effects. In Appendix E, we report results from mod-
els that instead use locally quadratic approximations to short-run response
functions. They turn out to be extremely close to those from the locally linear
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model.15
In the second step, stepwise integration is performed by multiplying local

marginal effects by the climatic width of each interval and summing up across
intervals located between the initial and final climate values. This allows us to
recover the long-run difference in outcomes between an initial climate �0 and a
final climate �1. This procedure is represented graphically on Figure 3 for the
case of unidimensional climate.

Contrary to previous work, the approach described above is essentially
model-free, or non-parametric, once the choice of relevant weather variables
has been made. The global response to climate is identified flexibly by the sim-
ple arrangement of short-run slopes across a large number of climates (in our
case, 100 intervals for each climatic variable). The only assumptions required
for the resulting relationship to identify the underlying long-run response are
thus (i) the existence of a common (or global) long-run response across climates,
and (ii) the local tangency result. Note that climatic variation is not in any way
absent from recovery of the long-run response: although only weather fluctua-
tions are used to identify localmarginal effects, the arrangement of these slopes
into a global response requires knowledge of mean weather, i.e., climates.

Relatedly, it may be useful to make explicit how this envelope-gradient-
theorem approach differs, at least from a conceptual standpoint, from previous
approaches that have attempted to recover a long-run response function from
global flexible panels with fixed effects, notably Deryugina and Hsiang (2017).
The key difference is illustrated in Figure 4 based on a data set with two
climates (or counties), denoted�1 and�2. There are two (equiprobable)weather
realizations for each climate, say G81 and G82 for climate �8 (8 = 1, 2), thus
the sample size is four. To make the two approaches directly comparable,

15While we estimate local weather slopes within a parametric framework, the global long-
run response function is still determined by the flexible arrangement of these slopes across
climatic intervals. This is different from estimating a global parametric panel, as much of the
literature has done. Here, within each climatic bin, we essentially resort to local polynomial
approximations of the true DGP to estimate the marginal effects of weather. The fact that
local polynomials of order 1 and 2 yield similar results in our application lends credence to this
approximation. As for nonparametric regressions, the asymptotic convergence of our estimator
would rely on increasing the degree of the local polynomials adequately with the number of
observations. Eliciting the conditions of convergence in our setting is beyond the scope of the
present work, however.
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Figure 4 Difference between the envelope-gradient approach and the flexible panel
approach

Note: Climatic response functions are represented with bold segments over the range
[G11 , G22] and are normalized to take the value H0 at the climatic value equal to G11. In
panel (b), the dotted arrows represent the fixed effect for climate �2 (relative to that
for climate �1). The linear segments obtained by interpolating the raw data without
imposing continuity are shown with thin solid lines; their positions after the fixed
effects have been set to ensure continuity are shown with bold lines.

we consider a flexible panel implemented using a piecewise linear function.
We assume that the degrees of freedom are the same in both approaches.
Since the envelope-gradient-theorem approach estimates, at a minimum, two
intercepts and two slopes (see Equation (7)), for the global flexible panel we
consider a piecewise linear interpolation with one knot located precisely at the
climatic value that separates the two climatic intervals, taken here to be the
midpoint between �1 and �2. Because there are as many model parameters
as observations, both approaches provide a perfect fit to the data. But the
resulting response functions, despite being both piecewise linear, are different.

Panel (a) depicts the interpolationaffordedby the envelope-gradient-theorem
approach. Under this approach, climates are considered separately from each
other and each linear segment simply joins the two climate-specific data points.
The linear segments (the slopes) are then arranged so as to provide a contin-
uous response at the knot, as illustrated in Figure 3 for the case of many
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climatic intervals. Panel (b) of Figure 4 depicts the interpolation afforded by
the piecewise-linear panel with fixed effects, for the exact same data set. The
midpoint between climates is such that it does not “separate” the climate-
specific data: one observation for climate �2 lies within the �1 interval, and
vice-versa. This feature is arguably common tomany panel datasets, including
the one explored in the empirical part of this paper, as the supports of locational
weather outcomes tend to overlap across locations. Because of this overlap, the
model would fit the first segment through the data points corresponding to the
weather observations G11 and G21, and the second segment through the data
points corresponding to the weather observations G12 and G22, while using the
intercepts to ensure continuity at the knot. Using the intercept of the first
county as the reference, this implies that the intercept of the second county
should be shifted downwards, as indicated by the arrows on the graph. The
resulting piecewise linear function is clearly different from that arising from
the arrangement of slopes in panel (a).

What is the intuition behind this difference? The flexible panel approach
consists of fitting a function through the entire set of data points, irrespective
of whether a given point belongs to a particular county/climate (except for the
county-specific intercepts which vertically shift all observations from the same
county by a constant). This approach implies that degrees of freedom may be
used to arbitrage errors across data points that belong to different climates. In
contrast, the gradient-theorem approach fully accounts for differences across
climates: degrees of freedomare onlyused to arbitrage errors across datapoints
within the same climate. As illustrated in Figure 4, the resulting response
functions can, at least conceptually, be quite different. And increasing the
flexibility of the parametric panel model does not necessarily help: here, the
model fit is already perfect, yet the responses are distinct.

2.2 Addressing omitted variable bias in local slope estimates

While the integration of local slopes along a climate gradient yields a long-run
response function under the functional assumptions discussed in Section 1,
there remains a possibility that these slopes, which reflect a marginal response
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at any given climatic value, may be biased by the presence of omitted variables.
Specifically, if there exist time-invariantunobserved factors common to counties
in a given climatic interval that contribute to the marginal weather response,
i.e., that interact with weather, they will confound the estimated weather slope
(to the extent that they are not caused by climate, of course). That is, the
weather slope estimated at a given climatemay reflect the effect of these factors,
in addition to that of climate. This is a problem for counterfactual climate
analysis because as counties’ climates change under warming, making them
cross climatic intervals, these other factors do not change.

A “brute-force” solution to the problem could be to exploit the fact that cli-
mates may have changed during the period of observation and completely
remove all cross-sectional comparisons from identification, in the spirit of
Burke and Emerick (2016). Specifically, one could define climate as a rolling
average over, say, thirty years and include county-level weather slopes as
additional covariates, which would non-parametrically control for all time-
invariant, county-specific factors that may interact with weather, such as soils.
That is, in the first step one could estimate the following augmented regression:

H8C = ��(8 ,C)G8C + �8G8C + 5state(8)(C) + 8 + C + &8C

where �(8 , C) now indicates the climatic interval where county 8 is present in
year C. Unfortunately, in our application toUS agricultural GDP, climatic trends
during the observation period are too weak to allow for a precise estimation of
the climate-contingent weather slopes. Even when we replace county-specific
slopes with state-specific slopes, which essentially confines identification to
comparisons across counties in the same state and comparisons of countieswith
themselves under varying climates, estimates remain extremely noisy. This
outcome should not come as a surprise; Fisher et al. (2012) make a comparable
remark in the context of the parametric panel approach regarding the use
of state-by-year fixed effects in regressions of county agricultural profits on
weather, as thesefixed effects absorb a large amount of usefulweather variation,
leading to statistically insignificant estimates.

Thus, by necessity, the strategy employed in our application ismoremodest.
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We choose to control for interactions between weather and observables (here,
soils) explicitly while making a selection-on-observables assumption. That is,
we estimate the following augmented regression:

H8C = ��(8)G8C + $′z8G8C + 5state(8)(C) + 8 + C + &8C (8)

where z8 is a vector of time-invariant covariates interacting with weather and $

is the associated parameter vector. We also estimate a specification that allows
locational climates to vary over time, that is,

H8C = ��(8 ,C)G8C + $′z8G8C + 5state(8)(C) + 8 + C + &8C (9)

where the assignment of an observation (8 , C) to a climate interval, �(8 , C), is
based on a rolling climate �8C calculated using the weather average over the
previous thirty years, that is, �8C =

∑C−1
B=C−30 G8B

30 .16 In Equation (9), differences in
weather slopes across climates are identified from comparisons across counties
with similar covariates z8 , as well as comparisons of counties with themselves
under varying climates.

2.3 Empirical testability of the structural restriction

One of the key challenges in testing the restriction in Equation (3) is that we
expect to observe the short-run reduced-form outcome function H̃(G, �) in the
data, but not the underlying structural outcome function H(G, 0) that is subject
to the restriction. In the absence of comprehensive data on adaptation actions,
it may be tempting to test the restriction by estimating a model of the form

H8C = 8 + �8G8C + )(G8C , %8) + controls + &8C (10)

where ) is a nonlinear function parameterized by %8 , and testing for the joint
equality of the %8 coefficients across panels. The problem is that heterogeneity
across panels in the non-linear portion of the response function may be due

16Note that �8C denotes the climate of county 8 in year C, while �(8 , C) denotes the climate
interval in which this climate value falls. The parameters of interest are indexed by �, not by
(8 , C).
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not only to different adaptation choices driven by climate, but also to unob-
served time-invariant factors.17 Thus, a rejection of the null hypothesis of equal
%8s could be entirely due to unobserved heterogeneity that is independent of
adaptation, which would not in itself violate the key restriction of Equation (3).
That is, the test could fail even if the underlying condition is met. Conversely,
failure to reject the null could be due to time-invariant factors obfuscating a
nonlinear interaction between weather and climate-driven adaptation actions.

3 Empirical implementation

Using the method described in Section 2, we derive the long-run response of
US county-level agricultural GDP to temperature and precipitation. Because
agricultural GDP represents the value added of the agricultural sector (value
of agricultural outputs minus expenditures on intermediary inputs), we deem
it interpretable as an optimized quantity. Although long time-series data on
other agricultural outcomes such as crop yields are available, these outcomes
are arguably not optimized, therefore we refrain from applying our envelope-
gradient-theorem approach on them.

3.1 Data

US county-level data on agricultural GDP over the period 2001–2019 come from
the Bureau of Economic Analysis of the US Department of Commerce. These
data are available for a wide range of sectors and are estimates of the gross
margin output, the value of sales and inventories less the costs associated with
production. For the agricultural sector, these estimates are developed from
USDA farm sales, farmland, and labor data (Fleck et al., 2014). As in Schlenker
et al. (2006) and Schlenker and Roberts (2009), our analysis focuses on counties
east of the 100th meridian, where agriculture is largely non-irrigated. We
also remove counties with more than 10% missing values, which leaves us

17Although not an issue with respect to the restriction of Equation (3), heterogeneity in
marginal effectsmay cause bias in estimating climate-contingentweather slopes for thepurpose
of recovering the long-run outcome response function. See Section 2.2. In Equation (10), such
heterogeneity is controlled through the use of county-specific slopes �8 .

30



with an almost balanced panel of 1,250 counties representing 69.4% of total US
agricultural GDP over the period of investigation. We use historical weather
data derived from the PRISM monitoring network (PRISM Climate Group,
2020) and made available by Wolfram Schlenker.18 The raw data is available at
a 4 km resolution and includes daily information on maximum temperature,
minimum temperature, and precipitation. We aggregate weather data to the
county level using farmland areas asweights. We focus onweather and climate
during the growing season defined as April to October, and consider two
variables: average temperature and total precipitation. In Appendix C, we also
provide results for models that use growing degree days above 8°C in lieu of
average temperature.

For each county, we calculate the 30-year rolling average of past weather in
each year of our sample and use the average of this time series as the central
climate value. For each of our two climatic variables, we divide the spectrum
of observed central climates into 100 climatic intervals (or bins), so that roughly
12 counties are present in each bin. This choice implies that bins have varying
widths; typically those located at the endpoints of the climatic spectrum are
wider due to the smaller number of counties with extreme climates. US agri-
culture spans a wide swath of climates. Growing-season average temperature
ranges from 10°C to 29°C. For growing-season precipitation, most of the mass
of the distribution is centered around 700 mm, although our sample includes
both dramatically drier (<400 mm) and wetter (>1,000 mm) climates. This
cross-sectional variation is useful in constructing a long-run response curve
whose domain includes most of the future climates likely to be seen as a result
of climate change. Figure 5 depicts the geographical distribution of the central
climate intervals for counties included in our sample.

3.2 Models

We implement the envelope-gradient-theorem approach on several variants
and compare the results to those obtained from a traditional parametric panel
model. Our benchmark panel model is quadratic in temperature and precip-

18See http://www.columbia.edu/~ws2162/links.html.
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Figure 5 Geographical distribution of central climates

(a) Temperature

(b) Precipitation

itation. As argued in Mérel and Gammans (2021), the quadratic model has
been used extensively in the prior climate impact assessment literature. Based
on the results of our envelope-gradient-theorem approach, we also present
results from a parametric cubic model. All of our estimated models, includ-
ing the parametric models, include county and year fixed effects as well as
state-specific linear time trends to control for variations in the unobserved
determinants of agricultural GDP.

Our first envelope-gradient-theorem approach assumes that climates are
stationary in each county. County climates are computed using the simple
average of climate values over the 19 observation years as �̄8 =

∑2019
C=2001 �8C

19 . As
a consequence, each county remains in the same climate bin across the entire
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period of observation. Marginal weather effects are computed by estimating
Equation (7). Climate-specificmarginal effects are given by the set of estimated
coefficients �̂�.

One shortcoming of the previous approach is that it assumes away climatic
trends during the observation period. To the extent that counties have ex-
perienced trends in climate, such variation could be exploited to identify the
climate-outcome relationship. In fact, variation arising from climatic trends
could be viewed as more legitimate than pure cross-sectional climatic varia-
tion because it is presumably less prone to confounding factors (Burke and
Emerick, 2016). In a second variant, we thus replace the time-invariant central
county climates �̄8 by their value at any given point in time, �8C . Therefore,
counties are allowed to cross climatic intervals based on variation in their
rolling climatic average. The estimating equation becomes:

H8C = ��(8 ,C)G8C + 5state(8)(C) + 8 + C + &8C . (11)

This equation is nearly identical to to Equation (7), with the key difference that
��(8) is replaced with ��(8 ,C).

A possible improvement over the approaches taken in Equations (7) and
(11) is to better control for time-invariant factors, most notably soils, that may
affect the response of the outcome to weather variables. This possibility is
explored in additional models that rely on estimates of the marginal weather
effects obtained from Equations (8) and (9).

In the most demanding specification (Equation (9)), the marginal effect
of weather at given climate �� is identified from within-county comparisons
across climates visited over time and, because marginal weather effects are al-
lowed to vary systematically across soil types, from comparisons across coun-
ties with similar soils. As in Equation (11), this strategy partially relies on
temporal variation in climate to identify the marginal effect of climate, and
more so since part of the cross-sectional variation in marginal effects has been
removed from identification.

Importantly, climatic trends tend to be quite small relative to the large
cross-sectional climatic variation in our sample. For example, the standard
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deviation of the stationary climates �̄8 is 3.4°C for temperature and 119 mm for
precipitation, while the average of the within-county standard deviations of
�8C is 0.09°C for temperature and 11.5 mm for precipitation. Despite their small
size relative to the cross-sectional variation, these climate trends are statistically
significant in many locations, as also evidenced in prior work by Burke and
Emerick (2016) andCui (2020). Nonetheless, when implementing this approach
we verify that the variation induced by counties crossing climatic intervals is
driven at least in part by climate trends, rather than movements in the rolling
average driven by random weather shocks. To that effect, we compare the
number of interval crossings by a county to the number of intervals “visited.”
For temperature (resp. precipitation) the median county experiences 4 (resp.
14) climate intervals crossings and visits 3 (resp. 9) climate intervals. On
average, 60% (resp. 60%) of crossings are to a previously unvisited climate,
suggesting that a meaningful share of these crossings are driven by climate
trends, rather than weather fluctuations. Also note that climate trends may be
non-monotonic, with periods of cooling followed by periods of warming for
example, which implies that re-visits of a climatic interval by a county may be
due to “genuine” climatic variation.

For statistical inference, we rely on a Conley variance-covariance matrix
that allows for spatial correlation across adjacent counties, as in Schlenker and
Roberts (2009) or Schlenker (2017).19 For comparison purposes we also show
state-clustered standard errors. We use our estimate of the variance-covariance
matrix of the �̂� coefficients to construct confidence intervals around the long-
run response functions of agricultural GDP to each climatic variable. These
confidence intervals demonstrate the uncertainty pertaining to a counterfactual
change from themedian of the county-specific climates �̄8 to any climatic value,
lower or higher. They thus answer the question “how confident are we that a
change away from the median climate would lead to a change in agricultural
GDP?” Since predicted changes in the outcome are a linear combination of
the estimated �̂� parameters, the confidence intervals can be easily constructed

19We allow for spatial correlation across neighboring counties using a neighboring lag
structure, rather than geographical distance. Correlation is allowed up to the third-degree
neighbor.
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using the variance-covariance matrix of coefficient estimates.

3.3 Long-run responses to climate

Figure 6 depicts the long-run response curves for temperature and precipita-
tion. We present results for the benchmark quadratic panel model, for two
envelope-gradient-theorem models, and for a cubic panel model. In columns
(b) and (c), gray vertical lines delineate the 100 bins used in the estimation.
The distribution of climates is shown at the bottom of each panel and does not
depend on the model. Confidence intervals based on Conley standard errors
and more conservative state-clustered standard errors are shown with dark
and light shading, respectively.

Column (a) of Figure 6 shows long-run responses for thebenchmarkquadratic
panel model. This model predicts significantly negative effects of increasing
climate temperature above the median value when using Conley standard er-
rors. The estimated precipitation response is an inverted U-shape, with the
response peaking around 800 mm of cumulative precipitation. Thus, for most
climates, agricultural GDP is predicted to increase with additional precipita-
tion according to this model. Note, however, that this precipitation response is
one order of magnitude smaller than the response to temperature. This find-
ing is congruent with previous evidence on US agricultural yields, for instance
Schlenker and Roberts (2009).

The patterns depicted in columns (b) and (c) of Figure 6 are reassuring about
the ability of the envelope-gradient-theorem approach to deliver meaningful
and useful response functions. First, despite the demands put on our data
(marginal effects are only identified from the few counties in each climatic in-
terval), the effects we derive are relatively precisely estimated, with confidence
intervals comparable in size to those obtained in the benchmark quadratic
model. Second, these effects largely conform with expectations grounded in
previous parametric work on agricultural yields. Notably, the marginal effect
of warming is significantly negative across a large swath of the temperature
distribution. Interestingly, we find a more negative marginal impact in the
middle of the distribution of temperatures than at the upper end. One expla-
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nation could be that once crop yields have suffered from heat, the marginal
effect of additional heat diminishes. Intuitively, in the limit where crop yields
reach zero and agricultural production ceases, there must be a tapering of the
marginal effect. Since nothing in our two-step procedure forces this change
in curvature to arise, these results suggest that empirical analyses of temper-
ature and agricultural outcomes ought to allow for varying convexity in the
temperature response. Based on this insight, we depict the long-run responses
to climatic variables in a parametric cubic model in Column (d) of Figure 6.
The climate response obtained with the cubic model is very close to that of
the flexible envelope-gradient-theorem approach. In the case of temperature,
we again find that warming significantly reduces GDP and that the negative
marginal effect of warming is largest in the middle of the temperature distri-
bution. For precipitation, the results generated by the cubic model are quite
similar to those of the quadratic benchmark. In both models, increases in pre-
cipitation drive higher agricultural GDP in dry climates. This finding is not
supported by the results of the envelope-gradient-theorem models, which im-
ply a less steep and not statistically significant effect of increased precipitation
in dry climates. Taking a broader view, given that the appropriate parametric
form cannot be knownwith certainty, adopting the envelope-gradient-theorem
approach seems preferable to estimating parametric high-order polynomials.
This is particularly true as the approach seems to deliver results that are simi-
larly precise.

Overall, results from the first two variants of the envelope-gradient-theorem
approach appear comparable, even if the rolling-climate approach produces
smoother curves. This finding could in fact be expected, as unlike column
(b), column (c) exploits the movement of counties across neighboring climate
intervals over time for identification. As a result, time-invariant, county-level
idiosyncratic factors that may affect marginal responses to weather tend to be
captured in adjacent intervals, as opposed to a single interval, resulting in a
smoothing of effects.

Figure 7 provides the long-run curves obtainedwhen adding a soil-weather
interaction term, for each of the four specifications shown in Figure 6. For soils
information, we rely on the dataset constructed by Ramcharan et al. (2018)
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which provides detailed information on soil characteristics at a spatial resolu-
tion of 100 m for the conterminous United States. To capture soil quality, we
follow Ortiz-Bobea (2020) and use the proportion of soils within a county clas-
sified in the top three of an eight-class index reflecting capability to produce
commonly cultivated crops and pasture plants. Overall, these models produce
long-run response curves and warming impacts that are comparable to the
ones reported for the model without weather interactions. A model that uses
alternative soil controls based on soil type, rather than soil quality, is presented
in Appendix D.

In Section 1, we outlined the conditions required for weather fluctuations to
identify marginal climate effects. Without observing the true data-generating
process, it is not possible to know the extent to which these conditions hold in
applications. However, as outlined in that section, there may exist some trans-
formation of weather variables such that the conditions do hold. Motivated
by this insight, we also estimate a growing degree-day (GDD) specification for
temperature effects. We follow Schlenker et al. (2006), an analysis of climate
and farmland values, and select 8°C as the lower threshold above which we
measure heat accumulation. In order to allow the GDD variable to capture the
negative effects of severe warming, and to avoid picking an upper threshold
among the different values that have been deemed relevant for various crops,
we do not include an upper threshold. Our GDD results, which are shown in
Appendix C, closely match those of the average temperature specifications.

3.4 Climate counterfactuals

We use our calculated long-run response functions to derive the county-level
impacts of a 2°Cuniformwarming on agriculturalGDP. These impacts compare
predicted values under the 2001–2019 climate to a counterfactual where the cli-
mate is 2°Cwarmer for all counties. At the county level, the impact on the log-
arithm of agricultural GDP is given by the linear combination

∑
1∈� �̂1ΔTemp1,8

where � is the set of temperature bins, �̂1 is the estimated slope of bin 1, and
ΔTemp1,8 is the length of the temperature interval that county 8 crosses in bin 1
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under a 2°Cwarming scenario.20 The county-level impact on agricultural GDP
is thus Δ̂8 = exp

(∑
1∈� �̂1ΔTemp1,8

)
− 1, expressed in percentage terms. We

then aggregate these impacts at the country level by taking the weighted aver-
age

∑
8∈� F8Δ̂8 , where � denotes the set of counties included in the simulation

and F8 is the share of the agricultural GDP of county 8 in the total agricultural
GDP of the included counties.21

In this simulation, we do not include the warmest counties for which coun-
terfactual temperatures are projected to lie too far away in the warmest bin.22
The rationale is that each estimated slope is only valid locally. We cannot eval-
uate the damage for the warmest climates without assuming a constant slope
after a certain threshold, an assumption we do not wish to make. However,
the convexity of the long-run response functions estimated using our approach
suggests that the damagewould be lower than average for thesewarmest coun-
ties.

Figure 8 shows county-level warming impacts for the benchmark panel,
the envelope-gradient-theorem models, and the cubic model. The top panels
show the results corresponding to the long-run curves depicted in Figure 6; the
bottom panels account for soil quality-weather interactions and relate to the
long-run curvesdepicted inFigure 7. Impacts for themodelswith analternative
characterization of soil-weather interactions are shown in Appendix D. The x-
axis represents the county’s reference period climate temperature value and the
y-axis represents the change in the logarithm of agricultural GDP associated
with a 2°C warming. For each county-level impact, we show a 95% confidence
interval based on the Conley standard errors. In each panel, we also report
cumulative US impacts.

Panel (a) of Figure 8 shows impacts for the quadratic panel model. This

20If county 8 does not cross bin 1, the length is zero; if it fully crosses it the length is that of
the bin itself. The only bins partially crossed are those located at the endpoints of the county’s
climatic trajectory. See Figure 3.

21To obtain F8 , we first compute the county-specific average of the agricultural GDP over
the 19 years in our sample, say agGDP8 , and then construct the ratio F8 =

agGDP8∑
9∈� agGDP9

.
22These counties have climates that arewarmer than the lower boundof the last bin (26.25°C)

plus the maximum width of the middle bins (0.55°C) minus 2°C. There are 74 such counties
out of the 1,250 used in the estimation (5.9%). They produced 6.3% of the US total agricultural
GDP on average over 2001–2019.
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model predicts that currently warm counties are harmed by increases in tem-
perature, and significantly so. Predicted impacts range from near zero for
counties near themedian climate to losses of over 10% in the warmest counties.
Overall, we find a statistically and economically significant US-wide agricul-
tural GDP loss of 6.29%.

Panels (b) and (c) of Figure 8 show impacts for the envelope-gradient-
theoremmodels. Panel (b) refers to the variant that uses a stationary definition
of climate. This model implies much more detrimental effects than the bench-
mark panel model in moderate climates, but less severe declines in warmer
climates. This discrepancy is due to the convex shape of the estimated long-run
response to temperature that is not captured by the quadratic model. Aggre-
gating across counties, we find that a 2°C warming is associated with a 8.95%
agricultural GDP loss, a decline that is both economically and statistically sig-
nificant, and slightly greater in magnitude than the aggregate loss implied by
the benchmark panel model. The results from the variant that uses a rolling
climate definition are shown in panel (c). Overall, county-level and aggregate
results are comparable to those from the stationary climate variant. In linewith
our estimated long-run response functions, the distribution of impacts across
climates appears smoother. In this variant, we find a statistically significant
aggregate agricultural GDP loss of 8.69%.

Panel (d) shows results for the parametric cubic model. The pattern is
similar to the one obtained using the flexible approach in panel (c). The ag-
gregate damage is statistically significant, albeit slightly smaller (7.87%). In
the bottom panels, the damages obtained using specifications that include soil
quality-weather interactions vary across counties with similar climate due to
soils effects. However, the overall patterns are similar, and the aggregate dam-
ages are all statistically significant, and slightly larger inmagnitude. Appendix
D reports comparable results for models that control differently for soil effects.

4 Conclusion

A full accounting of the consequences of future climate change on outcomes
of economic interest remains an important, yet elusive, research goal. There
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has been a longstanding debate on the ability of methodologies that rely on
random weather fluctuations to provide information on the long-run effects
of climate change, accounting for adaptation by economic agents (Kolstad and
Moore, 2020; Lemoine, 2021; Mérel and Gammans, 2021). In this paper, we
provide a set of necessary and sufficient conditions for the short-run response
to weather and the long-run response to climate to be tangent to each other
at the expected weather irrespective of the weather distribution. Delineating
these conditions is important because the tangency property legitimizes the
use of weather fluctuations as a way to identify long-run marginal effects.
We introduce an empirical methodology to estimate marginal effects that are
specific to a given climatic interval and demonstrate how, under the tangency
hypothesis, these marginal effects can be integrated to construct a common
long-run response to climatic variables, as initially proposed by Hsiang (2016).
Because the long-run response curve results from the simple arrangement of
slopes across the climate gradient, it is by design more flexible than curves
obtained from parametric approaches.

We apply this envelope-gradient-theorem approach to a panel of weather
and agricultural GDP data from the US. We explore models that differ along
various dimensions: the choice of stationary vs. rolling climate, the inclusion
of soil-weather controls, or the use of GDD instead of average temperature. We
find qualitatively similar long-run responses to climate across model specifica-
tions. Our results indicate that, despite the considerable demands put on our
data, the approach can deliver long-run response functions that are coherent
with agronomic expectations and prior parametric work, with some important
nuances. For instance, we provide empirical support for changes in convexity
in the effects of temperature on agricultural GDP that would not be captured
in parametric quadratic panels.

We then consider the effect of a 2°C uniform warming on US agricul-
tural GDP. Using the long-run climate responses derived from the envelope-
gradient-theorem approach, we calculate county-level impacts. We find these
impacts to be comparable across model specifications, at least in the aggre-
gate. Importantly, our approach delivers county-level impact estimates that are
markedly different from those of a benchmark quadratic panel. Our specifica-
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tion that allows for a rolling climate definition predicts an aggregate damage
to agricultural GDP after adaptation of 8.7% under the +2°C scenario. This
effect is slightly larger in magnitude than the aggregate damage estimate from
the benchmark quadratic panel (6.3%). Using a cubic rather than quadratic
specification delivers a damage estimate that is closer to the non-parametric
estimate (7.9%). Given the inevitable uncertainty surrounding the correct para-
metric choice in a particular setting, our envelope-gradient-theorem approach
provides empiricists with a valuable new tool to quantify climate impacts.
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Appendices

A Concavity of H(G, 0) with respect to 0

We assume that for all G, H(G, 0) ≡ HG(0) has a unique maximizer characterized
by H′G(0) = 0 (that is, there is only one critical point at which the derivative
function is zero). Now consider the upper concave envelope of HG(·), defined
as

H̃G ≡ inf
{
D |D is convex and D(0) ≥ HG(0) ∀0 ∈ *

}
.

A representation of such an envelope is depicted in Figure A.1.

Figure A.1 The upper concave envelope

α1 A(α1 ) * α2=A(α2 ) A(α3 ) α3
α,

Since HG has only one critical point, say 0∗, at which it is maximized, we
must have that H′G(0) > 0 ∀0 < 0∗ and H′G(0) < 0 ∀0 > 0∗. Further denote by H−
the restriction of HG to the range 0 ≤ 0∗ and H+ its restriction to the range 0 > 0∗.
(Note that G plays no particular role here.) Both H− and H+ are monotone and
therefore bĳective. Now consider the following change of variable:

0 = �() =
{
H−1
−

(
H̃G()

)
if  < 0∗

H−1
+

(
H̃G()

)
if  > 0∗

.
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The change of variable is illustrated in Figure A.1 for various values of . It
is clear that it is well defined because it is both injective (for each , there is a
unique �()) and surjective (for each 0, there is a unique  such that 0 = �()).
The composite function  ↦→ HG (�()) is by construction equal to the function
H̃G(), therefore it is concave.

B Relationship with Theil (1954)’s model

Slightly adapting his notation to make it more congruent with ours, the struc-
tural outcome function considered in Theil (1954) has the following form:

,(a, x) = �(a) +
=∑
ℎ=1

�ℎ(a)Hℎ(a, Gℎ) +
=∑
ℎ=1

=∑
:=1

�ℎ:Hℎ(a, Gℎ)H:(a, G:) (B-1)

where x and y ≡ (H1, . . . , H=) are random vectors of the same dimension = and

Hℎ(a, Gℎ) = 5ℎ(a) + Gℎ , ℎ = 1, . . . , = (B-2)

for some unspecified functions 5ℎ . The functions � and �ℎ are also left un-
specified, while the �ℎ: are taken as parametric, that is, they do not depend on
a. The vector a is interpreted as actions (policies) while the vector x represents
random environmental variables (weather in our case) and the vector y rep-
resents “indirect variables” that enter the welfare function and depend both
on actions and environmental variables. In an application to farm profits, the
indirect variables could be revenue (which depends onweather through yields
and on long-run actions such as crop choice) and costs (which may depend on
weather through short-run adaptations such as variation in irrigation intensity
and on long-run actions such as crop choice). Within this structure, Theil (1954)
shows that a certainty equivalence principle holds.

We will now show that the restrictions embedded in Equations (B-1) and
(B-2) are, in fact, equivalent to those in Equation (3). Plugging the identities in
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Equation (B-2) into Equation (B-1), we obtain

,(a, x) = �(a) +
=∑
ℎ=1

�ℎ(a) 5ℎ(a) +
=∑
ℎ=1

=∑
:=1

�ℎ: 5ℎ(a) 5:(a) +
=∑
ℎ=1

�ℎ(a)Gℎ

+
=∑
ℎ=1

Gℎ

=∑
:=1
(�ℎ: + �:ℎ) 5:(a) +

=∑
ℎ=1

=∑
:=1

�ℎ:GℎG:

which can be rewritten as

,(a, x) = �(a) +
=∑
ℎ=1

�ℎ(a)Gℎ +
=∑
ℎ=1

=∑
:=1

�ℎ:GℎG: (B-3)

where �(a) ≡ �(a) + ∑=
ℎ=1 �ℎ(a) 5ℎ(a) +

∑=
ℎ=1

∑=
:=1 �ℎ: 5ℎ(a) 5:(a) and �ℎ(a) ≡

�ℎ(a) +
∑=
:=1(�ℎ: + �:ℎ) 5:(a).

Apart from the fact that the actions a and the random variables x are mul-
tivariate, Equation (B-3) has the same structure as Equation (3), where actions
are restricted to interact only with a linear function of x, but a and x are allowed
to affect the outcome in an otherwise unrestricted fashion. (It could appear,
in addition, that x is restricted to enter quadratically into the welfare function.
This is not an essential restriction, as one could easily add a function Γ(x) to
Equation (B-1) without changing the analysis, as there would be no interaction
between this new function and the actions a.)

The necessity proof in Section 1.3 extends to the case where x and a are
multivariate in a straightforward fashion. Because the criterion is to ensure
that ã(�) = â

(
�(�)

)
for all (joint) distributions � of the random vector x, one can

successively consider degenerate distributions where only one of the random
variables in x is truly random and all others are taken as certain. Each iteration
ℎ will lead to the conclusion that the gradient of, with respect to a must be
an affine function of Gℎ .

47



C Models with growing degree-days

Weobtain similar long-run curvesusinguncappedgrowingdegree-days (above
8°C) instead of average temperature. Figure C.1 shows long-run responses
without soil controls and Figure C.2 shows responses with soil controls. The
shape of all long-run curves is comparable to that of their average-temperature
counterpart. Warming impacts using the GDD specifications are shown in
Figure C.3. These impacts are similar to those obtained using average temper-
ature.

D Models with alternative soil controls

We check that our results are comparable when controlling for soil-weather
interactions using an alternative variable indicating the type of soil. To capture
soil type, we use data on the clay, sand, and silt makeup of soil at 5 cm depth
and construct a categorical variable with 9 categories, making sure that there
is a sufficient number of counties falling in each category.23

Overall, the alternative models yield long-run response curves and warm-
ing impacts that are comparable to the ones reported for the model with soil
quality-weather interactions. Figures D.1 and D.2 contrast the results obtained
with the two alternative soil controls using a rolling climate definition to assign
observations to climatic intervals.

23The shares of clay, sand, and silt add up to one for each county. We consider the 40%
and 60% quantiles of the shares of clay and sand to build 3 categories for each variable, and
interact these to obtain 9 soil types. The average number of counties per category is 139. The
largest category is the typewith themost clay and the least sand (399 counties) and the smallest
category is the one with the least clay and the least sand (57).
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Figure D.1 Long-run response curves

(a) Soil quality-weather interactions (b) Soil type-weather interactions

Legend:
Note: For the specification using soil quality, the figure represents the response at
mean quality. For the specification using soil types, the figure represents an average
response across types, where soil type-specific slopes are weighted by the number of
counties falling in each category.
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Figure D.2 Simulated impact of a +2°C scenario on county agricultural GDP

(a) Soil quality-weather interactions (b) Soil type-weather interactions

Note: Each dot corresponds to a county. The gray segments represent 95% confidence
intervals using Conley standard errors. In each panel, the estimate of the total effect
on the US national average agricultural GDP is given together with its Conley
standard error in brackets.

E Models estimated from locally quadratic short-
run responses

As an alternative to Equation (7), we derive local weather slopes from locally
quadratic approximations to the short-run responses. That is, in the first step
we estimate the following regression:

H8C = �1
�(8)G8C + �

2
�(8)(G8C)

2 + 5state(8)(C) + 8 + C + &8C

for the specification with stationary climate; for the specification with rolling
climate, assignment of observations to climatic intervals is based on the rolling
climate value. The local slope at climate � is then computed as �1

� + 2�2
��.

The resulting long-run response curves are shown in Figure 1, and the
corresponding warming impacts are shown in Figure 2. They are very close to
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those obtained using the locally linear approximation.

Figure 1 Long-run response curves

(a) Stationary climate (b) Rolling climate

Legend:
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Figure 2 Simulated impact of a +2°C scenario on county agricultural GDP

(a) Stationary climate (b) Rolling climate

Note: Each dot corresponds to a county. The gray segments represent 95% confidence
intervals using Conley standard errors. In each panel, the estimate of the total effect
on the US national average agricultural GDP is given together with its Conley
standard error in brackets.
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