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This paper studies semiparametric identification and estimation of the stochastic

discount factor in consumption-based asset pricing models with latent state variables.

We model consumption, dividends, and a multiplicative discount factor component

via unknown functions of Markovian states describing aggregate output growth. For

the case of affine state dynamics and polynomial approximation of the measurement

and pricing equations, we provide rank conditions for identification and tractable

algorithms for filtering, smoothing, and likelihood estimation. Empirically, we find
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1 Introduction

Standard consumption-based asset pricing models with moderately risk averse households

have difficulty reconciling episodes of highly volatile asset prices with relatively smooth

fluctuations in macroeconomic fundamentals. Model extensions in which fundamentals and

preferences are driven by persistent yet unobserved state variables have made substantial

progress in rationalizing the distribution of asset returns.1 For the sake of tractability, such

models commonly assume that variables such as consumption, dividends, and the stochastic

discount factor depend log-linearly on the latent state variables. The resulting log-linear

pricing formulas imply that the volatility of asset returns is proportional to that of the

state variables. However, heightened economic uncertainty during the 1950s and the early

1980s did not trigger excessive stock market volatility, nor did large swings in stock prices

around the 2001 dot-com bubble coincide with significant volatility in economic growth.

Such episodes suggest an important role for nonlinear state-dependence in fundamentals,

preferences, or both.

This paper aims to understand how asset prices depend on state variables that describe

aggregate growth dynamics, and whether such dependence works through consumption,

cash flows, or time preferences. Therefore we study the identification and estimation of a

class of asset pricing models in which consumption and dividends may depend nonlinearly

on latent Markovian state variables. In particular, we model the cointegration residuals

of consumption and dividends relative to output via unknown functions of state variables

describing the conditional distribution of output growth, such as persistent components

in its mean and volatility. While unobserved by the econometrician, the state variables’

link to an observed aggregrate growth series makes it possible to identify their transi-

tion parameters, as well as the shape of the expected consumption, dividend, and pricing

functions, under general hidden Markov and stationarity assumptions.

Subsequently, we show that the consumption, dividend, and pricing functions identify

the dependence of the stochastic discount factor on the states. In particular, the Euler

equation for optimal consumption and investment pins down a state-dependent marginal

utility function and fixed discount parameter. These take the form of the unique positive

1Prominent examples are models that feature habit formation (Campbell and Cochrane, 1999), long-run
risk (Bansal and Yaron, 2004), stochastic volatility (Drechsler and Yaron, 2010), or variable rare disasters
(Gabaix, 2012).
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solution to an eigenfunction problem similar to those studied in Christensen (2017) and

Escanciano et al. (2020), but now featuring unobserved state variables.

To avoid the curse of dimensionality of fully nonparametric models, we impose some

parametric structure on the stochastic discount factor and the distribution of the state

variables. In particular, the stochastic discount factor is assumed to be multiplicatively

separable in the power marginal utility of consumption and an unknown function of the

state variables that allows for state-dependent time preferences. The latter component

can be interpreted as a ‘taste shifter’ or linked to more structural models. The resulting

semiparametric stochastic discount factor decomposes into a non-stationary component de-

pending on the level of output and a stationary state-dependent component as in Hansen

and Scheinkman (2009). Parametric models for the state variables allow increasing their di-

mension and analytic characterization of their dynamic properties. In particular, for affine

state variables (Duffie et al., 2000), the framework parsimoniously generalizes the class of

affine equilibrium asset pricing models (Eraker and Shaliastovich, 2008) towards nonlin-

ear consumption and dividend dynamics. Their nonlinear state-dependence endogenously

generates variation in the mean and volatility of their growth rates, instead of modeling

these with additional exogenous state variables. Similarly, autocorrelation in consumption

and dividend growth rates derives from that of the stationary state variables, as well as

from variable-specific transitory deviations from their long-run cointegration relations.

The framework is highly tractable when the unknown functions are approximated by

orthogonal polynomials as in Chen (2007). In particular, expected growth rates of con-

sumption, dividends, and asset prices can be expressed in closed-form as polynomials of

affine state variables. Moreover, the identification argument can be expressed in terms

of rank conditions on the smoothed moments of the states. We study sieve maximum

likelihood estimation of the parameters of the state variable dynamics and the measure-

ment and pricing equations. The estimates are computed using a sequential Monte Carlo

variant of the EM-algorithm which analytically solves the maximization step for the ap-

proximating polynomial coefficients in terms of simulated smoothed moments of the state

variables. We estimate the multiplicative stochastic discount component in a second stage

method-of-moments step, by integrating out the latent variables of the Euler equation us-

ing their filtered distribution. This leads to a feasible eigenvector problem that is linear in

the approximation coefficients of the stochastic discount function and the filtered moments
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of the state variables.

The empirical application illustrates the methodology by analyzing the impact of long-

run risk and stochastic volatility of aggregate output growth on equity valuation ratios.

We estimate the model using quarterly data on postwar U.S. macroeconomic variables,

S&P 500 stock market index prices and dividends, and 3-month Treasury Bill rates. We

also consider high-frequency measures of return volatility as well as growth volatility prox-

ies based on the monthly Industrial Production Index, to have a penalization effect on

the filtered economic volatility state similar to that for financial volatility in Andersen

et al. (2015). We find periods of high growth volatility clustered around episodes such as

the post-war years, the 1980s energy crisis, and to some extent the 2008 financial crisis.

The frequency and duration of high volatility periods declines steadily over the sampling

period, reaching its lows during the high growth 1990s. The consumption-output share

mainly responds to expected growth, while the dividend-output residual is convexly in-

creasing in volatility. High expected growth and low growth volatility lift the expected

price-dividend ratio to at least one standard deviations above its mean, but only when

combined. Meanwhile, return volatility peaks around median levels of growth volatility,

suggesting a trade-off between the size and price-sensitivity of economic shocks. The state-

dependence in the price-dividend ratio is only partially explained by that of consumption

and dividends, as evidenced by the stochastic discount function increasing in expected

volatility and decreasing in expected growth. This suggests state-dependent preferences

play an important role in relating asset prices to future economic growth and volatility.

Related Literature. The paper is at the intersection of the literatures on nonpara-

metric identification and estimation of stochastic discount factor models and of nonlinear

dynamic latent variables models. Empirically, it contributes to the measurement of long-

run risks and volatility shocks in macro-financial models.

Gallant and Tauchen (1989), Chapman (1997), Chen and Ludvigson (2009), and oth-

ers, estimate the stochastic discount factor semi- or nonparametrically based on conditional

moment restrictions in the form of Fredholm Type I integral equations, which are com-

mon in nonparametric instrumental variables studies. Meanwhile, Hansen and Scheinkman

(2009), Chen et al. (2014), Christensen (2017), and Escanciano et al. (2020) formulate the

Euler equation as a Fredholm Type II integral equation, establishing identification based

on the Krĕın-Rutman theorem. Similarly, Ross (2015) uses the finite-dimensional Perron-
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Frobenius theorem to recover discrete-state option-implied probabilities. While Hansen

and Scheinkman (2009) and Christensen (2017) identify the eigenfunction of the long-term

valuation operator of a given stochastic discount factor, Escanciano et al. (2020) nonpara-

metrically identify and estimate the marginal utility function of consumption. Our paper

extends the latter object of interest to include unobserved state variables, covering an ex-

tended class of asset pricing models. Meanwhile, we consider a semiparametric power utility

formulation with a multiplicative correction term, which includes the multiplicative habit

formulation identified in Chen et al. (2014). This formulation implies that consumption

only enters the stochastic discount factor through its growth rate, whose plausible station-

arity allows consistent estimation based on long time series instead of large cross-sections

of households. Given the joint distribution of our partially observed state vector, we apply

existing identification results for Euler equations with fully observed state variables.

The identification of nonlinear dynamic latent variable models has been primarily stud-

ied for large cross-sections and panel data, such as Hu and Shum (2012) and Arellano et al.

(2017), respectively. These papers focus on individual-specific state variables instead of

common state variables. Gagliardini and Gourieroux (2014) and Andersen et al. (2019)

extract nonlinear common factors from a large number of cross-sectional units with unpre-

dictable and independent errors. In our paper, the latent factor dynamics are identified

through their relation to a low-dimensional growth series observed over many time peri-

ods, while allowing for serially correlated exogenous measurement and pricing errors. In

finance, latent variables are often dealt with by inverting observations, such as in affine

models for the term structure (Piazzesi, 2010), option prices (Pan, 2002; Ait-Sahalia and

Kimmel, 2010), and price-dividend ratios (Constantinides and Ghosh, 2011; Jagannathan

and Marakani, 2015). In nonlinear and multi-state models, the inverse mapping may not

be unique. Alternatively, direct proxies for the state variables could be used, such as esti-

mating current volatility based on high-frequency realized volatility (Andersen et al., 2003)

or the option-implied VIX measure (Berger et al., 2020). However stock market volatility

does not translate one-to-one into the volatility of economic fundamentals, and may be

affected by time-varying risk aversion. Realized variation of low frequency macroeconomic

series suffers from non-vanishing measurement error, while cross-sectional dispersion mea-

sures based on firm level data (Bloom, 2009) require correctly specifying the conditional

means and covariance structure (Jurado et al., 2015). For state variables corresponding
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to time-varying drift, disaster probability, or changing preferences, no obvious proxy is

available. In the absence of reliable proxies, state variables may still be accurately filtered

using forward-looking asset prices, which this paper focuses on.

Finally, most empirical studies on the Bansal and Yaron (2004) long-run risk model and

its extensions focus on calibration or method-of-moments estimation. Instead, Schorfheide

et al. (2018) and Fulop et al. (2021) develop likelihood-based Bayesian methods that allow

filtering the long-run risk and volatility components over time using asset price information.

Fulop et al. (2021) do so using a similar polynomial approximation as ours of the log price-

dividend ratio to incorporate relevant higher order effects (Pohl et al., 2018). We provide

a frequentist alternative, using the EM-algorithm to estimate the polynomial coefficients

directly, instead of using collocation methods.

Organization. The remainder of this paper is organized as follows. Section 2 intro-

duces the model assumptions and the asset pricing Euler equations. Section 3 outlines

the estimation procedure and its asymptotic properties. Section 4 discusses the empirical

application. Section 5 concludes.

2 Setting

This section describes a general class of models for which results are derived. The specific

examples are the basis of the empirical analysis. Throughout let (Ω,F ,P) be a probability

space and Ft be the full information filtration satisfying standard regularity conditions.

The superscript notation Fxt refers to the history (xt, xt−1, . . .) of the variable xt only.

2.1 Aggregate growth

Let Yt be an observed aggregate output or productivity process and let st be aD-dimensional

latent state variable that describes the conditional mean, variance, or other distributional

characteristic of its growth process ∆yt+1 = log
(
Yt+1

Yt

)
. The partially observed augmented

state vector St+1 = (∆yt+1, st+1) ⊂ S ⊆ RD+1 is assumed to be Markovian in st, defined

as

f(St+1 | FSt ) = f(St+1 | st).
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In particular, the level of the output process Yt does not affect the distribution of its

future growth. As a consequence, mean-reversion is ruled out and the output process

is non-stationary. On the other hand, the state variables st are assumed to be jointly

stationary. As a result output growth log Yt+τ
Yt

is stationary over any horizon τ > 0 and its

conditional distribution only depends on st.

Example. (Long-run risk model with stochastic volatility) Our baseline model is the

discrete-time model with two latent states st = (xt, σ
2
t ), persistent growth xt and condi-

tional variance σ2
t , described by

∆yt+1 = µ+ xt + σtηy,t+1 (1)

xt+1 = ρxxt + φxσtηx,t+1,

where ηy,t+1 and ηx,t+1 are i.i.d.N(0, 1). The conditional variance σ2
t follows an autoregres-

sive Gamma process, described by

σ2
t ∼ Gamma(φσ + zt, c), zt ∼ Poisson

(
νσ2

t−1

c

)
.

This process, introduced by Gourieroux and Jasiak (2006), is the discrete-time analogue of

the continuous-time Cox-Ingersoll-Ross process. This formulation ensures that the variance

is positive, and that its conditional moments are available in closed form. In particular, its

conditional mean and variance equal E
(
σ2
t+1 | σ2

t

)
= νσ2

t + (1−ν)σ̄2 and Var
(
σ2
t+1 | σ2

t

)
=

(1−ν)σ̄2

φσ
(2νσ2

t + (1− ν)σ̄2), respectively.

2.2 Consumption and dividend policy

In general optimal consumption choice depends on all sources of wealth and all investment

opportunities. When the primary interest is in understanding the response of consumption

to changing economic growth, a flexible reduced form approach is to model consumption

relative to output via an unspecified function ψc(·) of the latent states. Together with

linear dependence on its lag, and an unexplained shock εct , this yields the semiparametric

additive formulation for the log consumption-to-output ratio:

ct − yt = ψc(st) + ρc(ct−1 − yt−1) + εct , E (εct | st, ct−1 − yt−1) = 0.
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The specification of consumption relative to output guarantees their long run cointegra-

tion relation, while the stationary state variables and error component allow for general

transitory fluctuations. The inclusion of the lagged value is in line with partial adjust-

ment models for the consumption share towards a target level that changes with the state

variables.

Similarly, aggregate corporate dividends per unit of output or consumption is flexibly

modeled as a nonparametric function of the state ψd(·) plus error component εdt . Suppose

a portfolio of equities is traded at the price Pt and pays a stochastic dividend level Dt

per share. Dividends can be seen as a leveraged claim on consumption, which implies a

cointegration relation between logDt and logCt (Menzly et al., 2004), and thus between

logDt and log Yt. With cointegration parameter λ, the logarithmic residual is modeled

analogous to the consumption share by the semiparametric additive specification

dt − λyt = ψd(st) + ρd (dt−1 − λyt−1) + εdt , E
(
εdt | st, dt−1 − λyt−1

)
= 0.

Alternatively the dividend-to-consumption ratio could be modeled via the cointegration

residual dt − λct, as any pair of ratios of output, consumption, and dividends, pins down

the remaining one.

Combining the cointegration residuals into the measurement vectormt = (ct − yt, dt − λyt),

and allowing for interaction, yields the vector process

mt = Rmt−1 + ψ(st) + εt, εt ∼ i.i.d.(0,Σε), (2)

with εt = (εct , ε
d
t ) the combined error term, and Σε its covariance matrix.2 The latent

states are assumed to be strongly exogenous, in the sense that E(εt | (st+j)
∞
j=−∞) =

0. The identifying assumptions, formalized in Assumption 1, require future augmented

states St+1 = (∆yt+1, st+1) to be independent of current and past measurements of mt,

controlling for st. This ‘no feedback’ assumption allows future growth (∆yt+h)h≥1 to serve

as instruments for st. The assumption intuitively implies that consumption and dividend

shocks can only affect future output growth through the latent states st, which in our

example contain the persistent growth component. It does not rule out contemporaneous

2Our identification results allow for conditional heteroskedastic errors through Σε,t = Σε(st), but our
empirical results cover the homoskedastic case.
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correlation between the measurement innovations εt and ∆yt. In particular, in our long-run

risk example, εt is allowed to be correlated with the transitory output growth shock ηy,t.

Such correlation is plausible given that mt is measured relative to yt, and thus affected by

any measurement error in the latter.

The process reduces to a standard first-order vector autoregression when ψ(st) is con-

stant, in which case consumption and dividends relative to output do not respond to st.

For example, Bansal et al. (2007) include the cointegration residuals of consumption and

dividends in a vector autoregression with other stationary variables. Furthermore, it in-

cludes models without direct lag dependence, such that R is a zero matrix, but where the

cointegration residuals depend on latent state variables. For example, Schorfheide et al.

(2018) model the consumption-output and dividend-consumption residuals using the linear

function ψ(xt) = µ+ ψxt, where xt is a persistent growth component. Such models would

typically allow for serial correlation in the error term. Finally, our specification can be

related to state-space models expressed in terms of growth rates, by representing (2) as

∆ct+1 = ∆yt+1 + (Rcc − 1, Rcd)
Tmt + ψc(st+1) + εct+1 (3)

∆dt+1 = λ∆yt+1 + (Rdc, Rdd − 1)Tmt + ψd(st+1) + εdt+1.

When R = I, output, consumption, and dividends are not subject to cointegration rela-

tions. When ∆yt+1 follows (1) and ψ(·) is constant, this yields the baseline long-run risk

model from Bansal and Yaron (2004), in which consumption and dividend growth depend

linearly on a common persistent component xt.

An advantage of formulation (2) is that it does not introduce additional state variables

for consumption and dividend growth. Instead, time-variation in their mean and volatility

derives from those of output growth. This parsimony may appear restrictive, compared

to for example Schorfheide et al. (2018) who allow for three separate stochastic volatility

processes. However, allowing for nonlinear state dependence through ψ(st) might capture

variation in conditional means that would otherwise show up as conditionally heteroskedas-

tic, non-Gaussian error terms.
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2.3 Stochastic discount factor

Suppose there is an infinitely-lived representative agent whose consumption and investment

choices maximize its life time expected utility Ut given by

Ut = E

(
∞∑
s=t

βs−tu(Cs, ss) | Ft

)
,

where β is a fixed discount parameter, and u(·) is a state-dependent instantaneous utility

function with the multiplicative decomposition

u(Ct, st) = v(Ct; γ)φ(st), (4)

where v(·) is the isoelastic utility function

v(Ct; γ) =


C1−γ
t

1−γ γ 6= 1

logCt γ = 1,

and φ(·) a general function of the state that could be fully or partially unspecified. Such

a specification provides additional stochastic discounting in line with extensions of the

standard power utility consumption-based model that aim to better explain equity risk

premia. The component φ(st) can be directly interpreted as a taste shifter, describing how

the marginal utility of consumption changes with the state of the economy. Since economic

theory may not prescribe how variables such as the expected growth and its volatility affect

such time preferences, it is desirable to not restrict the functional form φ(·). For example,

evidence from option markets suggests marginal utility may be U-shaped with respect to

financial market volatility (Song and Xiu, 2016). It remains to be seen whether similar

nonlinear time preferences exist for measures of economic uncertainty.

Specification (4) also covers more structural models of the form u(Ct,Mt) =
C1−γ
t

1−γ Mt,

where the multiplicative component Mt can be written in terms of the Markovian state

variables st. For example, the utility over wealth models in Bakshi and Chen (1996) specify

Mt = W λ
t for some parameter λ, where Wt measures either absolute or relative wealth. This

is covered by (4) as long as Wt, or the wealth-consumption ratio Wt

Ct
, is Markovian in st, as

is common when wealth is defined as the value of a claim on future aggregate consumption.
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Models with reference utility imply Mt = Qγ
t , where Qt is the inverse consumption surplus

ratio relative to a reference level, which may be determined by st. Habit models specify

Qt in terms of lagged consumption growth ∆ct, which in our specification depends in

part on st, or which could be added into ψ(st,∆ct) as an extension discussion below.

Models with incomplete markets or private information implyMt = E
(

(Ci
t/Ct)

−γ | st
)

and

Mt = E
(
(Ci

t/Ct)
γ | st

)−1
, respectively, where Ci

t is consumption by each ex-ante identical

consumer i, see e.g. Hansen and Renault (2010). Models with stockholder consumption

can be described by Mt = (Cs
t /Ct)

−γ, where stockholder consumption Cs
t has been found to

covary more with long-run growth than aggregate consumption (Malloy et al., 2009). In this

case, φ(xt) could serve as a correction factor when using the latter series. For certain types

of subjective beliefs φ(st) may represent probability overweighting of possible outcomes of

the state variable. Finally, besides economic interpretation, φ(st) could be used to detect

statistical misspecification of the transitory component of the stochastic discount factor,

and thereby aid the search for appropriate structural models.

Under this semiparametric specification, the pricing kernel ζt = βtC−γt φ(st) is the prod-

uct of a deterministic time-discount factor, a non-stationary component proportional to the

marginal utility of consumption, and a stationary component that allows for general state-

dependent preferences. The stochastic discount factor or marginal rate of substitution over

states between times t and t+ τ is given by

Mt,t+τ =
ζt+τ
ζt

= βτ
(
Ct+τ
Ct

)−γ
φ(st+τ )

φ(st)
.

The stochastic discount factor Mt,t+τ is stationary for any fixed horizon τ due to the joint

stationarity of consumption growth and the state variables.

Extensions. The arguments of φ(·) could be extended to include mt or other stationary

observed variables zt. For identification of φ(·), the augmented state vector (st,mt, zt)

would have to satisfy the Markov assumptions in Assumption 1. For example, utility

of wealth models may motivate the semiparametric form φ(st,mt) = φ̃(st)e
βTmt , after

conjecturing that the log wealth-consumption ratio is linear in mt. For habit models

featuring a finite number of lags of consumption growth, φ(st, zt) with zt = ∆ct or its

further lags may be chosen. Theoretical and empirical results for related habit models

are available in Chen and Ludvigson (2009) and Escanciano et al. (2020). Finally, models
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where Mt is an unobserved Markovian time preference shock as in Albuquerque et al.

(2016) may be included with zt = rft , provided there is a one-to-one mapping between the

risk-free rate rft = πf (st,mt,Mt) and the time preference shock, given (st,mt).

2.4 Euler equation for asset prices

In rational expectations equilibrium models, the cum-dividend return Rd
t+1 on any traded

equity price satisfies the Euler equation

1 = E

(
β

(
Ct+1

Ct

)−γ
φ(st+1)

φ(st)
Rd
t+1 | Ft

)
.

When st ∈ Ft, that is, when the latent state variables are in the investor’s information set,

the Euler equation implies

1

β
φ(st) = E

((
Ct+1

Ct

)−γ
φ(st+1)Rd

t+1 | st

)
, (5)

which can be recognized as a Type-II Fredholm integral equation. Using infinite-dimensional

versions of the Perron-Frobenious theorem, Christensen (2017) and Escanciano et al. (2020)

provide conditions for the existence and uniqueness of a positive eigenvalue-eigenfunction

pair (β, φ) that solves this type of equation.

Computing the solution using the return formulation requires knowledge of the con-

ditional expectation E

((
Ct+1

Ct

)−γ
Rd
t+1 | st+1, st

)
given both the current and next period

state variables. In terms of price-dividend ratios, the Euler equation reads

Pt
Dt

= E

(
β

(
Ct+1

Ct

)−γ
φ(st+1)

φ(st)

Dt+1

Dt

(
1 +

Pt+1

Dt+1

)
| Ft

)
(6)

When the extended state vector (st,mt) ∈ Ft, the Markovian consumption and dividend

dynamics imply that the price-dividend ratio equals a function π(st,mt) which satisfies the

recursive relation

π(st,mt) = E

(
β

(
Ct+1

Ct

)−γ
φ(st+1)

φ(st)

Dt+1

Dt

(1 + π(st+1,mt+1)) | st,mt

)
. (7)
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In turn, this implies the eigenproblem characterization of the stochastic discount function

1

β
φ(st) = E

(
φ(st+1)

(
Ct+1

Ct

)−γ
Dt+1

Dt

1 + π(st+1,mt+1)

π(st,mt)
| st

)
. (8)

Under the dynamics (2), the logarithm of the consumption-discounted cash flow
(
Ct+1

Ct

)−γ
Dt+1

Dt

can be decomposed as

−γ∆ct+1 + ∆dt+1 = (λ− γ)∆yt+1 + (−γ, 1)T (mt+1 −mt).

The integral equation (8) can therefore be stated in terms of the price-dividend function

π(st,mt) and the Markovian density f(St+1,mt+1 | st,mt). The latter decomposes into the

product of the parametric state density f(St+1 | st) and the semiparametric measurement

density f(mt+1 | st+1,mt) = fε(mt+1−ψ(st+1)−(R−I)mt), both of which can be identified

without using asset prices.

Finally, the price of a risk-free bond with one-period maturity is given by

P f
t = E

(
β

(
Ct+1

Ct

)−γ
φ(st+1)

φ(st)
| st,mt

)

= E

(
β exp {−γ∆yt+1 − γ(ψc(st+1) + εt+1)} φ(st+1)

φ(st)
| st
)

exp
(
−γ(Rcc − 1, Rcd)

Tmt

)
≡ πf (st) exp(αTfmt).

Hence the risk-free rate rft = logP f
t = log πf (st) + αTfmt takes a partially linear form.

2.5 Generalizing affine models

By suitably specifying the nonlinear functions ψ(st) and latent state dynamics f(st+1 | st),

it is possible to generalize commonly-used affine models for consumption and dividend

growth, while retaining some of their tractability.

In particular, suppose the consumption and dividend policy functions are approximated

by L-degree polynomial expansions:

ψcL(s) =
∑

0≤|l|≤L

cls
l = cT s̄L, ψdL(s) =

∑
0≤|l|≤L

dls
l = dT s̄L,
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where s̄L is a column vector that stacks monomials up to degree L in lexicographic order.

Orthogonal polynomials such as the Hermite or Chebyshev polynomials are spanned by

elementary polynomials and can be represented in this way.

Affine models are often used to describe non-Gaussian dynamics, as they can incorporate

features such as stochastic volatility and leverage effects in a tractable fashion. Discrete-

time affine models can be characterized by their exponential-affine conditional Laplace

transforms or moment-generating functions:

E(eu
T st+1 | st) = ea(u)+b(u)T st ,

for some coefficient functions a(·) and b(·) that satisfy a(0) = b(0) = 0. The conditional

mixed moments up to orders 0 ≤ j1, j2 ≤ L under such models can be computed as

E
(
sj1t+1,i1

sj2t+1,i2
| st
)

=
∂j1∂j2

∂j1ui1∂
j2ui2

ea(u)+b(u)T st
∣∣∣
u=0

= QT
L,j1j2·s̄t

L, (9)

where the rows in the LD ×LD matrix QL collect coefficients for each of the mixed mono-

mials in s̄t
L. As a result, expectations of the state-dependent components in consumption

and dividends take the polynomial forms

E (ψcL(st+1) | st) = cTQLs̄
L
t , E

(
ψdL(st+1) | st

)
= dTQLs̄

L
t .

Example. For the special case of autoregressive Gamma processes, used for modeling

stochastic variance σ2
t in our application, Gourieroux and Jasiak (2006) show that there

exist orthogonal polynomials Ψj(·), for any order j = 0, 1, . . ., such that

E
(
Ψj(σ

2
t+1) | σ2

t

)
= νjΨj(σ

2
t ),

for the scalar persistence parameter ν. The polynomials take the form of scaled generalized

Laguerre polynomials, and form a convenient choice of basis functions for ψcL(·) and ψdL(·).

When the functions ψL(st) are linear in affine state variables (L = 1), consumption

and dividend growth are themselves affine. More general nonlinear specifications of ψL(st)

(L ≥ 2) allow for convex or concave relations, for interaction terms between the state

variables, or for higher order effects.
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2.6 Continuous-time formulation

Our framework can also be used to generalize continuous-time affine models, which are

widely used for derivative pricing and risk management. Following Duffie et al. (2000), the

continuous-time affine specification for (dyt, dst) requires its drift and covariance matrix to

be affine functions of the state variables st.
3

Example. The continuous time counterpart of our baseline long-run risk model with

stochastic expected growth xt and volatility vt is described by

dyt = (µ+ xt)dt+ σtdW
y
t

dxt = −κxxtdt+ ωxσtdW
x
t (10)

dσ2
t = κσ

(
σ2
t − σ̄2

)
dt+ ωσσtdW

σ
t ,

where (W y
t ,W

x
t ,W

σ
t ) are uncorrelated standard Brownian motions. This process is ob-

tained as the limit when the time between observations τ → 0. The discrete and continu-

ous time parameters are related as ρx = exp(−κxτ), ν = exp(−κστ), φs = 2κσσ̄2/ω2
σ, and

c = 1
2
ω2
σ(1− exp(−κστ))/κσ. Positive values for the mean reversion parameters κx and κσ

assure that st = (xt, σ
2
t ) is stationary around its unconditional mean (µ, σ̄2). Moreover,

the model could be extended to allow growth and volatility innovations to be correlated.

The conditional moments of affine processes solve a first-order linear matrix differential

equation arising from the polynomial-preserving property of the infinitesimal generator

(Zhou, 2003; Cuchiero et al., 2012). Its solution shows the conditional moments of the

state variable at horizon τ are polynomials in the current state variable:

E(S̄Lt+τ | St) = eτALS̄Lt , (11)

where the coefficients of the matrix AL are functions of the transition parameters which

can be computed symbolically using standard software.

The functional specification of the consumption and dividend policies leads to a general

3The affine framework also accommodates discontinuous shocks provided the jump intensity is linear
in the state variables.
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class of potentially nonlinear dynamics of consumption and dividend growth according to

dmt = (R− I)mtdt+ dψ(st) + σmdWm
t . (12)

When ψ(st) is linear, the consumption and dividend growth dynamics reduce to the bench-

mark affine models studied in Eraker and Shaliastovich (2008).

The conditional moment formula (11) allows exact computation of expected values of

polynomials of the state variables. For example, growth in consumption relative to output

at horizon τ equals

∆ct,t+τ −∆yt,t+τ =
(
e−ρ

cτ − 1
)

(ct − yt) + ρc
∫ t+τ

t

e−ρ
c(t−s)ψc(ss)ds+

∫ t+τ

t

e−ρ
c(t−s)dW c

s .

Under the polynomial consumption function approximation, its expected value equals

E (∆ct,t+τ −∆yt,t+τ | st, ct − yt) =
(
e−ρ

cτ − 1
)

(ct − yt) + ρccTQL(τ)s̄Lt , (13)

where the matrix QL(τ) =
∫ τ

0
es(AL−ρ

cI)ds converges to QL(∞) = (AL − ρcI)−1 provided

AL − ρcI is invertible. Thus, under the affine-polynomial formulation expected consump-

tion growth is itself a polynomial of the state variables. The same result holds for expected

dividend growth. Invertibility of QL(τ) implies a one-to-one mapping between the coeffi-

cients of the consumption and dividend policy functions and those of their expected growth

rates over any horizon τ , which would thus determine their entire term structure.

Finally, the continuous-time formulation allows linking the volatility of asset returns,

which can be estimated at high-frequencies, to that of state variables describing macroe-

conomic fundamentals. Following our affine-polynomial approximation, suppose the log

price-dividend ratio takes the form log Pt
Dt

= πpL(st) + α ·mt. Variation in the log return

can then be decomposed into variation in the price-dividend ratio, the consumption and

dividend shares mt, and output growth:

d logPt = dπp(st) + α∗ · dmt + λdyt
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where α∗ = α + (λ, 1). Its unexpected innovation is

d logPt − Et(d logPt) = α∗ · σmdWm
t + λp(st)dSt,

where λp(st) = (λ, πps(st) + α∗ · ψms (st)) are the return’s loadings on the state variables.

The quadratic variation of the log return follows by Itô’s Lemma as

d〈logP 〉t = α∗ · σmσ′mα∗ + λps(st)
′d〈S〉tλps(st). (14)

When the pricing and policy functions are polynomials, so are the gradients λps(st), and (14)

yields an exact formula for the spot variation of returns that can be used for estimation.

3 Estimation

This section discusses the identification and estimation of the policy functions ψ =
(
ψc, ψd

)T
,

the pricing function π, the preference parameters (β, γ) and stochastic discount function

φ, and the parameters of the latent variable distribution θs. The functional parameters

are combined into h = (ψ, π, φ), the finite-dimensional parameters into θ = (β, γ, θs), and

both types of parameters into ϑ = (θ, h).

The results in this section apply to the discrete-time model formulated by (1) and

(2). When the frequency of observation is high, the resulting parameters are expected to

be close to their continuous-time counterparts in (10) and (12). Moreover, the relation

between instantaneous and cumulative growth (13) could be used to translate between the

timing assumptions.

3.1 State space formulation

The measurements mt =
(

log Ct
Yt
, log Dt

Y λt

)T
and normalized prices pt = (log Pt

Dt
, rft ) contain

aggregate quantities whose conditional mean dependence on the unobserved state variables

st is approximated by polynomials. The dynamics of the partially observed Markovian state

vector St+1 = (∆yt+1, st+1) are defined by its transition density. The following assumptions

describe the interaction between the observations and states:

Assumption 1.
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a) (mt, pt,St) are jointly stationary

b) The joint process is first-order Markov:

(mt+1, pt+1,St+1) | Fm,p,y,st ∼ (mt+1, pt+1,St+1) | (mt, pt, st)

c) There is no feedback from the measurements and prices to the states:

St+1 | (mt, pt, st) ∼ St+1 | st

d) The state-dependence of the measurements is contemporaneous:

mt+1 | (St+1,mt, pt, st) ∼ mt+1 | (St+1,mt)

e) The state- and measurement-dependence of prices is contemporaneous:

ηt+1 | (mt, pt, st) ∼ ηt+1 | ηt

where ηt = pt − E(pt | mt, st) is the pricing error.

Stationarity of the measurements mt implies the cointegration of the logarithms of

output, consumption, and dividends. The resulting mean-reverting behavior of mt is a well-

known source of return predictability (Lettau and Ludvigson, 2001; Bansal et al., 2007).

The presence of state variables in the policy functions allows for the flexible modeling

of the cointegration residuals. The joint first-order Markov assumption 1.b) rules out

any dependence on past states or errors. Multi-period dependence can be allowed for by

including further lags in the state vector. The no feedback assumption 1.c) implies that

the partially observed St forms a hidden Markov process, and is not caused in the sense of

Granger (1969) by the observations (mt, pt). This allows for an interpretation of exogenous

variation in the state variables generating endogenous responses in the observations. The

hidden Markov assumption does not require that observations are themselves Markovian, as

it allows for their dependence at all leads and lags. The contemporaneous state-dependence

of measurements and prices in 1.d) and 1.e) rules out their direct dependence on past states,

which is a timing assumption also made by Hu and Shum (2012) and describes rational
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forward-looking behavior. Finally, prices pt are distinguished from measurements mt by

depending on their own lag only through a Markovian pricing error. The distinction is

motivated by the presence of habits or frictions in consumption and cash flow choices, while

the pricing error is attributed to market sentiments unrelated to fundamentals. However,

if the other type of lag dependence is deemed more appropriate, a series of prices could be

included in mt, or a series of measurements in pt.

Our application focuses on the special case of partially linear measurement equations

with Gaussian errors. Combined with the transition density, this case can be summarized

by the state space formulation

mt = Rmmt−1 + ψ(st) + εt, εt ∼ i.i.d.N(0,Σε)

pt = π̃(st) + αTmt + ηt, (15)

ηt = Rpηt−1 + ωt, ωt ∼ i.i.d.N(0,Σω)

St+1 ∼ f(St+1 | st),

where εt and ωt are uncorrelated, and independent of st. The serially correlated pricing

error ηt allows for the presence of persistent deviations from the fundamental price given

the state variables and cointegration residuals. This allows for an autoregressive stochastic

discount factor component unrelated to fundamentals, as in Albuquerque et al. (2016) and

Schorfheide et al. (2018).

3.2 Identification

The identification of the functional parameters follows a sequential argument. First, we

study the identification of the policy functions ψ and pricing functions π under the hidden

Markov assumptions. Given these, we study the identification of the stochastic discount

function φ from the conditional Euler equation.

3.2.1 Identification of the policy functions

Under Assumption 1, our semiparametric formulation is a special case of the nonparametric

dynamic latent variable models considered in Hu and Shum (2012). Applying their main

result yields high-level invertibility conditions under which the four-period joint density
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of (mt,∆yt) identifies the first-order Markovian distribution of (mt,∆yt, st). Intuitively,

they exploit the conditional independence of past and future observations given the current

partially observed state variable. A related argument is used in Arellano et al. (2017) to

identify the consumption rule in terms of a persistent earnings component using future

observed earnings. Our no feedback assumption makes this strategy possible as future

growth realizations are independent of the current measurement given the current latent

state. However, while Hu and Shum (2012) and Arellano et al. (2017) use a large number

of cross-sectional units to estimate the multi-period densities, we instead use a stationary

time series (mt,∆yt) observed over a large number of periods T .

The identification argument proceeds sequentially. First, we assume that the parameter

θs of the state transition density f(St+1|st; θs) are identified from the dynamics of observed

growth ∆yt+1. For affine models this can be verified from their Laplace transform (Gagliar-

dini and Gouriéroux, 2019). Second, let Fyt+1:t+K denote the future growth realizations

(∆yt+1, . . . ,∆yt+K) for a finite number of leads K. Under stationarity of (mt,∆yt), the

joint density f(mt,Fyt+1:t+K) can be consistently estimated by letting T → ∞. The no

feedback condition implies the conditional independence mt | st,Fyt+1:t+K ∼ mt | st, so

that

f(mt | Fyt+1:t+K) =

∫
f(mt | st)f(st | Fyt+1:t+K ; θs)dst.

Hence, provided the density f(st | Fyt+1:t+K) is complete, the density f(mt | st) is identified.

Finally, let

f(mt+1 | mt,Fyt+1:t+K) =

∫
f(mt+1 | mt, st+1)f(st+1 | mt,Fyt+1:t+K ; θs)dst+1,

where the updated density f(st+1 | mt,Fyt+1:t+K) =
f(mt,st+1|Fyt+1:t+K)

f(mt|Fyt+1:t+K)
is identified from the

previous step using

f(mt, st+1 | Fyt+1:t+K) =

∫
f(mt | st)f(st+1 | st,Fyt+1:t+K)f(st | Fyt+1:t+K)dst.

Provided the updated density is also complete, the conditional density f(mt+1 | mt, st+1)

and thus its conditional mean are identified.

In case of a polynomial measurement equation, the completeness assumptions reduce to
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rank conditions involving conditional moments of the state variables given future and/or

past growth realizations. For example, let slt|T = E(slt | F
y
T ) be the smoothed conditional

l-th mixed moment of the state st given the full sample of growth realizations, and let

the vector s̄Lt|T stack the smoothed moments up to order L. Consider the univariate spec-

ification mt = ρmt−1 + c′Ls̄
L
t + εt, where εt is independent of FyT .4 The latter implies

E
(
εts

l
t|T

)
= 0 for any l = 0, . . . , L, which yields the linear system of L+ 1 equations

E
(
s̄Lt|T
′mt

)
= ρE

(
s̄Lt|T
′mt−1

)
+ c′LE

(
s̄Lt s̄

L
t|T
′) . (16)

The prediction error ēLt = s̄Lt|T − s̄Lt by construction satisfies E
(
ekt s

l
t|T

)
= 0 for each

(k, l) ∈ {0, . . . , L}, so that E
(
s̄Lt s̄

L
t|T
′
)

= E
(
s̄Lt|T s̄

L
t|T
′
)

. In the special case ρ = 0, the

coefficient vector cL could therefore be identified from the regression of mt on s̄Lt|T . More

generally, the one-period lagged moments yield the additional L+ 1 linear equations

E
(
s̄Lt|T
′mt−1

)
= ρE

(
s̄Lt|T
′mt−2

)
+ c′LE

(
s̄Lt−1s̄

L
t|T
′) , (17)

where E
(
s̄Lt−1s̄

L
t|T
′
)

= E
(
E
(
s̄Lt−1 | F

y
T

)
s̄Lt|T
′
)

= E
(
s̄Lt−1|T s̄

L
t|T
′
)

by iterated expectations.

Together, the L + 2 parameters in (ρ, cL) are thus (over)identified by the 2(L + 1) lin-

ear equations given by (16) and (17), provided the outer product matrix E
(
s̄Lt|T s̄

L
t|T
′
)

is

invertible.

This identification strategy can be seen as a two-stage version of the use of instrumental

variables in polynomial measurement errors models by Hausman et al. (1991), who solve

a linear system involving moments of the measurement error. In our case, the first stage

directly estimates the moments of the unobserved regressors, using the path of growth

realizations as instrument.

3.2.2 Identification of the pricing function

When the measurement density is known, the expected price-dividend ratio π(st,mt) =

E
(
Pt
Dt
| st,mt

)
can be nonparametrically identified from the integral equation

E

(
Pt
Dt

| mt,Fyt+1:t+K

)
=

∫
π(st,mt)f(st | mt,Fyt+1:t+K)dst, (18)

4Correlation between εt and ∆yt could be allowed for by adding the latter as a linear regressor.
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under the hidden Markov and no feedback Assumptions 1.a)-c) and the completeness of

f(st | mt,Fyt+1:t+K). Moreover, Assumptions 1.d) and 1.e) imply the pricing errors are

independent of future and past measurements, respectively, so that subsets of those could

be added as conditioning variables.

The special case of a partially log-linear model for univariate prices pt = log( Pt
Dt

) =

π̃pL(st) + αTmt + ηt with polynomial approximation π̃pL(st) = b′Ls̄
L
t and Gaussian errors

ηt = ρpηt−1 + ωt can be analyzed as a two-stage linear regression model. In particular,

let s̃lt|T = E(slt | F
y,m
T ) be the smoothed l-th moment of the state st given the leads and

lags of both the measurements and growth realizations. Since these are independent of

the pricing error ηt, the conditional mean of the log price-dividend ratio pt is given by the

regression equation

E
(
pt | ˜̄sLt|T ,mt

)
= b′L ˜̄sLt|T + α′mt.

The variance σ2
η of the pricing error ηt can be identified from the squared deviations as

E
(

(pt − α′mt)
2
)

= E
((
b′Ls̄

L
t + ηt

)2
)

(19)

= b′LE
(
s̄Lt s̄

L′

t

)
bL + σ2

η,

using E
(
ηts̄

L
t

)
= 0, where the outer-product matrix E

(
s̄Lt s̄

L′
t

)
is identified from the state

transition parameters. The expected price-dividend ratio is then computed as π(st,mt) =

eb
′
Ls̄
L
t +α′mt+

1
2
σ2
η .

Similarly, provided the pricing error ηt is independent of st at all leads and lags, its

autocorrelation ρη is identified from the autocovariance E (ηt+1ηt) = ρησ
2
η using

E ((pt+1 − α′mt+1) (pt − α′mt)) = E
((
b′Ls̄

L
t+1 + ηt+1

) (
b′Ls̄

L
t + ηt

))
= b′LQLE

(
s̄Lt s̄

L′

t

)
bL + E (ηt+1ηt) ,

where the coefficient matrix QL describing the state moment dynamics (9) and the uncon-

ditional moment matrix E
(
s̄Lt s̄

L′
t

)
are known given the transition parameter θs. Finally,

applying the same identification strategy to E ((pt+j − α′mt+j) (pt − α′mt)) for lead orders

j ≥ 2 could be used to identify the entire autocovariance function of the pricing error ηt
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in order to assess the first-order autoregression specification.

Given the correct specification of the joint Markovian transition density of (mt, pt, st),

the policy and pricing functions can be efficiently estimated using full-information likeli-

hood methods. Still, the block diagonal structure of (mt, pt) | st means that the measure-

ment dynamics mt | (st,mt−1) can be consistently estimated without any assumption on

the pricing function and errors. This robustness motivates using the moment-based esti-

mators as initial values for finding the maximum likelihood estimator via the Expectation-

Maximization or similar algorithm.

3.2.3 Identification of the stochastic discount function

Once the transition density and the policy and pricing functions are known, the identi-

fication of the stochastic discount function proceeds essentially as if the state variables

are observable. In particular, the stochastic discount function is identified from the price-

dividend function as long as there is unique eigenvalue-eigenfunction pair (φ, 1
β
) that solves

(8). Let L2 = L2(P) denote the Hilbert space of square integrable functions with the

marginal distribution P(s) of st as measure. Let M : L2 → L2 be the linear operator

defined by

Mφ(st) = E (φ(st+1)K(st, st+1) | st) ,

where

K(st, st+1) = E

((
Ct+1

Ct

)−γ
Dt+1

Dt

1 + π(st+1,mt+1)

π(st,mt)
| st, st+1

)
.

Christensen (2017) and Escanciano et al. (2020) show that the following assumption is

sufficient for the uniqueness (up to scale) of a positive eigenfunction φ and corresponding

positive eigenvalue:

Assumption 2.

a) M is bounded and compact

b) K(st, st+1) is positive a.e.
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The positivity assumption facilitates the use of an infinite-dimensional extension of the

Perron-Frobenious theorem for positive valued matrices. This theorem also underpins the

pricing kernel recovery theorem for finite Markov chains in Ross (2015). In our setting, a

sufficient condition for the positivity of K is that the price-dividend function π(st,mt) is

positive almost everywhere. Some mild sufficient conditions on K for M to be bounded

and compact are given in Christensen (2017) and Escanciano et al. (2020). In particular,

compactness follows from

∫∫
K(st, st+1)2fs(st+1)fs(st)dst+1dst <∞,

where fs(·) is the marginal density of st. Since φ is only identified up to scale, estimation

requires a normalization such as E (φ(st)
2) = 1.

Further restrictions can be formed by adding conditioning variables such as mt to iden-

tify additional arguments in φ(·) or to achieve overidentification. This approach is taken

in Chen and Ludvigson (2009) to help identify φ(·) under the completeness of an expected

return-weighted density of the state variables.

3.3 Likelihood formulation

The joint log-likelihood function of the combined observations can be decomposed as

`T (ϑ) = log f(FpT ,F
m
T ,F

y
T ;ϑ)

= log f(FpT | F
m,y
T ; π, ψ, θs) + log f(FmT | F

y
T ;ψ, θs) + log f(FyT ; θs).

The parameter structure allows for both joint and sequential estimation procedures. In

particular, θs can be consistently estimated from the series ∆yt alone, ψ from (mt,∆yt)

given θ̂s, and π from the full observation vector (pt,mt,∆yt) given (θ̂s, ψ̂).

The time t+1 contribution to the joint log-likelihood function `T (ϑ) = 1
T−1

∑T−1
t=1 lt+1(ϑ)

is given by

lt+1(ϑ) = log f(pt+1,mt+1,∆yt+1 | Fm,y,pt ;ϑ).
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The likelihood components are the predictive likelihood of the growth realization ∆yt+1

f(∆yt+1 | Fp,m,yt ;ϑ) =

∫∫
f (∆yt+1, st+1 | st; θs) f (st | Fp,m,yt ;ϑ) dst+1dst,

the conditional likelihood of the measurements mt+1 after updating by ∆yt+1

f(mt+1 | ∆yt+1,Fp,m,yt ;ϑ) =

∫
f (mt+1 | st+1,mt;ψ) f (st+1 | ∆yt+1,Fp,m,yt ;ϑ) dst+1,

and the conditional likelihood of the prices pt+1 after updating by (mt+1,∆yt+1)

f(pt+1 | Fm,yt+1 ,F
p
t ;ϑ) =

∫∫
fη
(
ηt+1(st+1) | ηt(st); π, σ2

η

)
f
(
st+1, st | Fm,yt+1 ,F

p
t ;ϑ
)
dst+1dst,

where ηt(st) = pt − π(st,mt) are the implied pricing errors.

3.4 Sequential Monte Carlo filtering and smoothing

In nonlinear dynamic models it is generally not possible to integrate out the latent variables

analytically from the likelihood components, unlike in linear models with Gaussian errors

where the updating density f (st | Fyt ; θs) can be computed recursively by the Kalman filter.

In line with Taylor expansion methods of solving equilibrium models (e.g. Schmitt-Grohé

and Uribe, 2004), a second order approximation to the measurement equation could be

performed to identify parameters corresponding to volatility shocks (Fernández-Villaverde

and Rubio-Ramı́rez, 2007). However, this may cause parameters related to higher order

moments to become unidentified. Instead, particle filtering or sequential Monte Carlo

simulation can be used to recursively approximate expectations of any nonlinear function

of the state vector, see Doucet and Johansen (2009) for an overview.

The filtering density of the latent states satisfies the recursion

f(st+1 | Fp,m,yt+1 ) ∝
∫
f(pt+1,mt+1 | St+1, pt,mt, st)f(St+1 | st)f(st | Fp,m,yt )dst.

This motivates the following recursive algorithm. Let (si,t)
Ns

i=1 be a set of N s particles

drawn from Fp,m,yt with weights (wi,t)
Ns

i=1. First, draw next period’s states (si,t+1)N
s

i=1 from

the transition density f(st+1 | st; θs). Second, compute the updated sampling weights of
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(si,t+1)N
s

i=1 given (pt+1,mt+1,∆yt+1) as

wi,t+1 ∝ fη (ηt+1(si,t+1) | ηt(si,t);ϑ) f (mt+1 | si,t+1,mt;ϑ) f(∆yt+1 | si,t+1, si,t; θs), (20)

and normalize the weights such that
∑Ns

i=1 wi,t = 1. The updated moments of st+1 given

(pt+1,mt+1,∆yt+1) follow as s̄Lt+1|t+1 = 1
Ns

∑Ns

i=1w
∗
i,t+1s̄

L
i,t+1. The predictive likelihood of

(pt+1,mt+1,∆yt+1) is approximated by the simulated average

f(pt+1,mt+1,∆yt+1 | Ft;ϑ) ≈ 1

N s

Ns∑
i=1

wi,t+1f (pt+1,mt+1,∆yt+1 | si,t+1, pt,mt, si,t;ϑ) .

Before proceeding to the the next period, check whether the Effective Sample size ESSt+1 =

1/(
∑Ns

i=1w
2
i,t+1) falls below a specified threshold to reduce the risk of particle degeneracy.

If so, re-sample the draws si,t+1 according to a multinomial distribution with probabilities

wi,t+1, and set their weights equal to 1/N s.

Alternatively, one could draw from an auxiliary transition density ω(st+1 | st) that is

easy to simulate from, and multiply the weights (20) by the importance sampling factors

f(si,t+1 | si,t; θs)/ω(st+1 | st) before normalizing. The auxiliary densities can be chosen

to improve the efficiency of the simulations. In particular, the variance of the importance

sampling factors is minimized by choosing the updated density ωt+1(st+1 | st) = f(st+1 |

st, pt+1,mt+1,∆yt+1) given next period’s observations (e.g. Doucet and Johansen, 2009).

For nonlinear models the latter density is typically not available in closed form, but can

be approximated as Gaussian using the Unscented Kalman Filter (e.g. Fulop et al., 2021).

The smoothing distribution can be approximated similarly based on the backward re-

cursive relation

f(st | FT ) = f(st | Ft)
∫
f(st+1 | st)

f(st+1 | FT )

f(st+1 | Ft)
dst+1,

starting from last period’s filtered distribution f(sT | FT ). In particular, the smoothed

sampling weights (w∗i,t)
Ns

i=1 are recursively computed from the filtered weights (wi,t)
Ns

i=1 as

w∗i,t = wi,t

Ns∑
j=1

f(sj,t+1 | si,t)w∗j,t+1∑Ns

k=1 f(sj,t+1 | sk,t)wk,t
.
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Finally, the pairwise smoothed state densities, required by the Expectation-Maximization

algorithm, can be computed from the marginal filtering and smoothing distributions using

f(st+1, st | FT ) = f(st+1 | FT )f(st | st+1,Ft)

=
f(st+1 | FT )f(st+1 | st)

f(st+1 | Ft)
f(st | Ft).

The particle filter approximates this as

f(si,t+1, sa(i),t | FT ) = wa(i),t

w∗i,t+1f(si,t+1 | sa(i),t)∑Ns

k=1 f(si,t+1 | sk,t)wk,t
,

where a(i) is the index of the ‘ancestor’ of the i-th particle of the next period.

3.5 Expectation-Maximization algorithm

Global maximization of the approximated likelihood function is computationally unattrac-

tive when the parameter space is large-dimensional, as is the case when approximating

functional parameters. However, when the measurement equations are approximated by

polynomials, their coefficients can be estimated by the method-of-moments based on the

conditional moments of the states, in line with the identification argument in Section 3.2.

This motivates the following variant of the Expectation-Maximization (EM) algorithm, in

which the M-step of optimizing the expected log-likelihood given the observations reduces

to a linear regression. Related iterative algorithms in which the M-step is performed ana-

lytically are available for linear Gaussian models (Watson and Engle, 1983), finite mixture

models (Arcidiacono and Jones, 2003), and conditional quantile models (Arellano et al.,

2017).

E-step. Let ϑ = (θs, ϑm, ϑp), where ϑm = (ψL, Rm,Σε) and ϑp = (πL, α, Rp,Σω) com-

bine the polynomial coefficients and finite-dimensional parameters of the error distributions

for the measurement and prices, respectively. The Expectation-step involves computing

the expected augmented-state log-likelihood over ϑ given some initial values ϑ̃, defined as

Q(ϑ, ϑ̃) = Eϑ̃ (log f(p2:T ,m2:T ,∆y2:T , s1:T ;ϑ) | Fp,m,yT )

≡ Qp(ϑp, ϑ̃) +Qm(ϑm, ϑ̃) +Qy(θs, ϑ̃),
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where the price, measurement, and growth components equal

Qp(ϑp, ϑ̃) = Eϑ̃

(
T∑
t=2

log fω (ηt(st)−Rpηt−1(st−1))
∣∣ Fp,m,yT

)

Qm(ϑm, ϑ̃) = Eϑ̃

(
T∑
t=2

log fε (mt − ψL(st)−Rmmt−1)
∣∣ Fp,m,yT

)

Qy(θs, ϑ̃) = Eϑ̃

(
log f(s1; θs) +

T∑
t=2

log f(St | st−1; θs)
∣∣ Fp,m,yT

)
,

where ηt(st) = pt−πL(st)−αTmt are the implied pricing errors given parameters (πL, α).5

The expectations under the smoothing distribution fϑ̃(s1:T | Fp,m,yT ) can be approximated

as weighted averages using the simulated particles (w∗it, sit)i,t.

M-step. The three-way decomposition indicates thatQ(ϑ, ϑ̃) can be maximized component-

wise using corresponding subsets of parameters. Let ˜̄sLt|T = Eϑ̃(s̄Lt | F
p,m,y
T ) and Ṽ L

t|T =

Varϑ̃(s̄Lt | F
p,m,y
T ) denote the smoothed means and variances, respectively, of the polyno-

mials s̄Lt given the initial parameter values. For Gaussian measurement errors εt, Qm(·) is

maximized over cL and Rm as

(
ĉL R̂m

)′
=


∑T

t=2
˜̄sLt|T ˜̄sLt|T

′ + Ṽ L
t|T

∑T
t=2

˜̄sLt|Tmt−1∑T
t=2m

′
t−1

˜̄sLt|T
′ ∑T

t=2m
′
t−1mt−1


−1

∑T
t=2

˜̄sLt|Tmt∑T
t=2mt−1mt

 .

For Gaussian pricing error innovations ωt, Qp(·) can be maximized over bL and α given the

initial serial correlation parameters R̃p as

(
b̂L α̂

)′
=


∑T

t=2
˜̄sLt|T ˜̄sLt|T

′ + Ṽ L
t|T

∑T
t=2

˜̄sLt|Tmt∑T
t=2 m

′
t
˜̄sLt|T
′ ∑T

t=2 m
′
tmt


−1

∑T
t=2

˜̄sLt|T p̃t∑T
t=2 mtp̃t


in terms of the prices p̃t = pt−R̃pη̃t−1 adjusted for serial correlation, where η̃t = pt−b̃′L ˜̄sLt|T−

α̃′mt are the lagged pricing errors given the initial parameters. The transition density

parameter estimate θ̂s can be found using gradient-descent methods, as the simulated

Q(θs, ϑ̃) is continuous in θs as long as the transition density is.

5The first observed growth realization is ∆y2 = y2 − y1. The augmented-state likelihoods of the first
prices fη(η1(s1)) and measurements f(m1, s1) could be taken into account. The former is unconditionally
Gaussian, while the latter can be approximated by simulation.
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The error covariance matrices can be consistently estimated by sample averages, avoid-

ing numerical optimization over its parameters. In particular, the covariance matrix of the

errors Σε can be consistently estimated as

Σ̂ε =
1

T − 1

T∑
t=2

mt(mt − R̂mmt−1 − ĉ′L ˜̄sLt|T )′,

using the orthogonality conditions εt ⊥ (st,mt−1) and mt ⊥ ˜̄sLt|T − s̄Lt by definition of

prediction error. Similarly, the auto-covariance matrices of the pricing errors Ση(j) =

Var(ηt, ηt−j) can be consistently estimated as

Σ̂η(j) =
1

T

T∑
t=1

(pt − α̂′mt)
(
pt − α̂′mt − b′L ˜̄sLt|T

)
using the orthogonality conditions ηt ⊥ (st,mt) and pt ⊥ ˜̄sLt|T − s̄Lt . These imply the

first-order auto-regression coefficient matrix Rp = Ση(1)Ση(0)−1 and innovation covariance

matrix Σω = Ση(0)−RpΣη(0)R′p.

We repeat the E- and M-steps until convergence to a local optimum. Afterwards, we

perform parameter inference based on the scores of Q(ϑ, ϑ̃) around the local optimum

ϑ = ϑ̂, where they equal the scores of the log-likelihood `T (ϑ). While the former is

continuous in the parameters given the simulated state distribution, simulating the latter

may result in discontinuities.

3.6 Consistency

The population parameters of interest are given by

(θ0, h0) = arg max
θ∈Θ,h∈H

lim
T→∞

`T (θ, h), (21)

and the maximum likelihood estimator by

(θ̂, ĥ) = arg max
θ∈Θ,h∈H

`T (θ, h), (22)

where Θ is a finite-dimensional parameter space, and H =
∏K

m=1Hψm ×Hπ is a Cartesian

product of infinite-dimensional parameter spaces for the policy functions (ψm)Km=1 and the

29



pricing function π. Also define the product space Θ = Θ × H. Let the spaces Hm and

Hπ be equipped with the weighted Sobolev norm ‖ · ‖, which sums the expectations of

the partial derivatives of a function. In particular, for λ a D × 1 vector of non-negative

integers such that |λ| =
∑D

s=1 λs, and Dλ = ∂|λ|

∂y
λ1
1 ···∂y

λD
D

the partial derivative operator, this

norm is given for some positive integers r and p by

‖g‖r,p =

∑
|λ|≤r

E
(
Dλg(S)

)p
1/p

.

For vector-valued functions define ‖g‖r,p =
∑K

m=1 ‖gm‖r,p. Instead of maximizing `T (θ) over

the infinite dimensional functional space H, the method of sieves (Chen, 2007) controls the

complexity of the model in relation to the sample size by minimizing over approximating

finite-dimensional spaces HL ⊆ HL+1 ⊆ ... ⊆ H which become dense in H. For some

positive constant B, define H as the compact functional space

H =
{
g : RD 7→ R : ‖g‖2

r,2 ≤ B
}

All functions in H have at least r partial derivatives that are bounded in squared ex-

pectation. The polynomials in this space can be conveniently characterized in terms of

their coefficients. Let p
L

= (p1(w), ..., pL(w)) be a set of basis functions, and consider the

finite-dimensional series approximator gL(w) =
∑L

l=1 γjpj(w) = γ · p
L
(w). Define

ΛL =
∑
|λ|≤r

E
(
Dλp

L
(z)Dλp

L
(z)T

)
,

which implies that gL(w) ∈ H if and only if γTΛLγ ≤ B (Newey and Powell, 2003). There-

fore the optimization in (22) is redefined over the compact finite-dimensional subspace

HL(T ):

(θ̂, ĥL) = arg max
θ∈Θ,h∈HL(T )

`T (θ, h), (23)

where HL(T )

HL(T ) =

g(w) =

L(T )∑
l=1

γjpj(w) : γTΛL(T )γ ≤ B

 .
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Also define the Sobolev sup-norm

‖g‖r,∞ = max
|λ|≤r

sup
z

∣∣Dλg(z)
∣∣ .

Then the closure H̄ of H with respect to the norm ‖g‖r,∞ is compact (Gallant and Nychka,

1987; Newey and Powell, 2003).

Consider the following set of assumptions:

Assumption 3.

a) The parameter space Θ = Θ × H is compact, and the population log-likelihood is

uniquely maximized at the interior point ϑ0 = (θ0, h0).

b) (mt, pt) is a strong mixing stationary process, with E (‖mt‖2) < ∞ and E (‖pt‖2) <

∞

c) The transition density satisfies

∣∣ log f (S | s; θs)− log f
(
S | s; θ̃s

) ∣∣ ≤ c(S, s)‖θs − θ̃s‖u

for some u > 0 with E (c(St+1, st)
2) <∞, and Var (log f (St+1|st; θs0)) <∞.

Under these conditions, the following consistency result applies when both the sample

size and approximation order increase:

Theorem 1. Under Assumptions 3, the maximizer (θ̂, ĥL) of (23) satisfies

θ̂
p−→ θ0,

‖ĥL − h0‖r,∞
p−→ 0,

when T →∞, L→∞, and LD+1/T → 0.

3.7 Conditional method of moments estimation of φ

The recursive pricing equation (7) pins down the dependence of the expected price-dividend

ratio π(st;φ, ψ, θ) on the stochastic discount function φ and other structural parameters.
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When π(st;φ, ψ, θ) can be quickly and accurately computed, φ could be efficiently esti-

mated by maximizing the restricted likelihood function. However, in general this requires

an additional numerical approximation step, and leads to pricing functions that are no

longer linear in parameters. Instead, we consider a method-of-moments procedure for es-

timating φ based on the filtered moments of st given the observations. This estimation

method could therefore be performed within the M-step of the EM-algorithm, or after the

first-stage unrestricted maximum likelihood estimation of (π, ψ, θ).

The stochastic discount function φ is identified as the unique eigenfunction that solves

the Euler equation (5). When the stochastic discount function is approximated by the

polynomial φL(st) = e′Ls̄
L
t , its projection on the conditioning information is a polynomial

in the filtered moments ˆ̄sLt|t = Eϑ̂(s̄Lt | F
m,y,p
t ) of the states:

E (φL(st) | Fm,y,pt ) = e′L ˆ̄sLt|t.

By the Law of iterated expectations, the Euler equation (5) therefore gives rise to the

following conditional moment restrictions stated in terms of the filtered moments:

E

(
1

β
e′L ˆ̄sLt|t −

(
Ct+1

Ct

)−γ
e′L ˆ̄sLt+1|t+1Rt+1

∣∣ (mt, pt, ˆ̄s
L
t|t)

)
= 0.

The Markovian assumptions imply that the distribution of (∆ct+1, Rt+1, st+1) only depends

on Fm,y,pt through (mt, pt, st). When the filtered state density f(st | Fm,y,pt ) can be summa-

rized in terms of its L moments, there is no loss of information from conditioning down on

(mt, pt, ˆ̄s
L
t|t). The resulting unconditional moments can be represented as an eigenproblem

in the coefficient vector eL:

0 = E

(
(mt, pt, ˆ̄s

L
t|t)

T

(
1

β
ˆ̄sLt|t − C

−γ
t,t+1Rt+1 ˆ̄sLt+1|t+1

)
· eL
)

⇔ E
(

(mt, pt)
TC−γt,t+1Rt+1 ˆ̄sLt+1|t+1

′
)
eL =

1

β
E
(

(mt, pt)
T ˆ̄sLt|t

′
)
eL,

E
(

ˆ̄sLt|tC
−γ
t,t+1Rt+1 ˆ̄sLt+1|t+1

′
)
eL =

1

β
E
(

ˆ̄sLt|t ˆ̄s
L
t|t
′
)
eL.

For estimation we replace the unconditional moments by their empirical averages. Instead

of direct GMM estimation of the parameters (β, γ, eL), we profile the risk aversion parame-

ter γ and solve for (β(γ), eL(γ)) as the eigenvalue-eigenvector of the lower L+ 1 equations,
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recognizing the particular structure of the problem. The parameter γ is then set using the

moments obtained by instrumenting with (mt, pt).

The above procedure can be modified to be robust against the dynamic properties of the

pricing error ηt. In this case, we project the Euler equation (6) in terms of price-dividend

ratios on the restricted conditioning information Fm,yt which does not include past prices.

Then, the conditional moment can be written in terms of the limited-information filtered

moments of the current and next period state vectors given the augmented information set

(Fm,yt , pt).

4 Empirical Results

4.1 Data

Aggregate output and consumption data are obtained from the U.S. Bureau of Economic

Analysis. We consider quarterly data from January 1947 until December 2016. Output

is measured by U.S. real gross domestic product in 1992 chained dollars. Consumption is

measured as the real expenditure on nondurables and service, excluding shoes and clothing,

scaled to match the average total real consumption expenditure. Monthly observations of

the Industrial Production Index are obtained from the Federal Reserve to construct initial

proxies for economic uncertainty.

Stock market prices and dividends are based on the S&P 500 index obtained from the

CRSP database. Dividends per share are computed from the difference in value-weighted

returns with (Rd
t+1) and without (Rx

t+1) dividends:

Dt+1

Pt
= Rd

t+1 −Rx
t+1.

These dividends are then aggregated at the annual frequency to diminish seasonal effects.

Price-dividend ratios are computed as

Pt+1

Dt+1

=
Rx
t+1

Rd
t+1 −Rx

t+1

.

The 3-month U.S. Treasury Bill rate is used to measure the risk-free rate. Stock prices,

dividends, and the risk-free rate are expressed in real terms using the price index for U.S.
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gross domestic product.

Let ipt denote the log observed industrial production in month t, and let its increment

be ∆ipt = ipt− ipt−1. Define the Realized Economic Variance (REV) as a quarterly proxy

for the variance of output growth computed as

REVt =
3∑

m=1

(∆ipt+1−m −∆ipt)
2,

with ∆ipt the rolling window quarterly mean. The Realized stock market Variance (RV) is

similarly constructed from daily log returns Rt+1 after centering with the quarterly mean

Rt as6

RVt =
nt∑
d=1

(Rt+1−d −Rt)
2.

where nt is the number of trading days in quarter t.

4.2 Economic Uncertainty and Stock Market Volatility

Figure 1a) shows the quarterly measures of economic (REV) and financial market varia-

tion (RV). Most episodes of high economic volatility occurred during the first half of the

sample ending in the early 1980s, while most episodes of high financial market turbulence

occurred thereafter. In particular, the 1950s saw substantial economic uncertainty but

historically calm financial markets. On the other hand, stock market volatility spiked

during the 1987 Black Monday crash and in the aftermath of the 1998 LTCM collapse,

while industrial production growth remained largely unchanged. Moreover, while spikes

in economic volatility tend to happen during recessions, jumps in financial markets have

regularly occurred during expansions. The notable exception to these patterns was the

2008 financial crisis and subsequent Great Recession, during which both measures peaked.

To understand how economic uncertainty affects asset prices, the right panel of Figure 1b)

compares REV with the log price-dividend ratio. The two series display a clear inverse

relation, with the 1950s seeing peak economic uncertainty and record low valuation ratios,

while the peak valuations of the dot-com bubble coincided with minimal economic uncer-

tainty. However, economic uncertainty cannot explain the decline in valuations leading

6Cum-dividend returns are used to control for price changes due to anticipated payments. At the index
level the difference compared to using ex-dividend returns is negligible.

34



up to the early 1980s recession or their rise during the expansionary 1990s, suggesting

economic growth itself may be needed to explain asset prices.
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(a) Economic and financial market variance.
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(b) Economic uncertainty and price-dividend ratio.

Figure 1: Realized Variance of Industrial Production growth versus (a) Realized Variance
of S&P 500 returns and (b) log S&P 500 Price-Dividend ratio, quarterly data from 1947Q3-
2016Q2.

Figures 2 and 3 plot the quarterly growth rates in REV and RV , respectively, against

the growth rates of output, consumption, dividends, and the S&P 500 Index. Figure 2 sug-

gests a negative relation between uncertainty shocks and output and consumption growth,

in line with the evidence in Bloom (2009) and Nakamura et al. (2017). The market return

also decreases contemporaneously with uncertainty increases in line with the well known

leverage effect. Dividend growth, on the other hand, is actually slightly convexly increasing

in changes to uncertainty, which could be explained by reduced corporate investment. Fig-

ure 3 shows responses to changes in financial market volatility are in the same direction as

for changes in economic volatility, but that stock market variance correlates stronger with

dividend growth and market returns and weaker with consumption and output growth.

In particular, dividend growth is pronouncedly increasing and the market return convexly

decreasing in changes in the realized variance. This provides further evidence against a

simple linear relation between economic and financial uncertainty, and their impact on

fundamentals.
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Figure 2: Quarterly changes in log Realized Economic Variance (REV) of Industrial
Production growth versus log return on Output, Consumption, Dividends, and the S&P
500 Index from 1947-2016. Fitted line shows the quadratic least squares fit.
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Figure 3: Quarterly changes in log Realized Variance (RV) versus log return Output,
Consumption, Dividends, and the S&P 500 Index from 1947-2016. Fitted line shows the
quadratic least squares fit.
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4.3 Estimates

Table 1 reports the simulated maximum likelihood estimates of the transition density pa-

rameters θs for the long-run risk model (1) with autoregressive Gamma stochastic volatility.

The estimates are for three datasets created by consecutively adding the measurements

mt = (ct − yt, dt − λ̂yt) and prices pt = (log Pt
Dt
, rft ) to the growth observations, using

the partially linear specification (15) with L = 4 order polynomials (ψL, πL). The an-

nual dividend-output cointegration parameter is estimated by ordinary least squares as

λ̂ = 1.65. When mt and pt are used for estimation, the proxies logREVt and logRVt,

respectively, are added to the measurement equation using the polynomial formulation

Vt+1 = ψvL(st) + ηvt+1, where ηvt are serially correlated errors.

Differences in parameter estimates across datasets are generally less than two standard

errors, suggesting no major misspecification of the measurement and pricing equations.

Moreover, standard errors fall when adding measurements and prices, confirming their

state-dependence helps to identify the transition density parameters. The values of the

mean reversion parameters (ρx, ν) in the range 0.95-0.98 correspond to half-lives of the

expected growth and variance components between 4 to 8 years, suggesting both are highly

persistent.

Figure 4 shows the smoothed means of the persistent growth and variance components

using the simulated filtering and smoothing algorithm, for the three subsets of observa-

tions. The addition of both the measurements and prices leads to more volatile paths for

the smoothed means with narrower confidence intervals, thus yielding more precise esti-

mates. All three datasets display sudden drops in the smoothed growth component during

recessions, with varying degrees of severity. Moreover, all three datasets show clusters of

high output growth volatility around episodes such as the post-war years, the 1980s en-

ergy crisis, and to a lesser extent the 2008 financial crisis. The frequency and scale of high

volatility periods has been steadily declining over the sampling period, reaching its lows

during the late 1980s and the 1990s.

Figure 5a) shows the estimated response functions ψc(st) and ψd(st) of the log consumption-

output and dividend-output cointegration residuals based on the simulation maximum

likelihood of (∆yt,mt). The reported estimates are for the specification mt = Rmmt−1 +

ψL(xt, σ
2
t )+ay∆yt+εt, thus allowing a contemporaneous effect of ∆yt on the cointegration
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Table 1: Simulated maximum likelihood estimates of the transition density parameters
θs for the long-run risk with autoregressive Gamma stochastic volatility model, based on
quarterly observations from 1947 to 2016 on subsets of ∆yt, mt = (ct − yt, dt − λ̂yt) and
pt = (log Pt

Dt
, rft ). Estimates and standard errors (in brackets) based on the EM algorithm,

using N s = 5, 000 simulated particles and L = 4.

(a) Based on (∆yt) only.

µ ρx φx φv σ̄ ν

0.008 0.952 0.160 1.011 0.007 0.958

(0.000) (0.051) (0.039) (0.006) (0.002) (0.003)

(b) Based on (∆yt,mt).

µ ρx φx φv σ̄ ν

0.007 0.969 0.133 1.011 0.008 0.979

(0.000) (0.032) (0.010) (0.002) (0.001) (0.002)

(c) Based on (∆yt,mt, pt).

µ ρx φx φv σ̄ ν

0.008 0.972 0.131 1.011 0.007 0.974

(0.000) (0.015) (0.009) (0.002) (0.001) (0.002)

residuals. The consumption-output residual is moderately increasing in expected growth,

but does not appear strongly related to growth volatility, in line with the scatterplots in

Figure 2. Meanwhile, the dividend-output residual increases in volatility levels above the

median, yet is U-shaped in volatility when xt is low, such as during recessions. Figure 5b)

shows the responses are qualitatively similar when pt is included in the simulated maximum

likelihood estimation and the latent states are more accurately estimated.

To relate the response functions to specific episodes, Figure 6 plots the growth rates in

consumption and dividends relative to output against their conditional means under the

smoothing distribution of the state variables. The consumption share of output tends to

peak during recessions, as consumption does not immediately respond to output declines.

However, controlling for this contemporaneous ‘denominator’ effect, the state-dependent

component ψ̂c(·) actually falls during the low-growth, high volatility early 1980s and Great

Recession, in order to rise again during their recoveries. Dividends help up relatively

well throughout the economically uncertain late 1950s and early 1980s, explaining why

ψ̂d(·) is positive for large σ2
t and all levels of xt. Meanwhile, the U-shape of ψ̂d(·) in σ2

t

for low levels of xt rationalizes dividends during the below average growth 2000s, which
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suddenly increased around 2005 when economic volatility dropped, yet fell continuously

when economic uncertainty returned during the Great Recession.

Table 2 shows the estimated parameters (R̂m, ây, Σ̂ε) of the measurement equation. It

includes regression estimates of the model with ψm(·) constant as a benchmark to quan-

titatively assess the role of state-dependence. Both series are highly persistent, but not

strongly mutually correlated. The consumption-output residual has more volatile innova-

tions than the annually aggregated dividend-output residual. Moreover, a larger fraction of

the dividend-output residual innovations is estimated to be due to the latent states, regard-

less of whether asset prices are used to estimate them. However, the consumption-output

residual depends more strongly on contemporaneous output growth. The parameter esti-

mates indicate that consumption growth is expected to increase by around 0.6 per unit of

output growth, keeping the mean and variance of next period’s growth constant.

Table 2: Estimated autoregression matrix R̂m, growth regression coefficient ây, and error

covariance matrix Σ̂ε of the quarterly measurements mt = (ct − yt, dt − λ̂yt) based on (a)
least squares regression of mt on (mt−1,∆yt), and (b-c) SML estimates with two sets of
observations. Measurements are centered and standardized to unit variance.

(a) Initial estimates.

R̂m 0.957 -0.023

0.014 1.003

ây -0.361 -0.025

Σ̂ε 0.042 −
-0.001 0.027

(b) Based on (∆yt,mt).

R̂m 0.949 -0.027

0.032 0.846

ây -0.403 -0.034

Σ̂ε 0.021 −
0.002 0.007

(c) Based on (∆yt,mt, pt).

R̂m 0.960 -0.031

0.036 0.846

ây -0.411 -0.032

Σ̂ε 0.028 −
0.002 0.010

Figure 7 shows the estimated pricing functions π̂L and variance function ψ̂vL. The

estimated price-dividend ratio and risk-free rate functions in π̂L are controlled for the con-

sumption and dividend cointegration residuals mt. The price-dividend function appears to

increase monotonically in expected growth, and to decrease monotonically in the variance.

Both effects interact on the upside such that combining high expected growth and low

volatility lifts the expected price-dividend ratio to at least one standard deviations above

its mean. In contrast, when expected growth is low, volatility dropping below its median

is not expected to lift the price-dividend ratio. Intuitively, during recessions investors may

actually prefer some volatility for the growth rate to revert to its mean faster. The risk-free

rate function increases fairly linearly with expected growth for low and moderate levels of
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uncertainty. However, it also peaks when low expected growth combines with high uncer-

tainty, which may be explained by contractionary monetary policy when the latter is due

to inflationary spirals. Finally, the estimated realized return variance function reveals its

nonlinear relation to the variance of economic growth. It appears to trade-off the effect of

more volatile economic shocks against higher sensitivity to shocks when the price-dividend

ratio is high due to low uncertainty. High valuation ratios can explain the highly volatile

returns during ‘good’ times when growth is high and uncertainty is low. Overall, return

volatility peaks during recessions with moderate rather than high levels of uncertainty,

when there are still downside risks to valuations.

Figure 8 shows the time series fit of the prices and realized variances. The model is able

to explain drops in the price-dividend ratio during highly uncertain recessions such as the

early 1980s and the Great Recession. However, the sustained rise in valuation from the

mid 1980s until the dot-com bubble cannot be explained by the smoothed state variables,

which remained relatively stable during this period. Instead, the estimated undervaluation

during the 1980s coincides with higher than expected risk-free rates, whereas the dot-com

bubble is treated as a pure pricing error unrelated to fundamentals. The model matches

the high risk-free rates during the early 1980s contractionary monetary policy as well as

the low rates since the Great Recession. The pricing error parameter estimates in Table 3

confirm the negative relation between the unexplained components of the price-dividend

ratio and risk-free rates, as well as their much reduced scale after allowing for state-

dependence. Finally, the relatively low financial market volatility during the economically

uncertain 1950s can be explained by the low sensitivity of the price-dividend ratio when

growth volatility is high. In contrast, valuations were more sensitive to shocks during the

moderate levels of economic uncertainty around the Great Recession. Meanwhile, short-

lived bumps in return volatility outside recessions such as the 1987 Black Monday crash

are treated as pure variance shocks.

Figure 9 shows the estimated stochastic discount factor residual function φ̂L, and the

profiled GMM criterion in terms of the parameters (β, γ). The stochastic discount function

tends to move inversely to the price-dividend ratio. In particular, it reaches its highest

levels when expected growth is low and volatility is high, and its lowest values in the

opposite cases. Moreover, it remains elevated at low volatility levels for low expected

growth. These findings indicate that state-dependence in consumption and dividends can-
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Table 3: Estimated regression coefficients α̂ of the prices on measurements, and autoco-
variance matrices Σ̂η(j) of order j = 0, 1 of the pricing error ηt, based on (a) least squares

regression of pt = (log Pt
Dt
, rft ) on mt = (ct − yt, dt − λ̂yt), and (b) SML estimates based on

(∆yt,mt, pt). Prices and measurements are centered and standardized to unit variance.

(a) Initial estimates.

α̂ -0.120 -0.138

0.207 -0.006

Σ̂η(0) 0.974 −
-0.033 0.957

Σ̂η(1) 0.953 −
-0.043 0.762

(b) SML estimates.

α̂ 0.104 0.036

0.227 0.036

Σ̂η(0) 0.675 −
-0.074 0.296

Σ̂η(1) 0.647 −
-0.078 0.183

not fully explain the state-dependence of the price-dividend ratio. Instead, our estimates

suggests rationalizing the latter through the discount factor, giving higher marginal utility

for payoffs during low growth and/or uncertain times. In particular, it supports stochastic

discount factor models which induce a negative risk premium for output growth volatility.

The profiled GMM-criterion is minimized by the discount and risk aversion parameters

(β̂, γ̂) = (0.9975, 7.25), implying an annual discount rate of around 1%. These moder-

ate values suggest that power utility over consumption may not be unreasonable once

additional state-dependent discounting is allowed for. However, identification of the risk

aversion parameter is relatively weak, as values in the range 5 < γ < 9 yield qualitatively

similar stochastic discount functions.

5 Conclusion

This paper develops a class of nonlinear Markovian asset pricing models in which the dy-

namics of consumption and dividend relative to output are described via general functions

of latent state variables describing persistent components in the aggregate growth distri-

bution. We study the identification and estimation of a semiparametric specification of the

stochastic discount factor by formulating the Euler equation as an eigenfunction problem.

We establish the consistency of a sieve maximum likelihood estimator for the unknown

functions under high-level assumptions. For affine state variables and polynomial approx-

imations of the measurement and pricing functions, we derive closed-form expressions for

expected growth and financial volatility, and a tractable simulation-based algorithm for
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filtering, smoothing, and parameter optimization. The expected price-dividend ratio is

found to be increasing in expected growth, decreasing in growth volatility, with both ef-

fects interacting, and showing stronger state-dependence than can be rationalized by that

of consumption and dividends. Instead, the evidence supports models in which investors

have moderate relative risk aversion but higher marginal utility for payoffs in times of low

expected growth and high volatility. Finally, the steeply declining price-dividend ratios for

moderate levels of growth volatility help explain bursts of stock market volatility during

periods of moderate economic uncertainty.
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A Appendix

A.1 Proofs

Proof of Theorem 1. The proof is based on Lemma A1 in Newey and Powell (2003).

Let QT (θ) = `T (θ) and Q(θ) = E(lt(θ)). This requires that (i) there is unique θ0 that

minimizes QT (θ) on Θ, (ii) ΘT are compact subsets of Θ such that for any θ ∈ Θ there

exists a θ̃T ∈ ΘT such that θ̃T
p−→ θ, and (iii) QT (θ) and Q(θ) are continuous, QT (θ) is

compact, and maxθ∈Θ |QT (θ)−Q(θ)| p−→ 0.
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The identification condition (i) follows from subsection 3.2. The compact subset condi-

tion in (ii) holds by construction of HT and H. Moreover for any θ ∈ Θ we can find a series

approximator θT ∈ ΘT that satisfies ‖θT − θ‖ → 0 as by construction the approximating

spaces HT are dense in H.

For (iii), continuity of QT (θ) follows from continuity of the policy and pricing functions

and the transition density. The remaining conditions of continuity of Q(θ) and uniform

convergence follow from Lemma A2 in Newey and Powell (2003). This requires pointwise

convergence QT (θ)−Q(θ)
p−→ 0 as well as the stochastic equicontinuity condition that there

is a v > 0 and Bn = Op(1) such that for all θ, θ̃ ∈ Θ, ‖QT (θ) − QT (θ̃)‖ ≤ Bn‖θ − θ̃‖v.

Pointwise convergence follows from the weak law of large numbers due to the stationarity

and mixing conditions. Stochastic equicontinuity follows from the Lipschitz condition on

the transition density.
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(a) Smoothed expected growth using (∆yt).
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(b) Smoothed variances using (∆yt).
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(c) Smoothed expected growth using (∆yt,mt).
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(d) Smoothed variances using (∆yt,mt).
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(e) Smoothed expected growth using (∆yt,mt, pt).
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(f) Smoothed variances using (∆yt,mt, pt).

Figure 4: Smoothed conditional means xt (left panels, in annualized percentages) and
variances Vt (right panels) of the long run risk with autoregressive Gamma stochastic
volatility model, based on quarterly observations of ∆yt, mt = (ct − yt, dt − λ̂yt) and
pt = (log Pt

Dt
, rft ). Dashed lines represent 95% confidence intervals based on simulated

particles. Grey shades indicate NBER recession dates.
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(a) Estimated response functions using (∆yt,mt).

(b) Estimated response functions using (∆yt,mt, pt).

Figure 5: Estimated policy response functions ψ for log consumption (left panels) and
dividend (right panels) relative to output as a function of the conditional mean xt and
variance Vt of output growth, using quarterly observations and a L = 4 order expansion.
Blue circles plot the partial differences mt− R̂mmt−1 against the smoothed means of state
variables. Vertical axis measures standard deviations

√
Var(mt) from the mean.
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(a) ∆(ct − yt) against smoothed values.
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(b) ∆(dt − λ̂yt) against smoothed values.

Figure 6: Growth rates in quarterly consumption (left) and annual dividends (right) rela-
tive to output, against smoothed values (R̂m−I)mt−1+ ĉ′L ˆ̄sLt|T according to (3), using L = 4

order joint conditional moments of state variables (xt, σ
2
t ) given quarterly observations of

(∆yt,mt) or (∆yt,mt, pt). Vertical axis shows standard deviations from the mean.
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(a) Log price-dividend ratio function. (b) Risk-free rate function.

(c) Log realized variance.

Figure 7: Simulated maximum likelihood estimates of pricing and variance functions as a
function of expected growth xt and variance Vt, using quarterly observations and L = 4
order expansion. Blue circles show smoothed means of state variables. Vertical axes show
standard deviations from the mean.
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(a) Log price-dividend ratio.
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(b) Risk-free rate.
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(c) Log realized return variance.
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(d) Log realized economic variance.

Figure 8: Time series of prices and realized variance proxies against smoothed values
b̂′L ˆ̄sLt|T + α̂′mt using L = 4 order joint conditional moments of state variables (xt, σ

2
t ) given

quarterly observations of (∆yt,mt, pt). Plots with prices include the least squares fitted
values p̃t = α̃′mt based on measurements only. Vertical axis shows standard deviations
from the mean.
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(a) Stochastic discount function. (b) Profiled GMM criterion.

Figure 9: Stochastic discount function minimizing the GMM criterion in terms of the
filtered states, and GMM-criterion as a function of the quarterly discount parameter β and
risk aversion parameter γ, after profiling the stochastic discount function approximation
φ̂L(·; β, γ). The criterion is minimized at (β̂, γ̂) = (0.9975, 7.25).
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