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Abstract

We interpret attitudes towards science and pseudosciences as cul-
tural traits that diffuse in society through communication efforts ex-
erted by agents. We present a tractable model that allows us to study
the interaction among the diffusion of an epidemic, vaccination choices,
and the dynamics of cultural traits. We apply it to study the impact of
homophily between pro-vaxxers and anti-vaxxers on the total number
of cases (the cumulative infection). We show that, during the outbreak
of a disease, homophily has the direct effect of decreasing the speed
of recovery. Hence, it may increase the number of cases and make the
disease endemic. The dynamics of the shares of the two cultural traits
in the population is crucial in determining the sign of the total effect on
the cumulative infection: more homophily is beneficial if agents are not
too flexible in changing their cultural trait, is detrimental otherwise.
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1 Introduction

We model an economy facing the possible outbreak of a disease, for which
a vaccine with temporary efficacy is available. This mimics what happens
every year for seasonal flu, but it could also be the case in the near future
for Covid19.1

Even before Covid19, vaccination has been almost unanimously consid-
ered the most effective public health intervention by the scientific community
(see, e.g., Larson et al., 2016 or Trentini et al., 2017). However, in recent
years many people either refuse drastically any vaccination scheme or reduce
(or delay) the prescribed vaccination. This has been often associated with
pseudo-scientific beliefs.2 The phenomenon has become more pronounced
in the last decades, especially in Western Europe and in the US,3 and many
public health organizations have issued public calls to researchers to enhance
the understanding of the phenomenon and its remedies. Even in the present
times of Covid19 epidemic, the opposition to vaccination policies is alive.4

The focus of this paper is on the impact of homophily, that is, the possible
limitation of contacts between people with different pseudo-science attitudes,

1At present, we know that the virus of Covid19 mutates very rapidly (Korber et al.,
2020; Pachetti et al., 2020) and that it seems to be seasonal (Carleton and Meng, 2020).
Scientists and politicians are considering the possibility that, for the next year, it could
become similar to a seasonal flu that deserves a new vaccine every year: for example, see
this report from April 2020. There is also another reason for which vaccination against
Covid19 may not be permanent: more recent studies like Seow et al. (2020) have shown
that Covid19 antibodies fall rapidly in our body so that it could be the case that people
will need to vaccinate regularly (e.g. once every year) against the virus.

2Dubé and MacDonald (2016).
3See Larson et al. (2016) for a general and recent cross country comparison. Most

studies are based on the US population: Robison et al. (2012), Smith et al. (2011), Nadeau
et al. (2015) and Phadke et al. (2016) are some of the more recent ones. Funk (2017)
focuses on measles in various European countries. Rey et al. (2018) analyzes the case of
France.

4On this, see the recent reports of Johnson et al. (2020), Ball (2020) and Malik et al.
(2020).
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namely those in favor and those against vaccines. We study the effects of
homophily levels on the dynamics of the disease, and the interaction of
these levels with vaccination choices and with the popularity of anti–vaxxer
movements.

There is a lot of evidence that, for example in the US, private and charter
schools have a higher level of non-vaccinated children,5 and, in particular, a
larger number of families that use the possibility of religious or philosoph-
ical exemptions.6 This phenomenon entails significant risks and, in order
to protect the public, in many countries recent laws forbid enrollment of
non-vaccinated kids into public schools. This is believed to have brought
to an increase in enrollment in more tolerant private schools.7,8 These in-
terventions, though, may as well affect the sorting of people with different
pro or anti-vaccination attitudes in different schools. On an abstract level,
this can corresponds to a change in the homophily of interactions, incen-
tivizing people with anti-vaccination beliefs, who are, most likely, the ones
with lower vaccination rates, to interact more together. This can have an
important effect on the diffusion of epidemics but also on the formation of
cultural norms.9 Moreover, during the Covid19 outbreak, governments have
implemented very strong and drastic temporary containment and quarantine
policies. However, such stringent policies cannot be permanent measures,
and in normal times the policy makers are able to implement only milder
policies that may segregate people in certain loci of activity. Limitations for
attending schools are milder measures of this kind.

Moving from these premises, an important object of interest for policy-
makers is the rate of contacts between two groups of people: those that
are against vaccination and all the others, which we call for simplicity anti-
vaxxers and pro-vaxxers (or just vaxxers), respectively. The two groups
differ in their judgment about the real cost of vaccination, which is deemed
higher by anti-vaxxers. This can be thought of as a psychological cost, a

5Mashinini et al. (2020), Shaw et al. (2014).
6Zier and Bradford (2020).
7This phenomenon is documented for California by Silverman and Yang (2019). Recent

evidence shows that similar trends happened in Italy and have been considered a cause of
the measles outbreak in Manhattan in April 2019.

8As another example, in light of the policies enforced during the Covid19 crisis, many
companies and other public and private organizations have applied rotation schemes to
limit physical interaction between people (on this, see the recent work by Ely et al., 2020):
it is admissible that a policy maker may want to include non-vaccinated people all in the
same group.

9For example, Sobo (2015) argues that school community norms have an important
impact in vaccine skepticism among families of children attending Steiner schools.
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sheer mistake, or any phenomenon that may lead to a difference in per-
ceived cost: we remain agnostic on the cause of it as our aim is to study its
consequences. We think of this difference in the perceived cost as a basic
cultural trait, which, as in the literature on cultural transmission, affects the
preferences (or beliefs) of agents, who are still free to choose to vaccinate
or not, based on a heterogeneous component of the cost. This means that
an anti-vaxxer in our model may still vaccinate if the heterogeneous compo-
nent of the cost is small enough.10 Through this, we mean to capture not
the extremists that would never take a vaccine, but the much more general
phenomenon of vaccine hesitancy, which is much more widespread and, so,
potentially much more dangerous (Trentini et al., 2017).

The homophily of contacts between the two groups is modeled by h ∈
[0, 1], which is the percentage of contacts that people cannot have with the
other group (because, for example, their kids are not in the same schools,
or they cannot meet in the same job and leisure places). We think h as a
number that is far from one (which would be the case of total segregation).
This biased pattern of contacts is in place before the epidemic actually
takes place. We show that more homophily may cause the disease to die
out more slowly and cause more infection in the whole population, or even
more infection among vaxxers. In particular, our results suggest care both
to a social planner concerned with total infection in the population and to a
social planner concerned only with infection among the vaxxers. The choice
between the two approaches depends on the attitude toward society we want
to model, and in particular on the specific interpretation of the difference in
perceived cost, e.g., as a pure bias that the social planner should consider
as such, or as a form of real psychological cost that we may want to factor
in the welfare computation.11 As a consequence of these considerations,
we remain agnostic on a general welfare criterion and explore instead the
physical outcome of the amount of infection that, in such an environment,
is likely to be a prominent, if not the only, element of any welfare analysis.

The reason why an increase in h may generate more infection is that
homophily protects the group with fewer infected agents because it decreases
the contacts and, thus, the diffusion of the disease across groups. Which
group has a larger infection rate will, in turn, depend on initial conditions
and on the difference in vaccination rates between the two groups. If the

10For the sake of tractability, in the main text, we fully explore the corner-solution
case in which all anti-vaxxers do not vaccinate. We explore the more general model with
vaccine hesitancy in Appendix B, and we show that the main results carry through.

11These are complex issues at the forefront of research in behavioral economics, see
Bernheim and Taubinsky (2018).
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total number of agents initially infected is the same across the two groups,12

then homophily has no effect on total infection. Hence, a planner that cares
only about the infection among vaxxers has no clear choice: she will desire
an increase of h (e.g., in case of an outbreak among anti-vaxxers) but would
have opposite preferences in case of an outbreak among vaxxers.

If, instead, the two groups differ in the number of infected agents, the
effect on total infection depends on the interplay of initial conditions and
vaccinations. If the less vaccinated group happens to have more infections
(because it suffered a larger share of the initial outbreak), we know ho-
mophily further increases infections in such group. The crucial observation
is that it increases infections at a disproportionately larger rate than when
the more vaccinated group has more infections. As a result, if the outbreak
is among anti-vaxxers, total infection in the population increases with h,
whereas if the outbreak is among vaxxers it decreases.

First, we consider a mechanical model in which vaccination choices are
exogenous. Then, we endogenize the vaccination choices of agents. Vacci-
nation choices are taken before the disease spreads out. We view this as a
classical trade-off between the perceived cost of vaccinating and the expected
cost of getting sick. In the model, the difference between anti–vaxxers and
pro–vaxxers is only in the perceived costs of vaccination. We show that even
if we endogenize these choices, the qualitative predictions of the mechanical
model are still valid: an increase in homophily is counterproductive.

Finally, we endogenize the choice of agents on whether to be anti–vaxxer
or pro–vaxxer. This choice is modeled as the result of social pressure, with
the transmission of a cultural trait. There is a well-documented fact about
vaccine hesitancy that seems hard to reconcile with strategic models: the
geographical and social clustering of vaccine hesitancy. Various studies, re-
viewed e.g. by Dubé and MacDonald (2016), find that people are more likely
to have positive attitudes toward vaccination if their family or peers have.
This is particularly evident in the case of specific religious confessions that
hold anti-vaccination prescriptions and tend to be very correlated with social
contacts and geographical clustering. These studies, though observational
and making no attempt to assess causal mechanisms, present evidence at
odds with the strategic model: if the main reason not to vaccinate is free
riding, people should be less likely to vaccinate if close to many vaccinated
people, and not vice versa. In addition, Lieu et al. (2015) show that vaccine-
hesitant people are more likely to communicate together than with other

12This can happen, e.g., if the initial seeds are unequally distributed, and initially more
vaxxers are infected, see Section 3.
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people. Edge et al. (2019) document that vaccination patterns in a network
of social contacts of physicians in Manchester hospitals are correlated with
being close in the network. It has also been shown that, in many cases,
providing more information does not make vaccine-hesitant people change
their minds (on this, see Nyhan et al., 2013, 2014 and Nyhan and Reifler,
2015). However, people do change their minds about vaccination schemes,
as documented recently by Brewer et al. (2017), for example. In a review
of the literature, Yaqub et al. (2014) finds that lack of knowledge is cited
less than distrust in public authorities as a reason to be vaccine-hesitant.
This is true both among the general public and professionals: in a study
of French physicians, Verger et al. (2015) finds that only 50% of the in-
terviewed trusted public health authorities. They both find a correlation
between vaccine hesitancy and the use or practice of alternative medicine.

When we fully endogenize the choices of agents (both membership to
groups and vaccination choices), we find that the predictions of the simple
mechanical model remain valid only if the groups of the society are rigid
enough, and people do not change their minds easily about vaccines. If,
instead, people are more prone to move between the anti–vaxxers and pro–
vaxxers groups, then segregation policies can have positive effects. The
simple intuition for this is that, when anti–vaxxers are forced to interact
more together, they internalize the higher risk of getting infected and, as a
result, they are more prone to become pro–vaxxers.

We contribute to three lines of literature, related to three steps of our
analysis highlighted above: the analysis of the effects of segregation in epi-
demiological models, the economics literature on vaccination and its equilib-
rium effects, and the literature on diffusion of social norms and transmission
of cultural traits.

The medical and biological literature using SI-type models is wide, and
a review of it is beyond our scope. We limit ourselves to note that recently
some papers have considered dynamic processes with formal similarity to
ours. Jackson and López-Pintado (2013) and Izquierdo et al. (2018) are the
first, to our knowledge, to study how homophily affects diffusion. Pananos
et al. (2017) analyze critical transitions in the dynamics of a three equation
model including epidemic and infection.

The literature on strategic immunization has analyzed models where
groups are given and the focus is the immunization choice, as in Galeotti
and Rogers (2013), or both the immunization and the level of interaction are
endogenous, as in Goyal and Vigier (2015). Chen and Toxvaerd (2014) argue
that the market mechanism yields inefficiently low levels of vaccination,
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while Talamàs and Vohra (2020) show that a partially effective vaccination
can decrease welfare, with a mechanism that, like ours, works via behavioral
responses. At an abstract level, the difference with respect to our setting
is that we endogenize the group partition through the diffusion of social
norms.13

The economics of social norms and transmission of cultural traits is a
lively field, surveyed by Bisin and Verdier (2011). Common to this literature
is the use of simple, often non-strategic, dynamic models of the evolution
of preferences. We adopt this framework, finding it useful despite the dif-
ferences we discuss later. A paper close to ours is Panebianco and Verdier
(2017), which considers how social networks affect cultural transmission in
a SI-type model, with a more concrete network specification through de-
gree distributions. The literature on segregation in cities and communities
has also studied the trade-offs generated by stratification and asymmetric
interactions, and the inefficiencies of social separation: cfr Benabou (1993,
1996a,b).

The paper is organized as follows. Next section presents the model.
Section 3 shows results for the mechanical model, when all choices are ex-
ogenous. Sections 4 and 5 introduce respectively endogenous vaccination
and endogenous group membership, deriving our analytical results for these
cases. We conclude in Section 6. In the appendices we consider a microfoun-
dation of the cultural transmission mechanism (Appendix A), extensions of
the model (Appendices B and C) and we prove our formal results (Appendix
D).

2 The Model

2.1 The Epidemic

We consider a simple SIS model with vaccination and with two groups of
agents, analogous to the setup in Galeotti and Rogers (2013). To understand
the main forces at play, we start by taking all the decisions of the agents
as exogenous, and we focus on the infection dynamics. In the following
sections, we endogenize the choices of the players.

13There is also a recent literature in applied physics that studies models where the
diffusion is simultaneous for the disease and for the vaccination choices. On this, see the
review of Wang et al. (2015), and the more recent analysis of Alvarez-Zuzek et al. (2017)
and Velásquez-Rojas and Vazquez (2017).
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Our society is composed of a continuum of agents of mass 1, partitioned
into two groups. To begin with, in this section this partition is exogenous.
Agents in each group are characterized by their attitude towards vaccination.
In details, following a popular terminology, we label the two groups with a,
for anti-vaxxers, and with v, for vaxxers. Thus, the set of the two groups
is G := {a, v}, with g ∈ G being the generic group. Let qa ∈ [0, 1] denote
the fraction of anti-vaxxers in the society, and qv = 1 − qa the fraction of
vaxxers. To ease the notation, we write q for qa, when this does not create
ambiguity.

People in the two groups meet each other with an homophilous bias.
We model this by assuming that an agent of any of the two groups has a
probability h to meet someone from her own group and a probability 1−h to
meet someone else randomly drawn from the whole society.14 This implies
that anti-vaxxers meet each others at a rate of q̃a := h + (1 − h)qa, while
vaxxers meet each others at a rate of q̃v := h+(1−h)qv = h+(1−h)(1−qa).
Note that h is the same for both groups, but if qa 6= qv and h > 0, then
q̃a 6= q̃v.

For each g ∈ G, let xg ∈ [0, 1] denote the fraction of agents in group
g that are vaccinated against our generic disease. It is natural to assume,
without loss of generality, that xa < xv, and by now this is actually the only
difference characterizing the two groups. Let µ be the recovery rate of the
disease, whereas its infectiveness is normalized to 1.

2.1.1 The dynamical system

Setting the evolution of the epidemic in continuous time, we study the frac-
tion of infected people in each group. When this does not generate ambi-
guity, we drop time indexes from the variables. For each i ∈ G, let ρi be
the share of infected agents in group i. Since vaccinated agents cannot get
infected, we have ρa ∈ [0, 1− xa] and ρv ∈ [0, 1− xv], respectively.

The differential equations of the system are given by:

ρ̇a =
(
1− ρa − xa

)(
q̃aρa + (1− q̃a)ρv

)
− ρaµ;

ρ̇v =
(
1− ρv − xv

)(
q̃vρv + (1− q̃v)ρa

)
− ρvµ. (1)

14h is the inbreeding homophily index, as defined in Coleman (1958), Marsden (1987),
McPherson et al. (2001) and Currarini et al. (2009). It can be interpreted in several ways,
as an outcome of choices or opportunities. As we assume that h can be affected by groups’
choices and by policies, we can interpret it as the amount of time in which agents are kept
segregated by group, while in the remaining time they meet uniformly at random.
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For each g ∈ G,
(
1 − ρg − xg

)
∈ [0, 1] represents the set of agents who are

neither vaccinated, nor infected, and thus susceptible of being infected by
other infected agents. Moreover, the share of infected agents met by vaxxers

and anti-vaxxers is given by
(
q̃aρa+(1− q̃a)ρv

)
and by

(
q̃vρv +(1− q̃v)ρa

)
,

respectively. Finally, ρaµ and ρvµ are the recovered agents in each group.
We are going to assume that at the beginning of the epidemic a fraction

of agents is infected, selected at random independently of the group. We
can think for example of random encounters with spreaders coming from
another country or region. Since the initial infected status is independent
of group identity, the initial condition is symmetric: ρa0 = ρv0 = ρ0.15

Proposition 1 (Homophily and endemic disease). The system (1) always
admits a trivial steady state: (ρa1, ρ

v
1) := (0, 0). For each h, there exists a

µ̂(h) > 0 such that (i) if µ < µ̂(h), (0, 0) is unstable, whereas (ii) if µ > µ̂(h),
(0, 0) is stable.16

This result is obtained in the standard way, by setting to zero the two
right–hand side parts of the system in (1) and solving for ρa and ρv. The
formal passages are in Appendix D, as those of the other results that follow.

In the remaining of the paper, we focus on the case in which µ > µ̂(h),
because it is consistent with diseases that are not endemic but show them-
selves in episodic or seasonal waves. For those diseases, society lays for most
of its time in a steady state where no one is infected. However, exogenous
shocks increase the number of infected people temporarily. Eventually, the
disease dies out, as it happens, for example, for the seasonal outbreaks of
flu.

Note that µ̂(h) is increasing in h, so that we can highlight a first impor-
tant role for h in the comparative statics. If h increases, it is possible that
a disease that was not endemic, because µ > µ̂(h), becomes so because µ̂(h)
increases with h, and the sign of the inequality is reversed. Indeed, higher
homophily counterbalances the negative effect that the recovery rate µ has
on the epidemic outbreak.

15An alternative is to think of the different fractions ρa0 and ρv0 each extracted at random
from distributions with the same mean Eρa0 = Eρv0 = ρ0. This will not change our results
because in the following we will focus on the linearization around the steady state, so our
expressions will depend linearly on the initial conditions.

16 Note that µ̂(h) := 1
2

(T + ∆) ∈ [0, 1], where T := q̃a(1 − xa) + q̃v(1 − xv) and

∆ :=
√
T 2 − 4h(1− xa)(1− xv). ∆ is always positive and it is increasing in q. Moreover

µ̂(h) ∈ [0, 1] and its value is 1− xv + q(xv − xa) for h = 0 and 1− xa for h→ 1.
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2.1.2 Cumulative Infection

The main focus of our interest is to see what is the welfare loss due to the
epidemic, and how this depends on the policy parameter h. In our simple
setting, the welfare loss is measured by the total number of infected people
over time, that is cumulative infection. For analytical tractability, we
will approximate the dynamics of outbreaks with the linearized version of
the dynamics ρ̂, that satisfies:

˙̂ρt = J

(
ρ̂at
ρ̂vt

)
, ρ̂0 =

(
ρa0
ρv0

)
, (2)

where J is the Jacobian matrix of (1) calculated in the (0, 0) steady state,
and (ρa0, ρ

v
0)′ is the initial magnitude of the outbreak.

The cumulative infection in the two groups and in the overall population
is (approximately, for a small perturbation around the steady state):

CIa :=

∫ ∞
0

ρ̂a(t)dt,

CIv :=

∫ ∞
0

ρ̂v(t)dt,

CI := qaCIa + (1− qa)CIv.

(3)

Note that, since qa is fixed, CI takes into account both the number
of infected agents of each group at each period and also the length of the
outbreak. In the range of parameters for which (0, 0) is stable, all the
integrals are finite, so here we do not add discounting, for simplicity. We
will explore the implications of introducing time preferences in Section C.2.
The expressions are:

CIa = ρ0
2 ((µ− (1− xv)q̃v) + (1− xa) (1− q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )
,

CIv = ρ0
2 ((1− xv) (1− q̃v) + (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )
,

CI = 2ρ0
µ− (1− xa)(q̃a − q)− (1− xv)(q̃v − 1 + q)

(−∆− 2µ+ T )(∆− 2µ+ T )
.

(4)

(5)

(6)

How good is the above approximation using the linearized dynamics?
Theory implies that the linear approximation is good in a neighborhood
of the steady state, for small values of ρa0 and ρv0. In Figure 1 we depict,
for comparison, the trajectories of ρa and ρv numerically calculated from
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Figure 1: Left panel: ρa as a function of time, actual solution and lin-
earized, for h = 0.2 and h = 0.8. Right panel: ρv as a function of time,
actual solution and linearized, for h = 0.2 and h = 0.8. The other parame-
ters are set at µ = 1, xa = 0.7, xv = 0.9, ρa0 = ρv0 = 0.5.

the original nonlinear system and the linearized approximation. We use on
purpose an extremely large value of the initial conditions: ρa0 = ρv0 = 0.5
(namely 50% of the population is infected at the beginning). We can see
from the graphs that the curves are very similar and close to each other
even in this extreme case, and for a large range of values of homophily h.
This suggests that for the simple SIS model that we study, the qualitative
behavior of the linear approximation is very close to the actual solution.

2.2 Vaccination choices

In the second step of our analysis, we endogenize vaccination choices. We
assume that agents take vaccination decisions ex-ante, before an epidemic
actually takes place, and cannot update their decision during the diffusion.
This mimics well diseases, like seasonal flu, for which the vaccine takes a few
days before it is effective, and the disease spreads rapidly among the pop-
ulation. Agents take the decision considering the trade-off between paying
some fixed cost for vaccinating or incurring the risk of getting infected, thus
paying with some probability a cost associated with health.17

Vaccination costs For the reasons discussed in the introduction, we
do not aim to microfound the discrepancy in the evaluation of vaccinations

17See, for example, Bricker and Justice (2019) and Greenberg et al. (2019) for a recent
analysis of the anti–vaxxers arguments: Those are mostly based on conspiracy theories
that attribute hidden costs to the vaccination practice and not so much on minimizing
the effects of getting infected. Our model would not change dramatically if we attribute
the difference in perception on the costs of becoming sick, but we stick to the first inter-
pretation because it makes the computations cleaner.
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costs between vaxxers and anti-vaxxers. Hence, with a descriptive spirit, we
adopt the assumption that anti-vaxxers have a cost larger than vaxxers of a
uniform amount d. To be precise, we assume that, for vaxxers, vaccination
costs are cv ∼ U [0, 1], whereas for anti-vaxxers ca ∼ U [d, 1 + d].

Infection risks Let us denote by σi(xa, xv, q, h) the function of the
parameters indicating the expected welfare cost of infection for an agent in
group i, or equivalently her estimation of the risk from non being vaccinated.
Given the distributional assumption on the cost made above, it follows that
the fraction of people vaccinating in each group is equal to the perceived
welfare loss from the risk of infection. That is, in equilibrium, xa, xv satisfy:

xa = max{σa(xa, xv, q, h)− d, 0},
xv = σv(xa, xv, q, h).

(7)

(8)

The functional form of σ can be specified in different ways, according to
how agents measure the risk of infection. Some of our results depend only on
general assumptions on the behavior of σ, while others need an analytical
specification. First we discuss the general assumption we maintain and,
subsequently, we present two examples of functional forms that we will use
throughout the paper.

We adopt the following high-level assumption:

Assumption 1. Agents perceive a larger risk of infection if they have less
vaccinated neighbors.

What does Assumption 1 imply for the functional form of σi? Our mean
field dynamics for social contacts implies that the fraction of vaccinated
neighbors an agent in group imeets is q̃ixi+(1−q̃i)xj . Following Assumption
1, σi should increase whenever this quantity increases. This implies the more
concrete conditions:

i) σi is bounded, non-negative, and differentiable;

ii) σi is decreasing in xi and xj and σi(1, 1, q, h) = 0 (positive externality
of vaccination);

iii) if xi > xj , then σi is increasing in h, otherwise is decreasing in h
(homophily favors the more vaccinated group);

iv) if xa > xv, then σi is increasing in q (negative externality of anti–
vaxxers).
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Depending on the specific application, group a in this model can capture
two types of people: complete vaccine skeptical, who never vaccinate, or
vaccine hesitant, who hold a higher estimation of costs, but might be willing
to vaccinate anyway. The first situation can be captured in the case in which
d is large enough so that in equilibrium no anti–vaxxer wants to vaccinate,
that is xa = 0. Let us call d a threshold for d such that if d > d no anti–
vaxxers want the vaccine. Such d always exists, provided σa is bounded. In
the main text we focus on such equilibrium with extreme anti–vaxxers, that
allows the sharper analytical characterizations. We defer to Appendix B the
discussion of the case of a milder bias such that d < d, that is the case of
interior equilibria for anti–vaxxers (vaccine hesitancy). So, throughout the
main text of the paper, we are going to maintain the following assumption:

Assumption 2 (Extreme anti–vaxxers). d > d.

2.3 Examples

Two assumptions on σ that satisfy the above assumptions, and balance
simplicity and intuitive appeal are: σ is proportional to the number of non-
vaccinated; and σ proportional to the cumulative infection. Our results until
we endogenize group structure are general and do not depend on the func-
tional form chosen for σ. However, in the endogenous group case (Section
5) we focus on the two possibilities discussed here.

Risk of infection proportional to non-vaccinated (In the following,
NV−risk). In this case we assume that agents think about the risk of
infection using a simple heuristic: they estimate it as being proportional
to the fraction of non-vaccinated people that they meet. Agents multiply
this fraction of non-vaccinated people by a factor k > 0, that represents the
perceived damage from the disease, which is the same for the two groups.
Thus:

σv = k[q̃v(1− xv) + (1− q̃v)(1− xa)] , (9)

and similarly:

σa = k[q̃a(1− xa) + (1− q̃a)(1− xv)] , (10)

The big advantage of this form is that we can easily solve for the fraction
of vaccinated, obtaining:

xa = 0 ,

xv =
k

(h− 1)kq + k + 1
, (11)
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provided d < 1/k so that xv 6= 0.18

Risk of infection measured by cumulative infection (in the follow-
ing we abbreviate with CI−risk) Another possibility is that agents evaluate
the risk of infection using the cumulative infection in their respective group.
In this case:

σa = CIa,

σv = CIv.

(12)

(13)

Since this is the measure of the aggregate cost of infection, this example
can capture a situation in which agents’ assessment of the risk derives from
the signals dispensed by a central authority. We can think about agents that
do not independently collect and evaluate information, but instead delegate
to the suggestions coming from the central authority the evaluation of the
risk level. Since the central authority cares about the cumulative infection,
so do the agents in turn.

2.4 Endogenous groups

In the third step of our analysis, we model how the shares of anti-vaxxers, q,
is determined. In the real world, this decision does not seem to be updated
frequently, and can be considered as fixed during a single flu season. So, in
the model, we assume that this decision is taken before actual vaccination
choices, which are in turn taken before the epidemic eventually starts. Our
aim here is to offer a simple and flexible theory of the diffusion of opinions
to be integrated into our main epidemic model. The empirical observations
that important drivers of vaccination opinions are peer effects and cultural
pressure leads us to discard purely rational models, where the decision of not
vaccinating descends only from strategic considerations. Given the complex
pattern of psychological effects at play, we opt for a simple reduced-form
model capturing the main trade-offs. In particular, we are going to assume
the diffusion of traits in the population to be driven by expected advantages:
the payoff advantage that individuals in each group estimate to have with
respect to individuals in the other group. This is made precise in what
follows.

Socialization payoffs as expected advantage Consider an individual
in group a. Define the socialization payoff for group a, ∆Ua, as the Expected

18This is possible if hk2+k
hkq−kq+k+1

< d < 1
k

and either k < 1 or(
1 < k < 1

2

(
1 +
√

5
)
∧ 0 < q < −k2+k+1

k
∧ 0 < h < −k2−kq+k+1

k3−kq

)
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advantage individual a estimates to have with respect to individuals in group
v. Specifically:

∆Ua = Uaa − Uav,
Uaa = −Eac [(c+ d)1σa−d>c + σa1σa−d≤c] ,

Uav = −Eac [(c+ d)1σv>c + σv1σv≤c] ,

(14)

(15)

(16)

where Uaa is the payoff of individuals with trait a evaluated by an individual
with trait a, while Uav is the payoff of individuals with trait v evaluated by
individuals with trait a.

The socialization payoff ∆Uv is defined analogously:

∆Uv = Uvv − Uva,
Uvv = −Evc [c1σv>c + σv1σv≤c] ,

Uva = −Evc [c1σa−d>c + σa1σa−d≤c] .

(17)

(18)

(19)

Agents in each group perceive a differential in expected utilities from
being of their own group as opposed to being of the other group. Note that,
apart from the bias d, agents correctly evaluate all other quantities, including
the risks from the disease of the two groups, σv and σa. Indeed, even if both
groups evaluate the choice of the other group as suboptimal, this perceived
difference can be negative for anti–vaxxers, because they understand that
vaxxers have less chances of getting infected.

Under Assumption 2 (d > d so that (xa)∗ = 0), integration yields:

∆Ua = σv − σa + dσv − 1

2
(σv)2,

∆Uv = σa − σv +
1

2
(σv)2.

(20)

(21)

To understand how the socialization payoffs are affected by infection,
first notice that the risk of infection in the own group decreases the payoff,
whereas the risk of infection in the other increases it. This captures the fact
that, ceteris paribus, high infection is undesirable.

To clarify the definition of socialization payoffs, consider Figure 2. The
black line is the disutility of agents in groups a, as perceived by agents in
group a, as a function of the cost c. As a consequence of Assumption 2, it is
constant and it does not depend on c because, in the case we are focusing
on, no agent in group a vaccinates19. The grey area below this curve is then

19In Appendix B.1 we depict the same graph in the case in which Assumption 2 does
not hold, namely (xa)∗ > 0
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Uaa. Consider now the red line that represents the disutility of agents in
group v as perceived by agents in group a. In particular, agents in group v
have a different perception of costs with respect to agents in group a, and
so take different choices. In particular, they vaccinate in the [0, σv] interval,
whereas in the [σv, 1] interval they do not vaccinate and incur a risk of
infection. Note, however, that this is the evaluation from the perspective
of agents in group a, and thus the cost of vaccination is c + d instead of c.
Hence Uav is the area below the red curve. The difference ∆Ua is given by
the red area minus the blue area. Uvv and Uvv are computed accordingly.

cost c

disutility

d

σa

1σv

σv Disutility of v as perceived by a

Disutility of a as perceived by a

Figure 2: Composition of ∆Ua. The graph represents the disutility incurred
by an individual as a function of its cost c. ∆Ua is the red area minus the
blue area.

We now consider the population dynamics and, we make the following
assumption:

Assumption 3. Given an α ∈ R, the level of q increases when qα∆Ua >
(1− q)α∆Uv and it decreases when qα∆Ua < (1− q)α∆Uv.

Clearly, the implication of the previous assumption is that the resting
points of the dynamics are such that qα∆Ua = (1−q)α∆Uv, but stability has
to be addressed. The simplest example of dynamics satisfying Assumption
3 is:

q̇ = q(1− q)[qα∆Ua − (1− q)α∆Uv] ,

but we allow also for any non linear generalization.
The dynamics obtained from Assumption 3 generalizes the standard

workhorse model in cultural transmission, the one by Bisin and Verdier
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(2001), in two ways: (i) endogenizing the socialization payoffs and (ii) in-
troducing a parameter α regulating the stickiness agents have in changing
their identity via social learning. Indeed, at the limit α → ∞, q̇ = 0 and
types are fixed. Note also that α regulates the strength of cultural sub-
stitution, a phenomenon often observed in cultural transmission settings:
the tendency of members of minorities to preserve their culture by exerting
larger effort to spread their trait.20 Thus, we are able to encompass different
types of social dynamics. (i) If α = 0, this is a standard replicator dynamics
(see e.g. Weibull, 1997). (ii) If α < 0, the model displays cultural substitu-
tion, as most standard cultural transmission models. Moreover, the more α
is negative, the more there is substitution. In particular, if α = −1 the dy-
namics has the same steady state and stability properties as the dynamics of
Bisin and Verdier (2001).21 (iii) If α > 0, the model displays cultural com-
plementarity, so that the smaller the minority the less the minority survives.
Note that cultural complementarity is increasing in α.

Note that the environment of social influence is not only shaped by
physical contacts and it is not the same of the epidemic diffusion of the
actual disease (because in the real world many contacts are online and are
channeled by social media). Hence, any policy on h can have a limited effect
on it, because for us h is a restriction on the physical meeting opportunities.
As a consequence, h does not appear explicitly in Assumption 3.

3 The Epidemic

In this section we start analyzing the pure epidemic part of the model,
taking the vaccination rates xa and xv, and the share of anti–vaxxers q as
exogenous. Remember that in this case the only difference between the two
groups is that xa < xv.

Which group has more infected agents throughout the epidemic? An
immediate calculation using expressions (4) and (5) yields that CIa ≥ CIv

or, more in general, the largest infection is in the group with the smallest
fraction of vaccinated agents.

In particular, the evaluation of which group is better off in terms of
infections is independent of homophily. However, the levels of contagion
do depend on homophily, as the following result shows, which is obtained

20See Bisin and Verdier (2001, 2011).
21To be precise, the model by Bisin and Verdier (2001) refers to intergenerational trans-

mission. In Appendix A we show how a similar equation can be recovered in a context of
intragenerational cultural transmission

17



applying definitions from the expressions in (3) and taking derivatives.

Proposition 2 (Effect of h and qa). Under exogenous vaccination choices:

a) CI and CIa are increasing in h; CIv is decreasing in h;

b) CI, CIa and CIv are decreasing in xv and xa;

c) CI, CIa and CIv are increasing in q.

The effect of vaccination rates on CI is the expected one: more vaccinated
agents mean lower infection levels. Similarly, an increase in the number of
anti-vaxxers q means an increase in the number of non-vaccinated agents,
so for an analogous reason it increases infections in all groups.

Note first that homophily h has a redistributive effect: it protects the
group with more vaccinated and, in our case, group v. As members of
group v are less likely to meet members of group a, their risk of infection
decreases, so (since so far we maintain xv exogenously fixed) their infection
level decreases. The symmetric happens for members of group v.

However, homophily also has a cumulative effect, increasing the number
of total infections, CI. The intuition behind this is that homophily increases
the time that the epidemic takes to go back to the zero steady state.22

To clarify this point, we consider as a measure of convergence time the
magnitude of the leading eigenvalue, which in this case is the one with the
smallest absolute value. This is because the solution of our linear system is
a linear combination of exponential terms whose coefficients are the eigen-
values (which are negative by stability). Hence, when t is large, the domi-
nant term is the one containing the eigenvalue which has smallest absolute
value.23

22This is common in dynamic problems: Golub and Jackson (2012) find a similar effect
in a learning setting.

23We should be careful, though, because this is true non–generically outside of the
eigendirection of the second eigenvector. Indeed, in our case the eigenvectors are:

e1 =

(
− (1− xv) q̃a + (xa − 1) q̃a + ∆

2 (1− xv) (1− q̃a)
, 1

)
,

and

e2 =

(
− (1− xv) q̃a − (xa − 1) q̃a + ∆

2 (1− xv) (1− q̃a)
, 1

)
.

So, we can see that the first eigendirection does not intersect the first quadrant, while
the second does. Hence, we should remember that the first eigenvalue is a measure of the
speed of convergence only generically, outside of the eigendirection identified above.
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Proposition 3. Under exogenous vaccination choices, consider a pertur-
bation around the stable steady state (0, 0). The time of convergence (as
measured by the leading eigenvalue) back to (0, 0) is increasing in h.

This result shows that homophily, by making the society more segre-
gated, makes the convergence to the zero infection benchmark slower once
an outbreak occurs. This is obtained by analyzing the eigenvalues of the
Jacobian matrix, computed in the steady state. All results are obtained
analytically (see Appendix D), and the resulting eigenvalues are decreasing
in absolute value in h.

If we look at the effects of other parameters, we have that the eigenvalues
are increasing in absolute value in both xa and xv. This is because a larger
number of vaccinated agents means a smaller space for infection to diffuse.
Finally, since xa < xv, then the smallest eigenvalue is decreasing (in absolute
value) in qa, while the largest eigenvalue is increasing. Since the long-run
dynamics (i.e. asymptotic convergence) depends on the smallest eigenvalue,
this means that the dynamics is asymptotically slower the larger the fraction
of the population with less vaccinated agents.

To sum up, Propositions 1, 2 and 3 provide clear implications that should
be taken into account when considering policies that affect the level of ho-
mophily h in the society. Any increase in segregation between vaxxers and
anti–vaxxers may induce the disease to become endemic. Additionally, a
larger h, if there is a temporary outbreak, will slow down the recovery
time, and in some cases (i.e. when the outbreak does not start only among
vaxxers), it may increase the cumulative infection caused by the disease.

4 Vaccination choices

Vaccination rates adjust as homophily varies, because homophily changes
the risk perceived by agents. However, under Assumption 2 of extreme
anti-vaxxers, the only relevant variation is in the vaxxer group. But, as h
increases, the group with more vaccinated people (the vaxxers) is more pro-
tected against infection, so the perceived risk σv decreases, and as a result,
a smaller fraction of vaxxers is vaccinated: xv is decreasing in h. A smaller
fraction of vaccinated agents, in turn, triggers even larger infection levels.
This mechanism works in addition to the standard diffusion mechanism dis-
cussed in the previous section, so that an increase in homophily increases
infection even more. We can formalize this in the following proposition.
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Proposition 4. If d > d and vaccination choices are endogenous, the cu-
mulative infection is increasing in homophily h. Moreover, it is increasing
more than if vaccination rates were exogenous.

The proof follows immediately from the total derivative:

dCI

dh
=
∂CI

∂h
+
∂CI

∂xv
dxv

dh
,

and observing that Assumption 1 implies:

dxv

dh
= −

∂σv

∂h

1− ∂σv

∂xv

< 0,

so that:
dCI

dh
=
∂CI

∂h︸ ︷︷ ︸
>0

+
∂CI

∂xv
dxv

dh︸ ︷︷ ︸
>0

.

Indeed, the derivative is larger than the one for the case of exogenous
vaccination choices, as it can be evinced by the fact that both the addends
in the expression above are positive.

Another apparently paradoxical phenomenon that is the consequence of
endogenous vaccination choices is that not only homophily can be detrimen-
tal to total cumulative infection, but also to infection among vaxxers alone.
We show this under risk proportional to non-vaccinated (NV−risk, in the
terminology of Section 2.3). The mechanism works through the fact that,
despite CIv being decreasing in h, as explained above, the vaccination rate
among vaxxers xv is decreasing when h increases, because the perceived
risk is smaller. This creates a counterbalancing effect, and if risk is suf-
ficiently high (as parameterized by k in the NV−risk case), the effect is
strong enough to make CIv increasing.

Proposition 5. Under NV −risk, and Assumption 2, there exists a k such
that, if k > k, CIv is increasing in homophily h.

So an increase in h cannot be considered unanimously beneficial neither
from a planner concerned with total infection, nor from a planner concerned
with just infection among vaxxers.

What happens if anti–vaxxers are not too extreme, that is d < d? This
introduces a new mechanism, because by Assumption 1, as homophily in-
creases, anti–vaxxers perceive more infection in their neighborhood, and so
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increase their equilibrium vaccination rate. This creates a competing effect,
and the balance of the two is a priori unclear. In Appendix B we show that
in the two parametric cases introduced in Section 2.3, the mechanism carries
through also if d < d, at least for a small level of homophily.

5 Endogenous groups

In this section the additional trade-offs generated by the cultural dynamics
force us to use a parametric form for σ. We show the results under the two
parametric forms introduced in Section 2.3

We start by showing that only the case in which α < 0 is of some interest
for the analysis, because in the other cases the population become all of one
type, with unique stable steady state either q∗ = 0 or q∗ = 1. So, α < 0
characterizes the conditions under which there exists an interior fraction of
anti–vaxxers in the population.

Proposition 6. Under Assumptions 2 and 3, endogenous vaccination choices,
and under both NV−risk and CI−risk:

i) if α ≥ 0 there are no interior stable steady states of the dynamics for q;

ii) if α < 0, there exists a threshold dq such that if d > dq there exists a
unique stable steady state of the cultural dynamics q∗ ∈ (0, 1).

Again, the proof of this result is obtained with standard methods, ap-
plying the implicit function theorem to the condition from Assumption 3.

The reason for the condition above on d is that if ∆Ua = 0, then anti–
vaxxers exert no effort, and the only steady states will be with q = 0. This
happens if, for example, the bias d is very high, or homophily is very high,
so that the increased infection risk from being an anti-vaxxer (the blue area
in Figure 2) is so large that no one wants to be an anti-vaxxer. This is of
course an uninteresting case, so from now on we are going to assume the
following:

Assumption 4 (Interiority conditions). d > max{dq, d}.

It is clear that Assumption 4 implies Assumption 2. Note also that under
the interiority condition, (xv)∗ ∈ (0, 1).

5.1 Impact of homophily

In this section we explore what is the impact of homophily on infection once
we take into account the adjustment in the fraction of anti–vaxxers.
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It is not possible anymore to deduce this behavior only from Assumption
1, because there are competing forces. The steady state level of q depends on
the balance of socialization payoffs, and socialization payoffs are decreasing
with the level of infection in the own group and increasing in the level of
infection in the other group. A variation in q raises infection in both areas,
so it is not possible to deduce the direction of the effect without any reference
to the specific form σ takes. For these reason in this section we are giving
result for the two possible instances of risk evaluations σ detailed in Section
2.3.

The key observation is in the next proposition: homophily increases risk
for anti–vaxxers, so in equilibrium decreases their number.

Proposition 7. Under endogenous groups and Assumptions 3 and 4, under
both NV−risk, CI−risk, and endogenous vaccination choices and groups,
the share q of anti–vaxxers is decreasing in homophily h.

To understand this result, we need to understand the effects of h and q
on socialization payoffs. The direct effect of homophily on the socialization
payoffs under our assumptions is unambiguous: since homophily increases
risk for anti–vaxxers and decreases it for vaxxers, it follows that an increase
in h makes the socialization payoff larger for vaxxers and smaller for anti–
vaxxers. The impact of q is a priori ambiguous, since it increases the risk
for both groups, hence the need for specifying the functional form of σ. In
Appendix 2 we give a more detailed account of the behavior of socialization
payoffs as a function of q, that is the degree of cultural substitution displayed
in the model.

Now we have the elements to understand the mechanics of Proposition
7. The intuition for the result is as follows: homophily increases the effort
of vaxxers and decreases the effort of anti–vaxxers. Now the cultural substi-
tution effect tends to move effort in favor of vaxxers as q increases. If this
is the dominant effect, then as h increases we need a decrease in q to be in
the steady state. If the condition is violated, we get only a corner solution
in which anti-vaxxers disappear.

Now that we have all the elements in place, we can ask what is the
global effect of homophily, through the cultural channel, the adjustment
of vaccination rates, and the disease dynamics. In addition to the direct
effects discussed in the previous paragraphs, the direct effect of homophily
on group size has to be taken into account. A larger fraction of anti–vaxxers
increases infection. In turn, the size of the anti-vaxxer group increases both
cumulative infection and the number of vaccinated, and the two variations
have countervailing effects.
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Proposition 8. Under endogenous groups and Assumptions 3 and 4, under
both NV−risk, CI−risk, and endogenous vaccination choices and groups, if
|α| is sufficiently large, cumulative infection is increasing in homophily h.

If α is large in magnitude, then the society is rigid in its opinions, and
the effects are qualitatively the same that we would have if types and vacci-
nation choices were fixed (Proposition 2). If instead α is small in magnitude,
then the reaction of q∗ to a change in h is large, and this might revert the
effect: cumulative infection might then be decreasing in homophily. In this
respect, how agents are subjected to social influence can revert the effects of
a variation in homophily. Figure 3 shows this effect for two values of α < 0.
These are also compared with what would happen, with the same param-
eters, under the assumptions of Proposition 2 (all choices are exogenous)
and Proposition 9 (only vaccination choices are endogenous, but groups are
fixed). The figure shows that, only when α is negative and small in abso-
lute value, the cumulative infection decreases in homophily. In all the other
cases, an raise in homophily can increase the cumulative infection at various
degrees.

Figure 3: Cumulative infection in the three models under NV−risk. When-
ever exogenous, q, and xv are set using the mean values in the range. The
other parameters are set at k = 1, d = 1, µ = 2, ρa0 = ρv0 = 0.2.

The intuition for the different marginal effects of h on cumulative infec-
tion seems to lie on the marginal effects on the speed of the dynamics, via
the first eigenvalue (see Proposition 3), as Figure 4 illustrates: the cases in
which cumulative infection increases with h are those in which the leading
eigenvalue is decreasing in magnitude, and vice versa.
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Figure 4: Left panel: Cumulative infection as function of homophily if
d > d ((xa)∗ = 0), in the proportional risk of infection case. The other
parameters are set at k = 1, d = 0.6, µ = 0.7, ρa0 = ρv0 = 0.1. Right panel:
corresponding leading eigenvalue of the dynamical system as a function of
h.

6 Conclusion

The problem of vaccine skepticism is a complex one, that requires analysis
from multiple angles, e.g., psychological, medical, and social. The results
of this paper might be relevant for a policy maker interested in minimizing
infection in a world with vaxxers and anti–vaxxers, having available a policy
inducing some degree of segregation, or homophily, h. The key observation
is that reducing contact with anti–vaxxers may be counterproductive both
from the perspective of vaxxers and of the society as a whole because it
slows down the dynamics of the disease to its steady state, if there is an
outbreak. Homophily may actually increase the duration of the outbreaks
and, depending on the time preferences of the planner, this might crucially
change the impact of the policy. Further, if belonging to the vaxxers or anti–
vaxxers group is endogenous, the intensity of cultural substitution is key in
determining the impact of the policy. Our results suggest that the study of
policy responses to the spread of vaccine-hesitant sentiment would benefit
from trying to pin down more precisely the intensity of these mechanisms.
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Appendices

A A simple model of intragenerational cultural
transmission

In this appendix we illustrate how equation (3) with α = −1 can arise from
a simple adaptation of the Bisin and Verdier (2001) model to an intragen-
erational context.

At each time period, each agent meets another agent selected randomly.
When they meet, they are assigned two roles: the influencer and the target.
The incentive for the influencer is based only on other–regarding preferences,
for two reasons: it is consistent with some survey evidence (Kümpel et al.
2015, Walsh et al. 2004), and in this economy every agent has negligible
impact on the spread of the disease, so socialization effort cannot be driven
by the desire to minimize the probability of infection, or similar motivations.
The timing of the model is as follows.

• Before the matching, agents choose a proselitism effort level τat , τvt ;

• When 2 agents meet, if they share the same cultural trait nothing
happens. Otherwise, one is selected at random with probability 1

2 to
exert the effort and try to have the other change cultural trait.

The fraction of cultural types evolves according to:

qat+1 = qat P
aa
t + (1− qat )P vat , (22)

where the transition rate P aat is the probabilities that an agent a is matched
with another agent who, next period, results to be of type a and P vat is
the probabilities that an agent v is matched with another agent who, next
period, results to be of type a. These probabilities are determined by efforts
according to the following rules:

P aat = q̃at + (1− q̃at )
1

2
+ (1− q̃at )

1

2
(1− τvt ),

P vat =
1

2
(1− q̃at )τvt ,

(23)

(24)

(P vvt and P avt are defined similarly) which yield the following discrete
time dynamics:

∆qat = qat (1− qat )(1− h)∆τt, (25)
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where ∆τt := τat − τvt .
Effort has a psychological cost, which, as in Bisin and Verdier (2001),

we assume quadratic. Hence, agents at the beginning of each period (before
the matching happens) solve the following problem:

max
τat

−(τat )2

2︸ ︷︷ ︸
cost of effort

+ qat U
aa
t + (1− qat )

1

2
(τat U

aa
t + (1− τat )Uavt )︸ ︷︷ ︸

expected social payoff

, (26)

which yields as a solution:

τat = (1− qat ) (Uaat − Uavt )︸ ︷︷ ︸
”cultural intolerance”

,

τvt = (1− qvt )(Uvvt − Uvat ).

(27)

(28)

Hence, the dynamics implied by our assumptions is:

∆qat = qat (1− qat )((1− qat )∆Ua − qvt ∆Uv). (29)

The steady state of this dynamics is determined by the equation:

(1− qat )∆Ua = qvt ∆Uv, (30)

which is precisely the steady state implied by (3) when α = −1.

B Mild anti-vaxxers

In this section we explore some generalizations of the results of the main
text to the case in which d < d, i.e., the bias of the a group is not so large
so that some “anti–vaxxers” do vaccinate in equilibrium: (xa)∗ > 0. Hence,
this case can be taken as a description of vaccine hesitancy rather than total
refusal.

In this case, solving we obtain:

xa = 1− 1 + dqa

1 + k
− d(1− qa)

1 + hk
,

xv = 1− 1 + dqa

1 + k
+

dqa

1 + hk
. (31)

This is true provided d < min
{

1
k2
, k
k+1

}
. We use this interiority condi-

tion as a maintained assumption for the remainder of this section.
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First of all, we note that (i) xv > xa - since vaxxers perceive a lower
vaccination costs than anti-vaxxers; (ii) xa is increasing in h whereas xv is
decreasing in h - since a higher homophily makes vaxxers more in contact
with agents who are less susceptible than anti-vaxxers and, as a consequence,
(xv − xa) is decreasing in h; (iii) xa and xv are increasing in qa - since the
higher the share of anti-vaxxers, the more agents are in touch with other
subjects at risk of infection; (iv) the total number of vaccinated people is
qaxa + (1 − qa)xv = k−dqa

1+k , it is independent of h, but decreasing in qa -
this is due to a Simpson paradoxical effect: both groups vaccinate more, but
since anti-vaxxers increase, in the aggregate vaccination decreases.

In the case of proportional infection risk it is possible to characterize
analytically the behavior of the cumulative infection, as in the following
proposition.

Proposition 9. Under NV−risk and endogenous vaccination choices, if
d < d, then CI is increasing in h, though less than in the case in which
vaccination rates are exogenous.

So, in this case the adjustment of vaccination rates mitigates the per-
verse effect of homophily, though not in a way strong enough to offset it
completely.

In case of risk proportional to cumulative infection, we can characterize
the behavior analytically for h close to 0.

Proposition 10. Under CI−risk and endogenous vaccination choices, if
d < d, there exists a h such that for h < h CI is increasing in h, and is
more increasing than in the case in which vaccination rates are exogenous.

In other words, in this case the adjustment of vaccination rates exacer-
bates the perverse effect of homophily.

B.1 Endogenous groups

Integrating, we find that the socialization payoffs in this case are:

∆Ua =
1

2
(xv − xa)2 − (d− (xv − xa)) (1− xv) ,

∆Uv =
1

2
(xv − xa)2 + (d− (xv − xa)) (1− xa) .

(32)

(33)

To understand the socialization payoffs in this case consider Figure 5.
The black line is the disutility of agents in group a, as a function of the
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cost c, as perceived by agents in group a. The shape of this line mirrors
the fact that an agent in group a undertakes vaccination only if her costs
are in the [0, kσa − d] interval, in which a agents incur in a disutility c+ d.
If c > kσa − d, a agents do not vaccinate, and the disutility is the risk
of infection, which is kσa. The grey area below this curve is then Uaa.
Consider now the red line. This represents the disutility of agents in group
v as perceived by agents in group a. In particular, agents in group v have a
different perception of costs with respect to agents in group a, and so take
different choices. In particular, they vaccinate in the [0, kσv] interval, while
if they are in the [kσv, 1] interval they do not vaccinate and incur a risk of
infection. Note, however, that this is the evaluation from the perspective
of agents in group a, and thus the cost of vaccination is c + d instead of c.
Hence Uav is the area below the red curve. The difference ∆Ua is given by
the red area minus the blue area. Uvv and Uvv are computed accordingly.

cost c

disutility

d

kσa

1σa − d σv

σv Disutility of v as perceived by a

Disutility of a as perceived by a

Figure 5: Composition of ∆Ua. The graph represents the disutility incurred
by an individual as a function of its cost c. ∆Ua is the red area minus the
blue area.

First, we again prove an existence result.

Proposition 11. If α < 0, there exists an interior steady state q∗ ,of the
cultural dynamics provided d is large enough, that is: 2hk(hk+1)

k+1 < d.
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The condition on d is the condition under which anti-vaxxers exert
enough effort and ∆Ua is always positive. Otherwise, we get only a steady
state with q = 0. For this to be compatible with xa and xv being interior,
we need d < min{ 1

k ,
1

k(1+k)}, hence we need also 2h(1 + hk) < 1
k2

. So, in
addition to k high enough we also need h small enough. We are going to
assume this condition in the following. Figure 6 shows the regions in the
h–d plane for which the interiority conditions are satisfied, depending on the
value of k.

k=0.5

k=1

k=2

0.0 0.1 0.2 0.3 0.4 0.5

0.0

0.2

0.4

0.6

0.8

h

d

Figure 6: Region of parameters where all endogenous variables are interior.
µ is fixed to 1.

We are now interested in the effect of an increase in homophily on q∗.
Figure 7 shows, on the basis of numerical examples with α = −1

2 , α = −1,
and α = −3, that homophily has a negative effect on q∗ and that this result
seems to extend to any α < 0. Analytical tractability, however, is obtained
only for values of h that are small, as would be the effect of a policy that
limits contacts between vaxxers and anti-vaxxers only in a few of the daily
activities (e.g. only in schools).

We can actually prove it analytically for small values of h.

Proposition 12. Under the interiority conditions, and if α < 0 there exists
a h such that, for h < h, the unique interior steady state q∗, which is also
stable, is decreasing in h.
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q

Figure 7: q as a function of h. d = 0.5, k = 1, µ = 1. The range of h is
restricted as prescribed by the interiority conditions.

The intuition is that a larger h magnifies the negative effects of being
anti-vaxxers in terms of infection, relatively to vaxxers. This is internalized
in the cultural dynamics, via the ∆Us. This long run effect of h on anti-
vaxxers share is one of the few positive effects of segregating policies.
As we have done in the preliminary model with exogenous choices, we can
analyze the effects of homophily on the cumulative infection, when the initial
perturbation is symmetric across both groups (see Proposition 2, summa-
rized in the third column of Table 1). We find that the effects depend on
the magnitude of α, the parameter regulating how agents are rigid/prone
towards social influence.

Proposition 13. Consider the model with endogenous q, α < 0, and interi-
ority conditions. Consider an outbreak affecting both groups symmetrically,
starting from the unique stable steady state and h = 0. Then, there exists a
threshold α such that:

• if α < α, CI is increasing in h
(

dCI
dh

∣∣
h=0

> 0
)
;

• if α > α, CI is decreasing in h
(

dCI
dh

∣∣
h=0

< 0
)
.

Numerical simulations reveal a picture very similar to the one described
in the main text. Specifically, the magnitude of α is crucial to determine
the effect of an increase in homophily, as illustrated in Figure 8. Again, the
main mechanism through which homophily acts is via the increased length
of the outbreak, as measured by the leading eigenvalue, as shown in the
same figure. Figure 9 compares the behavior of cumulative infection in the
three different models.
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Figure 8: Left panel: Cumulative infection as function of homophily in
the interior equilibrium. The other parameters are set at k = 2, d = 0.5,
µ = 1, ρa0 = ρv0 = 0.1. Right panel: corresponding leading eigenvalue of
dynamical system as a function of h.

Figure 9: Cumulative infection in the three models. Whenever exogenous,
q, and xv are set using the median value of h = 0.1. The other parameters
are set at k = 2, d = 0.5, µ = 1, ρa0 = ρv0 = 0.1.
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C Other extensions

C.1 Asymmetric initial infections

So far, we assumed that the initial seeds of the infection are selected at
random, independently of group identity. If the independence hypothesis is
relaxed, we might have a different fraction of initially infected in the two
groups. In this section we illustrate the role of the initial conditions in
determining the behavior of infection, generalizing the results in Section 3.

To illustrate the mechanics that regulates the share of agents that get
infected during the outbreak, let us consider three different types of initial
conditions: The epidemic starts (i) among vaxxers (ρv0 > 0 and ρa0 = 0),
(ii) among anti-vaxxers (ρv0 = 0 and ρa0 > 0), and (iii) in both groups
symmetrically (ρv0 = ρa0 > 0, the case explored in the main text). In the
following sections we are going to stick to the case in which ρa = ρv = ρ0.

The first result we present generalizes Proposition 2.

Proposition 14 (Who is better off?). The cumulative number of infected
agents is such that CIa ≥ CIv if and only if:

ρv0(1− xa)− ρa0(1− xv) + µ(ρa0 − ρv0) ≥ 0 (34)

The result simply follows from comparing the explicit expressions for
CIa and CIv (we derive it in Lemma 1 in the Appendix D). Inequality
(34) underlines the roles of the parameters in determining the welfare of the
groups. The left–hand side is increasing in xv and decreasing in xa: the
gap in vaccinations tends to penalize the less vaccinated group. Since the
cumulative infection is an intertemporal measure, the initial conditions also
concur in determining which group is better off: the difference is increasing
in ρa0 and decreasing in ρv0.24 µ regulates the importance of this effect in the
discrepancy of initial conditions: the larger µ, the shorter the epidemic, the
larger the importance of the initial conditions. In particular, we have:

i) if the outbreak starts among vaxxers, vaxxers have a larger cumulative
infection;

ii) if the outbreak starts among anti–vaxxers, anti–vaxxers have a larger
cumulative infection;

iii) if the outbreak starts symmetrically in both groups, the group with
less vaccinated (anti–vaxxers, under our assumptions) has the largest
cumulative infection.

24Because the stability assumptions imply −1 + xv + µ > 0 and −1 + xa + µ > 0.
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In particular, the evaluation of what group is better off in terms of
infections is independent of homophily. However, the levels of contagion do
depend on homophily, as the following result shows. It is obtained applying
definitions from (3) and taking derivatives.

Proposition 15 (Effect of h and qa).

a) CI and CIa are increasing (decreasing) in h if and only if CIa > CIv

(CIa < CIv); CIv is decreasing (increasing) in h if and only if CIa >
CIv;

b) CI, CIa and CIv are increasing (decreasing) in q if and only if CIa >
CIv (CIa < CIv).

In particular, the marginal effects of h and qa for different outbreak types
are those reported in Table 1.

If the outbreak is among· · ·
vaxxers anti–vaxxers symmetric: ρa0 = ρv0

the effect ∂CIa

∂h < 0, ∂CIv

∂h > 0, ∂CIa

∂h > 0, ∂CIv

∂h < 0, ∂CIa

∂h > 0, ∂CIv

∂h < 0,

of h is: ∂CI
∂h < 0 ∂CI

∂h > 0 ∂CI
∂h > 0

the effect ∂CIa

∂q < 0, ∂CIv

∂q < 0, ∂CIa

∂q > 0, ∂CIv

∂q > 0, ∂CIa

∂q > 0, ∂CIv

∂q > 0,

of qa is: ∂CI
∂q < 0 ∂CI

∂q > 0 ∂CI
∂q > 0

Table 1: Marginal effects of h and qa on CIa, CIv, and CI, when there is
an outbreak among vaxxers, anti–vaxxers, or symmetrically in both groups.

The previous results show how initial conditions and parameters con-
tribute to determining the effect of an increase in h. As anticipated in
the introduction, if the initial parameters are such that CIa = CIv, then
both the total infection, CI, and the group level ones, CIa and CIv, do
not depend on homophily. If instead, the initial parameters are such that
CIa 6= CIv, then homophily hurts the group with more infected, because
it causes the infection to spread to more members of the group and less
outside. Table 1 helps us understand the behavior in prototypical cases and
analyze whether a policy that increases h has the desired effect.

To better understand the mechanics, let us first focus on the effects of
homophily (first row of Table 1). First note that, if the outbreak happens
just in one of the two groups, homophily protects the group that is not
infected ex-ante. So, intuitively, the outbreak has the strongest effect in
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terms of infected agents in the group in which the outbreak has taken place.
The effect of homophily on the overall CI is however ambiguous and depends
on the initial condition.

Consider first the case in which the outbreak takes place among vaxxers.
Then, at the beginning, the infection takes over among the group with the
highest vaccination rate, since xv > xa. The higher the homophily h, the
more vaxxers interact with each other, and thus the more the infection
remains within the group that is more protected against it. For this reason,
the higher h, the less the CI. For the opposite reason, if the outbreak takes
place in the anti-vaxxers group, homophily makes infection stay more in the
less protected group, and CI increases.

So the crucial message is that a policy having the effect of increasing
h cannot be considered unanimously beneficial neither from a planner con-
cerned with total infection, nor from a planner concerned with just infection
among vaxxers.

To understand the role of qa on the CI (second row of Table 1), recall
that a higher q means a higher share of agents less protected against the
disease. Consider first the case in which the outbreak takes place in the
vaxxers group. Then, a higher q means that the number of infected agents,
which are in the v group, is lower. Thus, all CI measures are decreasing
in q. For the opposite reasoning, all CI measures are increasing in q if the
outbreak takes place in the anti-vaxxers group. If the outbreak is symmetric,
then the two forces mix. However, if q increases, the share of agents who are
not protected against the disease increases, and thus CI measures increase.

C.2 Time preferences

In this section we explore the implications of the degree of impatience of the
planner on the evaluation of the impact of homophily. Time preferences can
be crucial for the planner. As we have seen, for example, in the Covid19
epidemic, the planner, given a CI, may prefer not to have all infected agents
soon because of some capacity constraints of the health system.

For example, Figure 10 shows the time evolution of the infection of both
groups and the overall society in case of an outbreak among the vaxxers.
In this case, since the outbreak starts among the vaxxers, it is among this
group that infection is higher initially. In contrast, eventually infection
becomes larger among the anti–vaxxers, due to the lower vaccination levels.
The effects on cumulative infection depend on how the planner trades off
today and tomorrow infections: the more the planner is patient, the more
the infection among anti–vaxxers becomes prominent.
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Figure 10: CI as a function of time in case the outbreak starts among
vaxxers (ρa0 = 0). Here ρv0 = 0.1, xa = 0.3, xv = 0.9, q = 0.3, h = 0.5, µ = 1.

Moreover, since in our setting the impact of segregation policies depends
on the relative amount of infected agents in the two groups, as specified in
Result 2, in our context the time preference is also crucial for the evaluation
of the impact of homophily on the total cumulative infection.

Thus, we first define the discounted cumulative infection:
CIa :=

∫ ∞
0

e−βtρa(t)dt

CIv :=

∫ ∞
0

e−βtρv(t)dt

CI := qaCIa + (1− qa)CIv

(35)

where β > 0 is the discount rate. Analytically, things turn out to be very
simple, due to the exponential nature of the solutions, as the following ob-
servation lays out.

Proposition 16. Discounted cumulative infections are equivalent to cumu-
lative infections in a model with recovery rate µ′ = µ+ β.

This is not too surprising: µ is a measure of how fast the epidemic dies
out, and β is a measure of how fast the welfare loss dies out. The previous
result carries on even when, as we do in the following sections, choices on
vaccination and on types are made endogenous.

The impact can be made more precise if we stick to exogenous choices,
as it is done below.

Proposition 17. In the model with discounting:
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CIa ≥ CIv if and only if −ρa0(1−xv) +ρv0(1−xa) + (µ+β)(ρa0−ρv0) ≥ 0

The proof is immediate from the previous result and from Proposition
16. In details:

1. An increase in the degree of impatience β makes initial conditions
more important for the welfare evaluation. For example, without time
preferences, we may have that ρa0 < ρv0 but CIa > CIv, because the
difference in vaccinated agents dominates the difference in the initial
outbreak. However, if time preferences are introduced, or β gets larger,
a planner may evaluate that CIa < CIv because she is putting more
weight on the earlier moments of the epidemic.

2. An increase in the degree of impatience β can change the impact of
homophily, as illustrated in Figure 11. To understand this point, given
a population share q, there exists a β such that homophily does not
impact the CI (with time preferences). In this CI, groups get infected
at different rates over time. As we change β, the planner gives more
weight to the group getting infected earlier. As we have seen above,
homophily plays a role in this process, keeping the infection more into
each group. In Figure 11, we consider the case in which q = .3, so that
there are more vaxxers than anti-vaxxers, and vaxxers are also more
vaccinated. Thus, the more the planner is impatient, the more she is
satisfied by the fact that most agents (vaxxers) are less infected when
homophily increases.

Figure 11: Cumulative infection as a function of homophily for different
values of time preference. Here µ = 0.7, xa = 0.2, xv = 0.9, q = 0.3.
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D Proofs

Proof of Proposition 1

Proof. To analyze stability, we need to identify the values of parameters for
which the Jacobian matrix of the system is negative definite when calculated
in (0, 0). The matrix is:

J =

(
(1− xa) q̃a − µ (xa − 1) (q̃a − 1)

(xv − 1) (q̃v − 1) (1− xv) q̃v − µ

)
We can directly compute the eigenvalues, which are:

e1 = µ̂− µ
e2 = µ̂− µ−∆.

where µ̂ := 1
2 (T + ∆) ∈ [0, 1], T := q̃a(1 − xa) + q̃v(1 − xv), and ∆ :=√

T 2 − 4h(1− xa)(1− xv).
The eigenvalues are real and distinct because, given (x + y)2 > 4xy

whenever x 6= y, we get

∆2 = T 2 − 4h(1− xa)(1− xv) ≥ 4q̃a(1− xa)q̃v(1− xv)− 4h(1− xa)(1− xv)

Now q̃aq̃v = h2 + h(1− h) + (1− h)2q(1− q) ≥ h, so we conclude ∆2 > 0.
Since eigenvalues are all distinct, the matrix is diagonalizable, and it

is negative definite whenever the eigenvalues are negative. Inspecting the
expression, this happens whenever µ > µ̂.

For the proof of Propositions 2 and 15 we are going to need the following
lemma. For convenience, given the extensions of Appendix C, we state
the results for heterogeneous initial conditions ρa0, ρ

v
0. The baseline case

considered in the body of the paper is with ρa0 = ρv0 = ρ0.

Lemma 1. Let (ρa0, ρ
v
0) be the infected share for each group at the outbreak.

Then in the linearized approximation around the (0,0) steady state:

CIa =
2 [ρa0 (µ− (1− xv)q̃v) + ρv0 (1− xa) (1− q̃a)]

(T − 2µ−∆)(T − 2µ+ ∆)
;

CIv =
2 [ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a)]

(T − 2µ−∆)(T − 2µ+ ∆)
;

CI =
2 [ρa0 (µ+ (1− xv)(1− 2q̃v)) + ρv0 (µ+ (1− xa)(1− 2q̃a))]

(T − 2µ−∆)(T − 2µ+ ∆)
.

(36)

(37)

(38)
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Proof. The linearized dynamics is:

ḋρ(t) = Jdρ(t)

dρ(0) = ρ0

where ρ0 = (ρa0, ρ
v
0), that is:

ḋρ(t) = Mdρ(0)

dρ(0) = ρ0, M = etJ

and:

M11 =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xaq̃a + q̃a − µ+

1

2
(2µ− T )

)
+

1

2
∆ cosh

(
∆t

2

))
M12 =

1

∆
(1− xa) (1− q̃a) sinh

(
∆t

2

)
e

1
2
t(T−2µ)

M21 =
1

∆
(1− xv) (1− q̃v) sinh

(
∆t

2

)
e

1
2
t(T−2µ)

M22 =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xv q̃v + q̃v − µ+

1

2
(2µ− T )

)
+

1

2
∆ cosh

(
∆t

2

))
The cumulative infection in time in the two groups can be calculated

analytically by integration, since it is just a sum of exponential terms. In-
tegration yield, for CIv:

CIv =

∫ ∞
0

dρv(t)dt

=
2 (ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )
+

lim
t−>∞

e
1
2
t(T−2µ)

(
2∆ cosh

(
∆t

2

)
(ρa0 (xv − 1) (q̃v − 1) + ρv0 ((1− xv)q̃v + µ− T )) +

sinh

(
∆t

2

)(
ρv0
(
(T − 2µ) (2 (xv − 1) q̃v + T ) + ∆2

)
− 2ρa0(T − 2µ) (xv − 1) (q̃v − 1)

))
and the limit is zero if µ > µ̂ because the leading term is Exp

(
1
2 t(T − 2µ) + ∆

2

)
=

µ̂− µ. An analogous reasoning for CIa yields:

CIa =

∫ ∞
0

dρa(t)dt =
2 (ρa0 (µ− (1− xv)q̃v) + ρv0 (1− xa) (1− q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CIv =

∫ ∞
0

dρv(t)dt =
2 (ρa0 (1− xv) (1− q̃v) + ρv0 (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

(39)

(40)

38



The total CI in the population is CI = qaCIa + (1− qa)CIv

CI =
2

(−∆− 2µ+ T )(∆− 2µ+ T )
(qa (ρa0 (µ− (1− xv)q̃v) + ρv0 (1− xa) (1− q̃a)) +

(1− qa) (ρ0
a (1− xv) (1− q̃v) + ρ0

v (µ− (1− xa)q̃a)))

= ρa0
2 (qa (µ− (1− xv)q̃v) + (1− qa) (1− xv) (1− q̃v))

(−∆− 2µ+ T )(∆− 2µ+ T )
+

ρv0
2(qa (1− xa) (1− q̃a) + (1− qa) (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

If ρa0 = ρv0 = ρ0 (the case considered in the main part of the paper):

CIa = ρ0
2 ((µ− (1− xv)q̃v) + (1− xa) (1− q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CIv = ρ0
2 ((1− xv) (1− q̃v) + (µ− (1− xa)q̃a))

(−∆− 2µ+ T )(∆− 2µ+ T )

CI = 2ρ0
µ− (1− xa)(q̃a − q)− (1− xv)(q̃v − 1 + q)

(−∆− 2µ+ T )(∆− 2µ+ T )

(41)

(42)

(43)

Proofs for Propositions 2, 14 and 15

Proof. We develop the calculations for generic ρa0 and ρv0, that is the more
general case useful also for Proposition 14 and 15.

First, note that µ > µ̂ implies:

µ >1− xa > h(1− xa)
µ >1− xv > h(1− xv)

µ >
h(1− xa)

1− (1− h)q

µ >
h(1− xv)

1− hq

The expressions of the derivatives are:

39



∂CIa

∂h
=

(q − 1) (xa − 1) (µ+ xv − 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂qa
=

(h− 1) (xa − 1) (h (xv − 1) + µ) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂xa
=

((h− 1)q (xv − 1) + µ+ xv − 1) (µ(h(q − 1)− q) (ρa0 − ρv0)− hρa0 (xv − 1)− µρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIa

∂xv
=

(h− 1)(q − 1) (xa − 1) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂h
=

q (xv − 1) (xa + µ− 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂qa
=

(h− 1) (xv − 1) (h (xa − 1) + µ) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂xa
= − (h− 1)q (xv − 1) (hρa0 (µ+ µ(−q) + xv − 1) + µqρa0 + (h− 1)µ(q − 1)ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CIv

∂xv
=

(h(q − 1) (xa − 1) + q (−xa)− µ+ q) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

and combining them, we get:

∂CI

∂h
=

µ(q − 1)q (xa − xv) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂qa
=

(h− 1) (ρa0 (µ+ xv − 1)− ρv0 (xa + µ− 1)) (h (xa − 1) (xv − 1) + µ (q (xa − xv) + xv − 1))

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂xa
= − q (h (xv − 1) + µ) (hρa0 (µ+ µ(−q) + xv − 1) + µqρa0 + (h− 1)µ(q − 1)ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

∂CI

∂xv
=

(q − 1) (h (xa − 1) + µ) (µ ((h− 1)q (ρv0 − ρa0) + ρv0) + h (xa − 1) ρv0)

2 (hµ (−qxa + xa + qxv − 1) + h (xa − 1) (xv − 1) + µ (q (xa − xv) + µ+ xv − 1)) 2

Note that all the denominators are positive, so to control the sign from
now on we focus on the numerators. In particular, if ρa0 = ρv0 = ρ0, we
can note that CI is increasing in h and CI is increasing in q if and only if
xv > xa.
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If initial conditions are symmetric:

∂CIa

∂h
> 0⇐⇒− (q − 1)ρa0 (xa − 1) (xa − xv) (µ+ xv − 1) > 0

∂CIa

∂qa
> 0⇐⇒− (h− 1)ρa0 (xa − 1) (xa − xv) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− ρa0 (h (xv − 1) + µ) (µ− (1− h)(1− q) (1− xv)) > 0

∂CIa

∂xv
> 0⇐⇒(h− 1)(q − 1)ρa0 (xa − 1) (h (xa − 1) + µ) > 0

Now, using the first four inequalities presented above, we can conclude that
∂CIa

∂h > 0, ∂CIa

∂qa > 0, ∂CIa

∂xa < 0 and ∂CIa

∂xv < 0. Similarly, if ρa0 = 0:

∂CIa

∂h
> 0⇐⇒− (q − 1) (xa − 1) ρv0 (xa + µ− 1) (µ+ xv − 1) > 0

∂CIa

∂qa
> 0⇐⇒− (h− 1) (xa − 1) ρv0 (xa + µ− 1) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− (1− h)(1− q)ρv0 (µ− (1− q)(1− h)(1− xv)) > 0

∂CIa

∂xv
> 0⇐⇒(h− 1)(q − 1) (xa − 1) ρv0 (h (xa − 1) + µ ((h− 1)q + 1)) > 0

and we conclude that ∂CIa

∂h < 0, ∂CIa

∂qa < 0, ∂CIa

∂xa < 0 and ∂CIa

∂xv < 0.
If ρv0 = 0:

∂CIa

∂h
> 0⇐⇒(q − 1)ρa0 (xa − 1) (µ+ xv − 1) 2 > 0

∂CIa

∂qa
> 0⇐⇒(h− 1)ρa0 (xa − 1) (µ+ xv − 1) (h (xv − 1) + µ) > 0

∂CIa

∂xa
> 0⇐⇒− ρa0 (µ− (1− q)(1− h)(1− xv)) (h (µ− (1− xv)) + µ(1− h)q) > 0

∂CIa

∂xv
> 0⇐⇒− (h− 1)2µ(q − 1)qρa0 (xa − 1) > 0

and we conclude that ∂CIa

∂h > 0, ∂CIa

∂qa > 0, ∂CIa

∂xa < 0 and ∂CIa

∂xv < 0.
The other cases are analogous.

Proof of Proposition 3

Proof. From the proof of Proposition 1, the eigenvalues are:

e1 = µ̂− µ
e2 = µ̂− µ−∆.
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Moreover, they are both decreasing in absolute value as h increases (this is
easy to see for e1, given that µ̂ is positive and increases in h, but it holds
also for e2).

Proof of Proposition 5

Proof. Using equations (11) we obtain:

dCIv

dh
=
∂CIv

∂h
+
∂CIv

∂xv
dxv

dh

= −
kq
(
k
(
h2(q − 1) + 2h(µ− q)− µ2 + q

)
+ µ− 1

)
2 (µ2((h− 1)kq + k + 1)− µ((h− 1)hkq + hk + h+ 1) + (h− 1)hkq + h)2

that is positive if k > µ−1
h2(−q)+h2−2hµ+2hq+µ2−q .

Proof of Proposition 6

For the proof we need the following lemma, that characterizes the cultural
substitution pattern of the socialization payoffs.

Lemma 2. If the risk is estimated via the cumulative infection, and d > d
((xa)∗ = 0) ∆Ua is decreasing in q, while ∆Uv is increasing in q ( cultural
substitution).

If the risk is proportional to non-vaccinated agents, and d > d ((xa)∗ =
0), then ∆Uv is increasing in q, while there exist a d such that for d > d
∆Ua is increasing in q, while is decreasing if d < d.

Proof. Risk as cumulative infection
Let us consider the case in which d > d, so that (xa)∗ = 0. To differen-

tiate the socialization payoffs, we need the derivative of xv with respect to
q. Using the implicit function theorem we get:

dxv

dq = − dρa(h−1)(h−µ)xv(xv−1)

h2(−dρaq+dρa+2(µ+µ(−q)xv+xv−1)2)+dρah(µ(q−2)+q)+dρaµ(µ−q)+4hµ(µ−qxv+xv−1)(−µ+(µq−1)xv+1)+2µ2(µ−qxv+xv−1)2

so that the total derivatives of the payoffs are:
d∆Uv

dq
=
∂∆Uv

∂q
+
∂∆Uv

∂xv
dxv

dq

= − (h− 1)ρ0x
v (ρ0(h− µ) ((xv − 1) ((h− 1)qxv − h)− µ+ µxv − 1) + 2µxv (−hµ+ h(µq − 1)xv + h+ µ (µ− qxv + xv − 1)))

2 (−hµ+ h(µq − 1)xv + h+ µ (µ− qxv + xv − 1))
(
h2
(
−qρ0 + 2 (µ+ µ(−q)xv + xv − 1)2 + ρ0

)
+ hρ0(µ(q − 2) + q) + 4hµ (µ− qxv + xv − 1) (−µ+ (µq − 1)xv + 1) + µρ0(µ− q) + 2µ2 (µ− qxv + xv − 1)2

)
∂∆Ua

∂q
=
∂∆Uv

∂q
+
∂∆Uv

∂xv
dxv

dq

(h− 1)ρ0x
v (ρ0(h− µ) ((xv − 1) ((h− 1)qxv − h)− µ+ µxv − 1)− 2 (d(h− µ) (xv − 1)− µxv) (−hµ+ h(µq − 1)xv + h+ µ (µ− qxv + xv − 1)))

2 (−hµ+ h(µq − 1)xv + h+ µ (µ− qxv + xv − 1))
(
h2
(
−qρ0 + 2 (µ+ µ(−q)xv + xv − 1)2 + ρ0

)
+ hρ0(µ(q − 2) + q) + 4hµ (µ− qxv + xv − 1) (−µ+ (µq − 1)xv + 1) + µρ0(µ− q) + 2µ2 (µ− qxv + xv − 1)2

)

Under our assumptions the first expression is positive, the second is
negative.
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Proportional risk
The equilibrium values in this case are:

xa = 0 ,

xv =
k

(h− 1)kq + k + 1
,

(44)

(45)

provided that xv < 1 and xa < d, that are true respectively if:

kq(1− h) < 1

d > d =

(46)

(47)

First, let us focus on the case in which d > d, so that (xa)∗ = 0. In this
case the socialization payoffs are in the main text.

In case of the proportional infection risk plugging the expression above
for xv into (20) and taking the derivatives we get:

∂∆Uv

∂q
=

(1− h)k3((h− 1)hkq + hk + h+ 1)

((h− 1)kq + k + 1)3
> 0

∂∆Ua

∂q
=

(h− 1)k2(k − (d− hk)((h− 1)kq + k + 1))

((h− 1)kq + k + 1)3

The first expression is positive, thanks to the interiority condition kq(1−h) <
1.

The second expression is positive if d > h2k2q−hk2q+hk2+hk+k
hkq−kq+k+1 . This is not

redundant with the interiority condition (47): so for intermediate values of
d we get cultural substitution, for large values cultural complementarity, in

particular if d > d = h2k2q−hk2q+hk2+hk+k
hkq−kq+k+1 .

The (eventual) interior steady state is defined by: the equation qα∆Ua−
(1 − q)α∆Uv = 0. Call Φ(q) = qα∆Ua − (1 − q)α∆Uv. We want to
show that Φ has a zero in (0, 1). First, we show that in both specifica-
tions ∆Ua(q = 0) > 0 and ∆Uv(q = 1) < 0, so that limq−>0+ Φ(q) > 0,
while limq−>1− Φ(q) < 0. Hence, by the intermediate value theorem, there
exist an interior steady state.

Proportional risk ∆Ua(q = 0) = k(2(k+1)(d−hk)−k)
2(k+1)2

, and is positive if

d > −2hk2−2hk+2k2+k−2
2k+2 , while ∆Uv(q = 1) = k2(2h((h−1)k+k+1)+1)

2((h−1)k+k+1)2
is positive,

thanks to the condition kq(1− h) < 1 (eq 46).
Risk as cumulative infection

∆Uv(q = 1) =
ρ0

(
ρ0 (h (xv − 1) + µ− xv)2 + 4xv ((µ− 1)(µ− h) + h(µ− 1)xv)

)
8 (−hµ+ h(µ− 1)xv + h+ (µ− 1)µ)2
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and the numerator is positive, because in this case µ > µ̂ implies µ > 1,
while:

∆Ua(q = 0) =

and is positive if ρ0 is small enough and if:

d >
hρ0 − µρ0 − 4x2v − 4µxv + 4xv

4hµ+ 4hxv − 4h− 4µ2 + 4µ− 4µxv

Hence dq = max{ hρ0−µρ0−4x2v−4µxv+4xv

4hµ+4hxv−4h−4µ2+4µ−4µxv
, −2hk2−2hk+2k2+k−2

2k+2 }.
The steady state is unique and stable for α < 0 because the derivative

of Φ is negative. To prove it, note that the expression is:

d

dq
(qα∆Ua − (1− q)α∆Uv) =

αqα−1∆Ua + α(1− q)α−1∆Uv + qα
d

dq
∆Ua − (1− q)αd∆Uv

dq
< 0

In the case of cumulative infection it is negative thanks to Proposition
2, and because α < 0.

In the case of Proportional infection risk instead

qα
d

dq
∆Ua − (1− q)α d

dq
∆Uv =

qα
(

d

dq
∆Ua − (1− q)α

qα
d

dq
∆Uv

)
that in the steady state is:

qα
(

d

dq
∆Ua − ∆Ua

∆Uv
d

dq
∆Uv

)
and plugging the expressions:

−d(1− h)k2

((h− 1)kq + k + 1)2(2h((h− 1)kq + k + 1) + 1)
< 0

that thanks to the interiority condition kq(1−h) < 1 we can see to be always
negative.
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Proof of Proposition 7

Proof. We calculate the derivative using the implicit function theorem. That
is, we have to compute the derivatives of qα∆Ua − (1− q)α∆Uv:

We can evaluate the derivative using the implicit function theorem:

dq

dh
= −

d
dh (qα∆Ua − (1− q)α∆Uv)

αqα−1∆Ua + α(1− qα−1)∆Uv − d
dq (qα∆Ua − (1− q)α∆Uv)

The denominator is negative thanks to Proposition 6. The numerator is
negative because from the expressions 20 and Assumption we immediately
get that ∆Ua is decreasing in h and ∆Uv is increasing.

Hence q is decreasing in h.

Proof of Proposition 8

Proof. The total derivative of CI is:

dCI

dh
=
∂CI

∂h
+
∂CI

∂xv

(
∂xv

∂h
+
∂xv

∂q

dq

dh

)
+
∂CI

∂q

dq

dh

We prove that as α tends to 0, dq
dh tends to 0 as well. This way, the

derivative above is the same as in Proposition 4, and is positive.
Indeed, using the implicit function theorem:

dq

dh
= −

qα d
dh∆Ua − (1− q)α d

dh∆Uv

αqα−1∆Ua + α(1− q)α−1∆Uv + qα d
dq∆Ua − (1− q)α d

dq∆Uv

= −q
α

qα

d
dh∆Ua − (1−q)α

qα
d

dh∆Uv

α1
q∆Ua + α 1

1−q
(1−q)α
qα ∆Uv + d

dq∆Ua − (1−q)α
qα

d
dq∆Uv

−
d

dh∆Ua − ∆Ua

∆Uv
d

dh∆Uv

α1
q∆Ua + α 1

1−q
(1−q)α
qα ∆Uv + d

dq∆Ua − ∆Ua

∆Uv
d
dq∆Uv

Now let α go to −∞. To see what happens to q, let us analyze:

∆Ua

∆Uv
=

(1− q)α

qα
=

(
q

(1− q)

)−α
Now, as −α → ∞, unless q

(1−q) → 1 the limit has to be either 0 or ∞,

which is impossible because under the interiority conditions ∆Ua

∆Uv remains
bounded. Hence as α→ −∞ we have q → 1

2 .
Then We have that as α→ −∞ the denominator of the derivative goes

to −∞, and so dq
dh → 0−.
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Proof of Proposition 9

Proof. Using the derivatives computed in Proposition 2, we find that the
additional term due to the fact that vaccination rates adjust is:

∂CI

∂xv
dxv

dh
+
∂CI

∂xa
dxa

dh
=

− ρ0q(1− q)
2(hµ(−qxa + qxv + xv − 1) + h(xa − 1)(xv − 1) + µ(µ+ q(xa − xv) + xv − 1))2

×

dk(1− q)q
(
(µ− h(1− xv))2 − (µ− h(1− xa))2

)
(hk + 1)2

which is negative because since xv > xa we have:(
(µ− h(1− xv))2 − (µ− h(1− xa))2

)
> 0

The total derivative instead is positive:

dCI

dh
=
∂CI

∂h
+
∂CI

∂xv
dxv

dh
+
∂CI

∂xa
dxa

dh

=
ρ0q(1− q)(xv − xa)2(µ(1− hk) + h2k(2− xa − xv))

2(hµ(−qxa + qxv + xv − 1) + h(xa − 1)(xv − 1) + µ(µ+ q(xa − xv) + xv − 1))2
> 0

Proof of Proposition 10

Proof. In the case of an interior solution, the equilibrium is determined by:{
xa = CIa − d
xv = CIv

Using the implicit function theorem we get that the derivatives of the
infection rates for h = 0 are:

dxa

dh
=

ρ2
0

DK2
µ(1− q)(xv − xa)(µ− (1− xv))

dxv

dh
= − ρ2

0

DK2
µq(xv − xa)(µ− (1− xa))

where K = (T−2µ)2−∆2 > 0 and D = µ(µ−q(1−xa)−(1−q)(1−xv)) > 0.
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So, using the derivatives of CI precedently computed, we obtain that
the additional effect due to adjustment of vaccination rates is:

∂CI

∂xv
dxv

dh
+
∂CI

∂xa
dxa

dh
= − ρ2

0

DK3
µ2(1− q)q(xv − xa) ((1− xv)(µ− (1− xa))− (1− xa)(µ− (1− xv)))

=
ρ2

0

DK3
µ2(1− q)q(xv − xa)2 > 0

so the additional effect is positive, hence CI is more increasing than in the
baseline case for small h.

Proof of Proposition 11

Proof. Consider the function Φ(q) = qα∆Ua− (1− q)α∆Uv. Both ∆Ua and
∆Uv are bounded from above and bounded away from 0, so when q → 0
the negative term remains bounded while qα → ∞ (because α < 0). The
reverse happens when q → 1. By the intermediate value theorem, there
exist a solution q∗ ∈ (0, 1).

Concerning stability, we can calculate the derivative of the function F :

dΦ

dq
=

d

2(k + 1)(hk + 1)2
×(

aqa−1
(
d
(
−2(h− 1)hk2q + k + 1

)
− 2hk(hk + 1)

)
− 2d(h− 1)hk2 (qa + (1− q)a)

+a(1− q)a−1
(
2d(h− 1)hk2q + d(k + 1)(2hk + 1) + 2hk(hk + 1)

))
If q → 0, dΦ

dq → −∞, whereas if q → 1 dΦ
dq → +∞, so that, by continuity,

there must be a stable steady state. If if h→ 0, dF
dq → αd221−α < 0, so for

h in a neighborhood of 0 the steady state is unique and stable.

Proof of Proposition 12

Proof. For h = 0 we have that q = 1
2 . We can compute the derivative using

the implicit function theorem. The first derivative is the proof of Proposition
11. The second is

dΦ

dh
=

d

2(k + 1)(hk + 1)2
×

dk ((1− q)a(hk(d(−(k + 2)q + k + 1)− 1) + dkq − 1)

−qa(d(kq(h(k + 2)− 1) + k + 1) + hk + 1))

so that:
dq

dh

∣∣∣∣
h=0

= −
dΦ
dh
dΦ
dq

=
2k + dk

α(2d+ 2dk)
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and we can see that q is always decreasing with homophily, but with a
different level of intensity according to the magnitude of α.

Proof of Proposition 13

Using the implicit function theorem, we can analyze the behavior of cumu-
lative infection for h close to 0:

dCI

dh

∣∣∣∣
h=0

=
(k + 1)

4(dk − 2(k + 1)µ+ 2)2

(
4(d+ 2)k(dρv0k + (k + 1)µ(ρa0 − ρv0)− ρa0 + ρv0)

ad(k + 1)

+
dk
(
ρa0
(
dk2 + 2(k + 1)µ− 2

)
+ ρv0(dk(k + 2)− 2(k + 1)µ+ 2)

)
µ

)
With a symmetric initial condition we get:

dCI

dh
∣∣∣h=0

=
ρa0k

2
(
ad2(k + 1)2 + 2(d+ 2)µ

)
2aµ(dk − 2(k + 1)µ+ 2)2

which is positive if α < −2dµ−4µ
d2k2+2d2k+d2

and negative otherwise.

Proof of Proposition 16

Proof. The linearized dynamics is (from Lemma 1):

ρ̇a =
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xaq̃a + q̃a − 1

2
T

)
+

1

2
∆ cosh

(
∆t

2

))
ρa0

+
1

∆
(1− xa) (1− q̃a) sinh

(
∆t

2

)
e

1
2
t(T−2µ)ρv0

ρ̇v =
1

∆
(1− xv) (1− q̃v) sinh

(
∆t

2

)
e

1
2
t(T−2µ)ρa0

+
1

∆
e

1
2
t(T−2µ)

(
sinh

(
∆t

2

)(
−xv q̃v + q̃v − 1

2
T

)
+

1

2
∆ cosh

(
∆t

2

))
ρv0

In particular, it depends on µ just through the exponential term e
1
2
t(T−2µ).

So we can rewrite it as:
ρ̇a = e

1
2
t(T−2µ)A(t)

ρ̇v = e
1
2
t(T−2µ)V(t)

where A(t) and V(t) do not depend on µ. Now the discounted cumulative
infection for anti–vaxxers is equal to:

CIa =

∫ ∞
0

e−βte
1
2
t(T−2µ)A(t)dt =

∫ ∞
0

e
1
2
t(T−2(µ+β))A(t)dt
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which is precisely the expression for the non discounted cumulative infection
in a model where the recovery rate is µ′ = µ+ β.
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