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Abstract

Empirical analyses starting from Laubach and Williams (2003) find that the natural

rate of interest is best described by an integrated stochastic process. Estimates suggest that

it has followed a downward trend over the past decades, reaching levels around zero in the

2010s. This paper models an integrated natural rate of interest in a simple new Keynesian

framework and studies its implications for monetary policy. If one abstracts from the

effective lower bound, permanent shocks to the natural rate do not prevent an optimizing

central bank from achieving perfect inflation and output gap stabilization. Taking the lower

bound into account, systematic increases in the optimal rate of inflation become warranted

in response to downward shocks to the long-run natural rate, once this drifts below 1%.

Nevertheless a targeting rule of the form put forward in Eggertsson and Woodford (2003)

continues providing a good approximation to optimal commitment. Our results underpin

the need for periodic revisions of central banks’ inflation targets, if the long-run natural

rate of interest is subject to permanent shocks, but they suggest that the good performance

of catch-up strategies based on a constant price level target is not impaired.
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1 Introduction

One of the key stylised facts highlighted in Kaldor (1957) is that the real interest rate (or

the return on capital) is roughly constant over long periods of time. Recent empirical research,

however, has found that the “equilibrium” real, or natural, interest rate – the real interest

rate consistent with output equaling its natural rate and stable inflation – has a time-varying

low-frequency component best described by an integrated stochastic process (Laubach and

Williams, 2003). A related finding is that the low frequency component, or long-run level, of

the natural rate has declined over the past few decades (e.g. Laubach and Williams, 2016)

and may currently hover around zero in the U.S. and around negative values in the euro area

(Holston, Laubach and Williams, 2017, Fiorentini et al., 2018).

These findings raise questions for the conduct of monetary policy. Due to the effective

lower bound (ELB) constraint on nominal interest rates, a permanently low level of the long-

run natural interest rate would reduce the room for manoeuvre of monetary policy.1 Various

authors – e.g. Blanchard, Dell’Ariccia and Mauro (2010), Ball (2013), Krugman (2014) and

Andrade et al. (2018) – have called for an increase in the inflation target in this case. If, in

addition, there is a risk that the long-run natural rate falls to even lower levels in the future,

these arguments are strenghtened. A central bank may want to act preemptively and provide

economic stimulus even before the new permanent shocks materialise; and it may want to

adjust the optimal rate of inflation on a recurrent basis.

It is also conceivable that optimal policy would be harder to approximate through simple

rules when the natural rate is subject to permanent shocks. More specifically the constant

price level targeting rule of the form put forward in Eggertsson and Woodford (2003) has been

shown to work well in the context of a model with a stationary natural rate. The rule is

also appealing for its simplicity, which makes it easy to communicate. However, the rule may

be unsuitable for a world in which recurrent adjustments in the optimal rate of inflation are

necessary. Would a constant price level targeting rule work poorly when the natural rate of

interest is subjecto to permanent shocks?

1The recent experience has shown that the lower bound on nominal interest rates is not zero, as previously
assumed, but negative due to cash storage costs. In our theoretical model, cash storage costs are ignored, so the
lower bound is equal to zero. Nevertheless we refer to is as the effective lower bound for the sake of generality.
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This paper provides an answer to the aforementioned two questions in the context of a

version of the new Keynesian model modified along two dimensions to be consistent with the

aforementioned empirical findings.

Our first modification, consistent with the assumptions in Laubach and Williams (2003,

2016), is to allow for a stochastic trend not only in the level of productivity (as is common, for

example, in Altig et al., 2011, Christiano, Motto and Rostagno, 2014, Christoffel, Coenen and

Warne, 2008), but also in its rate of growth. In terms of the time-series literature, productivity

will be integrated of order 2. Intuitively, this implies that, at any point in time, the current,

low-frequency component of productivity growth is expected to remain unchanged over the

future, but it is not constant. As a result, the natural rate of interest – in the model: the

real interest rate which would prevail in the absence of nominal rigidities (Woodford, 2003) –

will no longer be constant in the long-run. Consistently with the empirical results, permanent

declines (or increases) in the rate of growth of productivity will induce low-frequency declines

(increases) in the natural rate of interest.

Our second moditication of the new Keynesian model capturs the fact that other deter-

minants are likely to have contributed to the secular decline in the natural rate. They may

include the demographic transition which is ongoing in many Western economies (Carvalho,

Ferrero and Nechio, 2016, Gagnon, Johannsen and López-Salido, 2016) and an increase in the

required premium for safety and liquidity (e.g. Caballero and Farhi, 2017, Krishnamurthy and

Vissing-Jorgensen, 2012). Del Negro et al. (2017) make a particularly compelling case about

the role of the liquidity premium. We therefore follow Michaillat and Saez (2018) in postulat-

ing that people derive utility from their holdings of real bonds relative to everyone else. As

a result, government bonds will incorporate a (negative) convenience yield. The convenience

yield allows us to rationalise a negative value of the long-run natural rate without assuming a

negative rate of productivity growth in the long-run.

Our results can be summarised as follows. We first demonstrate analytically that, absent

the effective lower bound (ELB) on nominal interest rates, optimal inflation stabilization re-

mains possible even if the natural rate has a stochastic trend. As in the standard, stationary

model, a central bank optimising under commitment will want to adjust its policy rate so as to

“track” the natural rate of interest. This will be possible also in the face of permanent shocks

to the natural rate, provided actual nominal interest rates inherit the stochastic trend of the

natural rate.
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We then switch to numerical methods to account for the ELB as an occasionally binding

constraint and study optimal monetary policy when the natural interest rate hovers around

very low levels. We calibrate the process followed by the natural rate of interest based on

the results in Fiorentini et al. (2018) and Del Negro et al. (2017). We solve the model using

projection methods to account for the expectational effects induced by the ELB nonlinearity.

We show that the optimal rate of inflation should be higher, the closer to zero the steady

state level of the natural rate of interest. This the case in spite of our assumption that the

central bank is able to influence outcomes through a credible commitment to future actions,

a type of ”forward guidance” which may be unrealistically powerful–see Del Negro, Giannoni

and Patterson (2015). More specifically, compared to a version of the model with low, but

stationary, natural rate, we show that optimal inflation increases more, because of the risk of

new, permanent downward shocks to the natural rate. As the long-run natural interest rate

approaches zero from above – a value close to the current estimates of the long-run natural

rate in Holston, Laubach and Williams (2017) and Fiorentini et al. (2018) – the central bank

will tolerate an inflation rate twice as high as in the case with stationary shocks.

These results suggest that the optimal rate of inflation needs to be recurrently adjusted

when the natural rate is subject to permanent shocks. The adjustment is negligible if the

initial level of the long-run natural rate is relatively high, e.g. at 3.5%; it becomes larger, the

closer to zero the initial level of the long-run natural rate. In practice, our results underpin

the need for periodic revisions in the central bank inflation target. They also highlight that

such revisions are really necessary once the long-run natural rate of interest is estimated to be

below 1%.

We finally compare welfare implications of optimal policy to those of a constant price level

targeting rule of the sort put forward by Eggertsson and Woodford (2003). Clearly, a constant

price level target cannot fully replicate the properties of optimal policy, if the latter requires

a positive inflation rate when the long-run natural rate falls below 1%. Intuitively, one would

expect the price level to have to incorporate a drift, and that the drift should be contingent

on the current value of the long-run natural rate of interest. A rule of this sort would loose

the property of simplicity which constitutes its main strength for practical implementation

and for public communication purposes. However, our results show that a price level target

adjusted with a constant drift continues to provide a reasonably good approximation to optimal

commitment, as long as the long-run natural rate remains in positive territory. We therefore
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conclude that, for practical purposes, catch-up policies in a liquidity trap situation preserve

their desirable features even if the natural rate of interest follows an integrated time series

process.

Our paper is obviously related to the literature on the optimal rate of inflation reviewed

in Schmitt-Grohé and Uribe (2011), where the optimal rate of inflation is found to range from

negative values to numbers insignificantly above zero. Zero inflation is found to be optimal

when prices are sticky (Woodford 2003). Taking the ELB into account does not alter this

conclusion in Eggertsson and Woodford (2003), Adam and Billi (2006), Nakov (2008) and

Levin et al. (2010). These papers, however, focus on calibrations consistent with a relatively

high level of the nominal interest rate (3.5% or higher). Our results replicate those in Adam

and Billi (2006) when the natural rate of interest follows a stationary process around 3.5%

steady state level. Optimal inflation increases above zero only when the long-run natural rate

of interest falls below 1%. Intuitively, the benefits of a permanently higher inflation rate in

terms of reducing the incidence of the ELB must be weighed against its economic costs in

terms of inefficient price dispersion. The optimal monetary literature has concluded that the

costs tend to outweigh the benefits (Schmitt-Grohé and Uribe, 2011), although possibly due

to an implausibly high cost of price dispersion in standard models (Nakamura et al., 2018).

Our paper is most closely related to Andrade et al. (2018), which first studied the monetary

policy implications of different levels of the natural rate of interest. A key distinguishing feature

of our paper is to allow for an integrated natural rate. Moreover, Andrade et al. (2018)

adopts a richer and more realistic model specification and analyses the optimal inflation target

which should be assigned to a central bank following a Taylor rule. By contrast, we adopt a

simpler model specification and solve for fully optimal monetary policy taking into account

the stochastic effects induced by the ELB constraint.

The paper is organised as follows. Section 2 presents the model and derives optimal policy.

The numerical approach that we use to solve the model and key features of the calibration are

described in Section 3. Consistently with the empirical literature, permanent shocks to the

natural rate of interest are calibrated to have very low variance. Section 4 builds an intuition

for our main results. It studies a few simulation moments and impulses to temporary shocks

in our full model and in a version of the model without permanent shocks. We show that

differences between the two versions of the model start appearing when the long-run natural

rate is as low as 1%. We also demonstrate that the model with integrated natural rate shocks
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can be seen as the limiting case of a model with extremely persistent, stationary shocks. We

present our main results on optimal inflation in section 4, which starts with some analytical

results on optimal policy in a static version of the model. This special case serves as a useful

benchmark to interpret the numerical results on optimal inflation as a function of the long-run

natural rate. This section also presents impulse responses to permanent natural rate shocks.

Finally, section 6 studies the performance of price level targeting rules. The final section 7

offers some concluding remarks.

2 The model

Households consume a composite good Ct which is the aggregate of intermediate goods

Ck,t according to the aggregator

Ct =

{∫ 1

0
C
θ−1
θ

k,t dk

} θ
θ−1

The composite good aggregating sector takes output and input prices as given. Profit

maximization implies that the demand for Ck,t is

Pt =

{∫ 1

0
P 1−θ
k,t dk

} 1
1−θ

The representative household j demands an amount Cj,t of the good to maximise utility

E0

∞∑
t=0

βtUj,t

(
Cj,t, Hj,k,t,

Mj,t

Pt

)

where, as in Woodford (2003), Hj,k,t are hours worked in all firms k ∈ [0, 1] andMj,t are nominal

non-state contingent bonds issued by the government. The assumption of bonds-in-the-utility

is as in Del Negro et al. (2017), Fisher (2015) and Krishnamurthy and Vissing-Jorgensen

(2012). We will specifically follow Michaillat and Saez (2018) and postulate that households

derive utility from their relative real bond holdings, so that temporary utility is

Uj,t = C̄t

(
logCj,t + Stυ

(
Mj,t

Pt
− Mt

Pt

)
− γ

1 + v
H̄−vt

∫ 1

0
H1+v
j,k,tdk

)

where the function υ (·) is increasing and concave and St is a liquidity/safety shock.
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The Michaillat and Saez (2018) specification is consistent with the more common one in

Fisher (2015), which goes back to Sidrauski (1967). Beyond producing a convenience yield on

bonds, it has the potential benefit of leading to a form of discounting in the linearised Euler

equation of the model–see equation (3) below. Michaillat and Saez (2018) demonstrate that this

assumption can help mitigate the so-called forward guidance puzzle. In our analysis, however,

the effects of the convenience yield on the power of forward guidance are quantitatively modest.

To maximise utility, household j chooses a path of consumption, hours worked, government

bond and state contingent assets subject to the period budget constraints

EtQt,t+1Bj,t+1 +Mj,t ≤ Imt−1Mj,t−1 +Bj,t +

∫ 1

0
Wk,tHj,k,tdk + Πj,t + Tt − PtCj,t

where Tt are lump-sum taxes/transfers, Πj,t are firms’ distributed profits, Wk,t is the wage rate

in sector k, Imt is the non-state-contingent gross return on government bonds, Bj,t is a portfolio

of state contingent assets and Qt,t+1 is a stochastic discount factor which is unique, under the

assumption of complete markets. Assuming that limn→∞ EtQt,t+n (Mj,t+n +Bj,t+n) = 0, the

above sequence of period budget constraints can be rewritten as a single intertemporal budget

constraints.

We assume that C̄t = ∆tC̄t−1, for t > 1 and C̄0 = 1. We also assume that economy-

wide productivity evolves around a stochastic trend At. Defining detrended consumption

and detrended real government bond holdings as C̃t = Ct/At and m̃t = (Mt/Pt) /At, re-

spectively, assuming that υ′ (·) is homogeneous of degree −1, so that υ′
(
m̃j,tĀt − m̃tĀt

)
=

υ′ (m̃j,t − m̃t) Ā
−1
t , and assuming further that everyone has same preferences and the same

initial wealth, so that
Mj,t

Pt
− Mt

Pt
= 0, the first order conditions of the household will include

1

It
= βEt∆t+1

C̃t

C̃t+1

Āt
Āt+1

1

Πt+1
(1)

∆m
t = C̃tStυ

′ (0) (2)

where ∆m
t ≡ (It − Imt ) /It and where we used I−1

t = EtQt,t+1.

Note that equation (1) is the usual Euler equation in a growth model, suggesting that

the gross nominal interest rate It is related to the rate of growth of productivity Āt+1/Āt. If

Āt+1/Āt were stationary, this equation could be linearised as usual. Equation (2) describes

the spread between the return on government bonds and the safe portfolio of state-contingent
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assets. It shows that the return on nominal bonds, Imt , includes a convenience yield related

to their marginal utility benefit Stυ
′ (0). Assuming that υ′ (0) > 0, the convenience yield

is negative and household will be happy to hold bonds at a discount compared to the safe

portfolio of state-contingent assets.

We will assume that, within large but finite boundaries ξH and ξL, the rate of growth of

productivity is integrated, i.e. that Āt+1/Āt = Ξt+1 and ξt = log Ξt follows a random walk

ξt = ξt−1 + ψt

where ψt is a stationary process defined below.

Note that under this assumption all nominal returns will inherit the stochastic trend Ξt+1.

If we detrend them as Ĭmt = Imt /Ξt and Ĭt = It/Ξt, conditions (1) and (2) can be linearised as

c̃t =
(

1− ∆̆m
)(

Etc̃t+1 − (̆ımt − Etπt+1) + Etψ̂t+1 − Etδt+1

)
− ∆̆mst

where ∆̆m
t ≡

(
Ĭt − Ĭmt

)
/Ĭt and ∆̆m = υ′ (0) C̃ is its steady state value. In the absence of

nominal rigidities the above equation would be similar apart from the fact that the real rate

ı̆mt − Etπt+1 would be independent of monetary policy and equal to the natural rate r̆nt . The

above equation could thus be rewritten as

xt =
(

1− ∆̆m
)

[Etxt+1 − (̆ımt − Etπt+1 − r̆nt )] (3)

where xt ≡ c̃t − c̃nt and r̆nt = Etc̃
n
t+1 − 1

1−∆̆m
c̃nt + Etψ̂t+1 − Etδt+1 − ∆̆m

1−∆̆m
st.

Note that equation (3) is very similar to the standard linearised Euler equation of the new

Keynesian model apart from the factor 1 − ∆̆m. Recall that ∆̆m is a positive spread, so that

1 − ∆̆m is a coefficient smaller than 1. Hence, 1 − ∆̆m acts as a discount factor in the Euler

equation and, as such, it will tend to mitigate the forward guidance puzzle for the reasons

described in Michaillat and Saez (2018).

There is a countinuum of firms indexed by k ∈ [0, 1] owned by the households and producing

intermediate goods under monopolistic competition and sticky prices. The intermediate goods

are bundled into a final good by a competitive industry. The intermediate goods are produced

according to the production function Yk,t = At (Hk,t)
1
φ . In each period, the profit of firm

k is Πk,t = (1− τt) pk,tYk,t − Wk,tHk,t, where τt is a sales tax/subsidy. Given the assumed
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Dixit-Stiglitz specification of preferences, the demand for intermediate good Yk,t will be Yk,t =(
pk,t
Pt

)−θ
Yt. Firms will choose prices to maximise profits subject to the demand schedule and

to a Calvo lottery implying that with probability α they will not be able to adjust prices again

in the future. Assuming zero inflation in the non-stochastic steady state, the firms’ first order

conditions can be linearised to yield

πt = κxt + βEtπt+1

for κ ≡ (1−α)(1−αβ)
α

1+ω
1+ωθ . This is the standard new-Keynesian Phillips curve, provided that

the output gap xt is defined in terms of detrended output in deviation from detrended natural

output.

Under flexible prices, the same conditions yield ỹnt = 0 and the detrended natural rate can

be solved out explicitly as

r̆nt = −ρδδt −
∆̆m

1− ∆̆m
st

where we used the assumptions

ψt+1 = ψ + σψε
ψ
t+1

δt+1 = ρδδt + σδεδ,t+1

st+1 = ρsst + σsεs,t+1.

for ψt ≡ log Ψt, δt ≡ log ∆t and st ≡ logSt.

Since, by definition, R̆nt =
Rnt
Ξt

we can also write the log level of the natural rate as

rnt = ψ − log β + ln
(

1− ∆̆m
)

+ ξt − ρδδt −
∆̆m

1− ∆̆m
st (4)

Since ξt is a random walk, the natural rate will be I(1). Around the stochastic trend

produced by ξt, the natural rate will also be subject to stationary fluctuations induced by

both demand shocks δt and liquidity/safety shocks st. Note that, as in Laubach and Williams

(2003), natural output ỹnt and the natural equilibrium r̆nt are both trending variables, but they

have different stochastic trends, i.e. log Āt and ξt, respectively.
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2.1 Optimal policy

The appendix shows that, up to a second order approximation, household temporary utility

can be written as in the stationary case as

UCBt = −π2
t − λx2

t

for λ = κ/θ, where the only difference is that xt is detrended output in deviation from detrended

natural output.

We will solve for optimal policy under commitment taking into account the ELB constraint

Imt ≥ 1. Optimal policy under commitment requires

2λxt = −λx,t + β−1
(

1− ∆̆m
)
λx,t−1 + κλp,t

2πt = β−1
(

1− ∆̆m
)
λx,t−1 − λp,t + λp,t−1

plus λx,t = 0 when ı̆mt > −ξt − ln
(

1− ∆̆m
)
− ψ + lnβ and λx,t > 0 when the nominal rate is

at the ELB and ı̆mt = −ξt− ln
(

1− ∆̆m
)
−ψ+lnβ. In the above equations λx,t is the lagrange

multiplier associated to equation (3) and λp,t the multiplier associated to the Phillips curve.

Note that if the ELB were not binding at any point in time, λx,t = 0 for any t and optimal

policy would boil down to the conditions that hold in the standard new Keynesian model with

constant, long-run natural rate and without convenience yield on government bonds:

πt = −λ
κ

∆xt

where ∆xt = xt − xt−1. Together with the Phillips curve, this implies that, absent cost-push

shocks, price stability can be maintained at all times in spite of the integrated productivity

shocks. As a result the nominal interest rate will be integrated of order 1.
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3 Numerical methods

3.1 Solution algorithm

This section offers a brief overview of the numerical method used to solve the different

variants of the model considered in the next sections. More details are provided in appendix,

that also demonstrates that the solution is quite accurate.

We account for the occasionally binding zero bound constraint on the nominal interest rate

by solving the model with policy function iteration. The rate of inflation, π, and the output

gap x, are approximated with piecewise linear splines. These functions are known to yield

a reasonably good approximations of irregular functions because they have narrow supports,

provided the state space is dense. To ensure that this is the case in an efficient fashion, in the

spirit of Maliar & Maliar 2015, we use a grid with relatively more points in the region where

the cloud of simulated points is relatively more dense.

We assume that the rate of productivity growth follows a bounded random walk such that

ξt ∈ [ξL, ξH ] ∀t. We wish to ensure that ξL and ξH identify a plausible set of possible values

for ξt, but we also assume that the two boundaries have never been reached in reality (because

empirical studies have not detected evidence of reflective behaviour). To calibrate their values

we rely on the long time-series for utilization-adjusted TFP growth constructed in Fernald

(2014). We take 20-year moving averages to capture the low-frequency component of TFP

growth. Starting from levels around 2% in the early 1970s, the 20-year moving average of

utilization-adjusted TFP growth undergoes a slow, but persistent decline all the way to almost

0.5% in the mid-1990s, before increasing again at the end of the 1990s and in the early 2000s.

This suggests that plausible values of the boundaries should be below 0.5% and above 2%. We

therefore set ξL = 0% and ξH = 4%.

This reflects the range of values that are obtained by simulating 10000 random walks for

20 years, each starting from ξ0 equal to 2%, which is the value that we obtain for the US in

the 1970s by using Fernald (2014) data. The distance between the boundaries and the fact

that they are centered around the value observed in the 1970s is consistent with Holston et al.

(2017). They find that the US productivity trend growth rate was about 3% in the 70s and

fluctuates between 1% and 5% over the period 1960-2015.

11



Under the bounded random walk assumption, the unconditional distribution of the rate of

productivity growth becomes near-uniform, and the rate of productivity growth averages 2%

in annualised values.

3.2 Calibration

Table 1 summarises our parameter calibration.

Table 1: Calibration of key parameters (quarterly)

σδ σψ ψ β ∆̆m ξ (rn)L

Historical 2.9e-3 2.5e-4 0 0.9945 1.8e-3 5.0e-3 3.5
400

Recent 2.9e-3 2.5e-4 0 0.9945 8.0e-3 5.0e-3 1
400

This table presents the calibration of key parameters. ξ and (rn)L correspond

to the unconditional means of the rate of productivity growth and of the natural

rate of interest respectively.

To illustrate the key features of our model, we compare two calibrations for ∆̆m. The

first one is taken from Krishnamurthy and Vissing-Jorgensen (2012), which estimates the long-

run value of the convenience yield at 72 basis points (in annualised values), corresponding to

∆̆m = 0.0018. We interpret this as the value of ∆̆m prevailing in the past and refer to it as the

”historical calibration” in Table 1. For more recent years, we follow Del Negro et al. (2017),

which finds that the convenience yield increased markedly and persistently, especially since the

early 2000s. More specifically, Del Negro et al. (2017) estimates the persistent conponent of

the convenience yield to have increased by up to 3.0% (in annualised terms), considering the

top of a 90% confidence interval. This implies approximately ∆̆m = 0.008, which we take as

the value of the convenience yield prevailing in recent years–or ”recent calibration” in Table 1.

We assume no drift in productivity growth, so we set ψ = 0, which is consistent with the

assumption that productivity growth is expected to remain unchanged over the future.
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Figure 1: Distribution of the natural rate when E[rn]=1%

This figure presents the distributions of the stationary and of the integrated natural rate. These distributions

are computed from a simulation of 1e4 economies over 1000 periods.

We finally set β = 0.9945. Assuming an average productivity growth rate, ξt, equal to 2%,

this yields a calibration for the average long-run natural rate equal to 3.5% when ∆̆m = 0.0018.

This is roughly comparable to the steady state level of the natural rate typically used in the

new Keynesian literature.

The alternative calibration ∆̆m = 0.008 would yield an average long-run natural rate of

1%, and lower values of the long-run natural rate when ξt falls towards the ξL boundary. This

is consistent with recent empirical estimates. For example, Holston, Laubach and Williams

(2017) finds that, in 2016, the long-run natural rate was between 0 and 1% in the United States

and possibly slightly negative in the euro area. Using an alternative approach, Fiorentini et

al. (2018) estimates that the long-run level of the natural rate in 2016 was slightly above 1%

in the U.S. and as low as −1% in the euro area.

Compared to standard new Keynesian model, we also need to set the variance for the

productivity growth shock

ξt = ξt−1 + σψεψ,t

We calibrate σψ based on the results in Fiorentini et al. (2018). More specifically, we used

their estimates based on historical data at annual frequency over the period 1891-2016 for a set

of 17 advanced economies. The conditional standard deviation σψ takes an annualised value

of 0.1%, which is about 10 times lower than the conditional standard deviation that we use for

the stationary component r̆nt , i.e. 1.18% in annualised terms.
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It is important to highlight that permanent shocks alter the shape of the unconditional dis-

tribution of the natural rate. However, since permanent shocks have very small variance, the

unconditional distribution of the natural rate in the integrated case does not depart substan-

tially from its counterpart in the stationary case. Figure 1 illustrates this by showing the two

empirical distribution based on 1e4 simulations of shocks for 1000 periods. Another implication

of low volatility is that the boundaries should affect the natural rate only when ξt is in a very

small neighborood above (below) the lower (upper) boundary. Over the rest of its support, ξt

displays a conditional random walk behaviour, i.e. its expected value is equal to the current

value.

All remaining parameters are standard in the literature (with the exception of the intertem-

poral elasticity of substitution, which is 1 in this paper). More specifically, they are as in Adam

& Billi (2006), which in turn draws on Woodford (2003). Note that we do not directly calibrate

φ and v but, again following Woodford (2003), we only calibrate ω ≡ φ (1 + v)− 1.

4 Drifting vs. stationary natural rate and the ELB

This section highlights the impact of permanent shocks to the natural rate on the equilib-

rium of the model under optimal monetary policy. it does so though a comparison of simulation

moments and impulses to temporary shocks in our full model and in a version of the model

without permanent shocks. We make this comparison for each of the two calibrated values of

the natural rate of interest reported in Table 1.

4.1 Simulation moments

We start analysing simulation moments of key variables of interest when the unconditional

mean of the natural rate is equal to 3.5%. Table 2 considers three model variants. The first

variant is based on the Adam and Billi (2007) calibration, which has a steady state natural

rate of 3.5%. It is obtained in our model if β = 0.9913, ξt = 0 and ∆̆m = 0. The second

variant is our historical calibration, but in the absence of permanent shocks to ξt. In this case

we assume that productivity grows at a constant rate ψ whose value is set to 2% (in annualised

terms) to produce the same steady state natural rate as in Adam and Billi (2007). The third

variant is the historical calibration of our full model, which includes permanent shocks to the

natural rate.
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Table 2: Sample moments when E[rn]=3.5%

Stationary (rn)L Integrated (rn)L

Adam & Billi 2007 Baseline Baseline

β 0.9913 0.9945 0.9945

ψ or E[ξt] 0 2
400

2
400

∆̆m 0 0.72
400

0.72
400

rn 3,494 3,498 3,519

x 0 0 -0,001

π 0,001 0,001 0,003

i 3,494 3,498 3,519

RR spread -0,001 -0,001 -0,003

ELB frequency (x100) 5,541 5,515 9,577

ELB duration (quarters) 2,643 2,635 3,768

This table reports the simulation moments obtained by simulating 10000 economies, each

for 1000 quarters long. It contains the annualized means of the natural rate of interest, the

output gap, the inflation rate, the nominal interest rate, the real rate spread.

Focusing on the two stationary versions of the model, columns 1 and 2 of Table 2 show

that the unconditional means of the endogenous variables are not sensitive to permutations in

the calibration of β, ∆̆m and ψ which deliver the same steady state natural rate value of 3.5%.

Both in columns 1 and 2, the average output gap and the average inflation rate are positive

but very closed to zero. The unconditional spread between the real rate and the natural rate

is only slightly negative. In both cases, the frequency of ELB episodes is so low that forward

guidance can be effectively deployed to prevent the ELB constraint from generating a skew in

unconditional means.

Table 2 also shows that adding integrated natural rate shocks to the model makes only a

tiny difference, if the unconditional mean of the natural rate is 3.5%.

Table 3 performs a similar exercise for a higher calibration of the convenience yield.
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Table 3: Sample moments when E[rn]=1%

Stationary (rn)L Integrated (rn)L Persistent (rn)L

∆̆m 3.2
400

3.2
400

3.2
400

rn 0,998 1,019 1,009

x 0 -0,017 -0,003

π 0,058 0,18 0,115

i 1,044 1,174 1,092

RR spread -0,013 -0,028 -0,033

ELB frequency (x100) 54,463 55,811 55,354

ELB duration (quarters) 8,953 12,92 10,799

Stdev(rn) 1,96 2,26 2,104

See table 2 for details. The fourth column corresponds to a case in which the low frequency

component of the natural rate follows a highly persistent AR(1) process instead of an integrated

process: Ξt = Ψ · Ψt where ψ = log(Ψ) = 2% annually, Et[log Ψt+1] = ψ̄t = ρψψ̄t−1 + σψεt, and

ρψ = 0.99.

The first two columns in the table compare economies with and without permanent shocks

(and temporary shocks characterised by an autocorrelation coefficient of 0.8). We observe that

the average output gap and the average spread between the real rate and the natural rate are

very similar in the two cases. The main differences charaterise nominal variables. On average,

inflation and the nominal rate are somewhat higher in the case with permanent shocks.

These outcomes arise because commitment plays a quantitatively larger role in the model

with permanent shocks. Due to the higher likelihood that the natural rate will spend a long

time around very low levels, the central bank will more frequently operate through promises of

higher future inflation. Such promises will affect private expectations biasing them upwards.

Due to the Euler equation, if average inflation expectations increase, so does the average

nominal interest rate.

The third column in the Table 3 highlights that numerical results similar to the case with

permanent shocks would be obtained if shocks to the rate of growth of productivity ξt were

stationary, but highly persistent (i.e. characterised by an autocorrelation coefficient of 0.99).

The model with integrated shocks can thus be seen as the limiting case of a model with

extremely persistent, stationary shocks.
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4.2 Impulse responses to temporary shocks

Figure 2 compares the dynamic properties of the models with stationary or integrated

natural rate under optimal policy. The unconditional mean of the natural rate is 3.5%. The

figure shows impulse responses to a negative shock to the temporary component of the natural

rate of interest. The shock is large enough to warrant a reduction of the policy interest rate

all the way to the ELB.

In both cases, the shape of the impulse responses is consistent with previous results in the

literature. Due to the ELB constraint, the economy cannot be fully stabilised, so inflation

falls on impact by about 15 basis points. Thereafter, the central bank implements forward

guidance. It keeps the interest rate low for longer, ie. it raises the policy rate more slowly than

the natural rate (the spread between the actual and natural real interest rates turns negative)

in order to produce a temporary overshooting of inflation.

Figure 2: Average IRFs to a temporary real rate shock when E[rn] = 3.5%
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This figure reports average responses to a large negative shock of 3 times the unconditional standard deviation

of temporary real rate shocks δ̄t (about 5.88 pp annually). They are computed from a simulation of 10000

economies, all starting from a random draw in the unconditional distribution of the state of the economy.
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All in all, when the unconditional mean of the natural rate is 3.5%, the model with inte-

grated natural interest rate is not strikingly different from a stationary model.

Figure 3 repeats the experiment with an unconditional mean of the natural rate of 1%.

Average inflation and the average nominal interest rate are higher in the economy with

permanent natural rate shocks. This creates more space to cut policy rates, when necessary.

Since inflation expectations will return to a higher average level, policy is more expansionary

and there is less of a need to rely on forward guidance on future policy rates. The output gap

is stabilised equally well, independently of permanent shocks.

Figure 3: Average IRFs to a temporary real rate shock when E[rn] = 1%
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See figure 2 for details.

Finally, Figure 4 demonstrates that effects on expectations and averages would also be

produced in the model without permanent shocks, if stationary shocks had larger volatility. In

both cases, what matters is the probability that the natural rate may fall, either persistently or

permanently, to very low levels. For illustrative purposes, figure 4 considers the case in which

transitory shocks have a volatility twice as large as in the baseline calibration. The qualitative

impact of this exercise on expectations and impulse responses is comparable to that observed in
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figure 3. Permanent shocks have the impact of boosting this expectational mechanism without

producing at the same time an unrealistically high conditional volatility of the natural rate.

Figure 4: Optimal policy implications of more volatility when E[rn] = 1%
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See figure 2 for details.

5 The drifting natural rate and optimal inflation

5.1 Optimal inflation

Table 2 suggests that the drifting natural rate has no substantive implications on optimal

inflation, when the unconditional mean of the natural rate is 3.5%. The lower bound constraint

does induce stochastic effects on inflation, but they are tiny. This is consistent with previous

results in Adam and Billi (2006), Nakov (2008). Those papers have shown that forward

guidance on the path of future policy rates is quite effective in stabilising the macroeconomy

in the face of a temporary fall in the natural rate which forces the policy rate against the ELB.

As a result, it is not desirable for the central bank to engineer a positive average inflation rate

in order to reduce the likelihood of hitting the ELB. Positive average inflation would not bring

significant benefits in terms of macroeconomic stabilization, but it would produce sizable costs
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in terms of price dispersion. The central bank prefers to tolerate occasionally large fluctuations

in output and inflation when the ELB becomes binding.

Table 3 showed that optimal inflation starts increasing somewhat above zero when the

unconditional mean of the natural rate is 1%. In this section, we compute optimal inflation

for lower and lower average values of the natural rate. Once again we consider the versions of

the model with both stationary and integrated natural rate. More specifically, starting from

the calibrations in columns 2 and 3 of Table 2, we progressively lower ∆̆m towards value which

push the long-run natural rate towards zero. Figure 5 illustrates the results.

Figure 5: Optimal inflation and interest rate
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This figure reports the average inflation rate and the average nominal interest rate as a function of the average

natural rate for both, an economy in which the natural rate is stationary, and an economy in which it is

integrated.

To interpretate our numerical results, we also use as a benchmak a static steady state

optimization problem, i.e. the maximisation of the nonlinear, steady state welfare by choice

of an appropriate inflation rate. For this special case, we assume away the I(1) component

of productivity growth. The appendix shows that the solution is a step function such that

π = 0, if rn ≥ 0, and π = −rn, if rn < 0. Intuitively, the optimal inflation rate is zero, because

this is the value which minimises price distortions in the economy. If, however, the steady state

natural rate is negative, then zero inflation is infeasible, because it would require a negative

steady state policy rate, which would violate the ELB constraint. Hence, when the steady

state natural rate is negative, the constrained optimal inflation rate is equal to −rn, that is,
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the smallest inflation rate consistent with the ELB constraint. This benchmark is represented

by the solid line in figure Figure 5.

In the stochastic model, the central bank reacts to the risk of finding itself in a state of

the world in which the natural rate may fall below zero. When shocks are transitory, but

persistent, the risk is sufficiently high to warrant a precautionary increase in optimal inflation

already when the natural rate falls below 1%. This is because a negative natural rate would

significantly weaken the central bank’s ability to stimulate the economy. Forward guidance

would remain effective, but it would need to stretch forward to the point when the natural

rate returns to above-zero values. This risk is obviously increasing in the variance of natural

rate shocks. For our standard calibration, optimal inflation increases to about 0.3% when the

natural rate is close to zero.

In the non-stationary version of the model, optimal inflation rises almost twice as fast,

moving towards 0.6% when the natural rate is close to zero. On the one hand, this additional

increase is due to the somewhat higher conditional variance of the natural rate. On the other

hand, if shocks are permanent, a possible dip of the long run natural rate into negative territory

would also be permanent (in expectations). In this situation the central bank would become

completely powerless. Forward guidance is (in expectations) permanently ineffective if the

natural rate moves below zero. All the central bank can do is hope for a lucky combination of

future positive shocks.

All in all, the lower the long-run value of the natural rate, the higher the optimal level of

inflation in the economy. This result echoes that in Andrade et al. (2018), but it is at the same

time more powerful and less pronounced. On the one hand, it is more powerful because it is

obtained in a set up where the central bank can exploit the full benefits of forward guidance.

Even under a mildly positive natural interest rate, e.g. at just 10 basis points above zero, the

central bank could promise to keep the policy rate at zero for a very long future, so as to create

a very persistent, negative interest rate gap of −10 basis points. For given natural rate level,

such a promise would stimulate the economy and stabilise inflation. However, the natural rate

is not constant over time. The central bank, therefore, acts against the risk that the natural

rate will fall further and even the 10 basis points room for manouvre will disappear. On the

other hand, our results are quantitatively less pronounced than in Andrade et al. (2018),

because the full power of forward guidance does play an important role in stabilising inflation.

By contrast, Andrade et al. (2018) assume that the central bank follows a Taylor rule, hence it
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is more severely hampered by low levels of the natural rate. When unconditional mean of the

natural rate of interest falls towards 0, the optimal inflation target in Andrade et al. (2018)

must increase by a larger amount.

5.2 Permanent shocks

Figure 6 shows impulse responses to a permanent, 0.5 percentage points shock to the

natural rate. On the left panel of figure 6, the unconditional mean of the natural rate is 3.5%;

on the right panel it is equal to 1.0%. As a benchmark, the figure also shows the responses of

a temporary shock of the same size.

The left panel demonstrates that inflation and the output gap can be almost perfectly

stabilised after a permanent shock which reduces the long-run natural rate to 3%. In response

to the fall in the long-run natural rate, the policy interest rate falls one-to-one with the long-

run natural rate. The policy interest rate must therefore inherit the stochastic trend in the

natural rate. Optimal inflation increases slightly, due to the somewhat higher likelihood of

hitting the ELB, but the increase is tiny.

The right panel shows reponses to the same shock starting from a long-run natural rate

level of 1.0%. Such level is sufficiently low to warrant a positive optimal level of inflation of

approximately 0.1% before the shock occurs. The economy can no longer be stabilised after

the negative, permanent shock. Inflation falls on impact by about 0.1% and the output gap by

0.3%. To achieve this outcome, the central bank engineers a combination of two measures. On

the one hand, it cuts the policy interest rate as in the case of 3.5%, but less than one-to-one

with the long-run natural rate. As a result, the spread between the real interest rate and

the natural rate increases on impact, imparting some downward pressure on inflation. On the

other hand, the central bank commits to a permanent upward revision of optimal inflation, by

about 10 basis points. As a result, the real interest rate is somewhat lower in the new long-run

equilibrium.

22



Figure 6: Average IRFs to temporary and permanent real rate shocks
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This figure reports average responses to a temporary and to a permanent negative real rate shock of 0.5 pp

(about 0.4 (4.63) time the conditional standard deviation of δ̄t (ξt)). They are computed from a simulation of

10000 economies, all starting from a random draw in the unconditional distribution of the state of the economy,

except the rate of productivity growth which falls from 2% to 1.5%.

Figure 6 suggests that low values of the long-run natural rate of interest have an impact on

the course of monetary policy. The lower the long-run natural rate, the smaller the response

in policy rates and the larger the adjustment in the inflation objective.

More specifically, the inflation objective must be ratcheted up every time there is a negative

shock of the long-run natural rate. (Conversely, it must be adjusted downwards if the long-run

natural rate increases.) The adjustment is nonlinear. For given shock size, the lower the initial

long-run natural rate, the bigger the required increase in the inflation objective.

The above results suggest that the integrated nature of the natural rate of interest underpins

the need for periodic revisions in the inflation target. This is consistent with the existing

practice of some central banks, such as the Bank of Canada, which every five years reviews its
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periodic agreement with the Government of Canada. Such revisions are increasingly desirable,

the lower the estimated value of the long-run natural rate.

6 Price level targeting and permanent natural rate shocks

Eggertsson and Woodford (2003) demonstrate that the type of commtiment required by

optimal policy can be equivalently expressed in terms of a path for an “output gap-adjusted”

price level, which is given by the log of the price index plus a positive multiple of the output

gap. The target path for the gap-adjusted price level is not constant, but should be adjusted

upwards any time the ELB prevents the central bank from achieving it. The policy rate should

then remain at the ELB as long as the gap-adjusted price level remains below the target path.

A similar target path for the gap-adjusted price level can be defined in our model, pro-

vided one interprets the output gap as the detrended output gap–see the demonstration in the

appendix. Note, however, that the inflation objective is positive under optimal policy, if the

long-run natural rate of interest is sufficiently low. Hence, the price level is no longer constant

when shocks die out, but it has a positive trend. Moreover, after a permanent, negative shock

that induces a target path shortfall because the policy interest rate reaches the ELB, we have

seen that the inflation target must be ratcheted up. Hence not only must the gap-adjusted price

level be adjusted upwards after such shock, but its trend growth must also become steeper,

consistently with the higher inflation objective.

24



Figure 7: IRFs to a permanent shock under price level targeting when (rn0 )L = 3.5%
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This figure provides generalized impulse response functions to a negative permanent shock of 0.5% (about 4.5

times the conditional standard deviation of the permanent component). They are computed from a simulation

of 1e4 economies, starting from the unconditional distribution of state variables around (rn0 )L equal to 3.5%.

In a stationary model, Eggertsson and Woodford (2003) demonstrates that a simpler crite-

rion, such that the gap-adjusted price level is kept at a constant value, achieves nearly as good

stabilization outcomes as optimal policy. The reason is that, while not permitting an upward

revision in the price level after adverse shocks, a constant gap-adjusted price level has at least

the benefit not to let the target path shift downwards, as would be the case under a purely

forward-looking inflation objective. In this section, we therefore analyse the properties of a

simple rule of this kind, i.e.

pt +
λ

κ
xt = P ∗ (5)

where P ∗ is the target gap-adjusted (log-)price level (a given constant).

Figure 7 shows impulse responses to a permanent shock starting from a long-run natural

rate of 3.5%. The figure compares outcomes under optimal policy and under the price level

target in rule (5). Recall that, due to the high long-run natural rate of interest, optimal inflation
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is essentially zero. A constant price level target is therefore a reasonably good approximation

to optimal policy.

Nevertheless, after the shock the long-run natural rate falls permanently to 3%, so optimal

inflation must increase slightly. This implies that the price level path induced by optimal

policy will permanently incorporate a positive trend–see the top, right panel in figure 7. The

price level targeting rule (5) does not capture this trend. As a consequence, an ever increasing

gap arises between the price level outcomes under optimal policy and under the price level

target. Expectations react to the worse performance of the price level targeting rule and

induce a downward bias in the actual price level, which remains permanently below its target

(the initial level in the figure).

Rule (5) will work less and less well for lower initial values of the natural rate, because it

does not allow for positive inflation, which is a feature of optimal policy under commitment.

An obvious refinement of rule (5) is therefore to allow for a trend in the price level target, such

that

pt +
λ

κ
xt = P ∗t (6)

where P ∗t now follows a deterministic trend given by

P ∗t = P ∗t−1 + π∗

The adjusted rule (6) requires a sufficiently high π∗. When the unconditional mean of the

natural rate is 1%, we are only able to solve the model if the trend π∗ is above 1%, which

implies a much higher rate of increase in prices than under optimal commitment. Intuitively,

the constant price trend must be sufficiently high to ensure the existence of an equilibrium

even after a possible sequence of negtive, permanent shocks to the natural rate of interest.

26



Figure 8: IRFs to a permanent shock under price level targeting when (rn0 )L = 1%
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This figure provides generalized impulse response functions to a negative permanent shock of 0.5% (about 4.5

times the conditional standard deviation of the permanent component). They are computed from a simulation

of 1e4 economies, starting from the unconditional distribution of state variables around (rn0 )L equal to 1%.

Figure 8 shows generalised impule responses to a permanent natural rate shock under this

type of price level targeting and under optimal commitment. The shock occurs when the initial

long-run natural rate is equal to 1%, it is negative and equal to 50 basis points.

Recall that a positive inflation target is desirable when the steady state natural rate is at

1%. This is illustrated by the growing (log-)price level path under optimal commitment. More

specifically, optimal commitment does not allow for any drop in the price level after the shock.

The price level only suffers a temporary slow down of its growth rate. By contrast, the price

level initially falls on impact under the trend-adjusted price level targeting rule, so that a gap

opens with respect to the price level under optimal commitment. As a result, the real interest

rate tends to increase more under the price level targeting rule. (The real interest rate falls

less than the natural rate because of the occasionally binding ELB constraint). Consequently,

stabilization outcomes are worse under price level targeting than under optimal commitment:
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the peak fall in the output gap is twice as large under the price level targeting rule. After about

4 years, the price levels return to their trends. The trend is higher under optimal commitment,

corresponding to a higher average inflation rate, so the nominal interest rate is also somewhat

higher in this case. This increases the room for manouvre available for policy interest rates in

the face of additional negative shocks.

Overall, we conclude that an inflation-adjusted price level target continues to provide a

reasonably good approximation to optimal commitment, as long as the long-run natural rate

remains in positive territory. For practical purposes, simple catch-up policies in a liquidity

trap situation preserve their desirable features even if the natural rate of interest follows an

integrated time series process.

7 Conclusions

Motivated by recent estimates suggesting that the natural rate of interest is best described

by an integrated stochastic process, we have analysed the optimal policy implications of a

non-stationary natural rate in a new Keynesian model that accounts for the effective lower

bound on nominal interest rates.

We have shown that, in spite of the strong power of forward guidance in the model, perma-

nent, negative shocks to the long-run natural rate eventually warrant a non-negligible increase

in the optimal rate of inflation. Once the long-run natural rate becomes close to zero, as in

recent empirical estimates, the optimal inflation rate in the model increases to positive val-

ues. This is the case in spite of the strong power of forward guidance in the model. Taking

into account the practical limitations of forwad guidance, the optimal inflation rate when the

long-run natural rate is around zero would likely be much higher.

We have also shown that price level targeting rules have a harder time to mimic optimal

policy, if the natural rate is subject to permanent shocks. This is because, in response to

such shocks, the optimal inflation rate must be adjusted by variable amounts, depending on

initial conditions. Nevertheless, an inflation-adjusted price level target continues to provide a

reasonably good approximation to optimal commitment, as long as the long-run natural rate

remains in positive territory.

Throughout the paper, we have assumed that the effective lower bound is actually zero.

However, the experience of the ECB and of other central banks has demonstrated that policy
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rates can go slightly negative. Our results would be somewhat sensitive to a reduction of the

ELB, but our overall conclusion that optimal inflation will rise is robust. Indeed our premise

that the long-run natural rate of interest is close to zero is conservative. For example, some

cross-country estimates in Fiorentini et al. (2018) place the long-run natural rate in 2016 as

low as −1% in the euro area and −2% in the U.S..

In the paper, we have assumed that both the central bank and the private sector can observe

the long-run natural rate of interest. However, the uncertainty surrounding empirical estimates

of the long-run natural rate of interest suggests that accounting for filtering uncertainty in

optimal monetary policy analyses would be important. Unfortunately, the existing methods,

e.g. Svensson and Woodford (2003), are not immediately applicable in a nonlinear context

which takes the ELB into account. We leave this extension to future research.
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8 Appendix

8.1 Households’ and firms’ optimization problems

The problem of household j is to

max
Cj,t,Hj,k,t,Mj,t,Bj,t+1

E0

∞∑
t=0

Uj,t

(
Cj,t, Hj,k,t,

Mj,t

Pt

)
where Mj,t are government bonds,

Uj,t = C̄t

(
logCj,t + stυ

(
Mj,t

Pt
− Mt

Pt

)
− γ

1 + v
H̄−vt

∫ 1

0
H1+v
j,k,tdk

)
and where the function υ (·) is increasing and concave, st is a shock, and Tt are taxes/trasnfers.

Utility maximisation is subject to the budget constraint

EtQt,t+1Bj,t+1 +Mj,t ≤ Imt−1Mj,t−1 +Bj,t +

∫ 1

0
Wk,tHj,k,tdk + Πj,t + Tt − PtCj,t

where we assume complete markets and Bj,t+1 is a portfolio of state contingent assets.
The first order conditions include

C̄tC
−1
j,t = λtPt

Wk,t

Pt
= γµWt H̄

−v
t Hv

j,k,tCj,t

and state by state

Qt,t+1 = β
λt+1

λt
.

Note that the short term interest rate is

1

It
= EtQt,t+1,

which can be used to rewrite the first order condition with respect to Mj,t as

1− Imt
It

= stCj,tυ
′
(
Mj,t

Pt
− Mt

Pt

)
We assume C̄t = ∆tC̄t−1, for t > 1 and C̄0 = 1. We will also assume that productivity

includes a stochastic trend Āt, such that At = ĀtZt. Before linearising, we detrended con-
sumption as C̃t = Ct/Āt and detrended real money as m̃t = (Mt/Pt) /Āt. We also assume
that υ′ (·) is homogeneous of degree −1, so that υ′

(
[m̃j,t − m̃t] Āt

)
= υ′ (m̃j,t − m̃t) Ā

−1
t . This
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implies

Wk,t

Pt
= γµWt H̄

−v
t Hv

j,k,tC̃j,tĀt

1− Imt
It

= stC̃j,tυ
′ (m̃j,t − m̃t)

1 = βEt∆t+1
C̃j,t

C̃j,t+1

Āt
Āt+1

1

Πt+1
It

Since everyone has same preferences and same initial wealth, we can drop the j′s and note
that m̃j,t = m̃t to obtain

Wk,t

Pt
= γµWt H̄

−v
t Hv

k,tC̃tĀt

1− Imt
It

= stC̃j,tυ
′ (0)

1 = βEt∆t+1
C̃t

C̃t+1

Āt
Āt+1

1

Πt+1
It

where we assume that υ′ (0) > 0.
We will assume that δt = ln ∆t and st = lnSt follow AR(1) processes

δt+1 = ρδδt + σδεδ,t+1,

st+1 = ρsst + σsεs,t+1,

and that productivity growth, Ξt+1 = Āt+1

Āt
is itself integrated, i.e. that its ξt = log Ξt follows

ξt = ξt−1 + ψt

ψt = (1− ρψ)ψ + ρψψt−1 + σψε
ψ
t

where ψt is the (rate of) change in the rate of productivity growth.

Note that in steady state, for ∆̆m
t ≡

Ĭt−Ĭmt
Ĭt

, ∆̆m = C̃υ′ (0) and Ĭ = Ψ
β . To first order

Ĭm

Ĭ − Ĭm
(̆ıt − ı̆mt ) = c̃t + st

and
c̃t = Etc̃t+1 − (̆ıt − Etπt+1) + Etψ̂t+1 − Etδt+1

These two equations can be combined to obtain

c̃t =
(

1− ∆̆m
) [

Etc̃t+1 − (̆ımt − Etπt+1) + Etψ̂t+1 − Etδt+1

]
− ∆̆mst

In a natural equilibrium where prices are flexible c̃nt =
(

1− ∆̆m
)(

Etc̃
n
t+1 − r̆nt + Etψ̂t+1 − Etδt+1

)
−

∆̆mst. If we define the output gap as xt = c̃t − c̃nt , we can therefore obtain

xt =
(

1− ∆̆m
)

(Etxt+1 − (̆ımt − Etπt+1 − r̆nt ))
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where the natural rate is

r̆nt = Etc̃
n
t+1 −

1

1− ∆̆m
c̃nt + Etψ̂t+1 − Etδt+1 −

∆̆m

1− ∆̆m
st

In each period, the profit of firm k is

Πk,t = (1− τ) pk,tYk,t −Wk,tHk,t

where τ is a tax rate.
Given the demand schedule

Yk,t =

(
pk,t
Pt

)−θ
Yt

and the production function, the amount of hours needed to produce a given volume of output
is

Hk,t =

(
Yk,t
At

)φ
Substituting these expressions into the profit function gives

Πk,t = (1− τ) pk,t

(
pk,t
Pt

)−θ
Yt −Wk,t

(
1

At

(
pk,t
Pt

)−θ
Yt

)φ
Given Calvo pricing the expected profits of the firms which get the chance to choose prices

at time t are

max
pk,t

Et

∞∑
T=t

αT−tQt,T

[
(1− τ) pk,t

(
pk,t
PT

)−θ
YT −Wk,T

(
pk,t
PT

)−θφ Y φ
T

AφT

]

with first order condition

(
pk,t
Pt

)1+(φ−1)θ

= φ
θ

θ − 1

Et

∞∑
T=t

αT−tQt,T
Wk,T

Pt

(
Pt
PT

)−θφ Y φT
AφT

Et

∞∑
T=t

αT−tQt,T (1− τ)
(
Pt
PT

)−θ
YT

Now use Hk,T =
(
pk,t
PT

)−θφ (
YT
AT

)φ
to substitute out the wage rate

Wk,T = C̄Tµ
W
T γ

(
pk,t
PT

)−θφν ( YT
AT

)φν
H̄−vT λ−1

T

and obtain, recalling that YT = CT ,

(
pk,t
Pt

)1+ωθ

=

γφ θ
θ−1Et

∞∑
T=t

(αβ)T−t C̄TCt µ
W
T H̄

−v
T

(
PT
Pt

)θ(1+ω) (
YT
AT

)1+ω

Et

∞∑
T=t

(αβ)T−t C̄TCt (1− τ)
(
PT
Pt

)θ−1
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where we have defined (1 + ω) = φ (1 + v).
Next, we use the definition of the price-index to obtain

pk,t
Pt

=

(
1− αΠθ−1

t

1− α

) 1
1−θ

and write

(
1− αΠθ−1

t

1− α

) 1+ωθ
1−θ

=

γφ θ
θ−1Et

∞∑
T=t

(αβ)T−t C̄TCt µ
W
T H̄

−v
T

(
PT
Pt

)θ(1+ω) (
YT
AT

)1+ω

Et

∞∑
T=t

(αβ)T−t C̄TCt (1− τ)
(
PT
Pt

)θ−1

Detrending real variables and following standard derivations we can linearize this condition
to obtain πt = κ (ỹt − zt) + βEtπ̂t+1, for κ ≡ (1−α)(1−αβ)

α
1+ω
1+ωθ . In the natural equilibrium we

obtain ỹnt = zt, so that the Phillips curve can be rewritten as

πt = κxt + βEtπ̂t+1

for xt ≡ ỹt − ỹnt .
Moreover the detrended natural rate can be solved out explicitly as

r̆nt = Etzt+1 −
1

1− ∆̆m
zt + ψ + ρψ (ψt − ψ)− ρδδt −

∆̆m

1− ∆̆m
st

In the text we assume that zt = 0 at all times and that ρψ = 0 to obtain

r̆nt = ψ − ρδδt −
∆̆m

1− ∆̆m
st

8.2 Second order welfare approximation

Household period utility can be rewritten as

Ut = C̄t

[
ln C̃t + āt + stυ (0)− γ

1 + v

∫ 1

0
H1+v
k,t dk

]

where āt = log Āt and where we used m̃j,t = m̃t. Using Hk,t =
(
Yk,t
ZtĀt

)φ
and the demand

schedule Yk,t =
(
pk,t
Pt

)−θ
Yt, we obtain

Ut = C̄t

ln Ỹt + āt + stυ (0)− γ

1 + v

(
Ỹt
Zt

)φ(1+v)

dt
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for dt =
∫ 1

0

(
pk,t
Pt

)−θ(1+ω)
dk. Note that C̄t, āt, st and υ (0) are independent of policy to write

Ut = C̄t

ln Ỹt −
γ

1 + v

(
Ỹt
Zt

)φ(1+v)

dt

+ t.i.p.

where t.i.p. are terms independent of policy.
Expand to second order noting that C̄ = 1 and using also 1 + ω = φ (1 + v):

Ut −
(

ln Ỹ − γ

1 + v
Ỹ 1+ωd

)
' −1

2
γφ2 (1 + v) Ỹ 1+ωdỹ2

t −
γ

1 + v
Ỹ 1+ωdd̂t

+
(

1− γφỸ 1+ωd
)
ỹt +

(
1− γφỸ 1+ωd

)
c̄tỹt

− 1

2

γ

1 + v
Ỹ 1+ωdd̂2

t −
γ

1 + v
Ỹ 1+ωdc̄td̂t − γφỸ 1+ωdỹtd̂t

where c̄t = δt + c̄t−1.
The rest of the derivations are standard. Note that

dt = (1− α)

(
1− αΠθ−1

t

1− α

)− θ(1+ω)
1−θ

+ αΠ
θ(1+ω)
t dt−1

and that in a zero inflation steady state we obtain d = 1. Imposing the steady state subsidy

1− τ = θ
θ−1 to ensure that steady state output Ỹ =

(
γφ

1−τ
θ
θ−1

)− 1
1+ω

becomes efficient, so that

1− γφỸ 1+ωd = 0. Temporary utility becomes

Ut +
1 + ln (γφ)

1 + ω
' −1

2
(1 + ω) ỹ2

t −
1

1 + ω
d̂t

− 1

2

1

1 + ω
d̂2
t −

1

1 + ω
c̄td̂t − ỹtd̂t

Finally, approximate dt to second order around a zero inflation steady state to obtain

d̂t =
1

2
(1 + ω) (1 + θω)

αθ

1− α
π̂2
t + αd̂t−1

and integrate this expression backward to the beginning of time t0 to compute the discounted
sum

∑∞
t=t0

βt−t0 d̂t as (assuming αβ < 1)

∞∑
t=t0

βt−t0 d̂t = (1 + ω) (1 + θω)
αθ

1− α
1

1− αβ

∞∑
t=t0

βt−t0
π2
t

2
+ t.i.p.

where t.i.p. are proportional to d̂t0−1 which is independent of policy. It follows that d̂t is of
purely second order in inflation. As a result, the second order terms d̂t, c̄td̂t and ỹtd̂t are of
higher order in inflation and we can write intertemporal utility as of the beginning of time t0
as

1− α
αθ

1− αβ
1 + θω

∞∑
t=t0

βt−t0
[
Ut +

1 + ln (γφ)

1 + ω

]
' 1

2

∞∑
t=t0

βt−t0
(
−(1− α) (1− αβ)

αθ

1 + ω

1 + θω
ỹ2
t − π2

t

)
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so that the period utility to maximise for the CB can be written as

UCBt = −π2
t − λŷ2

t

for λ = (1−α)(1−βα)
αθ

1+ω
1+θω .

8.3 Optimal steady state policy

Consider the steady state of our economy and assume purely deterministic growth, i.e.
Āt+1/Āt = Ψ.

Note that in a steady state with generic (gross) inflation rate Π, steady state price dispersion
is

d =
1− α

1− αΠθ(1+ω)

(
1− αΠθ−1

1− α

)− θ
1−θ (1+ω)

,

the steady state nominal interest rate

Im = (1−∆m)
Ψ

β
Π

or, for a steady state natural rate Rn = (1−∆m) Ψ
β ,

Im = RnΠ

and steady state output (including the subsidy 1− τ = θ
θ−1)

Ỹ =

(
1− αΠθ−1

1− α

) 1+ωθ
(1−θ)(1+ω)

(
1− αβΠθ−1

1− αβΠθ(1+ω)
γφ

)− 1
1+ω

These expressions can be used to evaluate steady state utility

U ∝ ln Ỹ − γ

1 + v
Ỹ (1+ω)d

More specifically, if we consider the limiting case β → 1, we can choose steady state inflation
Π to maximise the resulting utility

U =
θ

1− θ
ln
(

1− αΠθ−1
)

+
1

1 + ω
ln
(

1− αΠθ(1+ω)
)

+ t.i.p.

subject to the ZLB constraint Im ≥ 1 or, equivalently,

s.t. Π ≥ 1

Rn

The first order condition require, using π = log Π and rn = logRn, either

π = 0, if rn ≥ 0

or
π = −rn, if rn < 0
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8.4 Numerical methods

This section describes the numerical procedure by focusing on the model with optimal
policy (sections 2.4 and 2.5). We apply the same method to solve the model with price level
targeting (section 2.6).

8.4.1 Stationary natural rate and the ELB

Exogenous shocks

We assume that the rate of change in preferences δt follows an AR(1) process. As a result,
the high frequency component of the natural rate, i.e., −Etδt+1, follows an AR(1) process:

− Etδt+1 = δ̄t = ρδ δ̄t−1 + σδεδ,t

which we calibrate as in Adam & Billi (2007). Productivity growth is constant, i.e., Ξt+1 =
Āt+1

Āt
= Ψ, and we denote by ψ the log of productivity growth.

System of equilibrium equations

πt = κxt + βEtπt+1 (7)

xt =
(

1− ∆̆m
)

[Etxt+1 − (̆ımt − Etπt+1 − r̆nt )] (8)

r̆nt = δ̄t (9)

2λxt = −λx,t + β−1
(

1− ∆̆m
)
λx,t−1 + κλp,t (10)

2πt = β−1
(

1− ∆̆m
)
λx,t−1 − λp,t + λp,t−1 (11)

λx,t(̆ı
m
t + ln

(
1− ∆̆m

)
+ ψ − lnβ) = 0 (12)

ı̆mt ≥ log(β)− ψ − log
(

1− ∆̆m
)

(13)

λx,t ≥ 0 (14)

Solution algorithm

We use a projection approach. To discretize the state space S ⊂ R3, we form a grid defined
by three N-vectors of evenly spaced points, namely λp−1, λx−1, and δ̄. The initial range of
values considered for each state variable is [−0.005, 0.005], [0, 0.005], and +/- 5 unconditional
standard deviations of δ̄t respectively. Then, we proceed iteratively: we solve the model,
simulate it, update the boundaries for λp−1 and the upper bound for λx−1 so as to cover all
possible values, and solve the model again until both the solution and the grid converge. In
our application, we set N=50.

We use piecewise linear interpolation for approximating x̃(s) and π(s) off the grid, where
s = (λp,t−1, λx,t−1, δ̄t) denotes the vector of state variables at time t, and fixed-point iteration
for solving the system on the grid.

Define s+1 = (λp,t, λx,t, r̆
n
t+1) the vector of state variables at time t + 1, and f c(.) the

local polynomial approximating the control variable c ∈ {x̃, π}. Expectation terms are of the
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form: Et[f
c(s+1)] =

∫∞
−∞ g

c(εδ,t+1) exp(−ε2
δ,t+1)dεδ,t+1, which we approximate using a 9 node

Gauss-Hermite (GH) quadrature.
The solution algorithm proceeds in three steps.

Step 1: Choose an initial x0(s) and π0(s), and a tolerance level τ

Step 2: Iteration j. For each possible state s, given xj−1(s) and πj−1(s), compute λp(s) us-
ing (11), guess that λx(s) = 0, compute Exj−1(s+1) and Eπj−1(s+1), and compute
ı̆m(s) using (8).

If ı̆m(s) ≥ log(β)− ψ − log
(

1− ∆̆m
)

, retrieve

πj(s) = κxj−1(s) + βEπj−1(s+1)

xj(s) =
1

2λ

[
− λx(s) + β−1

(
1− ∆̆m

)
λx,t−1 + κλp(s)

]
If ı̆m(s) < log(β)−ψ− log

(
1− ∆̆m

)
, set ı̆m(s) = log(β)−ψ− log

(
1− ∆̆m

)
,

compute λx(s) using (10), compute Exj−1(s+1) and Eπj−1(s+1), and retrieve

πj(s) = κxj−1(s) + βEπj−1(s+1)

xj(s) =
(

1− ∆̆m
) [

Exj−1(s+1)−
(
ı̆m(s)− Eπj−1(s+1)− δ̄t

)]
Step 3: Let eπj (s) = |πj(s) − πj−1(s)|, exj (s) = |xj(s) − xj−1(s)| and ej(s) = eπj (s) +

exj (s) denote different measures of approximation error. Stop if
∑

s ej(s) < τ .
Otherwise, update the guess, and repeat step 2.

Our solution requires some initial guess about the true solution to the model. We use the
solution to the model in absence of the ELB as an initial guess to solve the model with the
Adam & Billi (2007)’s calibration of the natural rate at the steady state. Then, we use this
solution as an initial guess to solve the model with our baseline calibration. For lower values,
we use the solution to the model with a slightly higher calibration.

Accuracy

To evaluate the accuracy of the solution, we simulate 10000 economies each 1000 periods

long. We plug the solution
(
x∗(st), π

∗(st)
)

in equations (1) and (3) (if the ELB does not

bind), and in equations (1) and (2) (if the ELB does bind), so as to retrieve values for the

output gap and the (log) inflation rate implied by these equations
(
xIMP(st), π

IMP(st)
)

. Then,

we measure approximation errors either as the residual or as the percentage residual of these
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equations:

ex1,t ≡
∣∣∣xIMP
t − x∗t

∣∣∣ · 100 (15)

ex2,t ≡
∣∣∣ exp

(
xIMP
t − x∗t

)
− 1
∣∣∣ · 100 =

∣∣∣ Ỹ IMP
t − Ỹ ∗t
Ỹ ∗t

∣∣∣ · 100 (16)

eπ1,t ≡
∣∣∣πIMP
t − π∗t

∣∣∣ · 400 (17)

eπ2,t ≡
∣∣∣ exp

(
4(πIMP

t − π∗t )
)
− 1
∣∣∣ · 100 =

∣∣∣
(

ΠIMP
t

)4
−
(

Π∗t

)4

(
Π∗t

)4

∣∣∣ · 100 (18)

For each calibration of the steady state value of the natural rate, we report the maximum
and the mean approximation errors in columns 4 to 11 of table 4.

Table 4: Stationary natural rate: simulation moments and accuracy indicators

rn x̆ π max[ex1 ] E[ex1 ] max[eπ1 ] E[eπ1 ] max[ex2 ] E[ex2 ] max[eπ2 ] E[eπ2 ]
3,498 0 0,001 0,063 0 0,007 0 0,063 0 0,007 0
2,998 0 0,002 0,085 0,001 0,01 0 0,085 0,001 0,01 0
2,498 0 0,004 0,116 0,002 0,013 0 0,116 0,002 0,013 0
1,998 0 0,011 0,159 0,004 0,017 0 0,159 0,004 0,017 0
1,498 -0,001 0,025 0,226 0,007 0,023 0,001 0,226 0,007 0,023 0,001
0,998 0 0,058 0,316 0,011 0,03 0,001 0,316 0,011 0,03 0,001
0,498 0,001 0,133 0,451 0,012 0,038 0,001 0,452 0,012 0,038 0,001
-0,002 0,006 0,293 0,621 0,01 0,046 0,001 0,623 0,011 0,046 0,001
0,997 0,002 0,266 0,896 0,025 0,075 0,002 0,9 0,025 0,075 0,002

This table reports simulation moments (annualized and in percent) along with accuracy indicators for each cal-

ibration of the steady state value of the natural rate. The last row contains the results for an economy with a

steady state value of the natural rate at 1%, and a standard deviation of shocks two times larger than the baseline

calibration.

The approximation errors in difference or in percentage difference generate very similar
results. The maximum approximation error for the output gap and the inflation rate is always
below 1% and 10 basis points respectively. The mean approximation error for the inflation rate
is negligeable. However, for lower values of the natural rate, the mean approximation error for
the output gap is one order of magnitude larger than the mean of this variable.

Robustness

We test the robustness of the results in two ways. On the one hand, in the spirit of Maliar
& Maliar (2015), we use an adaptative grid. For each state variable except λx,t−1, we place
relatively more points in the middle 95% of the distribution of this variable. For λx,t−1, given
that the distribution is truncated in and concentrated near zero, we place the points using

a multiplicative sequence of the form: λx,k =
λx,k−1

1−δ with 0 < δ < 1. Figure 9 provides an
illustrative exemple of the grid. Table 5 compares the accuracy of the solution when using the
adaptative grid instead of the evenly spaced grid.
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Figure 9: An adaptative grid
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Table 5: Stationary natural rate: evenly spaced vs. adaptative grid

Evenly spaced grid Adaptative grid
rn max[ex1 ] E[ex1 ] max[eπ1 ] E[eπ1 ] max[ex1 ] E[ex1 ] max[eπ1 ] E[eπ1 ]
3,498 0,063 0 0,007 0 0,033 0 0,005 0
2,998 0,085 0,001 0,01 0 0,041 0 0,005 0
2,498 0,116 0,002 0,013 0 0,055 0,001 0,006 0
1,998 0,159 0,004 0,017 0 0,076 0,001 0,008 0
1,498 0,226 0,007 0,023 0,001 0,106 0,002 0,011 0
0,998 0,316 0,011 0,03 0,001 0,146 0,003 0,014 0
0,498 0,451 0,012 0,038 0,001 0,203 0,003 0,018 0
-0,002 0,621 0,01 0,046 0,001 0,276 0,003 0,022 0
0,997 0,896 0,025 0,075 0,002 0,404 0,006 0,036 0,001

We find that approximation errors diminish significantly when using an adaptative grid.
For example, the mean approximation error for the output gap is always below one basis point.
But the simulation moments are essentially unchanged (Table 6). From this, we conclude that
using a denser grid would certainty improve the accuracy of the solution, but it would not
substantially affect the results that are reported in the main text.

On the other hand, we increase the number of GH quadrature nodes from 9 to 30. The
results are essentially unchanged.
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Table 6: Stationary natural rate: robustness test

Evenly spaced grid Adaptative grid
rn x̆ π i r − rn ELB freq ELB dur x̆ π i r − rn ELB freq ELB dur
3,498 0 0,001 3,498 -0,001 5,515 2,635 0 0,001 3,499 -0,001 5,568 2,708
2,998 0 0,002 2,998 -0,002 9,622 3,141 0 0,002 2,999 -0,001 9,895 3,148
2,498 0 0,004 2,5 -0,003 16,703 3,625 0 0,004 2,501 -0,002 16,778 3,725
1,998 0 0,011 2,004 -0,005 25,722 4,709 0 0,01 2,006 -0,002 26,548 4,653
1,498 -0,001 0,025 1,514 -0,009 39,032 6,098 0,001 0,024 1,519 -0,003 39,034 6,316
0,998 0 0,058 1,044 -0,013 54,463 8,953 0,001 0,056 1,05 -0,004 54,749 9,091
0,498 0,001 0,133 0,618 -0,014 71,885 14,36 0,003 0,13 0,624 -0,004 72,174 14,444
-0,002 0,006 0,293 0,28 -0,012 87,069 28,84 0,007 0,289 0,284 -0,004 87,191 29,36
0,997 0,002 0,266 1,236 -0,028 71,835 14,37 0,006 0,26 1,248 -0,009 72,098 14,484

This table reports simulation moments (annualized and in percent) for each calibration of the steady state value of the natural rate.

The last row contains the results for an economy with a steady state value of the natural rate at 1%, and a standard deviation of

shocks two times larger than the baseline calibration. The ELB frequency is displayed in percents. The ELB duration corresponds

to the average duration of an ELB episode (in quarters).

8.4.2 Drifting natural rate and the ELB

Exogenous shocks
We assume that the rate of change in productivity is integrated and bounded, i.e., log(Ξt+1) =

ξt+1 = ψt+1 + ξt and

ξt+1 ∈ [ξL, ξH ]

ψt+1 = σψεψ,t+1

where ψt+1 denotes the rate of change in productivity growth, and εψ,t+1 denotes a realization

of the truncated standard normal distribution between εψ,L(t) = ξL−ξt
σψ

and εψ,H(t) = ξH−ξt
σψ

.

System of equilibrium equations

The set of equilibrium conditions includes equations 7 to 8, 10 to 11, and 19 to 22.

r̆nt = δ̄t + Et(ψt+1) (19)

Et(ψt+1) = σψ
φ(εψ,L(t)− φ(εψ,H(t)

Φ(εψ,H(t)− Φ(εψ,L(t)
(20)

λx,t(̆ı
m
t + ln

(
1− ∆̆m

)
+ ξt − lnβ) = 0 (21)

ı̆mt ≥ log(β)− ξt − log
(

1− ∆̆m
)

(22)

where φ(.) and Φ(.) denote the pdf and the cdf of the standard normal distribution respectively.

Solution algorithm

The main change with respect to the procedure described above is threefold. First, there
is an additional (exogenous) state variable. We use a grid defined by four N-vectors of evenly
spaced points including the rate of productivity growth ξ. The range of values considered for
ξ is [ξL, ξH ]. Moreover, we set N=40.
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Second, we use a combination of Gaussian quadratures to approximate expectation terms.
Define s+1 = (λp,t, λx,t, δ̄t+1, ξt+1) the vector of state variables at time t+1. We use the

equivalence εψ,t+1 =
εψ,H(t)−εψ,L(t)

2 yt+1 +
εψ,H(t)+εψ,L(t)

2 , where yt+1 denotes a realization of the
truncated standard normal between -1 and 1, to express expectation terms as follows:

Et[f
c(s+1)] =

∫ ∞
−∞

[ ∫ 1

−1
gc(εδ,t+1, yt+1)dyt+1

]
exp(−ε2

δ,t+1)dεδ,t+1 (23)

Then, we use a 20 node Gauss-Legendre (GL) quadrature to approximate the integral in square
brackets, and a 9 node Gauss-Hermite quadrature to approximate the first integral.

Third, we use parallel computing to solve the model under different calibrations all in the
same time. We proceed in two steps. In the first step, we solve the model under different
calibrations of the average value of the natural rate by using fewer grid points (154). The
running time is about 3 hours. In the second step, we use these solutions as initial guesses
to solve each version independently by using more grid points (404). All together, these two
steps require 52 hours.

Accuracy

Table 7 reports simulation moments over calibrations along with the different measures of
accuracy (15)-(18). The maximum approximation error for the output gap and the inflation
rate reaches 2% and 28 basis points respectively. The mean approximation error for the
inflation rate reaches 1.2 basis points which is low compared to the mean of this variable.
However, the mean approximation error for the output gap reaches 3.1 basis points which
amounts to about half the mean of this variable in absolute value.

Table 7: Drifting natural rate: simulation moments and accuracy indicators

rn x̆ π max[ex1 ] E[ex1 ] max[eπ1 ] E[eπ1 ] max[ex2 ] E[ex2 ] max[eπ2 ] E[eπ2 ]
3,519 -0,001 0,003 0,206 0,003 0,059 0 0,206 0,003 0,059 0
3,019 -0,002 0,008 0,288 0,005 0,071 0,001 0,289 0,005 0,071 0,001
2,519 -0,003 0,018 0,404 0,009 0,093 0,001 0,404 0,009 0,093 0,001
2,019 -0,005 0,04 0,564 0,013 0,121 0,002 0,566 0,013 0,12 0,002
1,519 -0,009 0,088 0,742 0,019 0,154 0,003 0,744 0,019 0,154 0,003
1,019 -0,017 0,18 0,974 0,024 0,192 0,005 0,978 0,024 0,192 0,005
0,519 -0,034 0,333 1,247 0,028 0,237 0,007 1,255 0,028 0,236 0,007
0,019 -0,067 0,561 1,933 0,031 0,283 0,012 1,952 0,031 0,282 0,012

See table 4 for details.

Robustness

We test the robustness of the results in several ways. First, we solve the model by using the
adaptative grid described before. As the unconditional distribution of the rate of productivity
growth ξt looks like a uniform distribution, we keep a vector of N evenly spaced points for
this dimension. Table 8 compares the accuracy of the solution when using the adaptative grid
instead of the evenly spaced grid. In this case as well, we observe that the adaptative grid is
an efficient way of reducing approximation errors. For example, the mean approximation error
for the output gap is at least reduced by half.
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Table 8: Drifting natural rate: evenly spaced vs. adaptative grid

Evenly spaced grid Adaptative grid
rn max[ex1 ] E[ex1 ] max[eπ1 ] E[eπ1 ] max[ex1 ] E[ex1 ] max[eπ1 ] E[eπ1 ]
3,519 0,206 0,003 0,059 0 0,112 0,001 0,058 0
3,019 0,288 0,005 0,071 0,001 0,142 0,001 0,071 0
2,519 0,404 0,009 0,093 0,001 0,167 0,003 0,093 0,001
2,019 0,564 0,013 0,121 0,002 0,199 0,004 0,12 0,001
1,519 0,742 0,019 0,154 0,003 0,283 0,007 0,154 0,002
1,019 0,974 0,024 0,192 0,005 0,365 0,01 0,192 0,004
0,519 1,247 0,028 0,237 0,007 0,461 0,013 0,236 0,006
0,019 1,933 0,031 0,283 0,012 1,487 0,017 0,283 0,011

Table 9 compares the simulation moments. Even though the solution is significantly more
accurate when using the adaptative grid, the simulation moments do not change substantially,
which supports the conclusion that the results are robust and that using a denser grid would
be pointless.

Table 9: Drifting natural rate: robustness test

Evenly spaced grid Adaptative grid
rn x̆ π i r − rn ELB freq ELB dur x̆ π i r − rn ELB freq ELB dur
3,519 -0,001 0,003 3,519 -0,003 9,577 3,768 0 0,003 3,521 -0,001 9,766 3,836
3,019 -0,002 0,008 3,022 -0,005 15,16 4,55 0 0,007 3,024 -0,002 15,385 4,625
2,519 -0,003 0,018 2,528 -0,008 22,766 5,684 -0,001 0,017 2,533 -0,003 23,042 5,725
2,019 -0,005 0,04 2,047 -0,013 32,562 7,265 -0,002 0,038 2,053 -0,004 32,78 7,285
1,519 -0,009 0,088 1,589 -0,019 43,902 9,597 -0,005 0,085 1,597 -0,008 44,042 9,574
1,019 -0,017 0,18 1,174 -0,028 55,811 12,92 -0,012 0,175 1,183 -0,014 55,931 12,721
0,519 -0,034 0,333 0,818 -0,042 67,402 17,138 -0,028 0,327 0,828 -0,026 67,377 16,853
0,019 -0,067 0,561 0,527 -0,07 77,831 22,596 -0,062 0,554 0,536 -0,053 77,73 22,141

See table 6 for details.

Second, we increase the number of GL quadrature nodes from 20 to 30. NOT DONE.
Third, instead of using a Gauss-Legendre quadrature to compute the bounded integral in

square brackets in (23), we use a Newton-Cotes quadrature scheme. In particular, we use the
trapezoid rule which is described in Miranda & Fackler (2002) as ”more accurate [than other
Newton-Cotes methods] if the integrand exhibits discontinuities in its first derivative”. NOT
DONE.

8.5 Solution of the linear model with optimal commitment

This appendix presents the analytical solution of the model with optimal commitment in
absence of the ELB constraint2.

The system of equilibrium equations becomes

πt = κxt + βEtπt+1

2λxt = κλp,t

2πt = −λp,t + λp,t−1

xt =
(

1− ∆̆m
)

[Etxt+1 − (̆ımt − Etπt+1 − r̆nt )]

2See Woodford Chapter 7 for a comprehensive discussion.
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Rearranging the second and third equations, we obtain xt = κ
2λλp,t and πt = −1

2λp,t + 1
2λp,t−1.

Plugging this into the Phillips curve, we obtain a difference equation for the evolution of the
lagrange multiplier

βEtλp,t+1 − (1 + β +
κ2

λ
)λp,t + λp,t−1 = 0

Using the forward operator L−1, this is equivalent to

Et[P(L−1)λp,t−1] = 0

with P(L−1) = β(L−1)2 − (1 + β + κ2

λ )L−1 + 1. Let µ1 and µ2 denote the roots of this second
order polynomial. By identification of P(L−1) with P(L−1) = β(L−1 − µ1)(L−1 − µ2), we
obtain

βµ1µ2 = 1 > 0

β(µ1 + µ2) = 1 + β +
κ2

λ
> 0

Moreover

β(1− µ1)(1− µ2) = −κ
2

λ
< 0

The polynomial has two positive and real roots, with one inside and the other outside the unit
circle, 0 < µ1 < 1 < µ2. The difference equation has only one bounded solution. Rearranging
E[β(L−1 − µ1)(L−1 − µ2)λp,t−1] = 0, we obtain

− E[β(1− µ1L)µ2(1− µ−1
2 L−1)λp,t] = 0

which is equivalent to λp,t = µ1λp,t−1. Using the initial condition λp,0 = 0, the only solution
satisfying this equation at any point in time is λp,t = 0. This shows that in absence of the
ELB constraint, x̃t = πt = 0 ∀ t.

8.6 The optimal gap adjusted price level target

This appendix derives the expression of the optimal gap adjusted price level target in
presence of the ELB constraint on the nominal interest rate3. Optimal monetary policy is
determined by the following first order conditions.

2λxt = −λx,t + β−1
(

1− ∆̆m
)
λx,t−1 + κλp,t

2πt = (β)−1
(

1− ∆̆m
)
λx,t−1 − λp,t + λp,t−1

3See Eggertsson and Woodford 2003.
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Rearranging, we find

λp,t = 2
λ

κ
xt +

1

κ
λx,t −

β−1
(

1− ∆̆m
)

κ
λx,t−1 (24)

πt =
β−1

(
1− ∆̆m

)
2

(1 +
1

κ
)λx,t−1 −

λ

κ
xt −

1

κ2
λx,t +

1

2
λp,t−1 (25)

Define the gap adjusted price level (GAPL) P̃t ≡ pt + λ
κxt. If the ELB constraint does not

bind, λx,t = 0. Plugging this into (25), we obtain P̃t = P ∗t with

P ∗t = pt−1 +
β−1

(
1− ∆̆m

)
2

(1 +
1

κ
)λx,t−1 +

1

2
λp,t−1 (26)

If the ELB constraint does bind, λx,t > 0, and P̃t = P ∗t − 1
κ2λx,t. Define ∆P̃

t ≡ P ∗t − P̃t, we

thus have ∆P̃
t = 1

κ2λx,t. Plugging this into (26), we obtain

P ∗t = pt−1 + β−1
(

1− ∆̆m
)

(1 + κ)∆P̃
t−1 +

1

2
λp,t−1 (27)

Replacing (24) into (27), we obtain

P ∗t = P̃t−1 + [1 + β−1
(

1− ∆̆m
)

(1 + κ)]∆P̃
t−1 − β−1

(
1− ∆̆m

)
∆P̃
t−2

and using P̃t−1 +∆P̃
t−1 = P ∗t−1, we obtain the expression of the optimal gap adjusted price level

target

P ∗t = P ∗t−1 + β−1
(

1− ∆̆m
)

(1 + κ)∆P̃
t−1 − β−1

(
1− ∆̆m

)
∆P̃
t−2

8.7 Solution of the linear model with constant price level targeting

This appendix presents the analytical solution of the model with constant (gap adjusted)
price level targeting in absence of the ELB constraint on the nominal interest rate. The
equilibrium is determined by the following system of equations.

pt − pt−1 = κxt + β(Etpt+1 − pt)

xt =
(

1− ∆̆m
)

[Etxt+1 − (̆ımt − (Etpt+1 − pt)− r̆nt )]

pt +
λ

κ
xt = P∗

Combining the first and the third equations, we obtain a difference equation for the evolution
of the price level.

βEtpt+1 − (1 + β +
κ2

λ
)pt + pt−1 = −κ

2

λ
P∗
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Or equivalently

Et[P(L−1)pt−1] = −κ
2

λ
P∗ (28)

with P(L−1) = β(L−1)2 − (1 + β + κ2

λ )L−1 + 1. This polynomial has two real and positive
roots µ1 and µ2 with 0 < µ1 < 1 < µ2. The proof is provided in appendix 8.5. Rearranging
(28), we obtain

pt = µ1pt−1 +
1

βµ2(1− µ−1
2 )

κ2

λ
P∗

Using 1
βµ2(1−µ−1

2 )
= 1

β(µ2−1) = − 1
β(1−µ2) and the fact that β(1− µ1)(1− µ2) = −κ2

λ , we obtain

pt = µ1pt−1 + (1− µ1)P∗ (29)

Using the initial condition p−1 = P∗, the only solution satisfying this equation at any point
in time is pt = P∗. This shows that in absence of the ELB constraint on the nominal interest
rate, x̃t = πt = 0 for all t.
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